Rolling Bearings | Technical Information | Page No. | Tech.
Info. | |---|----------|----------------------| | Deep Groove Ball Brgs. | B4 | | | Angular Contact Ball Brgs. | B46 | | | Self-Aligning Ball Brgs. | B76 | | | Cylindrical Roller Brgs. | B84 | | | Tapered Roller Brgs. | B110 | | | Spherical Roller Brgs. | B182 | | | Thrust Brgs. | B206 | Thrust
Brgs. | | Needle Roller Brgs. | B244 | | | Ball Brg. Units | B280 | | | Plummer Blocks | B304 | | | Cylindrical Roller Brgs. for Sheaves | B326 | Sheaves | | Roll-Neck Brgs. (4-Rows)
Railway Rolling Stock Brgs. | B334 | Roll Neck
Railway | | Balls and Rollers | B346 | O | | Accessories for Rolling Brgs. | B356 | Sleeves | | NSK Products and Appendices | C1 | Appendices | # **Rolling Bearings** CAT. No. E1102m ## Introduction to Revised **NSK** Rolling Bearing Catalog (CAT.No.E1102m) We want to thank you for your interest in this edition of our Rolling Bearing Catalog. It has been revised with our customers in mind, and we hope it fills your needs. Recently, technology has been advancing at a remarkable pace, and with it has come a host of new products in many fields including computers, office automation, audio-visual equipment, medical equipment, and many others. Accordingly, rolling bearings, which are highly important machine elements, must be designed to satisfy increasingly stringent requirements for higher speeds, greater precision, higher reliability, and other challenging demands. We edited this Rolling Bearing Catalog to reflect the growing number of NSK products, new developments, and technical progress. In it, you will find a wide range of bearings that will satisfy almost any requirement. This catalog was revised to reflect the growing number of NSK products and certain revisions in JIS and ISO and to better serve our customers. The first part contains general information about rolling bearings to facilitate selection of the most appropriate type. Next supplementary technical information is provided regarding bearing life, load ratings, limiting speeds, handling and mounting, lubrication, etc. Finally, the catalog presents extensive tables containing most bearing numbers and showing dimensions and pertinent design data listed in the order of increasing bore size. Data in the table are given in both the international Unit System (SI) and Engineering Unit System (Gravitational System of Units). We hope this catalog will allow you to select the optimum bearing for your application. However, if assistance is required, please contact NSK, and the company's engineers and computer programs can quickly supply the information you need. NSK ### NSK ### CONTENTS | T | ECHNI | CAL INFORMATION | D- | | |---|------------------|---|------|----------------| | 1 | | AND FEATURES OF ROLLING | | ges | | | | NGS ····· | | 7 | | | 1.1 De | sign and Classification | Α | 7 | | | 1.2 Ch | aracteristics of Rolling Bearings | Α | 7 | | 2 | BEARII | NG SELECTION PROCEDURE | A | 16 | | 3 | SELEC | TION OF BEARING TYPE | A. | 18 | | | 3.1 All | owable Bearing Space ····· | Α. | 18 | | | | ad Capacity and Bearing Types ······ | | 18 | | | | rmissible Speed and Bearing Types
salignment of Inner/Outer Rings and | Α | 18 | | | 3.4 IVII | aring Types ······ | ۸. | 18 | | | 3.5 Ric | gidity and Bearing Types ······ | . A | 19 | | | 3.6 No | ise and Torque of Various Bearing | | 17 | | | Tvi | Des ····· | Δ. | 19 | | | | nning Accuracy and Bearing Types ····· | | 19 | | | 3.8 Mc | ounting and Dismounting of Various | , , | 1 / | | | | aring Types | A. | 19 | | 4 | 4.1 Fix | TION OF BEARING ARRANGEMENT
ed-End and Free-End Bearings
amples of Bearing Arrangements | - A2 | 20
20
21 | | 5 | | TION OF BEARING SIZE | | 24 | | | 5.1 Be | aring Life ····· | - A2 | 24 | | | 5.1.1 | Rolling Fatigue Life and Basic Rating | | | | | | Life | | | | | | sic Load Rating and Fatigue Life | Α. | 24 | | | 5.2.1 | Basic Load Rating | A | 24 | | | 5.2.2 | Machinery in which Bearings are | | 0.4 | | | F 2 2 | Used and Projected Life | · A2 | 24 | | | 5.2.3 | Selection of Bearing Size Based on Basic Load Rating | ۸, | 25 | | | 5.2.4 | Temperature Correction for Basic Loa | | 25 | | | 3.2.4 | Rating | | 26 | | | 5.2.5 | Correction of Basic Rating Life | | 20
27 | | | 5.2.5
5.3 Cal | culation of Bearing Loads | Λ. | 28 | | | 5.3.1 | Load Factor | | 28 | | | 5.3.2 | Bearing Loads in Belt or Chain | Α. | 20 | | | J.J.Z | Transmission Applications | . Δ΄ | 28 | | | 5.3.3 | Bearing Loads in Gear Transmission | Λ. | _0 | | | 0.0.0 | Applications | Α. | 29 | | | 5.3.4 | Load Distribution on Bearings | | | | | 5.3.5 | Average of Fluctuating load | | | | | 0.0.0 | | , 12 | - / | | | | Dagos | |----|--|------------| | | | Pages | | | 5.4 Equivalent Load 5.4.1 Calculation of Equivalent Loads | A30 | | | 5.4.1 Calculation of Equivalent Loads5.4.2 Axial Load Components in Angular | A31 | | | Contact Ball Bearings and Tapered | | | | Roller Bearings | A31 | | | 5.5 Static Load Ratings and Static Equivalent | A3 I | | | Loads | A32 | | | 5.5.1 Static Load Ratings | A32 | | | 5.5.2 Static Equivalent Loads ······ | A32 | | | 5.5.3 Permissible Static Load Factor ········ | A32 | | | 5.6 Maximum Permissible Axial Loads for | 7132 | | | Cylindrical Roller Bearings | Δ33 | | | 5.7 Examples of Bearing Calculations | A34 | | | e. r Examples of Boaring Galdalations | 7101 | | 6 | LIMITING SPEED ····· | A37 | | | 6.1 Correction of Limiting Speed | A37 | | | 6.2 Limiting Speed for Rubber Contact Seals | | | | for Ball Bearings ····· | A37 | | | · · | | | 7 | BOUNDARY DIMENSIONS AND IDENTIFYING | | | | NUMBERS FOR BEARINGS | A38 | | | 7.1 Boundary Dimensions and Dimensions of | | | | Snap Ring Grooves ····· | A38 | | | 7.1.1 Boundary Dimensions | A38 | | | 7.1.2 Dimensions of Snap Ring Grooves | | | | and Locating Snap Rings | A38 | | | 7.2 Formulation of Bearing Numbers | A54 | | 8 | BEARING TOLERANCES | A58 | | - | 8.1 Bearing Tolerance Standards | A58 | | | 8.2 Selection of Accuracy Classes | A81 | | | , | | | 9 | FITS AND INTERNAL CLEARANCES | | | | 9.1 Fits | | | | 9.1.1 Importance of Proper Fits | A82 | | | 9.1.2 Selection of Fit | A82 | | | 9.1.3 Recommended Fits | A83 | | | 9.2 Bearing Internal Clearances | A88 | | | 9.2.1 Internal Clearances and Their | | | | Standards ····· | A88 | | | 9.2.2 Selection of Bearing Internal | | | | Clearances | A94 | | 10 | O PRELOAD | 10/ | | I | | A90 | | | 10.1 Purpose of Preload10.2 Preloading Methods | A90 | | | 10.2 Preloading Methods | A96
A96 | | | 10.2.1 Position Preioad ···································· | A96
A96 | | | 10.2.2 CONSTANT LESSAGE LIGIDAR | 170 | | | Page | |---|---------| | 10.3 Preload and Rigidity | · A96 | | 10.3.1 Position Preload and Rigidity10.3.2 Constant-Pressure Preload and | · A96 | | Rigidity | · A97 | | Amount of Preload | · A97 | | 10.4.1 Comparison of Preloading Methods | 407 | | 10.4.2 Amount of Preload ····· | · A97 | | 11 DESIGN OF SHAFTS AND HOUSINGS | A100 | | 11.1 Accuracy and Surface Finish of Shafts | | | and Housings | A100 | | 11.2 Shoulder and Fillet Dimensions | A100 | | 11.3 Bearing Seals | A102 | | 11.3.1 Non-Contact Types Seals ····· | | | 11.3.2 Contact Type Seals | A104 | | 12 LUBRICATION | A105 | | 12.1 Purposes of Lubrication | A105 | | 12.2 Lubricating Methods ····· | A105 | | 12.2.1 Grease Lubrication | A105 | | 12.2.2 Oil Lubrication ····· | A107 | | 12.3 Lubricants | A110 | | 12.3.1 Lubricating Grease | A110 | | 12.3.2 Lubricating Oil | A112 | | 13 BEARING MATERIALS | A114 | | 13.1 Materials for Bearing Rings and Rolling | | | Elements | A114 | | 13.2 Cage Materials | A115 | | 14 BEARING HANDLING | A116 | | 14.1 Precautions for Proper Handling of | | | Bearings | A116 | | 14.2 Mounting | A116 | | 14.2.1 Mounting of Bearings with | | | Cylindrical Bores ····· | A116 | | 14.2.2 Mounting of Bearings with Tapered Bores | A118 | | 14.3 Operation Inspection | A118 | | 14.4 Dismounting | A121 | | 14.4.1 Dismounting of Outer Rings | A121 | | 14.4.2 Dismounting of Bearings with Cylindrical Bores | A121 | | 14.4.3 Dismounting of Bearings with | | | Tapered Bores ····· | A122 | | 14.5 Inspection of Bearings ····· | A123 | | 14.5.1 Bearing Cleaning | A123 | | 14.5.2 Inspection and Evaluation of | A 1 0 0 | | Rearings | A 1 / 3 | | | | Pages | |--------|---|-------| | | Maintenance and Inspection | A124 | | 14.6 | .1 Detecting and Correcting Irregularities | A124 | | 14.6 | | A124 | | | Measures ····· | A124 | | | | | | 15 TEC | HNICAL DATA | A126 | | 15.1 | Axial Displacement of Bearings | A128 | | 15.2 | Fits | A130 | | 15.3 | Radial and Axial Internal Clearances ···· | A132 | | 15.4 | Preload and Starting Torque | A134 | | 15.5 | Coefficients of Dynamic Friction and | | | | Other Bearing Data | A136 | | 15.6 | Brands and Properties of Lubricating | | | | Greases | A138 | | | | | | | | | CONTENTS B2 # INTRODUCTION OF **NSK** PRODUCTS-APPENDICES **BEARING TABLES** | hotos of NS | SK Products | C 2 | |-------------|---------------------------------------|-----| | ppendix 1 | Conversion from SI (International | | | | Units) System ····· | C 8 | | ppendix 2 | N-kgf Conversion Table | C10 | | ppendix 3 | kg-lb Conversion Table | C11 | | ppendix 4 | °C-°F Temperature Conversion | | | | Table | C12 | | ppendix 5 | Viscosity Conversion Table | C13 | | ppendix 6 | Inch-mm Conversion Table | C14 | | ppendix 7 | Hardness Conversion Table | C16 | | ppendix 8 | Physical and Mechanical Properties | | | | of Materials | C17 | | ppendix 9 |
Tolerances for Shaft Diameters | C18 | | ppendix 10 | Tolerances for Housing Bore | | | | Diameters | C20 | | ppendix 11 | Values of Standard Tolerance Grades | | | | IT | | | ppendix 12 | Speed Factor f_n | C24 | | ppendix 13 | Fatigue Life Factor f_h and Fatigue | | | | Life L-L _h ····· | C25 | | ppendix 14 | Index of Inch Design Tapered Roller | | | | Bearings | C26 | | | | | ### 1.TYPES AND FEATURES OF ROLLING BEARINGS ### 1.1 Design and Classification Rolling bearings generally consist of two rings, rolling elements, and a cage, and they are classified into radial bearings or thrust bearings depending on the direction of the main load. In addition, depending on the type of rolling elements, they are classified into ball bearings or roller bearings, and they are further segregated by differences in their design or specific purpose. The most common bearing types and nomenclature of bearing parts are shown in Fig.1.1, and a general classification of rolling bearings is shown in Fig. 1.2. ### 1.2 Characteristics of Rolling Bearings Compared with plain bearings, rolling bearings have the following major advantages: (1) Their starting torque or friction is low and the difference between the starting torque and running torque is small. - (2) With the advancement of worldwide standardization, rolling bearings are internationally available and interchangeable. - (3) Maintenance, replacement, and inspection are easy because the structure surrounding rolling bearings is simple. - (4) Many rolling bearings are capable of taking both radial and axial loads simultaneously or independently. - (5) Rolling bearings can be used under a wide range of temperatures. - (6) Rolling bearings can be preloaded to produce a negative clearance and achieve greater rigidity. Furthermore, different types of rolling bearings have their own individual advantages. The features of the most common rolling bearings are described on Pages A10 to A12 and in Table 1.1 (Pages A14 and A15). Fig. 1.1 Nomenclature for Bearing Parts ### Single-Row Deep Groove Ball Bearings Single-row deep groove ball bearings are the most common type of rolling bearings. Their use is very widespread. The raceway grooves on both the inner and outer rings have circular arcs of slightly larger radius than that of the balls. In addition to radial loads, axial loads can be imposed in either direction. Because of their low torque, they are highly suitable for applications where high speeds and low power loss are required. In addition to open type bearings, these bearings often have steel shields or rubber seals installed on one or both sides and are prelubricated with grease. Also, snap rings are sometimes used on the periphery. As to cages, pressed steel ones are the most common. ### Magneto Bearings The inner groove of magneto bearings is a little shallower than that of deep groove bearings. Since the outer ring has a shoulder on only one side, the outer ring may be removed. This is often advantageous for mounting. In general, two such bearings are used in duplex pairs. Magneto bearings are small bearings with a bore diameter of 4 to 20 mm and are mainly used for small magnetos, gyroscopes, instruments, etc. Pressed brass cages are generally used. ### Single-Row Angular Contact Ball Bearings Individual bearings of this type are capable of taking radial loads and also axial loads in one direction. Four contact angles of 15°, 25°, 30°, and 40° are available. The larger the contact angle, the higher the axial load capacity. For high speed operation, however, the smaller contact angles are preferred. Usually, two bearings are used in duplex pairs, and the clearance between them must be adjusted properly. Pressed-steel cages are commonly used, however, for high precision bearings with a contact angle less than 30°, polyamide resin cages are often used. Duplex Bearings A combination of two radial bearings is called a duplex pair. Usually, they are formed using angular contact ball bearings or tapered roller bearings. Possible combinations include face-to-face, which have the outer ring faces together (type DF), back-to-back (type DB), or both front faces in the same direction (type DT). DF and DB duplex bearings are capable of taking radial loads and axial loads in either direction. Type DT is used when there is a strong axial load in one direction and it is necessary to impose the load equally on each bearing. ### Double-Row **Angular Contact** Ball Bearings Double-row angular contact ball bearings are basically two single-row angular contact ball bearings mounted back-to-back except that they have only one inner ring and one outer ring, each having raceways. They can take axial loads in either direction. ### Four-Point Contact **Ball Bearings** The inner and outer rings of four-point contact ball bearings are separable because the inner ring is split in a radial plane. They can take axial loads from either direction. The balls have a contact angle of 35° with each ring. Just one bearing of this type can replace a combination of face-to-face or back-to-back angular contact bearings. Machined brass cages are generally used. ### Self-Alianina Ball Bearings The inner ring of this type of bearing has two raceways and the outer ring has a single spherical raceway with its center of curvature coincident with the bearing axis. Therefore, the axis of the inner ring, balls, and cage can deflect to some extent around the bearing center. Consequently, minor angular misalignment of the shaft and housing caused by machining or mounting error is automatically corrected. This type of bearing often has a tapered bore for mounting using an adapter sleeve. ### Cylindrical Roller Bearings There are different types designated NU, NJ, NUP, N, NF for single-row bearings, and NNU, NN for double-row bearings depending on the design or absence of side ribs. The outer and inner rings of all types are separable. Some cylindrical roller bearings have no ribs on either the inner or outer ring, so the rings can move axially relative to each other. These can be used as free-end bearings. Cylindrical roller bearings, in which either the inner or outer rings has two ribs and the other ring has one, are capable of taking some axial load in one direction. Double-row cylindrical roller bearings have high radial rigidity and are used primarily for precision machine tools. Pressed steel or machined brass cages are generally used, but sometimes molded polyamide cages are also used. A 11 A 10 ### Needle Roller Bearings Needle roller bearings contain many slender rollers with a length 3 to 10 times their diameter. As a result, the ratio of the bearing outside diameter to the inscribed circle diameter is small, and they have a rather high radial load capacity. There are numerous types available, and many have no inner rings. The drawn-cup type has a pressed steel outer ring and the solid type has a machined outer ring. There are also cage and roller assemblies without rings. Most bearings have pressed steel cages, but some are without cages. ### Tapered Roller Bearings Bearings of this type use conical rollers guided by a back-face rib on the cone. These bearings are capable of taking high radial loads and also axial loads in one direction. In the HR series, the rollers are increased in both size and number giving it an even higher load capacity. They are generally mounted in pairs in a manner similar to single-row angular contact ball bearings. In this case, the proper internal clearance can be obtained by adjusting the axial distance between the cones or cups of the two opposed bearings. Since they are separable, the cone assemblies and cups can be mounted independently. Depending upon the contact angle, tapered roller bearings are divided into three types called the normal angle, medium angle, and steep angle. Double-row and four-row tapered roller bearings are also available. Pressed steel cages are generally used. ### Spherical Roller Bearings These bearings have barrel-shaped rollers between the inner ring, which has two raceways, and the outer ring which has one spherical raceway. Since the center of curvature of the outer ring raceway surface coincides with the bearing axis, they are self-aligning in a manner similar to that of selfaligning ball bearings. Therefore, if there is deflection of the shaft or housing or misalignment of their axes, it is automatically corrected so excessive force is not applied to the bearings. Spherical roller bearings can take, not only heavy radial loads, but also some axial loads in either direction. They have excellent radial load-carrying capacity and are suitable for use where there are heavy or impact loads. Some bearings have tapered bores and may be mounted directly on tapered shafts or cylindrical shafts using adapters or withdrawal sleeves. Pressed steel and machined brass cages are used. ### Single-Direction Thrust Ball Bearings Single-direction thrust ball bearings are composed of washer-like bearing rings with raceway grooves. The ring attached to the shaft is called the shaft washer (or inner ring) while that attached to the housing is called the housing washer (or outer ring). In double-direction thrust ball bearings, there are three rings with the middle one (center ring) Double-Direction being fixed to the shaft. Thrust Ball Bearings There are also thrust ball bearings with an aligning seat washer beneath the housing washer in order to compensate for shaft misalignment or mounting error. Pressed steel cages are usually used in the smaller bearings and machined cages in the larger Spherical Thrust These bearings have a spherical raceway in the housing washer and barrel-shaped rollers obliquely Roller Bearings arranged around it. Since the raceway in the housing washer in spherical, these bearings are selfaligning. They have a very high axial load capacity and are capable of taking moderate radial loads when an axial load is applied. A 12 A 13 Table 1. 1
Types and Characteristics | | Bearing
Types | Deep
Groove
Ball
Bearings | Magneto
Bearings | Angular
Contact
Ball
Bearings | Double-Row
Angular
Contact
Ball
Bearings | Duplex
Angular
Contact
Ball
Bearings | Four-Point
Contact
Ball
Bearings | Self-
Aligning
Ball
Bearings | Cylindrical
Roller
Bearings | Double-Row
Cylindrical
Roller
Bearings | Cylindrical
Roller
Bearings
with
Single Rib | |---------------|------------------------------|------------------------------------|---|---|--|--|---|---------------------------------------|-----------------------------------|---|---| | Fe | atures | | | | | | 料 | | 口口 | | | | ity | Radial Loads | \bigcirc | 0 | \odot | 0 | 0 | 0 | \bigcirc | \odot | 0 | \odot | | Load Capacity | Axial Loads | $\bigcup_{i=1}^{n}$ | 0 | \bigcirc | \odot | \odot | \odot | 0 | × | × | | | Γο | Combined
Loads | \bigcirc | 0 | 0 | 0 | 0 | 0 | 0 | × | × | | | ı | High Speeds | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ı | High Accuracy | 0 | | 0 | | 0 | 0 | | 0 | 0 | | | | _ow Noise and
Torque | 0 | | | | | | | 0 | | | | ı | Rigidity | | | | | 0 | | | 0 | 0 | 0 | | 1 | Angular
Misalignment | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \bigcirc | 0 | | | (| Self-Aligning
Capability | | | | | | | ☆ | | | | | ļ | Ring
Separability | | ☆ | | | | ☆ | | ☆ | ☆ | ☆ | | [| Fixed-End
Bearing | ☆ | | | ☆ | ☆ | ☆ | ☆ | | | | | [| Free-End
Bearing | * | | | * | * | * | * | ☆ | ☆ | | | i | Tapered Bore
n Inner Ring | | | | | | | ☆ | | ☆ | | | I | Remarks | | Two bearings are usually mounted in opposition. | Contact angles of 15°, 25° 30°, and 40°. Iwo bearings are usually mounted in opposition. Clearance adjustment is necessary. | | Combination of DF and DT pairs is possible, but use on free-end is not possible. | Contact angle of 35° | | Including N type | Including NNU type | Including NF type | | ı | Page No. | B5
B31 | B5
B28 | B47 | B47
B70 | B47 | B47
B72 | B77 | B85 | B85
B110 | B85 | | | Excellent | ⊙ Go | ood | O Fair | 0 1 | Poor × | Impossible | ← Or
or | ne direction
nly | ←→ Tw | o directions | of Rolling Bearings | Cylindrical
Roller
Bearings
with Thrust
Collars | Needle
Roller
Bearings | Tapered
Roller
Bearings | Double-and
Multiple-Row
Tapered
Roller
Bearings | Spherical
Roller
Bearings | Thrust
Ball
Bearings | Thrust Ball
Bearings
with
Aligning
Seat | Double-
Direction
Angular
Contact
Thrust
Ball
Bearings | Thrust
Cylindrical
Roller
Bearings | Thrust
Tapered
Roller
Bearings | Thrust
Spherical
Roller
Bearings | Page No. | |---|------------------------------|--|---|---------------------------------|----------------------------|---|--|---|---|---|---| | \odot | 0 | \odot | 0 | 0 | × | × | × | × | × | 0 | _ | | $\overline{\bigcirc}$ | × | \bigcirc | \bigcirc | \bigcirc | \bigcirc | $\overline{\bigcirc}$ | $\overline{\bigcirc}$ | (i) | (i) | (i) | _ | | | × | 0 | 0 | 0 | × | × | × | × | × | 0 | _ | | \bigcirc | 0 | \bigcirc | | \bigcirc | × | × | \bigcirc | 0 | 0 | 0 | A18
A37 | | | | 0 | | | 0 | | 0 | | | | A19
A58
A81 | | | | | | | | | | | | | A19 | | \odot | 0 | 0 | 0 | | | | 0 | 0 | 0 | | A19
A96 | | \bigcirc | 0 | | 0 | 0 | × | 0 | × | × | × | 0 | A18
Blue pages of
each brg.
type | | | | | | ☆ | | ☆ | | | | ☆ | A18 | | ☆ | ☆ | ☆ | ☆ | | ☆ | ☆ | ☆ | ☆ | ☆ | ☆ | A19
A20 | | ☆ | | | ☆ | ☆ | | | | | | | A20
~A21 | | | ☆ | | * | * | | | | | | | A20
~A27 | | | | | | ☆ | | | | | | | A80
A118
A122 | | Including NUP type | | Two bearings are usually mounted in opposition. Clearance adjustment is necessary. | KH, KV types are
also available but
use on free-end is
impossible. | | | | | Including needle
roller thrust bearings | | To be used with oil
lubrication | | | B85 | _ | B115 | B115
B176
B299 | B183 | B207 | B207 | B235 | B207
B224 | _ | B207
B228 | | A 14 A 15 [☆] Applicable ★ Applicable, but it is necessary to allow shaft contraction/elongation at fitting surfaces of bearings. ### 2. BEARING SELECTION PROCEDURE The number of applications for rolling bearings is almost countless and the operating conditions and environments also vary greatly. In addition, the diversity of operating conditions and bearing requirements continue to grow with the rapid advancement of technology. Therefore, it is necessary to study bearings carefully from many angles to select the best one from the thousands of types and sizes available. Usually, a bearing type is provisionally chosen considering the operating conditions, mounting arrangement, ease of mounting in the machine, allowable space, cost, availability, and other factors. Then the size of the bearing is chosen to satisfy the desired life requirement. When doing this, in addition to fatigue life, it is necessary to consider grease life, noise and vibration, wear, and other factors. There is no fixed procedure for selecting bearings. It is good to investigate experience with similar applications and studies relevant to any special requirements for your specific application. When selecting bearings for new machines, unusual operating conditions, or harsh environments, please consult with NSK. The following diagram (Fig.2.1) shows an example of the bearing selection procedure. Fig. 2.1 Flow Chart for Selection of Rolling Bearings ### 3. SELECTION OF BEARING TYPES ### 3.1 Allowable Bearing Space The allowable space for a rolling bearing and its adjacent parts is generally limited so the type and size of the bearing must be selected within such limits. In most cases, the shaft diameter is fixed first by the machine design; therefore, the bearing is often selected based on its bore size. For rolling bearings, there are numerous standardized dimension series and types, and the selection of the optimum bearing from among them is necessary. Fig. 3.1 shows the dimension series of radial bearings and corresponding bearing types. ### 3.2 Load Capacity and Bearing Types The axial load carrying capacity of a bearing is closely related to the radial load capacity (see Page A24) in a manner that depends on the bearing design as shown in Fig. 3.2. This figure makes it clear that when bearings of the same dimension series are compared, roller bearings have a higher load capacity than ball bearings and are superior if shock loads exist. ### 3.3 Permissible Speed and Bearing Types The maximum speed of rolling bearings varies depending, not only the type of bearing, but also its size, type of cage, loads, lubricating method, heat dissipation, etc. Assuming the common oil bath lubrication method, the bearing types are roughly ranked from higher speed to lower as shown in Fig. 3.3 ### 3.4 Misalignment of Inner/Outer Rings and Bearing Types Because of deflection of a shaft caused by applied loads, dimensional error of the shaft and housing, and mounting errors, the inner and outer rings are slightly misaligned. The permissible misalignment varies depending on the bearing type and operating conditions, but usually it is a small angle less than 0.0012 radian (4'). When a large misalignment is expected, bearings having a self-aligning capability, such as self-aligning ball bearings, spherical roller bearings, and certain bearing units should be selected (Figs. 3.4 and 3.5). Fig. 3.1 Dimension Series of Radial Bearings Bearing Types Deep Groove Ball Bearings Ball Bearings Needle Roller Tapered Roller Bearings Bearings Angular Contact Cylindrical Roller Note(1) The bearings with ribs can take some axial loads. Relative permissible speed 13 10 Fig. 3.2 Relative Load Capacities of Various Bearing Types Fig. 3.3 Relative Permissible Speeds of Various Bearing Types Permissible bearing misalignment is given at the beginning of the dimensional tables for each bearing type. Fig. 3.4 Permissible Misalignment of Spherical Roller Bearings Fig. 3.5 Permissible Misalignment of Ball Bearing Units | Bearing Types | Highest
accuracy
specified | Tolerance comparison of inner ring radial runout 1 2 3 4 5 | |----------------------------------|----------------------------------|--| | Deep Groove Ball
Bearings | Class 2 | | | Angular Contact
Ball Bearings | Class 2 | | | Cylindrical Roller
Bearings | Class 2 | | | Tapered Roller
Bearings | Class 4 | → | | Spherical Roller
Bearings | Normal | - | Fig. 3.6 Relative Inner Ring Radial Runout of Highest Accuracy Class for Various Bearing Types ### 3.5 Rigidity and Bearing Types When loads are imposed on a rolling bearing, some elastic deformation occurs in the contact areas between the rolling elements and raceways. The rigidity of the bearing is determined by the ratio of bearing load to the amount of elastic deformation of the inner and outer rings and rolling elements. For the main spindles of machine tools, it is necessary
to have high rigidity of the bearings together with the rest of the spindle. Consequently, since roller bearings are deformed less by load, they are more often selected than ball bearings. When extra high rigidity is required, bearings are given a preload, which means that they have a negative clearance. Angular contact ball bearings and tapered roller bearings are often preloaded. ### 3.6 Noise and Torque of Various Bearing Types Since rolling bearings are manufactured with very high precision, noise and torque are minimal. For deep groove ball bearings and cylindrical roller bearings particularly, the noise level is sometimes specified depending on their purpose. For high precision miniature ball bearings, the starting torque is specified. Deep groove ball bearings are recommended for applications in which low noise and torque are required, such as motors and instruments. ### 3.7 Running Accuracy and Bearing Types For the main spindles of machine tools that require high running accuracy or high speed applications like superchargers, high precision bearings of Class 5, 4 or 2 are usually used. The running accuracy of rolling bearings is specified in various ways, and the specified accuracy classes vary depending on the bearing type. A comparison of the inner ring radial runout for the highest running accuracy specified for each bearing type is shown in Fig. 3.6. For applications requiring high running accuracy, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable. ## 3.8 Mounting and Dismounting of Various Bearing Types Separable types of bearings like cylindrical roller bearings, needle roller bearings and tapered roller bearings are convenient for mounting and dismounting. For machines in which bearings are mounted and dismounted rather often for periodic inspection, these types of bearings are recommended. Also, self-aligning ball bearings and spherical roller bearings (small ones) with tapered bores can be mounted and dismounted relatively easily using sleeves. ### 4. SELECTION OF BEARING ARRANGEMENT In general, shafts are supported by only two bearings. When considering the bearing mounting arrangement. the following items must be investigated: - (1) Expansion and contraction of the shaft caused by temperature variations. - (2) Ease of bearing mounting and dismounting. - (3) Misalignment of the inner and outer rings caused by deflection of the shaft or mounting error. - (4) Rigidity of the entire system including bearings and preloading method. - (5) Capability to sustain the loads at their proper positions and to transmit them. ### 4.1 Fixed-End and Free-End Bearings Fixed-end Fixed-end Among the bearings on a shaft, only one can be a "fixed-end" bearing that is used to fix the shaft axially. For this fixed-end bearing, a type which can carry both radial and axial loads must be selected. Bearings other than the fixed-end one must be "freeend" bearings that carry only radial loads to relieve the shaft's thermal elongation and contraction. No distinction between fixed-end and free-end No distinction between fixed-end and free-end No distinction between fixed-end and free-end Free-end (separable bearing) Free-end (non-separable bearing) If measures to relieve a shaft's thermal elongation and contraction are insufficient, abnormal axial loads are applied to the bearings, which can cause premature failure. For free-end bearings, cylindrical roller bearings or needle roller bearings with separable inner and outer rings that are free to move axially (NU, N types, etc.) are recommended. When these types are used, mounting and dismounting are also easier. When non-separable types are used as free-end bearings, usually the fit between the outer ring and housing is loose to allow axial movement of the running shaft together with the bearing. Sometimes, such elongation is relieved by a loose fitting between the inner ring and shaft. When the distance between the bearings is short and the influence of the shaft elongation and contraction is negligible, two opposed angular contact ball bearings or tapered roller bearings are used. The axial clearance (possible axial movement) after the mounting is adjusted using nuts or shims. ### BEARING B · Cylindrical Roller Bearing · Deep Groove Ball Bearing · Matched Angular Contact (NU. N types) Needle Roller Bearing (NA · Double-Row Angular type, etc.) ### BEARING C(1) Deep Groove Ball Bearing · Matched Angular Contact Ball Bearing (back-toback) · Double-Row Angular Contact Ball Bearing · Self-Aligning Ball Bearing · Double-Row Tapered Roller Bearing (KBE type) Spherical Roller Bearing #### BEARING F Deep Groove Ball Bearing · Self-Aligning Ball Bearing · Spherical Roller Bearing · Tapered Roller Bearing · Magneto Bearing · Cylindrical Roller Bearing (NJ. NF types) BEARING A Ball Bearing types) Contact Ball Bearing · Self-Aligning Ball Bearing · Cylindrical Roller Bearing with Ribs (NH, NUP · Double-Row Tapered · Spherical Roller Bearing Roller Bearing BEARING D,E(2) Bearing · Angular Contact Ball Notes: (1) In the figure, shaft elongation and contraction are relieved at the outside surface of the outer ring, but sometimes it is done at the bore. (2) For each type, two bearings are used in opposition. ### The distinction between free-end and fixed-end bearings and some possible bearing mounting arrangements for various bearing types are shown in Fig. 4.1. ### 4.2 Example of Bearing Arrangements Some representative bearing mounting arrangements considering preload and rigidity of the entire assembly, shaft elongation and contraction, mounting error, etc. are shown in Table 4.1. Table 4. 1 Representative Bearing Mounting Arrangements and Application Examples | Bearing Arrangements | - Remarks | Application Examples | |----------------------|--|--| | Fixed-end Free-end | Remarks | Application Examples | | | This is a common arrangement in which abnormal loads are not applied to bearings even if the shaft expands or contracts. If the mounting error is small, this is suitable for high speeds. | Medium size electric motors, blowers | | | ○This can withstand heavy loads and shock loads and can take some axial load. ○Every type of cylindrical roller bearing is separable. This is helpful when interference is necessary for both the inner and outer rings. | Traction motors for rolling stock | | | This is used when loads are relatively heavy. For maximum rigidity of the fixed-end bearing, it is a back-to-back type. Both the shaft and housing must have high accuracy and the mounting error must be small. | Table rollers for steel mills, main spindles of lathes | | | OThis is also suitable when interference is necessary for both the inner and outer rings. Heavy axial loads cannot be applied. | Calender rolls of paper making
machines, axles of diesel
locomotives | | | This is suitable for high speeds and heavy radial loads. Moderate axial loads can also be applied. It is necessary to provide some clearance between the outer ring of the deep groove ball bearing and the housing bore in order to avoid subjecting it to radial loads. | Reduction gears in diesel locomotives | Continued on next page Table 4. 1 Representative Bearing Mounting Arrangements and Application Examples (cont'd) | Bearing Arrangements | Remarks | Application Examples | |---|--|--| | Fixed-end Free-end | | , | | | This is the most common arrangement.It can sustain not only radial loads, but moderate axial loads also. | Double suction volute pumps, automotive transmissions | | | This is the most suitable arrangement when there is mounting error or shaft deflection. It is often used for general and industrial applications in which heavy loads are applied. | Speed reducers, table rollers of
steel mills, wheels for overhead
travelling cranes | | | This is suitable when there are rather heavy axial loads in both directions. Double row angular contact bearings may be used instead of a arrangement of two angular contact ball bearings. | Worm gear reducers | | When there is no distinction between fixed-end and free-end | Remarks | Application Examples | | Back-to-back mounting Face-to-face mounting | This arrangement is widely used since it can withstand heavy loads and shock loads. The back-to-back arrangement is especially good when the distance between bearings is short and moment loads are applied. Face-to-face mounting makes mounting easier when interference is necessary for the inner ring. In general, this arrangement is good when there is mounting error. To use this arrangement with a preload, affection must be paid to the amount of preload and clearance adjustment.
 | Pinion shafts of automotive
differential gears, automotive
front and rear axles, worm gear
reducers | | Back-to-back mounting | This is used at high speeds when radial loads are not so heavy and axial loads are relatively heavy. It provides good rigidity of the shaft by preloading. For moment loads, back-to-back mounting is better than face-to-face mounting. | Grinding wheel shafts | | When there is no distinction between | Remarks | Application Examples | |--|--|---| | fixed-end and free-end NJ + NJ mounting | This can withstand heavy loads and shock loads. It can be used if interference is necessary for both the inner and outer rings. Care must be taken so the axial clearance doesn't become too small during running. NF type + NF type mounting is also possible. | Final reduction gears of construction machines | | | OSometimes a spring is used at the side of the outer ring of one bearing. | Small electric motors, small
speed reducers, small pumps | | Vertical arrangements | Remarks | Application Examples | | | Matched angular contact ball bearings are on the fixed end.Cylindrical roller bearing is on the free end. | Vertical electric motors | | | The spherical center of the self-aligning seat must coincide with that of the self-aligning ball bearing. The upper bearing is on the free end. | Vertical openers (spinning and weaving machines) | Continued on next page ### 5. SELECTION OF BEARING SIZE ### 5.1 Bearing Life The various functions required of rolling bearings vary according to the bearing application. These functions must be performed for a prolonged period. Even if bearings are properly mounted and correctly operated, they will eventually fail to perform satisfactorily due to an increase in noise and vibration, loss of running accuracy, deterioration of grease, or fatigue flaking of the rolling surfaces. Bearing life, in the broad sense of the term, is the period during which bearings continue to operate and to satisfy their required functions. This bearing life may be defined as noise life, abrasion life, grease life, or rolling fatigue life, depending on which one causes loss of bearing service. Aside from the failure of bearings to function due to natural deterioration, bearings may fail when conditions such as heat-seizure, fracture, scoring of the rings, damage of the seals or the cage, or other damage occurs. Conditions such as these should not be interpreted as normal bearing failure since they often occur as a result of errors in bearing selection, improper design or manufacture of the bearing surroundings, incorrect mounting, or insufficient maintenance. ### 5.1.1 Rolling Fatigue Life and Basic Rating Life When rolling bearings are operated under load, the raceways of their inner and outer rings and rolling elements are subjected to repeated cyclic stress. Because of metal fatigue of the rolling contact surfaces of the raceways and rolling elements, scaly particles may separate from the bearing material (Fig. 5.1). This phenomenon is called "flaking". Rolling fatigue life is represented by the total number of revolutions at which time the bearing surface will start flaking due to stress. This is called fatigue life. As shown in Fig. 5.2, even for seemingly identical bearings, which are of the same type, size, and material and receive the same heat treatment and other processing, the rolling fatigue life varies greatly even under identical operating conditions. This is because the flaking of materials due to fatigue is subject to many other variables. Consequently, "basic rating life", in which rolling fatigue life is treated as a statistical phenomenon, is used in preference to actual rolling fatigue life. Suppose a number of bearings of the same type are operated individually under the same conditions. After a certain period of time, 10 % of them fail as a result of flaking caused by rolling fatigue. The total number of revolutions at this point is defined as the basic rating life or, if the speed is constant, the basic rating life is often expressed by the total number of operating hours completed when 10 % of the bearings become inoperable due to flaking. In determining bearing life, basic rating life is often the only factor considered. However, other factors must also be taken into account. For example, the grease life of grease-prelubricated bearings (refer to Section 12, Lubrication, Page A107) can be estimated. Since noise life and abrasion life are judged according to individual standards for different applications, specific values for noise or abrasion life must be determined empirically. ## 5.2 Basic Load Rating and Fatigue Life5.2.1 Basic Load Rating The basic load rating is defined as the constant load applied on bearings with stationary outer rings that the inner rings can endure for a rating life of one million revolutions ($10^6~{\rm rev}$). The basic load rating of radial bearings is defined as a central radial load of constant direction and magnitude, while the basic load rating of thrust bearings is defined as an axial load of constant magnitude in the same direction as the central axis. The load ratings are listed under $C_{\rm r}$ for radial bearings and $C_{\rm a}$ for thrust bearings in the dimension tables. ### 5.2.2 Machinery in which Bearings are Used and Projected Life It is not advisable to select bearings with unnecessarily high load ratings, for such bearings may be too large and uneconomical. In addition, the bearing life alone should not be the deciding factor in the selection of bearings. The strength, rigidity, and design of the shaft Fig. 5.1 Example of Flaking Table 5. 1 Fatigue Life Factor f_h for Various Bearing Applications | | 0 11 | | | | | |---|--|--|---|---|--| | Operating Deriods | | | Fatigue Life Factor $f_{ m f}$ | ı | | | Operating Periods | ~3 | 2~4 | 3~5 | 4~7 | 6~ | | Infrequently used or only
for short periods | · Small motors for
home appliances
like vacuum
cleaners and
washing machines
· Hand power tools | · Agricultural
equipment | | | | | Used only occasionally
but reliability is impor-
tant | | Motors for home
heaters and air
conditioners Construction
equipment | · Conveyors
· Elevator cable
sheaves | | | | Used intermittently for relatively long periods | · Rolling mill roll
necks | Small motors Deck cranes General cargo cranes Pinion stands Passenger cars | Factory motors Machine tools Transmissions Vibrating screens Crushers | Crane sheaves Compressors Specialized transmissions | | | Used intermittently for
more than eight hours
daily | | ·Escalators | Centrifugal separators Air conditioning equipment Blowers Woodworking machines Large motors Axle boxes on railway rolling stock | Mine hoists Press flywheels Railway traction motors Locomotive axle boxes | Paper making
machines | | Used continuously and
high reliability is impor-
tant | | | | | Waterworks pumps Electric power stations Mine draining pumps | on which the bearings are to be mounted should also be considered. Bearings are used in a wide range of applications and the design life varies with specific applications and operating conditions. Table 5.1 gives an empirical fatigue life factor derived from customary operating experience for various machines. Also refer to Table 5.2. ### 5.2.3 Selection of Bearing Size Based on Basic Load Rating The following relation exists between bearing load and basic rating life: For ball bearings $$L = \left(\frac{C}{P}\right)^3$$(5.1) For roller bearings $L = \left(\frac{C}{P}\right)^{\frac{10}{3}}$(5.2) where L: Basic rating life (10⁶ rev) P: Bearing load (equivalent load) (N), {kgf}(Refer to Page A30) C: Basic load rating (N), {kgf} For radial bearings, C is written C_r For thrust bearings, C is written C_a In the case of bearings that run at a constant speed, it is convenient to express the fatigue life in terms of hours. In general, the fatigue life of bearings used in automobiles and other vehicles is given in terms of mileage. By designating the basic rating life as L_h (h), bearing speed as n (min⁻¹), fatigue life factor as f_h , and speed factor as f_n , the relations shown in Table 5.2 are obtained: Table 5. 2 Basic Rating Life, Fatigue Life Factor and Speed Factor | | . aoto: ana opo | ou : uoto. | |---------------------------|---|---| | Life
Parameters | Ball Bearings | Roller Bearings | | Basic
Rating
Life | $L_{\rm h} = \frac{10^6}{60 n} \left(\frac{C}{P}\right)^3 = 500 f_{\rm h}^3$ | $L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{\frac{10}{3}} = 500 f_{\rm h}^{\frac{10}{3}}$ | | Fatigue
Life
Factor | $f_{\rm h} = f_{\rm
h} \frac{C}{P}$ | $f_{\rm h} = f_{ m n} \frac{C}{P}$ | | Speed
Factor | $f_{n} = \left(\frac{10^{6}}{500 \times 60 n}\right)^{\frac{1}{3}}$ $= (0.03 n)^{-\frac{1}{3}}$ | $f_{n} = \left(\frac{10^{6}}{500 \times 60 n}\right)^{\frac{3}{10}}$ $= (0.03 n)^{-\frac{3}{10}}$ | n, f_nFig. 5.3 (See Page A26), Appendix Table 12 (See Page C24) $L_{\rm h},~f_{\rm h}$...Fig. 5.4 (See Page A26), Appendix Table 13 (See Page C25) Fig. 5.3 Bearing Speed and Speed Factor Fig. 5.4 Fatigue Life Factor and Fatigue Life If the bearing load P and speed n are known, determine a fatigue life factor f_h appropriate for the projected life of the machine and then calculate the basic load rating C by means of the following equation. $$C = \frac{f_{\rm h} \cdot P}{f_{\rm h}} \dots (5.3)$$ A bearing which satisfies this value of C should then be selected from the bearing ### 5.2.4 Temperature Adjustment for Basic Load Rating If rolling bearings are used at high temperature, the hardness of the bearing steel decreases. Consequently, the basic load rating, which depends on the physical properties of the material, also decreases. Therefore, the basic load rating should be adjusted for the higher temperature using the following equation: $$C_t = f_t \cdot C \quad \dots \quad (5.4)$$ where C_t : Basic load rating after temperature correction (N), {kgf} > $f_{\rm t}$: Temperature factor (See Table 5.3.) C: Basic load rating before temperature adjustment $(N), \{kgf\}$ If large bearings are used at higher than 120°C, they must be given special dimensional stability heat treatment to prevent excessive dimensional changes. The basic load rating of bearings given such special dimensional stability heat treatment may become lower than the basic load rating listed in the bearing tables. Table 5.3 Temperature Factor $f_{\rm t}$ | | | - | | | | |--|------|------|------|------|------| | Bearing
Temperature °C | 125 | 150 | 175 | 200 | 250 | | Temperature
Factor $ extbf{\emph{f}}_{ ext{t}}$ | 1.00 | 1.00 | 0.95 | 0.90 | 0.75 | ### 5.2.5 Correction of Basic Rating Life As described previously, the basic equations for calculating the basic rating life are as follows: For ball bearings $$L_{10} = \left(\frac{C}{P}\right)^3$$(5.5) For roller bearings $$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}}$$(5.6) The L_{10} life is defined as the basic rating life with a statistical reliability of 90%. Depending on the machines in which the bearings are used, sometimes a reliability higher than 90% may be required. However, recent improvements in bearing material have greatly extended the fatigue life. In addition, the developent of the Elasto-Hydrodynamic Theory of Lubrication proves that the thickness of the lubricating film in the contact zone between rings and rolling elements greatly influences bearing life. To reflect such improvements in the calculation of fatigue life, the basic rating life is adjusted using the following adjustment factors: $$L_{\text{na}} = \partial_1 \, \partial_2 \, \partial_3 \, L_{10} \, \dots (5.7)$$ where $L_{\rm na}$: Adjusted rating life in which reliability, material improvements, lubricating conditions, etc. are considered L_{10} : Basic rating life with a reliability of 90% a₁: Life adjustment factor for reliability a2: Life adjustment factor for special bearing properties a₃: Life adjustment factor for operating conditions The life adjustment factor for reliability, a_1 , is listed in Table 5.4 for reliabilities higher than 90%. The life adjustment factor for special bearing properties, a_2 , is used to reflect improvements in bearing steel. NSK now uses vacuum degassed bearing steel, and the results of tests by NSK show that life is greatly improved when compared with earlier materials. The basic load ratings C_r and C_a listed in the bearing tables were calculated considering the extended life achieved by improvements in materials and manufacturing techniques. Consequently, when estimating life using Equation (5.7), it is sufficient to assume that is greater than one. Table 5.4 Reliability Factor a_1 | Reliability (%) | 90 | 95 | 96 | 97 | 98 | 99 | |-----------------|------|------|------|------|------|------| | a_1 | 1.00 | 0.62 | 0.53 | 0.44 | 0.33 | 0.21 | The life adjustment factor for operating conditions a_3 is used to adjust for various factors, particularly lubrication. If there is no misalignment between the inner and outer rings and the thickness of the lubricating film in the contact zones of the bearing is sufficient, it is possible for a_3 to be greater than one; however, a_3 is less than one in the following cases: - ·When the viscosity of the lubricant in the contact zones between the raceways and rolling elements is low. - ·When the circumferential speed of the rolling elements is very slow. - · When the bearing temperature is high. - · When the lubricant is contaminated by water or foreign matter. - · When misalignment of the inner and outer rings is excessive. It is difficult to determine the proper value for a_3 for specific operating conditions because there are still many unknowns. Since the special bearing property factor a_2 is also influenced by the operating conditions, there is a proposal to combine a_2 and a_3 into one quantity($a_2 \times a_3$), and not consider them independently. In this case, under normal lubricating and operating conditions, the product $(a_2 \times a_3)$ should be assumed equal to one. However, if the viscosity of the lubricant is too low, the value drops to as low as 0.2. If there is no misalignment and a lubricant with high viscosity is used so sufficient fluid-film thickness is secured, the product of $(a_2 \times a_3)$ may be about two. When selecting a bearing based on the basic load rating, it is best to choose an a_1 reliability factor appropriate for the projected use and an empirically determined C/P or f_b value derived from past results for lubrication, temperature, mounting conditions, etc. in similar machines. The basic rating life equations (5.1), (5.2), (5.5), and (5.6) give satisfactory results for a broad range of bearing loads. However, extra heavy loads may cause detrimental plastic deformation at ball/raceway contact points. When $P_{\rm r}$ exceeds $C_{\rm or}$ (Basic static load rating) or 0.5 $C_{\rm r}$, whichever is smaller, for radial bearings or P_a exceeds 0.5 C_a for thrust bearings, please consult NSK to establish the applicability of the rating fatigue life equations. ### 5.3 Calculation of Bearing Loads The loads applied on bearings generally include the weight of the body to be supported by the bearings, the weight of the revolving elements themselves, the transmission power of gears and belting, the load produced by the operation of the machine in which the bearings are used, etc. These loads can be theoretically calculated, but some of them are difficult to estimate. Therefore, it becomes necessary to correct the estimated using empirically derived data. #### 5.3.1 Load Factor When a radial or axial load has been mathematically calculated, the actual load on the bearing may be greater than the calculated load because of vibration and shock present during operation of the machine. The actual load may be calculated using the following equation: $$F_{\rm r} = f_{\rm w} \cdot F_{\rm rc} F_{\rm a} = f_{\rm w} \cdot F_{\rm ac}$$ where F_r , F_a : Loads applied on bearing (N), {kgf} $\begin{array}{c} F_{rc},\,F_{ac}: \text{Theoretically calculated load (N),} \\ \{kgf\} \end{array}$ f_{w} : Load factor The values given in Table 5.5 are usually used for the load factor $f_{\rm w}$. ### 5.3.2 Bearing Loads in Belt or Chain Transmission Applications The force acting on the pulley or sprocket wheel when power is transmitted by a belt or chain is calculated using the following equations. $$M = 9 550 000H/n...(N \cdot mm)$$ = 974 000 $H/n....(kgf \cdot mm)$ }.....(5.9) $$P_{\rm k} = M / r$$(5.10) where M: Torque acting on pulley or sprocket wheel $(N \cdot mm)$, $\{kgf \cdot mm\}$ P_{k} : Effective force transmitted by belt or chain (N), {kgf} H: Power transmitted(kW) n: Speed (min⁻¹) *r*: Effective radius of pulley or sprocket wheel (mm) When calculating the load on a pulley shaft, the belt tension must be included. Thus, to calculate the actual load $K_{\rm b}$ in the case of a belt transmission, the effective transmitting power is multiplied by the belt factor $f_{\rm b}$, which represents the belt tension. The values of the belt factor $f_{\rm b}$ for different types of belts are shown in Table 5.6. $$K_{\rm b} = f_{\rm b} \cdot P_{\rm k}$$(5.11) In the case of a chain transmission, the values corresponding to $f_{\rm b}$ should be 1.25 to 1.5. Table 5. 5 Values of Load Factor f_{vv} | Operating Conditions | Typical Applications | $f_{\rm w}$ | |--|--|-------------| | Smooth operation free from shocks | Electric motors,
Machine tools,
Air conditioners | 1 to 1.2 | | Normal operation | Air blowers,
Compressors,
Elevators, Cranes,
Paper making
machines | 1.2 to 1.5 | | Operation accompanied by shock and vibration | Construction
equipment, Crushers,
Vibrating screens,
Rolling mills | 1.5 to 3 | Table 5. 6 Belt Factor $f_{\rm b}$ | Type of Belt | $f_{ m b}$ | |--------------------------------|------------| | Toothed belts | 1.3 to 2 | | V belts | 2 to 2.5 | | Flat belts with tension pulley | 2.5 to 3 | | Flat belts | 4 to 5 | | | | ### 5.3.3 Bearing Loads in Gear Transmission Applications The loads imposed on gears in gear transmissions vary according to the type of gears used. In the simplest case of spur gears, the load is calculated as follows: $$M = 9 550 000H / n (N \cdot mm)$$ = 974 000H / n {kgf·mm} }(5.12) $P_k = M / r$(5.13)
$S_k = P_k \tan \theta$(5.14) $K_c = \sqrt{P_k^2 + S_k^2} = P_k \sec \theta$(5.15) where M: Torque applied to gear $(\mathbf{N} \cdot \mathbf{mm})_{i}\{\mathbf{kgf} \cdot \mathbf{mm}\}$ P_k : Tangential force on gear (N), {kgf} S_k : Radial force on gear (N), $\{kgf\}$ K_c : Combined force imposed on gear (N), {kgf} H: Power transmitted (kW) n: Speed (min⁻¹) r: Pitch circle radius of drive gear (mm) θ : Pressure angle In addition to the theoretical load calculated above, vibration and shock (which depend on how accurately the gear is finished) should be included using the gear factor $f_{\rm g}$ by multiplying the theoretically calculated load by this factor. The values of $f_{\rm g}$ should generally be those in Table 5.7. When vibration from other sources accompanies gear operation, the actual load is obtained by multiplying the load factor by this gear factor. Table 5. 7 Values of Gear Factor f_{σ} | Gear Finish Accuracy | $f_{ m g}$ | |-------------------------|------------| | Precision ground gears | 1 ~1.1 | | Ordinary machined gears | 1.1~1.3 | ### 5.3.4 Load Distribution on Bearings In the simple examples shown in Figs. 5.5 and 5.6. The radial loads on bearings I and II can be calculated using the following equations: $$F_{\rm CI} = \frac{b}{C} K$$(5.16) $$F_{\text{CII}} = \frac{a}{C}K \dots (5.17)$$ where F_{CI} : Radial load applied on bearing I (N), {kgf} F_{CII} : Radial load applied on bearing II (N), {kgf} K: Shaft load (N), {kgf} When these loads are applied simultaneously, first the radial load for each should be obtained, and then, the sum of the vectors may be calculated according to the load direction. Fig. 5.5 Radial Load Distribution (1) Fig. 5.6 Radial Load Distribution (2) ### 5.3.5 Average of Fluctuating Load When the load applied on bearings fluctuates, an average load which will yield the same bearing life as the fluctuating load should be calculated. (1) When the relation between load and rotating speed is divided into the following steps (Fig. 5.7) Load F_1 : Speed n_1 ; Operating time t_1 Load F_2 : Speed n_2 ; Operating time t_2 : Load F_{n} : Speed n_{n} ; Operating time t_{n} Then, the average load $F_{\rm m}$ may be calculated using the following equation: where F_m : Average fluctuating load (N), {kgf} $\mathbf{p} = 3$ for ball bearings p = 10/3 for roller bearings NSK The average speed $n_{\rm m}$ may be calculated as follows: $$n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_n t_n}{t_1 + t_2 + \dots + t_n} \dots (5.19)$$ (2) When the load fluctuates almost linearly (Fig. 5.8), the average load may be calculated as follows: $$F_{\rm m} = \frac{1}{3} (F_{\rm min} + 2F_{\rm max}) \dots (5.20)$$ F_{\min} : Minimum value of fluctuating load (N), {kgf} F_{\max} : Maximum value of fluctuating load (N), {kgf} (3) When the load fluctuation is similar to a sine wave (Fig. 5.9), an approximate value for the average load $F_{\rm m}$ may be calculated from the following In the case of Fig. 5.9 (a) $$F_{\rm m} \stackrel{..}{=} 0.65 \; F_{\rm max}$$(5.21) In the case of Fig. 5.9 (b) (4) When both a rotating load and a stationary load are applied (Fig. 5.10). $F_{\mathbb{R}}$: Rotating load (N), {kgf} F_s : Stationary load (N), {kgf} An approximate value for the average load F_m may be calculated as follows: a) Where $$F_R \ge F_S$$ $F_m = F_R + 0.3F_S + 0.2 \frac{{F_S}^2}{F_R}$(5.23) b) Where $$F_{\rm R} < F_{\rm S}$$ $$F_{\rm m} = F_{\rm S} + 0.3 F_{\rm R} + 0.2 \frac{F_{\rm R}^2}{F_{\rm c}}......(5.24)$$ ### 5.4 Equivalent Load In some cases, the loads applied on bearings are purely radial or axial loads; however, in most cases, the loads are a combination of both. In addition, such loads usually fluctuate in both magnitude and direction. In such cases, the loads actually applied on bearings cannot be used for bearing life calculations; therefore, a hypothetical load that has a constant magnitude and passes through the center of the bearing, and will give the same bearing life that the bearing would attain under actual conditions of load and rotation should be estimated. Such a hypothetical load is called the equivalent load. Fig. 5.7 Incremental Load Variation Fig. 5.8 Simple Load Fluctuation ### 5.4.1 Calculation of Equivalent Loads The equivalent load on radial bearings may be calculated using the following equation: $$P = XF_r + YF_a$$(5.25) P: Equivalent Load (N), {kgf} $F_{\rm r}$: Radial load (N), {kgf} F_a : Axial load (N), {kgf} X: Radial load factor Y: Axial load factor The values of X and Y are listed in the bearing tables. The equivalent radial load for radial roller bearings with $\alpha = 0^{\circ}$ is $$P = F_r$$ In general, thrust ball bearings cannot take radial loads, but spherical thrust roller bearings can take some radial loads. In this case, the equivalent load may be calculated using the following equation: $$P = F_{\rm a} + 1.2 F_{\rm r} \eqno(5.26)$$ where $$\frac{F_{\rm r}}{F_{\rm o}} \le 0.55$$ ### 5.4.2 Axial Load Components in Angular Contact Ball Bearings and Tapered Roller Bearings The effective load center of both angular contact ball bearings and tapered roller bearings is at the point of intersection of the shaft center line and a line representing the load applied on the rolling element by the outer ring as shown in Fig. 5.11. This effective load center for each bearing is listed in the bearing tables. When radial loads are applied to these types of bearings, a component of load is produced in the axial direction. In order to balance this component load bearings of the same type are used in pairs, placed face to face or back to back. These axial loads can be calculated using the following equation: $$F_{ai} = \frac{0.6}{V} F_{r}$$(5.27) where F_{ai} : Component load in the axial direction (N), {kgf} F_r : Radial load (N), {kgf} Y: Axial load factor Assume that radial loads F_{r1} and F_{rII} are applied on bearings I and II (Fig. 5.12) respectively, and an external axial load $F_{\rm ae}$ is applied as shown. If the axial load factors are $Y_{\rm I}$, $Y_{\rm II}$ and the radial load factor is X, then the equivalent loads $P_{\scriptscriptstyle \rm T}$, $P_{\scriptscriptstyle \rm T}$ may be calculated as where $$F_{ae} + \frac{0.6}{Y_{II}} F_{r_{II}} \ge \frac{0.6}{Y_{I}} F_{r_{I}}$$ $$P_{I} = XF_{r_{I}} + Y_{I} \left(F_{ae} + \frac{0.6}{Y_{II}} F_{r_{II}} \right)$$ $$P_{II} = F_{r_{II}}$$ $$(5.28)$$ where $$F_{ m ae} + rac{0.6}{Y_{ m II}}\,F_{ m r\,II} < rac{0.6}{Y_{ m I}}\,F_{ m r\,I}$$ $$P_{\rm I} = F_{\rm r\,I}$$ $P_{\rm II} = X F_{\rm r\,II} + Y_{\rm II} \left(\frac{0.6}{Y_{\rm I}} F_{\rm r\,I} - F_{\rm ae} \right)$(5.29) Fig. 5.11 Effective Load Centers Fig. 5.12 Loads in Opposed Duplex Arrangement ### 5.5 Static Load Ratings and Static Equivalent Loads ### 5.5.1 Static Load Ratings When subjected to an excessive load or a strong shock load, rolling bearings may incur a local permanent deformation of the rolling elements and permanent deformation of the rolling elements and raceway surface if the elastic limit is exceeded. The nonelastic deformation increases in area and depth as the load increases, and when the load exceeds a certain limit, the smooth running of the bearing is impeded. The basic static load rating is defined as that static load which produces the following calculated contact stress at the center of the contact area between the rolling element subjected to the maximum stress and the raceway surface. In this most heavily stressed contact area, the sum of the permanent deformation of the rolling element and that of the raceway is nearly 0.0001 times the rolling element's diameter. The basic static load rating $C_{\rm o}$ is written $C_{\rm or}$ for radial bearings and $C_{\rm oa}$ for thrust bearings in the bearing tables. In addition, following the modification of the criteria for basic static load rating by ISO, the new $C_{\rm o}$ values for NSK's ball bearings became about 0.8 to 1.3 times the past values and those for roller bearings about 1.5 to 1.9 times. Consequently, the values of permissible static load factor $f_{\rm s}$ have also changed, so please pay attention to this. ### 5.5.2 Static Equivalent Loads The static equivalent load is a hypothetical load that produces a contact stress equal to the above maximum stress under actual conditions, while the bearing is stationary (including very slow rotation or oscillation), in the area of contact between the most heavily stressed rolling element and bearing raceway. The static radial load passing through the bearing center is taken as the static equivalent load for radial bearings, while the static avail load in the direction coinciding with the central axis is taken as the static equivalent load for thrust bearings. ### (a) Static equivalent load on radial bearings The greater of the two values calculated from the following equations should be adopted as the static equivalent load on radial bearings. $$P_{\rm o} = X_{\rm o} F_{\rm r} + Y_{\rm o} F_{\rm a}$$ (5.30) $P_{\rm o} = F_{\rm r}$ (5.31) where P_0 : Static equivalent load (N), {kgf} $F_{\rm r}$: Radial load (N), {kgf} $F_{\rm a}$: Axial load (N), {kgf} X_0 : Static radial load factor Y_0 : Static axial load factor (b)Static equivalent load on thrust bearings $$P_0 = X_0 F_r + F_a$$ $\alpha \neq 90^{\circ}$(5.32) where P_0 : Static equivalent load (N), {kgf} α : Contact angle When $F_{\rm a}{<}X_{\rm o}F_{\rm r}$, this equation becomes less accurate. The values of $X_{\rm o}$ and $Y_{\rm o}$ for Equations (5.30) and (5.32) are listed in the bearing tables. The static equivalent load for thrust roller bearings with $$\alpha = 90^{\circ}$$ is $P_0 = F_3$ #### 5.5.3 Permissible Static Load Factor The permissible static equivalent load on bearings varies depending on the basic static load rating and also their application and operating conditions. The
permissible static load factor f_s is a safety factor that is applied to the basic static load rating, and it is defined by the ratio in Equation (5.33). The generally recommended values of f_s are listed in Table 5.8. Conforming to the modification of the static load rating, the values of f_s were revised, especially for bearings for which the values of C_o were increased, please keep this in mind when selecting bearings. $$f_{\rm S} = \frac{C_0}{P_0}$$(5.33) where C_0 : Basic static load rating (N), {kgf} P_{o} : Static equivalent load (N), {kgf} For spherical thrust roller bearings, the values of f_s should be greater than 4. Table 5. 8 Values of Permissible Static Load Factor f_s | Operating Conditions | | imit of $\emph{\textbf{f}}_{s}$
Roller Bearings | |---|-----|--| | Low-noise applications | 2 | 3 | | Bearings subjected to vibration and shock loads | 1.5 | 2 | | Standard operating conditions | 1 | 1.5 | ### 5.6 Maximum Permissible Axial Loads for Cylindrical Roller Bearings Cylindrical roller bearings having inner and outer rings with ribs, loose ribs or thrust collars are capable of sustaining radial loads and limited axial loads simultaneously. The maximum permissible axial load is limited by an abnormal temperature rise or heat seizure due to sliding friction between the end faces of rollers and the rib face, or the rib strength. The maximum permissible axial load (the load considered the heat generation between the end face of rollers and the rib face) for bearings of diameter series 3 that are continuously loaded and lubricated with grease or oil is shown in Fig. 5.13. Grease lubrication (Empirical equation) $$C_{\Lambda} = 9.8f \left\{ \frac{900 (k \cdot d)^{2}}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} ...(N)$$ $$= f \left\{ \frac{900 (k \cdot d)^{2}}{n+1500} - 0.023 \times (k \cdot d)^{2.5} \right\} \{ kgf \}$$ Oil lubrication (Empirical equation) $$C_{A} = 9.8f \left\{ \frac{490 (k d)^{2}}{n+1000} - 0.000135 \times (k d)^{3.4} \right\}...(N)$$ $$= f \left\{ \frac{490 (k d)^{2}}{n+1000} - 0.000135 \times (k d)^{3.4} \right\}....\{kgf\}$$ where C_{Δ} : Permissible axial load (N), {kgf} d: Bearing bore diameter (mm) *n* : Speed (min⁻¹) In the equations (5.34) and (5.35), the examination for the rib strength is excluded. Concerning the rib strength, please consult with NSK. In addition, for cylindrical roller bearings to have a stable axial-load carrying capacity, the following precautions are required for the bearings and their surroundings: - Radial load must be applied and the magnitude of radial load should be larger than that of axial load by 2.5 times or more. - · Sufficient lubricant must exist between the roller end faces and ribs. - · Superior extreme-pressure grease must be used. - · Sufficient running-in should be done. - ·The mounting accuracy must be good - The radial clearance should not be more than necessary. In cases where the bearing speed is extremely slow, the speed exceeds the limiting speed by more than 50%, or the bore diameter is more than 200mm, careful study is necessary for each case regarding lubrication, cooling, etc. In such a case, please consult with NSK. Fig. 5.13 Permissible Axial Load for Cylindrical Roller Bearings For Diameter Series 3 bearings (k=1.0) operating under a continuous load and lubricated with grease or oil. ### 5.7 Examples of Bearing Calculations ### (Example1) Obtain the fatigue life factor $f_{\rm h}$ of single-row deep groove ball bearing 6208 when it is used under a radial load $F_{\rm r}$ =2 500 N, (255kgf) and speed n =900 min⁻¹. The basic load rating $C_{\rm r}$ of **6208** is 29 100N, (2 970kgf) (Bearing Table, Page B10). Since only a radial load is applied, the equivalent load P may be obtained as follows: $$P = F_{\rm r} = 2500$$ N, {255kgf} Since the speed is $n = 900 \text{ min}^{-1}$, the speed factor f_n can be obtained from the equation in Table 5.2 (Page A25) or Fig. 5.3(Page A26). $$f_{\rm n} = 0.333$$ The fatigue life factor $f_{\!\scriptscriptstyle h}$, under these conditions, can be calculated as follows: $$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29\ 100}{2\ 500} = 3.88$$ This value is suitable for industrial applications, air conditioners being regularly used, etc., and according to the equation in Table 5.2 or Fig. 5.4 (Page A26), it corresponds approximately to 29 000 hours of service life. #### (Example 2) Select a single-row deep groove ball bearing with a bore diameter of 50 mm and outside diameter under 100 mm that satisfies the following conditions: Radial load $F_r = 3000N$, (306kgf) Speed n = 1 900 min⁻¹ Basic rating life $L_{\rm h} \ge 10~000{\rm h}$ The fatigue life factor f_h of ball bearings with a rating fatigue life longer than 10 000 hours is $f_h \ge 2.72$. Because $f_n = 0.26$. $P = F_r = 3 000$ N. (306kgf) $$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.26 \times \frac{C_{\rm r}}{3000} \ge 2.72$$ therefore, $$C_r \ge 2.72 \times \frac{3.000}{0.26} = 31.380 \text{N}$$, (3.200kgf) Among the data listed in the bearing table on Page B12, **6210** should be selected as one that satisfies the above conditions. ### (Example3 Obtain C_r/P or fatigue life factor f_h when an axial load F_a =1 000N, {102kgf} is added to the conditions of (Example 1) When the radial load F_r and axial load F_a are applied on single-row deep groove ball bearing **6208**, the dynamic equivalent load P should be calculated in accordance with the following procedure. Obtain the radial load factor X, axial load factor Y and constant e obtainable, depending on the magnitude of f_0F_a/C_{or} , from the table above the single-row deep groove ball bearing table. The basic static load rating C_{or} of ball bearing **6208** is 17 900N, (1 820kgf) (Page B10) $$f_{\rm o}F_{\rm a}/C_{\rm or} = 14.0 \times 1\,000/17\,900 = 0.782$$ $e \doteq 0.26$ and $$F_a$$ / F_r = 1 000/2 500 = 0.4 > e $$X = 0.56$$ Y=1.67 (the value of Y is obtained by linear interpolation) Therefore, the dynamic equivalent load *P* is $$P = XF_r + YF_a$$ $$= 0.56 \times 2500 + 1.67 \times 1000$$ $$= 3070N$$, {313kgf} $$\frac{C_{\rm r}}{P} = \frac{29\ 100}{3\ 070} = 9.48$$ $$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29 \ 100}{3 \ 070} = 3.16$$ This value of $f_{\rm h}$ corresponds approximately to 15 800 hours for ball bearings. #### (Example 4) Select a spherical roller bearing of series 231 satisfying the following conditions: Radial load $F_r = 45\,000$ N. (4.950kgf) Axial load $F_a = 8000 \text{N}_{1} \text{ (816kgf)}$ Speed $n = 500 \text{min}^{-1}$ Basic rating life $L_h \ge 30~000h$ The value of the fatigue life factor f_h which makes $L_h \ge 30~000h$ is bigger than 3.45 from Fig. 5.4 (Page A26). The dynamic equivalent load P of spherical roller bearings is given by: when $$F_a / F_r \leq e$$ $$P = XF_r + YX_a = F_r + Y_3 F_a$$ when $$F_a / F_r > e$$ $$P = XF_r + YF_a = 0.67 F_r + Y_2 F_a$$ $F_a / F_r = 8000/45000 = 0.18$ We can see in the bearing table that the value of e is about 0.3 and that of Y_3 is about 2.2 for bearings of series 231: Therefore, $$P = XF_r + YF_a = F_r + Y_3F_a$$ = 45 000 + 2.2 × 8 000 = 62 600N, {6 380kgf} From the fatigue life factor f_h , the basic load rating can be obtained as follows: $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.444 \times \frac{C_{\rm r}}{62\,600} \ge 3.45$$ consequently, $C_r \ge 490\,000N$, $_{50\,000kgf}$ Among spherical roller bearings of series 231 satisfying this value of C_r , the smallest is **23126CE4** $(C_r = 505\,000N$, $_{51\,500keff})$ Once the bearing is determined, substitude the value of Y_2 in the equation and obtain the value of P_2 . $$P = F_r + Y_3 F_a = 45\ 000 + 2.4 \times 8\ 000$$ = 64\ 200N, \{6\ 550\kgf\} $$L_{h} = 500 \left(f_{h} \frac{C_{r}}{P} \right)^{\frac{10}{3}}$$ $$= 500 \left(0.444 \times \frac{505\ 000}{64\ 200} \right)^{\frac{10}{3}}$$ $$= 500 \times 3.49^{\frac{10}{3}} \stackrel{3}{=} 32\ 000\ h$$ #### (Example 5) Assume that tapered roller bearings HR30305DJ and HR30206J are used in a back-to-back arrangement as shown in Fig. 5.14, and the distance between the cup back faces is 50 mm. Calculate the basic rating life of each bearing when beside the radial load $F_r = 5\,500N$, (561kgf), axial load F_{ae} =2 0.00N,(204kgf) are applied to HR30305DJ as shown in Fig. 5.14. The speed is 600 min⁻¹. To distribute the radial load $F_{\rm r}$ on bearings I and II, the effective load centers must be located for tapered roller bearings. Obtain the effective load center a for bearings I and II from the bearing table, then obtain the relative position of the radial load $F_{\rm r}$ and effective load centers. The result will be as shown in Fig. 5.14. Consequently, the radial load applied on bearings I (HR30305DJ) and II (HR30206J) can be obtained from the following equations: $$F_{\rm rI} = 5\,500 \times \frac{23.9}{83.8} = 1\,569$$ N, {160kgf} $$F_{\text{rII}} = 5\,500 \times \frac{59.9}{83.8} = 3\,931\text{N}$$, (401kgf) From the data in the bearing table, the following values are obtained; | Bearings | Basic dynamic load rating $C_{ m r}$ (N) {kgf} | | Axial load factor Y_1 | Constant
e | |-------------------------|--|---------|-------------------------|----------------------| | Bearing I (HR30305DJ) | 38 000 | {3 900} | $Y_{\rm I} = 0.73$ | 0.83 | | Bearing II (HR30206J) | 43 000 | {4 400} | $Y_{II} = 1.6$ | 0.38 | When radial loads are applied on tapered roller bearings, an axial load component is produced, which must be considered to obtain the dynamic equivalent radial load (Refer to Paragraph 5.4.2, Page A31). $$F_{\text{ae}} + \frac{0.6}{Y_{\text{II}}} F_{\text{r II}} = 2\,000 + \frac{0.6}{1.6} \times 3\,931$$ = 3 474N, (354kgf) $$\frac{0.6}{Y_{\rm I}} F_{\rm rI} = \frac{0.6}{0.73} \times 1569
= 1290 \text{N}, \{132 \text{kgf}\}$$ Therefore, with this bearing arrangement, the axial load $F_{ae} + \frac{0.6}{V_r}$ F_{rII} is applied on bearing I but not on bearing II For bearing I $$F_{\rm r\,I}=1$$ 569N, {160kgf} $$F_{aI} = 3 474 \text{N}, \{354 \text{kgf}\}$$ since $$F_{\mathrm{a}\,\mathrm{I}}$$ / $F_{\mathrm{r}\,\mathrm{I}}$ = 2.2 $>$ e = 0.83 the dynamic equivalent load $P_{\perp} = XF_{r\perp} + Y_{\perp}F_{a\perp}$ $$= 0.4 \times 1569 + 0.73 \times 3474$$ = 3164N, {323kgf} The fatigue life factor $f_h = f_n \frac{C_r}{D_r}$ $$= \frac{0.42 \times 38\ 000}{3\ 164} = 5.04$$ and the rating fatigue life $L_{\rm h} = 500 \times 5.04^{\frac{10}{3}} = 109$ 750h For bearing II since $F_{r_{\parallel}} = 3.931 \text{N}$, (401kgf), $F_{a_{\parallel}} = 0$ the dynamic equivalent load $$P_{\Pi} = F_{r \Pi} = 3 931 \text{N}, \{401 \text{kgf}\}$$ the fatigue life factor $$f_{\rm h} = f_{\rm h} \frac{C_{\rm r}}{P_{\rm TI}} = \frac{0.42 \times 43\,000}{3\,931} = 4.59$$ and the rating fatigue life $L_h = 500 \times 4.59^{\frac{10}{3}} = 80 400 h$ are obtained Remarks For face-to-face arrangements (DF type), please contact NSK ### (Example 6) Select a bearing for a speed reducer under the following conditions: Operating conditions Radial load $F_r = 245\ 000N$, {25 000kgf} $F_a = 49\,000$ N, (5 000kgf) Axial load Speed Size limitation $n = 500 \text{min}^{-1}$ Shaft diameter: 300mm Bore of housing: Less than 500mm In this application, heavy loads, shocks, and shaft deflection are expected; therefore, spherical roller bearings are appropriate. The following spherical roller bearings satisfy the above size limitation (refer to Page B196) | d | D | В | Bearing No. | Basic dyl
load ra
$C_{ m r}$
(N) | | Constant $oldsymbol{e}$ | Factor Y_3 | |-----|-----|-----|-------------|---|---------|-------------------------|--------------| | 300 | 420 | 90 | 23960 CAE4 | 1 230 000 | 125 000 | 0.19 | 3.5 | | | 460 | 118 | 23060 CAE4 | 1 920 000 | 196 000 | 0.24 | 2.8 | | | 460 | 160 | 24060 CAE4 | 2 310 000 | 235 000 | 0.32 | 2.1 | | | 500 | 160 | 23160 CAE4 | 2 670 000 | 273 000 | 0.31 | 2.2 | | | 500 | 200 | 24160 CAE4 | 3 100 000 | 315 000 | 0.38 | 1.8 | since $F_a / F_r = 0.20 < e$ the dynamic equivalent load P is $$P = F_r + Y_3 F_a$$ Judging from the fatigue life factor $f_{\rm h}$ in Table 5.1 and examples of applications (refer to Page A25), a value of $f_{\rm h}$, between 3 and 5 seems appropriate. $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = \frac{0.444 \ C_{\rm r}}{F_{\rm r} + Y_3 F_{\rm a}} = 3 \text{ to } 5$$ Assuming that $Y_3 = 2.1$, then the necessary basic load rating $C_{\rm r}$ can be obtained $$C_{\rm r} = \frac{(F_{\rm r} + Y_3 F_{\rm a}) \times (3 \text{ to } 5)}{0.444}$$ $$=\frac{(245\ 000+2.1\times49\ 000)\times(3\ to\ 5)}{0.444}$$ = 2350000 to 3900000 N.{240 000 to 400 000 kgf} The bearings which satisfy this range are 23160CAE4 and 24160CAE4. ### 6. LIMITING SPEED The speed of rolling bearings is subject to certain limits. When bearings are operating, the higher the speed, the higher the bearing temperature due to friction. The limiting speed is the empirically obtained value for the maximum speed at which bearings can be continuously operated without failing from seizure or generation of excessive heat. Consequently, the limiting speed of bearings varies depending on such factors as bearing type and size, cage form and material, load, lubricating method, and heat dissipating method including the design of the bearing's surroundings. The limiting speeds for bearings lubricated by grease and oil are listed in the bearing tables. The limiting speeds in the tables are applicable to bearings of standard design and subjected to normal loads, i. e. $C/P \ge 12$ and $F_a/F_r \le 0.2$ approximately. The limiting speeds for oil lubrication listed in the bearing tables are for conventional oil bath lubrication. Some types of lubricants are not suitable for high speed, even though they may be markedly superior in other respects. When speeds are more than 70 percent of the listed limiting speed, it is necessary to select an oil or grease which has good high speed characteristics. ### (Refer to) Table 12.2 Grease Properties (Pages A110 and 111) Table 12.5 Example of Selection of Lubricant for Bearing Operating Conditions (Page A113) Table 15.8 Brands and Properties of Lubricating Grease (Pages A138 to A141) ### 6.1 Correction of Limiting Speed When the bearing load P exceeds 8 % of the basic load rating C_i or when the axial load F_a exceeds 20 % of the radial load F_r , the limiting speed must be corrected by multiplying the limiting speed found in the bearing tables by the correction factor shown in Figs. 6.1 and When the required speed exceeds the limiting speed of the desired bearing; then the accuracy grade, internal clearance, cage type and material, lubrication, etc., must be carefully studied in order to select a bearing capable of the required speed. In such a case, forcedcirculation oil lubrication, jet lubrication, oil mist lubrication, or oil-air lubrication must be used. If all these conditions are considered. The maximum permissible speed may be corrected by multiplying the limiting speed found in the bearing tables by the correction factor shown in Table 6.1. It is recommended that NSK be consulted regarding high speed applications. ### 6.2 Limiting Speed for Rubber Contact Seals for Ball Bearings The maximum permissible speed for contact rubber sealed bearings (DDU type) is determined mainly by the sliding surface speed of the inner circumference of the seal. Values for the limiting speed are listed in the bearing tables. Fig. 6.2 Limiting Speed Correction Factor for Combined Radial and Axial Loads Table 6.1 Limiting Speed Correction Factor for **High-Speed Applications** | • | | |---|----------------------| | Bearing Types | Correction
Factor | | | | | Cylindrical Roller Brgs.(single row) | 2 | | Needle Roller Brgs.(except broad width) | 2 | | Tapered Roller Brgs. | 2 | | Spherical Roller Brgs. | 1.5 | | Deep Grooove Ball Brgs. | 2.5 | | Angular Contact Ball Brgs.(except matched bearings) | 1.5 | | | | ### 7. BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS ### 7.1 Boundary Dimensions and Dimensions of Snap Ring Grooves ### 7.1.1 Boundary Dimensions The boundary dimensions of rolling bearings, which are shown in Figs.7.1 through 7.5, are the dimensions that define their external geometry. They include bore diameter d, outside diameter D, width B, bearing width(or height) T, chamfer dimension r, etc. It is necessary to know all of these dimensions when mounting a bearing on a shaft and in a housing. These boundary dimensions have been internationally standardized (ISO15) and adopted by JIS B 1512 (Boundary Dimensions of Rolling Bearings). The boundary dimensions and dimension series of radial bearings, tapered roller bearings, and thrust bearings are listed in Table 7.1 to 7.3 (Pages A40 to A49). In these boundary dimension tables, for each bore number, which prescribes the bore diameter, other boundary dimensions are listed for each diameter series and dimension series. A very large number of series are possible; however, not all of them are commercially available so more can be added in the future. Across the top of each bearing table (7.1 to 7.3), representative bearing types and series symbols are shown (refer to Table 7.5, Bearing Series Symbols, Page A55). The relative cross-sectional dimensions of radial bearings (except tapered roller bearings) and thrust bearings for the various series classifications are shown in Figs. 7.6 and 7.7 respectively. ### 7.1.2 Dimensions of Snap Ring Grooves and Locating Snap Rings The dimensions of Snap ring grooves in the outer surfaces of bearings are specified by ISO 464. Also, the dimensions and accuracy of the locating snap rings themselves are specified by ISO 464. The dimensions of snap ring grooves and locating snap ring for bearings of diameter series 8, 9, 0, 2, 3, and 4, are shown in Table 7.4 (Pages A50 to A53). Fig. 7.1 Boundary Dimensions of Radial Ball and Roller Bearings Fig. 7.6 Comparison of Cross Sections of Radial Bearings (except Tapered Roller Bearings) for various Dimensional Series Fig. 7.2 Tapered Roller Bearings Fig. 7.3 Single-Direction Thrust Ball Bearings Fig. 7.4 Double-Direction Thrust Ball Bearings Fig. 7.5 Spherical Thrust Roller Bearings Fig. 7.7 Comparison of Cross Sections of Thrust Bearings (except Diameter Series 5) for Various Dimension Series | _ | |-------------------| | | | Bearings , | | Koller B | | lapered | | s (except | | l Bearings | | <u>g</u> | | ō | | Jimensions of Ka | | Boundary D | | Γ. | | lable / | | ı | | | | ı | | <u>_</u> | 9 | I | د | വവവ | | | | | | | | | | | |--------------------------|-------------------------|-----------------------------|------------------|---------------------------|-------------------|---------------------|-------|----------|----------|----------------------|---------------------|--------------------|----------------|---|----------------|-------------------|----------------|------------------|-------------------|-------------------| | | | | | | | Dimension
Series | 10~60 | (min.) | 0.15 | 0.15
0.15
0.15 | 0.2 | 0.3 | 0.3 | 0.3 | 0.6 | | | ==== | ==== | 2:15 | | | | | | | | Dim | 8 | r (| 111 | 111 | 111 | 111 | 0.3 | 0.3 | 0.3 | 0.3 | 0.6 | 0.6 | 0.6 | | | | | | | | | | 09 | | 111 | 111 | 111 | 25 27 | 323 | 844 | 43 | 44
50
50 | 54 63 | 63 | 288 | 888 | | | | | | | 0 Si | | 20 | | 111 | 111 | 111 | 19 | 21 21 23 | 30 30 | 32 34 34 | 38 39 | 044 | 46
54
54 | 54
60
60 | 67
67
67 | | | | NN40 | | 240 | r Serie | Series | 9 | | 111 | 1.1.1 | 1.1.1 | 144 | 16 | 18
22
22 | 22
24
25 | 26
27
28 | 3388 | 35
40 | 45
45 | 2222 | | | | NN30 | | 230 | Diameter
Series | Dimension | 98 | В | m | 3.5 | 9 7 6 | 17 19 | 13 12 13 | 4 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 1986 | 222 | 23
26
26 | 26
30 | 30
34
34 | 37 | | | | N20 | | | ä | Dime | 20 | | 111 | 111 | 111 | 860 | 555 | 244 | 455 | 250 | 23 13 | 222 | 22.72 | 888 | | 92 | | N10 | | | | | 10 | | 7.5 | 3.88 | 4 6 9 | 9 | ∞ ∞ ૦ | 122 | 13 12 13 | 13 4 2 3 | 9 2 9 | 20
18
20 | 222 | 24
24
24 | | 160 | | | | | | | 8 | | 1.1.1 | 111 | 111 | 111 | 1 ~ ∞ | ∞ ∞ ∞ | ∞ ∞ o | 000 | 199 | 1311 | 13 | 9 9 9 9 | | | | | | | | | D | | % | V 8 6 | 14
17 | 19
22
24 | 28
32
32 | 35
44
44 | 47
52
55 | 58
62
68 | 75
80
90 | 95
100
110 | 115
125
130 | 140
145
150 | | | | | | | | Series | 69~64 | _ | 111 | 1.1.1 | 0.15
0.15 | 0.15
0.2
0.3 | 0.3 | 0.3 | 0.3 | 0.0
0.6
0.6 | 0.6 | | | === | | | | | | | | Dimension Series | 19~39 | r (min.) | 0.15 | 0.15
0.15
0.15 | 0.15
0.2
0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.6
0.6
0.6 | 0.6 | | | === | | | | | | | | Dimer | 60 | ı | 111 | 111 | 111 | 111 | 111 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.6
0.6
0.6 | 0.6 | | | | | NA69 | | | | 69 | | 111 | 111 | 111 | 111 | 22 22 | 3833 | 888 | 36
40 | 4 4 4 4 5 | 45
54 | 54
63 | 63
63
71 | | | | | NA59 | | ries 9 | | 26 | | 111 | 111 | 111 | 111 | 16 | 18
23
23 | 23 | 27
27
30 | 30 30 34 | 34
40 | 9 9 9 | 46
54 | | | | NN49 | NA49 | | Diameter Series | Series | 49 | | 111 | 1.1.1 | 166 | 222 | 13 13 | 17 | 1111 | 222 | 22
25
25 | 25
30 | 32 30 | 35 | | | | NN39 | | 239 | Diame | sion (| 39 | В | 2.3 | 3.5 | 5 4 | 6 6 | 000 | 13 10 | 2 2 3 | 15 9 | 16 | 19
19
23 | 23
23
26 | 26
26
30 | | | | N29 | | | | Dimension | 29 | | 111 | 1.1.1 | 1 1 1 | 1.1.1 | 00 00 00
17 | 11111 | === | 13 | 4 4 4 9 | 16
19 | 19
19
22 | 22
24
24 | | 69 | | N19 | | | | | 19 | | 1.6 | 2.5 | 440 | 0.00 | 9 9 7 | L 6 6 | 666 | 299 | 222 | 6 3 3 | 222 | 888 | | Г | | | | | | | 60 | | 111 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 1 ~ ~ | ~~~ | ~~ 0 | ∞ ∞ o- | 9 6 10 | 199 | 211 | | | | | | | | | D | | 1 4 72 | 9 7 8 | 13 13 | 17
19
20 | 22
24
28 | 30
37
39 | 42
45
47 | 52
55
62 | 68
72
80 | 85
100
100 | 105
110
120 | 125
130
140 | | | | | | | | nsion
ies | 18~68 | in.) | 0.05 | 0.08
0.08
0.1 | 0.1
0.15
0.15 | 0.15
0.2
0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.6 | | | | | | | | | Dimension
Series | 80 | r (min.) | 111 | 111 | 1.1.1 | 1.1.1 | 111 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | | | | | | | | 89 | | 111 | 111 | 111 | 111 | 111 | 122 | 222 | 222 | 3273 | 3883 | 888 | 444 | | | | | | | 00 | | 28 | | 111 | 1.1.1 | 1.1.1 | 1.1.1 | 111 | 16 | 999 | 9 9 9 | 18
20
23 | 24
27
27 | 27
27
34 | 34 4 | | | | NN48 | NA48 | | Series | eries | 84 | | 111 | 1.1.1 | 1.1.1 | I ^{∞ ∞} | 666 | 12 | 12 | 122 | 13 | 20
20
20 | 22 52 | 25
25
25 | | | | NN38 | | | Diameter Series | Dimension Series | 88 | В | 2 1.5 | 2.3 | 4 5 9 | 999 | ~~~ | 7
10
10 | 999 | 999 | 132 | 15 15 | 12 6 | 19 | | | | N28 | | | Dia | Dimen | 28 | | 111 | 111 | 3.5 | വവവ | 999 | 98 | ∞ ∞ | ∞ ∞ | 9011 | 133 12 | 223 | 16 16 | | 89 | | | | | | | 18 | | 1.2 | 2 1.5 | 3.5 | 3.5 | വവവ | 7 7 2 | ~~~ | ~~~ | 7 7 6 | 222 | 13 10 10 | 555 | | | | | | | | | 80 | | 111 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 44 | 444 | 444 | 4 2 1 | L L 8 | ∞ ∞ o- | 666 | | | | | | | | | О | | 2.5
3 | 5 4 | 13 13 | 14
16
17 | 19
21
24 | 26
32
34 | 37
40
42 | 44
47
52 | 58
65
72 | 78
85
90 | 95
100
110 | 115
120
125 | | | | | | | | es | 17~37 | (min.) | 0.05 | 0.05 | 0.08
0.08
0.1 | 0.00 | 0.1 | 0.2 | 0.2 | 111 | 1.1.1 | 1.1.1 | 1.1.1 | 111 | | | | | | | ries 7 | Dimension Series | 37 | | 1 1 % | 2.3 | 3333 | 3.5 | 5.5 | ا ي | ي ا ي | 111 | 111 | 1.1.1 | 1.1.1 | 111 | | | | | | | Diameter Series 7 | nensio | 27 | В | 111 | 2.5 | 2.5 | _m | 111 | 111 | 111 | 111 | 111 | 1.1.1 | 1.1.1 | 111 | | | | | | | Jiame | Dir | 17 | | 0.8 | 1.5 | 2 2.5 | 3.5 | W 4 4 | 44 | 4 4 | 111 | 111 | 1.1.1 | 1.1.1 | 111 | | > . | Ball | oller | er | oller | | | D | | 2.5 | 4 12 9 | 7
8
10 | 12 4 | 15
18
21 | 23 | 32 | 1.1.1 | 1.1.1 | 1.1.1 | 1.1.1 | 111 | | Single-Row
Ball Brgs. | Double-Row Bal
Brgs. | Cylindrical Roller
Brgs. | dle Rol
Brgs. | Spherical Roller
Brgs. | | | p | | 0.6 | 2.5 | 4 2 9 | 7 8 6 | 1219 | 17
20
22 | 25
30
30 | 32
35
40 | 45
50
55 | 92 | 75
80
85 | 95 100 | | Sin | Doubl | Cylind | Neer | Spher | J | əqwr | те Иг | og | - | 3 5 | 4 12 9 | L 8 6 | 050 | 03
04
07 | 02
08
06 |)32
07
08 | 193 | 13 13 | 15 | 19 19 20 | | 1 | | | | 1 | | | | | 1 | | | | | | | | | | | | | 01015 | 2 2.1 | 12.2.2 | 2i ci ~ | m=== | 440 | 1010:5 | 10.0.5 | .0.0.5 | .0.02 | 7.5 | 7.5 | 7.5 | 9.5 | 010:0: | 0110:5 | 1.1 | |--|---|---|--|---|---
--|---|---|---|---|---|--|--|--|--
---| | .,,,,, | | | | _ | | | | | | | വവവ | വവവ | വവ | | | 11 | | 9 6 6 | 555 | | 222 | | | | 0 2 2 | | 2000 | 0 6
0 6
5 7.5 | 7.7.7 | L. L. 9. | 0.0. | | | | | 75 100
80 109
80 109 | 95 125
95 125
100 136 | 9 145
6 180
6 180 | 6 180
0 200
0 218 | 0 218
0 250
0 250 | 8 290
3 325 | 3 325
3 325
2 355 | 2 355
0 375
0 400 | 0 400 | 5 462
5 488
8 515 | 5 560
8 580
2 615 | 5 630
0 670
5 690 | 0 730 | 5 825
0 875
- | 111 | 111 | 11 | | 20
20
80
80
90
90
90 | 69
69
75
10 | 0 109 | 0
136
9
150
8 | 8
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 0 218
0 218
0 243 | 0 243
0 243
0 272 | 0 272
2 280
8 300 | 3350 | 8 355
2 365
0 388 | 8 425
5 438
5 462 | 5 475
5 500
5 515 | 2
2
560
8
600 | 2 615
5 650
0 — | | | | | | | 960 | 5
109
0
118 | 2
4
140
6
140 | 8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 4 18C
20C | 0 200
7 212
3 218 | 5 218
7 218
5 250 | 5 258
0 272
2 290 | 0 308
6 315
0 335 | 8 345
2 365
0 375 | 0 412
8 412
5 438 | 5 462
5 475
5 500 | 0 530
2 545
2 615 | 630
0 650
0 690 | 1 1 | | 3 41
5 45
6 46 | 22 22 29 29 29 29 29 29 29 29 29 29 29 2 | 8
4
0
74
0
74 | 2 882 | 260 | 1118 | 5
134
8
148 | 2
150
8
163 | 3 165
3 167
5 185 | 200 212 | 236 | 2582 | 3258 | 345
2 355
3 375 | 4412 | 5 530 | 1 1 | | 38,33 | 442 | 54 48 | 96 | 822 | 95 106 | 106 | 118 | 128 | 150
155
170 | 9282 | 212 | 236
243
250 | 272 272 290 | 315 | 365
375
400 | 1 1 | | 888 | 888 | 848 | 8238 | 28.68.68 | 4 4 28 | 888 | 848 | 1200 | 118 | 868 | 155 | 3888 | 200 212 218 218 | 230
243
272 | 3628 | 11 | | 19 19 | 2522 | 25 28 31 31 | 374 | 244 | 202 | 57 63 | 63 67 71 | L L 8 | 85 | 0000 | 0 112
0 118
0 122 | 132 | 145 | | | 11 | | 160
170
180 | 200
210
225 | 240
260
280 | 290
310
340 | 360
400
420 | 460
480
520 | 540
560
600 | 620
650
680 | 720 | 820
870
920 | 980
1030
1090 | 1150
1220
1280 | 1360
1420
1500 | 1580
1660
1750 | 1850
1950
2120 | 2240
2360
2500 | 11 | | === | 2 1.5 | 777 | 2.1.2 | 2.1 | m m m | W 4 4 | 444 | വവവ | 0 2 2 | 999 | 999 | 7.5 | 7.5 | 7.5 | 9.5 | 12 | | ==== | 2 1.5 | 777 | 2.1 | 2.1 | ოოო | W 4 4 | 444 | വവവ | 0.00 | 999 | 999 | 7.5 | 7.5 | 7.5
9.5
9.5 | 9.5
9.5
12 | 12 | | 0.0 | | | <u></u> | 2 2 2 | 2.1 | 3 3.7 | 644 | 444 | വവവ | O 20 20 | 999 | 6 7.5 | 7.5 | 7.5 | 1 1 1 | 1.1 | | 77 88 | 90
109
109 | 109
109
125 | 125
145
145 | 145
180
180 | 218
218
218 | 218
250
250 | 250
290
290 | 308
308
325 | 345
355
400 | 412
438
450 | 462
488
500 | 545
580
615 | 615
650
690 | 710 | 111 | 1.1 | | 54
60 | 67
67
80 | 9288 | 95
109
109 | 109
136
136 | 091
091
091 | 091
190
190
190 | 190
218
218 | 230
230
243 | 258
272
300 | 308
325
335 | 355
365
375 | 400
438
462 | 462
488
515 | 545 | 1.1.1 | 1.1 | | 944 | 889 | 996 | \$88 | 855 | 2113 | 140
140
140 | 41
160
160 | 170
180
180 | 190
200
218 | 230
243
250 | 258
272
280 | 300
315
335 | 335
355
375 | 400
425
450 | 462
475
500 | 530 | | 34 30 | 37
37
45 | 45
45
52 | 52
60
60 | 60
75
75 | 888 | 06
106
106 | 106
118
118 | 128
128
136 | 140
150
165 | 170
180
185 | 195
200
206 | 224
236
250 | 250
272
280 | 300
315
335 | 345
355
375 | 400 | | 27 75 | 888 | 38 45 | 48 45 | 888 | 22 22 | 82 82 | 28 88 | 9199 | 112
118
128 | 136
140
145 | 150
155
165 | 175
185
195 | 195
206
218 | 230
243
258 | 265
280
290 | 308 | | 22 22 | 24
28
28 | 28
33 | 3833 | 38
46
46 | 22,22 | 65 65 82 | 448 | 82838 | 885 | 108 | 118 | 132 | 885 | 175
185
195 | 200
212
218 | 230 | | 55 4 | 19 16 | 19 | 255 | 3332 | 37 | K 4 4 | 488 | 22.52 | 385 | 8833 | 888 | 103 | 109 | 128 | 1.1.1 | 1.1 | | 145
150
165 | 180
190
210 | 220
230
250 | 260
280
300 | 320
360
380 | 420
440
460 | 480
520
540 | 560
600
620 | 650
670
710 | 750
800
850 | 900
950
1000 | 1060
1120
1180 | 1250
1320
1400 | 1460
1540
1630 | 1720
1820
1950 | 2060
2180
2300 | 2430 | | | 222 | 222 | 5.5.5 | 222 | 2.1 | 2.1 | 3 3 3 3 | m m m | ce 6.4 | 440 | വവവ | 9 9 | 999 | 6
7.5
7.5 | 7.5
7.5
9.5 | 9.5 | | 0.3 | 0.6 | 0.6 | | | 21.5 | 1.5 | 22 | 2.1 | 33.1 | w 4 4 | 244 | വവവ | | | 111 | 1.1 | | 54
54
54 | | | | | | | | | | | | | 9 | 991 | | | | | 63 | 12
80
80
80 | 888 | 109 | 145
145
145 | 145 | 180
180
218 | 218
218
218 | 218
236
272 | 272
290
308 | 325
325
345 | 355
400
400 | 438
450
6 | 500 6 | 111 | 11 | | ¥44 | 46
46
54
71
71 | 54 71
60 80
60 80 | 06 66 69 | 80 109
95 125 | 109 145
109 145
109 145 | 109 145
136 180
136 180 | 136 180
136 180
160 218 | 160 218
160 218
160 218 | 160 218
175 236
200 272 | 200 272
218 290
230 308 | 243 325
243 325
258 345 | | | | | | | 25
30
40
30
40 | 24 4
24 4
24 4
24 4 | | | | | | | | | | | 355
400
400 | 438
438
450 | 545 | 111 | 1.1 | | 30
30
30 | 24 4
24 4
24 4
24 4 | ¥ 9 9 | 79
79 | 888 | 109 | 136 | 13% | 355 | 1460
200 | 200
218
230 | 243
243
258 | 272 355
300 400
300 400 | 325 438
325 438
335 450 | 280 375 500
300 400 545
315 — — | 345 355 375 | 425 — — | | 19 25
23 30
23 30 | 35 46
35 46
40 54 | 30 40 54
34 45 60
34 45 60 | 50 67
50 67
50 67 | 08 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8888 | 80 109
100 136
100 136 | 100
100
118
160
160 | 118
118
118
160
160 | 118 160
128 175
150 200 | 150 200
160 218
170 230 | 180 243
180 243
190 258 | 200 272 355
218 300 400
218 300 400 | 243 325 438
243 325 438
250 335 450 | 375 500
400 545
— — | 265 345 — — — — — — — — — — — — — — — — — — — | 300 400 — — — — — — — — — — — — — — — — — | | 19 25
23 30
23 30 | 26 35 46
26 35 46
30 40 54 | 30 40 54
34 45 60
34 45 60 | 37 50 67
37 50 67
37 50 67 | 45 60 80
45 60 90
52 69 95 | 60 80 109
60 80 109
60 109 | 60 80 109
75 100 136
75 100 136 | 75 100 136
75 100 136
90 118 160 | 90 118 160
90 118 160
90 118 160 | 90 118 160
98 128 175
112 150 200 | 112 150 200
118 160 218
128 170 230 | 136 180 243
136 180 243
140 190 258 | 118 150 200 272 355 128 165 218 300 400 128 165 218 300 400 | 140 180 243 325 438 140 180 243 325 438 145 185 250 335 450 | 165 206 280 375 500 175 224 300 400 545 185 243 315 — — | 200 265 345 — — — — — — — — — — — — — — — — — — — | 230 300 400 — — — — — — — — — — — — — — — — — | | 16 19 25
19 23 30
19 23 30 | 22 26 35 46
22 26 35 46
24 30 40 54 | 24 30 40 54
27 34 45 60
27 34 45 60 | 30 37 50 67
30 37 50 67
30 37 60 67 | 36 45 60 80
36 45 60 80
42 52 69 95 | 48 60 80 109
48 60 80 109
48 60 80 109 | 48 60 80 109
60 75 100 136
60 75 100 136 | 60 75 100 136
60 75 100 136
72 90 118 160 | 72 90 118 160
72 90 118 160
72 90 118 160 | 72 90 118 160
78 98 128 175
88 112 150 200 | 88 112 150 200
95 118 160 218
100 128 170 230 | 106 136 180 243 106 136 180 243 112 140 190 258 | 150 200 272 355 165 218 300 400 165 218 300 400 165 218 300 400 | 180 243 325 438 180 243 325 438 185 250 335 450 | 206 280 375 500
224 300 400 545
243 315 — — | 265 345 — — — — — — — — — — — — — — — — — — — | 300 400 — — — — — — — — — — — — — — — — — | | 13 16 19 25
16 19 23 30
16 19 23 30 | 18 22 26 35 46
18 22 26 35 46
20 24 30 40 54 | 20 24 30 40 54
22 27 34 45 60
22 27 34 45 60 | 24 30 37 50 67
24 30 37 50 67
24 30 37 60 67 | 28 36 45 60 80
28 36 45 60 80
33 42 52 69 95 | 38 48 60 80 109
38 48 60 80 109
38 48 60 80 109 | 38 48 60 80 109
46 60 75 100 136
46 60 75 100 136 | 46 60 75 100 136
46 60 75 100 136
56 72 90 118 160 | 56 72 90 118 160
56 72 90 118 160
56 72 90 118 160 | 56 72 90 118 160
60 78 98 128 175
69 88 112 150 200 | 69 88 112 150 200
74 95 118 160 218
78 100 128 170 230 | 82 106 136 180 243
82 106 136 180 243
85 112 140 190 258 | 90 118 150 200 272 355
100 128 165 218 300 400
100 128 165 218 300 400 | 106 140 180 243 325 438
106 140 180 243 325 438
112 145 186 250 335 450 | 122 165 206 280 375 500
132 175 224 300 400 545
140 186 243 315 — — | 155 200 265 345 — — — — — — — — — — — — — — — — — — — | | | 130 9 13 16 19 25 140 10 16 19 23 30 150 10 16 19 23 30 | 11 18 22 26 35 46
11 18 22 26 35 46
13 20 24 30 40 54 | 200 13 20 24 30 40 54 215 14 22 27 34 45 60 226 14 22 27 34 45 60 | 240 16 24 30 37 50 67 250 16 24 30 37 50 67 270 16 24 30 37 50 67 | 300 19 28 36 45 60 80 320 19 28 36 45 60 80 350 22 33 42 52 69 96 | 380 25 38 48 60 80 109 400 25 38 48 60 80 109 420 25 38 48 60 80 109 | 440 25 38 48 60 80 109 480 31 46 60 75 100 136 500 31 46 60 75 100 136 | 520 31 46 60 75 100 136 540 31 46 60 75 100 136 580 37 56 72 90 118 160 | 600 37 56 72 90 118 160 620 37 56 72 90 118 160 650 37 56 72 90 118 160 | 680 37 56 72 90 118 160 730 42 60 78 98 128 175 780 48 69 88 112 150 200 | 820 48 69 88 112 150 200 870 50 74 95 118 160 218 920 54 78 100 128 170 230 | 980 57 82 106 136 180 243 1030 57 82 106 136
180 243 1090 60 85 112 140 190 258 | 1150 63 90 118 150 200 272 355 1220 71 100 128 165 218 300 400 1280 71 100 128 165 218 300 400 | 1360 78 106 140 180 243 325 438 1420 78 106 140 180 243 325 438 1500 80 112 145 186 250 335 450 | 1600 88 122 165 206 280 375 500 1700 95 132 175 224 300 400 545 1820 — 140 185 243 315 — — | 1950 — 155 200 265 345 — — 2060 — 160 206 272 355 — — 2180 — 165 218 290 375 — — | 2300 — 175 230 300 400 — — — — — — — — — — — — — — — — — | | 130 9 13 16 19 25 140 10 16 19 23 30 150 10 16 19 23 30 | 165 11 18 22 26 35 46 175 11 18 22 26 35 46 190 13 20 24 30 40 54 | - 200 13 20 24 30 40 54 - 215 14 22 27 34 45 60 - 225 14 22 27 34 45 60 | - 240 16 24 30 37 50 67
- 250 16 24 30 37 50 67
- 270 16 24 30 37 50 67 | - 300 19 28 36 45 60 80 - 320 19 28 36 45 60 80 - 350 22 33 42 52 69 96 | | - 440 25 38 48 60 80 109 - 480 31 46 60 75 100 136 - 500 31 46 60 75 100 136 | - 520 31 46 60 75 100 136 - 540 31 46 60 75 100 136 - 580 37 56 72 90 118 160 | - 600 37 56 72 90 118 160 - 620 37 56 72 90 118 160 - 650 37 56 72 90 118 160 | - 680 37 56 72 90 118 160 - 730 42 60 78 98 128 175 - 780 48 69 88 112 150 200 | - 820 48 69 88 112 150 200 - 870 50 74 95 118 160 218 - 920 54 78 100 128 170 230 | - 980 57 82 106 136 180 243 - 1030 57 82 106 136 180 243 - 1090 60 85 112 140 190 258 | - 1150 63 90 118 150 200 272 355 - 1220 71 100 128 165 218 300 400 - 1280 71 100 128 165 218 300 400 | 1360 78 106 140 180 243 325 438 1420 78 106 140 180 243 325 438 1500 80 112 145 186 250 335 450 | - 1600 88 172 165 206 280 375 500 - 1700 95 132 175 224 300 400 545 - 1820 - 140 185 243 315 - - | - 1950 - 155 200 265 345 - - - 2060 - 160 206 272 355 - - - 2180 - 165 218 290 375 - - | 2300 - 175 230 300 400 - 2430 - 190 250 325 425 | | | - 165 11 18 22 26 35 46
- 175 11 18 22 26 35 46
- 190 13 20 24 30 40 54 | - 200 13 20 24 30 40 54 - - 215 14 22 27 34 45 60 - - 225 14 22 27 34 45 60 | - - 240 16 24 30 37 50 67 - - 250 16 24 30 37 50 67 - - 270 16 24 30 37 50 67 | - - 300 19 28 36 45 60 80 - - 320 19 28 36 45 60 80 - - 350 22 33 42 52 69 96 | 400 25 38 48 60 80 109 7 | - - 440 25 38 48 60 80 109 - - 480 31 46 60 75 100 136 - - 500 31 46 60 75 100 136 | - - 520 31 46 60 75 100 136 - - 540 31 46 60 75 100 136 - - 580 37 56 72 90 118 160 | 600 37 56 72 90 118 160
650 37 56 72 90 118 160
- 650 37 56 72 90 118 160 | - - 680 37 56 72 90 118 160 - - 730 42 60 78 98 128 175 - - 780 48 69 88 112 150 200 | - 820 48 69 88 112 150 200 - - 870 50 74 95 118 160 218 - 920 54 78 100 128 170 230 | - 980 57 82 106 136 180 243 - 1030 57 82 106 136 180 243 - 1090 60 85 112 140 190 258 | 1220 71 100 128 145 218 300 400
1280 71 100 128 145 218 300 400
1280 71 100 128 145 218 300 400 | 1360 78 106 140 180 243 325 438 | 1600 88 122 166 206 280 375 500
1700 95 132 175 224 300 400 545
1820 - 140 185 243 315 | 1950 - 155 200 266 345 2060 - 160 206 272 355 2180 - 165 218 290 375 | _ | | - - 130 9 13 16 19 25 15 | 106 11 18 22 26 35 46
175 11 18 22 26 35 46
190 13 20 24 30 40 54 | - - - 200 13 20 24 30 40 54 - - - 215 14 22 27 34 45 60 - - - 225 14 22 27 34 45 60 | - - - 240 16 24 30 37 50 67 - - - 250 16 24 30 37 50 67 - - - 270 16 24 30 37 50 67 | - - 300 19 28 36 45 60 80 19 28 36 45 60 80 19 28 36 45 60 80 19 18 19 19 19 19 19 19 | - - - 400 25 38 48 60 80 109 - - - 420 25 38 48 60 80 109 - - - 420 25 38 48 60 80 109 - | - - - - 440 25 38 48 60 75 100 136 - <t< td=""><td>- - - 50 31 46 60 75 100 136 - - - 540 31 46 60 75 100 138 - - - 580 37 56 72 90 118 160</td><td>- - - 600 37 56 72 90 118 160 - - - 620 37 56 72 90 118 160 - - - 650 37 56 72 90 118 160 - - - 650 37 56 72 90 118 160</td><td>- - - 680 37 56 72 90 118 160 - - - 730 42 60 78 98 128 175 - - - - 780 48 69 88 112 150 200</td><td>- - - 820 48 69 88 112 150 200 - - - 870 50 74 95 118 160 218 - - - 920 54 78 100 128 170 230</td><td>- - - 980 57 82 106 136 180 243 - - - 1030 57 82 106 136 180 243 - - 1090 60 85 112 140 190 258</td><td> -</td><td>- - - 1360 78 106 140 180 243 325 438 - - - 1420 78 106 140 180 243 325 438 - - - 1500 80 112 145 185 250 335 450</td><td> 1700 88 122 165 206 289 375 500
 1700 95 132 175 224 300 400 545
 1820 - 140 185 243 315</td><td> -</td><td>- - - 2330 - 175 230 400 - - - - 2430 - 190 250 325 425 - -</td></t<> | - - - 50 31 46 60 75 100 136 - - - 540 31 46 60 75 100 138 - - - 580 37 56 72 90 118 160 | - - - 600 37 56 72 90 118 160 - - - 620 37 56 72 90 118 160 - - - 650 37 56 72 90 118 160 - - - 650 37 56 72 90 118 160 | - - - 680 37 56 72 90 118 160 - - - 730 42 60 78 98 128 175 - - - - 780 48 69 88 112 150 200 | - - - 820 48 69 88 112 150 200 - - - 870 50 74 95 118 160 218 - - - 920 54 78 100 128 170 230 | - - - 980 57 82 106 136 180 243 - - - 1030 57 82 106 136 180 243 - - 1090 60 85 112 140 190 258 | - | - - - 1360 78 106 140 180 243 325 438 - - - 1420 78 106 140 180 243 325 438 - - - 1500 80 112 145 185 250 335 450 | 1700 88 122 165 206 289 375 500
1700 95 132 175 224 300 400 545
1820 - 140 185 243 315 | - | - - - 2330 - 175 230 400 - - - - 2430 - 190 250 325 425 - - | | - - 130 9 13 16 19 25 140 10 16 19 23 30 16 19 23 30 10 16 19 23 30 10 16 19 23 30 10 16 19 23 30 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 16 10 10 | 106 11 18 22 26 35 46
175 11 18 22 26 35 46
190 13 20 24 30 40 54 | - - - - 200 13 20 24 30 40 54 - - - - 216 14 22 27 34 45 60 - - - - - - 225 14 22 27 34 45 60 | 240 16 24 30 37 50 67 - 250 16 24 30 37 50 67 67 67 67 67 67 67 67 67 67 67 67 67 | 1 | 100 | 440 25 38 48 60 76 100 136 500 31 46 60 75 100 138 | - - - - 520 31 46 60 75 100 138 - - - - - 540 31 46 60 75 100 138 - - - - - - 580 37 56 72 90 118 160 | 600 37 56 72 90 118 160
650 37 56 72 90 118 160
650 37 56 72 90 118 160 | - | 820 48 69 88 112 150 200
870 50 74 95 118 160 218
920 54 78 100 128 170 230 | - - - 980 57 82 106 136 180 243 - - - 1030 57 82 106 136 180 243 - - - - 1090 60 85 112 140 190 258 | 1150 63 90 118 150 200 272 355 1 | - - - - 1360 78 106 140 180 243 325 438 - - - 1420 78 106 140 180 243 325 438 - | 1700 88 122 165 206 289 375 500 545 500
545 50 | - | | | | | 200 13 20 24 30 40 54 60 225 14 22 27 34 45 60 | 250 16 24 30 37 50 67 - 270 16 24 30 37 50 67 | 10 10 10 10 10 10 10 10 | | 440 25 38 48 60 76 100 138 500 31 46 60 75 100 138 | 520 31 46 60 75 100 138
580 37 56 72 90 118 160 | 600 37 56 72 90 118 160
650 37 56 72 90 118 160
650 37 56 72 90 118 160 | - | 820 48 69 88 112 150 200
870 50 74 95 118 160 218
920 54 78 100 128 170 230 | 1030 57 82 106 136 180 243
1030 57 82 106 136 180 243
1090 60 85 112 140 190 258 | 1220 77 100 128 165 218 300 400 | 1340 78 106 140 180 243 325 438 - 1500 80 112 145 186 250 335 450 | 1460 88 122 165 206 280 375 500 1780 95 132 175 224 300 400 545 1820 - 140 185 243 315 | 1950 | - 2430 - 175 230 300 400 | | 106 — — — 130 9 13 16 19 25 120 — — — — — 140 16 19 13 16 19 23 30 120 — — — — — 150 16 19 23 30 | 166 11 18 22 26 35 46
175 11 18 22 26 35 46
179 13 20 24 30 40 54 | 146 — — — 200 13 20 24 30 40 54 170 — — — 216 14 22 27 34 45 60 180 — — — 225 14 22 27 34 45 60 | 190 — — — 240 16 24 30 37 50 67 200 — — — — 250 16 24 30 37 50 67 220 — — — — 27 270 16 24 30 37 50 67 220 — — — — 270 16 24 30 37 50 67 | 240 — — — 300 19 28 36 45 60 80 280 — — — — 320 19 28 36 45 60 80 280 — — — — — 350 22 33 42 52 69 95 | 320 400 25 38 48 60 80 109 340 420 25 38 48 60 80 109 109 109 109 109 109 109 109 109 10 | 360 — — — 440 25 38 48 60 80 109 109 380 — — — — 480 31 46 60 75 100 136 400 — — — — 500 31 46 60 75 100 138 | 420 — — — 520 31 46 60 75 100 136 440 — — — — 540 31 46 60 75 100 136 460 — — — — 580 37 56 72 90 118 100 | 500 — — — 600 37 56 72 90 118 160 530 — — — 620 37 56 72 90 118 160 530 — — — 650 37 56 72 90 118 160 | 550 — — — — 680 37 56 72 90 118 16 600 — — — 730 42 60 78 98 128 175 630 — — — 773 42 60 78 98 128 175 20 — — — 778 48 69 88 172 150 200 | 670 — — — 830 48 69 88 112 150 200 710 — — — 870 50 74 96 118 160 218 750 — — — 920 54 78 100 128 170 230 | 800 — — — — 980 57 82 106 136 180 243 850 — — — — 1030 57 82 106 136 180 243 900 — — — — 1090 60 85 112 140 190 288 | 1220 77 100 128 165 218 300 400 | 1120 — | 1460 88 122 165 206 280 375 500 1780 95 132 175 224 300 400 545 1820 - 140 185 243 315 | - - - 2060 155 200 265 345 - - | 2430 - 175 230 300 400 | The chamfer dimensions listed in this table do not necessarily apply to the following chamfers: (a) Chamfers of the grooves in outer rings that have snap ring grooves. (b) For thin section cylindrical roller bearings, the chamfers on side without rib and bearing bore (in case of an inner ring) or outer surface (in case of an outer ring). (c) For angular contact ball bearings, the chamfers between the front face and bore (in case of an inner ring) or outer surface (in case of an outer ring). (d) Chamfers on inner rings of bearings with tapered bores. Remarks | 2 | |------------------| | Roller Bearings) | | Tapered | | (except | | Bearings | | of Radial | | Dimensions o | | Boundary | | Table 7.1 | | UIV | IDA | I A | וט | IVIL | _14- | SIU | INO | AIN | יטו טו | | YIING | INOIN | IDEK | 3 FUR | (DEA | KIING | 3 | | | | |------------------------|--------------------------|-------------------------|-------------------|---------------------------|-------------------|---------------------|-------|-------------|------------|-------|---------------------|----------------|----------------------|----------------------|----------------------|---|----------------------|----------------------|----------------------|----------------------| | | | | | | 4 | Dimension
Series | 04~24 | r
(min.) | 111 | 111 | 111 | 0.6 | 0.6 | 22 I | 5.1 1.5. | 1.5 | 2.1 | 2.1 | 6 € 4 | 444 | | | | | | | Series 4 | | | | 111 | | 111 | 1 2 5 | 16
19
24 | 33 | 36 | 449 | 53 | 64
74
74 | 77
80
86 | 98 | | 94 | 104 | N 4 | | | Diameter Series 4 | Dimension
Series | 04 | В | 111 | 111 | 111 | 161 | 13 12 | 119 | 21 |
25
27 | 33 | 35
37
42 | 45
48
52 | 54
58
58 | | | | | | | ā | | D | | 111 | 1.1.1 | 1.1.1 | 30 | 37
42
52 | 62 72 — | 80 80 | 100 | 120
130
140 | 150
160
180 | 190
200
210 | 225
240
250 | | | | | | | | ision | 03~33 | in.) | 111 | 0.2 | 0.3 | 0.3 | 1.00 | -== | === | <u> </u> | 2 2 2 | 2.1 | 2.1 | ოოო | | | | | | | | Dimension
Series | 83 | r (min.) | 111 | 111 | 111 | 111 | 0.03 | 9.0 | 9.0 | 0.6 | | 11111 | 1.5 | 22 | | 633 | 323 | N 33 | | | 3 | | 33 | | 111 | _ | 9 0 5 | 512 | 19 19 | 22.2
22.2
25 | 25.4
30.2
30.2 | 32
34.9
36.5 | 39.7
44.4
49.2 | 54
58.7
63.5 | 68.3
68.3
73 | 73
77.8
82.6 | | 623 | 43 | N 23 | | 223 | Series 3 | eries | 23 | | 111 | 111 | = | 13 3 | 11 | 19 | 22 24 | 33 33 | 44 63 | 48
51 | 6883 | 64
67
73 | | | | | | | Diameter Series | Dimension Series | 13 | В | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | - 12 | | 63 | 13 | N 3 | | 213 | Ω | Dime | 03 | | 111 | 115 | 7 6 2 | 9 6 0 | 121 | 4 5 9 | 19 19 | 828 | 3278 | 8833 | 33,44 | 445 | | | | | | | | | 83 | | 111 | 111 | 111 | 111 | 000 | 225 | 13 13 | 4 4 4 6 | 17 | 22
24
25 | 27
28
30 | 3633 | | | | | | | | | О | | 1.1.1 | 5 | 19
23 | 26
28
30 | 35
37
42 | 47
52
56 | 62
68
72 | 75
80
90 | 120 | 130
140
150 | 160
170
180 | 190
200
215 | | | | | | | | nsion
ies | 02~42 | in.) | 1.1.1 | 0.15 | 0.3 | 003 | 9:0
9:0
0:4 | 0.6 | | -55 | 1111 | 21.5 | 1.5
2 | 2.1 | | | | | | | | Dimension
Series | 82 | r (min.) | 111 | 1.0 | 0.15
0.15
0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 9.0 | 9.0 | | | 1212 | | | | | | | | | 42 | | 111 | 111 | 111 | 111 | 118 | 22 72 | 27
30
32 | 33
37
40 | 40
45 | 2222 | 929 | 822 | | 632 | 52 | N 32 | | 232 | ies 2 | | 32 | | 111 | 1 | 7 8 01 | 13 13 | 14.3
15.9
15.9 | 17.5
20.6
20.6 | 20.6
23
23.8 | 25
27
30.2 | 30.2
30.2
33.3 | 36.5
38.1
39.7 | 41.3
44.4
49.2 | 52.4
55.6
60.3 | | 622 | 42 | N 22 | | 222 | Diameter Series 2 | Dimension Series | 22 | В | 111 | 111 | 111 | 111 | 4 4 4 | 9 8 8 | 8198 | 2323 | 2233 | 3338 | 3833 | 944 | | | | | | | Diam | imensic | 12 | ш | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | | 62 | 12 | N 2 | | | | | 02 | | 111 | 4 | O O O | L 8 8 | 110 | 244 | 16 15 | 17 18 | 20 21 | 23 24 | 25
26
28 | 34 | | | | | | | | | 82 | | 1.1.1 | 2.5 | 3.5 | 6 5 5 | L L 8 | 800 | 555 | 121 | 554 | 2000 | 18
19
21 | 25.42 | | | | | | | | | D | | 1.1.1 | ا ا 5 | 19 13 | 22
24
26 | 30
32
35 | 40
47
50 | 52
58
62 | 65
72
80 | 900 | 110
120
125 | 130
140
150 | 160
170
180 | | | | | | | | Dimension
Series | 11~41 | r (min.) | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 222 | | | | | | | | Dime | 10 | r (n | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 115 | | | | | | 241 | _ | | 41 | | 111 | 111 | 111 | 15 | 8 8 8 | 848 | 25
27
28 | 888 | 8889 | 644 | 2522 | 929 | | | | NN 31 | | 231 | Series 1 | series | 31 | | 111 | 111 | | 11 12 12 | 4
4
4
4 | 18 61 | 28 19 | 8223 | 888 | 888 | 37
37
41 | 45
52
52 | | | | | | | Diameter | Dimension S | 21 | В | 111 | 111 | [∞] | 600 | 12 12 | 13 | 16 | 19
21
22 | 22
22
24 | 24
27
27 | 30 30 | 33 | | | | | | | ۵ | Dime | 11 | | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1 08 | | | | | | | | | 10 | | 1.1.1 | 111 | 111 | 111 | 1 1 1 | 111 | 111 | 111 | 1.1.1 | 1.1.1 | 1.1.1 | | | Α. | W | - S | ler | oller | | | Д | | | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1.1 | 111 | 1.1.1 | 150
160
165 | | ingle-Ro:
3all Brgs | Double-Row
Ball Brgs. | ylindrica
oller Brog | edle Rol
Brgs. | Spherical Roller
Brgs. | | | p | | 0.6
1.5 | 2.5 | 4100 | 7
8
9 | 125 | 17
20
22 | 25
28
30 | 32
40 | 45
50
55 | 65
70 | 75
80
85 | 90
100 | | S | ۳ | ا
م ي | Ne | Sph | ١ | əqwr | л өл | og | | 3 2 | 4 2 9 | V 8 6 | 000 | 03 | 05
28
06 |)32
07
08 | 193 | 13 12 | 15
16
17 | 18
20 | | 440 | വവവ | ф
22
22 | 999 | 6
7.5
7.5 | 7.5
9.5
9.5 | 9.5
9.5 | 12 12 | 15 15 | 15 2 1 | 1 12 | 111 | 111 | 111 | 1.1 | |---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|----------------------|----------------------|----------------------|----------------------|-------------------|-------------------------|--------| | 108 | 128
132
138 | 142
145
150 | 155
160
180 | 190
206
224 | 236
250
265 | 280
300
315 | 325
335
345 | 365
375
400 | 412
438
450 | 475 | 111 | 111 | 111 | 1.1 | | 60
65
72 | 78
82
85 | 98
92
95 | 98
102
115 | 122
132
140 | 150
155
165 | 180
190
200 | 206
212
218 | 230
236
250 | 258
272
280 | 290 | 111 | 111 | 111 | 1.1 | | 260
280
310 | 340
360
380 | 400
420
440 | 460
480
540 | 580
620
670 | 710
750
800 | 850
900
950 | 980
1030
1060 | 1120
1150
1220 | 1280
1360
1420 | 1500 | 1.1.1 | 111 | 1.1.1 | 1.1 | | നനന | 444 | 444 | വവവ | 9 9 2 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 9.5
9.5
9.5 | 9.5
12
12 | 15 | 15 21 25 | 119 | 19 | 111 | 1.1 | | 3 3.1 | е 4 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1 | |
87.3
92.1
106 | 112
118
128 | 138 | 155
165
180 | 195
206
224 | 236
258
272 | 300
308
308 | 315
345
365 | 375
388
412 | 438
462
488 | 515
530
560 | 0630
650
650 | 670 | 111 | 1.1 | | 1.88 | 93
102
108 | 120 | 132
138
145 | 155
165
175 | 185
200
212 | 224
230
243 | 250
265
280 | 290
300
325 | 335
355
375 | 400
412
438 | 462
488
500 | 515
545
— | 111 | 1.1 | | 53
62 | 66
70
75 | 79
88
88 | 92
97
106 | 114
123
132 | 140
155
165 | 170
175
185 | 190
200
212 | 218
230
243 | 258
272
280 | 300
308
325 | 355
375
388 | 400 | 111 | 1.1 | | 858 | 58
65 | 922 | 888 | 95
102
108 | 109 | 125
128
136 | 136
145
155 | 921 | 190
200
206 | 218
224
236 | 258
272
280 | 300 | 111 | 1.1 | | 37
44 | 48
50
— | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1 | | 225
240
260 | 280
320
320 | 340
360
380 | 400
420
460 | 500
540
580 | 620
670
710 | 750
780
820 | 850
900
950 | 980
1030
1090 | 1150
1220
1280 | 1360
1420
1500 | 1600
1700
1780 | 1850
1950
— | 1.1.1 | 1.1 | | 2:1 | നനന | 844 | 444 | 400 | 6 Cl Cl | 999 | 7.5 | 7.5
7.5
9.5 | 9.5
9.5 | 122 | 555 | 5일 | 111 | 1.1 | | 1.5 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1 | | 888 | 100
109
118 | 844 | 858 | 200
218
218 | 243
258
280 | 290
300
315 | 335
345
365 | 388
412
450 | 475
488
515 | 545
560
615 | 615
650
670 | 710 | 111 | 1.1 | | 65.1
69.8
76 | 96
88
96 | 104
110
112 | 120
128
144 | 160
174
176 | 192
208
224 | 232
240
256 | 272
280
296 | 310
336
355 | 365
388
412 | 438
450
475 | 488
515
515 | 530 | 111 | 1.1 | | 2222 | 64
73 | 888 | 92
801 | 130 | 140
150
165 | 170
175
185 | 195
200
212 | 224
243
258 | 272
280
300 | 315
325
345 | 355
375
388 | 412 | 111 | 1.1 | | 42 | 46
50
54 | 62
62
62 | 65
70
78 | 90 | 98
105
118 | 122
132
140 | 150
155
165 | 170
185
200 | 206
212
230 | 243
250
265 | 272
280
300 | 315 | 111 | 1.1 | | 38 40 | 45
45 | 52
52 | 58 92 | 72
80
80 | 85
92
92 | 95
95
103 | 109 | 125
136
145 | 150
155
165 | 175
180
195 | 200
206
218 | 230 243 | 111 | 1.1 | | 27 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1 | | 190
200
215 | 230
250
270 | 290
310
320 | 340
360
400 | 440
480
500 | 540
580
620 | 650
680
720 | 760
790
830 | 870
920
980 | 1030
1090
1150 | 1220
1280
1360 | 1420
1500
1580 | 1660 | 1.1.1 | 1.1 | | 222 | 2
2.1
2.1 | 2.1 | ω ω 4 | 440 | വവവ | O O O | 6
7.5 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 7.5
9.5
9.5 | 9.5
12
12 | 127 | 555 | 51 0 0 | | 11111 | 1.5 | 2 2 2.1 | ოოო | 444 | വവവ | O O O | 999 | 6
7.5
7.5 | 7.5 | 7.5
9.5
9.5 | 9.5
12
12 | 122 | 111 | 1.1 | | 668 | 8860 | 109 | 178
140
128 | 928 | 200
218
243 | 243
243
250 | 280
300 | 308
325
335 | 355
375
400 | 412
438
475 | 475
500
515 | 545
580
600 | 630
670
710 | 750 | | 62 55 | 88 64 | 888 | 104 | 128
144
146 | 160
176
198 | 192
194
200 | 224
226
240 | 248
264
272 | 280
300
315 | 336
345
365 | 375
400
412 | 438
462
475 | 475
500
530 | 280 | | 448 | 48
50
60 | 999 | 78
88
88 | 36
90
108 | 118
128
140 | 140
145 | 165
165
175 | 855 | 206
218
230 | 243
250
272 | 272
290
300 | 315
335
345 | 365
388
400 | 425 | | 8833 | 38
40
46 | 25.57 | 99 69 | 74
82
82 | 855 | 106 | 122 | 136 | 160
170
175 | 195 | 212
224
230 | 243
258
265 | 280
290
308 | 325 | | | 25
27
31 | | | | | | | | | | | | | | | | 210
225
250 | | | | | | | | | | | | | | | | 130
140
150 | | | | | | | | | | | | | | | 21
22
24 | 26
28
30 | 32
34
36 | 38
40
44 | 48
52
56 | 64
68
68 | 72
76
80 | 88
92 | 96
/500
/530 | /260
/600
/630 | /670
/710
/750 | 0820 | /1000/1060 | /1120
/1180
/1250 | /1320 | | | | | | | | | | | | | | | | | Remarks Table 7. 2 Boundary Dimensions of | Tapi
Ro
Bri | ller | | | | | 329 | | | | | | 32 | 0 X | | | | 330 | | | | | 3: | 31 | | | |-------------------|-------------------|-------------------|----------------|-------------|-------------------|--------------------|------------------|--------------------|-------------------|-------------------|-------------------|----------------|----------------------|----------------|----------------|----------------------|----------------|-------------------|-------------------|-------------------|----------------|---------------------|-------------------|-------------------|-------------------| | | | | | | Diam | eter Se | ries 9 | | | | | | | Diam | eter Se | eries 0 | | | | | Di | iametei | Serie | s 1 | | | nber | | | | Din | nensio | n Serie: | s 29 | | Cha
Dime | mfer
nsion | | Dime | nsion S | Series | Dime | nsion S | Series | Cha
Dime | mfer
nsion | | Dime | nsion S | Series | Cha
Dime | mfer
nsion | | Bore Number | d | | | Ι | | | II | | Cone | | | | 20 | | | 30 | ı | Cone | Cup | | | 31 | I | Cone | Cup | | Bor | | D | В | С | T | В | С | Т | r (1 | min.) | D | В | С | Т | В | С | Т | r (r | min.) | D | В | С | Т | r (1 | min.) | | 00
01
02 | 10
12
15 | _
_
_ | = | _
_
_ 28
32 |
11
12 | _
_
_ |
11
12 | 13
14 | _
_
_ | 13
14 | 0.3
0.3 | 0.3
0.3 | _
_
_ | = | _ | _
_
_ | _
_
_ | _
_
_ | | 03
04
/22 | 17
20
22 | —
37
40 | 11
— | _
_
_ | 11.6
— | 12
12 | -
9
9 | —
12
12 |
0.3
0.3 | 0.3
0.3 | 35
42
44 | 13
15
15 | 12
11.5 | 13
15
15 | 15
17
— | _
_
_ | 15
17
— | 0.3
0.6
0.6 | 0.3
0.6
0.6 | _
_
_ | = | _
_
_ | _
_
_ | _
_
_ | _
 | | 05
/28
06 | 25
28
30 | 42
45
47 | 11
—
11 | _
_
_ | 11.6
—
11.6 | 12
12
12 | 9
9
9 | 12
12
12 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 47
52
55 | 15
16
17 | 11.5
12
13 | 15
16
17 | 17
—
20 | 14
—
16 | 17
—
20 | 0.6
1
1 | 0.6
1
1 | _
_
_ | = | _
_
_ | _
_
_ | _
_
_ | _

 - | | /32
07
08 | 32
35
40 | 52
55
62 |
13
14 | _
_
_ |
14
15 | 15
14
15 | 10
11.5
12 | 14
14
15 | 0.6
0.6
0.6 | 0.6
0.6
0.6 | 58
62
68 | 17
18
19 | 13
14
14.5 | 17
18
19 |
21
22 |
17
18 | 21
22 | 1
1
1 | 1
1
1 | _
_
75 | _
_
26 | _
_
_
20.5 | _
_
_
26 | _
_
1.5 | _
_
1.5 | | 09
10
11 | 45
50
55 | 68
72
80 | 14
14
16 | _
_
_ | 15
15
17 | 15
15
17 | 12
12
14 | 15
15
17 | 0.6
0.6
1 | 0.6
0.6
1 | 75
80
90 | 20
20
23 | 15.5
15.5
17.5 | 20
20
23 | 24
24
27 | 19
19
21 | 24
24
27 | 1
1
1.5 | 1
1
1.5 | 80
85
95 | 26
26
30 | 20.5
20
23 | 26
26
30 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | | 12
13
14 | 60
65
70 | 85
90
100 | 16
16
19 | _
_
_ | 17
17
20 | 17
17
20 | 14
14
16 | 17
17
20 | 1
1
1 | 1
1
1 | 95
100
110 | 23
23
25 | 17.5
17.5
19 | 23
23
25 | 27
27
31 | 21
21
25.5 | 27
27
31 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 100
110
120 | 30
34
37 | 23
26.5
29 | 30
34
37 | 1.5
1.5
2 | 1.5
1.5
1.5 | | 15
16
17 | 75
80
85 | 105
110
120 | 19
19
22 | _
_
_ | 20
20
23 | 20
20
23 | 16
16
18 | 20
20
23 | 1
1
1.5 | 1
1
1.5 | 115
125
130 | 25
29
29 | 19
22
22 | 25
29
29 | 31
36
36 | 25.5
29.5
29.5 | 31
36
36 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 125
130
140 | 37
37
41 | 29
29
32 | 37
37
41 | 2
2
2.5 | 1.5
1.5
2 | | 18
19
20 | 90
95
100 | 125
130
140 | 22
22
24 | _
_
_ | 23
23
25 | 23
23
25 | 18
18
20 | 23
23
25 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 140
145
150 | 32
32
32 | 24
24
24 | 32
32
32 | 39
39
39 | 32.5
32.5
32.5 | 39
39
39 | 2
2
2 | 1.5
1.5
1.5 | 150
160
165 | 45
49
52 | 35
38
40 | 45
49
52 | 2.5
2.5
2.5 | 2
2
2 | | 21
22
24 | 105
110
120 | 145
150
165 | 24
24
27 | _
_
_ | 25
25
29 | 25
25
29 | 20
20
23 | 25
25
29 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 160
170
180 | 35
38
38 | 26
29
29 | 35
38
38 | 43
47
48 | 34
37
38 | 43
47
48 | 2.5
2.5
2.5 | 2
2
2 | 175
180
200 | 56
56
62 | 44
43
48 | 56
56
62 | 2.5
2.5
2.5 | 2
2
2 | | 26
28
30 | 130
140
150 | 180
190
210 | 30
30
36 | _
_
_ | 32
32
38 | 32
32
38 | 25
25
30 | 32
32
38 | 2
2
2.5 | 1.5
1.5
2 | 200
210
225 | 45
45
48 | 34
34
36 | 45
45
48 | 55
56
59 | 43
44
46 | 55
56
59 | 2.5
2.5
3 | 2
2
2.5 | _
_
_ | = | = | _
_
_ | _
_
_ |
_
 | | 32
34
36 | 160
170
180 | 220
230
250 | 36
36
42 | _
_
_ | 38
38
45 | 38
38
45 | 30
30
34 | 38
38
45 | 2.5
2.5
2.5 | 2
2
2 | 240
260
280 | 51
57
64 | 38
43
48 | 51
57
64 | _
_
_ | _
_
_ | _
_
_ | 3
3
3 | 2.5
2.5
2.5 | _
_
_ | = | _
_
_ | _
_
_ | _
_
_ | _
 | | 38
40
44 | 190
200
220 | 260
280
300 | 42
48
48 | _
_
_ | 45
51
51 | 45
51
51 | 34
39
39 | 45
51
51 | 2.5
3
3 | 2
2.5
2.5 | 290
310
340 | 64
70
76 | 48
53
57 | 64
70
76 | _
_
_ | _
_
_ | _
_
_ | 3
3
4 | 2.5
2.5
3 | _
_
_ | = | _
_
_ | _
_
_ | | _
_
_ | | 48
52
56 | 240
260
280 | 320
360
380 | 48
—
— | _
_
_ | 51
— | 51
63.5
63.5 | 39
48
48 | 51
63.5
63.5 | 3 3 3 | 2.5
2.5
2.5 | 360
400
420 | 76
87
87 | 57
65
65 | 76
87
87 | _
_
_ | _
_
_ | = | 4
5
5 | 3
4
4 | _
_
_ | Ξ | _
_
_ | _
_
_ | _
_
_ | = | | 60
64 | 300
320 | 420
440 | _ | _ | _ | 76
76 | 57
57 | 76
76 | 4 | 3 | 460
480 | 100 | 74
74 | 100 | _ | _ | _ | 5 | 4 | _ | _ | _ | _ | _ | _ | Remarks 1. Other series not conforming to this table are also specified by ISO. 2. In the Dimension Series of Diameter Series 9, Classification I is those specified by the old standard, Classification II is those specified by the ISO. 2. Dimension Series not classified conform to dimensions (D, B, C, T) specified by ISO. 3. The chamfer dimensions listed are the minimum permissible dimensions specified by ISO. They do not apply to chamfers on the front face. ### **Tapered Roller Bearings** | Units: | mm | | |-------------------|----------------|----------------|-------------------------|-------------------|-------------------|-------------------------|----------------|------------------|----------------|-------------------|-------------------|-------------------|------------------|----------------|----------------|-------------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------------|------------------|-------------------|--------------------------|----------------------| | | 31 | 02 | | | 322 | | | | 332 | | | | 303 | 3 or 30 |)3D | | | 313 | | | | 323 | | | Tape
Ro
Bre | ller | | | | | | Di | amete | r Series | s 2 | | | | | | | | | | Diam | eter Se | eries 3 | | | | | | | | | | Di | imensi | ion | Di | imensi | on | Di | imensi | on | Cha | mfer
nsion | | Di | mensi | on Ser | ies | Di | mensi | on | Di | imensi | on | Cha | mfer | | per | | | S | ieries (| 12 | S | eries 2 | 2 | S | eries 3 | 2 | Cone | | | | C | 3 | | S | eries 1 | 3 | S | eries 2 | 23 | Cone | | d | Bore Number | | D | | | | | | | | | | | | D | | | | | | | | | | | | | - | ore | | | В | С | T | В | С | T | В | С | Т | <i>r</i> (1 | min.) | D | В | С | C (1) | Т | В | С | Т | В | С | T | r (1 | min.) | | <u> </u> | | 30
32
35 | 9
10
11 | 9
10 | 9.7
10.75
11.75 | 14
14
14 | _
_
_ | 14.7
14.75
14.75 | _
_
_ | | 1 1 1 | 0.6
0.6
0.6 | 0.6
0.6
0.6 | 35
37
42 | 11
12
13 | _
_
11 |

 | 11.9
12.9
14.25 | | _
_
_ | _ | 17
17
17 | _
_
14 | 17.9
17.9
18.25 | 0.6
1
1 | 0.6
1
1 | 10
12
15 | 00
01
02 | | 40
47
50 | 12
14
14 | 11
12
12 | 13.25
15.25
15.25 | 16
18
18 | 14
15
15 | 17.25
19.25
19.25 | _
_
_ | _
_
_ | _
_
_ | 1
1
1 | 1
1
1 | 47
52
56 | 14
15
16 | 12
13
14 | _
_
_ | 15.25
16.25
17.25 | _
_
_ | _
_
_ | _ | 19
21
21 | 16
18
18 | 20.25
22.25
22.25 | 1
1.5
1.5 | 1
1.5
1.5 | 17
20
22 | 03
04
/22 | | 52
58
62 | 15
16
16 | 13
14
14 | 16.25
17.25
17.25 | 18
19
20 | 15
16
17 | 19.25
20.25
21.25 | 22
24
25 | 18
19
19.5 | 22
24
25 | 1
1
1 | 1
1
1 | 62
68
72 | 17
18
19 | 15
15
16 | 13
14
14 | 18.25
19.75
20.75 | = |
 -
 - | _
_
_ | 24
24
27 | 20
20
23 | 25.25
25.75
28.75 | | 1.5
1.5
1.5 | 25
28
30 | 05
/28
06 | | 65
72
80 | 17
17
18 | 15
15
16 | 18.25
18.25
19.75 | 21
23
23 | 18
19
19 | 22.25
24.25
24.75 | 26
28
32 | 20.5
22
25 | 26
28
32 | 1
1.5
1.5 | 1
1.5
1.5 | 75
80
90 | 20
21
23 | 17
18
20 | 15
15
17 | 21.75
22.75
25.25 | = | _
 | _ | 28
31
33 | 24
25
27 | 29.75
32.75
35.25 | 1.5
2
2 | 1.5
1.5
1.5 | 32
35
40 | /32
07
08 | | 85
90
100 | 19
20
21 | 16
17
18 | 20.75
21.75
22.75 | 23
23
25 | 19
19
21 | 24.75
24.75
26.75 | 32
32
35 | 25
24.5
27 | 32
32
35 | 1.5
1.5
2 | 1.5
1.5
1.5 | 100
110
120 | 25
27
29 | 22
23
25 | 18
19
21 | 27.25
29.25
31.5 | _
_
_ | _
_
_ | _ | 36
40
43 | 30
33
35 | 38.25
42.25
45.5 | 2
2.5
2.5 | 1.5
2
2 | 45
50
55 | 09
10
11 | | 110
120
125 | 22
23
24 | 19
20
21 | 23.75
24.75
26.25 | 28
31
31 | 24
27
27 | 29.75
32.75
33.25 | 38
41
41 | 29
32
32 | 38
41
41 | 2
2
2 | 1.5
1.5
1.5 | 130
140
150 | 31
33
35 | 26
28
30 | 22
23
25 | 33.5
36
38 | _
_
_ | _
_
_ | _ | 46
48
51 | 37
39
42 | 48.5
51
54 | 3
3
3 | 2.5
2.5
2.5 | 60
65
70 | 12
13
14 | | 130
140
150 | 25
26
28 | 22
22
24 | 27.25
28.25
30.5 | 31
33
36 | 27
28
30 | 33.25
35.25
38.5 | 41
46
49 | 31
35
37 | 41
46
49 | 2
2.5
2.5 | 1.5
2
2 | 160
170
180 | 37
39
41 | 31
33
34 | 26
27
28 | 40
42.5
44.5 | _ | _
_
_ | | 55
58
60 | 45
48
49 | 58
61.5
63.5 | 3
3
4 | 2.5
2.5
3 | 75
80
85 | 15
16
17 | | 160
170
180 | 30
32
34 | 26
27
29 | 32.5
34.5
37 | 40
43
46 | 34
37
39 | 42.5
45.5
49 | 55
58
63 | 42
44
48 | 55
58
63 | 2.5
3
3 | 2
2.5
2.5 | 190
200
215 | 43
45
47 | 36
38
39 | 30
32
— | 46.5
49.5
51.5 | _
51 | _
_
35 | _
_
56.5 | 64
67
73 | 53
55
60 | 67.5
71.5
77.5 | 4
4
4 | 3 3 3 | 90
95
100 | 18
19
20 | | 190
200
215 | 36
38
40 | 30
32
34 | 39
41
43.5 | 50
53
58 | 43
46
50 | 53
56
61.5 | 68
—
— | 52
— | 68
— | 3 3 3 | 2.5
2.5
2.5 | 225
240
260 | 49
50
55 | 41
42
46 | _ | 53.5
54.5
59.5 | 53
57
62 | 36
38
42 | 58
63
68 | 77
80
86 | 63
65
69 | 81.5
84.5
90.5 | 4
4
4 | 3 3 3 | 105
110
120 | 21
22
24 | | 230
250
270 | 40
42
45 | 34
36
38 | 43.75
45.75
49 | 64
68
73 | 54
58
60 | 67.75
71.75
77 | _
_
_ | _
_
_ | _
_
_ | 4
4
4 | 3 3 3 | 280
300
320 | 58
62
65 | 49
53
55 | _
_
_ | 63.75
67.75
72 | 66
70
75 | 44
47
50 | 72
77
82 | 93
102
108 | 78
85
90 | 98.75
107.75
114 | 5
5
5 | 4
4
4 | 130
140
150 | 26
28
30 | | 290
310
320 | 48
52
52 | 40
43
43 | 52
57
57 | 80
86
86 | 67
71
71 | 84
91
91 | _
_
_ | _
_
_ | _
_
_ | 4
5
5 | 3
4
4 | 340
360
380 | 68
72
75 | 58
62
64 | _
_
_ | 75
80
83 | 79
84
88 | _
_
_ | 87
92
97 | 114
120
126 | 95
100
106 | 121
127
134 | 5
5
5 | 4
4
4 | 160
170
180 | 32
34
36 | | 340
360
400 | 55
58
65 | 46
48
54 | 60
64
72 | 92
98
108 | 75
82
90 | 97
104
114 | _
_
_ | _
_
_ | _
_
_ | 5
5
5 | 4
4
4 | 400
420
460 | 78
80
88 | 65
67
73 | _
_
_ | 86
89
97 | 92
97
106 | _
_
_ | 101
107
117 | 132
138
145 | 109
115
122 | 140
146
154 | 6
6
6 | 5
5
5 | 190
200
220 | 38
40
44 | | 440
480
500 | 72
80
80 | 60
67
67 | 79
89
89 | 120
130
130 | 100
106
106 | 127
137
137 | _
_
_ | _
_
_ | _
_
_ | 5
6
6 | 4
5
5 | 500
540
580 | 95
102
108 | 80
85
90 | _
_
_ | 105
113
119 | 114
123
132 | _
_
_ | 125
135
145 | 155
165
175 | 132
136
145 | 165
176
187 | 6
6
6 | 5
6
6 | 240
260
280 | 48
52
56 | | 540
580
— | 85
92
— | 71
75
— | 96
104
— | 140
150
— | 115
125
— | 149
159
— | _
_
_ | _
_
_ | -
-
- | 6
6
— | 5
5
— | _
_
_
_ | _
_
_ | = | _
_
_ | _
_
_
_ | _
_
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_
_ | _
_
_ | 300
320
340
360 | 60
64
68
72 | Note (1) Regarding steep-slope bearing 303D, in DIN, the one corresponding to 303D of JIS is numbered 313. For bearings with bore diameters larger than 100 mm, those of dimension series 13 are numbered 313. Table 7. 3 Boundary Dimensions of | Thrust B | Ball Brgs. | | | | | | | | | 511 | | | | | 512 | | 522 | | | | |--------------------|--------------------
-------------------|----------------|--------------|----------------|-------------------|-------------------|----------------|----------------|----------------|-------------------|-------------------|----------------|----------------|----------------|------------------|-------------------|----------------|-------------------|-------------------| | Spherica
Roller | al Thrust
Brgs. | | | | | | | | | | | | | 292 | | | | | | | | | | | Diam | neter Se | ries 0 | | | Diam | neter Se | ries 1 | | | | | Dian | neter Sei | ries 2 | | | | | per | | | Dime | ension S | Series | | | Dime | ension S | Series | | | | [| Dimensi | on Serie | S | | | | | Bore Number | d | ъ. | 70 | 90 | 10 | | D | 71 | 91 | 11 | | D | 72 | 92 | 12 | 22 | 2 | 2 | | | | Bori | | D | | Т | | $m{r}$ (min.) | D | | Т | | $m{r}$ (min.) | D | | | Т | | Central | Washer | I (min.) | r_1 (min.) | | | | | | 1 | | | | | 1 | | | | | | 1 | | d_2 | В | | | | 4
6
8 | 4
6
8 | 12
16
18 | 4
5
5 | _
_
_ | 6
7
7 | 0.3
0.3
0.3 | = | _
_
_ | _
_
_ | _
_
_ | = | 16
20
22 | 6
6
6 | _
_
_ | 8
9
9 | _
_
_ | _ | _
_
_ | 0.3
0.3
0.3 | _
_
_ | | 00
01
02 | 10
12
15 | 20
22
26 | 5
5
5 | _
_
_ | 7
7
7 | 0.3
0.3
0.3 | 24
26
28 | 6
6
6 | _
_
_ | 9
9
9 | 0.3
0.3
0.3 | 26
28
32 | 7
7
8 | _
_
_ | 11
11
12 | _

22 | _
10 | _
_
5 | 0.6
0.6
0.6 |

0.3 | | 03
04
05 | 17
20
25 | 28
32
37 | 5
6
6 | _
_
_ | 7
8
8 | 0.3
0.3
0.3 | 30
35
42 | 6
7
8 | _
_
_ | 9
10
11 | 0.3
0.3
0.6 | 35
40
47 | 8
9
10 | | 12
14
15 | 26
28 | 15
20 | -
6
7 | 0.6
0.6
0.6 |
0.3
0.3 | | 06
07
08 | 30
35
40 | 42
47
52 | 6
6
6 | _
_
_ | 8
8
9 | 0.3
0.3
0.3 | 47
52
60 | 8
8
9 | _
_
_ | 11
12
13 | 0.6
0.6
0.6 | 52
62
68 | 10
12
13 | | 16
18
19 | 29
34
36 | 25
30
30 | 7
8
9 | 0.6
1
1 | 0.3
0.3
0.6 | | 09
10
11 | 45
50
55 | 60
65
70 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 65
70
78 | 9
9
10 | _
_
_ | 14
14
16 | 0.6
0.6
0.6 | 73
78
90 | 13
13
16 | _

21 | 20
22
25 | 37
39
45 | 35
40
45 | 9
9
10 | 1
1
1 | 0.6
0.6
0.6 | | 12
13
14 | 60
65
70 | 75
80
85 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 85
90
95 | 11
11
11 | _
_
_ | 17
18
18 | 1
1
1 | 95
100
105 | 16
16
16 | 21
21
21 | 26
27
27 | 46
47
47 | 50
55
55 | 10
10
10 | 1
1
1 | 0.6
0.6
1 | | 15
16
17 | 75
80
85 | 90
95
100 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 100
105
110 | 11
11
11 | _
_
_ | 19
19
19 | 1
1
1 | 110
115
125 | 16
16
18 | 21
21
24 | 27
28
31 | 47
48
55 | 60
65
70 | 10
10
12 | 1
1
1 | 1
1
1 | | 18
20
22 | 90
100
110 | 105
120
130 | 7
9
9 | _
_
_ | 10
14
14 | 0.3
0.6
0.6 | 120
135
145 | 14
16
16 | | 22
25
25 | 1
1
1 | 135
150
160 | 20
23
23 | 27
30
30 | 35
38
38 | 62
67
67 | 75
85
95 | 14
15
15 | 1.1
1.1
1.1 | 1
1
1 | | 24
26
28 | 120
130
140 | 140
150
160 | 9
9
9 | _
_
_ | 14
14
14 | 0.6
0.6
0.6 | 155
170
180 | 16
18
18 | 21
24
24 | 25
30
31 | 1
1
1 | 170
190
200 | 23
27
27 | 30
36
36 | 39
45
46 | 68
80
81 | 100
110
120 | 15
18
18 | 1.1
1.5
1.5 | 1.1
1.1
1.1 | | 30
32
34 | 150
160
170 | 170
180
190 | 9
9
9 | _
_
_ | 14
14
14 | 0.6
0.6
0.6 | 190
200
215 | 18
18
20 | 24
24
27 | 31
31
34 | 1
1
1.1 | 215
225
240 | 29
29
32 | 39
39
42 | 50
51
55 | 89
90
97 | 130
140
150 | 20
20
21 | 1.5
1.5
1.5 | 1.1
1.1
1.1 | | 36
38
40 | 180
190
200 | 200
215
225 | 9
11
11 | _
_
_ | 14
17
17 | 0.6
1
1 | 225
240
250 | 20
23
23 | 27
30
30 | 34
37
37 | 1.1
1.1
1.1 | 250
270
280 | 32
36
36 | 42
48
48 | 56
62
62 | 98
109
109 | 150
160
170 | 21
24
24 | 1.5
2
2 | 2
2
2 | | 44
48
52 | 220
240
260 | 250
270
290 | 14
14
14 | _
_
_ | 22
22
22 | 1
1
1 | 270
300
320 | 23
27
27 | 30
36
36 | 37
45
45 | 1.1
1.5
1.5 | 300
340
360 | 36
45
45 | 48
60
60 | 63
78
79 | 110
— | 190
— | 24
— | 2
2.1
2.1 | 2
 | | 56
60
64 | 280
300
320 | 310
340
360 | 14
18
18 |
24
24 | 22
30
30 | 1
1
1 | 350
380
400 | 32
36
36 | 42
48
48 | 53
62
63 | 1.5
2
2 | 380
420
440 | 45
54
54 | 60
73
73 | 80
95
95 | _
_
_ | _
_
_ | _
_
_ | 2.1
3
3 | _
_
_ | Remarks 1. Dimension Series 22, 23, and 24 are double direction bearings. 2. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearing tables for Thrust Bearings). ### Thrust Bearings (Flat Seats) — 1 — | Un | its: mm | | |---|-------------------|----------------|----------------|----------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|----------------|----------------|-------------------|-------------------|------------------|----------------|---------------|-----------------|-------------------|---------------------|-----------------|--------------------|-------------------| | | | | | 513 | | 523 | | | | | | | 514 | | 524 | | | | | | | Thrus
Bro | | | | | | 293 | | | | | | | | | 294 | | | | | | | | | | Spherica
Roller | l Thrust
Brgs. | | | | | | Diam | eter Se | ries 3 | | | | | | | Diam | eter Se | ries 4 | | | | Diam | neter Se | ries 5 | | | | | | | D |)imensi | on Serie | es | | | | | | D | imensi | on Serie | es | | | | | Dimensior
Series | | | Je C | | | | 73 | 93 | 13 | 23 | 2 | 3 | | | | 74 | 94 | 14 | 24 | 2 | 4 | | | | 95 | | | Bore Number | | | D | | | 1 | | Central | Washer | $m{r}$ (min.) | $m{r}_1$ (min.) | D | | 1 | | | Central | Washer | $m{r}$ (min.) | $m{r}_1$ (min.) | D | | I (min.) | d | Bore | | | | | | T | | d_2 | В | | | | | | Γ | | d_2 | В | | | | Т | | | | | - | | | | | | u _L | | | | | | | | | u _L | | | | | | | | | | | 20
24 | 7
8 | _ | 11
12 | _ | _ | _ | 0.6
0.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | = | _ | 4
6 | 6 | | | 26 | 8 | _ | 12 | _ | _ | _ | 0.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 8 | 8 | | | 30
32 | 9 | _ | 14
14 | _ | _ | _ | 0.6
0.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 10
12 | 00
01 | | | 37 | 10 | _ | 15 | _ | _ | _ | 0.6 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | 15 | 02 | | | 40
47 | 10
12 | _ | 16
18 | _ | - | _ | 0.6
1 | _ | = | = | _ | _ | = | _ | = | _ | _ | 52
60 | 21
24 | 1 | 17
20 | 03
04 | | | 52 | 12 | - | 18 | 34 | 20 | 8 | 1 | 0.3 | 60 | 16 | 21 | 24 | 45 | 15 | 11 | 1 | 0.6 | 73 | 29 | 1.1 | 25 | 05 | | | 60
68 | 14
15 | _ | 21
24 | 38
44 | 25
30 | 9
10 | 1 | 0.3
0.3 | 70
80 | 18
20 | 24
27 | 28
32 | 52
59 | 20
25 | 12
14 | 1
1.1 | 0.6 | 85
100 | 34
39 | 1.1
1.1 | 30
35 | 06
07 | | | 78 | 17 | 22 | 26 | 49 | 30 | 12 | i | 0.6 | 90 | 23 | 30 | 36 | 65 | 30 | 15 | 1.1 | 0.6 | 110 | 42 | 1.5 | 40 | 08 | | | 85 | 18 | 24 | 28 | 52 | 35 | 12 | 1 | 0.6 | 100 | 25 | 34 | 39 | 72 | 35 | 17 | 1.1 | 0.6 | 120 | 45 | 2 | 45 | 09 | | | 95
105 | 20
23 | 27
30 | 31
35 | 58
64 | 40
45 | 14
15 | 1.1
1.1 | 0.6
0.6 | 110
120 | 27
29 | 36
39 | 43
48 | 78
87 | 40
45 | 18
20 | 1.5
1.5 | 0.6 | 135
150 | 51
58 | 2
2.1 | 50
55 | 10
11 | | | 110 | 23 | 30 | 35 | 64 | 50 | 15 | 1.1 | 0.6 | 130 | 32 | 42 | 51 | 93 | 50 | 21 | 1.5 | 0.6 | 160 | 60 | 2.1 | 60 | 12 | | | 115
125 | 23
25 | 30
34 | 36
40 | 65
72 | 55
55 | 15
16 | 1.1
1.1 | 0.6
1 | 140
150 | 34
36 | 45
48 | 56
60 | 101
107 | 50
55 | 23
24 | 2 2 | 1 | 170
180 | 63
67 | 2.1
3 | 65
70 | 13
14 | | | 135 | 27 | 36 | 44 | 79 | 60 | 18 | 1.5 | 1 | 160 | 38 | 51 | 65 | 115 | 60 | 26 | 2 | 1 | 190 | 69 | 3 | 75 | 15 | | | 140
150 | 27
29 | 36
39 | 44
49 | 79
87 | 65
70 | 18
19 | 1.5
1.5 | 1
1 | 170
180 | 41
42 | 54
58 | 68
72 | 120
128 | 65
65 | 27
29 | 2.1
2.1 | 1
1.1 | 200
215 | 73
78 | 3
4 | 80
85 | 16
17 | | | 155 | 29 | 39 | 50 | 88 | 75 | 19 | 1.5 | 1 | 190 | 45 | 60 | 77 | 135 | 70 | 30 | 2.1 | 11 | 225 | 82 | 4 | 90 | 18 | | | 170
190 | 32
36 | 42
48 | 55
63 | 97
110 | 85
95 | 21
24 | 1.5 | 1 1 | 210
230 | 50
54 | 67
73 | 85
95 | 150
166 | 80
90 | 33
37 | 3 | 1.1 | 250
270 | 90
95 | 4 5 | 100
110 | 20
22 | 210
225
240 | 41
42
45 | 54
58
60 | 70
75
80 | 123
130
140 | 100
110
120 | 27
30
31 | 2.1
2.1
2.1 | 1.1
1.1
1.1 | 250
270
280 | 58
63
63 | 78
85
85 | 102
110
112 | 177
192
196 | 95
100
110 |
40
42
44 | 4
4
4 | 1.5
2
2 | 300
320
340 | 109
115
122 | 5
5
5 | 120
130
140 | 24
26
28 | 250
270 | 45
50 | 60
67 | 80
87 | 140
153 | 130
140 | 31
33 | 2.1 | 1.1 | 300
320 | 67
73 | 90
95 | 120
130 | 209
226 | 120
130 | 46
50 | 5 | 2 2 | 360
380 | 125
132 | 6 | 150
160 | 30
32 | | | 280 | 50 | 67 | 87 | 153 | 150 | 33 | 3 | 1.1 | 340 | 78 | 103 | 135 | 236 | 135 | 50 | 5 | 2.1 | 400 | 140 | 6 | 170 | 34 | | | 300
320 | 54
58 | 73
78 | 95
105 | 165
183 | 150
160 | 37
40 | 3 | 2 | 360
380 | 82
85 | 109
115 | 140
150 | 245
— | 140 | 52
— | 5 | 3 | 420
440 | 145
150 | 6 | 180
190 | 36
38 | | | 340 | 63 | 85 | 110 | 192 | 170 | 42 | 4 | 2 | 400 | 90 | 122 | 155 | _ | - | _ | 5 | _ | 460 | 155 | 7.5 | 200 | 40 | | | 360
380 | 63
63 | 85
85 | 112
112 | _ | = | _ | 4 4 | _ | 420
440 | 90
90 | 122
122 | 160
160 | = | _ | = | 6 | _ | 500
540 | 170
180 | 7.5
7.5 | 220
240 | 44
48 | | | 420 | 73 | 95 | 130 | - | - | - | 5 | - | 480 | 100 | 132 | 175 | - | - | _ | 6 | _ | 580 | 190 | 9.5 | 260 | 52 | | | 440
480 | 73
82 | 95
109 | 130
140 | _ | _ | _ | 5
5 | _ | 520
540 | 109
109 | 145
145 | 190
190 | _ | _ | _ | 6 | _ | 620
670 | 206
224 | 9.5
9.5 | 280
300 | 56
60 | | | 500 | 82 | 109 | 140 | _ | _ | _ | 5 | _ | 580 | 118 | 155 | 205 | _ | _ | _ | 7.5 | _ | 710 | 236 | 9.5 | 320 | 64 | A 46 A 47 Table 7. 3 Boundary Dimensions of | Thrust B | Ball Brgs. | | | | | | | | | 511 | | | | | 512 | | 522 | | | | |----------------------------------|------------------------------|------------------------------|------------------|------------------|--------------------------|-------------------|------------------------------|-----------------|-------------------|--------------------------|--------------------------|----------------------|-------------------|-------------------|-------------------|-------------|-------------|------------------|-------------------|------------------| | Spherica
Roller | al Thrust
Brgs. | | | | | | | | | | | | | 292 | | | | | | | | | | | Dian | neter Se | ries 0 | | | Diam | neter Se | ries 1 | | | | | Dian | neter Sei | ries 2 | | | | | per | | | Dime | ension S | Series | | | Dime | ension S | Series | | | | ı | Dimensi | on Serie | s | | | | | Bore Number | d | ъ. | 70 | 90 | 10 | | D | 71 | 91 | 11 | | D | 72 | 92 | 12 | 22 | 2 | 2 | | | | Bori | | D | | T | | $m{r}$ (min.) | D | | T | | $m{r}$ (min.) | D | | | Т | | Central | Washer | I (min.) | r_1 (min.) | | | | | | 1 | | | | | 1 | | | | | | 1 | | d_2 | В | | | | 68
72
76 | 340
360
380 | 380
400
420 | 18
18
18 | 24
24
24 | 30
30
30 | 1
1
1 | 420
440
460 | 36
36
36 | 48
48
48 | 64
65
65 | 2
2
2 | 460
500
520 | 54
63
63 | 73
85
85 | 96
110
112 | _
_
_ | _
_
_ | = | 3
4
4 | _
_
_ | | 80
84
88 | 400
420
440 | 440
460
480 | 18
18
18 | 24
24
24 | 30
30
30 | 1
1
1 | 480
500
540 | 36
36
45 | 48
48
60 | 65
65
80 | 2
2
2.1 | 540
580
600 | 63
73
73 | 85
95
95 | 112
130
130 | _
_
_ | _
_
_ | _
_
_ | 4
5
5 | _
_
_ | | 92
96
/500 | 460
480
500 | 500
520
540 | 18
18
18 | 24
24
24 | 30
30
30 | 1
1
1 | 560
580
600 | 45
45
45 | 60
60
60 | 80
80
80 | 2.1
2.1
2.1 | 620
650
670 | 73
78
78 | 95
103
103 | 130
135
135 | _
_
_ | _
_
_ | _
_
_ | 5
5
5 | | | /530
/560
/600 | 530
560
600 | 580
610
650 | 23
23
23 | 30
30
30 | 38
38
38 | 1.1
1.1
1.1 | 640
670
710 | 50
50
50 | 67
67
67 | 85
85
85 | 3
3
3 | 710
750
800 | 82
85
90 | 109
115
122 | 140
150
160 | _
_
_ | _
_
_ | _
_
_ | 5
5
5 | _
_
_ | | /630
/670
/710 | 630
670
710 | 680
730
780 | 23
27
32 | 30
36
42 | 38
45
53 | 1.1
1.5
1.5 | 750
800
850 | 54
58
63 | 73
78
85 | 95
105
112 | 3
4
4 | 850
900
950 | 100
103
109 | 132
140
145 | 175
180
190 | _
_
_ | _
_
_ | _
_
_ | 6
6
6 | _
_
_ | | /750
/800
/850 | 750
800
850 | 820
870
920 | 32
32
32 | 42
42
42 | 53
53
53 | 1.5
1.5
1.5 | 900
950
1000 | 67
67
67 | 90
90
90 | 120
120
120 | 4
4
4 | 1000
1060
1120 | 112
118
122 | 150
155
160 | 195
205
212 | _
_
_ | _
_
_ | _
_
_ | 6
7.5
7.5 | | | /900
/950
/1000 | 900
950
1000 | 980
1030
1090 | 36
36
41 | 48
48
54 | 63
63
70 | 2
2
2.1 | 1060
1120
1180 | 73
78
82 | 95
103
109 | 130
135
140 | 5
5
5 | 1180
1250
1320 | 125
136
145 | 170
180
190 | 220
236
250 | _
_
_ | _
_
_ | _
_
_ | 7.5
7.5
9.5 | | | /1060
/1120
/1180 | 1060
1120
1180 | 1150
1220
1280 | 41
45
45 | 54
60
60 | 70
80
80 | 2.1
2.1
2.1 | 1250
1320
1400 | 85
90
100 | 115
122
132 | 150
160
175 | 5
5
6 | 1400
1460
1520 | 155
—
— | 206
206
206 | 265
— | _
_
_ | _
_
_ | _
_
_ | 9.5
9.5
9.5 | | | /1250
/1320
/1400 | 1250
1320
1400 | 1360
1440
1520 | 50
— | 67
— | 85
95
95 | 3
3
3 | 1460
1540
1630 | _
_
_ | _
_
_ | 175
175
180 | 6
6
6 | 1610
1700
1790 | _
_
_ | 216
228
234 | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 9.5
9.5
12 | _
_
_ | | /1500
/1600
/1700 | 1500
1600
1700 | 1630
1730
1840 | _
_
_ | _
_
_ | 105
105
112 | 4
4
4 | 1750
1850
1970 | _
_
_ | _
_
_ | 195
195
212 | 6
6
7.5 | 1920
2040
2160 | _
_
_ | 252
264
276 | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 12
15
15 | _
_
_ | | /1800
/1900
/2000 | 1800
1900
2000 | 1950
2060
2160 | _
_
_ | _
_
_ | 120
130
130 | 4
5
5 | 2080
2180
2300 | _
_
_ | _
_
_ | 220
220
236 | 7.5
7.5
7.5 | 2280
—
— | _
_
_ | 288
—
— | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 15
—
— | _
_
_ | | /2120
/2240
/2360
/2500 | 2120
2240
2360
2500 | 2300
2430
2550
2700 | _
_
_
_ | _
_
_
_ | 140
150
150
160 | 5
5
5
5 | 2430
2570
2700
2850 | | _
_
_
_ | 243
258
265
272 | 7.5
9.5
9.5
9.5 | _
_
_
_ | _
_
_
_ | _
_
_
_ | _
_
_
_ | | | _
_
_
_ | _
_
_
_ | _
_
_
_ | - Remarks Dimension Series 22, 23, and 24 are double direction bearings. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearings tables for Thrust Bearings). ### Thrust Bearings (Flat Seats) — 2 — | | | ŭ | Ť | | • | | | | | | | | | | | | | | | Un | its: mm | 1 | |----------------------|-------------------|------------|------------|----------|---------|--------|-----------------|-----------------|--------------|-------------------|-------------------|-------------------|----------|---------|--------|-------------------|-----------------|--------------|---------------------|---------------|--------------|--------------------| | | | | 513 | | 523 | | | | | | | 514 | | 524 | | | | | | | Thrus
Br | st Ball
gs. | | | | 293 | | | | | | | | | 294 | | | | | | | | | | Spheric | al Thrust
Brgs. | | | | | Diam | eter Se | ries 3 | | | | | | | Diam | eter Se | ries 4 | | | | Diam | neter Se | ries 5 | | | | | | D | imensi | on Serie | es | | | | | | 0 | imensi | on Serie | es | | | | | Dimension
Series | | | Jer. | | | 73 | 93 | 13 | 23 | 2 | 3 | | | | 74 | 94 | 14 | 24 | 2 | 4 | | | | 95 | | d | Bore Number | | D | | | | | Central | Washer | I (min.) | $m{r}_1$ (min.) | D | | | | | Central | Washer | I (min.) | $m{r}_1$ (min.) | D | | $m{r}$ (min.) | _ | Bore | | | | | T | | d_2 | В | | | | | | T | | d_2 | В | | | | Т | | | | | 540 | 90 | 122 | 160 | _ | _ | _ | 5 | _ | 620 | 125 | 170 | 220 | _ | _ | _ | 7.5 | _ | 750 | 243 | 12 | 340 | 68 | | 560
600 | 90
100 | 122 | 160
175 | _ | = | = | 5 | _ | 640
670 | 125
132 | 170
175 | 220
224 | _ | _ | _ | 7.5
7.5 | _ | 780
820 | 250
265 | 12 | 360
380 | 72
76 | | 620 | 100 | 132 | 175 | | | | ١, | | 710 | 140 | 185 | 243 | | | | 7.5 | | 850 | 272 | 12 | 400 | 80 | | 650
680 | 100
103
109 | 140
145 | 180
190 | _ | | = | 6 6 | _ | 730
780 | 140
140
155 | 185
185
206 | 243
243
265 | = | _ | = | 7.5
7.5
9.5 | = | 900
950 | 290
308 | 15
15 | 420
440 | 84
88 | | | | | | | | | - | | | | | | | | | | _ | | | | | | | 710
730 | 112
112 | 150
150 | 195
195 | _ | _ | _ | 6 | _ | 800
850 | 155
165 | 206
224 | 265
290 | _ | _ | _ | 9.5
9.5 | _ | 980
1000 | 315
315 | 15
15 | 460
480 | 92
96 | | 750 | 112 | 150 | 195 | _ | _ | _ | 6 | - | 870 | 165 | 224 | 290 | _ | _ | _ | 9.5 | _ | 1060 | 335 | 15 | 500 | /500 | | 800
850 | 122
132 | 160
175 | 212
224 | _ | _ | _ | 7.5
7.5 | _ | 920
980 | 175
190 | 236
250 | 308
335 | _ | _ | _ | 9.5
12 | _ | 1090
1150 | 335
355 | 15
15 | 530
560 | /530
/560 | | 900 | 136 | 180 | 236 | _ | _ | _
 7.5 | - | 1030 | 195 | 258 | 335 | _ | _ | _ | 12 | _ | 1220 | 375 | 15 | 600 | /600 | | 950
1000 | 145
150 | 190
200 | 250
258 | _ | _ | _ | 9.5
9.5 | _ | 1090
1150 | 206
218 | 280
290 | 365
375 | _ | _ | _ | 12
15 | _ | 1280
1320 | 388
388 | 15
15 | 630
670 | /630
/670 | | 1060 | 160 | 212 | 272 | _ | - | - | 9.5 | - | 1220 | 230 | 308 | 400 | _ | _ | _ | 15 | _ | 1400 | 412 | 15 | 710 | /710 | | 1120 | 165 | 224 | 290 | _ | _ | _ | 9.5 | _ | 1280 | 236 | 315 | 412 | _ | _ | _ | 15 | _ | = | _ | _ | 750 | /750 | | 1180
1250 | 170
180 | 230
243 | 300
315 | _ | _ | = | 9.5
12 | _ | 1360
1440 | 250
— | 335
354 | 438 | _ | _ | _ | 15
15 | _ | _ | = | _ | 800
850 | /800
/850 | | 1320 | 190 | 250 | 335 | _ | _ | _ | 12 | _ | 1520 | _ | 372 | _ | _ | _ | _ | 15 | _ | _ | _ | _ | 900 | /900 | | 1400
1460 | 200 | 272
276 | 355 | _ | _ | _ | 12
12 | _ | 1600
1670 | _ | 390
402 | _ | _ | _ | _ | 15
15 | _ | _ | = | _ | 950
1000 | /950
/1000 | | 1540 | _ | 288 | _ | _ | _ | _ | 15 | _ | 1770 | _ | 426 | _ | _ | _ | _ | 15 | _ | _ | _ | _ | 1060 | /1060 | | 1630
1710 | _ | 306
318 | _ | _ | _ | _ | 15
15 | _ | 1860
1950 | _ | 444
462 | _ | _ | _ | _ | 15
19 | _ | _ | = | _ | 1120
1180 | /1120
/1180 | | 1800 | | 330 | | | | | 19 | | 2050 | | 480 | | | | | 19 | | | | | 1250 | /1250 | | 1900
1900
2000 | _ | 348
360 | _ | _ | | = | 19
19
19 | _ | 2160
2280 | Ξ | 505
530 | _ | | _ | = | 19
19
19 | = | = | Ξ | _ | 1320
1400 | /1320
/1400 | | | | | | | | | | | 2200 | | 330 | | | | | ' | | | | | | | | 2140
2270 | _ | 384
402 | _ | _ | _ | _ | 19
19 | _ | _ | = | _ | _ | _ | _ | _ | _ | _ | _ | = | _ | 1500
1600 | /1500
/1600 | | _ | _ | _ | _ | _ | - | _ | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1700 | /1700 | | _ | _ | _ | _ | _ | = | _ | _ | _ | _ | = | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1800
1900 | /1800
/1900 | | _ | _ | _ | _ | _ | _ | - | - | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | - | - | 2000 | /2000 | | Ξ | = | _ | _ | _ | _ | = | _ | _ | _ | = | _ | _ | _ | _ | _ | _ | _ | = | = | _ | 2120
2240 | /2120
/2240 | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | = | _ | _ | _ | _ | _ | _ | _ | Ξ | Ξ | = | 2360
2500 | /2360
/2500 | A 48 A 49 ### Table 7. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (1) Bearings of Dimension Series 18 and 19 | App | licable Bear | ings | | | | Snap F | Ring Groove | ! | | | | |------------------------|-------------------|--------------------------|----------------------------------|----------------------------------|------------------------|-----------------------|---------------------|----------------------|--------------------------|--------------------------|--------------------------| | | d | | | ng Groove
neter | Š | Snap Ring Gr | oove Positi | on | Snap Rin | g Groove
dth | Radius of
Bottom | | | | D | | | | Bearing Dime | ension Serie | es | | | Corners | | Dimensi | on Series | | I | O_1 | | 18 | 1 | 19 | <u> </u> | b | I_0 | | 18 | 19 | | max. | min. | max. | min. | max. | min. | max. | min. | max. | | _ | 10
12
15 | 22
24
28 | 20.8
22.8
26.7 | 20.5
22.5
26.4 | _ | | 1.05
1.05
1.3 | 0.9
0.9
1.15 | 1.05
1.05
1.2 | 0.8
0.8
0.95 | 0.2
0.2
0.25 | | 20
22 | 17
—
— | 30
32
34 | 28.7
30.7
32.7 | 28.4
30.4
32.4 | 1.3
1.3 |
1.15
1.15 | 1.3
—
— | 1.15
—
— | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 25
—
28 | 20
22
— | 37
39
40 | 35.7
37.7
38.7 | 35.4
37.4
38.4 | 1.3
—
1.3 | 1.15
—
1.15 | 1.7
1.7
— | 1.55
1.55
— | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 30
32
— | 25
—
28 | 42
44
45 | 40.7
42.7
43.7 | 40.4
42.4
43.4 | 1.3
1.3
— | 1.15
1.15
— | 1.7
—
1.7 | 1.55
—
1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 35
40
— | 30
32
35 | 47
52
55 | 45.7
50.7
53.7 | 45.4
50.4
53.4 | 1.3
1.3
— | 1.15
1.15
— | 1.7
1.7
1.7 | 1.55
1.55
1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 45
—
50 | 40
— | 58
62
65 | 56.7
60.7
63.7 | 56.4
60.3
63.3 | 1.3
—
1.3 | 1.15
—
1.15 | 1.7
— | 1.55
— | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 55
60 | 45
50
— | 68
72
78 | 66.7
70.7
76.2 | 66.3
70.3
75.8 | 1.7
1.7 | —
1.55
1.55 | 1.7
1.7
— | 1.55
1.55
— | 1.2
1.2
1.6 | 0.95
0.95
1.3 | 0.25
0.25
0.4 | | 65
70 | 55
60
65 | 80
85
90 | 77.9
82.9
87.9 | 77.5
82.5
87.5 | 1.7
1.7 |
1.55
1.55 | 2.1
2.1
2.1 | 1.9
1.9
1.9 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 75
80
— | 70
75 | 95
100
105 | 92.9
97.9
102.6 | 92.5
97.5
102.1 | 1.7
1.7
— | 1.55
1.55
— | 2.5
2.5 | 2.3
2.3 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 85
90
95 | 80
—
85 | 110
115
120 | 107.6
112.6
117.6 | 107.1
112.1
117.1 | 2.1
2.1
2.1 | 1.9
1.9
1.9 | 2.5
—
3.3 | 2.3
—
3.1 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 100
105
110 | 90
95
100 | 125
130
140 | 122.6
127.6
137.6 | 122.1
127.1
137.1 | 2.1
2.1
2.5 | 1.9
1.9
2.3 | 3.3
3.3
3.3 | 3.1
3.1
3.1 | 1.6
1.6
2.2 | 1.3
1.3
1.9 | 0.4
0.4
0.6 | | 120
130 | 105
110
120 | 145
150
165 | 142.6
147.6
161.8 | 142.1
147.1
161.3 | 2.5
3.3 | 2.3
3.1 | 3.3
3.3
3.7 | 3.1
3.1
3.5 | 2.2
2.2
2.2 | 1.9
1.9
1.9 | 0.6
0.6
0.6 | | 140
—
150
160 | 130
140
— | 175
180
190
200 | 171.8
176.8
186.8
196.8 | 171.3
176.3
186.3
196.3 | 3.3
—
3.3
3.3 | 3.1

3.1
3.1 | 3.7
3.7
— | 3.5
3.5
— | 2.2
2.2
2.2
2.2 | 1.9
1.9
1.9
1.9 | 0.6
0.6
0.6
0.6 | Remarks The minimum permissible chamfer dimensions $r_{\rm N}$ on the snap-ring-groove side of the outer rings are as follows: Dimension series 18: For outside diameters of 78mm and less, use 0.3mm chamfer. For all others exceeding 78mm, use 0.5mm chamfer. Dimension series 19: For outside diameters of 24mm and less, use 0.2mm chamfer. For 47mm and less, use 0.3mm chamfer. For all others exceeding 47mm, use 0.5mm chamfer (However, for an outside diameter of 68 mm, use a 0.3 mm chamfer, which is not compliant with ISO 15). Units: mm | | | Locati | ng Snap Rir | ng | | | Side Cover | |------------------------------|------|--------------------------------|-------------|-------|---------|---|---| | Locating Snap
Ring Number | | Sectional eight $oldsymbol{e}$ | Thic | kness | fitted | ry of snap ring
I in groove
eference)
Snap Ring
Outside
Diameter D_2 | Stepped Bore
Diameter
(Reference) | | | max. | min. | max. | min. | approx. | max. | min. | | NR 1022 | 2.0 | 1.85 | 0.7 | 0.6 | 2 | 24.8 | 25.5 | | NR 1024 | 2.0 | 1.85 | 0.7 | 0.6 | 2 | 26.8 | 27.5 | | NR 1028 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 30.8 | 31.5 | | NR 1030 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 32.8 | 33.5 | | NR 1032 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 34.8 | 35.5 | | NR 1034 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 36.8 | 37.5 | | NR 1037 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 39.8 | 40.5 | | NR 1039 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 41.8 | 42.5 | | NR 1040 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 42.8 | 43.5 | | NR 1042 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 44.8 | 45.5 | | NR 1044 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 46.8 | 47.5 | | NR 1045 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 47.8 | 48.5 | | NR 1047 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 49.8 | 50.5 | | NR 1052 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 54.8 | 55.5 | | NR 1055 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 57.8 | 58.5 | | NR 1058 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 60.8 | 61.5 | | NR 1062 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 64.8 | 65.5 | | NR 1065 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 67.8 | 68.5 | | NR 1068 | 2.05 | 1.9 | 0.85 | 0.75 | 5 | 70.8 | 72 | | NR 1072 | 2.05 | 1.9 | 0.85 | 0.75 | 5 | 74.8 | 76 | | NR 1078 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 82.7 | 84 | | NR 1080 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 84.4 | 86 | | NR 1085 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 89.4 | 91 | | NR 1090 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 94.4 | 96 | | NR 1095 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 99.4 | 101 | | NR 1100 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 104.4 | 106 | | NR 1105 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 110.7 | 112 | | NR 1110 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 115.7 | 117 | | NR 1115 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 120.7 | 122 | | NR 1120 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 125.7 | 127 | | NR 1125 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 130.7 | 132 | | NR 1130 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 135.7 | 137 | | NR 1140 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 145.7 | 147 | | NR 1145 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 150.7 | 152 | | NR 1150 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 155.7 | 157 | | NR 1165 | 4.85 | 4.7 | 1.7 | 1.6 | 7 | 171.5 | 173 | | NR 1175 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 181.5 | 183 | | NR 1180 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 186.5 | 188 | | NR 1190 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 196.5 | 198 | | NR 1200 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 206.5 | 208 | Table 7. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (2) Bearing of Diameter Series 0, 2, 3, and 4 | | Appli | cable Bea | rings | | | | | Snap Ri | ng Groove | | | | | |-------------------|-------------------|----------------|----------------|-------------------
----------------------------|----------------------------|----------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|------------------------| | | (| d | | | | ng Groove
meter | | nap Ring Gr
Bearing Dia | a | | | ig Groove
dth | Radius
of
Bottom | | | Diamete | er Series | | D | | D_1 | | 0 | 2, 3 | | 1 . | b | Corners r_0 | | 0 | 2 | 3 | 4 | - | max. | min. | max. | min. | max. | min. | max. | min. | max. | | 10
12 | _ | _ | _ | 26
28 | 24.5
26.5 | 24.25
26.25 | 1.35
1.35 | 1.19
1.19 | _ | _ | 1.17
1.17 | 0.87
0.87 | 0.2
0.2 | | —
15
17 | 10
12
15 | 9
—
10 | 8
9
— | 30
32
35 | 28.17
30.15
33.17 | 27.91
29.9
32.92 | 2.06
2.06 | 1.9
1.9 | 2.06
2.06
2.06 | 1.9
1.9
1.9 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | |

20 | 17
— | 12
—
15 | 10
—
12 | 37
40
42 | 34.77
38.1
39.75 | 34.52
37.85
39.5 |

2.06 | —
—
1.9 | 2.06
2.06
2.06 | 1.9
1.9
1.9 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 22
25
— | | 17
— | _
_
_ | 44
47
50 | 41.75
44.6
47.6 | 41.5
44.35
47.35 | 2.06
2.06
— | 1.9
1.9
— | 2.46
2.46 | 2.31
2.31 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 28
30
— | 25
— | 20
—
22 | 15
— | 52
55
56 | 49.73
52.6
53.6 | 49.48
52.35
53.35 | 2.06
2.08
— | 1.9
1.88
— | 2.46
—
2.46 | 2.31
—
2.31 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 32
35
— | 28
30
32 |
25
 | 17
— | 58
62
65 | 55.6
59.61
62.6 | 55.35
59.11
62.1 | 2.08
2.08
— | 1.88
1.88
— | 2.46
3.28
3.28 | 2.31
3.07
3.07 | 1.65
2.2
2.2 | 1.35
1.9
1.9 | 0.4
0.6
0.6 | | 40
—
45 | 35
— | 28
30
32 | 20
— | 68
72
75 | 64.82
68.81
71.83 | 64.31
68.3
71.32 | 2.49
—
2.49 | 2.29
—
2.29 | 3.28
3.28
3.28 | 3.07
3.07
3.07 | 2.2
2.2
2.2 | 1.9
1.9
1.9 | 0.6
0.6
0.6 | | 50
—
55 | 40
45
50 | 35
—
40 | 25
—
30 | 80
85
90 | 76.81
81.81
86.79 | 76.3
81.31
86.28 | 2.49
—
2.87 | 2.29
—
2.67 | 3.28
3.28
3.28 | 3.07
3.07
3.07 | 2.2
2.2
3 | 1.9
1.9
2.7 | 0.6
0.6
0.6 | | 60
65
70 | 55
60 | 45
50 | 35
40 | 95
100
110 | 91.82
96.8
106.81 | 91.31
96.29
106.3 | 2.87
2.87
2.87 | 2.67
2.67
2.67 | 3.28
3.28 | 3.07
3.07 | 3
3
3 | 2.7
2.7
2.7 | 0.6
0.6
0.6 | | 75
—
80 | 65
70 | 55
— | 45
— | 115
120
125 | 111.81
115.21
120.22 | 111.3
114.71
119.71 | 2.87
—
2.87 | 2.67
—
2.67 | 4.06
4.06 | 3.86
3.86 | 3
3.4
3.4 | 2.7
3.1
3.1 | 0.6
0.6
0.6 | | 85
90
95 | 75
80
— | 60
65
— | 50
55
— | 130
140
145 | 125.22
135.23
140.23 | 124.71
134.72
139.73 | 2.87
3.71
3.71 | 2.67
3.45
3.45 | 4.06
4.9
— | 3.86
4.65
— | 3.4
3.4
3.4 | 3.1
3.1
3.1 | 0.6
0.6
0.6 | | 100
105
110 | 85
90
95 | 70
75
80 | 60
65
— | 150
160
170 | 145.24
155.22
163.65 | 144.73
154.71
163.14 | 3.71
3.71
3.71 | 3.45
3.45
3.45 | 4.9
4.9
5.69 | 4.65
4.65
5.44 | 3.4
3.4
3.8 | 3.1
3.1
3.5 | 0.6
0.6
0.6 | | 120
—
130 | 100
105
110 | 85
90
95 | 70
75
80 | 180
190
200 | 173.66
183.64
193.65 | 173.15
183.13
193.14 | 3.71
—
5.69 | 3.45
—
5.44 | 5.69
5.69
5.69 | 5.44
5.44
5.44 | 3.8
3.8
3.8 | 3.5
3.5
3.5 | 0.6
0.6
0.6 | Note (1) The locating snap rings and snap ring grooves of these bearings are not specified by ISO. 1. The dimensions of these snap ring grooves are not applicable to bearings of dimension series 00, 82, and 83. 2. The minimum permissible chamfer dimension r_N on the snap-ring side of outer rings is 0.5mm. However, for bearings of diameter series 0 having outside diameters 35mm and below, it is 0.3mm. Units: mm | | | Locat | ing Snap I | Ring | | | Side Cover | |------------------------------|----------------------|---------------------|------------------------------|------------------------------|---------|--|---| | Locating Snap
Ring Number | | Sectional
eight | Thic | kness | fitte | ry of snap ring
d in groove
eference)
Snap Ring | Stepped Bore
Diameter
(Reference) | | King Number | | e | | f | Width | Outside Diameter D_2 | $D_{\rm X}$ | | | max. | min. | max. | min. | approx. | max. | min. | | NR 26 (1) | 2.06 | 1.91 | 0.84 | 0.74 | 3 | 28.7 | 29.4 | | NR 28 (1) | 2.06 | 1.91 | 0.84 | 0.74 | | 30.7 | 31.4 | | NR 30 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 34.7 | 35.5 | | NR 32 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 36.7 | 37.5 | | NR 35 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 39.7 | 40.5 | | NR 37 | 3.25 | 3.1 | 1.12 | 1.02 | 3 3 3 | 41.3 | 42 | | NR 40 | 3.25 | 3.1 | 1.12 | 1.02 | | 44.6 | 45.5 | | NR 42 | 3.25 | 3.1 | 1.12 | 1.02 | | 46.3 | 47 | | NR 44
NR 47
NR 50 | 3.25
4.04
4.04 | 3.1
3.89
3.89 | 1.12
1.12
1.12
1.12 | 1.02
1.02
1.02
1.02 | 3 4 4 | 48.3
52.7
55.7 | 49
53.5
56.5 | | NR 52 | 4.04 | 3.89 | 1.12 | 1.02 | 4 4 4 | 57.9 | 58.5 | | NR 55 | 4.04 | 3.89 | 1.12 | 1.02 | | 60.7 | 61.5 | | NR 56 | 4.04 | 3.89 | 1.12 | 1.02 | | 61.7 | 62.5 | | NR 58 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 63.7 | 64.5 | | NR 62 | 4.04 | 3.89 | 1.7 | 1.6 | 4 | 67.7 | 68.5 | | NR 65 | 4.04 | 3.89 | 1.7 | 1.6 | 4 | 70.7 | 71.5 | | NR 68 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 74.6 | 76 | | NR 72 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 78.6 | 80 | | NR 75 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 81.6 | 83 | | NR 80 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 86.6 | 88 | | NR 85 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 91.6 | 93 | | NR 90 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 96.5 | 98 | | NR 95 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 101.6 | 103 | | NR 100 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 106.5 | 108 | | NR 110 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 116.6 | 118 | | NR 115 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 121.6 | 123 | | NR 120 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 129.7 | 131.5 | | NR 125 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 134.7 | 136.5 | | NR 130 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 139.7 | 141.5 | | NR 140 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 149.7 | 152 | | NR 145 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 154.7 | 157 | | NR 150 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 159.7 | 162 | | NR 160 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 169.7 | 172 | | NR 170 | 9.6 | 9.45 | 3.1 | 3 | 10 | 182.9 | 185 | | NR 180 | 9.6 | 9.45 | 3.1 | 3 | 10 | 192.9 | 195 | | NR 190 | 9.6 | 9.45 | 3.1 | 3 | 10 | 202.9 | 205 | | NR 200 | 9.6 | 9.45 | 3.1 | 3 | 10 | 212.9 | 215 | A 52 A 53 (Example 4) NU 3 18 M CM (Example 5) NN 3 0 17 K CC1 P4 Radial Clearance for Machined Brass Cage Bearing Bore 90mm Diameter Series 3 **NU** Type Cylindrical Accuracy of ISO Class 4 Radial Clearance in Non- Roller Bearing Electric-Motor Bearings CM ### 7.2 Formulation of Bearing Numbers Bearing numbers are alphanumeric combinations that indicate the bearing type, boundary dimensions, dimensional and running accuracies, internal clearance. and other related specifications. They consist of basic numbers and supplementary symbols. The boundary dimensions of commonly used bearings mostly conform to the organizational concept of ISO, and the bearing numbers of these standard bearings are specified by JIS B 1513 (Bearing Numbers for Rolling Bearings). Due to a need for more detailed classification, NSK uses auxiliary symbols other than those specified by JIS. Bearing numbers consist of a basic number and supplementary symbols. The basic number indicates the bearing series(type) and the width and diameter Table 7. 5 Bearing Series Symbols | | | | lable | 7.5 Bear | ing Series Symbols | | | | | |--------------------------------|------------------------------|-----------------|------------------|---------------------|----------------------------|------------------------------|-----------------|---|---------------------| | | | | Dimensio | n Symbols | | | | Dimension | n Symbols | | Bearing Type | Bearing
Series
Symbols | Type
Symbols | Width
Symbols | Diameter
Symbols | Bearing Type | Bearing
Series
Symbols | Type
Symbols | Width
Symbols
or
Height
Symbols | Diameter
Symbols | | | 68 | 6 | (1) | 8 | Double-Row | NNU49 | NNU | 4 | 9 | | Single-Row | 69 | 6 | (1) | 9 | Cylindrical | NN30 | NN | 3 | 0 | | Deep Groove | 60 | 6 | (1) | 0 | Roller Bearings | | | | | | Ball Bearings | 62 | 6 | (0) | 2 | | NA48 | NA | 4 | 8 | | | 63 | 6 | (0) | 3 | Needle Roller | NA49 | NA | 4 | 9 | | | 79 | 7 | (1) | 9 | Bearings | NA59 | NA | 5 | 9 | | Single-Row | 70 | 7 | (1) | 0 | J | NA69 | NA | 6 | 9 | | Angular Contact | 72 | 7 | (0) | 2 | | | | | | | Ball Bearings | 73 | 7 | (0) | 3 | | 329 | 3 | 2 | 9 | | | 40 | 4 | (0) | | | 320 | 3 | 2 | 0 | | Colf Alianina | 12
13 | 1
1 | (0) | 2 | | 330 | 3 | 3 | 0 | | Self-Aligning
Ball Bearings | 22 | (1) | (0) | 2 | | 331 | 3 | 3 | 1 | | Dali Dealligs | 23 | (1) | 2 | 3 | Tapered Roller | 302 | 3 | 0 | 2 | | | | | | | Bearings | 322 | 3 | 2 | 2 | | | NU10 | NU | 1 (0) | 0 | | 332 | 3 | 3 | 2 | | | NU2 | NU | (0) | 2 | | | | | | | | NU22 | NU | 2 | 2 | | 303 | 3 | 0 | 3 | | | NU3 | NU | (0) | 3 | | 323 | 3 | 2 | 3 | | | NU23 | NU | 2 | 3 | | 220 | 2 | 3 | 0 | | | NU4 | NU | (0) | 4 | | 230
231 | 2 | 3 | 1 | | | NJ2 | NJ | (0) | 2 | Spherical | 222 | 2 | 2 | 2 | | | NJ22 | NJ | 2 | 2 | Roller | 222 | 2 | | | | | NJ3 | NJ | (0) | 3 | Bearings | 232 | 2 | 3 | 2 | | |
NJ23 | NJ | 2 | 3 | Ŭ | 213 (1) | 2 | 0 | 3 | | Single-Row | NJ4 | NJ | (0) | 4 | | 223 | 2 | 2 | 3 | | Cylindrical | NUP2 | NUP | (0) | 2 | | | | | | | Roller
Bearings | NUP22 | NUP | 2 | 2 | | 511 | 5 | 1 | 1 | | bearings | NUP3 | NUP | (0) | 3 | | 512 | 5 | 1 | 2 | | | NUP23 | NUP | 2 | 3 | Thrust Ball | 513 | 5 | 1 | 3 | | | NUP4 | NUP | (0) | 4 | Bearings with | 514 | 5 | 1 | 4 | | | N10 | N | 1 | 0 | Flat Seats | 522 | 5 | 2 | 2 | | | N2 | N | (0) | 2 | | 523 | 5 | 2 | 3 | | | N3 | N | (0) | 3 | | 524 | 5 | 2 | 4 | | | N4 | N | (0) | 4 | | | | | | | | NF2 | NF | (0) | 2 | Spherical | 292 | 2 | 9 | 2 | | | NF3 | NF | (0) | 3 | Thrust Roller | 293 | 2 | 9 | 3 | | | NF4 | NF | (0) | 4 | Bearings | 294 | 2 | 9 | 4 | | Note (1) Res | | | | | 13 hut customarily it is i | numbered 010 | | | | | | | | | | | | | | | Note (1) Bearing Series Symbol 213 should logically be 203, but customarily it is numbered 213. Remarks Numbers in () in the column of width symbols are usually omitted from the bearing number. A 54 A 55 Table 7. 6 Formulation of | | | Bas | ic Numbers | S | | | | | | | | | | |---|--|----------------------|------------------------|--------|---|----------------|--|--------|--|--------|-------------------------|-----------|---| | | ing Series
nbols (¹) | Bor | e Number | | ntact Angle
Symbol | Interr | nal Design Symbol | Ma | terial Symbol | Cag | e Symbol | Sea | nal Features
Is, Shields
Symbol | | Symbol | Meaning | 68
69
60 | Single-
Row Deep
Groove Ball
Bearings | 1
2
3 | Bearing 1mm
2
3 | C | ngular
ontact Ball
earings
Standard
Contact Angle | A | Internal Design
Differs from
Standard One
Smaller Diameter | g | Case-Hardened
Steel Used in
Rings, Rolling
Elements | М | Machined
Brass Cage | Z
ZS | Shield
on One
Side
Only | | 70
72
73
: | Single-Row
Angular
Contact Ball
Bearings
Self- | 9 00 | 9
10 | A5 | of 30°
Standard
Contact Angle
of 25° | | of Outer Ring
Raceway, Contact
Angle, and Outer
Ring Width of
Tapered Roller
Bearings Conform
to ISO 355 | h | Stainless Steel
Used in Rings,
Rolling Elements | W | Pressed
Steel Cage | ZZ
ZZS | Shields
on Both
Sides | | 13
22
: | Aligning Ball
Bearings | 01
02
03 | 12
15
17 | В | Standard
Contact Angle
of 40° | | | | | Т | Synthetic
Resin Cage | DU | Contact
Rubber Seal
on One Side
Only | | NJ 2
N 3
NN 30 | Roller
Bearings | /22
/28
/32 | 22
28
32 | С | Standard
Contact Angle
of 15° | C (F | or High Capacity)
Bearings | | | V | Without | DDU | Contact
Rubber
Seals on | | • | Needle
Roller
Bearings
Tapered
Roller | 04(3)
05
06 | 20
25
30 | | Tapered
Roller
Bearings /
Contact Angle
Less than 17° | CA
CD
EA | Spherical Roller
Bearings | | | V | Cage | V | Non-
Contact
Rubber Seal
on One Side
Only | | 323
:
230
222
223 | Spherical
Roller
Bearings | 88
92
96 | 440
460
480 | C | Contact Angle
about 20° | E
E | Cylindrical Roller
Bearings
Spherical Thrust | | | | | VV | Non-
Contact
Rubber
Seals on
Both Sides | | 511
512
513 | Thrust Ball
Bearing with
Flat Seats | /500
/530
/560 | 500
530
560
: | | about 28° | - | Roller Bearings | | | | | | | | 292
293
294 | Thrust
Spherical
Roller
Bearings | /2 360
/2 500 | | | | | | | | | | | | | HR(*) High Capacity
Tapered Roller
Bearings, and others | | | | | | | | | | | | | | | | Symbols | and Nu | ımbers Conf | orm to | JIS(5) | NSK Symbol | | | | | | NS | K Symbol | | | | | | | Marked on Bea | rings | | | | | t Marked
Bearings | | | | | | | | | | | | | | UII | Dodrings | | | - Notes (1) Bearing Series Symbols conform to Table 7.5. (2) For basic numbers of tapered roller bearings in ISO's new series, refer to Page B111. (3) For Bearing Bore Numbers 04 through 96, five times the bore number gives the bore size (mm) (except double-direction thrust ball bearings). (4) HR is prefix to bearing series symbols and it is NSK's original prefix. ### **Bearing Numbers** | Αι | ıxiliary Syn | nbols | | | | | | | | | | | | | |--------|---|--------|---------------------------------|---------------------|--|---|---------------------|-------------------------------|-------|--|------------|--|------------|---| | Symbo | bol
ol for Design | | ngement
ymbol | | | Clearance Symbol
load Symbol | | rance Class
Symbol | Sp | Special
ecification | | er or Sleeve
Symbol | Grea | se Symbol | | | f Rings | , | | | | | | | | Symbol | | | | | | Symbol | Meaning | Symbol | Meaning | Symbol | Mea | aning (radial clearance) | Symbol | Meaning | Symbo | Meaning | Symbol | Meaning | Symbol | Meaning | | K | Tapered
Bore of
Inner Ring
(Taper 1:12) | DB | Back-to-Back
Arrangement | C1
C2 | l Brgs. | Clearance Less
than C2
Clearance Less
than CN | Omitted
P6 | ISO Normal | tre | earings
eated for
mensional
abilization | + K | Bearings
with Outer
Ring
Spacers | AS2
ENS | SHELL
ALVANIA
GREASE S2
ENS GREASE | | K30 | Tapered
Bore of | DF | Face-to-
Face
Arrangement | Omitted
C3
C4 | For All Radial | CN Clearance Clearance Greater than CN Clearance Greater | | ISO Class 6X | X26 | Working
Temperature
Lower than | +L | Bearings
with Inner
Ring
Spacers | | NS HI-LUBE | | | Inner Ring
(Taper 1:30) | DT | Tandem
Arrangement | C5 | - | than C3
Clearance Greater
than C4 | . P5 | ISO Class 5 | X28 | 150 °C
Working
Temperature | +KL | Bearings
with Both
Inner and
Outer Ring | PS2 | MULTEMP PS
No. 2 | | E | Notch or
Lubricating
Groove in | | | CC1
CC2
CC | Clearance Less than CC2 Clearance Less than CC2 Normal Clearance | | P4 | ISO Class 4 | X29 | Lower than
200 °C
Working
Temperature | Н | Spacers Adapter Designation | | | | | Ring | | | | -Intercical Rc | Clearance Greater | P2 | ISO Class 2 | | Lower than
250 °C | | Designation | | | | E4 | Lubricating
Groove in
Outside | | | CCA | For Non-
Cylindri | than CC
Clearance Greater | | MA(7)
pered
ler bearing | | Spherical | НЈ | Withdrawal
Sleeve
Designation | | | | | Surface and
Holes in
Outer Ring | | | MC1
MC2 | all
I Brgs. | Clearance Less than
MC2
Clearance Less than
MC3 | | Class 4 | | Roller
Bearings
Dimensional
Stabilizing | | Collar
Designation | | | | N | Snap Ring
Groove in
Outer Ring | | | MC3
MC4 | For Extra-Sma
Miniature Ball | Normal Clearance
Clearance Greater | PN2 | Class 2 | | Treatment Working Temperature Lower than 200°C | | | | | | NR | Snap Ring
Groove with
Snap Ring
in Outer | | | MC5
MC6 | Fc
and M | Clearance Greater
than MC4
Clearance Greater
than MC5 | PN3 | Class 3 | | | | | | | | | Ring | | | СМ | Clea
Ball
Mot | rance in Deep Groove
Bearings for Electric
ors | PN00 | | | | | | | | | | | | | CT
CM | Clea
Roll
Mot | rance in Cylindrical
er Bearings for Electric
ors | | | | | | | | | | | | | | EL (F | Ball Be | | | | | | | | | | | | | | | L
M
H | Ligi
Me | Extra light Preload
Light Preload
Medium Preload
Heavy Preload | | | | | | | | | | S | tially the
ame as
JIS(5) | | nme as
IIS(5) | NSK S | | Partially the |)/ Same as JIS(*) N | | | NSK Syr | nbol, Pa | rtially the same | as JIS(| 5) | | | -1 (5) | | | | | ple, Marked on Bearing | js | | | | | Not Marked | on Bear | rings | - Notes (5) JIS: Japanese Industrial Standards. (6) BAS: The Japan Bearing Industrial Association Standard. (7) ABMA: The American Bearing Manufacturers Association. ### 8. BEARING TOLERANCES ### 8.1 Bearing Tolerance Standards The tolerances for the boundary dimensions and running accuracy of rolling bearings are specified by ISO 492/199/582 (Accuracies of Rolling Bearings). Tolerances are specified for the following items: Regarding bearing accuracy classes, besides ISO normal accuracy, as the accuracy improves there are Class 6X (for tapered roller bearings), Class 6, Class 5, Class 4, and Class 2, with Class 2 being the highest in ISO. The applicable accuracy classes for each bearing type and the correspondence of these classes are shown in Table 8.1. Table 8. 1 Bearing Types and Tolerance Classes | | Bearing | Types | | Applica | able Tolerance (| Classes | | Applicable
Tables | Reference
Pages | |--------------------|--|----------------------------|----------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|--------------------| | - 1 | Deep Groove B | all Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | | | | | Angular Contac | t Ball Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | | | | : | Self-Aligning Ba | all Bearings | Normal | Class 6
equivalent | Class 5
equivalent | _ | _ | Table | A60 | | | Cylindrical Roller Bearings | | Normal | Class 6 | Class 5 | Class 4 | Class 2 | 8.2 | to A63 | | | Needle Roller Bearings
(solid type) |
 Normal | Class 6 | Class 5 | Class 4 | _ | | | | : | Spherical Roller Bearings | | Normal | Class 6 | Class 5 | _ | _ | | | | | Tapered Metri
Desig | | Normal
Class 6X | _ | Class 5 | Class 4 | _ | Table
8.3 | A64
to A67 | | | Roller
Bearings | Inch Design | ANSI/ABMA
CLASS 4 | ANSI/ABMA
CLASS 2 | ANSI/ABMA
CLASS 3 | ANSI/ABMA
CLASS 0 | ANSI/ABMA
CLASS 00 | Table
8.4 | A68
and A69 | | | Magneto Bearir | ngs | Normal | Class 6 | Class 5 | _ | _ | Table
8.5 | A70
and A71 | | | Thrust Ball Bea | rings | Normal | Class 6 | Class 5 | Class 4 | _ | Table
8.4 | A72
to A74 | | | Thrust Spherica | al Roller Bearings | Normal | _ | _ | _ | _ | Table
8.7 | A75 | | S | JIS | (1) | Class 0 | Class 6 | Class 5 | Class 4 | Class 2 | _ | _ | | ndard | DIN | J(2) | P0 | P6 | P5 | P4 | P2 | _ | _ | | ent sta
eferenc | DIN(DIN(ANSI/ ABMA(3) | Ball
Bearings | ABEC 1 | ABEC 3 | ABEC 5
(CLASS 5P) | ABEC 7
(CLASS 7P) | ABEC 9
(CLASS 9P) | Table
8.2 | A60
to A63 | | quival
(Re | | Roller
Bearings | RBEC 1 | RBEC 3 | RBEC 5 | _ | _ | Table 8.8 | (A76
and A77) | | ш | | Tapered Roller
Bearings | CLASS 4 | CLASS 2 | CLASS 3 | CLASS 0 | CLASS 00 | [Table] | (A68
and A69) | Notes (1) JIS: Japanese Industrial Standards (2) DIN: Deutsch Industrie Norm (3) ANSI/ABMA: The American Bearing Manufacturers Association Remarks The permissible limit of chamfer dimensions shall conform to Table 8.9 (Page A78), and the tolerances and permissible tapered bore diameters shall conform to Table 8.10 (Page A80). (Reference) Rough definitions of the items listed for Running Accuracy and their measuring methods are shown in Fig. 8.1, and they are described in detail in ISO 5593 (Rolling Bearings-Vocabulary) and JIS B 1515 (Rolling Bearings-Tolerances) and elsewhere. ### Supplementary Table | Running
Accuracy | Inner
Ring | Outer
Ring | Dial
Gauge | |---------------------|--|----------------------------|----------------| | K _{fa} | Rotating | Stationary | А | | K_{ea} | Stationary | Rotating | А | | S_{ia} | Rotating | Stationary | B ₁ | | S_{ea} | Stationary | Rotating | B ₂ | | S_d | Rotating | Stationary | С | | S_D | _ | Rotating | D | | S_i , $S_{ m e}$ | Only the shaft
or central was
rotated. | or housing
her is to be | E | | | | | | Fig. 8.1 Measuring Methods for Running Accuracy (summarized) ### Symbols for Boundary Dimensions and Running Accuracy Brg bore dia., nominal Deviation of a single bore dia. Δ_{ds} Single plane mean bore dia. deviation Bore dia. Variation in a single radial plane $V_{d\mathrm{mp}}$ Mean bore dia. Variation В Inner ring width, nominal Deviation of a single inner ring width Δ_{Bs} Inner ring width variation V_{Bs} Radial runout of assembles brg inner ring K_{ia} inner ring reference face (backface, where applicable) runout with bore Assembled brg inner ring face (back face) runout with raceway S_h S_e Raceway to backface thickness variation of thrust brg Brg width, nominal T Deviation of the actual brg width Brg outside dia., nominal Δ_{Ds} Deviation of a single outside dia. Single plane mean outside dia. Deviation Outside dia. Variation in a single radial V_{Dp} Mean outside dia. Variation COuter ring width, nominal Deviation of a single outer ring width $\Delta c_{\rm s}$ Outer ring width variation K_{ea} Radial runout of assembled brg outer ring Variation of brg outside surface generatrix inclination with outer ring reference face (backface) Assembled brg outer ring face (backface) runout with raceway A 59 Table 8. 2 Tolerances for Radial Bearings Table 8. 2. 1 Tolerances for Inner Rings and | Nominal | Bore Diameter | | | | | Δ, | _{dmp} (2) | | | | | | Δ | ds (2) | | |---------------|---------------|------|--------------|------|------------|------|--------------------|------|------------|------|--------------|-------|------------|--------|--------------| | | <i>d</i> | | | | | | | | | | _ | | ass 4 | | _ | | 1 | (mm) | N | ormal | Cl | ass 6 | C | lass 5 | CI | lass 4 | | class 2 | | eries | С | lass 2 | | | | | | | | | | | | | | 0, 1, | 2, 3, 4 | | | | over | incl. | high | low | 0.6(1)
2.5 | 2.5
10 | 0 | - 8
- 8 | 0 | - 7
- 7 | 0 | - 5
- 5 | 0 | - 4
- 4 | 0 | -2.5
-2.5 | 0 | - 4
- 4 | 0 | -2.5
-2.5 | | 10 | 18 | 0 | - 8 | 0 | - 7
- 7 | 0 | - 5
- 5 | 0 | - 4 | 0 | -2.5
-2.5 | 0 | - 4 | 0 | -2.5
-2.5 | | 18 | 30 | 0 | - 10 | 0 | - 8 | 0 | - 6 | 0 | - 5 | 0 | -2.5 | 0 | - 5 | 0 | -2.5 | | 30
50 | 50
80 | 0 | - 12
- 15 | 0 | -10
-12 | 0 | - 8
- 9 | 0 | - 6
- 7 | 0 | -2.5
-4 | 0 | - 6
- 7 | 0 | -2.5
-4 | | 80 | 120 | 0 | - 20 | 0 | -15 | 0 | -10 | 0 | - 8 | 0 | -5 | 0 | - 8 | 0 | -5 | | 120
150 | 150
180 | 0 | - 25
- 25 | 0 | -18
-18 | 0 | -13
-13 | 0 | -10
-10 | 0 | -7
-7 | 0 | -10
-10 | 0 | -7
-7 | | 180 | 250 | 0 | - 30 | 0 | -22 | 0 | -15 | 0 | -12 | 0 | -8 | 0 | -12 | 0 | -8 | | 250
315 | 315
400 | 0 | - 35
- 40 | 0 | -25
-30 | 0 | -18
-23 | - | _ | _ | _ | - | _ | _ | - | | 400 | 500 | 0 | - 45 | 0 | -35 | - | -23 | _ | _ | _ | _ | - | _ | _ | _ | | 500 | 630 | 0 | - 50 | 0 | -40 | - | - | - | - | - | - | - | - | - | - | | 630
800 | 800
1 000 | 0 | - 75
-100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 1 000 | 1 250 | 0 | -125 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | 1 250 | 1 600 | 0 | -160 | - | - | - | - | - | - | - | - | - | - | - | - | | 1 600 | 2 000 | 0 | -200 | - | _ | - | _ | - | _ | - | - | - | _ | - | | | | | | | Δ_{E} | $_{ m s_s}$ (or $arDelta$ | Cs)(3) | | | | | | | V | Bs (or V | _{Cs}) | | |------------------|----------------------------------|------------------|------------------------------|--------------|------------------------------|-------------|------------------------------|------------------|------------------------------|------------------|------------------------------|----------------------|----------------------|-------------------|-------------------|--------------------| | | | Single | Bearing | | | | Со | mbined | d Bearing: | s (4) | | Inner Ri
Outer Ri | ing (or
ing) (³) | | Inner Rin | ıg | | | ormal
class 6 | | ass 5
ass 4 | Cl | ass 2 | | ormal
ass 6 | | ass 5
ass 4 | Cl | ass 2 | Normal | Class
6 | Class
5 | Class
4 | Clas | | high | low | max. | max. | max. | max. | ma | | 0
0
0 | - 40
- 120
- 120 | 0
0
0 | - 40
- 40
- 80 | 0
0
0 | - 40
- 40
- 80 | _
0
0 | -250
-250 | 0
0
0 | -250
-250
-250 | 0
0
0 | -250
-250
-250 | 12
15
20 | 12
15
20 | 5
5
5 | 2.5
2.5
2.5 | 1.!
1.!
1.! | | 0
0
0 | - 120
- 120
- 150 | 0
0
0 | -120
-120
-150 | 0
0
0 | -120
-120
-150 | 0
0
0 | -250
-250
-380 | 0
0
0 | -250
-250
-250 | 0 0 0 | -250
-250
-250 | 20
20
25 | 20
20
25 | 5
5
6 | 2.5
3
4 | 1.
1.
1. | | 0
0
0
0 | - 200
- 250
- 250
- 300 | 0
0
0
0 | -200
-250
-250
-300 | 0
0
0 | -200
-250
-250
-300 | 0
0
0 | -380
-500
-500
-500 | 0
0
0
0 | -380
-380
-380
-500 | 0
0
0
0 | -380
-380
-380
-500 | 25
30
30
30 | 25
30
30
30 | 7
8
8
10 | 4
5
5
6 | 2.
2.
4
5 | | 0
0
0 | - 350
- 400
- 450 | 0
0
- | -350
-400
- | -
-
- | -
-
- | 0
0
- | -500
-630
- | 0
0
- | -500
-630
- | -
 -
 - | -
-
- | 35
40
50 | 35
40
45 | 13
15
- | -
-
- | -
-
- | | 0
0
0 | - 500
- 750
-1 000 | _
_
_ | -
-
- -
 -
 - | -
-
- | 60
70
80 | 50
-
- | -
-
- | -
-
- | -
 -
 - | | 0 0 | -1 250
-1 600
-2 000 | -
-
- -
 -
 - | -
-
- | 100
120
140 | -
-
- | _
_
_ | _
_
_ | -
 - | **Notes** (1) 0.6mm is included in the group. - Applicable to bearings with cylindrical bores. Tolerance for width deviation and tolerance limits for the width variation of the outer ring should be the same bearing. Tolerances for the width variation of the outer ring of Class 5, 4, and 2 are shown in Table 8.2.2. Applicable to individual rings manufactured for combined bearings. Applicable to ball bearings such as deep groove ball bearings, angular contact ball bearings, etc. ### (excluding Tapered Roller Bearings) Widths of Outer Rings | | | | | | V_{dp} (2) | | | | | | | | V_{dr} | _{mp} (2) | | |----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|------------------------------------|------------------|--------------------|----------------------|----------------------|------------------|-------------------|------------------------| | | Norma | l | | Class 6 | 3 | Cla | ss 5 | Cla | ss 4 | Class 2 | | | | | | | Dia | meter Se | eries | Dia | meter S | eries | | neter
ries | Diar
Se | neter
ries | Diameter
Series | Normal | Class
6 | Class
5 | Class
4 | Class
2 | | 9 | 0, 1 | 2, 3, 4 | 9 | 0, 1 | 2, 3, 4 | 9 | | | 0,1,2,3,4 | 0,1,2,3,4 | | Ü | | • | ~ | | | max. | | | max. | | m | ах. | max. max. max. max. max. max. max. | | max. | | | | | | | 10
10
10 | 8
8
8 | 6
6
6 | 9
9
9 | 7
7
7 | 5
5
5 | 5
5
5 | 4
4
4 | 4
4
4 | 3
3
3 | 2.5
2.5
2.5 | 6
6
6 | 5
5
5 | 3
3
3 | 2
2
2 | 1.5
1.5
1.5 | | 13
15
19 | 10
12
19 | 8
9
11 | 10
13
15 | 8
10
15 | 6
8
9 | 6
8
9 | 5
6
7 | 5
6
7 | 4
5
5 | 2.5
2.5
4 | 8
9
11 | 6
8
9 | 3
4
5 |
2.5
3
3.5 | 1.5
1.5
2 | | 25
31
31
38 | 25
31
31
38 | 15
19
19
23 | 19
23
23
28 | 19
23
23
28 | 11
14
14
17 | 10
13
13
15 | 8
10
10
12 | 8
10
10
12 | 6
8
8
9 | 5
7
7
8 | 15
19
19
23 | 11
14
14
17 | 5
7
7
8 | 4
5
5
6 | 2.5
3.5
3.5
4 | | 44
50
56 | 44
50
56 | 26
30
34 | 31
38
44 | 31
38
44 | 19
23
26 | 18
23
- | 14
18
- | -
-
- | -
-
- | -
-
- | 26
30
34 | 19
23
26 | 9
12
- | -
-
- | -
-
- | | 63 | 63 | 38 | 50 | 50 | 30 | - | - | - | - | - | 38 | 30 | _ | - | - | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | _ | - | - | _ | - | - | _ | - | - | _ | - | _ | _ | _ | _ | | - | - | - | _ | _ | _ | _ | - | - | - | _ | - | _ | _ | _ | _ | Units : µm | | | K ia | | | | S_d | | | S _{fa} (5) | | Nominal Bore I | Diameter | |----------------------|----------------------|-------------------|------------------|-----------------|---------------------|------------------|----------------------|---------------------|---------------------|-----------------|-------------------------|--------------------------| | Norma | Class 6 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | d
(mm) | | | max. over | incl. | | 10 | 5 | 4 | 2.5 | 1.5 | 7 | 3 | 1.5 | 7 | 3 | 1.5 | 0.6(¹) | 2.5 | | 10 | 6 | 4 | 2.5 | 1.5 | 7 | 3 | 1.5 | 7 | 3 | 1.5 | 2.5 | 10 | | 10 | 7 | 4 | 2.5 | 1.5 | 7 | 3 | 1.5 | 7 | 3 | 1.5 | 10 | 18 | | 13 | 8 | 4 | 3 | 2.5 | 8 | 4 | 1.5 | 8 | 4 | 2.5 | 18 | 30 | | 15 | 10 | 5 | 4 | 2.5 | 8 | 4 | 1.5 | 8 | 4 | 2.5 | 30 | 50 | | 20 | 10 | 5 | 4 | 2.5 | 8 | 5 | 1.5 | 8 | 5 | 2.5 | 50 | 80 | | 25
30
30
40 | 13
18
18
20 | 6
8
8
10 | 5
6
6
8 | 2.5
2.5
5 | 9
10
10
11 | 5
6
6
7 | 2.5
2.5
4
5 | 9
10
10
13 | 5
7
7
8 | 2.5
2.5
5 | 80
120
150
180 | 120
150
180
250 | | 50 | 25 | 13 | - | - | 13 | - | - | 15 | - | - | 250 | 315 | | 60 | 30 | 15 | - | - | 15 | - | - | 20 | - | - | 315 | 400 | | 65 | 35 | - | - | - | – | - | - | – | - | - | 400 | 500 | | 70 | 40 | - | - | - | - | - | - | _ | - | - | 500 | 630 | | 80 | - | - | - | - | - | - | - | _ | - | - | 630 | 800 | | 90 | - | - | - | - | - | - | - | _ | - | - | 800 | 1 000 | | 100 | - | - | - | - | - | - | - | _ | _ | - | 1 000 | 1 250 | | 120 | - | - | - | - | - | - | - | _ | _ | - | 1 250 | 1 600 | | 140 | - | - | - | - | - | - | - | _ | _ | - | 1 600 | 2 000 | Remarks 1. The cylindrical bore diameter "no-go side" tolerance limit (high) specified in this table does not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. 2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively. Table 8. 2 Tolerances for Radial Bearings Table 8. 2. 2 Tolerances | Nominal O | utside | | | | | Δ | <i>D</i> mp | | | | | | ۷ | Ds | | |----------------------------------|----------------------------------|------------------|------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|---------------|-----------------------|------------------|----------------------------|------------------|-----------------------| | Diamet D (mm) | er | N | ormal | Cl | ass 6 | Cl | ass 5 | Cl | ass 4 | С | lass 2 | Dia
S | ass 4 imeter eries 2, 3, 4 | - Cl | lass 2 | | over | incl. | high | low | 2.5(¹)
6
18 | 6
18
30 | 0
0
0 | - 8
- 8
- 9 | 0
0
0 | - 7
- 7
- 8 | 0
0
0 | - 5
- 5
- 6 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 2.5
- 2.5
- 4 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 2.5
- 2.5
- 4 | | 30
50
80 | 50
80
120 | 0
0
0 | - 11
- 13
- 15 | 0 0 0 | - 9
-11
-13 | 0
0
0 | - 7
- 9
-10 | 0
0
0 | - 6
- 7
- 8 | 0 0 0 | - 4
- 4
- 5 | 0
0
0 | - 6
- 7
- 8 | 0
0
0 | - 4
- 4
- 5 | | 120
150
180 | 150
180
250 | 0
0
0 | - 18
- 25
- 30 | 0
0
0 | -15
-18
-20 | 0
0
0 | -11
-13
-15 | 0
0
0 | - 9
-10
-11 | 0 0 0 | - 5
- 7
- 8 | 0
0
0 | - 9
-10
-11 | 0
0
0 | - 5
- 7
- 8 | | 250
315
400 | 315
400
500 | 0
0
0 | - 35
- 40
- 45 | 0
0
0 | -25
-28
-33 | 0
0
0 | -18
-20
-23 | 0
0
- | -13
-15
- | 0 0 - | - 8
-10
- | 0
0
- | -13
-15
- | 0
0
- | - 8
-10
- | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 0
0
0 | -38
-45
-60 | 0
0
- | -28
-35
- | -
-
- | -
-
- | -
 -
 - | _
_
_ | -
-
- | -
-
- | -
 -
 - | -
-
- | | 1 000
1 250
1 600
2 000 | 1 250
1 600
2 000
2 500 | 0
0
0
0 | -125
-160
-200
-250 | -
-
-
- | -
-
-
- | -
-
-
- | -
-
-
- | -
-
-
- | -
-
-
- | -
-
- | -
-
-
- | -
-
-
- | -
-
-
- | -
-
-
- | -
-
-
- | Notes (1) 2.5mm is included in the group. (2) Applicable only when a locating snap ring is not used. (3) Applicable to ball bearings such as deep groove ball bearings and angular contact ball bearings. (4) The tolerances for outer ring width variation of bearings of Classes Normal and 6 are shown in Table 8.2.1. Remarks 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension \(r \) (max.) from the ring face. 2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively. ### (excluding Tapered Roller Bearings) for Outer Rings | | | _{Dmp} (2) | V | | | | | | | | 2) | V_{Dp} (| | | | | | |-----------------|---------------|--------------------|----------------|----------------|--------------------|---------------|---------------|----------------|----------------|--------------------|----------------|----------------|----------------|--------------------|----------------|-----------------|-----------------| | | | | | | Class 2 | ss 4 | Cla | ss 5 | Cla | | ss 6 | Cla | | | nal | Norr | | | Class | Class | Class | Class | Normal | Open Type | Туре | Open | Туре | Open | Shielded
Sealed | е | pen Typ | 0 | Shielded
Sealed | : | pen Type | C | | 2 | 4 | 5 | 6 | INOFMAI | Diameter
Series | neter
ries | Dian
Ser | neter
ies | Dian
Ser | | r Serie | Diamete | [| | Series | Diameter | | | | | | | | 0,1,2,3,4 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 2, 3, 4 | 0, 1 | 9 | 2, 3, 4 | 2, 3, 4 | 0, 1 | 9 | | max. | max. | max. | max. | max. | max. | ax. | ma | ax. | ma | | ax. | m | | | Κ. | ma | | | 1.5
1.5
2 | 2
2
2.5 | 3
3
3 | 5
5
6 | 6
6
7 | 2.5
2.5
4 | 3
3
4 | 4
4
5 | 4
4
5 | 5
5
6 | 9
9
10 | 5
5
6 | 7
7
8 | 9
9
10 | 10
10
12 | 6
6
7 | 8
8
9 | 10
10
12 | | 2
2
2.5 | 3
3.5
4 | 4
5
5 | 7
8
10 | 8
10
11 | 4
4
5 | 5
5
6 | 6
7
8 | 5
7
8 | 7
9
10 | 13
16
20 | 7
8
10 | 9
11
16 | 11
14
16 | 16
20
26 | 8
10
11 | 11
13
19 | 14
16
19 | | 2.5
3.5
4 | 5
5
6 | 6
7
8 | 11
14
15 | 14
19
23 | 5
7
8 | 7
8
8 | 9
10
11 | 8
10
11 | 11
13
15 | 25
30
- | 11
14
15 | 19
23
25 | 19
23
25 | 30
38
- | 14
19
23 | 23
31
38 | 23
31
38 | | 4
5
– | 7
8
- | 9
10
12 | 19
21
25 | 26
30
34 | 8
10
- | 10
11
- | 13
15
- | 14
15
17 | 18
20
23 | -
-
- | 19
21
25 | 31
35
41 | 31
35
41 | -
-
- | 26
30
34 | 44
50
56 | 44
50
56 | | -
-
- | -
-
- | 14
18
- | 29
34
45 | 38
55
75 | -
-
- | -
-
- | -
-
- | 21
26
- | 28
35
- | -
-
- | 29
34
45 | 48
56
75 | 48
56
75 | -
-
- | 38
55
75 | 63
94
125 | 63
94
125 | | _
_ | _ | - | <u>-</u> | -
 - | _
_ | _ | _ | - | _ | - | _ | - | - | - | - | _
_ | _ | | <u> </u> | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | | Units : | μm | |---------|----| |---------|----| | | | K_{ea} | | | | S_D | | | S _{ea} (3) | | | V_{Cs} (4) | | Nominal (|)utside | |--------------------------|------------------|-------------------|------------------|-------------|------------------|------------------|-------------|------------------|---------------------|------------------|------------------|--------------|------------------|----------------------------------|---------| | Normal | Class
6 | Class
5 | Class
4 | Class
2 | Diame
D
(mm | ter | | max. over | incl. | | 15 | 8 | 5 | 3 | 1.5 | 8 | 4 | 1.5 | 8 | 5 | 1.5 | 5 | 2.5 | 1.5 | 2.5 (¹) | 6 | | 15 | 8 | 5 | 3 | 1.5 | 8 | 4 | 1.5 | 8 | 5 | 1.5 | 5 | 2.5 | 1.5 | 6 | 18 | | 15 | 9 | 6 | 4 | 2.5 | 8 | 4 | 1.5 | 8 | 5 | 2.5 | 5 | 2.5 | 1.5 | 18 | 30 | | 20 | 10 | 7 | 5 | 2.5 | 8 | 4 | 1.5 | 8 | 5 | 2.5 | 5 | 2.5 | 1.5 | 30 | 50 | | 25 | 13 | 8 | 5 | 4 | 8 | 4 | 1.5 | 10 | 5 | 4 | 6 | 3 | 1.5 | 50 | 80 | | 35 | 18 | 10 | 6 | 5 | 9 | 5 | 2.5 | 11 | 6 | 5 | 8 | 4 | 2.5 | 80 | 120 | | 40 | 20 | 11 | 7 | 5 | 10 | 5 | 2.5 | 13 | 7 | 5 | 8 | 5 | 2.5 | 120 | 150 | | 45 | 23 | 13 | 8 | 5 | 10 | 5 | 2.5 | 14 | 8 | 5 | 8 | 5 | 2.5 | 150 | 180 | | 50 | 25 | 15 | 10 | 7 | 11 | 7 | 4 | 15 | 10 | 7 |
10 | 7 | 4 | 180 | 250 | | 60 | 30 | 18 | 11 | 7 | 13 | 8 | 5 | 18 | 10 | 7 | 11 | 7 | 5 | 250 | 315 | | 70 | 35 | 20 | 13 | 8 | 13 | 10 | 7 | 20 | 13 | 8 | 13 | 8 | 7 | 315 | 400 | | 80 | 40 | 23 | - | - | 15 | - | - | 23 | - | - | 15 | - | - | 400 | 500 | | 100 | 50 | 25 | - | - | 18 | - | - | 25 | - | - | 18 | - | - | 500 | 630 | | 120 | 60 | 30 | - | - | 20 | - | - | 30 | - | - | 20 | - | - | 630 | 800 | | 140 | 75 | - | - | - | - | - | - | - | - | - | - | - | - | 800 | 1 000 | | 160
190
220
250 | -
-
-
- | -
-
- | -
-
-
- | -
-
- | -
-
-
- | -
-
-
- | -
-
- | -
-
-
- | -
-
- | -
-
-
- | -
-
-
- | -
-
- | -
-
-
- | 1 000
1 250
1 600
2 000 | | A 62 A 63 Table 8. 3 Tolerances for Metric Design Tapered Roller Bearings Table 8. 3. 1 Tolerances for Inner Ring Bore Diameter and Running Accuracy | | Nomina
Diam | | | | Δ | <i>d</i> mp | | | | 1 _{ds} | | V | <i>d</i> p | | | V_{α} | <i>l</i> mp | | |---|----------------|-------|------|----------------|------|----------------|------|-------|------|-----------------|--------------------|------------|------------|------------|--------------------|--------------|-------------|------------| | | (m) | | | ormal
ss 6X | | ass 6
ass 5 | Cl | ass 4 | Cla | ass 4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | | Ī | over | incl. | high | low | high | low | high | low | high | low | max. | | 10 | 18 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 0 | - 5 | 8 | 7 | 5 | 4 | 6 | 5 | 5 | 4 | | | 18 | 30 | 0 | -10 | 0 | - 8 | 0 | - 6 | 0 | - 6 | 10 | 8 | 6 | 5 | 8 | 6 | 5 | 4 | | | 30 | 50 | 0 | -12 | 0 | -10 | 0 | - 8 | 0 | - 8 | 12 | 10 | 8 | 6 | 9 | 8 | 5 | 5 | | | 50 | 80 | 0 | -15 | 0 | -12 | 0 | - 9 | 0 | - 9 | 15 | 12 | 9 | 7 | 11 | 9 | 6 | 5 | | | 80 | 120 | 0 | -20 | 0 | -15 | 0 | -10 | 0 | -10 | 20 | 15 | 11 | 8 | 15 | 11 | 8 | 5 | | | 120 | 180 | 0 | -25 | 0 | -18 | 0 | -13 | 0 | -13 | 25 | 18 | 14 | 10 | 19 | 14 | 9 | 7 | | | 180 | 250 | 0 | -30 | 0 | -22 | 0 | -15 | 0 | -15 | 30 | 22 | 17 | 11 | 23 | 16 | 11 | 8 | | | 250 | 315 | 0 | -35 | 0 | -25 | 0 | -18 | 0 | -18 | 35 | - | - | - | 26 | - | - | - | | | 315 | 400 | 0 | -40 | 0 | -30 | 0 | -23 | 0 | -23 | 40 | - | - | - | 30 | - | - | - | | | 400 | 500 | 0 | -45 | 0 | -35 | 0 | -27 | 0 | -27 | | - | - | - | - | - | - | - | | | 500 | 630 | 0 | -50 | 0 | -40 | - | - | - | - | | - | - | - | - | - | - | - | | | 630 | 800 | 0 | -75 | 0 | -60 | - | - | - | - | | - | - | - | - | - | - | - | | Remarks | The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance | |---------|---| | | of 1.2 times the chamfer dimension r (max.) from the ring face. | 2. Some of these tolerances conform to the NSK Standard. Table 8. 3. 2 Tolerances for Outer Ring Outside Diameter and Running Accuracy | | l Outside
neter | | | Δ | <i>D</i> mp | | | | 1 _{Ds} | | V | <i>D</i> p | | | V_I | Omp | | |------|--------------------|------|-----------------|------|----------------|------|-------|------|-----------------|--------------------|------------|------------|------------|--------------------|------------|------------|------------| | _ | D
im) | | ormal
ass 6X | | ass 6
ass 5 | Cl | ass 4 | Cl | ass 4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | | over | incl. | high | low | high | low | high | low | high | low | max. | 18 | 30 | 0 | - 9 | 0 | - 8 | 0 | - 6 | 0 | - 6 | 9 | 8 | 6 | 5 | 7 | 6 | 5 | 4 | | 30 | 50 | 0 | - 11 | 0 | - 9 | 0 | - 7 | 0 | - 7 | 11 | 9 | 7 | 5 | 8 | 7 | 5 | 5 | | 50 | 80 | 0 | - 13 | 0 | -11 | 0 | - 9 | 0 | - 9 | 13 | 11 | 8 | 7 | 10 | 8 | 6 | 5 | | 80 | 120 | 0 | - 15 | 0 | -13 | 0 | -10 | 0 | -10 | 15 | 13 | 10 | 8 | 11 | 10 | 7 | 5 | | 120 | 150 | 0 | - 18 | 0 | -15 | 0 | -11 | 0 | -11 | 18 | 15 | 11 | 8 | 14 | 11 | 8 | 6 | | 150 | 180 | 0 | - 25 | 0 | -18 | 0 | -13 | 0 | -13 | 25 | 18 | 14 | 10 | 19 | 14 | 9 | 7 | | 180 | 250 | 0 | - 30 | 0 | -20 | 0 | -15 | 0 | -15 | 30 | 20 | 15 | 11 | 23 | 15 | 10 | 8 | | 250 | 315 | 0 | - 35 | 0 | -25 | 0 | -18 | 0 | -18 | 35 | 25 | 19 | 14 | 26 | 19 | 13 | 9 | | 315 | 400 | 0 | - 40 | 0 | -28 | 0 | -20 | 0 | -20 | 40 | 28 | 22 | 15 | 30 | 21 | 14 | 10 | | 400 | 500 | 0 | - 45 | 0 | -33 | 0 | -23 | 0 | -23 | 45 | - | - | - | 34 | - | - | - | | 500 | 630 | 0 | - 50 | 0 | -38 | 0 | -28 | 0 | -28 | 50 | - | - | - | 38 | - | - | - | | 630 | 800 | 0 | - 75 | 0 | -45 | - | - | - | - | - | - | - | - | - | - | - | - | | 800 | 1 000 | 0 | -100 | 0 | -60 | - | - | - | - | - | - | - | - | _ | - | _ | | Remarks 1. The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. 2. Some of these tolerances conform to the NSK Standard. | | | | | | Units : μ | ım | |----------|-------|-------|-------|-------|-----------|-------| | | K | ía | | S | d | S ia | | Normal | Class | Class | Class | Class | Class | Class | | Class 6X | 6 | 5 | 4 | 5 | 4 | 4 | | max. | 15 | 7 | 3.5 | 2.5 | 7 | 3 | 3 | | 18 | 8 | 4 | 3 | 8 | 4 | 4 | | 20 | 10 | 5 | 4 | 8 | 4 | 4 | | 25 | 10 | 5 | 4 | 8 | 5 | 4 | | 30 | 13 | 6 | 5 | 9 | 5 | 5 | | 35 | 18 | 8 | 6 | 10 | 6 | 7 | | 50 | 20 | 10 | 8 | 11 | 7 | 8 | | 60 | 25 | 13 | 10 | 13 | 8 | 10 | | 70 | 30 | 15 | 12 | 15 | 10 | 14 | | 70 | 35 | 18 | 14 | 19 | 13 | 17 | | 85 | 40 | 20 | - | 22 | - | - | | 100 | 45 | 22 | - | 27 | - | - | | ı | Inits | ٠ | 11 | m | | |---|-------|---|----|---|--| | | | K | ea | | S | D | S ea | |---|----------|-------|-------|-------|-------|-------|-------| | | Normal | Class | Class | Class | Class | Class | Class | | | Class 6X | 6 | 5 | 4 | 5 | 4 | 4 | | | max. | | 18 | 9 | 6 | 4 | 8 | 4 | 5 | | | 20 | 10 | 7 | 5 | 8 | 4 | 5 | | | 25 | 13 | 8 | 5 | 8 | 4 | 5 | | | 35 | 18 | 10 | 6 | 9 | 5 | 6 | | | 40 | 20 | 11 | 7 | 10 | 5 | 7 | | | 45 | 23 | 13 | 8 | 10 | 5 | 8 | | | 50 | 25 | 15 | 10 | 11 | 7 | 10 | | | 60 | 30 | 18 | 11 | 13 | 8 | 10 | | | 70 | 35 | 20 | 13 | 13 | 10 | 13 | | | 80 | 40 | 23 | 15 | 15 | 11 | 15 | | | 100 | 50 | 25 | 18 | 18 | 13 | 18 | | | 120 | 60 | 30 | – | 20 | - | – | | _ | 120 | 75 | 35 | - | 23 | - | - | Table 8. 3 Tolerances for Metric Design Table 8. 3. 3 Tolerances for Width, Overall Bearing Width, | N | omina
Diam | al Bore
neter | | | Δ | 1 _{Bs} | | | | | 4 | 1 _{Cs} | | | | | Δ_T | 's | | | |---|-------------------|-------------------|-------------|----------------------|-------------|-------------------|-------------|----------------------|-------------|----------------------|-------------|----------------------|-------------|----------------------|----------------------|----------------------|----------------------|-------------|----------------------|----------------------| | | (m) | | | ormal
ass 6 | Cla | ss 6X | | ass 5
ass 4 | | ormal
ass 6 | Cla | ass 6X | | lass 5
lass 4 | | rmal
iss 6 | Class | 6X | | iss 5
iss 4 | | | over | incl. | high | low | high | n low | high | low | high | low | high | low | | | 10
18
30 | 18
30
50 | 0
0
0 | -120
-120
-120 | 0
0
0 | -50
-50
-50 | 0
0
0 | -200
-200
-240 | 0
0
0 | -120
-120
-120 | 0
0
0 | -100
-100
-100 | 0
0
0 | -200
-200
-240 | +200
+200
+200 | 0
0
0 | +100
+100
+100 | 0
0
0 | +200
+200
+200 | -200
-200
-200 | | | 50
80
120 | 80
120
180 | 0
0
0 | -150
-200
-250 | 0
0
0 | -50
-50
-50 | 0
0
0 | -300
-400
-500 | 0
0
0 | -150
-200
-250 | 0 0 0 | -100
-100
-100 | 0
0
0 | -300
-400
-500 | +200
+200
+350 | 0
-200
-250 | +100
+100
+150 | 0
0
0 | +200
+200
+350 | -200
-200
-250 | | | 180
250
315 | 250
315
400 | 0
0
0 | -300
-350
-400 | 0
0
0 | -50
-50
-50 | 0
0
0 | -600
-700
-800 | 0
0
0 | -300
-350
-400 | 0
0
0 | -100
-100
-100 | 0 0 0 | -600
-700
-800 | +350
+350
+400 | -250
-250
-400 | +150
+200
+200 | 0
0
0 | +350
+350
+400 | -250
-250
-400 | | | 400
500
630 | 500
630
800 | 0
0
0 | -450
-500
-750 | -
-
- | -
-
- | 0
0
0 | -800
-800
-800 | 0
0
0 | -450
-500
-750 | -
-
- | -
-
- | 0
0
0 | -800
-800
-800 | +400
+500
+600 | -400
-500
-600 | -
-
- | -
-
- | +400
+500
+600 | -400
-500
-600 | Remarks The effective width of an inner ring with rollers T_1 is defined as the overall bearing width of an inner ring with rollers combined with a master outer ring. The effective width of an outer ring T_2 is defined as the overall bearing width of an outer ring combined with a master inner ring with rollers. **Tapered Roller Bearings** and Combined Bearing Width $\text{Units}: \mu m$ | | R | | with Roller | S | Outer Ri | ٠, | ve Width D | eviation | | Combined Bea | | Deviation , $\Delta_{C4\mathrm{s}}$ | | nal Bore
meter | |---|------|------|-------------|------|----------|------|------------|----------|-----------------------|--------------|--------|-------------------------------------|------|-------------------| | | Nor | mal | Class | s 6X | Nor | mal | Class | s 6X | All classes
row be | | | of four-row
ings | | d
nm) | | | high | low | over | incl. | | _ | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 200 | - 200 | - | - | 10 | 18 | | | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 200 | - 200 | - | - | 18 | 30 | | | +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 200 | - 200 | - | - | 30 | 50 | |
| +100 | 0 | + 50 | 0 | +100 | 0 | + 50 | 0 | + 300 | - 300 | + 300 | - 300 | 50 | 80 | | | +100 | -100 | + 50 | 0 | +100 | -100 | + 50 | 0 | + 300 | - 300 | + 400 | - 400 | 80 | 120 | | | +150 | -150 | + 50 | 0 | +200 | -100 | +100 | 0 | + 400 | - 400 | + 500 | - 500 | 120 | 180 | | | +150 | -150 | + 50 | 0 | +200 | -100 | +100 | 0 | + 450 | - 450 | + 600 | - 600 | 180 | 250 | | | +150 | -150 | +100 | 0 | +200 | -100 | +100 | 0 | + 550 | - 550 | + 700 | - 700 | 250 | 315 | | | +200 | -200 | +100 | 0 | +200 | -200 | +100 | 0 | + 600 | - 600 | + 800 | - 800 | 315 | 400 | | | - | - | - | - | - | - | - | - | + 700 | - 700 | + 900 | - 900 | 400 | 500 | | | - | - | - | - | - | - | - | - | + 800 | - 800 | +1 000 | -1 000 | 500 | 630 | | | - | - | - | - | - | - | - | - | +1 200 | -1 200 | +1 500 | -1 500 | 630 | 800 | ## Table 8. 4 Tolerances for Inch Design Tapered Roller Bearings (Refer to page A58 Table 8. 1 for the tolerance class "CLASS ** " that is the tolerance classes of ANSI/ABMA.) Table 8. 4. 1 Tolerances for Inner Ring Bore Diameter Units : $\mu \, m$ | | Nominal Bo | 1 | | | | Δ | ds | | | |--|--|---------------------------------|-------------------------------|------------------------------|-------------|--------------------------|-------------|------------------|-------------| | over | | incl. | | CLAS | S 4, 2 | CLAS | S 3, 0 | CLAS | SS 00 | | (mm) | (mm) 1/25.4 (mm) 1/25.4 | | | | low | high | low | high | low | | -
76.200
266.700 | 3.0000
10.5000 | 76.200
266.700
304.800 | 3.0000
10.5000
12.0000 | + 13
+ 25
+ 25 | 0
0
0 | +13
+13
+13 | 0
0
0 | +8
+8
- | 0
0
- | | 304.800
609.600
914.400
1 219.200 | 12.0000
24.0000
36.0000
48.0000 | 609.600
914.400
1 219.200 | 24.0000
36.0000
48.0000 | + 51
+ 76
+102
+127 | 0
0
0 | +25
+38
+51
+76 | 0
0
0 | -
-
-
- | -
-
- | | | | side Diameter
D | | | | Δ | Ds | | | |---------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|-------------|-------------------|-------------|---------------|-------------| | over | | incl. | | CLAS | S 4, 2 | CLASS 3, 0 | | CLASS 00 | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | high | low | | 266.700
304.800 | 10.5000
12.0000 | 266.700
304.800
609.600 | 10.5000
12.0000
24.0000 | + 25
+ 25
+ 51 | 0
0
0 | +13
+13
+25 | 0
0
0 | +8
+8
- | 0
0
- | | 609.600
914.400
1 219.200 | 24.0000
36.0000
48.0000 | 914.400
1 219.200
- | 36.0000
48.0000
– | + 76
+102
+127 | 0
0
0 | +38
+51
+76 | 0
0
0 | -
-
- | -
-
- | Table 8. 4. 3 Tolerances for | | Nominal Bo | re Diameter
d | | | | | | Δ | Ts | | | | | |--------------------|--------------------|--------------------|-------------------|--------------|--------------|--------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------| | OV | over incl. | | | CL | ASS 4 | CLA | SS 2 | | CLA | | | CLASS 0, 00 | | | | | | | | | | | D≦508.0 | 000 (mm) | D > 508 | .000 (mm) | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | high low | | low | high | low | high | low | high | low | | _
101.600 | 4.0000 | 101.600
304.800 | 4.0000
12.0000 | +203
+356 | 0
-254 | +203
+203 | 0 | +203
+203 | -203
-203 | +203
+203 | -203
-203 | +203
+203 | -203
-203 | | 304.800
609.600 | 12.0000
24.0000 | 609.600 | 24.0000 | +381
+381 | -381
-381 | +381 | -381
- | +203
+381 | -203
-381 | +381
+381 | -381
-381 | -
- | _
_ | and Radial Runout of Inner and Outer Rings $\text{Units}: \mu m$ | | | K_{ia} , K_{ea} | | | |----------------|----------------|---------------------|-------------|-------------| | CLASS 4 | CLASS 2 | CLASS 3 | CLASS 0 | CLASS 00 | | max. | max. | max. | max. | max. | | 51
51
51 | 38
38
38 | 8
8
18 | 4
4
- | 2
2
- | | 76
76
76 | 51
-
- | 51
76
76 | -
-
- | -
-
- | #### Overall Width and Combined Width | Un | IIS | ÷ | μ | n | |----|-----|---|---|---| | | | | | | | | | | Dou | | irings (KBE T
B2s | ype) | | | | Four-Row Bearing (KV Type) Δ_{B4s} , Δ_{C4s} | | | |--------------|---|--------------|-----------|--------------|----------------------|--------------|--------------|--------------|--------------|--|------------------|--| | CLA | CLASS 4 CLASS 2 CLASS 3 CLASS 0,00 (mm) D>508 000 (mm) CLASS 0,00 | | | | | | | | | | | | | | D≦508.000 (mm) D>508.000 (mm) | | | | | | | | | | • | | | high | low | | | +406
+711 | 0
-508 | +406
+406 | 0
-203 | +406
+406 | -406
-406 | +406
+406 | -406
-406 | +406
+406 | -406
-406 | +1 524
+1 524 | -1 524
-1 524 | | | +762
+762 | -762
-762 | +762
- | -762
- | +406
+762 | -406
-762 | +762
+762 | -762
-762 | -
- | -
- | +1 524
+1 524 | -1 524
-1 524 | | A 68 Table 8. 5 Tolerances Table 8. 5. 1 Tolerances for Inner Rings | Nomina
Diam | neter | | 9 9 | | | | | | $V_{d\mathrm{p}}$ | | | $V_{d\mathrm{mp}}$ | | | Δ $_{Bs}$ (or Δ $_{Cs}$) (1) | | | | |----------------|-------|------|-----|-------|-----|-------|--------|------------|-------------------|--------|------------|--------------------|------|--------------|---|-------|------|--| | (m | | | | ass 6 | Cla | ass 5 | Normal | Class
6 | Class
5 | Normal | Class
6 | Class
5 | | rmal
ss 6 | Cla | ass 5 | | | | over | incl. | high | low | high | low | high | low | max. | max. | max. | max. | max. | max. | high | low | high | low | | | 2.5 | 10 | 0 | - 8 | 0 | -7 | 0 | -5 | 6 | 5 | 4 | 6 | 5 | 3 | 0 | -120 | 0 | - 40 | | | 10 | 18 | 0 | - 8 | 0 | -7 | 0 | -5 | 6 | 5 | 4 | 6 | 5 | 3 | 0 | -120 | 0 | - 80 | | | 18 | 30 | 0 | -10 | 0 | -8 | 0 | -6 | 8 | 6 | 5 | 8 | 6 | 3 | 0 | -120 | 0 | -120 | | **Note** (1) The width deviation and width variation of an outer ring is determined according to the inner ring of the same Remarks The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 8. 5. 2 Tolerances | Diam | Nominal Outside Δ_{Dmp} Diameter D (mm) Normal Class 6 Class 5 Normal Class 6 Class 5 I | | | | | | | | | | | | | | $V_{D\mathrm{p}}$ | | |------|--|------|-----|------|-----|------|------|------|-----|------|-----|------|---------|------|-------------------|------------| | | | Norr | nal | Clas | s 6 | Clas | ss 5 | Nor | mal | Clas | s 6 | Clas | Class 5 | | Class
6 | Class
5 | | over | incl. | high | low | max. | max. | max. | | 6 | 18 | + 8 | 0 | +7 | 0 | +5 | 0 | 0 | - 8 | 0 | -7 | 0 | -5 | 6 | 5 | 4 | | 18 | 30 | + 9 | 0 | +8 | 0 | +6 | 0 | 0 | - 9 | 0 | -8 | 0 | -6 | 7 | 6 | 5 | | 30 | 50 | +11 | 0 | +9 | 0 | +7 | 0 | 0 | -11 | 0 | -9 | 0 | -7 | 8 | 7 | 5 | Remarks The outside diameter "no-go side" tolerances (low) do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. # for Magneto Bearings and Width of Outer Rings | | | | | | | | Un | its:μ m | |---------------------|-----------------------|-------------------|----------|--------|---------|---------|---------|-----------------| | ${V}_{B\! m s}$ (or | V _{Cs}) (1) | Δ | Ts | | K ia | | S_d | S _{ia} | | Normal
Class 6 | Class 5 | Normal
Class 5 | Class 6 | Normal | Class 6 | Class 5 | Class 5 | Class 5 | | max. | max. | high | high low | | max. | max. | max. | max. | | 15 | 5 | +120 | -120 | 10 | 6 | 4 | 7 | 7 | | 20 | 5 | +120 | -120 | 10 | 7 | 4 | 7 | 7 | | 20 | 5 | +120 | -120 | 13 | 8 | 4 | 8 | 8 | #### for Outer Rings | | 9- | | | | | Units : μ | ιm | |--------|----------------|------------|--------|-----------------|------------|-------------------|------------| | | $V_{D{ m mp}}$ | | | K _{ea} | | S_{ea} | S_D | | Normal | Class
6 | Class
5 | Normal | Class
6 | Class
5 | Class
5 | Class
5 | | max. | 6 | 5 | 3 | 15 | 8 | 5 | 8 | 8 | | 7 | 6 | 3 | 15 | 9 | 6 | 8 | 8 | | 8 | 7 | 4 | 20 | 10 | 7 | 8 | 8 | Table 8. 6 Tolerances for Thrust Ball Bearings Table 8. 6. 1 Tolerances for Shaft Washer Bore Diameter and Running Accuracy Units: μm | Nominal Bore
Diameter
$oldsymbol{d}$ or $oldsymbol{d}_2$ | | | Δ_{dmp} O | r ⊿ _{d2mp} | | · | V_{d2p} | | $S_{\it i}$ or | S _e (¹) | | |--|------|---------------------|------------------|---------------------|------|------------------------------|------------|--------|----------------|--------------------|------------| | (mm) | | Nor
Clas
Clas | | Cla | ss 4 | Normal
Class 6
Class 5 | Class
4 | Normal | Class
6 | Class
5 | Class
4 | | over ir | ncl. | high | low | high | low | max. | max. | max. | max. | max. | max. | | - | 18 | 0 | - 8 | 0 | - 7 | 6 | 5 | 10 | 5 | 3 3 3 | 2 | | 18 | 30 | 0 | - 10 | 0 | - 8 | 8 | 6 | 10 | 5 | | 2 | | 30 | 50 | 0 | - 12 | 0 | -10 | 9 | 8 | 10 | 6 | | 2 | | | 80 | 0 | - 15 | 0 | -12 | 11 | 9 | 10 | 7 | 4 | 3 | | | 120 | 0 | - 20 | 0 | -15 | 15 | 11 | 15 | 8 | 4 | 3 | | | 180 | 0 | - 25 | 0 | -18 | 19 | 14 | 15 | 9 | 5 | 4 | | 250 | 250 | 0 | - 30 | 0 | -22 | 23 | 17 | 20 | 10 | 5 | 4 | | | 315 | 0 | - 35 | 0 | -25 | 26 | 19 | 25 | 13 | 7 | 5 | | | 400 | 0 | - 40 | 0 | -30 | 30 | 23 | 30 | 15 | 7 | 5 | | 500 | 500 | 0 | - 45 | 0 | -35 | 34 | 26 | 30 | 18 | 9 | 6 | | | 630 | 0 | -
50 | 0 | -40 | 38 | 30 | 35 | 21 | 11 | 7 | | | 800 | 0 | - 75 | 0 | -50 | - | - | 40 | 25 | 13 | 8 | | | 000 | 0 | -100 | - | - | - | <u>-</u> | 45 | 30 | 15 | - | | | 250 | 0 | -125 | - | - | - | - | 50 | 35 | 18 | - | Note (1) For double-direction bearings, the thickness variation doesn't depend on the bore diameter d_2 , but on d for single-direction bearings with the same D in the same diameter series. The thickness variation of housing washers, S_e , applies only to flat-seat thrust bearings. Table 8. 6. 2 Tolerances for Outside Diameter of Housing Washers and Aligning Seat Washers $\text{Units}: \mu \, m$ | Nominal Outside Diame
Bearing or Aligning
Seat Washer | | | Flat Se | | <i>D</i> mp | Alignii
Wash | ng Seat
er Type | V | <i>D</i> p | Outside
Dev | eat Washer
Diameter
iation
D3s | |---|-------|------|----------------------|------|-------------|-----------------|--------------------|------------------------------|------------|----------------|---| | D or D_3 (mm) | | Cla | rmal
ss 6
ss 5 | Cla | ss 4 | No | rmal
ss 6 | Normal
Class 6
Class 5 | Class 4 | No | rmal
ss 6 | | over i | incl. | high | low | high | low | high | low | max. | max. | high | low | | 10 | 18 | 0 | - 11 | 0 | - 7 | 0 | - 17 | 8 | 5 | 0 | - 25 | | 18 | 30 | 0 | - 13 | 0 | - 8 | 0 | - 20 | 10 | 6 | 0 | - 30 | | 30 | 50 | 0 | - 16 | 0 | - 9 | 0 | - 24 | 12 | 7 | 0 | - 35 | | 50 | 80 | 0 | - 19 | 0 | -11 | 0 | - 29 | 14 | 8 | 0 | - 45 | | 80 | 120 | 0 | - 22 | 0 | -13 | 0 | - 33 | 17 | 10 | 0 | - 60 | | 120 | 180 | 0 | - 25 | 0 | -15 | 0 | - 38 | 19 | 11 | 0 | - 75 | | 250 | 250 | 0 | - 30 | 0 | -20 | 0 | - 45 | 23 | 15 | 0 | - 90 | | | 315 | 0 | - 35 | 0 | -25 | 0 | - 53 | 26 | 19 | 0 | -105 | | | 400 | 0 | - 40 | 0 | -28 | 0 | - 60 | 30 | 21 | 0 | -120 | | 500 | 500 | 0 | - 45 | 0 | -33 | 0 | - 68 | 34 | 25 | 0 | -135 | | | 630 | 0 | - 50 | 0 | -38 | 0 | - 75 | 38 | 29 | 0 | -180 | | | 800 | 0 | - 75 | 0 | -45 | 0 | -113 | 55 | 34 | 0 | -225 | | 1 000 1 | 000 | 0 | -100 | - | - | - | - | 75 | - | - | - | | | 250 | 0 | -125 | - | - | - | - | - | - | - | - | | | 600 | 0 | -160 | - | - | - | - | - | - | - | - | Table 8. 6. 3 Tolerances for Thrust Ball Bearing Height and Central Washer Height Units: um | | | | | | | | | | | | | | | 011110 1 pc 111 | | | |------------------|--|-------------|------------------------|----------------------|----------------------|----------------|----------------------|----------------------|----------------------|----------------------|--|----------------------|----------------------|-----------------|-------------------------------------|--| | Nomina | al Bore | | Flat Se | at Type | | Aliç | gning Seat | Washer | Туре | Witl | n Aligning | Seat Wa | sher | | Deviation | | | | ameter $\Delta_{T_{S}}$ or $\Delta_{T_{2S}}$ | | or Δ $_{T2s}$ | Δ | Tis | Δ_{T3s} | or Δ $_{T6s}$ | Δ | T5s | Δ_{T4s} C | or $ extstyle \Delta extstyle T_{88}$ | Δ | T7s | | al Washer
1 _{Bs} | | | d (mi | | | , Class 6
, Class 4 | | , | | rmal
ass 6 | | rmal
ss 6 | Noi
Clas | rmal
ss 6 | Nor
Clas | rmal
ss 6 | | l, Class 6
, Class 4 | | | over | incl. | high | low | | -
30
50 | 30
50
80 | 0
0
0 | - 75
-100
-125 | + 50
+ 75
+100 | -150
-200
-250 | 0
0
0 | - 75
-100
-125 | + 50
+ 75
+100 | -150
-200
-250 | + 50
+ 50
+ 75 | - 75
-100
-125 | +150
+175
+250 | -150
-200
-250 | 0
0
0 | - 50
- 75
-100 | | | 80
120
180 | 120
180
250 | 0
0
0 | -150
-175
-200 | +125
+150
+175 | -300
-350
-400 | 0
0
0 | -150
-175
-200 | +125
+150
+175 | -300
-350
-400 | + 75
+100
+100 | -150
-175
-200 | +275
+350
+375 | -300
-350
-400 | 0
0
0 | -125
-150
-175 | | | 250
315 | 315
400 | 0
0 | -225
-300 | +200
+250 | -450
-600 | 0
0 | -225
-300 | +200
+250 | -450
-600 | +125
+150 | -225
-275 | +450
+550 | -450
-550 | 0
0 | -200
-250 | | Note (1) For double-direction bearings, its classification depends on d for single-direction bearings with the same D in the same diameter series. **Remarks** Δ_{T_s} in the table is the deviation in the respective heights T in figures below. Table 8. 7 Tolerances for Thrust Spherical Roller Bearings Table 8. 7. 1 Tolerances for Bore Diameters of Shaft Rings and Height (Class Normal) Units: μm | Nomina | | | | | | Reference | | |-------------------------|-------------------|-------------|-------------------|-------------------------------|----------------|----------------------|----------------------| | Diam
<i>C</i>
(mi | ĺ | Δ, | <i>l</i> mp | <i>V</i> _{<i>d</i>p} | S_d | Δ | Ts | | over | incl. | high | low | max. | max. | high | low | | 50
80
120 | 80
120
180 | 0
0
0 | -15
-20
-25 | 11
15
19 | 25
25
30 | +150
+200
+250 | -150
-200
-250 | | 180
250
315 | 250
315
400 | 0
0
0 | -30
-35
-40 | 23
26
30 | 30
35
40 | +300
+350
+400 | -300
-350
-400 | | 400 | 500 | 0 | -45 | 34 | 45 | +450 | -450 | Remarks The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 8. 7. 2 Tolerances for Housing Ring Diameter (Class Normal) Jnits : μm | | | UI | ιιι3 . μ ΙΙΙ | |-------------------|--------------------------|-------------|----------------------| | 1 | side Diameter
D
m) | Δ | <i>D</i> mp | | over | incl. | high | low | | 120
180
250 | 180
250
315 | 0
0
0 | - 25
- 30
- 35 | | 315
400
500 | 400
500
630 | 0
0
0 | - 40
- 45
- 50 | | 630
800 | 800
1 000 | 0 | - 75
-100 | #### Remarks The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension \boldsymbol{r} (max.) from the ring face. Table 8. 8 Tolerances of #### CLASS 5P, CLASS 7P, and CLASS 9P #### (1) Tolerances for Inner Rings | | Nominal
Bore
Diameter
d
(mm) | | | Δ, | /mp | | | Δ | ds | | V | dp | V_a | /mp | 4 | 1 _{Bs} | |---|--|-------|----------------------|------|----------|------|--------------|------|------|-------|----------------------|----------|----------------------|----------|------------|---------------------------------------| | | | | CLASS 5P
CLASS 7P | | CLASS 9P | | CLAS
CLAS | | CLAS | SS 9P | CLASS 5P
CLASS 7P | CLASS 9P | CLASS 5P
CLASS 7P | CLASS 9P | CLA
CLA | le Brgs
ASS 5P
ASS 7P
ASS 9P | | Ī | over | incl. | high | low | high | low | high | low | high | low | max. | max. | max. | max. | high | low | | | - | 10 | 0 | -5.1 | 0 | -2.5 | 0 | -5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | | | 10 | 18 | 0 | -5.1 | 0 | -2.5 | 0 | -5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | | | 18 | 30 | 0 | -5.1 | 0 | -2.5 | 0 | -5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | Note (!) Applicable to bearings for which the axial clearance (preload) is to be adjusted by combining two selected bearings. Remarks For the CLASS 3P and the tolerances of Metric design Instrument Ball Bearings, it is advisable to consult NSK. #### (2) Tolerances for | Nominal | | Δ | Omp | | Δ $_{Ds}$ | | | | | | | $V_{D\mathbf{p}}$ | | $V_{D{ m mp}}$ | | | |--------------------------|------|----------------------|------|----------|------------------|----------------------|----------------|------|------|-------|----------------------|-------------------|-------------|--------------------|----------------|-------------| | Outside
Diameter
D | CLA | CLASS 5P
CLASS 7P | | | | | SS 5P
SS 7P | | CLA | SS 9P | CLASS 5P
CLASS 7P | | CLASS
9P | | SS 5P
SS 7P | CLASS
9P | | (mm) | | | | CLASS 9P | | Open Shielded Sealed | | Ol | pen | Open | Shielded
Sealed | Open | Open | Shielded
Sealed | Open | | | over incl. | high | low | max. | max. | max. | max. | max. | max. | | - 18 | 0 | -5.1 | 0 | -2.5 | 0 | -5.1 | +1 | -6.1 | 0 | -2.5 | 2.5 | 5.1 | 1.3 | 2.5 | 5.1 | 1.3 | | 18 30 | 0 | -5.1 | 0 | -3.8 | 0 | -5.1 | +1 | -6.1 | 0 | -3.8 | 2.5 | 5.1 | 2 | 2.5 | 5.1 | 2 | | 30 50 | 0 | -5.1 | 0 | -3.8 | 0 | -5.1 | +1 | -6.1 | 0 | -3.8 | 2.5 | 5.1 | 2 | 2.5 | 5.1 | 2 | Notes (i) Applicable to flange width variation for flanged bearings. (2) Applicable to flange back face. #### Instrument Ball Bearings (Inch design) #### (ANSI/ABMA Equivalent) #### and Width of Outer Rings Units : $\mu\,m$ | | (or Δ_{C_S}) | | | V_{Bs} | | | K ia | | | S ia | | S_d | | | |---|----------------------|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | 1 | CL/ | ASS 5P
ASS 7P
ASS 9P | CLASS
5P | CLASS
7P | CLASS
9P | | h | igh | low | max. | | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | | | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | | | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 3.8 | 2.5 | 7.6 | 3.8 | 1.3 | 7.6 | 3.8 | 1.3 | # Outer Rings Units : $\mu\,m$ | V Cs (1) | | | S_D | | | K _{ea} | | | | S_{ea} | | Deviation of Flange Outside | | Deviation of Flange Width | | Flange
Backface
Runout | |----------|-------|-------|-------|-------|-------|-----------------|-------|-------|-------|-------------------|-------|-----------------------------|---------------|---------------------------|--------------------------------
------------------------------| | CLASS | meter
D 1s | | C 1s | with
Raceway
(2) Sea1 | | 5P | 7P | 9P | CLASS 5P
CLASS 7P | | | CLASS 5P CLAS
CLASS 7P CLAS | | | max. high | low | high | low | max. | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 3.8 | 1.3 | 7.6 | 5.1 | 1.3 | 0 | -25.4 | 0 | -50.8 | 7.6 | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 3.8 | 2.5 | 7.6 | 5.1 | 2.5 | 0 | -25.4 | 0 | -50.8 | 7.6 | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 5.1 | 2.5 | 7.6 | 5.1 | 2.5 | 0 | -25.4 | 0 | -50.8 | 7.6 | - r: Chamfer Dimension of Inner/Outer Ring - r_1 : Chamfer Dimension of Inner/Outer Ring (Front Side) or of Central Washer of Thrust Ball Bearings Remarks The precise shape of chamfer surfaces has not been specified but its profile in the axial plane shall not intersect an arc of radius r (min.) or r_1 (min.) touching the side face of an inner ring or central washer and bore surface, or the side face of an outer ring and outside surface. Table 8. 9 Chamfer Dimension Limits (for Metric Design Bearings) Table 8. 9. 1 Chamfer Dimension Limits for Radial Bearings (excluding Tapered Roller Bearings) Units : mm | Permissible | | | Permissibl | o Chamfor | Reference | |--|-----------------|-----------------|---|--|---| | Chamfer Dimension for Inner/ Outer Rings r (min.) or | Nomina
Dian | | Dimens
Inner/Ou
r (max.) o | sion for
ter Rings
r $m{r}_1$ (max.) | Corner
Radius of
Shaft or
Housing r a | | $m{r}_1$ (min.) | over | incl. | Radial
Direction | Axial
Direction | max. | | 0.05 | - | - | 0.1 | 0.2 | 0.05 | | 0.08
0.1 | - | - | 0.16
0.2 | 0.3
0.4 | 0.08
0.1 | | | | _ | | | | | 0.15
0.2 | - | - | 0.3
0.5 | 0.6
0.8 | 0.15
0.2 | | 0.3 | -
40 | 40
- | 0.6
0.8 | 1
1 | 0.3 | | 0.6 | -
40 | 40
- | 1
1.3 | 2
2 | 0.6 | | 1 | -
50 | 50
- | 1.5
1.9 | 3
3 | 1 | | 1.1 | -
120 | 120
- | 2
2.5 | 3.5
4 | 1 | | 1.5 | -
120 | 120
- | 2.3
3 | 4
5 | 1.5 | | 2 | -
80
220 | 80
220
– | 3
3.5
3.8 | 4.5
5
6 | 2 | | 2.1 | -
280 | 280
– | 4
4.5 | 6.5
7 | 2 | | 2.5 | -
100
280 | 100
280
– | 3.8
4.5
5 | 6
6
7 | 2 | | 3 | -
280 | 280
- | 5
5.5 | 8
8 | 2.5 | | 4
5 | -
- | -
- | 6.5
8 | 9
10 | 3
4 | | 6
7.5
9.5 | -
-
- | -
-
- | 10
12.5
15 | 13
17
19 | 5
6
8 | | 12
15
19 | -
-
- | -
-
- | 18
21
25 | 24
30
38 | 10
12
15 | Remarks For bearings with nominal widths less than 2mm, the value of r (max.) in the axial direction is the same as that in the radial direction. Table 8. 9. 2 Chamfer Dimension Limits for **Tapered Roller Bearings** Units : mm | Permissible | Nominal Outside | | Dormiccih | le Chamfer | Reference | |--|------------------------|------------------------|----------------------|--------------------------------|--| | Chamfer
Dimension
for Inner/
Outer
Rings | Nominal
Diame | | Dimensior
Outer | n for Inner/
Rings
nax.) | Corner
Radius of
Shaft or
Housing r_a | | $m{r}$ (min.) | over | incl. | Radial
Direction | Axial
Direction | max. | | 0.15 | - | - | 0.3 | 0.6 | 0.15 | | 0.3 | -
40 | 40
- | 0.7
0.9 | 1.4
1.6 | 0.3 | | 0.6 | -
40 | 40
- | 1.1
1.3 | 1.7
2 | 0.6 | | 1 | -
50 | 50
- | 1.6
1.9 | 2.5
3 | 1 | | 1.5 | -
120
250 | 120
250
– | 2.3
2.8
3.5 | 3
3.5
4 | 1.5 | | 2 | -
120
250 | 120
250
– | 2.8
3.5
4 | 4
4.5
5 | 2 | | 2.5 | -
120
250 | 120
250
– | 3.5
4
4.5 | 5
5.5
6 | 2 | | 3 | -
120
250
400 | 120
250
400
– | 4
4.5
5
5.5 | 5.5
6.5
7
7.5 | 2.5 | | 4 | -
120
250
400 | 120
250
400
– | 5
5.5
6
6.5 | 7
7.5
8
8.5 | 3 | | 5 | -
180 | 180
– | 6.5
7.5 | 8
9 | 4 | | 6 | -
180 | 180 | 7.5
9 | 10
11 | 5 | | Note | (1) Inne | r Rings a | re classified | i by <i>d</i> and (| Juter Rings | Note (1) Inner Rings are classified by d and Outer Rings by D. Table 8. 9. 3 Chamfer Dimension Limits for Thrust Bearings Units: mm | Dannaianible Observice | Permissible Chamfer | Reference | | | | |---|--|--|--|--|--| | Permissible Chamfer Dimension for Shaft (or Central)/Housing Washers *\mathcal{\varPsi}(\text{min.})\text{ or } \mathcal{\varPsi}_1 \text{ (min.}) | Dimension for Shaft
(or Central)/Housing
Washers
r (max.) or r 1 (max.) | Corner Radius of Shaft or Housing $oldsymbol{r_a}$ | | | | | 2 () 5: 21 () | Radial or Axial Direction | max. | | | | | 0.05 | 0.1 | 0.05 | | | | | 0.08 | 0.16 | 0.08 | | | | | 0.1 | 0.2 | 0.1 | | | | | 0.15 | 0.3 | 0.15 | | | | | 0.2 | 0.5 | 0.2 | | | | | 0.3 | 0.8 | 0.3 | | | | | 0.6 | 1.5 | 0.6 | | | | | 1 | 2.2 | 1 | | | | | 1.1 | 2.7 | 1 | | | | | 1.5 | 3.5 | 1.5 | | | | | 2 | 4 | 2 | | | | | 2.1 | 4.5 | 2 | | | | | 3 | 5.5 | 2.5 | | | | | 4 | 6.5 | 3 | | | | | 5 | 8 | 4 | | | | | 6 | 10 | 5 | | | | | 7.5 | 12.5 | 6 | | | | | 9.5 | 15 | 8 | | | | | 12 | 18 | 10 | | | | | 15 | 21 | 12 | | | | | 19 | 25 | 15 | | | | | | | | | | | A 78 A 79 Table 8.10 Tolerances for Tapered Bores (Class Normal) d: Nominal Bore Diameter d_1 : Theoretical Diameter of Larger End of Tapered Bore Taper 1:12 $d_1 = d + 1/12B$ Taper 1:30 $d_1 = d + /30B$ Δ_{dmp} : Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Smaller End of Bore Δ_{dmp} : Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Larger End of Bore V_{dp} : Bore diameter variation in a single radial plane \vec{B} : Nominal Inner Ring width α : Half of Taper Angle of Tapered Bore Taper 1:12 Units : $\mu\,m$ | Nominal Boo | 1 | Δα | l mp | △ _{d1mp} - | V _{dp} (1) (2) | | |----------------|----------------|--------------|-----------------|---------------------|-------------------------|--------| | over | incl. | high | low | high | low | max. | | 18 | 30 | +33 | 0 | +21 | 0 | 13 | | 30 | 50 | +39 | 0 | +25 | 0 | 16 | | 50 | 80 | +46 | 0 | +30 | 0 | 19 | | 80 | 120 | +54 | 0 | +35 | 0 | 22 | | 120 | 180 | +63 | 0 | +40 | 0 | 40 | | 180 | 250 | +72 | 0 | +46 | 0 | 46 | | 250 | 315 | +81 | 0 | +52 | 0 | 52 | | 315 | 400 | +89 | 0 | +57 | 0 | 57 | | 400 | 500 | +97 | 0 | +63 | 0 | 63 | | 500 | 630 | +110 | 0 | +70 | 0 | 70 | | 630 | 800 | +125 | 0 | +80 | 0 | - | | 800 | 1 000 | +140 | 0 | +90 | 0 | - | | 1 000
1 250 | 1 250
1 600 | +165
+195 | 0 | +105
+125 | 0 | _
_ | **Notes** (1) Applicable to all radial planes of tapered bores. (2) Not applicable to diameter series 7 and 8. Taper 1:30 Units: µm 70 | (| re Diameter
d
m) | Δ, | <i>l</i> mp | Δ_{dimp} - | V _{dp} (1) (2) | | |-------------------|------------------------|-------------------|-------------|-------------------|-------------------------|----------------| | over | incl. | high | low | high | low | max. | | 80
120
180 | 120
180
250 | +20
+25
+30 | 0
0
0 | +35
+40
+46 | 0
0
0 | 22
40
46 | | 250
315
400 | 315
400
500 | +35
+40
+45 | 0
0
0 | +52
+57
+63 | 0
0
0 | 52
57
63 | +70 Notes (1) Applicable to all radial planes of tapered bores. +50 630 (2) Not applicable to diameter series 7 and 8. Remarks For a value exceeding 630 mm, please contact NSK. ## 8.2 Selection of Accuracy Classes 500 For general applications, Class Normal tolerances are adequate in nearly all cases for satisfactory performance, but for the following applications, bearings having an accuracy class of 5,4 or higher are more suitable. For reference, in Table 8.11, examples of applications and appropriate tolerance classes are listed for various bearing requirements and operating conditions. Table 8. 11 Typical Tolerance Classes for Specific Applications (Reference) | Bearing Requirement,
Operating Conditions | Examples of Applications | Tolerance Classes | |--|---|--------------------| | | VTR Drum Spindles | P5 | | | Magnetic Disk Spindles for Computers | P5, P4, P2 | | | Machine-Tool Main Spindles | P5, P4, P2 | | High running accuracy | Rotary Printing Presses | P5 | | is required | Rotary Tables of Vertical Presses, etc. | P5, P4 | | | Roll Necks of Cold Rolling
Mill Backup Rolls | Higher than P4 | | | Slewing Bearings for Parabolic
Antennas | Higher than P4 | | | Dental Drills | CLASS 7P, CLASS 5P | | | Gyroscopes | CLASS 7P, P4 | | Extra high speed is | High Frequency Spindles | CLASS 7P, P4 | | required | Superchargers | P5, P4 | | | Centrifugal Separators | P5, P4 | | | Main Shafts of Jet Engines | Higher than P4 | | Low torque and low | Gyroscope Gimbals | CLASS 7P, P4 | | torque variation are | Servomechanisms | CLASS 7P, CLASS 5P | | required | Potentiometric Controllers | CLASS 7P | A 80 A 81 # 9. FITS AND INTERNAL CLEARANCES #### 9.1 Fits #### 9.1.1 Importance of Proper Fits In the case of a rolling bearing with the inner ring fitted to the shaft with only slight interference, a harmful circumferential slipping may occur between the inner ring and shaft. This slipping of the inner ring, which is called "creep", results in a circumferential displacement of the ring relative to the shaft if the interference fit is not sufficiently tight. When creep
occurs, the fitted surfaces become abraded, causing wear and considerable damage to the shaft. Abnormal heating and vibration may also occur due to abrasive metallic particles entering the interior of the bearing. It is important to prevent creep by having sufficient interference to firmly secure that ring which rotates to either the shaft or housing. Creep cannot always be eliminated using only axial tightening through the bearing ring faces. Generally, it is not necessary, however, to provide interference for rings subjected only to stationary loads. Fits are sometimes made without any interference for either the inner or outer ring, to accommodate certain operating conditions, or to facilitate mounting and dismounting. In this case, to prevent damage to the fitting surfaces due to creep, lubrication of other applicable methods should be considered. #### 9.1.2 Selection of Fit #### (1) Load Conditions and Fit The proper fit may be selected from Table 9.1 based on the load and operating conditions. #### (2) Magnitude of Load and Interference The interference of the inner ring is slightly reduced by the bearing load; therefore, the loss of interference should be estimated using the following equations: $$\Delta d_{\rm F} = 0.08 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots (N)$$ $$\Delta d_{\rm F} = 0.25 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots {\rm \{kgf\}}$$... (9.1) where $\Delta d_{\rm F}$: Interference decrease of inner ring (mm) d: Bearing bore diameter (mm) B: Nominal inner ring width (mm) $F_{\rm r}$: Radial load applied on bearing (N), {kgf} Table 9.1 Loading Conditions and Fits | Load Application | Bearing (| Operation | Load | Fitt | ing | |--|---------------------------|---------------------------|------------------------------------|------------|------------| | Load Application | Inner Ring | Outer Ring | Conditions | Inner Ring | Outer Ring | | TO T | Rotating | Stationary | Rotating
Inner Ring
Load | | | | Load Rotating O O O O O O O O O O O O O | Stationary | Rotating | Stationary
Outer Ring
Load | Tight Fit | Loose Fit | | Load Stationary | Stationary | Rotating | Rotating
Outer Ring
Load | Loose Fit | Tight Fit | | [Coad Rotating Coad | Rotating | Stationary | - Stationary
Inner Ring
Load | | | | Direction of load indeterminate due to variation of direction or unbalanced load | Rotating or
Stationary | Rotating or
Stationary | Direction of Load
Indeterminate | Tight Fit | Tight Fit | Therefore, the effective interference Δd should be larger than the interference given by Equation (9.1). However, in the case of heavy loads where the radial load exceeds 20% of the basic static load rating $C_{\rm or}$, under the operating condition, interference often becomes shortage. Therefore, interference should be estimated using Equation (9.2): where Δd : Effective interference (mm) $F_{\rm r}$: Radial load applied on bearing (N), {kgf} B: Nominal inner ring width (mm) #### (3) Interference Variation Caused by Temperature Difference between Bearing and Shaft or Housing The effective interference decreases due to the increasing bearing temperature during operation. If the temperature difference between the bearing and housing is ΔT (°C), then the temperature difference between the fitted surfaces of the shaft and inner ring is estimated to be about (0.1~0.15) ΔT in case that the shaft is cooled. The decrease in the interference of the inner ring due to this temperature difference $\Delta d_{\rm T}$ may be calculated using Equation (9.3): $$\Delta d_{\rm T} = (0.10 \text{ to } 0.15) \times \Delta T \cdot \alpha \cdot d$$ = 0.0015 \Delta T \cdot d \times 10^{-3}(9.3) where Δd_T : Decrease in interference of inner ring due to temperature difference (mm) △ T: Temperature difference between bearing interior and surrounding parts (°C) α : Coefficient of linear expansion of bearing steel=12.5×10⁻⁶ (1/°C) d: Bearing nominal bore diameter (mm) In addition, depending on the temperature difference between the outer ring and housing, or difference in their coefficients of linear expansion, the interference may increase. # (4) Effective Interference and Finish of Shaft and Housing Since the roughness of fitted surfaces is reduced during fitting, the effective interference becomes less than the apparent interference. The amount of this interference decrease varies depending on the roughness of the surfaces and may be estimated using the following equations: For ground shafts $$\Delta d = \frac{d}{d+2} \Delta d_a \dots (9.4)$$ For machined shafts $$\Delta d = \frac{d}{d+3} \Delta d_a$$(9.5) where Δd : Effective interference (mm) Δd_a : Apparent interference (mm) d: Bearing nominal bore diameter (mm) According to Equations (9.4) and (9.5), the effective interference of bearings with a bore diameter of 30 to 150 mm is about 95% of the apparent interference. # (5) Fitting Stress and Ring Expansion and Contraction When bearings are mounted with interference on a shaft or in a housing, the rings either expand or contract and stress is produced. Excessive interference may damage the bearings; therefore, as a general guide, the maximum interference should be kept under approximately 7/10 000 of the shaft diameter. The pressure between fitted surfaces, expansion or contraction of the rings, and circumferential stress may be calculated using the equations in Section 15.2, Fitting(1) (Pages A130 and A131). #### 9.1.3 Recommended Fits As described previously, many factors, such as the characteristics and magnitude of bearing load, temperature differences, means of bearing mounting and dismounting, must be considered when selecting the proper fit. If the housing is thin or the bearing is mounted on a hollow shaft, a tighter than usual fit is necessary. A split housing often deforms the bearing into an oval shape; therefore, a split housing should be avoided when a tight fit with the outer ring is required. The fits of both the inner and outer rings should be tight in applications where the shaft is subjected to considerable vibration. The recommended fits for some common applications are shown in Table 9.2 to 9.7. In the case of unusual operating conditions, it is advisable to consult NSK. For the accuracy and surface finish of shafts and housings, please refer to Section 11.1 (Page A100). Table 9.2 Fits of Radial Bearings with Shafts | | | | S | haft Diameter (mm | n) | | | |------------------------------|---|---|-------------------|---|------------|-----------------------|---| | Load | Conditions | Examples | Ball Brgs | Ball Brgs Cylindrical Roller Brgs, Tapered Roller Brgs Brgs | | Tolerance
of Shaft | Remarks | | | | | Radial Bearings | with Cylindrical Bo | res | | | | Rotating
Outer | Easy axial
displacement of
inner ring on shaft
desirable. | Wheels on
Stationary
Axles | ionary | | | | Use g5 and h5 where accuracy is required. In case of large | | Ring Load | Easy axial
displacement of
inner ring on shaft
unnecessary | Tension Pulleys
Rope Sheaves | | All Shart Diameters | ' | h6 | bearings, f6 can be used to allow easy axial movement. | | | Light Loads | Electrical Home | <18 | _ | | js5 | | | | or Variable | Appliances Pumps,
Blowers, Transport | 18 to 100 | <40 | _ | js6(j6) | | | | Loads $(<0.06C_r(^1))$ | Vehicles, Precision
Machinery, | 100 to 200 | 40 to 140 | _ | k6 | | | | (< 0.00C _r ()) | Machine Tools | _ | 140 to 200 | _ | m6 | | | | Normal Loads (0.06 to 0.13
$C_{\rm r}(^{\rm l})$) | | <18 | _ | _ | js5 or js6 (j5 or j6) | | | | | General Bearing
Applications,
Medium and
Large Motors(³),
Turbines, Pumps,
Engine Main
Bearings,
Gears,
Woodworking
Machines | 18 to 100 | <40 | <40 | k5 or k6 | k6 and m6 can be | | Rotating Inner | | | 100 to 140 | 40 to 100 | 40 to 65 | m5 or m6 | used for single-row tapered roller | | Ring Load or
Direction of | | | 140 to 200 | 100 to 140 | 65 to 100 | m6 | bearings and single- | | Load | | | 200 to 280 | 140 to 200 | 100 to 140 | n6 | row angular contact ball bearings | | Indeterminate | | | _ | 200 to 400 | 140 to 280 | p6 | instead of k5 and | | | | | _ | _ | 280 to 500 | r6 | m5. | | | | | _ | _ | over 500 | r7 | | | | | Railway Axleboxes, | _ | 50 to 140 | 50 to 100 | n6 | Mara than CNI | | | Heavy Loads
or Shock Loads | Industrial Vehicles,
Traction Motors, | _ | 140 to 200 | 100 to 140 | p6 | More than CN bearing internal | | | $(>0.13C_{\rm r}(^1))$ | Construction
Equipment, | _ | over 200 | 140 to 200 | r6 | clearance is necessary. | | | | Crushers | _ | _ | 200 to 500 | r7 | necessary. | | Axial | Loads Only | | | All Shaft Diameters | | js6 (j6) | _ | | | | Rad | ial Bearings with | Tapered Bores and | Sleeves | | | | All Tyrn | es of Loading | General bearing
Applications,
Railway Axleboxes | | All Shaft Diameters | | h9/IT5(²) | IT5 and IT7 mean that
the deviation of the shaft
from its true geometric
form, e. g. roundness and | | ліі Турі | 55 or Evaling | Transmission Shafts,
Woodworking
Spindles | | All Shart Diameters | 1 | h10/IT7(2) | cylindricity should be within the tolerances of IT5 and IT7 respectively. | Notes (1) C_r represents the basic load rating of the bearing. (2) Refer to Appendix Table 11 on page C22 for the values of standard tolerance grades IT. (3) Refer to Tables 9.13.1 and 9.13.2 for the recommended fits of shafts used in electric motors for deep groove ball bearings with bore diameters ranging from 10 mm to 160 mm, and for cylindrical roller bearings with bore diameters ranging from 24 mm to 200 mm. **Remarks** This table is applicable only to solid steel shafts. Table 9.3 Fits of Thrust Bearings with Shafts | Load | Conditions | Examples | Shaft Diameter (mm) | Tolerance
of Shaft | Remarks | |-----------------------------|-------------------------------|--------------------------|---------------------|-----------------------|---------| | Central A | ixial Load Only | Main Shafts
of Lathes | All Shaft Diameters | h6 or
js6 (j6) | | | Combined | Stationary Inner
Ring Load | Cone Crushers | All Shaft Diameters | js6 (j6) | | | Radial and
Axial Loads | Rotating Inner Ring | Paper Pulp | <200 | k6 | _ | | (Spherical
Thrust Roller | Load or Direction of Load | Refiners,
Plastic | 200 to 400 | m6 | | | Bearings) | Indeterminate | Extruders | over 400 | n6 | | Table 9.4 Fits of Radial Bearings with Housings | | Load Co | nditions | Examples | Tolerances for
Housing Bores | Axial Displacement
of Outer Ring | Remarks | | |-------------------|---------------------------------------|--|---|--|--|--|--| | | | Heavy Loads on Bearing in
Thin-Walled Housing or
Heavy Shock Loads | Automotive Wheel Hubs
(Roller Bearings)
Crane Travelling Wheels | P7 | | | | | | Rotating
Outer Ring | Normal or Heavy
Loads | Normal or Heavy Automotive Wheel Hubs | | - Impossiblo | | | | Solid
Housings | Load | Light or Variable
Loads | Conveyor Rollers
Rope Sheaves
Tension Pulleys | M7 | Impossible | _ | | | | | Heavy Shock Loads | Traction Motors | | | | | | | Direction of
Load | Normal or Heavy
Loads | Pumps
Crankshaft Main
Bearings | heel Hubs pig Wheels heel Hubs P7 Impossible P7 Impossible P7 Impossible P8 Impossible P8 Impossible P8 Impossible P8 Impossible P9 Impossible P9 Impossible P9 Impossible Impossibl | If axial displacement of
the outer ring is not
required. | | | | | macterninate | Normal or Light
Loads | Medium and Large
Motors(1) | Main K7 Generally the oute required the oute required the outer sequired the outer sequired the outer right of required right of | Axial displacement of outer ring is necessary. | | | | Solid or
Split | | Loads of All kinds | General Bearing
Applications,
Railway Axleboxes | Н7 | | | | | Housings | | Normal or Light
Loads | Plummer Blocks | Н8 | | _ | | | | Rotating
Inner Ring
Load | High Temperature Rise
of Inner Ring Through
Shaft | Paper Dryers | G7 | | | | | | Luau | Accurate Running
Desirable under | Grinding Spindle Rear
Ball Bearings
High Speed Centrifugal
Compessor Free
Bearings | Mheels P7 all Hubs N7 as Impossible K7 Generally Impossible K7 Generally Impossible La Signature | _ | | | | Solid Housing | Direction of
Load
Indeterminate | Normal or Light
Loads | Grinding Spindle Front
Ball Bearings
High Speed Centrifugal
Compressor Fixed
Bearings | K6 | | For heavy loads,
interference fit tighter
than K is used.
When high accuracy is | | | | Rotating | Accurate Running and
High Rigidity Desirable
under Variable Loads | Cylindrical Roller
Bearings for Machine
Tool Main Spindle | M6 or N6 | Impossible | required, very strict
tolerances should be
used for fitting. | | | | Inner Ring
Load | Minimum noise is required. | Electrical Home
Appliances | Н6 | | _ | | | Note | (1) Refer to | Tables 9 13 1 and 9 1 | 3.2 for the recomme | nded fits of housing | hores of deep o | rroove hall bearings and | | Note (1) Refer to Tables 9.13.1 and 9.13.2 for the recommended fits of housing bores of deep groove ball bearings and cylindrical roller bearings for electric motors. Remarks 1. This table is applicable to cast iron and steel housings. For housings made of light alloys, the interference should be tighter than those in this table. 2. Refer to the introductory section of the bearing dimension tables (blue pages) for special fits such as drawn cup needle roller bearings. Table 9.5 Fits of Thrust Bearings with Housings | | Load Conditions | Bearing Types | Tolerances for
Housing Bores | Remarks | |--------------------|---------------------------------|--|----------------------------------|--| | | | Thrust Ball | Clearance over 0.25mm | For General Applications | | | | Bearings | H8 | When precision is required | | | Axial Loads Only | Spherical Thrust
Roller Bearings
Steep Angle
Tapered Roller
Bearings | Outer ring has radial clearance. | When radial loads are sustained by other bearings. | | Combined
Radial | Stationary Outer Ring Loads | Spherical Thrust | H7 or JS7 (J7) | _ | | and Axial | Rotating Outer Ring Loads or | Roller Bearings | K7 | Normal Loads | | Loads | Direction of Load Indeterminate | | M7 | Relatively Heavy Radial Loads | A 84 A 85 ## Table 9.6 Fits of Inch Design Tapered Roller Bearings with Shafts #### (1) Bearings of Precision Classes 4 and 2 Unite : um | (., | (1) boarings of 1 toolston oldsses 1 and 2 | | | | | | | | | | | | |------------------------------|--|---------|--------------|----------------------------|---------|--------|--|------|------------------|--|--|--| | Ono | rating Conditions | | Nominal Bore | e Diameters $oldsymbol{d}$ | | Tolera | Bore Diameter
Tolerances
Δ_{ds} | | iameter
ances | - Remarks | | | | Ope | atting
conditions | OV | ver . | inc | :l. | | | | | IXEITIBI K3 | | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | | - | _ | 76.200 | 3.0000 | +13 | 0 | + 38 | + 25 | | | | | _ | Normal Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | + 64 | + 38 | For bearings with $d \le 152.4 \text{ mm}$, | | | | S | NOTHIAI LUAUS | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | +127 | + 76 | clearance is usually larger than CN. | | | | Rotating Inner
Ring Loads | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +190 | +114 | | | | | atin
g Lc | Home Loods | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 64 | + 38 | In general, bearings with a clear- | | | | Sot | Heavy Loads
Shock Loads
High Speeds | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | * | | ance larger than CN are used. | | | | | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | * | | * means that the average | | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +381 | +305 | interference is about 0.0005 d. | | | | | | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 13 | 0 | The inner ring cannot be displaced axially. | | | | <u>_</u> | | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | + 25 | 0 | When heavy or shock loads exist, the | | | | Sute | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | + 51 | 0 | figures in the above (Rotating inner ring | | | | Rotating Outer
Ring Loads | Normal Loads | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | + 76 | 0 | loads, heavy or shock loads) apply. | | | | atir
g L | without Shocks | _ | _ | 76.200 | 3.0000 | +13 | 0 | 0 | - 13 | | | | | Rot | | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | 0 | - 25 | The inner ring can be displaced | | | | | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | 0 | - 51 | axially. | | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | 0 | - 76 | | | | #### (2) Bearings of Precision Classes 3 and 0 (1) Units : $\mu \, m$ | One | rating Conditions | | Nominal Bore | | Bore Di
Tolera | ances | Snatt Diameter | | - Remarks | | |------------------------------|----------------------------|---------|--------------|---------|-------------------|-------|----------------|------|-----------|---------------------------------| | Ope | rating Conditions | OV | er | inc | il. | | | | | Remarks | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | Danaisia a | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 30 | +18 | | | _ | Precision
Machine-Tool | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | + 30 | +18 | | | inel. | Main Spindles | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | + 64 | +38 | _ | | n g | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +102 | +64 | | | Rotating Inner
Ring Loads | | _ | - | 76.200 | 3.0000 | +13 | 0 | _ | _ | | | Sing
Sing | Heavy Loads
Shock Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | _ | _ | A minimum interference of about | | 4 | High Speeds | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | _ | _ | 0.00025 d is used. | | | J ' | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | _ | _ | | | nter | Descioles | _ | - | 76.200 | 3.0000 | +13 | 0 | + 30 | +18 | | | g Or | Precision
Machine-Tool | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | + 30 | +18 | | | atin | Main Spindles | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | + 64 | +38 | _ | | Rotating Outer
Ring Loads | waiii Spiriules | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +102 | +64 | | Note (1) For bearings with d greater than 304.8 mm, Class 0 does not exist. ## Table 9.7 Fits of Inch Design Tapered Roller Bearings with Housings #### (1) Bearings of Precision Classes 4 and 2 Units : μm | | | | | | | | | | | onits . µm | | |------------------------------|--|---------|---------------|-----------------------|---------|---|-----|--|------|---|--| | Ono | rating Conditions | No | ominal Outsid | de Diameters <i>I</i> | D | Outside Diameter Tolerances Δ_{Ds} | | Housing Bore
Diameter
Tolerances | | - Remarks | | | Ope | alling Conditions | OVE | er | ind | cl. | | | | | Remarks | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | _ | _ | 76.200 | 3.0000 | +25 | 0 | + 76 | + 51 | | | | | Used either | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | + 76 | + 51 | The outer ring can be easily | | | | on free-end or | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | + 76 | + 51 | The outer ring can be easily displaced axially. | | | SS | fixed-end | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | +152 | +102 | displaced axially. | | | -0a | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +229 | +152 | | | | Rotating Inner Ring Loads | | _ | - | 76.200 | 3.0000 | +25 | 0 | + 25 | 0 | | | | 돌 | The outer ring position can be adjusted axially. | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | + 25 | 0 | The outer ring can be displaced | | | ner | | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | + 51 | 0 | axially. | | | J L | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | + 76 | + 25 | axiany. | | | ţiu | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +127 | + 51 | | | | ota | The autorian | _ | - | 76.200 | 3.0000 | +25 | 0 | - 13 | - 38 | | | | ~ | The outer ring position cannot | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | - 25 | - 51 | Generally, the outer ring is fixed | | | | be adjusted | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | - 25 | - 51 | axially. | | | | axially. | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | - 25 | - 76 | axiany. | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | - 25 | -102 | | | | Rotating Outer
Ring Loads | Normal Loads | _ | - | 76.200 | 3.0000 | +25 | 0 | - 13 | - 38 | | | | 3g | The outer ring | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | - 25 | - 51 | | | | 200 | position cannot | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | - 25 | - 51 | The outer ring is fixed axially. | | | 200 | be adjusted (| 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | - 25 | - 76 | | | | ᅐ | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | - 25 | -102 | | | #### (2) Bearings of Precision Classes 3 and 0 (1) Units : μm | One | rating Conditions | No | ominal Outsid |) | Outside Diameter
Tolerances
Δ _{Ds} | | Housing Bore
Diameter
Tolerances | | - Remarks | | |---------------------------|-------------------|---------|---------------|---------|--|------|--|------|-----------|------------------------------------| | Ope | rating conditions | OVE | er | incl. | | | | | | IVEITIGI N.3 | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | _ | - | 152.400 | 6.0000 | +13 | 0 | +38 | +25 | | | | Used on free- | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +38 | +25 | The outer ring can be easily | | | end | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +64 | +38 | displaced axially. | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +89 | +51 | | | Rotating Inner Ring Loads | | _ | - | 152.400 | 6.0000 | +13 | 0 | +25 | +13 | | | J. | Used on fixed- | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +25 | +13 | The outer ring can be displaced | | ÿi | end | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +51 | +25 | axially. | | er
F | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +76 | +38 | | | 드 | The outer ring | _ | - | 152.400 | 6.0000 | +13 | 0 | +13 | 0 | | | р | position can be | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +25 | 0 | Generally, the outer ring is fixed | | tati | adjusted axially. | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +25 | 0 | axially. | | & | . , | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +38 | 0 | | | | The outer ring | _ | - | 152.400 | 6.0000 | +13 | 0 | 0 | -13 | | | | position cannot | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | 0 | -25 | The outer ring is fixed axially. | | | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | 0 | -25 | The cater ring is tinea amany. | | | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | 0 | -38 | | | ıter | Normal Loads | _ | - | 76.200 | 3.0000 | +13 | 0 | -13 | -25 | | | 35
Sp | The outer ring | 76.200 | 3.0000 | 152.400 | 6.0000 | +13 | 0 | -13 | -25 | | | Log | position cannot | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | -13 | -38 | The outer ring is fixed axially. | | Rotating Outer Ring Loads | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | -13 | -38 | | | 200 | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | -13 | -51 | | Note (1) For bearings with D greater than 304.8 mm, Class 0 does not exist. A 86 #### 9.2 Bearing Internal Clearances #### 9.2.1 Internal Clearances and Their Standards The internal clearance in rolling bearings in operation greatly influences bearing performance including fatique life, vibration, noise, heat-generation, etc. Consequently, the selection of the proper internal clearance is one of the most important tasks when choosing a bearing after the type and size have been determined. This bearing internal clearance is the combined clearances between the inner/outer rings and rolling elements. The radial and axial clearances are defined as the total amount that one ring can be displaced relative to the other in the radial and axial directions respectively (Fig. 9.1). To obtain accurate measurements, the clearance is generally measured by applying a specified measuring load on the bearing: therefore, the measured clearance (sometimes called "measured clearance" to make a distinction) is always slightly larger than the theoretical internal clearance (called "geometrical clearance" for radial bearings) by the amount of elastic deformation caused by the measuring
load. Therefore, the theoretical internal clearance may be obtained by correcting the measured clearance by the amount of elastic deformation. However, in the case of roller bearings this elastic deformation is negligibly Usually the clearance before mounting is the one specified as the theoretical internal clearance. In Table 9.8, reference table and page numbers are listed by bearing types. Table 9.8 Index for Radial Internal Clearances by Bearing Types | Ве | earing Types | Table
Number | Page
Number | |----------------------------------|--|-----------------|----------------| | Deep Groove Ba | III Bearings | 9.9 | A89 | | Extra Small and | Miniature Ball Bearings | 9.10 | A89 | | Magneto Bearin | gs | 9.11 | A89 | | Self-Aligning Ba | III Bearings | 9.12 | A90 | | Deep Groove
Ball Bearings | | 9.13.1 | A90 | | Cylindrical
Roller Bearings | For Motors | 9.13.2 | A90 | | Cylindrical
Roller Bearings | With Cylindrical Bores With Cylindrical Bores (Matched) With Tapered Bores (Matched) | 9.14 | A91 | | Spherical
Roller Bearings | With Cylindrical Bores With Tapered Bores | 9.15 | A92 | | Double-Row an
Roller Bearings | d Combined Tapered | 9.15 | A93 | | Combined Angu
Bearings (1) | ılar Contact Ball | 9.17 | A94 | | Four-Point Cont | act Ball Bearings (¹) | 9.18 | A94 | Note (1) Values given are axial clearances. Table 9.9 Radial Internal Clearances in **Deep Groove Ball Bearings** Clearance Units: um | Diamet | | | | | | Oicui | unicc | | | | | |---------------------|----------|-------------|--------------|-------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------| | d (mn | | C | 2 | С | N | С | 3 | С | :4 | C | :5 | | over | incl. | min. | max. | | 10 only
10
18 | 18
24 | 0
0
0 | 7
9
10 | 2
3
5 | 13
18
20 | 8
11
13 | 23
25
28 | 14
18
20 | 29
33
36 | 20
25
28 | 37
45
48 | | 24 | 30 | 1 | 11 | 5 | 20 | 13 | 28 | 23 | 41 | 30 | 53 | | 30 | 40 | 1 | 11 | 6 | 20 | 15 | 33 | 28 | 46 | 40 | 64 | | 40 | 50 | 1 | 11 | 6 | 23 | 18 | 36 | 30 | 51 | 45 | 73 | | 50 | 65 | 1 | 15 | 8 | 28 | 23 | 43 | 38 | 61 | 55 | 90 | | 65 | 80 | 1 | 15 | 10 | 30 | 25 | 51 | 46 | 71 | 65 | 105 | | 80 | 100 | 1 | 18 | 12 | 36 | 30 | 58 | 53 | 84 | 75 | 120 | | 100 | 120 | 2 | 20 | 15 | 41 | 36 | 66 | 61 | 97 | 90 | 140 | | 120 | 140 | 2 | 23 | 18 | 48 | 41 | 81 | 71 | 114 | 105 | 160 | | 140 | 160 | 2 | 23 | 18 | 53 | 46 | 91 | 81 | 130 | 120 | 180 | | 160 | 180 | 2 | 25 | 20 | 61 | 53 | 102 | 91 | 147 | 135 | 200 | | 180 | 200 | 2 | 30 | 25 | 71 | 63 | 117 | 107 | 163 | 150 | 230 | | 200 | 225 | 2 | 35 | 25 | 85 | 75 | 140 | 125 | 195 | 175 | 265 | | 225 | 250 | 2 | 40 | 30 | 95 | 85 | 160 | 145 | 225 | 205 | 300 | | 250 | 280 | 2 | 45 | 35 | 105 | 90 | 170 | 155 | 245 | 225 | 340 | | 280 | 315 | 2 | 55 | 40 | 115 | 100 | 190 | 175 | 270 | 245 | 370 | | 315 | 355 | 3 | 60 | 45 | 125 | 110 | 210 | 195 | 300 | 275 | 410 | | 355 | 400 | 3 | 70 | 55 | 145 | 130 | 240 | 225 | 340 | 315 | 460 | | 400 | 450 | 3 | 80 | 60 | 170 | 150 | 270 | 250 | 380 | 350 | 510 | | 450 | 500 | 3 | 90 | 70 | 190 | 170 | 300 | 280 | 420 | 390 | 570 | | 500 | 560 | 10 | 100 | 80 | 210 | 190 | 330 | 310 | 470 | 440 | 630 | | 560 | 630 | 10 | 110 | 90 | 230 | 210 | 360 | 340 | 520 | 490 | 690 | | 630 | 710 | 20 | 130 | 110 | 260 | 240 | 400 | 380 | 570 | 540 | 760 | | 710 | 800 | 20 | 140 | 120 | 290 | 270 | 450 | 430 | 630 | 600 | 840 | | Remarks | To obt | ain th | e mea | surec | l value | es. use | e the o | leara | nce co | rrecti | | Nominal Bore **Remarks** To obtain the measured values, use the clearance correction for radial clearance increase caused by the measuring load in the table below. > For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for bearings near the maximum clearance range. Units : μm | Nominal E
Dia. d (n | | Meas
Lo | | | lial Cle
ount | arance | Correc | tion | |-------------------------------|-----------------|-------------------|-------------|----------------------------|------------------|-------------|-------------|-------------| | over | incl. | (N) | au
{kgf} | C2 | CN | C3 | C4 | C5 | | 10 (incl)
18
50 | 18
50
280 | 24.5
49
147 | | 3 to 4
4 to 5
6 to 8 | 4
5
8 | 4
6
9 | 4
6
9 | 4
6
9 | Remarks For values exceeding 280 mm, please contact NSK. Table 9.10 Radial Internal Clearances in Extra Small and Miniature Ball Bearings Units: um | Clear-
ance
Symbol | | C1 | M | C2 | M | СЗ | M | C4 | M | C5 | M | C6 | |--------------------------|------|------|------|------|------|------|------|------|------|------|------|------| | | min. | max. | | Clear-
ance | 0 | 5 | 3 | 8 | 5 | 10 | 8 | 13 | 13 | 20 | 20 | 28 | Remarks 1. The standard clearance is MC3. 2. To obtain the measured value, add correction amount in the table below. Units: μm | Clearance
Symbol | MC1 | MC2 | МС3 | MC4 | MC5 | MC6 | |----------------------------------|-----|-----|-----|-----|-----|-----| | Clearance
Correction
Value | 1 | 1 | 1 | 1 | 2 | 2 | The measuring loads are as follows: For miniature ball bearings* 2.5N {0.25kgf} For extra small ball bearings* 4.4N {0.45kgf} *For their classification, refer to Table 1 on Page B 31. Table 9.11 Radial Internal Clearances in Magneto Bearings Units: um | Nomina Diam $oldsymbol{d}$ (n | neter | Bearing
Series | Clea | rance | |-------------------------------|-------|-------------------|------|-------| | over | incl. | | min. | max. | | 2.5 | 30 | EN | 10 | 50 | | 2.5 | 30 | E | 30 | 60 | A 88 Table 9.12 Radial Internal Clearances in Self-Aligning Ball Bearings Units : $\mu \, m$ | Nomina | | | Cl | earanc | e in Be | arings | with C | ylindri | cal Bo | es | | | (| learan | ice in E | earing | s with | Tapere | d Bore | S | | |-----------------|------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-------------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|------------------|------------------|-------------------| | Dia. d (| (mm) | C | 22 | C | N | (| C3 | C | :4 | C | 5 | (| C2 | C | N | C | 23 | C | 4 | | C5 | | over | incl. | min. | max. | 2.5
6
10 | 6
10
14 | 1
2
2 | 8
9
10 | 5
6
6 | 15
17
19 | 10
12
13 | 20
25
26 | 15
19
21 | 25
33
35 | 21
27
30 | 33
42
48 | = | = | = | = | = | = | = | = | = | = | | 14
18
24 | 18
24
30 | 3
4
5 | 12
14
16 | 8
10
11 | 21
23
24 | 15
17
19 | 28
30
35 | 23
25
29 | 37
39
46 | 32
34
40 | 50
52
58 | | 17
20 | 13
15 |
26
28 | 20
23 | 33
39 | 28
33 | 42
50 | 37
44 | 55
62 | | 30
40
50 | 40
50
65 | 6
6
7 | 18
19
21 | 13
14
16 | 29
31
36 | 23
25
30 | 40
44
50 | 34
37
45 | 53
57
69 | 46
50
62 | 66
71
88 | 12
14
18 | 24
27
32 | 19
22
27 | 35
39
47 | 29
33
41 | 46
52
61 | 40
45
56 | 59
65
80 | 52
58
73 | 72
79
99 | | 65
80
100 | 80
100
120 | 8
9
10 | 24
27
31 | 18
22
25 | 40
48
56 | 35
42
50 | 60
70
83 | 54
64
75 | 83
96
114 | 76
89
105 | 108
124
145 | 23
29
35 | 39
47
56 | 35
42
50 | 57
68
81 | 50
62
75 | 75
90
108 | 69
84
100 | 98
116
139 | 91
109
130 | 123
144
170 | | 120
140 | 140
160 | 10
15 | 38
44 | 30
35 | 68
80 | 60
70 | 100
120 | 90
110 | 135
161 | 125
150 | 175
210 | 40
45 | 68
74 | 60
65 | 98
110 | 90
100 | 130
150 | 120
140 | 165
191 | 155
180 | 205
240 | #### Table 9.13 Radial Internal Clearances in **Bearings for Electric Motors** Table 9.13. 1 Deep Groove Ball Bearings for Electric Motors | 9- | | | |-------|---|----| | Units | : | μm | | | | | | Units | s:μm | |----------------|-------|------|-------|----------|--------------------------| | Nominal B | | Clea | rance | Ren | narks | | Dia. $m{d}$ (m | m) | C | M | Recomn | nended fit | | over | incl. | min. | max. | Shaft | Housing Bore | | 10 (incl) | 18 | 4 | 11 | js5 (j5) | | | 18 | 30 | 5 | 12 | | | | 30 | 50 | 9 | 17 | | H6, H7(1) | | 50 | 80 | 12 | 22 | k5 | or
JS6, JS7 | | 80 | 100 | 18 | 30 | | (J6, J7)(²) | | 100 | 120 | 18 | 30 | m5 | | | 120 | 160 | 24 | 38 | 1110 | | Notes (1) Applicable to outer rings that require movement in the axial direction. > (2) Applicable to outer rings that do not require movement in the axial direction. Remarks The radial clearance increase caused by the measuring load is equal to the correction amount for CN clearance in the remarks under Table 9.9. Table 9.13.2 Cylindrical Roller Bearings for Electric Motors Units: um | | | | | | | | 110 . pc 111 | |--------|---------|-----------|-----------|-------------|-------------|-------|-------------------------| | Nomina | al Bore | | Clear | ance | | F | Remarks | | Dia. d | (mm) | Interchan | geable CT | Non-Interch | angeable CM | Recor | mmended Fit | | over | incl. | min. | max. | min. | max. | Shaft | Housing Bore | | 24 | 40 | 15 | 35 | 15 | 30 | k5 | | | 40 | 50 | 20 | 40 | 20 | 35 | | | | 50 | 65 | 25 | 45 | 25 | 40 | | | | 65 | 80 | 30 | 50 | 30 | 45 | | | | 80 | 100 | 35 | 60 | 35 | 55 | m5 | JS6, JS7
(J6, J7)(1) | | 100 | 120 | 35 | 65 | 35 | 60 | | or | | 120 | 140 | 40 | 70 | 40 | 65 | | K6, K7(2) | | 140 | 160 | 50 | 85 | 50 | 80 | | | | 160 | 180 | 60 | 95 | 60 | 90 | | | | 180 | 200 | 65 | 105 | 65 | 100 | n6 | | Notes
(1) Applicable to outer rings that require movement in the axial direction. (2) Applicable to outer rings that do not require movement in the axial direction. Table 9.14 Radial Internal Clearances in Cylindrical Roller Bearings and Solid-Type Needle Roller Bearings $\text{Units}: \mu m$ | | lom
ore | | | | | | ances
Cylind | | | | | | | | | Cleara | | | | angeal
I Bores | ole Bea | rings | | | |---|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | d (m | nm) | C | 2 | С | N | C | 3 | C | 4 | C | 5 | C | C1 | С | C2 | CC | (1) | C | C3 | C | C4 | C | C5 | | 0 | ver | incl. | min. | max. | | 10
24 | 10
24
30 | 0
0
0 | 25
25
25 | 20
20
20 | 45
45
45 | 35
35
35 | 60
60
60 | 50
50
50 | 75
75
75 | —
65
70 | 90
95 |
5
5 |
15
15 | 10
10 |
20
25 | 20
25 | 30
35 | 35
40 | —
45
50 | 45
50 |
55
60 | 65
70 | 75
80 | | | 30
40
50 | 40
50
65 | 5
5
10 | 30
35
40 | 25
30
40 | 50
60
70 | 45
50
60 | 70
80
90 | 60
70
80 | 85
100
110 | 80
95
110 | 105
125
140 | 5
5
5 | 15
18
20 | 12
15
15 | 25
30
35 | 25
30
35 | 40
45
50 | 45
50
55 | 55
65
75 | 55
65
75 | 70
80
90 | 80
95
110 | 95
110
130 | | | | 80
100
120 | 10
15
15 | 45
50
55 | 40
50
50 | 75
85
90 | 65
75
85 | 100
110
125 | 90
105
125 | 125
140
165 | 130
155
180 | 165
190
220 | 10
10
10 | 25
30
30 | 20
25
25 | 40
45
50 | 40
45
50 | 60
70
80 | 70
80
95 | 90
105
120 | 90
105
120 | 110
125
145 | 130
155
180 | 150
180
205 | | 1 | 40 | 140
160
180 | 15
20
25 | 60
70
75 | 60
70
75 | 105
120
125 | 100
115
120 | 145
165
170 | 145
165
170 | 190
215
220 | 200
225
250 | 245
275
300 | 10
10
10 | 35
35
40 | 30
35
35 | 60
65
75 | 60
65
75 | 90
100
110 | 105
115
125 | 135
150
165 | 135
150
165 | 160
180
200 | 200
225
250 | 230
260
285 | | 2 | 00 | 200
225
250 | 35
45
45 | 90
105
110 | 90
105
110 | 145
165
175 | 140
160
170 | 195
220
235 | 195
220
235 | 250
280
300 | 275
305
330 | 330
365
395 | 15
15
15 | 45
50
50 | 40
45
50 | 80
90
100 | 80
90
100 | 120
135
150 | 140
155
170 | 180
200
215 | 180
200
215 | 220
240
265 | 275
305
330 | 315
350
380 | | 2 | 80 | 280
315
355 | 55
55
65 | 125
130
145 | 125
130
145 | 195
205
225 | 190
200
225 | 260
275
305 | 260
275
305 | 330
350
385 | 370
410
455 | 440
485
535 | 20
20
20 | 55
60
65 | 55
60
65 | 110
120
135 | 110
120
135 | 165
180
200 | 185
205
225 | 240
265
295 | 240
265
295 | 295
325
360 | 370
410
455 | 420
470
520 | | 4 | 00 | 400
450
500 | 100
110
110 | 190
210
220 | 190
210
220 | 280
310
330 | 280
310
330 | 370
410
440 | 370
410
440 | 460
510
550 | 510
565
625 | 600
665
735 | 25
25
25 | 75
85
95 | 75
85
95 | 150
170
190 | 150
170
190 | 225
255
285 | 255
285
315 | 330
370
410 | 330
370
410 | 405
455
505 | 510
565
625 | 585
650
720 | Note (1) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings. Units : μm | | lominal
ore Dia. | | | | | Clearar | nces in N | on-Inter | changea | ble Bear | ings witl | n Tapere | d Bores | | | | | |----------------|---------------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | d (mm) | CC | 9 (1) | C | C 0 | C | C1 | C | C2 | CC | (2) | C | C3 | C | C4 | C | C5 | | ove | r incl. | min. | max. | 1
2
3 | 4 30 | 5
5
5 | 10
10
12 |
8
8 | —
15
15 | 10
10
12 | 20
25
25 | 20
25
25 | 30
35
40 | 35
40
45 | 45
50
55 | 45
50
55 | 55
60
70 | 55
60
70 | 65
70
80 | 75
80
95 | 85
95
110 | | 5
6 | 0 65 | 5
5
10 | 15
15
20 | 10
10
15 | 20
20
30 | 15
15
20 | 30
35
40 | 30
35
40 | 45
50
60 | 50
55
70 | 65
75
90 | 65
75
90 | 80
90
110 | 80
90
110 | 95
110
130 | 110
130
150 | 125
150
170 | | 10
12 | 120 | 10
10
15 | 25
25
30 | 20
20
25 | 35
35
40 | 25
25
30 | 45
50
60 | 45
50
60 | 70
80
90 | 80
95
105 | 105
120
135 | 105
120
135 | 125
145
160 | 125
145
160 | 150
170
190 | 180
205
230 | 205
230
260 | | 14
16
18 | 180 | 15
15
20 | 35
35
40 | 30
30
30 | 50
50
50 | 35
35
40 | 65
75
80 | 65
75
80 | 100
110
120 | 115
125
140 | 150
165
180 | 150
165
180 | 180
200
220 | 180
200
220 | 215
240
260 | 260
285
315 | 295
320
355 | | 20
22
25 | 5 250 | 20
25
25 | 45
50
55 | 35
40
40 | 60
65
70 | 45
50
55 | 90
100
110 | 90
100
110 | 135
150
165 | 155
170
185 | 200
215
240 | 200
215
240 | 240
265
295 | 240
265
295 | 285
315
350 | 350
380
420 | 395
430
475 | | 28
31
35 | 355 | 30
30
35 | 60
65
75 | = | _ | 60
65
75 | 120
135
150 | 120
135
150 | 180
200
225 | 205
225
255 | 265
295
330 | 265
295
330 | 325
360
405 | 325
360
405 | 385
430
480 | 470
520
585 | 530
585
660 | | 40
45 | | 40
45 | 85
95 | | = | 85
95 | 170
190 | 170
190 | 255
285 | 285
315 | 370
410 | 370
410 | 455
505 | 455
505 | 540
600 | 650
720 | 735
815 | (1) Clearance CC9 is applicable to cylindrical roller bearings with tapered bores in ISO Tolerance Classes 5 and 4. (2) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings. Table 9.15 Radial Internal Clearances in Spherical Roller Bearings Units : μm | | ninal
Dia. | | (| Cleara | nce in | Beari | ings wit | th Cylin | drical B | ores | | | | Cle | arance | in Beari | ngs wit | h Taper | ed Bore | !S | | |--------------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|-------------------|----------------------------------|----------------------|-------------------------|--------------------------|--------------------------|-------------------|--------------------------------|-------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------| | | nm) | C | 2 | C | N | (| C3 | C | 24 | (| C5 | C | 22 | (| CN | C | 23 | C | 24 | C | 5 | | over | incl. | min. | max. | 24 | 30 | 15 | 25 | 25 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | 20 | 30 | 30 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | | 30 | 40 | 15 | 30 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 25 | 35 | 35 | 50 | 50 | 65 | 65 | 85 | 85 | 105 | | 40 | 50 | 20 | 35 | 35 | 55 | 55 | 75 | 75 | 100 | 100 | 125 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 100 | 130 | | 50 | 65 | 20 | 40 | 40 | 65 | 65 | 90 | 90 | 120 | 120 | 150 | 40 | 55 | 55 | 75 | 75 | 95 | 95 | 120 | 120 | 160 | | 65 | 80 | 30 | 50 | 50 | 80 | 80 | 110 | 110 | 145 | 145 | 180 | 50 | 70 | 70 | 95 | 95 | 120 | 120 | 150 | 150 | 200 | | 80 | 100 | 35 | 60 | 60 | 100 | 100 | 135 | 135 | 180 | 180 | 225 | 55 | 80 | 80 | 110 | 110 | 140 | 140 | 180 | 180 | 230 | | 100 | 120 | 40 | 75 | 75 | 120 | 120 | 160 | 160 | 210 | 210 | 260 | 65 | 100 | 100 | 135 | 135 | 170 | 170 | 220 | 220 | 280 | | 120 | 140 | 50 | 95 | 95 | 145 | 145 | 190 | 190 | 240 | 240 | 300 | 80 | 120 | 120 | 160 | 160 | 200 | 200 | 260 | 260 | 330 | | 140 | 160 | 60 | 110 | 110 | 170 | 170 | 220 | 220 | 280 | 280 | 350 | 90 | 130 | 130 | 180 | 180 | 230 | 230 | 300 | 300 | 380 | | 160 | 180 | 65 | 120 | 120 | 180 | 180 | 240 | 240 | 310 | 310 | 390 | 100 | 140 | 140 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | | 180 | 200 | 70 | 130 | 130 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | 110 | 160 | 160 | 220 | 220 | 290 | 290 | 370 | 370 | 470 | | 200 | 225 | 80 | 140 | 140 | 220 | 220 | 290 | 290 | 380 | 380 | 470 | 120 | 180 | 180 | 250 | 250 | 320 | 320 | 410 | 410 | 520 | | 225 | 250 | 90 | 150 | 150 | 240 | 240 | 320 | 320 | 420 | 420 | 520 | 140 | 200 | 200 | 270 | 270 | 350 | 350 | 450 | 450 | 570 | | 250 | 280 | 100 | 170 | 170 | 260 | 260 | 350 | 350 | 460 | 460 | 570 | 150 | 220 | 220 | 300 | 300 | 390 | 390 | 490 | 490 | 620 | | 280 | 315 | 110 | 190 | 190 | 280 | 280 | 370 | 370 | 500 | 500 | 630 | 170 | 240 | 240 | 330 | 330 | 430 | 430 | 540 | 540 | 680 | | 315 | 355 | 120 | 200 | 200
| 310 | 310 | 410 | 410 | 550 | 550 | 690 | 190 | 270 | 270 | 360 | 360 | 470 | 470 | 590 | 590 | 740 | | 355 | 400 | 130 | 220 | 220 | 340 | 340 | 450 | 450 | 600 | 600 | 750 | 210 | 300 | 300 | 400 | 400 | 520 | 520 | 650 | 650 | 820 | | 400 | 450 | 140 | 240 | 240 | 370 | 370 | 500 | 500 | 660 | 660 | 820 | 230 | 330 | 330 | 440 | 440 | 570 | 570 | 720 | 720 | 910 | | 450
500
560 | 500
560
630 | 140
150
170 | 260
280
310 | 260
280
310 | 410
440
480 | 410
440
480 | 550
600
650 | 550
600
650 | 720
780
850 | | 900
1 000
1 100 | 260
290
320 | 370
410
460 | 370
410
460 | 490
540
600 | 490
540
600 | 630
680
760 | 630
680
760 | 790
870
980 | 870 | 1 000
1 100
1 230 | | 630
710
800 | 710
800
900 | 190
210
230 | 350
390
430 | 350
390
430 | 530
580
650 | 530
580
650 | 700
770
860 | 700
770
860 | 920
1 010
1 120 | 1 010 | 1 190
1 300
1 440 | 350
390
440 | 510
570
640 | 510
570
640 | 670
750
840 | 670
750
840 | 850
960
1 070 | 850
960
1 070 | 1 090
1 220
1 370 | 1 090
1 220
1 370 | 1 360
1 500
1 690 | | 900
1 000
1 120
1 250 | 1 000
1 120
1 250
1 400 | 260
290
320
350 | 480
530
580
640 | 480
530
580
640 | 710
780
860
950 | 710
780
860
950 | 930
1 020
1 120
1 240 | | 1 220
1 330
1 460
1 620 | 1 220
—
—
— | 1 570
—
—
— | 490
530
570
620 | 710
770
830
910 | 830 | 930
1 030
1 120
1 230 | 1 030 | 1 190
1 300
1 420
1 560 | 1 190
1 300
1 420
1 560 | 1 520
1 670
1 830
2 000 | 1 520
—
—
— | | Table 9.16 Radial Internal Clearances in Double-Row and Combined Tapered Roller Bearings $\text{Units}: \mu m$ | | ndrical | | | | | | CI | earance | | | | | | |---------------------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|----------------| | Bore
Tape | ered Bore | C | C1 | C | 22 | C | N | C | C3 | C | 24 | C | 5 | | Nominal Bo
Dia. d (mr | | - | _ | C | 1 | C | 22 | C | N | C | 23 | С | 4 | | over | incl. | min. | max. | | 18
24 | 18
24
30 | 0
0
0 | 10
10
10 | 10
10
10 | 20
20
20 | 20
20
20 | 30
30
30 | 35
35
40 | 45
45
50 | 50
50
50 | 60
60
60 | 65
65
70 | 75
75
80 | | 30 | 40 | 0 | 12 | 12 | 25 | 25 | 40 | 45 | 60 | 60 | 75 | 80 | 95 | | 40 | 50 | 0 | 15 | 15 | 30 | 30 | 45 | 50 | 65 | 65 | 80 | 95 | 110 | | 50 | 65 | 0 | 15 | 15 | 35 | 35 | 55 | 60 | 80 | 80 | 100 | 110 | 130 | | 65 | 80 | 0 | 20 | 20 | 40 | 40 | 60 | 70 | 90 | 90 | 110 | 130 | 150 | | 80 | 100 | 0 | 25 | 25 | 50 | 50 | 75 | 80 | 105 | 105 | 130 | 155 | 180 | | 100 | 120 | 5 | 30 | 30 | 55 | 55 | 80 | 90 | 115 | 120 | 145 | 180 | 210 | | 120 | 140 | 5 | 35 | 35 | 65 | 65 | 95 | 100 | 130 | 135 | 165 | 200 | 230 | | 140 | 160 | 10 | 40 | 40 | 70 | 70 | 100 | 110 | 140 | 150 | 180 | 220 | 260 | | 160 | 180 | 10 | 45 | 45 | 80 | 80 | 115 | 125 | 160 | 165 | 200 | 250 | 290 | | 180 | 200 | 10 | 50 | 50 | 90 | 90 | 130 | 140 | 180 | 180 | 220 | 280 | 320 | | 200 | 225 | 20 | 60 | 60 | 100 | 100 | 140 | 150 | 190 | 200 | 240 | 300 | 340 | | 225 | 250 | 20 | 65 | 65 | 110 | 110 | 155 | 165 | 210 | 220 | 270 | 330 | 380 | | 250 | 280 | 20 | 70 | 70 | 120 | 120 | 170 | 180 | 230 | 240 | 290 | 370 | 420 | | 280 | 315 | 30 | 80 | 80 | 130 | 130 | 180 | 190 | 240 | 260 | 310 | 410 | 460 | | 315 | 355 | 30 | 80 | 80 | 130 | 140 | 190 | 210 | 260 | 290 | 350 | 450 | 510 | | 355 | 400 | 40 | 90 | 90 | 140 | 150 | 200 | 220 | 280 | 330 | 390 | 510 | 570 | | 400 | 450 | 45 | 95 | 95 | 145 | 170 | 220 | 250 | 310 | 370 | 430 | 560 | 620 | | 450 | 500 | 50 | 100 | 100 | 150 | 190 | 240 | 280 | 340 | 410 | 470 | 620 | 680 | | 500 | 560 | 60 | 110 | 110 | 160 | 210 | 260 | 310 | 380 | 450 | 520 | 700 | 770 | | 560 | 630 | 70 | 120 | 120 | 170 | 230 | 290 | 350 | 420 | 500 | 570 | 780 | 850 | | 630 | 710 | 80 | 130 | 130 | 180 | 260 | 310 | 390 | 470 | 560 | 640 | 870 | 950 | | 710 | 800 | 90 | 140 | 150 | 200 | 290 | 340 | 430 | 510 | 630 | 710 | 980 | 1 060 | | 800 | 900 | 100 | 150 | 160 | 210 | 320 | 370 | 480 | 570 | 700 | 790 | 1 100 | 1 200 | | 900 | 1 000 | 120 | 170 | 180 | 230 | 360 | 410 | 540 | 630 | 780 | 870 | 1 200 | 1 300 | | 1 000
1 120
1 250 | 1 120
1 250
1 400 | 130
150
170 | 190
210
240 | 200
220
250 | 260
280
320 | 400
450
500 | 460
510
570 | 600
670
750 | 700
770
870 | | = | _
_
_ | _
_
_ | $\begin{array}{ll} \textbf{Remarks} & \textbf{Axial internal clearance} \quad \varDelta_{\textbf{a}} = \varDelta_{\textbf{r}} \cot \alpha \stackrel{:}{=} \frac{1.5}{e} \ \varDelta_{\textbf{r}} \\ & \text{where} \ \varDelta_{\textbf{r}} : \textbf{Radial internal clearance} \\ & \alpha : \textbf{Contact angle} \\ & e : \textbf{Constant (Listed in bearing tables)} \\ \end{array}$ A 92 Table 9.17 Axial Internal Clearances in Combined Angular Contact Ball Bearings (Measured Clearance) Units : μm | Nomi | inal Bore | | Axial Intern | | | | Axial Interna | al Clearance | | | | | | |----------------------------|-------------------|----------------|-------------------|------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|-------------------|-------------------|-------------------| | Diameter.
d (mm) | | | Contact Angle 30° | | | | Contact Angle 40° | | | | | | | | | | C | N | (| C3 | C | C4 | C | N | C | C3 | (| C4 | | over | incl. | min. | max. | | 10
18 | 10
18
24 | 9
10
19 | 29
30
39 | 29
30
39 | 49
50
59 | 49
50
59 | 69
70
79 | 6
7
13 | 26
27
33 | 26
27
33 | 46
47
53 | 46
47
53 | 66
67
73 | | 24
30
40 | 30
40
50 | 20
26
29 | 40
46
49 | 40
46
49 | 60
66
69 | 60
66
69 | 80
86
89 | 14
19
21 | 34
39
41 | 34
39
41 | 54
59
61 | 54
59
61 | 74
79
81 | | 50
65
80 | 65
80
100 | 35
38
49 | 60
63
74 | 60
63
74 | 85
88
99 | 85
88
99 | 110
115
125 | 25
27
35 | 50
52
60 | 50
52
60 | 75
77
85 | 75
77
85 | 100
100
110 | | 100
120
140 | 120
140
160 | 72
85
90 | 97
115
120 | 97
115
120 | 120
145
150 | 120
145
150 | 145
175
180 | 52
63
66 | 77
93
96 | 77
93
96 | 100
125
125 | 100
125
125 | 125
155
155 | | 160
180 | 180
200 | 95
110 | 125
140 | 125
140 | 155
170 | 155
170 | 185
200 | 68
80 | 98
110 | 98
110 | 130
140 | 130
140 | 160
170 | Remarks This table is applicable to bearings in Tolerance Classes Normal and 6. For internal axial clearances in bearings in tolerance classes better than 5 and contact angles of 15° and 25°, it is advisable to consult NSK. Table 9.18 Axial Internal Clearance in Four-Point **Contact Ball Bearings** (Measured Clearances) Unite : um | | | | | | | | UI | IIIS : μ1 | 111 | |--------|--------------|------|------|------|----------|----------|------|-----------|------| | Nomin | Nominal Bore | | | Axia | l Intern | al Clear | ance | | | | Dia. d | (mm) | C2 | | CN | | C3 | | C4 | | | over | incl. | min. | max. | min. | max. | min. | max. | min. | max. | | 10 | 18 | 15 | 55 | 45 | 85 | 75 | 125 | 115 | 165 | | 18 | 40 | 26 | 66 | 56 | 106 | 96 | 146 | 136 | 186 | | 40 | 60 | 36 | 86 | 76 | 126 | 116 | 166 | 156 | 206 | | 60 | 80 | 46 | 96 | 86 | 136 | 126 | 176 | 166 | 226 | | 80 | 100 | 56 | 106 | 96 | 156 | 136 | 196 | 186 | 246 | | 100 | 140 | 66 | 126 | 116 | 176 | 156 | 216 | 206 | 266 | | 140 | 180 | 76 | 156 | 136 | 196 | 176 | 246 | 226 | 296 | | 180 | 220 | 96 | 176 | 156 | 226 | 206 | 276 | 256 | 326 | | 220 | 260 | 115 | 196 | 175 | 245 | 225 | 305 | 285 | 365 | | 260 | 300 | 135 | 215 | 195 | 275 | 255 | 335 | 315 | 395 | | 300 | 350 | 155 | 235 | 215 | 305 | 275 | 365 | 345 | 425 | | 350 | 400 | 175 | 265 | 245 | 335 | 315 | 405 | 385 | 475 | | 400 | 500 | 205 | 305 | 285 | 385 | 355 | 455 | 435 | 525 | #### 9.2.2 Selection of Bearing Internal Clearances Among the bearing internal clearances listed in the tables, the CN Clearance is adequate for standard operating conditions. The clearance becomes progressively smaller from C2 to C1 and larger from C3 to C5. Standard operating conditions are defined as those where the inner ring speed is less than approximately 50% of the limiting speed listed in the bearing tables, the load is less than normal $(P = 0.1C_r)$, and the bearing is tight-fitted on the shaft. As a measure to reduce bearing noise for electric motors, the radial clearance range is narrower than the normal class and the values are somewhat smaller for deep groove ball bearings and cylindrical roller bearings for electric motors. (Refer to Table 9.13.1 and Internal clearance varies with the fit and temperature differences in operation. The changes in radial clearance in a roller bearing are shown in Fig. 9.2. #### (1) Decrease in Radial Clearance Caused by Fitting and Residual Clearance When the inner ring or the outer ring is tight-fitted on a shaft or in a housing, a decrease in the radial internal clearance is caused by the expansion or contraction of the bearing rings. The decrease varies according to the bearing type and size and design of the shaft and housing. The amount of this decrease is approximately 70 to 90% of the interference (refer to Section 15.2, Fits (1), Pages A130 to A133). The internal clearance after
subtracting this decrease from the theoretical internal clearance Δ_0 is called the residual clearance, $\Delta_{\rm f}$ #### (2) Decrease in Radial Internal Clearance Caused by Temperature Differences between Inner and Outer Rings and Effective Clearance The frictional heat generated during operation is conducted away through the shaft and housing. Since housings generally conduct heat better than shafts, the temperature of the inner ring and the rolling elements is usually higher than that of the outer ring by 5 to 10°C. If the shaft is heated or the housing is cooled, the difference in temperature between the inner and outer rings is greater. The radial clearance decreases due to the thermal expansion caused by the temperature difference between the inner and outer rings. The amount of this decrease can be calculated using the following equations: $$\delta_t = \alpha \Delta_t D_e$$ (9.6) where δ_t : Decrease in radial clearance due to temperature difference between inner and outer rings (mm) - α : Coefficient of linear expansion of bearing steel $= 12.5 \times 10^{-6} (1/^{\circ}C)$ - Δ_t : Temperature difference between inner and outer rings (°C) - $D_{\rm e}$: Outer ring raceway diameter (mm) For ball bearings $$D_{\rm e} = \frac{1}{5} (4D + d) \dots (9.7)$$ For roller bearings $$D_{\rm e} = \frac{1}{4} (3D + d) \dots (9.8)$$ The clearance after substracting this δ_t from the residual clearance. Δ_f is called the effective clearance. Δ . Theoretically, the longest life of a bearing can be expected when the effective clearance is slightly negative. However, it is difficult to achieve such an ideal condition, and an excessive negative clearance will greatly shorten the bearing life. Therefore, a clearance of zero or a slightly positive amount, instead of a negative one, should be selected. When single-row angular contact ball bearings or tapered roller bearings are used facing each other, there should be a small effective clearance, unless a preload is required. When two cylindrical roller bearings with a rib on one side are used facing each other, it is necessary to provide adequate axial clearance to allow for shaft elongation during operation. The radial clearances used in some specific applications are given in Table 9.19. Under special operating conditions, it is advisable to consult NSK. Fig. 9.2 Changes in Radial Internal Clearance of Bearings Table 9. 19 Examples of Clearances for Specific **Applications** | Operating Conditions | Examples | Internal
Clearance | |---|--|-----------------------| | When shaft deflection is large. | Semi-floating rear wheels of automobiles | C5 or equivalent | | When steam passes | Dryers in paper making machines | C3, C4 | | through hollow shafts or roller shafts are heated. | Table rollers for rolling mills | C3 | | When impact loads and | Traction motors for railways | C4 | | When impact loads and vibration are severe or | severe or Vibrating screens | | | when both the inner and outer rings are tight- | Fluid couplings | C4 | | fitted. | Final reduction gears for tractors | C4 | | When both the inner and outer rings are loose-fitted | Rolling mill roll necks | C2 or equivalent | | When noise and vibration restrictions are severe | Small motors with special specifications | C1, C2, CM | | When clearance is adjusted after mounting to prevent shaft deflection, etc. | Main shafts of lathes | CC9, CC1 | # 10. PRELOAD Rolling bearings usually retain some internal clearance while in operation. In some cases, however, it is desirable to provide a negative clearance to keep them internally stressed. This is called "preloading". A preload is usually applied to bearings in which the clearance can be adjusted during mounting, such as angular contact ball bearings or tapered roller bearings. Usually, two bearings are mounted face-to-face or back-to-back to form a duplex set with a preload. #### 10.1 Purpose of Preload The main purposes and some typical applications of preloaded bearings are as follows: - (1) To maintain the bearings in exact position both radially and axially and to maintain the running accuracy of the shaft. - ... Main shafts of machine tools, precision instruments, etc. - (2) To increase bearing rigidity - ... Main shafts of machine tools, pinion shafts of final drive gears of automobiles, etc. - (3) To minimize noise due to axial vibration and resonance - .. Small electric motors, etc. - (4) To prevent sliding between the rolling elements and raceways due to gyroscopic moments - ... High speed or high acceleration applications of angular contact ball bearings, and thrust ball - (5) To maintain the rolling elements in their proper position with the bearing rings - ... Thrust ball bearings and spherical thrust roller bearings mounted on a horizontal shaft # 10.2 Preloading Methods #### 10.2.1 Position Preload A position preload is achieved by fixing two axially opposed bearings in such a way that a preload is imposed on them. Their position, once fixed, remain unchanged while in operation. In practice, the following three methods are generally used to obtain a position preload. - (1) By installing a duplex bearing set with previously adjusted stand-out dimensions (see Page A7, Fig. 1.1) and axial clearance. - (2) By using a spacer or shim of proper size to obtain the required spacing and preload. (Refer to Fig. - (3) By utilizing bolts or nuts to allow adjustment of the axial preload. In this case, the starting torque should be measured to verify the proper preload. #### 10.2.2 Constant-Pressure Preload A constant pressure preload is achieved using a coil or leaf spring to impose a constant preload. Even if the relative position of the bearings changes during operation, the magnitude of the preload remains relatively constant (refer to Fig. 10.2) ## 10.3 Preload and Rigidity #### 10.3.1 Position Preload and Rigidity When the inner rings of the duplex bearings shown in Fig.10.3 are fixed axially, bearings A and B are displaced δ_{a0} and axial space $2\delta_{a0}$ between the inner rings is eliminated. With this condition, a preload F_{a0} is imposed on each bearing. A preload diagram showing bearing rigidity, that is the relation between load and displacement with a given axial load F_a imposed on a duplex set, is shown in Fig. 10.4. Fig. 10.3 Back-to-Back Duplex Bearing Preload #### 10.3.2 Constant-Pressure Preload and Rigidity A preload diagram for duplex bearings under a constant-pressure preload is shown in Fig. 10.5. The deflection curve of the spring is nearly parallel to the horizontal axis because the rigidity of springs is lower than that of the bearing. As a result, the rigidity under a constant-pressure preload is approximately equal to that for a single bearing with a preload F_{a0} applied to it. Fig. 10.6 presents a comparison of the rigidity of a bearing with a position preload and one with a constant-pressure preload. #### 10.4 Selection of Preloading Method and Amount of Preload #### 10.4.1 Comparison of Preloading Methods A comparison of the rigidity using both preloading methods is shown in Fig. 10.6. The position preload and constant-pressure preload may be compared as follows: - (1) When both of the preloads are equal, the position preload provides greater bearing rigidity, in other words, the deflection due to external loads is less for bearings with a position preload. - (2) In the case of a position preload, the preload varies depending on such factors as a difference in axial expansion due to a temperature difference between the shaft and housing, a difference in radial expansion due to a temperature difference between the inner and outer rings, deflection due to load, etc. $F_{\rm a}$: Axial load applied from outside F_{aA} : Axial load imposed on Bearing A F_{aB} : Axial load imposed on Bearing B bearing set : Displacement of Bearing A Displacement of Bearing B In the case of a constant-pressure preload, it is possible to minimize any change in the preload because the variation of the spring load with shaft expansion and contraction is negligible. From the foregoing explanation, it is seen that position preloads are generally preferred for increasing rigidity and constant-pressure preloads are more suitable for high speed applications, for prevention of axial vibration, for use with thrust bearings on horizontal shafts, etc. Fig. 10.5 Axial Displacement with Constant-Pressure Preload Fig. 10.6 Comparison of Rigidities and Preloading Methods #### 10.4.2 Amount of Preload If the preload is larger than necessary, abnormal heart generation, increased frictional torque, reduced fatigue life, etc. may occur. The amount of the preload should be carefully determined considering the operating conditions and the purpose of the preload. # (1) Preloading of Duplex Angular Contact Ball Bearings Average preloads for duplex angular contact ball bearings (contact angle of 15°) with precision better than P5 class, which are used on the main shafts of machine tools, are listed in Table 10.2. The recommended fitting between the shaft and inner ring and between the housing and outer ring are listed in Table 10.1. In the case of fits with housings, the lower limit of the fitting range should be selected for fixed-end bearings and the upper limit for free-end bearings. As a general rule, an extra light or light preload should be selected for grinding spindles and the main shafts of machining centers, while a medium preload should be adopted for the main shafts of lathes requiring rigidity When speeds result in a value of $D_{\rm pw} \times n$ ($d_{\rm m} n$ value) higher than 500000, the preload should be very carefully studied and selected. In such a case, please consult with NSK beforehand. Table 10 2 1 Duplex Bearings of Series 79 | | Table TO | . 2. 1 Duplex Bear | ings or
Series 79 | Units : N | |-------------|-------------|--------------------|-------------------|-----------| | | | Prel | oads | | | Bearing No. | Extra light | Light | Medium | Heavy | | | Preload EL | Preload L | Preload M | Preload H | | 7900 C | 7 | 15 | 29 | 59 | | 7901 C | 8.6 | 15 | 39 | 78 | | 7902 C | 12 | 25 | 49 | 100 | | 7903 C | 12 | 25 | 59 | 120 | | 7904 C | 19 | 39 | 78 | 150 | | 7905 C | 19 | 39 | 100 | 200 | | 7906 C | 24 | 49 | 100 | 200 | | 7907 C | 34 | 69 | 150 | 290 | | 7908 C | 39 | 78 | 200 | 390 | | 7909 C | 50 | 100 | 200 | 390 | | 7910 C | 50 | 100 | 250 | 490 | | 7911 C | 60 | 120 | 290 | 590 | | 7912 C | 60 | 120 | 290 | 590 | | 7913 C | 75 | 150 | 340 | 690 | | 7914 C | 100 | 200 | 490 | 980 | | 7915 C | 100 | 200 | 490 | 980 | | 7916 C | 100 | 200 | 490 | 980 | | 7917 C | 145 | 290 | 640 | 1 270 | | 7918 C | 145 | 290 | 740 | 1 470 | | 7919 C | 145 | 290 | 780 | 1 570 | | 7920 C | 195 | 390 | 880 | 1 770 | Table 10. 1 Recommended Fitting for High Accuracy Duplex Angular Contact Ball Bearings with Preload | | | | | UII | ιιs . <i>μ</i> III | |-------------------------------|------------------------------------|--|-----------------------------|------------------------------------|---| | Nominal Bore
Dia. d (mm) | | Target Shaft
Interference | D | Outside
ia.
nm) | Target
Housing | | over | incl. | | over | incl. | Clearance | | 18
30
50
80
120 | 18
30
50
80
120
150 | 0 to 2
0 to 2.5
0 to 2.5
0 to 3
0 to 4 | 18
30
50
80
120 | 18
30
50
80
120
150 | 2 to 6
2 to 6
3 to 8
3 to 9
4 to 12 | | 150
180 | 180
250 |

 | 150
180 | 180
250 | 4 to 12
4 to 12
5 to 15 | Bearing No. 7000 C 7001 C 7002 C 7003 C 7004 C 7005 C 7006 C 7007 C 7008 C 7009 C 7010 C 7011 C 7012 C 7013 C 7014 C 7015 C 7016 C 7017 C 7018 C 7019 C 7020 C Table 10. 2 Preloads for Duplex Light Preload L 25 25 29 29 49 59 78 120 120 150 150 200 200 250 290 290 390 390 490 540 540 Extra light Preload EL 12 12 14 14 24 29 39 60 75 75 100 100 125 145 195 195 245 270 Units · um Table 10. 2. 2 Duplex Bearings of Series 70 | | |
- | |---------|---|-------| | Preload | S | | | Dealeada | | | | | | | |----------|----------------------------|-------------------------|--|--|--|--| | | Preloads | | | | | | | | Medium
Preload M | Heavy
Preload H | | | | | | | 49
59
69 | 100
120
150 | | | | | | | 69
120
150 | 150
250
290 | | | | | | | 200
250
290 | 390
490
590 | | | | | | | 340
390
490 | 690
780
980 | | | | | | | 540
540
740 | 1 080
1 080
1 470 | | | | | | | 780
930
980 | 1 570
1 860
1 960 | | | | | | | 1 180
1 180
1 270 | 2 350
2 350
2 550 | | | | | #### (3) Preload of Spherical Thrust Roller Bearings When spherical thrust roller bearings are used, damage such as scoring may occur due to sliding between the rollers and outer ring raceway. The minimum axial load $F_{\rm a\ min}$ necessary to prevent such sliding is obtained from the following equation: $$F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000} \qquad (10.3)$$ #### Angular Contact Ball Bearings (2) Preload of Thrust Ball Bearings such sliding When the balls in thrust ball bearings rotate at relatively high speeds, sliding due to gyroscopic moments on the balls may occur. The larger of the two values obtained from Equations(10.1) and (10.2) below should be adopted as the minimum axial load in order to prevent $F_{\rm a\,min} = \frac{C_{0\,\rm a}}{100} \left(\frac{n}{N_{\rm max}}\right)^2 \dots (10.1)$ $F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000}$(10.2) C_{0a} : Basic static load rating (N), {kgf} N_{max} : Limiting speed (oil lubrication) (min⁻¹) where $F_{\rm a\,min}$: Minimum axial load (N), {kgf} n : Speed (min $^{-1}$) $\label{eq:Table 10.2.3 Duplex Bearings of Series 72}$ Units : N | | | | | J | Units : N | |----|--------|-------------|-----------|------------------|-----------| | | | | Prel | oads | | | | earing | Extra light | Light | Medium | Heavy | | | No. | Preload EL | Preload L | Preload M | Preload H | | 72 | 200 C | 14 | 29 | 69 | 150 | | | 201 C | 19 | 39 | 100 | 200 | | | 202 C | 19 | 39 | 100 | 200 | | 72 | 203 C | 24 | 49 | 150 | 290 | | | 204 C | 34 | 69 | 200 | 390 | | | 205 C | 39 | 78 | 200 | 390 | | 72 | 206 C | 60 | 120 | 290 | 590 | | | 207 C | 75 | 150 | 390 | 780 | | | 208 C | 100 | 200 | 490 | 980 | | 72 | 209 C | 125 | 250 | 540 | 1 080 | | | 210 C | 125 | 250 | 590 | 1 180 | | | 211 C | 145 | 290 | 780 | 1 570 | | 72 | 212 C | 195 | 390 | 930 | 1 860 | | | 213 C | 220 | 440 | 1 080 | 2 160 | | | 214 C | 245 | 490 | 1 180 | 2 350 | | 72 | 215 C | 270 | 540 | 1 230 | 2 450 | | | 216 C | 295 | 590 | 1 370 | 2 750 | | | 217 C | 345 | 690 | 1 670 | 3 330 | | 72 | 218 C | 390 | 780 | 1 860 | 3 730 | | | 219 C | 440 | 880 | 2 060 | 4 120 | | | 220 C | 490 | 980 | 2 350 | 4 710 | # 11. DESIGN OF SHAFTS AND HOUSINGS #### 11.1 Accuracy and Surface Finish of Shafts and Housings If the accuracy of a shaft or housing does not meet the specification, the performance of the bearings will be affected and they will not provide their full capability. For example, inaccuracy in the squareness of the shaft shoulder may cause misalignment of the bearing inner and outer rings, which may reduce the bearing fatigue life by adding an edge load in addition to the normal load. Cage fracture and seizure sometimes occur for this same reason. Housings should be rigid in order to provide firm bearing support. High rigidity housings are advantageous also from he standpoint of noise, load distribution, etc. For normal operating conditions, a turned finish or smooth bored finish is sufficient for the fitting surface; however, a ground finish is necessary for applications where vibration and noise must be low or where heavy loads are applied. In cases where two or more bearings are mounted in one single-piece housing, the fitting surfaces of the housing bore should be designed so both bearing seats may be finished together with one operation such as in -line boring. In the case of split housings, care must be taken in the fabrication of the housing so the outer ring will not become deformed during installation. The accuracy and surface finish of shafts and housings are listed in Table 11.1 for normal operating conditions. Table 11. 1 Accuracy and Roughness of Shaft and Housing | Item | Class of
Bearings | Shaft | Housing Bore | | |--|----------------------------------|--|--|--| | Tolerance for | Normal, Class 6 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | | Out-of-roundness | Class 5, Class 4 | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | | | Tolerance for | Normal, Class 6 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | | Cylindricality | Class 5, Class 4 | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | | | Tolerance for | Normal, Class 6 | IT3 | IT3 to IT4 | | | Shoulder Runout | Class 5, Class 4 | IT3 | IT3 | | | Roughness of Fitting Surfaces R _a | Small Bearings
Large Bearings | 0.8
1.6 | 1.6
3.2 | | Remarks This table is for general recommendation using radius measuring method, the basic tolerance (IT) class should be selected in accordance with the bearing precision class. Regarding the figures of IT, please refer to the Appendix Table 11 (page C22). In cases that the outer ring is mounted in the housing bore with interference or that a thin crosssection bearing is mounted on a shaft and housing. the accuracy of the shaft and housing should be higher since this affects the bearing raceway directly. #### 11.2 Shoulder and Fillet Dimensions The shoulders of the shaft or housing in contact with the face of a bearing must be perpendicular to the shaft center line. (Refer to Table 11.1) The front face side shoulder bore of the housing for a tapered roller bearing should be parallel with the bearing axis in order to avoid interference with the cage. The fillets of the shaft and housing should not come in contact with the bearing chamfer; therefore, the fillet radius r_a must be smaller than the minimum bearing chamfer dimension r or r_1 . Fig. 11.1 Chamfer Dimensions, Fillet Radius of Shaft and Housing, and Shoulder Height The shoulder heights for both shafts and housings for radial bearings should be sufficient to provide good support over the face of the bearings, but enough face should extend beyond the shoulder to permit use of special dismounting tools. The recommended minimum shoulder heights for metric series radial bearings are listed in Table 11.2 Nominal dimensions associated with bearing mounting are listed in the bearing tables including the proper shoulder diameters. Sufficient shoulder height is particularly important for supporting the side ribs of tapered roller bearings and cylindrical roller bearings subjected to high axial loads. The values of \vec{h} and \vec{r}_a in Table 11.2 should be adopted in those cases where the fillet radius of the shaft or housing is as shown in Fig. 11.2 (a), while the values in Table 11.3 are generally used with an undercut fillet radius produced when grinding the shaft as shown in Fig. 11.2 (b). Table 11. 2 Recommended Minimum Shoulder Heights for Use with Metric Series Radial Bearings | | | | UIIIIS . IIIIII | | | | |---|--------------------------
--|---|--|--|--| | Nominal | | Shaft or Housir | ng | | | | | Chamfer
Dimensions | | Minimun Shoulder Heights h (min.) | | | | | | $m{arGamma}(min.)$ or $m{arGamma}_1$ (min.) | Radius $r_{ m a}$ (max.) | Deep Groove Ball
Bearings,
Self-Aligning Ball
Bearings,
Cylindrical Roller
Bearings,
Solid Needle Roller
Bearings | Angular Contact
Ball Bearings,
Tapered Roller
Bearings, Spherical
Roller Bearings | | | | | 0.05 | 0.05 | 0.2 | _ | | | | | 0.08 | 0.08 | 0.3 | _ | | | | | 0.1 | 0.1 | 0.4 | _ | | | | | 0.15 | 0.15 | 0.6 | | | | | | 0.2 | 0.2 | 0.8 | | | | | | 0.3 | 0.3 | 1 | 1.25 | | | | | 0.6 | 0.6 | 2 | 2.5 | | | | | 1 | 1 | 2.5 | 3 | | | | | 1.1 | 1 | 3.25 | 3.5 | | | | | 1.5 | 1.5 | 4 | 4.5 | | | | | 2 | 2 | 4.5 | 5 | | | | | 2.1 | 2 | 5.5 | 6 | | | | | 2.5 | 2 | — | 6 | | | | | 3 | 2.5 | 6.5 | 7 | | | | | 4 | 3 | 8 | 9 | | | | | 5 | 4 | 10 | 11 | | | | | 6 | 5 | 13 | 14 | | | | | 7.5 | 6 | 16 | 18 | | | | | 9.5 | 8 | 20 | 22 | | | | | 12 | 10 | 24 | 27 | | | | | 15 | 12 | 29 | 32 | | | | | 19 | 15 | 38 | 42 | | | | - Remarks 1. When heavy axial loads are applied, the shoulder height must be sufficiently higher than the values listed. - 2. The fillet radius of the corner is also applicable to thrust bearings. - 3. The shoulder diameter is listed instead of shoulder height in the bearing tables. Fig. 11. 2 Chamfer Dimensions, Fillet Radius, and Shoulder Height Table 11. 3 Shaft Undercut Units: mm | Chamfer Dimensions of Inner and | Undercut Dimensions | | | | | | |--|---------------------|------------|-----|--|--|--| | Outer Rings $m{r}$ (min.) or $m{r}_1$ (min.) | t | $r_{ m g}$ | b | | | | | 1 | 0.2 | 1.3 | 2 | | | | | 1.1 | 0.3 | 1.5 | 2.4 | | | | | 1.5 | 0.4 | 2 | 3.2 | | | | | 2 | 0.5 | 2.5 | 4 | | | | | 2.1 | 0.5 | 2.5 | 4 | | | | | 2.5 | 0.5 | 2.5 | 4 | | | | | 3 | 0.5 | 3 | 4.7 | | | | | 4 | 0.5 | 4 | 5.9 | | | | | 5 | 0.6 | 5 | 7.4 | | | | | 6 | 0.6 | 6 | 8.6 | | | | | 7.5 | 0.6 | 7 | 10 | | | | | | | | | | | | A 100 For thrust bearings, the squareness and contact area of the supporting face for the bearing rings must be adequate. In the case of thrust ball bearings, the housing shoulder diameter $D_{\rm a}$ should be less than the pitch circle diameter of the balls, and the shaft shoulder diameter d_a should be greater than the pitch circle diameter of the balls (Fig. 11.3). For thrust roller bearings, it is advisable for the full contact length between rollers and rings to be supported by the shaft and housing shoulder (Fig. 11.4). These diameters d_a and D_a are listed in the bearing tables. Fig. 11.3 Face Supporting Diameters for Thrust Ball Bearings Fig. 11.4 Face Supporting Diameters for Thrust Roller Bearings # 11.3 Bearing Seals To insure the longest possible life of a bearing, it may be necessary to provide seals to prevent leakage of lubricant and entry of dust, water and other harmful material like metallic particles. The seals must be free from excessive running friction and the probability of seizure. They should also be easy to assemble and disassemble. It is necessary to select a suitable seal for each application considering the lubricating method. #### 11.3.1 Non-Contact Type Seals Various sealing devices that do not contact the shaft, such as oil grooves, flingers, and labyrinths, are available. Satisfactory sealing can usually be obtained with such seals because of their close running clearance. Centrifugal force may also assist in preventing internal contamination and leakage of the lubricant. #### (1) Oil Groove Seals The effectiveness of oil groove seals is obtained by means of the small gap between the shaft and housing bore and by multiple grooves on either or both of the housing bore and shaft surface (Fig. 11.5 (a), (b)). Since the use of oil grooves alone is not completely effective, except at low speeds, a flinger or labyrinth type seal is often combined with an oil groove seal (Fig. 11.5 (c)). The entry of dust is impeded by packing grease with a consistency of about 200 into the The smaller the gap between the shaft and housing, the greater the sealing effect; however, the shaft and housing must not come in contact while running. The recommended gaps are given in Table 11.4. The recommended groove width is approximately 3 to 5mm, with a depth of about 4 to 5mm. In the case of sealing methods using grooves only, there should be three or more grooves. #### (2) Flinger (Slinger) Type Seals (a) Axial Labyrinth A flinger is designed to force water and dust away by means of the centrifugal force acting on any contaminants on the shaft. Sealing mechanisms with flingers inside the housing as shown in Fig. 11.6 (a), (b) are mainly intended to prevent oil leakage, and are used in environments with relatively little dust. Dust and moisture are prevented from entering by the centrifugal force of flingers shown in Figs 11.6 (c), (d). Table 11. 4 Gaps between Shafts and Housings for Oil-Groove Type Seals | | Units : mm | |------------------------|-------------| | Nominal Shaft Diameter | Radial Gap | | Under 50 | 0.25 to 0.4 | | 50-200 | 0.5 to 1.5 | (3) Labyrinth Seals Labyrinth seals are formed by interdigitated segments attached to the shaft and housing that are separated by a very small gap. They are particularly suitable for preventing oil leakage from the shaft at high speeds. The type shown in Fig. 11.7 (a) is widely used because of its ease of assembly, but those shown in Fig. 11.7 (b), (c) have better seal effectiveness. Table 11. 5 Labyrinth Seal Gaps Units: mm | Nominal Shaft Diameter | Labyrinth Gaps | | | | | | |--------------------------|----------------|------------|--|--|--|--| | Norminal Strait Diameter | Radial Gap | Axiall Gap | | | | | | Under 50 | 0.25 to 0.4 | 1 to 2 | | | | | | 50-200 | 0.5 to 1.5 | 2 to 5 | | | | | Fig. 11.6 Examples of Flinger Configurations (b) Radial Labyrinth Fig. 11.7 Examples of Labyrinth Designs A 102 #### 11.3.2 Contact Type Seals The effectiveness of contact seals is achieved by the physical contact between the shaft and seal, which may be made of synthetic rubber, synthetic resin, felt, etc. Oil seals with synthetic rubber lips are most frequently used. #### (1) Oil Seals Many types of oil seals are used to prevent lubricant from leaking out as well as to prevent dust, water, and other foreign matter from entering (Figs. 11.8 and 11.9) In Japan, such oil seals are standardized (Refer to JIS B 2402) on the basis of type and size. Since many oil seals are equipped with circumferential springs to maintain adequate contact force, oil seals can follow the non-uniform rotational movement of a shaft to some degree. Seal lip materials are usually synthetic rubber including nitrile, acrylate, silicone, and fluorine. Tetrafluoride ethylene is also used. The maximum allowable operating temperature for each material increases in this same order. Synthetic rubber oil seals may cause trouble such as overheating, wear, and seizure, unless there is an oil film between the seal lip and shaft. Therefore, some lubricant should be applied to the seal lip when the seals are installed. It is also desirable for the lubricant inside the housing to spread a little between the sliding surfaces. However, please be aware that ester-based grease will cause acrylic rubber material to swell. Also, low aniline point mineral oil, silicone-based grease, and silicon-based oil will cause silicone-based material to swell. Moreover, urea-based grease will cause fluorine-based material to deteriorate. The permissible circumferential speed for oil seals varies depending on the type, the finish of the shaft surface, liquid to be sealed, temperature, shaft eccentricity, etc. The temperature range for oil seals is restricted by the lip material. Approximate circumferential surface speeds and temperature permitted under favorable conditions are listed in Table 11.6. When oil seals are used at high circumferential surface speed or under high internal pressure, the contact surface of the shaft must be smoothly finished and the shaft eccentricity should be less than 0.02 to 0.05 mm. The hardness of the shaft's contact surface should be made higher than HRC40 by means of heat treatment or hard chrome plating in order to gain abrasion resistance. If possible, a hardness of more than HRC 55 is recommended. The approximate level of contact surface finish required for several shaft circumferential surface speeds is given in Table 11.7. Fig. 11.8 Example of Application of Oil Seal (1) Fig. 11.9 Example of Application of Oil Seal (2) Table 11. 6 Permissible Circumferential Surface Speeds and Temperature Range for Oil Seals | Sea | al Materials | Permissible
Circumferential
Speeds(m/sec) | Operating
Temperature
Range(°C)(¹) | | | |-------------|-------------------------------|---|--|--|--| | | Nitrile Rubber | Under 16 | -25 to +100 | | | | Synthetic | Acrylic Rubber | Under 25 | -15 to +130 | | | | Rubber | Silicone Rubber | Under 32 | -70 to +200 | | | | | Fluorine-
containes Rubber | Under 32 | -30 to +200 | | | | Tetrafluori | de Ethylene Resin | Under 15 | -50 to +220 | | | Note (1) The upper limit of the temperature range may be raised about 20 °C for operation for short intervals. Table 11. 7 Shaft Circumferential Surface Speeds and Finish of Contact Surfaces | Surface Finish
R _a (μm) | | | | | |---------------------------------------|--|--|--|--| | 0.8 | | | | | | 0.4 | | | | | | 0.2 | | | | | | | | | | | #### (2) Felt Seals Felt seals are one of the simplest and most common seals being used for transmission shafts, etc. However, since oil permeation and leakage are
unavoidable if oil is used, this type of seal is used only for grease lubrication, primarily to prevent dust and other foreign matter from entering. Felt seals are not suitable for circumferential surface speeds exceeding 4 m/sec; therefore, it is preferable to replace them with synthetic rubber seals depending on the application. ## 12. LUBRICATION #### 12.1 Purposes of Lubrication The main purposes of lubrication are to reduce friction and wear inside the bearings that may cause premature failure. The effects of lubrication may be briefly explained as follows: (1) Reduction of Friction and Wear Direct metallic contact between the bearing rings, rolling elements and cage, which are the basic components of a bearing, is prevented by an oil film which reduces the friction and wear in the contact areas (2) Extension of Fatigue Life The rolling fatigue life of bearings depends greatly upon the viscosity and film thickness between the rolling contact surfaces. A heavy film thickness prolongs the fatigue life, but it is shortened if the viscosity of the oil is too low so the film thickness is insufficient. (3) Dissipation of Frictional Heat and Cooling Circulation lubrication may be used to carry away frictional heat or heat transferred from the outside to prevent the bearing from overheating and the oil from deteriorating. (4) Others Adequate lubrication also helps to prevent foreign material from entering the bearings and guards against corrosion or rusting. #### 12.2 Lubricating Methods The various lubricating methods are first divided into either grease or oil lubrication. Satisfactory bearing performance can be achieved by adopting the lubricating method which is most suitable for the particular application and operating condition. In general, oil offers superior lubrication; however, grease lubrication allows a simpler structure around the bearings. A comparison of grease and oil lubrication is given in Table 12.1. Table 12. 1 Comparison of Grease and Oil Lubrication | Item | Grease Lubrication | Oil Lubrication | | | |---|--|---|--|--| | Housing Structure and
Sealing Method | Simple | May be complex, Careful
maintenance required. | | | | Speed | Limiting speed is 65% to 80% of that with oil lubrication. | Higher limiting speed. | | | | Cooling Effect | Poor | Heat transter is possible using forced oil circulation. | | | | Fluidity | Poor | Good | | | | Full Lubricant
Replacement | Sometimes difficult | Easy | | | | Removal of Foreign
Matter | Removal of particles from grese is impossible. | Easy | | | | External
Contamination due to
Leakage | Surroundings seldom contaminated by leakage. | Often leaks without proper countermeasures. Not suitable if external contamination must be avoided. | | | #### 12.2.1 Grease Lubrication #### (1) Grease Quantity The quantity of grease to be packed in a housing depends on the housing design and free space, grease characteristics, and ambient temperature. For example, the bearings for the main shafts of machine tools, where the accuracy may be impaired by a small temperature rise, require only a small amount of grease. The quantity of grease for ordinary bearings is determined as follows. Sufficient grease must be packed inside the bearing including the cage guide face. The available space inside the housing to be packed with grease depends on the speed as follows: 1/2 to 2/3 of the space ... When the speed is less than 50% of the limiting speed. 1/3 to 1/2 of the space ... When the speed is more than 50% of the limiting speed. A 104 A 105 #### (2) Replacement of Grease Grease, once packed, usually need not be replenished for a long time; however, for severe operating conditions, grease should be frequently replenished or replaced. In such cases, the bearing housing should be designed to facilitate grease replenishment and replacement. When replenishment intervals are short, provide replenishment and discharge ports at appropriate positions so deteriorated grease is replaced by fresh grease. For example, the housing space on the grease supply side can be divided into several sections with partitions. The grease on the partitioned side gradually passes through the bearings and old grease forced from the bearing is discharged through a grease valve (Fig. 12.1). If a grease valve is not used, the space on Fig. 12.1 Combination of Partitioned Grease Reservoir and Grease Valve Radial Ball Bearings 20 000 10 0 Interval, t 8 000 6 000-5 000-4 000-3 000 2 000-1 000-800-600-Speed n (1) Radial Ball Bearings, Cylindrical Roller Bearings (3) Load factor ≤0.06 0.1 0.13 0.16 0.65 0.45 Load factor 1.5 the discharge side is made larger than the partitioned side so it can retain the old grease, which is removed periodically by removing the cover. #### (3) Replenishing Interval Even if high-quality grease is used, there is deterioration of its properties with time; therefore, periodic replenishment is required. Figs 12.2 (1) and (2) show the replenishment time intervals for various bearing types running at different speeds. Figs. 12.2 (1) and (2) apply for the condition of high-quality lithium soap-mineral oil grease, bearing temperature of 70°C. and normal load (P/C=0.1). · Temperature If the bearing temperature exceeds 70°C, the replenishment time interval must be reduced by half for every 15°C temperature rise of the bearings. · Grease In case of ball bearings especially, the replenishing time interval can be extended depending on used grease type. (For example, high-quality lithium soapsynthetic oil grease may extend about two times of replenishing time interval shown in Fig.12.2 (1). If the temperature of the bearings is less than 70°C, the usage of lithium soap-mineral oil grease or lithium soap-synthetic oil grease is appropriate.) It is advisable to consult NSK. Load The replenishing time interval depends on the magnitude of the bearing load. Please refer to Fig. 12.2 (3). If P/C exceeds 0.16, it is advisable to consult NSK. (2) Tapered Roller Bearings, Spherical Roller Bearings # min-1 ## (4) Grease Life of Sealed Ball Bearings When grease is packed into single-row deep groove ball bearings, the grease life may be estimated using Equation (12.1) or (12.2) or Fig. 12.3: (General purpose grease (1)) $$log t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right)T$$(12.1) (Wide-range grease (2)) $$log \ t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right)T$$(12.2) where *t*: Average grease life, (h) n: Speed (min⁻¹) $N_{\rm max}$: Limiting speed with grease lubrication (values for ZZ and VV types listed in the bearing tables) T: Operating temperature °C Equations (12.1) and (12.2) and Fig. 12.3 apply under the following conditions: (a) Speed, n $$0.25 \leq \frac{n}{N_{\text{max}}} \leq 1$$ when $$\frac{n}{N_{\rm max}}$$ < 0.25, assume $\frac{n}{N_{\rm max}}$ = 0.25 Fig. 12.3 Grease Life of Sealed Ball Bearings (b) Operating Temperature, T For general purpose grease (1) 70 °C ≤ T ≤ 110 °C For wide-range grease (2) 70 °C ≤ T ≤ 130 °C When T < 70 °C assume T = 70 °C #### (c) Bearing Loads The bearing loads should be about 1/10 or less of the basic load rating C_r . - Notes (1) Mineral-oil base greases (e.g. lithium soap base grease) which are often used over a temperature range of around – 10 to 110 °C. - (2) Synthetic-oil base greases are usable over a wide temperature range of around - 40 to 130 °C. #### 12.2.2 Oil Lubrication #### (1) Oil Bath Lubrication Oil bath lubrication is a widely used with low or medium speeds. The oil level should be at the center of the lowest rolling element. It is desirable to provide a sight gauge so the proper oil level may be maintained (Fig. 12.4) #### (2) Drip-Feed Lubrication Drip feed lubrication is widely used for small ball bearings operated at relatively high speeds. As shown in Fig. 12.5, oil is stored in a visible oiler. The oil drip rate is controlled with the screw in the top Fig. 12.4 Oil Bath Lubrication Lubrication #### (3) Splash Lubrication With this lubricating method, oil is splashed onto the bearings by gears or a simple rotating disc installed near bearings without submerging the bearings in oil. It is commonly used in automobile transmissions and final drive gears. Fig. 12.6 shows this lubricating method used on a reduction gear. #### (4) Circulating Lubrication Circulating lubrication is commonly used for high speed operation requiring bearing cooling and for bearings used at high temperatures. As shown in Fig. 12.7 (a), oil is supplied by the pipe on the right side, it travels through the bearing, and drains out through the pipe on the left. After being cooled in a reservoir, it returns to the bearing through a pump and filter. The oil discharge pipe should be larger than the supply pipe so an excessive amount of oil will not back up in the housing. Fig. 12.6 Splash Lubrication #### (5) Jet Lubrication Jet lubrication is often used for ultra high speed bearings, such as the bearings in jet engines with a $d_{\mathbf{m}}n$ valve ($d_{\mathbf{m}}$: pitch diameter of rolling element set in mm; n: rotational speed in \min^{-1}) exceeding one million. Lubricating oil is sprayed under pressure from one or more nozzles directly into the bearing. Fig. 12.8 shows an example of ordinary jet lubrication. The lubricating oil is sprayed on the inner ring and cage guide face. In the case of high speed operation, the air surrounding the bearing rotates with it causing the oil jet to be deflected. The jetting speed of the oil from the nozzle should be more than 20 % of the circumferential speed of the inner ring outer surface (which is also the guide face for the cage). More uniform cooling and a better temperature distribution is achieved
using more nozzles for a given amount of oil. It is desirable for the oil to be forcibly discharged so the agitating resistance of the lubricant can be reduced and the oil can effectively carry away the heat. #### (6) Oil Mist Lubrication Oil mist lubrication, also called oil fog lubrication, utilizes an oil mist sprayed into a bearing. This method has the following advantages: (a) Because of the small quantity of oil required, the oil agitation resistance is small, and higher speeds are possible. (b) Contamination of the vicinity around the bearing is slight because the oil leakage is small. (c) It is relatively easy to continuously supply fresh oil; therefore, the bearing life is extended. This lubricating method is used in bearings for the high speed spindles of machine tools, high speed pumps, roll necks of rolling mills, etc (Fig. 12.9). For oil mist lubrication of large bearings, it is advisable to consult NSK. #### (7) Oil/Air Lubricating Method Using the oil/air lubricating method, a very small amount of oil is discharged intermittently by a constant-quantity piston into a pipe carrying a constant flow of compressed air. The oil flows along the wall of the pipe and approaches a constant flow rate. The major advantages of oil/air lubrication are: (a) Since the minimum necessary amount of oil is supplied, this method is suitable for high speeds because less heat is generated. (b) Since the minimum amount of oil is fed continuously, bearing temperature remains stable. Also, because of the small amount of oil, there is almost no atmospheric pollution. (c) Since only fresh oil is fed to the bearings, oil deterioration need not be considered. (d) Since compressed air is always fed to the bearings, the internal pressure is high, so dust, cutting fluid, etc. cannot enter. For these reasons, this method is used in the main spindles of machine tools and other high speed applications (Fig. 12.10). Fig. 12.8 Jet Lubrication Fig. 12.9 Oil Mist Lubrication Fig. 12.7 Circulating Lubrication Fig. 12.10 Oil/Air Lubrication A 108 # NSK #### 12.3 Lubricants #### 12.3.1 Lubricating Grease Grease is a semi-solid lubricant consisting of base oil, a thickener and additives. The main types and general properties of grease are shown in Table 12.2. It should be remembered that different brands of the same type of grease may have different properties. #### (1) Base Oil Mineral oils or synthetic oils such as silicone or diester oil are mainly used as the base oil for grease. The lubricating properties of grease depend mainly on the characteristics of its base oil. Therefore, the viscosity of the base oil is just as important when selecting grease as when selecting an oil. Usually, grease made with low viscosity base oils is more suitable for high speeds and low temperatures, while greases made with high viscosity base oils are more suited for high temperatures and heavy loads. However, the thickener also influences the lubricating properties of grease; therefore, the selection criteria for grease is not the same as for lubricating oil. Moreover, please be aware that ester-based grease will cause acrylic rubber material to swell, and that silicone-based grease will cause silicone-based material to swell. #### (2) Thickener As thickeners for lubricating grease, there are several types of metallic soaps, inorganic thickeners such as silica gel and bentonite, and heat resisting organic thickeners such as polyurea and fluoric compounds. The type of thickener is closely related to the grease dropping point (1); generally, grease with a high dropping point also has a high temperature capability during operation. However, this type of grease does not have a high working temperature unless the base oil is heat-resistant. The highest possible working temperature for grease should be determined considering the heat resistance of the base oil. The water resistance of grease depends upon the type of thickener. Sodium soap grease or compound grease containing sodium soap emulsifies when exposed to water or high humidity, and therefore, cannot be used where moisture is prevalent. Moreover, please be aware that urea-based grease will cause fluorine-based material to deteriorate. Note (1) The grease dropping point is that temperature at which a grease heated in a specified small container becomes sufficiently fluid to drip. Table 12.2 | | | | | Table 12.2 | | | | | | |--------|----------------------------|---|--|---|--|--|--|--|--| | | Name
(Popular
name) | Lithium Grease | | | | | | | | | | Thickener | Li Soap | | | | | | | | | ı | Base
Oil
Properties | Mineral Oil | Silicone Oil | | | | | | | | D
P | oropping
Point,°C | 170 to 195 | 170 to 195 | 200 to 210 | | | | | | | | Vorking
emperatures, °C | -20 to +110 | -50 to +130 | -50 to +160 | | | | | | | | Vorking
Speed, %(1) | 70 | 100 | 60 | | | | | | | | Mechanical
Stability | Good | Good | Good | | | | | | | | ressure
Resistance | Fair | Fair | Poor | | | | | | | ٧ | Vater Resistance | Good | Good | Good | | | | | | | R | Rust Prevention | Good | Good | Poor | | | | | | | F | Remarks | General
purpose
grease used
for numerous
applications | Good low
temperature
and torque
characteristics.
Often used for
small motors
and instrument
bearings. Pay
attention to
rust caused
by insulation
varnish. | Mainly for high
temperature
applications.
Unsuitable
for bearings
for high and
low speeds or
heavy loads or
those having
numerous
sliding-contact
areas (roller
bearings, etc.) | | | | | | Note (1) The values listed are percentages of the limiting speeds given in the bearing tables. #### (3) Additives Grease often contains various additives such as antioxidants, corrosion inhibitors, and extreme pressure additives to give it special properties. It is recommended that extreme pressure additives be used in heavy load applications. For long use without replenishment, an antioxidant should be added. #### (4) Consistency Consistency indicates the "softness" of grease. Table 12.3 shows the relation between consistency and working conditions. #### **Grease Properties** | Sodium Grease
(Fiber Grease) | Calcium Grease
(Cup Grease) | Mixed Base
Grease | Complex Base
Grease
(Complex Grease) | | oap Base Grease
-Soap Grease) | | |---|---|---|--|---|--|--| | Na Soap | Ca Soap | Na + Ca Soap,
Li + Ca Soap,
etc. | Ca Complex Soap,
Al Complex Soap,
Li Complex Soap,
etc. | Urea, Bentonite, Carbon Black, Fluor
Compounds, Heat Resistant Organic
Compound, etc. | | | | Mineral Oil | Synthetic Oil (Ester Oil,
Polyatomic Ester Oil,
Synthetic Hydrocarbon
Oil, Silicone Oil, Fluoric
Based Oil) | | | 170 to 210 | 70 to 90 | 160 to 190 | 180 to 300 | > 230 | > 230 | | | -20 to +130 | -20 to +60 | -20 to +80 | -20 to +130 | -10 to +130 | < +220 | | | 70 | 40 | 70 | 70 | 70 | 40 to 100 | | | Good | Poor | Good | Good | Good | Good | | | Fair | Poor | Fair to Good | Fair to Good | Fair | Fair | | | Poor | Good | Poor for Na
Soap Grease | Good | Good | Good | | | Poor to Good | Good | Fair to Good | Fair to Good | Fair to Good | Fair to Good | | | Long and short
fiber types are
available. Long
fiber grease is
unsuitable for
high speeds.
Attention to
water and high
temperature is
requred. | Extreme pressure grease containing high viscosity mineral oil and extreme pressure additive (Pb soap, etc.) has high pressure resistance. | Often used for
roller bearings
and large ball
bearing. | Suitable
for extreme
pressures
mechanically
stable | and high temp
lubricant. Syn
is recommend
temperature. | se grease is middle
berature purpose
thetic oil base grease
ded for low or high
Some silicone and
ed grease have poor
n and noise. | | Remarks The grease properties shown here can vary between brands. Table 12.3 Consistency and Working Conditions | Consistency
Number | 0 | 1 | 2 | 3 | 4 | | |--|--|--|--|---|--|--| | Consistency(1)
1/10 mm | 355 to 385 | 310 to 340 | 265 to 295 | 220 to 250 | 175 to 205 | | | Working
Conditions
(Application) | -For centralized
oiling
-When fretting is
likely to occur | For centralized oiling When fretting is likely to occur For low temperatures | -For general use
-For sealed ball
bearings | ·For general use ·For sealed ball bearings ·For high temperatures | ·For high
temperatures
·For grease seals | |
Note (1) Consistency: The depth to which a cone descends into grease when a specified weight is applied, indicated in units of 1/10mm. The larger the value, the softer the grease. A 110 A 111 #### (5) Mixing Different Types of Grease In general, different brands of grease must not be mixed. Mixing grease with different types of thickneners may destroy its composition and physical properties. Even if the thickeners are of the same type, possible differences in the additive may cause detrimental effects. #### 12.3.2 Lubricating Oil The lubricating oils used for rolling bearings are usually highly refined mineral oil or synthetic oil that have a high oil film strength and superior oxidation and corrosion resistance. When selecting a lubricating oil, the viscosity at the operating conditions is important. If the viscosity is too low, a proper oil film is not formed and abnormal wear and seizure may occur. On the other hand, if the viscosity is too high, excessive viscous resistance may cause heating or large power loss. In general, low viscosity oils should be used at high speed; however, the viscosity should increase with increasing bearing load and size. Table 12.4 gives generally recommended viscosities for bearings under normal operating conditions. For use when selecting the proper lubricating oil, Fig. 12.11 shows the relationship between oil temperature and viscosity, and examples of selection are shown in Table 12.5. Table 12. 4 Bearing Types and Proper Viscosity of Lubricating Oils | Bearing Type | Proper Viscosity
at Operating
Temperature | |--|---| | Ball Bearings and
Cylindrical Roller Bearings | Higher than 13mm²/s | | Tapered Roller Bearings and
Spherical Roller Bearings | Higher than 20mm ² /s | | Spherical Thrust Roller Bearings | Higher than 32mm²/s | Remarks 1mm²/s=1cSt (centistokes) Fig. 12.11 Temperature-Viscosity Chart #### Oil Replacement Intervals Oil replacement intervals depend on the operating conditions and oil quantity. In those cases where the operating temperature is less than 50°C, and the environmental conditions are good with little dust, the oil should be replaced approximately once a year. However, in cases where the oil temperature is about 100°C, the oil must be changed at least once every three months. If moisture may enter or if foreign matter may be mixed in the oil, then the oil replacement interval must be shortened. Mixing different brands of oil must be prevented for the same reason given previously for grease. Table 12. 5 Examples of Selection Lubricating Oils | Operating
Temperature | Speed | Light or normal Load | Heavy or Shock Load | |--------------------------|--|--|--| | −30 to 0 °C | Less than limiting speed | ISO VG 15, 22, 32 (refrigerating machine oil) | _ | | | Less than 50% of limiting speed | ISO VG 32, 46, 68 (bearing oil, turbine oil) | ISO VG 46, 68, 100 (bearing oil, turbine oil) | | 0 to 50 °C | 50 to 100% of limiting speed | ISO VG 15, 22, 32 (bearing oil, turbine oil) | ISO VG 22, 32, 46 (bearing oil, turbine oil) | | | More than limiting speed | ISO VG 10, 15, 22 (bearing oil) | _ | | 50 to 80 °C | Less than 50% of limiting speed 50 to 100% of limiting speed | ISO VG 100, 150, 220 (bearings oil) ISO VG 46, 68, 100 (bearing oil, turbine oil) | ISO VG 150, 220, 320 (bearing oil) ISO VG 68, 100, 150 (bearing oil, turbine oil) | | | More than limiting speed | ISO VG 32, 46, 68 (bearing oil, turbine oil) | | | | Less than 50% of limiting speed | ISO VG 320, 460 (bearing oil) | ISO VG 460, 680 (bearing oil, gear oil) | | 80 to 110 °C | 50 to 100% of limiting speed | ISO VG 150, 220 (bearing oil) | ISO VG 220, 320 (bearing oil) | | | More than limiting speed | ISO VG 68, 100 (bearing oil, turbine oil) | _ | **Remarks** 1. For the limiting speed, use the values listed in the bearing tables. - Refer to Refrigerating Machine Oils (JIS K 2211), Bearing Oils (JIS K 2239), Turbine Oils (JIS K 2213), Gear Oils (JIS K 2219). - 3. If the operating temperature is near the high end of the temperature range listed in the left column, select a high viscosity oil. - 4. If the operating temperature is lower than -30 $^{\circ}$ C or higher than 110 $^{\circ}$ C , it is advisable to consult NSK. A 112 A 113 # 13. BEARING MATERIALS The bearing rings and rolling elements of rolling bearings are subjected to repetitive high pressure with a small amount of sliding. The cages are subjected to tension and compression and sliding contact with the rolling elements and either or both of the bearing rings. Therefore, the materials used for the rings, rolling elements, and cages require the following characteristics: Other necessary characteristics, such as easy production, shock and heat resistance, and corrosion resistance, are required depending on individual applications. #### 13.1 Materials for Bearing Rings and Rolling Elements Primarily, high carbon chromium bearing steel (Table 13.1) is used for the bearing rings and rolling elements. Most NSK bearings are made of SUJ2 among the JIS steel types listed in Table 13.1, while the larger bearings generally use SUJ3. The chemical composition of SUJ2 is approximately the same as AISI 52100 specified in the USA, DIN 100 Cr6 in Germany and BS 535A99 in England. For bearings that are subjected to very severe shock loads, carburized low-carbon alloy steels such as chrome steel, chrome molybdenum steel, nickel chrome molybdenum steel, etc. are often used. Such steels, when they are carburized to the proper depth and have sufficient surface hardness, are more shock resistant than normal, through-hardened bearing steels because of the softer energy-absorbing core. The chemical composition of common carburized bearing steels is listed in Table 13.2. Table 13. 1 Chemical Composition of High-Carbon Chromium Bearing Steel (Major Elements) | Standard | Cumbala | Chemical Composition (%) | | | | | | | | | | |------------|---------|--------------------------|--------------|-------------------|--------------------|--------------------|--------------|-------------------|--|--|--| | Standard | Symbols | C | Si | Mn | P | S | Cr | Mo | | | | | JIS G 4805 | SUJ 2 | 0.95 to 1.10 | 0.15 to 0.35 | Less than
0.50 | Less than
0.025 | Less than
0.025 | 1.30 to 1.60 | _ | | | | | | SUJ 3 | 0.95 to 1.10 | 0.40 to 0.70 | 0.90 to 1.15 | Less than
0.025 | Less than
0.025 | 0.90 to 1.20 | _ | | | | | | SUJ 4 | 0.95 to 1.10 | 0.15 to 0.35 | Less than
0.50 | Less than
0.025 | Less than
0.025 | 1.30 to 1.60 | 0.10 to 0.25 | | | | | ASTM A 295 | 52100 | 0.93 to 1.05 | 0.15 to 0.35 | 0.25 to 0.45 | Less than
0.025 | Less than
0.015 | 1.35 to 1.60 | Less than
0.10 | | | | Table 13. 2 Chemical Composition of Carburizing Bearing Steels (Major Elements) | Standard | Cumbala | | Chemical Composition (%) | | | | | | | | |------------|------------|--------------|--------------------------|--------------|--------------------|--------------------|-------------------|--------------|--------------|--| | Staridard | Symbols | С | Si | Mn | P | S | Ni | Cr | Mo | | | JIS G 4052 | SCr 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | Less than
0.030 | Less than
0.030 | Less than
0.25 | 0.85 to 1.25 | _ | | | | SCM 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | Less than
0.030 | Less than
0.030 | Less than
0.25 | 0.85 to 1.25 | 0.15 to 0.35 | | | | SNCM 220 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | Less than
0.030 | Less than
0.030 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.30 | | | | SNCM 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.030 | Less than
0.030 | 1.55 to 2.00 | 0.35 to 0.65 | 0.15 to 0.30 | | | JIS G 4053 | SNCM 815 | 0.12 to 0.18 | 0.15 to 0.35 | 0.30 to 0.60 | Less than
0.030 | Less than
0.030 | 4.00 to 4.50 | 0.70 to 1.00 | 0.15 to 0.30 | | | ASTM A 534 | 8620 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | Less than
0.025 | Less than
0.015 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.25 | | | | 4320 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.025 | Less than
0.015 | 1.55 to 2.00 | 0.35 to 0.65 | 0.20 to 0.30 | | | | 9310 H | 0.07 to 0.13 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.025 | Less than
0.015 | 2.95 to 3.55 | 1.00 to 1.40 | 0.08 to 0.15 | | Table 13. 3 Chemical Composition of High Speed Steel for Bearings Used at High Temperatures | Standard | Cumbala | | | | | Ch | emical Com | position (% |) | | | | | |----------|-----------|--------------|-------------------|-------------------|--------------------|--------------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------| | | Syllibols | С | Si | Mn | P | S | Cr | Mo | V | Ni | Cu | Co | W | | AISI | M50 | 0.77 to 0.85 | Less than
0.25 | Less than
0.35 | Less than
0.015 | Less than
0.015 | 3.75 to 4.25 | 4.00 to 4.50 | 0.90 to 1.10 | Less than
0.10 | Less than
0.10 | Less than
0.25 | Less than
0.25 | NSK uses highly pure vacuum-degassed bearing steel containing a minimum of oxygen, nitrogen, and hydrogen compound impurities. The rolling fatigue life of bearings has been remarkably improved using this material combined with the appropriate heat treatment. For special purpose bearings, high temperature bearing steel, which has superior heat resistance, and stainless steel having good corrosion resistance may be used. The chemical composition of these special materials are given in Tables 13.3 and 13.4. #### 13.2 Cage Materials The low carbon steels shown in Table 13.5 are the main ones for the pressed cages for bearings. Depending on the
purpose, brass or stainless steel may be used. For machined cages, high strength brass (Table 13.6) or carbon steel (Table 13.5) is used. Sometimes synthetic resin is also used. Table 13. 4 Chemical Composition of Stainless Steel for Rolling Bearing (Major Elements) | Standard | Cumbala | | Chemical Composition (%) | | | | | | | | | | | |------------|-----------|--------------|--------------------------|-------------------|--------------------|--------------------|----------------|-------------------|--|--|--|--|--| | Staridard | Symbols | С | Si | Mn | P | S | Cr | Mo | | | | | | | JIS G 4303 | SUS 440 C | 0.95 to 1.20 | Less than
1.00 | Less than
1.00 | Less than
0.040 | Less than
0.030 | 16.00 to 18.00 | Less than
0.75 | | | | | | | SAE J 405 | 51440 C | 0.95 to 1.20 | Less than
1.00 | Less than
1.00 | Less than
0.040 | Less than
0.030 | 16.00 to 18.00 | Less than
0.75 | | | | | | Table 13. 5 Chemical Composition of Steel sheet and Carbon Steel for Cages (Major Elements) | Classification | Standard | Cumbala | Chemical Composition (%) | | | | | | | | |------------------------------------|------------|---------|--------------------------|-------------------|-------------------|-------------------|--------------------|--|--|--| | Classification | Standard | Symbols | | Si | Mn | P | S | | | | | Steel sheet and | JIS G 3141 | SPCC | Less than
0.12 | _ | Less than
0.50 | Less than
0.04 | Less than
0.045 | | | | | strip for pressed | BAS 361 | SPB 2 | 0.13 to 0.20 | Less than
0.30 | 0.25 to 0.60 | Less than 0.03 | Less than
0.030 | | | | | cages | JIS G 3311 | S 50 CM | 0.47 to 0.53 | 0.15 to 0.35 | 0.60 to 0.90 | Less than 0.03 | Less than
0.035 | | | | | Carbon steel for
machined cages | JIS G 4051 | S 25 C | 0.22 to 0.28 | 0.15 to 0.35 | 0.30 to 0.60 | Less than 0.03 | Less than 0.035 | | | | Remarks BAS is Japanese Bearing Association Standard. Table 13. 6 Chemical Composition of High Strength Brass for Machined Cages | Standard | Symbols | Chemical Composition (%) | | | | | | | | | | | | | |------------|--------------------|--------------------------|--------------|------------|------------|------------|------------------|------------------|------------------|------------------|--|--|--|--| | | | Cu | Zn | Mn | Fe | Al | Sn | Ni | Impurities | | | | | | | | | Cu | ZII | MIII Fe | | AI | SII | INI | Pb | Si | | | | | | JIS H 5120 | CAC301
(HBsC 1) | 55.0 to 60.0 | 33.0 to 42.0 | 0.1 to 1.5 | 0.5 to 1.5 | 0.5 to 1.5 | Less than
1.0 | Less than
1.0 | Less than
0.4 | Less than
0.1 | | | | | | JIS H 3250 | C 6782 | 56.0 to 60.5 | Residual | 0.5 to 2.5 | 0.1 to 1.0 | 0.2 to 2.0 | _ | _ | Less than
0.5 | _ | | | | | Remarks Improved HBsC 1 is also used. A 114 A 115 # 14. BEARING HANDLING #### 14.1 Precautions for Proper Handling of Bearings Since rolling bearings are high precision machine parts, they must be handled accordingly. Even if high quality bearings are used, their expected performance cannot be achieved if they are not handled properly. The main precautions to be observed are as follows: #### (1) Keep Bearings and Surrounding Area Clean Dust and dirt, even if invisible to the naked eye, have harmful effects on bearings. It is necessary to prevent the entry of dust and dirt by keeping the bearings and their environment as clean as possible. #### (2) Careful Handling Heavy shocks during handling may cause bearings to be scratched or otherwise damaged possibly resulting in their failure. Excessively strong impacts may cause brinelling, breaking, or cracking. #### (3) Use Proper Tools Always use the proper equipment when handling bearings and avoid general purpose tools. #### (4) Prevent Corrosion Since perspiration on the hands and various other contaminants may cause corrosion, keep the hands clean when handling bearings. Wear gloves if possible. Pay attention to rust of bearing caused by corrosive gasses. #### 14.2 Mounting The method of mounting rolling bearings strongly affects their accuracy, life, and performance, so their mounting deserves careful attention. Their characteristics should first be thoroughly studied, and then they should be mounted in the proper manner. It is recommended that the handling procedures for bearings be fully investigated by the design engineers and that standards be established with respect to the following items: - (1) Cleaning the bearings and related parts. - (2) Checking the dimensions and finish of related parts. - (3) Mounting - (4) Inspection after mounting. - (5) Supply of Jubricants. Bearings should not be unpacked until immediately before mounting. When using ordinary grease lubrication, the grease should be packed in the bearings without first cleaning them. Even in the case of ordinary oil lubrication, cleaning the bearings is not required. However, bearings for instruments or for high speed operation must first be cleaned with clean filtered oil in order to remove the anti-corrosion agent. After the bearings are cleaned with filtered oil, they should be protected to prevent corrosion. Prelubricated bearings must be used without cleaning. Bearing mounting methods depend on the bearing type and type of fit. As bearings are usually used on rotating shafts, the inner rings require a tight fit. Bearings with cylindrical bores are usually mounted by pressing them on the shafts (press fit) or heating them to expand their diameter (shrink fit). Bearings with tapered bores can be mounted directly on tapered shafts or cylindrical shafts using tapered sleeves. Bearings are usually mounted in housings with a loose fit. However, in cases where the outer ring has an interference fit, a press may be used. Bearings can be interference-fitted by cooling them before mounting using dry ice. In this case, a rust preventive treatment must be applied to the bearing because moisture in the air condenses on its surface. # 14.2.1 Mounting of Bearings with Cylindrical Bores #### (1) Press Fits Fitting with a press is widely used for small bearings. A mounting tool is placed on the inner ring as shown in Fig. 14.1 and the bearing is slowly pressed on the shaft with a press until the side of the inner ring rests against the shoulder of the shaft. The mounting tool must not be placed on the outer ring for press mounting, since the bearing may be damaged. Before mounting, applying oil to the fitted shaft surface is recommended for smooth insertion. The mounting method using a hammer should only be used for small ball bearings with minimally tight fits and when a press is not available. In the case of tight interference fits or for medium and large bearings, this method should not be used. Any time a hammer is used, a mounting tool must be placed on the inner ring. When both the inner and outer rings of non-separable bearings, such as deep groove ball bearings, require tight-fit, a mounting tool is placed on both rings as shown in Fig. 14.2, and both rings are fitted at the same time using a screw or hydraulic press. Since the outer ring of self-aligning ball bearings may deflect a mounting tool such as that shown in Fig. 14.2 should always be used for mounting them. In the case of separable bearings, such as cylindrical roller bearings and tapered roller bearings, the inner and outer rings may be mounted separately. Assembly of the inner and outer rings, which were previously mounted separately, should be done carefully to align the inner and outer rings correctly. Careless or forced assembly may cause scratches on the rolling contact surfaces. Fig. 14.1 Press Fitting Inner Ring Fig. 14.2 Simultaneous Press Fitting of Inner and Outer Rings (2) Shrink Fits Since press fitting large bearings requires a large force, a shrink fit is widely used. The bearings are first heated in oil to expand them before mounting. This method prevents an excessive force from being imposed on the bearings and allows mounting them in a short time. The expansion of the inner ring for various temperature differences and bearing sizes is shown in Fig. 14.3. The precautions to follow when making shrink fits are as follows: - (a) Do not heat bearings to more than 120°C. - (b) Put the bearings on a wire net or suspend them in an oil tank in order to prevent them from touching the tank's bottom directly. - (c) Heat the bearings to a temperature 20 to 30°C higher than the lowest temperature required for mounting without interference since the inner ring will cool a little during mounting. - (d) After mounting, the bearings will shrink in the axial direction as well as the radial direction while cooling. Therefore, press the bearing firmly against the shaft shoulder using locating methods to avoid a clearance between the bearing and shoulder. #### **NSK** Bearing Induction Heaters Besides heating in oil, NSK Bearing Heaters, which use electromagnetic induction to heat bearings, are widely used. (Refer to Page C7.) In NSK Bearing Heaters, electricity (AC) in a coil produces a magnetic field that induces a current inside the bearing that generates heat. Consequently, without using flames or oil uniform heating in a short time is possible, making bearing shrink fitting efficient and In the case of relatively frequent mounting and dismounting such as cylindrical roller bearings for roll necks of rolling mills and for railway journal boxes, induction heating should be used for mounting and dismounting inner rings. A 116 A 117 #### 14.2.2 Mounting of Bearings with Tapered Bores Bearings with tapered bores are mounted on tapered shafts directly or on cylindrical shafts with adapters or withdrawal sleeves (Figs. 14.4 and 14.5). Large spherical roller bearings are often mounted using hydraulic pressure. Fig. 14.6 shows a bearing mounting utilizing a sleeve and hydraulic nut. Fig. 14.7 shows another mounting method. Holes are drilled in the sleeve which are used to feed oil under pressure to the bearing seat. As the bearing expands radially, the sleeve is
inserted axially with adjusting bolts. Spherical roller bearings should be mounted while checking their radial-clearance reduction and referring to the push-in amounts listed in Table 14.1. The radial clearance must be measured using clearance gauges. In this measurement, as shown in Fig. 14.8, the clearance for both rows of rollers must be measured simultaneously, and these two values should be kept roughly the same by adjusting the relative position of the outer and inner rings. When a large bearing is mounted on a shaft, the outer ring may be deformed into an oval shape by its own weight. If the clearance is measured at the lowest part of the deformed bearing, the measured value may be bigger than the true value. If an incorrect radial internal clearance is obtained in this manner and the values in Table 14.1 are used, then the interference fit may become too tight and the true residual clearance may become too small. In this case, as shown in Fig. 14.9. one half of the total clearance at points \boldsymbol{a} and \boldsymbol{b} (which are on a horizontal line passing through the bearing center) and \boldsymbol{c} (which is at the lowest position of the bearing) may be used as the residual clearance. When a self-aligning ball bearing is mounted on a shaft with an adapter, be sure that the residual clearance does not become too small. Sufficient clearance for easy alignment of the outer ring must be allowed. #### 14.3 Operation Inspection After the mounting has been completed, a running test should be conducted to determine if the bearing has been mounted correctly. Small machines may be manually operated to assure that they rotate smoothly. Items to be checked include sticking due to foreign matter or visible flaws, uneven torque caused by improper mounting or an improper mounting surface, and excessive torque caused by an inadequate clearance, mounting error, or seal friction. If there are no abnormalities, powered operation may be started. Fig. 14.4 Mounting with Adapter Fig. 14.5 Mounting with Withdrawal Sleeve Fig. 14.6 Mounting with Hydraulic Nut Fig. 14.7 Mounting with Special Sleeve and Hydraulic Pressure Fig. 14.8 Clearance Measurement of Spherical Roller Bearing Units: mm | | 2.1.1.2.1 | | | | | | | | | | | |---|-----------------|---------|------------|----------------------|-------------|-------------|----------------|-------------|---|-------------|--| | | Bearing
Diam | eter | | n in Radial
rance | Push | -in amour | nt in axial di | rection | Minimum Permissible
Residual Clearance | | | | | C | 1 | | | Taper | 1:12 | Taper | 1:30 | | | | | | over | incl. | min. | max. | min. | max. | min. | max. | CN | C3 | | | | 30 | 40 | 0.025 | 0.030 | 0.40 | 0.45 | - | - | 0.010 | 0.025 | | | | 40 | 50 | 0.030 | 0.035 | 0.45 | 0.55 | - | - | 0.015 | 0.030 | | | | 50 | 65 | 0.030 | 0.035 | 0.45 | 0.55 | - | - | 0.025 | 0.035 | | | | 65 | 80 | 0.040 | 0.045 | 0.60 | 0.70 | - | - | 0.030 | 0.040 | | | | 80 | 100 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | | | | 100 | 120 | 0.050 | 0.060 | 0.75 | 0.90 | 1.9 | 2.25 | 0.045 | 0.065 | | | | 120 | 140 | 0.060 | 0.070 | 0.90 | 1.1 | 2.25 | 2.75 | 0.055 | 0.080 | | | | 140 | 160 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | | | | 160 | 180 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | | | | 180 | 200 | 0.080 | 0.100 | 1.3 | 1.6 | 3.25 | 4.0 | 0.070 | 0.110 | | | | 200 | 225 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | | | | 225 | 250 | 0.100 | 0.120 | 1.6 | 1.9 | 4.0 | 4.75 | 0.090 | 0.140 | | | | 250 | 280 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | | | | 280 | 315 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | | | | 315 | 355 | 0.140 | 0.170 | 2.2 | 2.7 | 5.5 | 6.75 | 0.120 | 0.180 | | | | 355 | 400 | 0.150 | 0.190 | 2.4 | 3.0 | 6.0 | 7.5 | 0.130 | 0.200 | | | | 400 | 450 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | | | | 450 | 500 | 0.190 | 0.240 | 3.0 | 3.7 | 7.5 | 9.25 | 0.160 | 0.240 | | | | 500 | 560 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | | | | 560 | 630 | 0.230 | 0.300 | 3.7 | 4.8 | 9.25 | 12.0 | 0.200 | 0.310 | | | | 630 | 710 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0.220 | 0.330 | | | | 710 | 800 | 0.280 | 0.370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | | | | 800 | 900 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.280 | 0.430 | | | | 900 | 1 000 | 0.340 | 0.460 | 5.5 | 7.4 | 14.0 | 18.5 | 0.310 | 0.470 | | | | 1 000 | 1 120 | 0.370 | 0.500 | 5.9 | 8.0 | 15.0 | 20.0 | 0.360 | 0.530 | | | ľ | Rema | rks The | values for | reduction i | n radial ir | nternal cle | arance are | for bearing | as with CN | I clearance | | Remarks The values for reduction in radial internal clearance are for bearings with CN clearance. For bearing with C3 Clearance, the maximum values listed should be used for the reduction in radial internal clearance. Fig. 14.9 Measuring Clearance in Large Spherical Roller Bearing Large machines, which cannot be turned by hand, can be started after examination with no load, and the power immediately cutoff and the machine allowed to coast to a stop. Confirm that there is no abnormality such as vibration, noise, contact of rotating parts, etc. Powered operation should be started slowly without load and the operation should be observed carefully until it is determined that no abnormalities exist, then gradually increase the speed, load, etc. to their normal levels. Items to be checked during the test operation include the existence of abnormal noise, excessive rise of bearing temperature, leakage and contamination of lubricants, etc. If any abnormality is found during the test operation, it must be stopped immediately and the machine should be inspected. If necessary, the bearing should be dismounted for examination. Although the bearing temperature can generally be estimated by the temperature of the outside surface of the housing, it is more desirable to directly measure the temperature of the outer ring using oil holes for access. The bearing temperature should rise gradually to the steady state level within one to two hours after the operation starts. If the bearing or its mounting is improper, the bearing temperature may increase rapidly and become abnormally high. The cause of this abnormal temperature may be an excessive amount of lubricant, insufficient bearing clearance, incorrect mounting, or excessive friction of the seals. In the case of high speed operation, an incorrect selection of bearing type or lubricating method may also cause an abnormal temperature rise. The sound of a bearing may be checked with a noise locater or other instruments. Abnormal conditions are indicated by a loud metallic sound, or other irregular noise, and the possible cause may include incorrect lubrication, poor alignment of the shaft and housing, or the entry of foreign matter into the bearing. The possible causes and measures for irregularities are listed in Table 14.2. Table 14. 2 Causes of and Measures for Operating Irregularities | Ir | regularities | Possible Causes | Measures | | | | | | |--------|---|---|--|--|--|--|--|--| | | | Abnormal Load | Improve the fit, internal clearance, preload, position of housing shoulder, etc. | | | | | | | | Loud Metallic
Sound (1) | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method. | | | | | | | | ., | Insufficient or improper Lubricant | Replenish the lubricant or select another lubricant. | | | | | | | | | Contact of rotating parts | Modify the labyrinth seal, etc. | | | | | | | Noise | Laud Danilar | Flaws,corrosion,or scratches on raceways | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | | | Loud Regular
Sound | Brinelling | Replace the bearing and use care when handling bearings. | | | | | | | | | Flaking on raceway | Replace the bearing. | | | | | | | | | Excessive clearance | Improve the fit, clearance and preload. | | | | | | | | Irregular
Sound | Penetration of foreign particles | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | | | | Flaws or flaking on balls | Replace the bearing. | | | | | | | | | Excessive amount of lubricant | Reduce amount of lubricant, select stiffer grease. | | | | | | | | | Insufficient or improper lubricant | Replenish lubricant or select a better one. | | | | | | | Abnorr | nal Temperature
Rise | Abnormal load | Improve the fit, internal clearance, preload, position of housing shoulder. | | | | | | | | Rise | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting, or mounting method. | | | | | | | | | Creep on fitted surface, excessive seal friction | Correct the seals, replace the bearing, correct the fitting or mounting. | | | | | | | | | Brinelling | Replace the bearing and use care when handling bearings. | | | | | | | | Vibration | Flaking | Replace the bearing. | | | | | | | | xial runout) | Incorrect mounting | Correct the squareness between the shaft and housing shoulder or side of spacer. | | | | | | | | | Penetration of foreign particles | Replace or clean the bearing, improve the seals. | | | | | | | Dis | eakage or
coloration of
Lubricant | Too much lubricant, Penetration by foreign matter or abrasion chips | Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts. | | | | | | Note (1) Intermittent squeal or high-pitch noise may be heard in medium- to large-sized cylindrical roller bearings or ball bearings that are operating under grease lubrication in low-temperature environments.
Under such low-temperature conditions, bearing temperature will not rise resulting in fatigue nor is grease performance affected. Although intermittent squeal or high-pitch noise may occur under these conditions, the bearing is fully functional and can continue to be used. In the event that greater noise reduction or quieter running properties are needed, please contact your nearest NSK branch office. #### 14.4 Dismounting A bearing may be removed for periodic inspection or for other reasons. If the removed bearing is to be used again or it is removed only for inspection, it should be dismounted as carefully as when it was mounted. If the bearing has a tight fit, its removal may be difficult. The means for removal should be considered in the original design of the adjacent parts of the machine. When dismounting, the procedure and sequence of removal should first be studied using the machine drawing and considering the type of mounting fit in order to perform the operation properly. #### 14.4.1 Dismounting of Outer Rings In order to remove an outer ring that is tightly fitted, first place bolts in the push-out holes in the housing at several locations on its circumference as shown in Fig. 14.10, and remove the outer ring by uniformly tightening the bolts. These bolt holes should always be fitted with blank plugs when not being used for dismounting. In the case of separable bearings, such as tapered roller bearings, some notches should be made at several positions in the housing shoulder, as shown in Fig. 14.11, so the outer ring may be pressed out using a dismounting tool or by tapping it. # 14.4.2 Dismounting of Bearings with Cylindrical Bores If the mounting design allows space to press out the inner ring, this is an easy and fast method. In this case, the withdrawal force should be imposed only on the inner ring (Fig. 14.12). Withdrawal tools like those shown in Figs. 14.13 and 14.14 are often used. Fig. 14.10 Removal of Outer Ring with Dismounting Bolts Fig. 14.11 Removal Notches Fig. 14.12 Removal of Inner Ring Using a Press Fig. 14.13 Removal of Inner Ring Using Withdrawal Tool (1) Fig. 14.14 Removal of Inner Ring Using Withdrawal Tool (2) In both cases, the claws of the tools must substantially engage the face of the inner ring; therefore, it is advisable to consider the size of the shaft shoulder or to cut grooves in the shoulder to accommodate the withdrawal tools (Fig. 14.14). The oil injection method is usually used for the withdrawal of large bearings. The withdrawal is achieved easily by mean of oil pressure applied through holes in the shaft. In the case of extra wide bearings, the oil injection method is used together with a withdrawal tool. Induction heating is used to remove the inner rings of NU and NJ types of cylindrical roller bearings. The inner rings are expanded by brief local heating, and then withdrawn (Fig. 14.15). Induction heating is also used to mount several bearings of these types on a shaft. #### 14.4.3 Dismounting of Bearings with Tapered Bores When dismounting relatively small bearings with adapters, the inner ring is held by a stop fastened to the shaft and the nut is loosened several turns. This is followed by hammering on the sleeve using a suitable tool as shown in Fig. 14.18. Fig. 14.16 shows one procedure for dismounting a withdrawal sleeve by tightening the removal nut. If this procedure is difficult, it may be possible to drill and tap bolt holes in the nut and withdraw the sleeve by tightening the bolts as shown in Fig. 14.17. Large bearings may be withdrawn easily using oil pressure. Fig. 14.19 illustrates the removal of a bearing by forcing oil under pressure through a hole and groove in a tapered shaft to expand the inner ring. The bearing may suddenly move axially when the interference is relieved during this procedure so a stop nut is recommended for protection. Fig. 14.20 shows a withdrawal using a hydraulic nut. Fig. 14.15 Removal of Inner Ring Using Induction Heater Fig. 14.16 Removal of Withdrawal Sleeve Using Withdrawal Nut (1) Fig. 14.17 Removal of Withdrawal Sleeve Using Withdrawal Nut (2) Fig. 14.18 Removal of Adapter with Stop and Axial Pressure Fig. 14.19 Removal Using Oil Injection Hydraulic Pump #### 14.5 Inspection of Bearings #### 14.5.1 Bearing Cleaning When bearings are inspected, the appearance of the bearings should first be recorded and the amount and condition of the residual lubricant should be checked. After the lubricant has been sampled for examination, the bearings should be cleaned. In general, light oil or kerosene may be used as a cleaning solution. Dismounted bearings should first be given a preliminary cleaning followed by a finishing rinse. Each bath should be provided with a metal net to support the bearings in the oil without touching the sides or bottom of the tank. If the bearings are rotated with foreign matter in them during preliminary cleaning, the raceways may be damaged. The lubricant and other deposits should be removed in the oil bath during the initial rough cleaning with a brush or other means. After the bearing is relatively clean, it is given the finishing rinse. The finishing rinse should be done carefully with the bearing being rotated while immersed in the rinsing oil. It is necessary to always keep the rinsing oil clean. Fig. 14.20 Removal Using Hydraulic Nut #### 14.5.2 Inspection and Evaluation of Bearings After being thoroughly cleaned, bearings should be examined for the condition of their raceways and external surfaces, the amount of cage wear, the increase in internal clearance, and degradation of tolerances. These should be carefully checked, in addition to examination for possible damage or other abnormalities, in order to determine the possibility for its reuse. In the case of small non-separable ball bearings, hold the bearing horizontally in one hand, and then rotate the outer ring to confirm that it turns smoothly. Separable bearings such as tapered roller bearings may be checked by individually examining their rolling elements and the outer ring raceway. Large bearings cannot be rotated manually; however, the rolling elements, raceway surfaces, cages, and contact surface of the ribs should be carefully examined visually. The more important a bearing is, the more carefully it should be inspected. The determination to reuse a bearing should be made only after considering the degree of bearing wear, the function of the machine, the importance of the bearings in the machine, operating conditions, and the time until the next inspection. However, if any of the following defects exist, reuse is impossible and replacement is necessary. - (a) When there are cracks in the inner or outer rings, rolling elements, or cage. - (b) When there is flaking of the raceway or rolling elements. - (c) When there is significant smearing of the raceway surfaces, ribs, or rolling elements. - (d) When the cage is significantly worn or rivets are loose. - (e) When there is rust or scoring on the raceway surfaces or rolling elements. - (f) When there are any significant impact or brinell traces on the raceway surfaces or rolling elements.(g) When there is significant evidence of creep on the - bore or the periphery of the outer ring. - (h) When discoloration by heat is evident. - When significant damage to the seals or shields of grease sealed bearings has occurred. A 122 A 123 #### 14.6 Maintenance and Inspection #### 14.6.1 Detecting and Correcting Irregularities In order to maintain the original performance of a bearing for as long as possible, proper maintenance and inspection should be performed. If proper procedures are used, many bearing problems can be avoided and the reliability, productivity, and operating costs of the equipment containing the bearings are all improved. It is suggested that periodic maintenance be done following the procedure specified. This periodic maintenance encompasses the supervision of operating conditions, the supply or replacement of lubricants, and regular periodic inspection. Items that should be regularly checked during operation include bearing noise, vibration, temperature, and lubrication. If an irregularity is found during operation, the cause should be determined and the proper corrective actions should be taken after referring to Table 14.2. If necessary, the bearing should be dismounted and examined in detail. As for the procedure for # **NSK** BEARING MONITOR (Bearing Abnormality Detector) Inspection of Bearings. It is important during operation to detect signs of irregularities early before damage becomes severe. The NSK Bearing Monitor (see Page C5) is an instrument that checks the condition of bearings and gives a warning of any abnormality, or it stops a machine automatically in order to prevent serious trouble. In addition, it helps to improve maintenance and reduce its cost. dismounting and inspection, refer to Section 14.5, #### 14.6.2 Bearing Failures and Measures In general, if rolling bearings are used correctly they will survive to their predicted fatigue life. However, they often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, handling, or lubrication, entry of foreign matter, or abnormal heat generation. For instance, the causes of rib scoring, as one example of premature failure, may include insufficient lubrication, use of improper lubricant, faulty lubrication system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft, or any combination of these. Thus, it is difficult to determine the real cause of some premature failures. If all the conditions at the time of failure and previous to the time of failure are known, including the application. the operating conditions, and environment; then by studying the nature of the failure and its probable causes, the possibility of similar future failures can be reduced. The most frequent types of bearing failure,
along with their causes and corrective actions, are listed in Table 14.3. Table 14.3 Causes and Measures for Bearing Failures | Type of Failure | Probable Causes | Measures | |---|---|--| | Flaking Flaking of one-side of the raceway of radial bearing. | Abnomal axial load. | A loose fit should be used when mounting the outer ring of free-end bearings to allow axial expansion of the shaft. | | Flaking of the raceway in symmetrical patterm. | Out-of-roundness of the housing bore. | Correct the faulty housing. | | Flaking pattern inclined relative to the raceway in radial ball bearings. Flaking near the edge of the raceway and rolling surfaces in roller bearings. | Improper muonting, deflection of shaft, inadequate tolerances for shaft and housing. | Use care in mounting and centering, select a bearing with a large clearance, and correct the shaft and housing shoulder. | | Flaking of raceway with same spacing as rolling elements. | Large shock load during mounting, rusting while bearing is out of operation for prolonged period. | Use care in mounting and apply a rust preventive when machine operation is suspended for a long time. | | Premature flaking of raceway and rolling elements. | Insufficient clearance, excessive load, improper lubrication, rust, etc. | Select proper fit, bearing clearance, and lubricant. | | Premature flaking of duplex bearings. | Excessive preload. | Adjust the preload. | | Type of Failure | Probable Causes | Measures | |---|---|--| | Scoring Scoring or smearing between raceway and rolling surfaces. | Inadequate initial lubrication, excessively hard grease and high acceleration when starting. | Use a softer grease and avoid rapid acceleration. | | Spiral scoring or smearing of raceway surface of thrust ball bearing. | Raceway rings are not parallel and excessive speed. | Correct the mounting, apply a preload, or select another bearing type. | | Scoring or smearing between the end face of the rollers and guide rib. | Inadequate lubrication, incorrect mounting and large axial load. | Select proper lubricant and modify the mounting. | | Cracks Crack in outer or inner ring. | Excessive shock load, excessive interference in fitting, poor surface cylindricality, improper sleeve taper, large fillet radius, development of thermal cracks and advancement of flaking. | Examine the loading conditions, modify the fit of bearing and sleeve. The fillet radius must be smaller than the bearing chamfer. | | Crack in rolling element.
Broken rib. | Advancement of flaking, shock applied to the rib during mounting or dropped during handling. | Be carefull in handling and mounting. | | Fractured cage. | Abnormal loading of cage due to incorrect mounting and improper lubrication. | Reduce the mounting error and review the lubricating method and lubricant. | | Indentations Indentations in raceway in same pattern as rolling elements. | Shock load during mounting or excessive load when not rotating. | Use care in handling. | | Indentations in raceway and rolling elements. | Foreign matter such as metallic chips or sand. | Clean the housing, improve the seals, and use a clean lubricant. | | Abnormal Wear False brinelling (phenomenon similar to brinelling) | Vibration of the bearing without rotation during shipment or rocking motion of small amplitude. | Secure the shaft and housing, use oil as a lubricant and reduce vibration by applying a preload. | | Fretting | Slight wear of the fitting surface. | Increase interference and apply oil. | | Wearing of raceway, rolling elements, rib, and cage. | Penentration by foreign matter, incorrect lubrication, and rust. | Improve the seals, clean the housing, and use a clean lubricant. | | Creep | Insufficient interference or insufficient tightening of sleeve. | Modify the fit or tighten the sleeve | | Seizure Discoloration and melting of raceway, rolling elements, and ribs. | Insufficient clearance, incorrect lubrication, or improper mounting. | Review the internal clearance and bearing fit, supply an adequate amount of the proper lubricant and improve the mounting method and related parts. | | Electric Burng Fluting or corrugations. | Melting due to electric arcing. | Install a ground wire to stop the flow of electricity or insulate the beaning. | | Corrosion & Rust Rust and corrosion of fitting surfaces and bearing interior. | Condensation of water from the air, or fretting. Penetration by corrosive substance(especially varnish-gas, etc). | Use care in storing and avoid high temperature and high humidity, treatment for rust prevention is necessary when operation is stopped for long time. Selection of varnish and grease. | A 124 A 125 # 15. TECHNICAL DATA | | | Page | |-------|--|-------| | 15. 1 | AXIAL DISPLACEMENT OF BEARINGS | A 128 | | | (1) Contact Angle and Axial Displacement of Deep Groove Ball Bearings and Angular Contact Ball Bearings | A 128 | | | (2) Axial Load and Axial Displacement of Tapered Roller Bearings | A 128 | | | | | | 15. 2 | FITS | A 130 | | | (1) Surface Pressure, Maximum Stress on Fitted Surfaces and Expansion or Contraction of Raceway Diameter | A 130 | | | (2) Interferences or Clearances for Shafts and Inner Rings | A 130 | | | (3) Interferences or Clearances for Housing Bores and Outer Rings | A 130 | | | | | | 15. 3 | RADIAL AND AXIAL INTERNAL CLEARANCES | A 132 | | | (1) Radial and Axial Internal Clearances for Single-Row Deep Groove Ball Bearings | A 132 | | | (2) Radial and Axial Internal Clearances for Double-Row Angular Contact Ball Bearings | A 132 | | 15. 4 | PRELOAD AND STARTING TORQUE | A 134 | | | (1) Axial Load and Starting Torque of Tapered Roller Bearings | A 134 | | | (2) Preload and Starting Torque of Angular Contact Ball Bearings and Double-Direction Angular Contact Thrust Ball Bearings | | | | Dali Dealings | A 134 | | 15. 5 | COEFFICIENTS OF FRICTION AND OTHER BEARING DATA | A 136 | | | (1) Bearing Types and Their Coefficients of Friction | A 136 | | | (2) Circumferential Speed of Rolling Elements about Their Centers and Bearing Center | A 136 | | | (3) Radial Internal Clearance and Fatigue Life | | | | | | | 15. 6 | BRANDS AND PROPERTIES OF LUBRICATING GREASES | A 138 | # **DEFINIONS OF SYMBOLS AND THEIR UNITS** | Symbols | Nomenclature | Units | |----------------------------|--|-----------------------| | a
b | Contact Ellipse Major Axis
Contact Ellipse Major Axis | (mm)
(mm) | | $C_{ m r}$ | Basic Dynamic Load Rating of Radial
Bearings | (N){kgf} | | C_{0r} | Basic Static Load Radial of Radial
Bearings | (N){kgf} | | $C_{\rm a}$ | Basic Dynamic Load Rating of Thrust
Bearings | (N){kgf} | | C_{0a} | Basic Static Load Rating of Thrust
Bearings | (N){kgf} | | d | Shaft Diameter, Nominal Bearing Bore
Diameter | (mm) | | D | Housing Bore Diameter, Nominal Bearing
Outside Diameter | (mm) | | D_{e} | Outer Ring Raceway Diameter | (mm) | | D_i | Inner Ring Raceway Diameter | (mm) | | D_0 | Housing Outside Diameter | (mm) | | D_{pw} | Rolling Element Pitch Diameter | (mm) | | $\dot{D_{ m W}}$ | Nominal Rolling Element Diameter | (mm) | | e | Contact Position of Tapered Roller End Face with Rib | (mm) | | E | Modulus of Longitudinal Elasticity (Bearing Steel) 208 000 MPa{21 200 kgf/mm²} | | | E(k) | Complete elliptic integral of the 2nd kind for which the population parameter is $k=\sqrt{1-\left(\frac{b}{a}\right)^2}$ | | | f_{0} | factor which depends on the geometry of
the bearing components and on the
applicable stress level | | | $f(\varepsilon)$ | Function of ϵ | | | $F_{\rm a}$ | Axial Load, Preload | (N){kgf} | | $F_{ m r}$ | Radial Load | (N){kgf} | | h | $D_{ m e}/D$ | | | $h_{\scriptscriptstyle 0}$ | D/D_0 | | | k | d/D_i | | | K | Constant Determined by Internal Design of Bearing | | | L | Fatigue Life when Effective Clearance is 0 | | | $L_{\rm we}$ | Effective Leng of Roller | (mm) | | L_{ϵ} | Fatigue Life when Effective Clearance is $ec{ec{\Delta}}$ | | | $m_{\scriptscriptstyle 0}$ | Distance between Centers of Curvature of Inner and Outer Rings | | | | r_i + $r_{ m e}$ - $D_{ m w}$
Frictional Torque | (mm)
(N·mm){kgf·mm | | Λ.4 | | | | M $M_{ m S}$ | Spin Friction | (N·mm){kgf·mm] | | Symbols | Nomenclature | Units | |-----------------------|---|----------------------| | $n_{\rm a}$ | Rotating Speed of Rolling Elements | (min ⁻¹) | | $n_{\rm c}$ | Revolving Speed of Rolling Elements
(Cape Speed) | (min ⁻¹) | | $n_{\rm e}$ | Speed of Ouder Ring | (min ⁻¹) | | n_i | Speed of Inner Ring | (min ⁻¹) | | p_{m} | Surface Pressure on Fitted Surface | $(MP_a)\{kgf/mm^2\}$ | | P | Bearing Load | (N){kgf} | | Q | Rolling Element Load | (N){kgf} | | $r_{\rm e}$ | Groove Radius of Outer Ring | (mm) | | r_i | Groove Radius of Inner Ring | (mm) | | V a |
Circumferential Speed of Rolling Element about Its Center | (m/sec) | | <i>V</i> _C | Circumferential Speed of Rolling Element about Beaing Center | (m/sec) | | Z | Number of Rolling Elements per Row | | | α | Contact Angle (when axial load is applied on Radial Ball Bearning | (°) | | α_0 | Initial Confact Angle (Geometri) (when inner and outer rings of Angular Contact Ball Bearings are pushed axially) | (°) | | α_R | Initial Contact Angle (Geometric) (when inner and outer rings Angular Contact Ball Bearing are pushed radially) | (°) | | β | 1/2 of Conical Angle of Roller | (°) | | δ_a | Relative Axial Displacement of Inner and Outer Rings | (mm) | | ⊿a | Axial Internal Clearance | (mm) | | Δd | Effective Interference of Inner Ring and Shaft | (mm) | | $\Delta_{\rm r}$ | Radial Internal Clearance | (mm) | | ΔD | Effective Interference of Outer Ring and Housing | (mm) | | $\Delta D_{\rm e}$ | Contraction of Outer Ring Raceway
Diameter due to Fit | (mm) | | ΔD_i | Expansion of Inner Ring Raceway
Diameter dus to Fit | (mm) | | ε | Load Factor | | | μ | Coefficient of Dynamic Friction of Rolling
Bearing | | | μ_{e} | Coefficient of Friction between Roller End
Face and Rib | | | $\mu_{\rm s}$ | Coefficient of Sliding Friction | | | σ_{tmax} | Maximum Stress on Fitted Surfaces | $(MP_a)\{kgf/mm^2\}$ | | | | | | | | | | | | | A 126 A 127 # NSK ## 15. 1 Axial Displacement of Bearings (1) Contact Angle α and Axial Displacement δ_a of Deep Groove Ball Bearing and Angular Contact Ball Bearings (Figs. 15.1 to 15.3) $$\delta_{a} = \frac{0.00044}{\sin \alpha} \left(\frac{Q^{2}}{D_{w}}\right)^{\frac{1}{3}} \dots (N)$$ $$\delta_{a} = \frac{0.002}{\sin \alpha} \left(\frac{Q^{2}}{D_{w}}\right)^{\frac{1}{3}} \dots \{kgf\}$$ $$Q = \frac{F_{a}}{Z\sin \alpha} \qquad (N), \{kgf\}$$ (2) Axial Load F_a and Axial Displacement δ_a of Tapered Roller Bearings (Fig. 15.4) $\delta_{a} = \frac{0.000077 F_{a}^{0.9}}{(\sin \alpha)^{1.9} Z^{0.9} L_{we}^{0.8}} \dots (N)$ (mm) Fig. 15.1 F_a/C_{or} and Contact Angle of Deep Groove and Angular Contact Ball Bearings #### Remarks: Actual axial displacement may vary depending on the shaft/housing thickness, material, and fitting interference with the bearing. Please contact NSK about such factors of axial displacement which are not discussed in detail in this catalog. Fig. 15.2 Axial Load and Axial Displacement of Deep Groove Ball Bearings Fig. 15.3 Axial Load and Axial Displacement of Angular Contact Ball Bearings Fig. 15.4 Axial Load and Axial Displacement of Tapered Roller Bearings #### 15.2 Fits (1) Surface Pressure $p_{\rm m}$, Maximum Stress $\sigma_{\rm tmax}$ on Fitted Surfaces and Expansion of Inner Ring Raceway Diameter ΔD_i or Contraction of Outer Ring Raceway Diameter ΔD_e (Table 15.1, Figs. 15.5 and 15.6) - (2) Interferences or Clearances of Shafts and Inner Rings (Table 15.2) - (3) Interferences or Clearances of Housing Bores and Outer Rings (Table 15.3) Table. 15. 1 Surface Pressure, Maximum Stress on Fitted Surfaces and Expansion or Contraction | Items | Shaft & Inner Ring | Housing & Bore & Outer Ring | |---|---|---| | Surface
Pressure
$p_{\rm m}$
(MP _a)
{kgf/mm ² } | (In case of sold shaft) $p_{\rm m} = \ \frac{E}{2} \ \frac{\varDelta d}{2} \ \ (1 - \emph{k}^2)$ | In case of housing outside dia. $D_0 \neq \infty$ $p_{\rm m} = \frac{E}{2} \frac{\Delta D}{D} \frac{(1 - h^2)(1 - h_0^2)}{1 - h^2 h_0^2}$ In case $D_0 = \infty$ $p_{\rm m} = \frac{E}{2} \frac{\Delta D}{D} (1 - h^2)$ | | $\begin{array}{c} \text{Maximum stress} \\ \sigma_{\text{t max}} \\ \text{(MP_a)} \\ \text{\{kgf/mm^2\}} \end{array}$ | Maximum circumferential stress on fitted surface of inner ring bore is $\sigma_{t \max} = p_{\text{m}} \frac{1 + k^2}{1 - k^2}$ | Maximum circumferential stress on outer ring bore surface is $\sigma_{\text{t max}} = p_{\text{m}} \frac{2}{1 - h^2}$ | | Expansion of inner ring raceway dia. \$\Displace D_i \text{ (mm)}\$ | In case of solid shaft $\Delta D_i = \Delta d \cdot k$ | In case $D_0 \neq \infty$ $\Delta D_0 = \Delta D \cdot h \frac{1 - h_0^2}{1 - h^2 h_0^2}$ | | Contraction of outer ring raceway dia. \$\D_{\text{e}}(\text{mm})\$ | | In case D_0 = ∞ $ extstyle extstyle extstyle extstyle extstyle extstyle D_0 = extstyle extstyle D \cdot extstyle extstyle h$ | Remarks The modulus of longitudinal elasticity and Poisson's ratio for the shaft and housing material are the same as those for inner and outer rings. Reference 1 MPa=1 N/mm²=0.102 kgf/mm² Table 15. 2 Interferences or Clearances | Si | 70 | | e Plane
n Bore | | | | | | | | | | | Interf | erences | or Cleara | ances for | |--------------|---------------|---|-------------------|----------------|-------------|---------------|-------------------|----------------|-------------------|-------------|-------------------|--------------|-------------------|-----------|-------------------|-----------|-------------------| | Classif | ication | Dia. Deviation (Normal) $\Delta d_{\rm mp}$ | | fi | 6 | 8 | g5 | g | <u>5</u> 6 | h | 15 | h | 6 | js | 5 | j | 5 | | (m | m) | | | Clearance | | Clearance | Inter-
ference | | over | incl. | high | low | max. | min. | max. | 3
6
10 | 6
10
18 | 0
0
0 | - 8
- 8
- 8 | 18
22
27 | 2
5
8 | 9
11
14 | 4
3
2 | 12
14
17 | 4
3
2 | 5
6
8 | 8
8
8 | 8
9
11 | 8
8
8 | 3
4 | —
11
12 | | —
12
13 | | 18 | 30 | 0 | - 10 | 33 | 10 | 16 | 3 | 20 | 3 | 9 | 10 | 13 | 10 | 4.5 | 14.5 | 4 | 15 | | 30 | 50 | 0 | - 12 | 41 | 13 | 20 | 3 | 25 | 3 | 11 | 12 | 16 | 12 | 5.5 | 17.5 | 5 | 18 | | 50 | 65 | 0 | - 15 | 49 | 15 | 23 | 5 | 29 | 5 | 13 | 15 | 19 | 15 | 6.5 | 21.5 | 7 | 21 | | 65 | 80 | 0 | - 15 | 49 | 15 | 23 | 5 | 29 | 5 | 13 | 15 | 19 | 15 | 6.5 | 21.5 | 7 | 21 | | 80 | 100 | 0 | - 20 | 58 | 16 | 27 | 8 | 34 | 8 | 15 | 20 | 22 | 20 | 7.5 | 27.5 | 9 | 26 | | 100 | 120 | 0 | - 20 | 58 | 16 | 27 | 8 | 34 | 8 | 15 | 20 | 22 | 20 | 7.5 | 27.5 | 9 | 26 | | 120 | 140 | 0 | - 25 | 68 | 18 | 32 | 11 | 39 | 11 | 18 | 25 | 25 | 25 | 9 | 34 | 11 | 32 | | 140 | 160 | 0 | - 25 | 68 | 18 | 32 | 11 | 39 | 11 | 18 | 25 | 25 | 25 | 9 | 34 | 11 | 32 | | 160 | 180 | 0 | - 25 | 68 | 18 | 32 | 11 | 39 | 11 | 18 | 25 | 25 | 25 | 9 | 34 | 11 | 32 | | 180 | 200 | 0 | -30 | 79 | 20 | 35 | 15 | 44 | 15 | 20 | 30 | 29 | 30 | 10 | 40 | 13 | 37 | | 200 | 225 | 0 | -30 | 79 | 20 | 35 | 15 | 44 | 15 | 20 | 30 | 29 | 30 | 10 | 40 | 13 | 37 | | 225 | 250 | 0 | -30 | 79 | 20 | 35 | 15 | 44 | 15 | 20 | 30 | 29 | 30 | 10 | 40 | 13 | 37 | | 250 | 280 | 0 | - 35 | 88 | 21 | 40 | 18 | 49 | 18 | 23 | 35 | 32 | 35 | 11.5 | 46.5 | 16 | 42 | | 280 | 315 | 0 | - 35 | 88 | 21 | 40 | 18 | 49 | 18 | 23 | 35 | 32 | 35 | 11.5 | 46.5 | 16 | 42 | | 315 | 355 | 0 | - 40 | 98 | 22 | 43 | 22 | 54 | 22 | 25 | 40 | 36 | 40 | 12.5 | 52.5 | 18 | 47 | | 355 | 400 | 0 | - 40 | 98 | 22 | 43 | 22 | 54 | 22 | 25 | 40 | 36 | 40 | 12.5 | 52.5 | 18 | 47 | | 400 | 450 | 0 | - 45 | 108 | 23 | 47 | 25 | 60 | 25 | 27 | 45 | 40 | 45 | 13.5 | 58.5 | 20 | 52 | | 450 | 500 | 0 | - 45 | 108 | 23 | 47 | 25 | 60 | 25 | 27 | 45 | 40 | 45 | 13.5 | 58.5 | 20 | 52 | Remarks 1. The figures for tolerance classes where stress caused by the fitting of the shaft and inner ring becomes excessive are omitted. Fig. 15.5 Surface Pressure $p_{\rm m}$ and Maximum Stress $\sigma_{\rm t\,max}$ for Average Fitting Interference Fig. 15.6 Surface Pressure $p_{\rm m}$ and Maximum Stress $\sigma_{\rm t \ max}$ for Maximum Fitting Interference #### of Shafts and Inner Rings | T | Inite | lln | |---|-------|-----| | Each Fit | ting Cla | SS | | | | | | | | | | | | | | | | - Si | 70 | |----------------------|----------------------|----------------|-------------------|-------------|----------------|-------------|----------------|----------------|----------------|----------------|------------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------| | js | 6 | j | 6 | k | ι5 | k | :6 | n | 15 | n | n6 | n | 16 | F | 6 | r | 6 | Classif | ication | | Clearance | Inter-
ference | Clearance | Inter-
ference | Interf | erence | Interfe | erence | (m | m) | | max. | max. | max. | max. | min. over | incl. | | —
4.5
5.5 | —
12.5
13.5 | _
2
3 | —
15
16 | | = | | = | | _ | _ | _ | | = | | _ | _
_
_ | _ | 3
6
10 | 6
10
18 | | 6.5
8
9.5 | 16.5
20
24.5 | 4
5
7 | 19
23
27 | 2
2
2 | 21
25
30 | 2
2
2 | 25
30
36 | 9
11 | —
32
39 | 9
11 | —
37
45 | _
 | _ | _
_
_ | _ | | _ | 18
30
50 | 30
50
65 | | 9.5
11
11 | 24.5
31
31 | 7
9
9 | 27
33
33 | 2
3
3 | 30
38
38 | 2
3
3 | 36
45
45 | 11
13
13 | 39
48
48 | 11
13
13 | 45
55
55 | 20
23
23 | 54
65
65 | —
37
37 | —
79
79 | | _ | 65
80
100 | 80
100
120 | | 12.5
12.5
12.5 | 37.5
37.5
37.5 | 11
11
11 | 39
39
39 | 3
3
3 | 46
46
46 | 3
3
3 | 53
53
53 | 15
15
15 | 58
58
58 | 15
15
15 | 65
65
65 | 27
27
27 | 77
77
77 | 43
43
43 | 93
93
93 | 63
65
68 | 113
115
118 | 120
140
160 | 140
160
180 | | 14.5
14.5
14.5 |
44.5
44.5
44.5 | 13
13
13 | 46
46
46 | 4
4
4 | 54
54
54 | 4
4
4 | 63
63
63 | 17
17
17 | 67
67
67 | 17
17
17 | 76
76
76 | 31
31
31 | 90
90
90 | 50
50
50 | 109
109
109 | 77
80
84 | 136
139
143 | 180
200
225 | 200
225
250 | | 16
16
18 | 51
51
58 | 16
16
18 | 51
51
58 | 4
4
4 | 62
62
69 | 4
4
4 | 71
71
80 | 20
20
21 | 78
78
86 | 20
20
21 | 87
87
97 | 34
34
37 | 101
101
113 | 56
56
62 | 123
123
138 | 94
98
108 | 161
165
184 | 250
280
315 | 280
315
355 | | 18
20
20 | 58
65
65 | 18
20
20 | 58
65
65 | 4
5
5 | 69
77
77 | 4
5
5 | 80
90
90 | 21
23
23 | 86
95
95 | 21
23
23 | 97
108
108 | 37
40
40 | 113
125
125 | 62
68
68 | 138
153
153 | 114
126
132 | 190
211
217 | 355
400
450 | 400
450
500 | A 130 A 131 ^{2.} The tolerance range **js** is now recommended instead of **j**. Table 15. 3 Interferences or | Si | 70 | Sing | e Plane
n O. D. | | | | | | | | | | | Interf | erences | or Cleara | ances for | |-------------------|---------------------|-------------|----------------------|-------------------|----------------|------------------|-------------|-------------------|-------------|-------------------|-------------|----------------|-------------------|----------------------|----------------------|----------------|-------------------| | Classif | ication | Dev | viation
ormal) | G | 7 | Н | 16 | F | I 7 | H | I8 | J | 6 | JS | 66 | J | 7 | | (m | m) | | Dmp | Clear | ance | Clea | rance | Clea | ırance | Clea | irance | Clearance | Inter-
ference | Clearance | Inter-
ference | Clearance | Inter-
ference | | over | incl. | high | low | max. | min. | max. | min. | max. | min. | max. | min. | max. | max. | max. | max. | max. | max. | | 6
10
18 | 10
18
30 | 0
0
0 | - 8
- 8
- 9 | 28
32
37 | 5
6
7 | 17
19
22 | 0
0
0 | 23
26
30 | 0
0
0 | 30
35
42 | 0
0
0 | 13
14
17 | 4
5
5 | 12.5
13.5
15.5 | 4.5
5.5
6.5 | 16
18
21 | 7
8
9 | | 30
50
80 | 50
80
120 | 0
0
0 | - 11
- 13
- 15 | 45
53
62 | 9
10
12 | 27
32
37 | 0
0
0 | 36
43
50 | 0
0
0 | 50
59
69 | 0
0
0 | 21
26
31 | 6
6
6 | 19
22.5
26 | 8
9.5
11 | 25
31
37 | 11
12
13 | | 120
150
180 | 150
180
250 | 0
0
0 | - 18
- 25
- 30 | 72
79
91 | 14
14
15 | 43
50
59 | 0
0
0 | 58
65
76 | 0
0
0 | 81
88
102 | 0
0
0 | 36
43
52 | 7
7
7 | 30.5
37.5
44.5 | 12.5
12.5
14.5 | 44
51
60 | 14
14
16 | | 250
315
400 | 315
400
500 | 0
0
0 | - 35
- 40
- 45 | 104
115
128 | 17
18
20 | 67
76
85 | 0
0
0 | 87
97
108 | 0
0
0 | 116
129
142 | 0
0
0 | 60
69
78 | 7
7
7 | 51
58
65 | 16
18
20 | 71
79
88 | 16
18
20 | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 142
179
216 | 22
24
26 | 94
125
156 | 0
0
0 | 120
155
190 | 0
0
0 | 160
200
240 | 0
0
0 | _
_
_ | = | 72
100
128 | 22
25
28 | _
_
_ | _
_
_ | Note (*) Indicates the minimum interference Remarks The tolerance range JS is now recommended instead of J. # 15.3 Radial and Axial Internal Clearances (1) Radial Internal Clearance $\Delta_{\rm r}$ and Axial Internal Clearance $\Delta_{\rm a}$ in Single-Row Deep Groove Ball Bearings (Fig. 15.7) $$\Delta_{\mathbf{a}} = K \Delta_{\mathbf{r}}^{\frac{1}{2}} \tag{mm}$$ where $$K=2 (r_{\rm e} + r_i - D_{\rm w})^{\frac{1}{2}}$$ (2) Radial Internal Clearance $\Delta_{\rm r}$ and Axial Internal Clearance $\Delta_{\rm a}$ in Double-Row Angular Contact Ball Bearings (Fig. 15.8) $$\Delta_{\rm a} = 2\sqrt{m_0^2 - \left(m_0 \cos \alpha_{\rm R} - \frac{\Delta_{\rm r}}{2}\right)^2}$$ $$-2m_0 \sin \alpha_{\rm R} \qquad (mm)$$ Table 15. 4 Constant K | | | Value | s of <i>K</i> | | |----------------|-------------------|--------------|----------------------|----------------------| | Bore No. | 160XX | 60XX | 62XX | 63XX | | 00
01
02 | —
0.80
0.80 | 0.80
0.93 | 0.93
0.93
0.93 | 1.14
1.06
1.06 | | 03 | 0.80 | 0.93 | 0.99 | 1.11 | | 04 | 0.90 | 0.96 | 1.06 | 1.07 | | 05 | 0.90 | 0.96 | 1.06 | 1.20 | | 06 | 0.96 | 1.01 | 1.07 | 1.19 | | 07 | 0.96 | 1.06 | 1.25 | 1.37 | | 08 | 0.96 | 1.06 | 1.29 | 1.45 | | 09 | 1.01 | 1.11 | 1.29 | 1.57 | | 10 | 1.01 | 1.11 | 1.33 | 1.64 | | 11 | 1.06 | 1.20 | 1.40 | 1.70 | | 12 | 1.06 | 1.20 | 1.50 | 2.09 | | 13 | 1.06 | 1.20 | 1.54 | 1.82 | | 14 | 1.16 | 1.29 | 1.57 | 1.88 | | 15 | 1.16 | 1.29 | 1.57 | 1.95 | | 16 | 1.20 | 1.37 | 1.64 | 2.01 | | 17 | 1.20 | 1.37 | 1.70 | 2.06 | | 18 | 1.29 | 1.44 | 1.76 | 2.11 | | 19 | 1.29 | 1.44 | 1.82 | 2.16 | | 20 | 1.29 | 1.44 | 1.88 | 2.25 | | 21 | 1.37 | 1.54 | 1.95 | 2.32 | | 22 | 1.40 | 1.64 | 2.01 | 2.40 | | 24 | 1.40 | 1.64 | 2.06 | 2.40 | | 26 | 1.54 | 1.70 | 2.11 | 2.49 | | 28 | 1.54 | 1.70 | 2.11 | 2.59 | | 30 | 1.57 | 1.76 | 2.11 | 2.59 | #### Clearances of Housing Bores and Outer Rings | Each Fit | ting Cla | SS | | | | | | | | | | | | | | | | c | ize | |-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|-----------|-------------------|--------|--------|--------|--------|--------|----------| | JS | 57 | K | 6 | К | .7 | N | 16 | N | 17 | N | 16 | N | 17 | I | P6 | P7 | | Classi | fication | | Clearance | Inter-
ference Interf | erence | Interf | erence | (n | nm) | | max. min. | max. | over | incl. | | 15 | 7 | 10 | 7 | 13 | 10 | 5 | 12 | 8 | 15 | 1 | 16 | 4 | 19 | 4 | 21 | 1 | 24 | 6 | 10 | | 17 | 9 | 10 | 9 | 14 | 12 | 4 | 15 | 8 | 18 | 1* | 20 | 3 | 23 | 7 | 26 | 3 | 29 | 10 | 18 | | 19 | 10 | 11 | 11 | 15 | 15 | 5 | 17 | 9 | 21 | 2* | 24 | 2 | 28 | 9 | 31 | 5 | 35 | 18 | 30 | | 23 | 12 | 14 | 13 | 18 | 18 | 7 | 20 | 11 | 25 | 1* | 28 | 3 | 33 | 10 | 37 | 6 | 42 | 30 | 50 | | 28 | 15 | 17 | 15 | 22 | 21 | 8 | 24 | 13 | 30 | 1* | 33 | 4 | 39 | 13 | 45 | 8 | 51 | 50 | 80 | | 32 | 17 | 19 | 18 | 25 | 25 | 9 | 28 | 15 | 35 | 1* | 38 | 5 | 45 | 15 | 52 | 9 | 59 | 80 | 120 | | 38 | 20 | 22 | 21 | 30 | 28 | 10 | 33 | 18 | 40 | 2* | 45 | 6 | 52 | 18 | 61 | 10 | 68 | 120 | 150 | | 45 | 20 | 29 | 21 | 37 | 28 | 17 | 33 | 25 | 40 | 5 | 45 | 13 | 52 | 11 | 61 | 3 | 68 | 150 | 180 | | 53 | 23 | 35 | 24 | 43 | 33 | 22 | 37 | 30 | 46 | 8 | 51 | 16 | 60 | 11 | 70 | 3 | 79 | 180 | 250 | | 61 | 26 | 40 | 27 | 51 | 36 | 26 | 41 | 35 | 52 | 10 | 57 | 21 | 66 | 12 | 79 | 1 | 88 | 250 | 315 | | 68 | 28 | 47 | 29 | 57 | 40 | 30 | 46 | 40 | 57 | 14 | 62 | 24 | 73 | 11 | 87 | 1 | 98 | 315 | 400 | | 76 | 31 | 53 | 32 | 63 | 45 | 35 | 50 | 45 | 63 | 18 | 67 | 28 | 80 | 10 | 95 | 0 | 108 | 400 | 500 | | 85 | 35 | 50 | 44 | 50 | 70 | 24 | 70 | 24 | 96 | 6 | 88 | 6 | 114 | 28 | 122 | 28 | 148 | 500 | 630 | | 115 | 40 | 75 | 50 | 75 | 80 | 45 | 80 | 45 | 110 | 25 | 100 | 25 | 130 | 13 | 138 | 13 | 168 | 630 | 800 | | 145 | 45 | 100 | 56 | 100 | 90 | 66 | 90 | 66 | 124 | 44 | 112 | 44 | 146 | 0 | 156 | 0 | 190 | 800 | 1 000 | Fig. 15.7 \varDelta_r and \varDelta_a in Single-Row Deep Groove Ball Bearings Fig. 15.8 $\varDelta_{\rm T}$ and $\varDelta_{\rm a}$ in Double-Row Angular Contact Ball Bearings (52, 53 Series) ## 15. 4 Preload and Staring Torque (1) Axial Load $F_{\rm a}$ and Starting Torque M of Tapered Roller Bearings (Figs. 15.9 and 15.10) $$M$$ = $e \mu_{\rm e} F_{\rm a} \cos \beta$ (N·mm), {kgf·mm} where $$\mu_{\rm e}$$: 0.20 When bearings with the same number are used in opposition, the torque M caused by the preload becomes 2M. Fig. 15.9 Relation between e and β (2) Preload $F_{\rm a}$ and Starting Torque M of Angular Contact Ball Bearings and Double-Direction Angular Contact Thrust Ball Bearings (Figs. 15.11 and 15.12) $$M = M_{\rm s} \, Z \sin \alpha$$ (N·mm), {kgf·mm} where $M_{\rm S}$ is spin friction $$M_{\rm S} = \frac{3}{8} \,\mu_{\rm s} \,Q \,a \,E(k)$$ (N·mm), {kgf·mm} #### where $$\mu_{\rm s} = 0.15$$ When bearings with the same number are used in opposition, the torque M caused by the preload becomes 2M. Fig. 15.10 Relation between Axial Load and Starting Torque of Tapered Roller Bearings Fig. 15.11 Preload and Starting Torque for Back-to-Back or Face-to-Face Arrangements of Angular Contact Ball Bearings (α =15°) Fig. 15.12 Preload and Starting Torque of Double-Direction Angular Contact Thrust Ball Bearings #### 15.5 Coefficients of Dynamic Friction and Other Bearing Data #### (1) Bearing Types and Their Coefficients of Dynamic Friction μ $$\mu = \frac{M}{P \cdot \frac{d}{2}}$$ Table 15.5 Coefficients of Dynamic Friction | Bearing Types | Approximate values of $\boldsymbol{\mu}$ | |---|--| | Deep Groove Ball Bearings | 0.0013 | | Angular Contact Ball Bearings | 0.0015 | | Self-Aligning Ball Bearings | 0.0010 | | Thrust Ball Bearings | 0.0011 | | Cylindrical Roller Bearings | 0.0010 | | Tapered Roller Bearings | 0.0022 | | Spherical Roller Bearings | 0.0028 | | Needle Roller Bearings with Cages | 0.0015 | | Full Complement Needle
Roller Bearings | 0.0025 | | Spherical Thrust Roller
Bearings | 0.0028 | (3) Radial Internal Clearance $\Delta_{\rm r}$ and Fatigue Life L(Fig. 15.13) For the radial internal clearance Δ_r and the function f(ε) of the load factor, the following equations are valid: For Deep Groove Ball Bearings $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm
w}^{\frac{1}{3}}}{0.00044 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \tag{N}$$ $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.002 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \tag{kgf}$$ $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot D_{\rm w}^{\frac{1}{3}}}{0.002 \left(\frac{F_{\rm r}}{Z}\right)^{\frac{2}{3}}} \dots \{\text{kgf}$$ For Cylindrical Roller Bearings $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.000077 \left(\frac{F_{\rm r}}{Z}\right)^{0.9}}$$ (N) $$f(\varepsilon) = \frac{\Delta_{\rm r} \cdot L_{\rm we}^{0.8}}{0.0006 \left(\frac{F_{\rm r}}{Z}\right)^{0.9}} \dots \{\rm kgf\}$$ The relation between the load factor ε and $f(\varepsilon)$ and L_{ε}/L , when the radial internal clearance is Δ_{r} is as shown in Table 15.7. From the above equations, first obtain $f(\varepsilon)$ and then ε and L_{ε}/L can be obtained. #### (2) Circumferential Speeds of Rolling Elements about Their Centers and Bearing Center Table 15.6 Circumferential Speeds of Rolling Elements about Their Centers and Bearing Center | Items | Rotating inner ring, fixed outer ring | Rotating outer ring, fixed inner ring | |---|---|--| | Ball rotating speed
n _a (min ⁻¹) | $-\left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}}-\frac{\mathrm{cos}^{2}\alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right)\frac{n_{i}}{2}$ | $+ \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2}\alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{\mathrm{e}}}{2}$ | | Cicumferential speed around bearing ball's center υ_a (m/sec) | $-\frac{\pi \cdot D_{\mathrm{w}}}{60 \times 10^{3}} \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2} \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{i}}{2}$ | $+\frac{\pi \cdot D_{\mathrm{w}}}{60 \times 10^{3}} \left(\frac{D_{\mathrm{pw}}}{D_{\mathrm{w}}} - \frac{\cos^{2} \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{\mathrm{e}}}{2}$ | | Revolving speed around bearing center n_c (min ⁻¹) | $+ \left(1 - \frac{\cos \alpha}{D_{\rm pw}/D_{\rm w}}\right) \frac{n_i}{2}$ | $+ \left(1 - \frac{\cos \alpha}{D_{\rm pw}/D_{\rm w}}\right) \frac{n_{\rm e}}{2}$ | | Cicumferential speed around bearing center $\upsilon_{c}\left(m/sec\right)$ | $-\frac{\pi \cdot D_{\mathrm{pw}}}{60 \times 10^{3}} \left(1 - \frac{\cos \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{i}}{2}$ | $+\frac{\pi \cdot D_{\mathrm{pw}}}{60 \times 10^{3}} \left(1 - \frac{\cos \alpha}{D_{\mathrm{pw}}/D_{\mathrm{w}}}\right) \frac{n_{\mathrm{e}}}{2}$ | 1. + sign indicates CW rotation and - sign CCW 2. The revolving speed and circumferential speed of the rolling elements are the same as those of the Table 15. 7 ϵ and $f(\epsilon)$, L_{ϵ}/L | | Deep Groove | Ball Bearings | Cylindrical Ro | oller Bearings | |------|------------------|-----------------------------|------------------|-----------------------------| | ε | $f(\varepsilon)$ | $\frac{L_{\mathcal{E}}}{L}$ | $f(\varepsilon)$ | $\frac{L_{\mathcal{E}}}{L}$ | | 0.1 | 33.713 | 0.294 | 51.315 | 0.220 | | 0.2 | 10.221 | 0.546 | 14.500 | 0.469 | | 0.3 | 4.045 | 0.737 | 5.539 | 0.691 | | 0.4 | 1.408 | 0.889 | 1.887 | 0.870 | | 0.5 | 0 | 1.0 | 0 | 1.0 | | 0.6 | - 0.859 | 1.069 | – 1.133 | 1.075 | | 0.7 | - 1.438 | 1.098 | - 1.897 | 1.096 | | 0.8 | - 1.862 | 1.094 | - 2.455 | 1.065 | | 0.9 | - 2.195 | 1.041 | - 2.929 | 0.968 | | 1.0 | - 2.489 | 0.948 | - 3.453 | 0.805 | | 1.25 | - 3.207 | 0.605 | - 4.934 | 0.378 | | 1.5 | - 3.877 | 0.371 | - 6.387 | 0.196 | | 1.67 | - 4.283 | 0.276 | - 7.335 | 0.133 | | 1.8 | - 4.596 | 0.221 | - 8.082 | 0.100 | | 2.0 | - 5.052 | 0.159 | - 9.187 | 0.067 | | 2.5 | - 6.114 | 0.078 | -11.904 | 0.029 | | 3 | - 7.092 | 0.043 | -14.570 | 0.015 | | 4 | - 8.874 | 0.017 | -19.721 | 0.005 | | 5 | -10.489 | 0.008 | -24.903 | 0.002 | | 10 | -17.148 | 0.001 | -48.395 | 0.0002 | Fig. 15.13 Radial Internal Clearance and Life Ratio #### 15. 6 BRANDS AND PROPERTIES OF LUBRICATING GREASES Table 15. 8 Brands of Lubricating Greases | Brands | Thickeners | Base Oils | | | | | |----------------------------|-----------------------|--|--|--|--|--| | ADLEX | Lithium | Mineral oil | | | | | | APOLOIL AUTOLEX A | Lithium | Mineral oil | | | | | | ARAPEN RB 300 | Lithium/Calcium | Mineral oil | | | | | | EA2 GREASE | Urea (3) | Poly-α-olefin oil | | | | | | EA3 GREASE | Urea (³) | Poly-α-olefin oil | | | | | | EA5 GREASE | Urea (³) | Poly-α-olefin oil | | | | | | EA7 GREASE | Urea (3) | Poly-α-olefin oil | | | | | | ENC GREASE | Urea (3) | Polyol ester oil + Mineral oil (4) | | | | | | ENS GREASE | Urea (3) | Polyol ester oil (4) | | | | | | ECE GREASE | Lithium | Poly-α-olefin oil | | | | | | ISOFLEX NBU 15 | Barium Complex | Ester oil + Mineral oil (4) | | | | | | ISOFLEX SUPER LDS 18 | Lithium | Ester oil (4) | | | | | | ISOFLEX TOPAS NB 52 | Barium Complex | Poly-α-olefin oil | | | | | | DOW CORNING SH 33 L GREASE | Lithium | Silicone oil (5) | | | | | | DOW CORNING SH 44 M GREASE | Lithium | Silicone oil (5) | | | | | | NS HI-LUBE | Lithium | Polyol ester oil + Diester oil (4) | | | | | | NSC GREASE | Lithium | Alkyldiphenyl ether oil + Polyol ester oil (4) | | | | | | NSK CLEAN GREASE LG2 | Lithium | Poly-α-olefin oil + Mineral oil | | | | | | EMALUBE 8030 | Urea (³) | Mineral oil | | | | | | MA8 GREASE | Urea (³) | Alkyldiphenyl ether oil + Poly-α-olefin oil | | | | | | KRYTOX GPL-524 | PTFE | Perfluoropolyether oil | | | | | | KP1 GREASE | PTFE | Perfluoropolyether oil | | | | | | COSMO WIDE GREASE WR No.3N | Sodium Terephtalamate | Polyol ester oil + Mineral oil (4) | | | | | | G-40M | Lithium | Silicone oil (5) | | | | | | SHELL GADUS S2 V220 2 | Lithium | Mineral oil | | | | | | SHELL ALVANIA GREASE S1 | Lithium | Mineral oil | | | | | | SHELL ALVANIA GREASE S2 | Lithium | Mineral oil | | | | | | SHELL ALVANIA GREASE S3 | Lithium | Mineral oil | | | | | | CASSIDA GREASE RLS 2 | Aluminum Complex | Poly-α-olefin oil | | | | | | SHELL SUNLIGHT GREASE 2 | Lithium | Mineral oil | | | | | | WPH GREASE | Urea (3) | Poly-α-olefin oil | | | | | | DEMNUM GREASE L-200 | PTFE | Perfluoropolyether oil | | | | | | NIGACE WR-S | Urea (3) | Synthetic oil | | | | | | NIGLUBE RSH | Sodium Complex | Polyalkylene Glycol oil | | | | | Notes (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such - If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such as vacuum, it is advisable to consult NSK. For short-term operation or when cooling is grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate. Urea-based grease causes fluorine-based material to deteriorate. Ester-based grease causes acrylic rubber material to swell. Silicone-based grease causes silicone-based material to swell. #### and Comparison of Properties | Dropping Point (°C) | Consistency | Working
Temperature
Range(¹)(°C) | Pressure Resistance | Usable Limit Compare
to Listed Limiting
Speed(2)(%) | |---------------------|-------------|--|---------------------|---| | 198 | 300 | 0 to +110 | Good | 70 | | 198 | 280 | -10 to +110 | Fair | 60 | | 177 | 294 | -10 to + 80 | Fair | 70 | | ≧260 | 243 | -40 to +150 | Fair | 100 | | ≧260 | 230 | -40 to +150 | Fair | 100 | | ≧260 | 251 | -40 to +160 | Good | 60 | | ≧260 | 243 | -40 to +160 | Fair | 100 | | ≧260 | 262 | -40 to +160 | Fair | 70 | | ≧260 | 264 | -40 to +160 | Poor | 100 | | ≧260 | 235 | -10 to +120 | Fair | 100 | | ≧260 | 280 | -30 to +120 | Poor | 100 | | 195 | 280 | -50 to +110 | Poor | 100 | | ≧260 | 280 | -40 to +130 | Poor | 90 | | 210 | 310 | -60 to +120 | Poor | 60 | | 210 | 260 | -30 to +130 | Poor | 60 | | 192 | 250 | -40 to +130 | Fair | 100 | | 192 | 235 | -30 to +140 | Fair | 70 | | 201 | 199 | -40 to +130 | Poor | 100 | | ≧260 | 280 | 0 to +130 | Good | 60 | | ≧260 | 283 | -30 to +160 | Fair | 70 | | ≧260 | 265 | 0 to +200 | Fair | 70 | | ≧260 | 280 | -30 to +200 | Fair | 60 | | ≧230 | 227 | -40 to +130 | Poor | 100 | | 223 | 252 | -30 to +130 | Poor | 60 | | 187 | 276 | 0 to + 80 | Good | 60 | | 182 | 323 | -10 to +110 | Fair | 70 | | 185 | 275 | -10 to +110 | Fair | 70 | | 185 | 242 | -10 to +110 | Fair | 70 | | ≧240 | 280 | 0 to +120 | Fair | 70 | | 200 | 274 | -10 to +110 | Fair | 70 | | 259 | 240 | -40 to +150 | Fair | 70 | | ≧260 | 280 | -30 to +200 | Fair | 60 | | ≧260 | 230 | -30 to +150 | Poor | 70 | | ≧260 | 270 | -20 to +120 | Fair | 60 | (continued on next page) A 138 A 139 | Brands | Thickeners | Base Oils | |-------------------------|-----------------|-------------------------------------| | PALMAX RBG | Lithium Complex | Mineral oil | | BEACON 325 | Lithium | Diester oil (4) | | MULTEMP PS No.2 | Lithium | Poly-α-olefin oil + Diester oil (4) | | MOLYKOTE FS-3451 GREASE | PTFE | Fluorosilicone oil (5) | | UME GREASE | Urea | Mineral oil | | RAREMAX AF-1 | Urea | Mineral oil | | Ν | lotes | (| |----|-------|---| | I١ | OLCS | (| - (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such - (3) Silicone-based grease causes silicone-based material to swell. | Dropping Point (°C) | Consistency | Working
Temperature
Range(¹)(°C) | Pressure Resistance | Usable Limit Compared
to Listed Limiting
Speed(2)(%)
 |---------------------|-------------|--|---------------------|--| | 216 | 300 | -10 to +130 | Good | 70 | | 190 | 274 | -50 to +100 | Poor | 100 | | 190 | 275 | -50 to +110 | Poor | 100 | | ≧260 | 285 | 0 to +180 | Fair | 70 | | ≧260 | 268 | -10 to +130 | Fair | 70 | | ≧260 | 300 | -10 to +130 | Fair | 70 | A 140 A 141 # **BEARING TABLES** # BEARING TABLE CONTENTS | DEED ODGOVE DALL DEADINGS | | Page | |---|-----------------------------------|------| | DEEP GROOVE BALL BEARINGS | Bore Dia. | В | | SINGLE-ROW DEEP GROOVE BALL BEARINGS | 10 – 800mm ······ | В | | MAXIMUM TYPE BALL BEARINGS | 25 – 110mm ····· | _ | | MAGNETO BEARINGS | 4 – 20mm ····· | | | EXTRA SMALL BALL BEARINGS AND | 4 – 2011111 | DZ | | MINIATURE BALL BEARINGS | | B3 | | Metric Design | 1 – 9mm ····· | | | Inch Design | 1.016 – 9.525mm | | | mon besign | 7.010 7.323HHI | D4. | | ANGULAR CONTACT BALL BEARINGS | | B4 | | | Bore Dia. | | | SINGLE-ROW ANGULAR CONTACT BALL BEARINGS | 10 – 200 mm ····· | | | MATCHED ANGULAR CONTACT BALL BEARINGS | 10 – 200 mm ····· | | | DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS | 10 – 85 mm ····· | | | FOUR-POINT CONTACT BALL BEARINGS | 30 – 200 mm ····· | B7. | | SELF-ALIGNING BALL BEARINGS | | В7 | | SELF-ALIGNING BALL DEAKINGS | Bore Dia. | D/ | | SELF-ALIGNING BALL BEARINGS | 5 – 110 mm ······ | B7 | | SELI-ALIGINING DALE DEAKTINGS | 3 = 110HHH | 07 | | CYLINDRICAL ROLLER BEARINGS | | B8 | | | Bore Dia. | | | SINGLE-ROW CYLINDRICAL ROLLER BEARINGS | 20 – 500 mm ····· | B8 | | L-SHAPED THRUST COLLARS FOR CYLINDRICAL ROLLER | | | | BEARINGS | 20 – 320mm ····· | | | DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS | 25 – 360 mm ····· | BIO | | TAPERED ROLLER BEARINGS | | B11 | | | Bore Dia. | | | METRIC DESIGN TAPERED ROLLER BEARINGS | 15 – 440mm ····· | B11 | | INCH DESIGN TAPERED ROLLER BEARINGS | 12.000 – 206.375 mm ······ | B13 | | DOUBLE-ROW TAPERED ROLLER BEARINGS | 80 – 260mm ····· | B17 | | COULDINAL DOLLED BEADINGS | | D40 | | SPHERICAL ROLLER BEARINGS | | B18. | | CDUEDICAL DOLLED DEADINGS | Bore Dia. | D10 | | SPHERICAL ROLLER BEARINGS | 25 – 1400 mm ····· | BIS | | THRUST BEARINGS | | B20 | | | Bore Dia. | | | SINGLE-DIRECTION THRUST BALL BEARINGS | 10 – 360mm ····· | B21 | | DOUBLE-DIRECTION THRUST BALL BEARINGS | 10 – 190mm ····· | B21 | | CYLINDRICAL ROLLER THRUST BEARINGS | 35 – 320mm ····· | | | SPHERICAL THRUST ROLLER BEARINGS | 60 – 500 mm ····· | | | ANGULAR CONTACT THRUST BALL BEARINGS | | | | Double-Direction Angular Contact Thrust Ball Bearings | 35 – 280mm ····· | | | Angular Contact Thrust Ball Bearings for Ball Screws | 15 – 60 mm ····· | B24 | | Needle Roller Bearings | | B24 | | Module Roller Bearings | Bore Dia. | 024 | | CAGE & NEEDLE ROLLER ASSEMBLIES | 5 – 100 mm ······ | B25 | | DRAWN CUP NEEDLE ROLLER BEARINGS | 4 – 55 mm ······ | | | SOLID NEEDLE ROLLER BEARINGS | 9 – 390mm ····· | | | THRUST NEEDLE ROLLER BEARINGS | 10 – 100mm ····· | | | CAM FOLLOWERS | 16 – 90 mm ····· | | | ROLLER FOLLOWERS | 5 – 50 mm ····· | | | | | | | | | 9- | |--|--------------------------------|--------------| | BALL BEARING UNITS | | B280 | | SET SCREW TYPE | | | | | Shaft Dia. | | | Pillow blocks cast housing | | | | UCP2 | 12 – 90mm ····· | B286 | | Flanged units cast housing | | | | UCF2 | 12 – 90 mm ····· | B292 | | UCFL2 | 12 – 90 mm ····· | B298 | | PLUMMER BLOCKS | | B304 | | | Shaft Dia. | | | STANDARD TYPE PLUMMER BLOCKS | 20 – 140mm ····· | B306 | | LARGE PLUMMER BLOCKS | 150 – 450mm····· | B312 | | DUSTPROOF PLUMMER BLOCKS | 50 – 180mm ····· | B31 <i>6</i> | | STEPPED-SHAFT TYPE PLUMMER BLOCKS | 25 – 320mm ····· | B318 | | CYLINDRICAL ROLLER BEARINGS FOR SHEAVES | | B32 <i>6</i> | | | Bore Dia. | | | Open Type | 50 – 560 mm ····· | B328 | | Prelubricated Type | 40 – 400mm ····· | B332 | | ROLL-NECK BEARINGS | | B334 | | | Bore Dia. | | | FOUR-ROW TAPERED ROLLER BEARINGS | 100 – 939.800 mm ······ | B338 | | FOUR-ROW CYLINDRICAL ROLLER BEARINGS | 100 – 920mm····· | B340 | | RAILWAY ROLLING STOCK BEARINGS | | В344 | | ROLLING ELEMENTS | | B34 <i>6</i> | | | Basic Dia. | 50 10 | | STEEL BALLS FOR BALL BEARINGS | 0.3 – 114.3mm····· | B348 | | CYLINDRICAL ROLLERS FOR ROLLER BEARINGS | 3 – 80mm ····· | | | LONG CYLINDRICAL ROLLERS FOR ROLLER BEARINGS | 5.5 – 15 mm ····· | | | NEEDLE ROLLERS FOR ROLLER BEARINGS | 1 – 5mm····· | | | ACCESSORIES FOR ROLLING BEARINGS | | B35 <i>6</i> | | | Shaft Dia. | | | ADAPTERS FOR ROLLING BEARINGS | 17 – 470 mm ····· | B358 | | WITHDRAWAL SLEEVES FOR ROLLING BEARINGS | 35 – 480 mm ····· | | | NUTS FOR ROLLING BEARINGS | | | | STOPPERS FOR ROLLING BEARINGS | | B377 | | LOCK-WASHERS FOR ROLLING BEARINGS | | | | | | | # **DEEP GROOVE BALL BEARINGS** ### SINGLE-ROW DEEP GROOVE BALL BEARINGS Open Type, Shielded Type, Sealed Type Bore Diameter 10 – 240mm..... B8 Open Type Bore Diameter 260 – 800mm ···· B20 MAXIMUM TYPE BALL BEARINGS Bore Diameter 25 – 110mm B26 **MAGNETO BEARINGS** Bore Diameter 4 – 20mm····· B28 Extra Small and Miniature Ball Bearings are described on Pages B30 to B45. ### SINGLE-ROW DEEP GROOVE BALL BEARINGS Single-Row Deep Groove Ball Bearings are classified into the types shown The proper amount of good quality grease is packed in shielded and sealed ball bearings. A comparison of the features of each type is shown in Table 1. Open Type With Snap Ring Shielded Type (ZZ Type) Non-Contact **Rubber Sealed** Type (VV Type) Contact **Rubber Sealed** Type (DDU Type) | Туре | Shielded Type
(ZZ Type) | Non-Contact
Rubber Sealed Type
(VV Type) | Contact Rubber Sealed Type
(DDU Type) | |------------------------------|----------------------------|---|--| | Torque | Low | Low | Higher than ZZ, VV types due to contact seal | | Speed capability | Good | Good | Limited by contact seals | | Grease sealing effectiveness | Good | Better than ZZ type | A little better than VV type | | Dust
resistance | Good | Better than ZZ type
(usable in
moderately dusty
environment) | Best (usable even in very dusty environment) | | Water
resistance | Not
suitable | Not suitable | Good (usable even if fluid is splashed on bearing) | | Operating temperature (1) | −10 to
+110°C | −10 to +110°C | -10 to +100°C | The above temperature range applies to standard bearings. By using cold or heat resistant grease and changing the type of rubber, the operating temperature range can be extended. For such applications, please contact NSK. For deep groove ball bearings, pressed cages are usually used. For big bearings, machined brass cages are used. (Refer to Table 2) Machined cages are also used for high speed applications. Table 2 Standard Cages for Deep Groove Ball Bearings | Series | Pressed Steel Cages | Machined Brass Cages | |--------|---------------------|----------------------| | 68 | 6800 - 6838 | 6840 - 68/800 | | 69 | 6900 – 6936 | 6938 - 69/800 | | 160 | 16001 - 16026 | 16028 - 16064 | | 60 | 6000 - 6040 | 6044 - 60/670 | | 62 | 6200 - 6240 | 6244 – 6272 | | 63 | 6300 - 6332 | 6334 - 6356 | ### MAXIMUM TYPE BALL BEARINGS Maximum Type Ball Bearings contain a larger number of balls than normal deep groove ball bearings because of filling slots in the inner and outer rings. Because of their filling slots, they are not suitable for applications with high axial loads. BL2 and BL3 types of bearings have boundary dimensions equal to those of single-row deep groove ball bearings of Series 62 and 63 respectively. Besides the open type, ZZ type shielded bearings are also available. When using these bearings, it is important for the filling slot in the outer ring to be outside of the loaded zone as much as possible. Their cages are pressed steel. #### **MAGNETO BEARINGS** The groove in the inner ring is a little shallower than that of deep groove ball bearings and one side of the outer ring is relieved. Consequently, the outer ring is separable, which makes it convenient for mounting. Pressed cages are standard, but for high speed applications, machined synthetic resin cages are used. ### PRECAUTIONS FOR USE OF DEEP GROOVE BALL BEARINGS For deep groove ball bearings, if the bearing load is too small during operation, slippage occurs between the balls and raceways, which may result in smearing. The higher the weight of balls and cage, the higher this tendency becomes, especially for large bearings. If very small bearing loads are expected, please contact NSK for selection of an appropriate bearing. ### TOLERANCES AND RUNNING ACCURACY | SINGLE-ROW DEEP GROOVE BALL | | | | | | | |-----------------------------|-------|-----|--------|-------|-------|---| | BEARINGS | Table | 8.2 | (Pages | A60 1 | to A6 | 3 | | MAXIMUM TYPE BALL BEARINGS | Table | 8.2 | (Pages | A60 1 | to A6 | 3 | | MAGNETO BEARINGS | Table | 8.5 | (Pages | A70 a | nd A | 7 | ### **RECOMMENDED FITS** | SINGLE-ROW DEEP GROOVE BALL | | | | | |-----------------------------|-------|-----|-------|------| | BEARINGS | Table | 9.2 | (Page | A84) | | | Table | 9.4 | (Page | A85) | | MAXIMUM TYPE BALL BEARINGS | Table | 9.2 | (Page | A84) | | | Table | 9.4 | (Page | A85) | | MAGNETO BEARINGS | Table | 9.2 | (Page | A84) | | | Table | 9.4 | (Page | A85) | ### INTERNAL CLEARANCES | SINGLE-I | ROW DEEP GROOVE BA | LL | | |------------|---------------------|--------|-------------------| | BEARING | S | Tabl | e 9.9 (Page A89) | | | | | , , | | IVIAXIIVIU | M TYPE BALL BEARING | S labi | e 9.9 (Page A89) | | MAGNET | O BEARINGS | Tabl | e 9.11 (Page A89) | ### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on
the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. B6 B7 Shielded Type ZZ (N) $C_{\rm r}$ 1 720 2 700 4 550 5 100 8 100 1 920 2 890 5 100 5 100 6 800 9 700 2 070 4 350 5 600 5 600 7 650 11 400 2 6 3 0 4 600 6 000 6 000 9 550 13 600 4 000 6 400 7 900 9 400 12 800 15 900 9 400 12 900 18 400 Basic Load Ratings C_{0r} 840 1 270 1 970 2 390 3 450 1 040 1 460 2 370 2 370 3 050 4 200 1 260 2 260 2 830 2 830 3 750 5 450 1 570 2 550 3 250 4 800 6 650 2 470 3 700 4 450 5 000 6 600 7 900 5 050 6 800 9 250 dimensions of sealed or shielded bearings. Non-Contact Sealed Type VV {kgf} $C_{0\mathrm{r}}$ f_0 86 14.8 129 201 244 350 106 149 241 13.0 241 310 12.3 425 128 15.8 230 289 13.9 289 380 555 160 15.7 260 14.7 330 330 14.4 490 675 252 375 14.7 455 510 670 13.1 805 12.4 515 695 940 (3) Ring types N and NR applicable only to open-type bearings. Please consult NSK about the snap ring groove $C_{\rm r}$ 175 275 465 520 825 195 295 520 520 695 990 212 440 570 570 780 1 170 268 470 610 610 975 410 650 810 955 1 300 1 620 960 1 320 1 870 Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A50 to A53. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. 1 390 Factor 14.0 12.4 13.2 11.2 15.3 14.5 13.0 11.1 14.3 13.9 13.2 12.3 14.4 13.2 12.4 15.5 14.5 13.8 14.0 13.5 12.4 Contact Sealed Type $\mathsf{DD} \cdot \mathsf{DDU}$ Open Z · ZZ V · VV 24 000 28 000 28 000 22 000 24 000 26 000 24 000 22 000 17 000 15 000 19 000 18 000 18 000 15 000 17 000 14 000 13 000 Limiting Speeds (min⁻¹) DH DDU 34 000 24 000 40 000 32 000 22 000 38 000 30 000 22 000 36 000 22 000 17 000 26 000 32 000 20 000 38 000 30 000 20 000 36 000 20 000 16 000 24 000 28 000 17 000 34 000 26 000 17 000 30 000 24 000 15 000 28 000 20 000 14 000 24 000 17 000 13 000 20 000 22 000 13 000 26 000 14 000 10 000 17 000 15 000 30 000 15 000 28 000 13 000 26 000 12 000 20 000 11 000 18 000 12 000 22 000 11 000 20 000 11 000 18 000 11 000 20 000 9 500 16 000 9 500 16 000 **—** 20 000 **—** 26 000 18 000 30 000 18 000 32 000 17 000 28 000 — 32 000 **—** 28 000 Grease With Snap Ring Groove Ν Oil Open Z **Dynamic Equivalent Load** NSK 0.56 1.00 $P = XF_r + YF_a$ $F_{\rm r}$ | # D ₁ | ϕD_a r_a ϕD_a | ϕD_X | 0
0
0
1
1
1
2
3
5
6 | |------------------|-----------------------------|------------|--| | <u></u> | | Cy | | | # P D 1 | ϕD_a Γ_a ϕD_a | ϕD_X C_{Y-} | |---------|----------------------------------|---------------------| |---------|----------------------------------|---------------------| ϕD_2 With Snap Ring NR VV DD ZZ VV DDU ZZ VV DDU VV DDU VV DDU VV DDU VV DDU VV DDU ZZ VV DDU Bearing Numbers Open Shielded Sealed 6800 ZZ VV DD 6000 ZZ VV DDU 6300 ZZ VV DDU 6801 ZZ VV DD 6901 ZZ VV DD ZZ 6802 ZZ VV DD 6902 ZZ VV DD 6002 ZZ VV DDU 6202 ZZ VV DDU 6302 ZZ VV DDU 6803 ZZ VV DD ZZ 6903 ZZ VV DDU 6303 ZZ VV DDU 6804 ZZ VV DD 6304 ZZ VV DDU 60/22 ZZ VV DDU 63/22 ZZ VV DDU ZZ 6900 ZZ 6200 16001 6001 6201 ZZ VV DDU 6301 16002 16003 6203 6904 6004 ZZ 6204 ZZ 62/22 16004 | ## ## ## ## ## ## ## ## ## ## ## ## ## | ϕD_a r_a ϕD_a ϕd_a | ϕD_X $C_{Y^{-1}}$ | |--|--|-------------------------| |--|--|-------------------------| | ϕD_1 | φD_a ϕd_a | φD _x | 2.07
3.45
5.17
6.89 | 0.34
0.38
0.42
0.44 | 1
1
1
1 | 0
0
0
0 | |------------|--------------------------|-----------------|------------------------------|------------------------------|------------------------------|---------------------------| | | | $C_{Y^{-1}}$ | - | • | =0.6 <i>F</i> _r + | 0.5 <i>F</i> _a | | With
Snap | With
Snap | Sna | p Ring G | roove Dim
(mm) | ensions | (1) | Snap R
Dimen | sions | | Abutmen | t and Fille
(mm | | nsions | | Mass
(kg) | |----------------|---------------------|----------------------|----------------------|-------------------------|-------------------|------------------------|----------------------|----------------------|------------------|--------------------------------|-----------------------|-------------------|-----------------------|------------------------------------|-------------------------| | Ring
Groove | Ring | a
max. | $m{b}$ min. | $D_{ m 1}$ max. | r_0 max. | $\emph{r}_{ m N}$ min. | $D_{2}^{(111)}$ max. | f max. | min. | $m{d}_{\mathbf{a}}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | $r_{ m a}$ max. | D_{x} min. | $C_{\scriptscriptstyle m Y}$ max. | approx. | | N(3)
N(4) | —
NR(3)
NR(4) | |
0.8
0.87 |
20.8
24.5 | 0.2
0.2 | 0.2
0.3 | 24.8
28.7 |
0.7
0.84 | 12
12
12 | 12
12.5
13 | 17
20
24 | 0.3
0.3
0.3 |
25.5
29.4 |
1.5
1.9 | 0.005
0.009
0.018 | | N
N | NR
NR | 2.06
2.06 | 1.35
1.35 | 28.17
33.17 | 0.4
0.4 | 0.5
0.5 | 34.7
39.7 | 1.12
1.12 | 14
14 | 16
16.5 | 26
31 | 0.6
0.6 | 35.5
40.5 | 2.9
2.9 | 0.032
0.052 | | N(3) |
NR(3)
 |
1.05
 | 0.8 | 22.8
— | 0.2 | 0.2
— | 26.8
— | 0.7 | 14
14
14 | 14
14.5
— | 19
22
26 | 0.3
0.3
0.3 |
27.5
 | 1.5
— | 0.006
0.010
0.019 | | N(4)
N
N | NR(4)
NR
NR | 1.35
2.06
2.06 | 0.87
1.35
1.35 | 26.5
30.15
34.77 | 0.2
0.4
0.4 | 0.3
0.5
0.5 | 30.7
36.7
41.3 | 0.84
1.12
1.12 | 14
16
17 | 15.5
17
18 | 26
28
32 | 0.3
0.6
1 | 31.4
37.5
42 | 1.9
2.9
2.9 | 0.022
0.037
0.060 | | (3) |
NR(3)
 | 1.3
— | 0.95
— | 26.7
— | 0.25
— | 0.3 | 30.8
— | 0.85
— | 17
17
17 | 17
17
— | 22
26
30 | 0.3
0.3
0.3 | _
31.5
_ | 1.8
— | 0.007
0.015
0.027 | | N
N
N | NR
NR
NR | 2.06
2.06
2.06 | 1.35
1.35
1.35 | 30.15
33.17
39.75 | 0.4
0.4
0.4 | 0.3
0.5
0.5 | 36.7
39.7
46.3 | 1.12
1.12
1.12 | 17
19
20 | 19
20.5
22.5 | 30
31
37 | 0.3
0.6
1 | 37.5
40.5
47 | 2.9
2.9
2.9 | 0.031
0.045
0.083 | | N(3) | NR(3) | 1.3 | 0.95
— | 28.7
— | 0.25
— | 0.3 | 32.8
— | 0.85 | 19
19
19 | 19
19.5
— | 24
28
33 | 0.3
0.3
0.3 | 33.5
— | 1.8 | 0.007
0.017
0.033 | | N
N
N | NR
NR
NR | 2.06
2.06
2.46 | 1.35
1.35
1.35 | 33.17
38.1
44.6 | 0.4
0.4
0.4 | 0.3
0.5
0.5 | 39.7
44.6
52.7 | 1.12
1.12
1.12 | 19
21
22 | 21.5
23.5
25.5 | 33
36
42 | 0.3
0.6
1 | 40.5
45.5
53.5 | 2.9
2.9
3.3 | 0.041
0.067
0.113 | | N
N | NR
NR
— | 1.3
1.7
— | 0.95
0.95
— | 30.7
35.7
— | 0.25
0.25
— | 0.3
0.3
— | 34.8
39.8
— | 0.85
0.85
— | 22
22
22 | 22
24
— | 30
35
40 | 0.3
0.3
0.3 | 35.5
40.5
— | 1.8
2.3
— | 0.017
0.037
0.048 | | N
N
N | NR
NR
NR | 2.06
2.46
2.46 | 1.35
1.35
1.35 | 39.75
44.6
49.73 | 0.4
0.4
0.4 | 0.5
0.5
0.5 | 46.3
52.7
57.9 | 1.12
1.12
1.12 | 24
25
26.5 | 25.5
26.5
28 | 38
42
45.5 | 0.6
1
1 | 47
53.5
58.5 | 2.9
3.3
3.3 | 0.068
0.107
0.145 | | N
N
N | NR
NR
NR | 2.06
2.46
2.46 | 1.35
1.35
1.35 | 41.75
47.6
53.6 | 0.4
0.4
0.4 | 0.5
0.5
0.5 | 48.3
55.7
61.7 | 1.12
1.12
1.12 | 26
27
28.5 | 26.5
29.5
30.5 | 40
45
49.5 | 0.6
1
1 | 49
56.5
62.5 | 2.9
3.3
3.3 | 0.074
0.119
0.179 | Remarks 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. **⊢**-B⊸ Open Type **Boundary Dimensions** (mm) 22 6 0.3 26 8 0.3 30 35 9 0.6 21 24 28 7 0.3 28 8 32 37 10 24 5 28 7 32 8 0.3 32 35 42 13 26 30 7 0.3 35 8 35 10 0.3 40 12 47 14 1 32 7 0.3 42 42 12 47 14 52 15 1.1 44 12 0.6 56 16 1.1 11 0.6 > 5 0.3 6 9 0.3 9 0.3 8 0.3 14 50 11 min. 0.3 0.3 0.6 12 0.3 0.3 0.6 0.3 5 0.3 0.6 0.6 1 d DBr 10 19 5 0.3 ϕD_2 With Snap Ring ϕD_a ϕD_1 $\phi d_a \phi D_x$ | | | | | | | \ | /V | | DD · DD | J | N | | | N | IR | |-----|-----------------|----------------|-------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------------|----------------------------|-------------------------|----------------------------|-------------------------|----------------|----------------|-------------------| | Bou | ndary [| | sions | | Basic Load | Ratings | | Factor | Limiting | g Speeds | (min ⁻¹) | | Roarin | a Nur | mbers | | | (m | m) | | 1) | N) | {kç | gf} | | Gre | ase | Oil | | Dearin | y ivui | IIDEIS | | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open S | hielded | Se | aled | | 25 | 37
42
47 | 7
9
8 | 0.3
0.3
0.3 | 4 500
7 050
8 850 | 3 150
4 550
5 600 | 455
715
905 | 320
460
570 | 16.1
15.4
15.1 | 18 000
16 000
15 000 | 10 000
10 000
— | 22 000
19 000
18 000 | 6805
6905
16005 | ZZ
ZZ | VV
VV | DD
DDU
— | | | 47
52
62 | 12
15
17 | 0.6
1
1.1 | 10 100
14 000
20 600 | 5 850
7 850
11 200 | 1 030
1 430
2 100 | 595
800
1 150 | 14.5
13.9
13.2 | 15 000
13 000
11 000 | 9 500
9 000
8 000 | 18 000
15 000
13 000 |
6005
6205
6305 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 28 | 52
58
68 | 12
16
18 | 0.6
1
1.1 | 12 500
16 600
26 700 | 7 400
9 500
14 000 | 1 270
1 700
2 730 | 755
970
1 430 | 14.5
13.9
12.4 | 14 000
12 000
10 000 | 8 500
8 000
7 500 | 16 000
14 000
13 000 | 60/28
62/28
63/28 | ZZ
ZZ
ZZ | VV
VV | DDU
DDU
DDU | | 30 | 42
47
55 | 7
9
9 | 0.3
0.3
0.3 | 4 700
7 250
11 200 | 3 650
5 000
7 350 | 480
740
1 150 | 370
510
750 | 16.4
15.8
15.2 | 15 000
14 000
13 000 | 9 000
8 500
— | 18 000
17 000
15 000 | 6806
6906
16006 | ZZ
ZZ
— | VV
VV | DD
DDU
— | | | 55
62
72 | 13
16
19 | 1
1
1.1 | 13 200
19 500
26 700 | 8 300
11 300
15 000 | 1 350
1 980
2 720 | 845
1 150
1 530 | 14.7
13.8
13.3 | 13 000
11 000
9 500 | 8 000
7 500
6 700 | 15 000
13 000
12 000 | 6006
6206
6306 | ZZ
ZZ
ZZ | VV
VV | DDU
DDU
DDU | | 32 | 58
65
75 | 13
17
20 | 1
1
1.1 | 15 100
20 700
29 900 | 9 150
11 600
17 000 | 1 530
2 120
3 050 | 935
1 190
1 730 | 14.5
13.6
13.2 | 12 000
10 000
9 000 | 7 500
7 100
6 300 | 14 000
12 000
11 000 | 60/32
62/32
63/32 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 35 | 47
55
62 | 7
10
9 | 0.3
0.6
0.3 | 4 900
10 600
11 700 | 4 100
7 250
8 200 | 500
1 080
1 190 | 420
740
835 | 16.7
15.5
15.6 | 14 000
12 000
11 000 | 7 500
7 500
— | 16 000
15 000
13 000 | 6807
6907
16007 | ZZ
ZZ | VV
VV | DD
DDU
— | | | 62
72
80 | 14
17
21 | 1
1.1
1.5 | 16 000
25 700
33 500 | 10 300
15 300
19 200 | 1 630
2 620
3 400 | 1 050
1 560
1 960 | 14.8
13.8
13.2 | 11 000
9 500
8 500 | 6 700
6 300
6 000 | 13 000
11 000
10 000 | 6007
6207
6307 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 40 | 52
62
68 | 7
12
9 | 0.3
0.6
0.3 | 6 350
13 700
12 600 | 5 550
10 000
9 650 | 650
1 390
1 290 | 565
1 020
985 | 17.0
15.7
16.0 | 12 000
11 000
10 000 | 6 700
6 300
— | 14 000
13 000
12 000 | 6808
6908
16008 | ZZ
ZZ | VV
VV | DD
DDU
— | | | 68
80
90 | 15
18
23 | 1
1.1
1.5 | 16 800
29 100
40 500 | 11 500
17 900
24 000 | 1 710
2 970
4 150 | 1 180
1 820
2 450 | 15.3
14.0
13.2 | 10 000
8 500
7 500 | 6 000
5 600
5 300 | 12 000
10 000
9 000 | 6008
6208
6308 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | | 45 | 58
68
75 | 7
12
10 | 0.3
0.6
0.6 | 6 600
14 100
14 900 | 6 150
10 900
11 400 | 670
1 440
1 520 | 625
1 110
1 160 | 17.2
15.9
15.9 | 11 000
9 500
9 000 | 6 000
5 600
— | 13 000
12 000
11 000 | 6809
6909
16009 | ZZ
ZZ
— | VV
VV | DD
DDU
— | | | 75
85
100 | 16
19
25 | 1
1.1
1.5 | 20 900
31 500
53 000 | 15 200
20 400
32 000 | 2 140
3 200
5 400 | 1 550
2 080
3 250 | 15.3
14.4
13.1 | 9 000
7 500
6 700 | 5 300
5 300
4 800 | 11 000
9 000
8 000 | 6009
6209
6309 | ZZ
ZZ
ZZ | VV
VV
VV | DDU
DDU
DDU | - Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A50 to A53. - (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. - (3) Ring types N and NR applicable only to open-type bearings. Please consult NSK about the snap ring groove dimensions of sealed or shielded bearings. $P = XF_r + YF_a$ NSK ### Static Equivalent Load $\frac{F_a}{F_r}$ > 0.8, P_0 = 0.6 F_r + 0.5 F_a | With | | Sna | p Ring G | roove Dim
(mm) | nensions | (1) | Snap R
Dimen | sions | | Abutmer | Abutment and Fillet Dimensions (mm) | | | | | | |----------------------------------|----------------|------------------|-------------------|-------------------|-------------------|------------------------|---------------------------------------|-------------------|----------------|---------------------------|-------------------------------------|-------------------|--------------------------------------|-----------------|-------------------------|--| | Sna _l
Ring
Groo | Ring | а
тах. | $m{b}$ min. | $D_{ m 1}$ max. | r_0 max. | $\emph{r}_{ m N}$ min. | $D_{\scriptscriptstyle 2}^{({ m mr}}$ | f max. | min. | $m{l}_{ m a}$ (2)
max. | $D_{ m a}^{(2)}$ | $r_{ m a}$ max. | $D_{\!\scriptscriptstyle m x}$ min. | $C_{ m Y}$ max. | арргох. | | | N
N | NR
3) NR(3) | 1.3
1.7
— | 0.95
0.95
— | 35.7
40.7
— | 0.25
0.25
— | 0.3
0.3 | 39.8
44.8
— | 0.85
0.85 | 27
27
27 | 27
28.5
— | 35
40
45 | 0.3
0.3
0.3 | 40.5
45.5
— | 1.8
2.3
— | 0.021
0.042
0.059 | | | N | NR | 2.06 | 1.35 | 44.6 | 0.4 | 0.5 | 52.7 | 1.12 | 29 | 30 | 43 | 0.6 | 53.5 | 2.9 | 0.079 | | | N | NR | 2.46 | 1.35 | 49.73 | 0.4 | 0.5 | 57.9 | 1.12 | 30 | 32 | 47 | 1 | 58.5 | 3.3 | 0.129 | | | N | NR | 3.28 | 1.9 | 59.61 | 0.6 | 0.5 | 67.7 | 1.7 | 31.5 | 36 | 55.5 | 1 | 68.5 | 4.6 | 0.235 | | | N | NR | 2.06 | 1.35 | 49.73 | 0.4 | 0.5 | 57.9 | 1.12 | 32 | 34 | 48 | 0.6 | 58.5 | 2.9 | 0.096 | | | N | NR | 2.46 | 1.35 | 55.6 | 0.4 | 0.5 | 63.7 | 1.12 | 33 | 35.5 | 53 | 1 | 64.5 | 3.3 | 0.175 | | | N | NR | 3.28 | 1.9 | 64.82 | 0.6 | 0.5 | 74.6 | 1.7 | 34.5 | 38 | 61.5 | 1 | 76 | 4.6 | 0.287 | | | N
N | NR
NR
— | 1.3
1.7
— | 0.95
0.95
— | 40.7
45.7
— | 0.25
0.25
— | 0.3
0.3
— | 44.8
49.8
— | 0.85
0.85
— | 32
32
32 | 32
34
— | 40
45
53 | 0.3
0.3
0.3 | 45.5
50.5
— | 1.8
2.3
— | 0.024
0.052
0.087 | | | N | NR | 2.08 | 1.35 | 52.6 | 0.4 | 0.5 | 60.7 | 1.12 | 35 | 36.5 | 50 | 1 | 61.5 | 2.9 | 0.116 | | | N | NR | 3.28 | 1.9 | 59.61 | 0.6 | 0.5 | 67.7 | 1.7 | 35 | 38.5 | 57 | 1 | 68.5 | 4.6 | 0.199 | | | N | NR | 3.28 | 1.9 | 68.81 | 0.6 | 0.5 | 78.6 | 1.7 | 36.5 | 42.5 | 65.5 | 1 | 80 | 4.6 | 0.345 | | | N | NR | 2.08 | 1.35 | 55.6 | 0.4 | 0.5 | 63.7 | 1.12 | 37 | 38.5 | 53 | 1 | 64.5 | 2.9 | 0.122 | | | N | NR | 3.28 | 1.9 | 62.6 | 0.6 | 0.5 | 70.7 | 1.7 | 37 | 40 | 60 | 1 | 71.5 | 4.6 | 0.225 | | | N | NR | 3.28 | 1.9 | 71.83 | 0.6 | 0.5 | 81.6 | 1.7 | 38.5 | 44.5 | 68.5 | 1 | 83 | 4.6 | 0.389 | | | N
N | NR
NR
— | 1.3
1.7
— | 0.95
0.95
— | 45.7
53.7
— | 0.25
0.25
— | 0.3
0.5
— | 49.8
57.8
— | 0.85
0.85
— | 37
39
37 | 37
39
— | 45
51
60 | 0.3
0.6
0.3 | 50.5
58.5
— | 1.8
2.3
— | 0.027
0.075
0.107 | | | N | NR | 2.08 | 1.9 | 59.61 | 0.6 | 0.5 | 67.7 | 1.7 | 40 | 41.5 | 57 | 1 | 68.5 | 3.4 | 0.151 | | | N | NR | 3.28 | 1.9 | 68.81 | 0.6 | 0.5 | 78.6 | 1.7 | 41.5 | 44.5 | 65.5 | 1 | 80 | 4.6 | 0.284 | | | N | NR | 3.28 | 1.9 | 76.81 | 0.6 | 0.5 | 86.6 | 1.7 | 43 | 47 | 72 | 1.5 | 88 | 4.6 | 0.464 | | | N
N | NR
NR
— | 1.3
1.7
— | 0.95
0.95
— | 50.7
60.7
— | 0.25
0.25
— | 0.3
0.5
— | 54.8
64.8
— | 0.85
0.85
— | 42
44
42 | 42
46
— | 50
58
66 | 0.3
0.6
0.3 | 55.5
65.5
— | 1.8
2.3
— | 0.031
0.112
0.13 | | | N | NR | 2.49 | 1.9 | 64.82 | 0.6 | 0.5 | 74.6 | 1.7 | 45 | 47.5 | 63 | 1 | 76 | 3.8 | 0.19 | | | N | NR | 3.28 | 1.9 | 76.81 | 0.6 | 0.5 | 86.6 | 1.7 | 46.5 | 50.5 | 73.5 | 1 | 88 | 4.6 | 0.366 | | | N | NR | 3.28 | 2.7 | 86.79 | 0.6 | 0.5 | 96.5 | 2.46 | 48 | 53 | 82 | 1.5 | 98 | 5.4 | 0.636 | | | N
N | NR
NR
— | 1.3
1.7
— | 0.95
0.95
— | 56.7
66.7
— | 0.25
0.25
— | 0.3
0.3(4) | 60.8
70.8
— | 0.85
0.85
— | 47
49
49 | 47.5
50
— | 56
64
71 | 0.3
0.6
0.6 | 61.5
72
— | 1.8
2.3
— | 0.038
0.126
0.167 | | | N | NR | 2.49 | 1.9 | 71.83 | 0.6 | 0.5 | 81.6 | 1.7 | 50 | 53.5 | 70 | 1 | 83 | 3.8 | 0.241 | | | N | NR | 3.28 | 1.9 | 81.81 | 0.6 | 0.5 | 91.6 | 1.7 | 51.5 | 55.5 | 78.5 | 1 | 93 | 4.6 | 0.42 | | | N | NR | 3.28 | 2.7 | 96.8 | 0.6 | 0.5 | 106.5 | 2.46 | 53 | 61.5 | 92 | 1.5 | 108 | 5.4 | 0.829 | | Remarks 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. Mass Bore Diameter 50 - 75 mm | | | | | | | | VV | | טטט יטט | | N | | | NR | | |-----|-------------------|----------------|-------------------|-----------------------------|----------------------------|--------------------------|-------------------------|----------------------|--------------------------|-------------------------|----------------------------|-------------------|--------------|----------|----------------| | Bou | ndary D | | sions | | Basic Load | Ratings | | Factor | Limiting | Speeds | (min ⁻¹) | B | earing | Numbe | ers | | | (m | m) | | 1) | 1) | {kg | ſf} | | Grea | se | Oil | | caring | rvairib(| 013 | | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Sh | ielded | Seale | ed : | | 50 | 65
72
80 | 7
12
10 | 0.3
0.6
0.6 | 6 400
14 500
15 400 | 6 200
11 700
12 400 | 655
1 480
1 570 | 635
1 200
1 260 | 17.2
16.1
16.1 | 9 500
9 000
8 500 | 5 300
5 300
— | 11 000
11 000
10 000 | 6910 | | | DU
DU | | | 80
90
110 | 16
20
27 | 1
1.1
2 | 21 800
35 000
62 000 | 16 600
23 200
38 500 | 2 220
3 600
6 300 | 1 700
2 370
3 900 | 15.6
14.4
13.2 | 8 500
7 100
6 000 | 4 800
4 800
4 300 | 10 000
8 500
7 500 | 6210 | ZZ V
| V D | DU
DU
DU | | 55 | 72
80
90 | 9
13
11 | 0.3
1
0.6 | 8 800
16 000
19 400 | 8 500
13 300
16 300 | 900
1 630
1 980 | 865
1 350
1 660 | 17.0
16.2
16.2 | 8 500
8 000
7 500 | 4 800
4 500
— | 10 000
9 500
9 000 | 6911 | | V D | DU
DU | | | 90
100
120 | 18
21
29 | 1.1
1.5
2 | 28 300
43 500
71 500 | 21 200
29 300
44 500 | 2 880
4 450
7 300 | 2 170
2 980
4 550 | 15.3
14.3
13.1 | 7 500
6 300
5 600 | 4 500
4 300
4 000 | 9 000
7 500
6 700 | 6211 | ZZ V | V D | DU
DU
DU | | 60 | 78
85
95 | 10
13
11 | 0.3
1
0.6 | 11 500
19 400
20 000 | 10 900
16 300
17 500 | 1 170
1 980
2 040 | 1 120
1 660
1 780 | 16.9
16.2
16.3 | 8 000
7 500
7 100 | 4 500
4 300
— | 9 500
9 000
8 500 | 6912 | | V D | D
DU
- | | | 95
110
130 | 18
22
31 | 1.1
1.5
2.1 | 29 500
52 500
82 000 | 23 200
36 000
52 000 | 3 000
5 350
8 350 | 2 370
3 700
5 300 | 15.6
14.3
13.1 | 7 100
5 600
5 300 | 4 000
3 800
3 600 | 8 500
7 100
6 300 | 6212 | ZZ V | V D | DU
DU
DU | | 65 | 85
90
100 | 10
13
11 | 0.6
1
0.6 | 11 900
17 400
20 500 | 12 100
16 100
18 700 | 1 220
1 770
2 090 | 1 230
1 640
1 910 | 17.0
16.6
16.5 | 7 500
7 100
6 700 | 4 000
4 000
— | 8 500
8 500
8 000 | 6913 | | V D | D
DU | | | 100
120
140 | 18
23
33 | 1.1
1.5
2.1 | 30 500
57 500
92 500 | 25 200
40 000
60 000 | 3 100
5 850
9 450 | 2 570
4 100
6 100 | 15.8
14.4
13.2 | 6 700
5 300
4 800 | 4 000
3 600
3 400 | 8 000
6 300
6 000 | 6213 | ZZ V | V D | DU
DU
DU | | 70 | 90
100
110 | 10
16
13 | 0.6
1
0.6 | 12 100
23 700
26 800 | 12 700
21 200
23 600 | 1 230
2 420
2 730 | 1 300
2 160
2 410 | 17.2
16.3
16.3 | 6 700
6 300
6 000 | 3 800
3 600
— | 8 000
7 500
7 100 | 6914 | | | DU
- | | | 110
125
150 | 20
24
35 | 1.1
1.5
2.1 | 38 000
62 000
104 000 | 31 000
44 000
68 000 | 3 900
6 350
10 600 | 3 150
4 500
6 950 | 15.6
14.5
13.2 | 6 000
5 000
4 500 | 3 600
3 400
3 200 | 7 100
6 300
5 300 | 6214
6314 | ZZ V
ZZ V | V D | DU
DU
DU | | 75 | 95
105
115 | 10
16
13 | 0.6
1
0.6 | 12 500
24 400
27 600 | 13 900
22 600
25 300 | 1 280
2 480
2 820 | 1 410
2 300
2 580 | 17.3
16.5
16.4 | 6 300
6 000
5 600 | 3 600
3 400
— | 7 500
7 100
6 700 | 6915 7
16015 - | ZZ V | V D | DU
DU | | | 115
130
160 | 20
25
37 | 1.1
1.5
2.1 | 39 500
66 000
113 000 | 33 500
49 500
77 000 | 4 050
6 750
11 600 | 3 400
5 050
7 850 | 15.8
14.7
13.2 | 5 600
4 800
4 300 | 3 400
3 200
2 800 | 6 700
5 600
5 000 | 6215 | ZZ V | V D | DU
DU
DU | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A50 to A53. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. | 1.03 | 0.28 | 1 | 0 | | | | | | | | |---|------|---|---|--|--|--|--|--|--|--| | 1.38 | 0.30 | 1 | 0 | | | | | | | | | 2.07 | 0.34 | 1 | 0 | | | | | | | | | 3.45 | 0.38 | 1 | 0 | | | | | | | | | 5.17 | 0.42 | 1 | 0 | | | | | | | | | 6.89 | 0.44 | 1 | 0 | | | | | | | | | Static Equivalent Load $\frac{F_a}{F} > 0.8, P_0 = 0.6F_r + 0.5F_r$ | | | | | | | | | | | $\frac{F_a}{F_r} \leq 0.8, P_0 = F_r$ Abutment and Fillet Dimensions 1.5 2 0.6 0.6 1.5 2 118 162 101 112 123 172 141.5 136.5 6.5 7.3 2.5 3.3 6.5 7.3 103.5 1 117 139 91 100 111 122 149 108.5 | With | With | (mm) | | | | | Dimen | | (mm) | | | | | | (kg) | |------------------------|----------------|----------------------|-------------------|---------------------------|-------------------|---------------------------------|---------------------------------------|----------------------|------------------|--------------------|-----------------------|--------------------------|--------------------------------------|-------------------|-------------------------| | Snap
Ring
Groove | Snap
Ring | а
max. | b
min. | $D_{ m 1}$ max. | r_0 max. | $\emph{\textbf{r}}_{ m N}$ min. | $D_{\scriptscriptstyle 2}^{({ m mr}}$ | f max. | d
min. | $a^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | $m{r_{\mathrm{a}}}$ max. | $D_{\!\scriptscriptstyle m x}$ min. | $C_{ m Y}$ max. | approx. | | N
N | NR
NR | 1.3
1.7 | 0.95
0.95
— | 63.7
70.7
— | 0.25
0.25
— | 0.3
0.5
— | 67.8
74.8
— | 0.85
0.85 | 52
54
54 | 52.5
55
— | 63
68
76 | 0.3
0.6
0.6 | 68.5
76
— | 1.8
2.3
— | 0.050
0.135
0.175 | | N
N
N | NR
NR
NR | 2.49
3.28
3.28 | 1.9
2.7
2.7 | 76.81
86.79
106.81 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 86.6
96.5
116.6 | 1.7
2.46
2.46 | 55
56.5
59 | 58.5
60
68 | 75
83.5
101 | 1
1
2 | 88
98
118 | 3.8
5.4
5.4 | 0.261
0.459
1.06 | | N
N | NR
NR | 1.7
2.1
— | 0.95
1.3
— | 70.7
77.9
— | 0.25
0.4
— | 0.3
0.5
— | 74.8
84.4
— | 0.85
1.12
— | 57
60
59 | 59
61.5
— | 70
75
86 | 0.3
1
0.6 | 76
86
— | 2.3
2.9
— | 0.081
0.189
0.257 | | N
N
N | NR
NR
NR | 2.87
3.28
4.06 | 2.7
2.7
3.1 | 86.79
96.8
115.21 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 96.5
106.5
129.7 | 2.46
2.46
2.82 | 61.5
63
64 | 64
66.5
72.5 | 83.5
92
111 | 1
1.5
2 | 98
108
131.5 | 5
5.4
6.5 | 0.381
0.619
1.37 | | N
N | NR
NR | 1.7
2.1
— | 1.3
1.3 | 76.2
82.9
— | 0.4
0.4
— | 0.3
0.5
— | 82.7
89.4
— | 1.12
1.12
— | 62
65
64 | 64
66
— | 76
80
91 | 0.3
1
0.6 | 84
91
— | 2.5
2.9
— | 0.103
0.192
0.281 | | N
N
N | NR
NR
NR | 2.87
3.28
4.06 | 2.7
2.7
3.1 | 91.82
106.81
125.22 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 101.6
116.6
139.7 | 2.46
2.46
2.82 | 66.5
68
71 | 69
74.5
79 | 88.5
102
119 | 1
1.5
2 | 103
118
141.5 | 5
5.4
6.5 | 0.412
0.783
1.72 | | N
N | NR
NR
— | 1.7
2.1
— | 1.3
1.3 | 82.9
87.9
— | 0.4
0.4
— | 0.5
0.5
— | 89.4
94.4
— | 1.12
1.12
— | 69
70
69 | 69
71.5
— | 81
85
96 | 0.6
1
0.6 | 91
96
— | 2.5
2.9
— | 0.128
0.218
0.30 | | N
N
N | NR
NR
NR | 2.87
4.06
4.9 | 2.7
3.1
3.1 | 96.8
115.21
135.23 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 106.5
129.7
149.7 | 2.46
2.82
2.82 | 71.5
73
76 | 73
80
85.5 | 93.5
112
129 | 1
1.5
2 | 108
131.5
152 | 5
6.5
7.3 | 0.439
1.0
2.11 | | N
N | NR
NR
— | 1.7
2.5
— | 1.3
1.3
— | 87.9
97.9
— | 0.4
0.4
— | 0.5
0.5
— | 94.4
104.4
— | 1.12
1.12
— | 74
75
74 | 74.5
77.5
— | 86
95
106 | 0.6
1
0.6 | 96
106
— | 2.5
3.3
— | 0.134
0.349
0.441 | Snap Ring (1) ϕD_a Snap Ring Groove Dimensions (1) ϕD_1 NR 2.87 2.7 4.06 3.1 2.5 2.87 4.06 3.1 4.9 3.1 1.3 1.3 3.1 NR NR 4.9 NR 1.7 NR NR NR NR 106.81 120.22 145.24 92.9 102.6 111.81 125.22 155.22 0.6 0.6 0.6 0.4 0.4 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 116.6 2.46 134.7 2.82 159.7 2.82 99.4 1.12 110.7 1.12 121.6 2.46 139.7 2.82 169.7 2.82 ϕd_a Remarks 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. 76.5 78 81 79 80 79 83 86 81.5 80.5 84 92 82 79.5 85.5 98.5 90 0.608 1.09 2.57 0.149 0.364 0.463 0.649 1.19 3.08 c Equivalent Load Bore Diameter 80 – 105 mm | | | | | | | | VV | | טט י טטנ | J | N | | | NR | |----------|-------------------|----------------|-----------------|------------------------------|------------------------------|---------------------------|---------------------------|----------------------|--------------------------|-------------------------|-------------------------|-------------------|-------------------|----------------| | Bou | ndary E | | sions | | Basic Load | Ratings | | Factor | Limiting | Speeds (| min ⁻¹) | Be | aring N | lumbers | | | (m | m) | | 1) | (N) {kgf} | | | | Grea | Grease | | <i>D</i> (| aring i | idi i iber 3 | | <u>d</u> | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shi | elded | Sealed | | 80 | 100
110
125 | 10
16
14 | 0.6
1
0.6 | 12 700
25 000
32 000 | 14 500
24 000
29 600 | 1 290
2 540
3 250 | 1 470
2 450
3 000 | 17.4
16.6
16.4 | 6 000
5 600
5 300 | 3 400
3 200
— | 7 100
6 700
6 300 | 6916 Z | Z V\
Z V\ | | | | 125
140
170 | 22
26
39 | 1.1
2
2.1 | 47 500
72 500
123 000 | 40 000
53 000
86 500 | 4 850
7 400
12 500 | 4 050
5 400
8 850 | 15.6
14.6
13.3 | 5 300
4 500
4 000 | 3 200
3 000
2 800 | 6 300
5 300
4 800 | 6216 Z
6316 Z | Z V
Z V
Z V | / DDU
/ DDU | | 85 | 110
120
130 | 13
18
14 | 1
1.1
0.6 | 18 700
32 000
33 000 | 20 000
29 600
31 500 | 1 910
3 250
3 350 | 2 040
3 000
3 200 | 17.1
16.4
16.5 | 5 600
5 300
5 000 | 3 200
3 000
— |
6 700
6 300
6 000 | 6917 Z
16017 – | Z V
Z V | / DDU | | | 130
150
180 | 22
28
41 | 1.1
2
3 | 49 500
84 000
133 000 | 43 000
62 000
97 000 | 5 050
8 550
13 500 | 4 400
6 300
9 850 | 15.8
14.5
13.3 | 5 000
4 300
3 800 | 3 000
2 800
2 600 | 6 000
5 000
4 500 | 6217 Z
6317 Z | Z V
Z V
Z V | / DDU
/ DDU | | 90 | 115
125
140 | 13
18
16 | 1
1.1
1 | 19 000
33 000
41 500 | 21 000
31 500
39 500 | 1 940
3 350
4 250 | 2 140
3 200
4 000 | 17.2
16.5
16.3 | 5 300
5 000
4 800 | 3 000
2 800
— | 6 300
6 000
5 600 | 6918 Z
16018 - | Z V\
Z V\
 | | | | 140
160
190 | 24
30
43 | 1.5
2
3 | 58 000
96 000
143 000 | 50 000
71 500
107 000 | 5 950
9 800
14 500 | 5 050
7 300
11 000 | 15.6
14.5
13.3 | 4 800
4 000
3 600 | 2 800
2 600
2 400 | 5 600
4 800
4 300 | 6218 Z | Z V
Z V
Z V | / DDU | | 95 | 120
130
145 | 13
18
16 | 1
1.1
1 | 19 300
33 500
43 000 | 22 000
33 500
42 000 | 1 970
3 450
4 350 | 2 240
3 400
4 250 | 17.2
16.6
16.4 | 5 000
4 800
4 500 | 2 800
2 800
— | 6 000
5 600
5 300 | | Z V
Z V | | | | 145
170
200 | 24
32
45 | 1.5
2.1
3 | 60 500
109 000
153 000 | 54 000
82 000
119 000 | 6 150
11 100
15 600 | 5 500
8 350
12 100 | 15.8
14.4
13.3 | 4 500
3 800
3 000 | 2 600
2 600
2 400 | 5 300
4 500
3 600 | 6219 Z | Z V
Z V
Z V | / DDU | | 100 | 125
140
150 | 13
20
16 | 1
1.1
1 | 19 600
43 000
42 500 | 23 000
42 000
42 000 | 2 000
4 350
4 300 | 2 340
4 250
4 300 | 17.3
16.4
16.5 | 4 800
4 500
4 300 | 2 800
2 600
— | 5 600
5 300
5 300 | 6920 Z | Z V
Z V | | | | 150
180
215 | 24
34
47 | 1.5
2.1
3 | 60 000
122 000
173 000 | 54 000
93 000
141 000 | 6 150
12 500
17 700 | 5 550
9 500
14 400 | 15.9
14.4
13.2 | 4 300
3 600
2 800 | 2 600
2 400
2 200 | 5 300
4 300
3 400 | 6220 Z
6320 Z | Z V
Z V
Z V | / DDU
/ DDU | | 105 | 130
145
160 | 13
20
18 | 1
1.1
1 | 19 800
42 500
52 000 | 23 900
42 000
50 500 | 2 020
4 300
5 300 | 2 440
4 300
5 150 | 17.4
16.5
16.3 | 4 800
4 300
4 000 | 2 600
—
— | 5 600
5 300
4 800 | 6921 Z
16021 – | Z V\
Z V\
 | / | | | 160
190
225 | 26
36
49 | 2
2.1
3 | 72 500
133 000
184 000 | 66 000
105 000
154 000 | 7 400
13 600
18 700 | 6 700
10 700
15 700 | 15.8
14.4
13.2 | 4 000
3 400
2 600 | 2 400
2 200
2 000 | 4 800
4 000
3 200 | 6221 Z | Z V
Z V
Z — | | ⁽²⁾ When heavy axial loads are applied, increase d_a and decrease D_a from the above values. | Dynamic Equivalent Load | | |-------------------------|--| | $P = XF_r + YF_a$ | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | |--|----------|------|---|----------|------|------|--|--| | 0.172 0.19 1 0 0.56 2.30 0.345 0.22 1 0 0.56 1.99 0.689 0.26 1 0 0.56 1.71 1.03 0.28 1 0 0.56 1.55 | | e | | $\leq e$ | >e | | | | | 0.345 0.22 1 0 0.56 1.99 0.689 0.26 1 0 0.56 1.71 1.03 0.28 1 0 0.56 1.55 | c_{0r} | | X | Y | X | Y | | | | 0.689 0.26 1 0 0.56 1.71 1.03 0.28 1 0 0.56 1.55 | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | | 1.03 0.28 1 0 0.56 1.55 | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | | 1.38 0.30 1 0 0.56 1.45 | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | | 2.07 0.34 1 0 0.56 1.31 | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | | 3.45 0.38 1 0 0.56 1.15 | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | | 5.17 0.42 1 0 0.56 1.04 | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | | 6.89 0.44 1 0 0.56 1.00 | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | ### Static Equivalent Load | $\frac{F_{\rm a}}{F_{\rm r}}$ >0.8, $P_{\rm 0}$ =0.6 $F_{\rm r}$ +0.5 $F_{\rm a}$ | 1 | |---|---| | $\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$ | | | With | With | Snap Ring Groove Dimensions (1)
(mm) | | | | Snap Ring (¹) Abutment Dimensions (mm) | | | nt and Fillet Dimensions
(mm) | | | | Mass
(kg) | | | |-----------------------|----------------------|---|--------------------------|-------------------------------------|--------------------------|--|----------------------------------|-----------------------------|----------------------------------|--------------------------------|----------------------------|-----------------|----------------------------|------------------------------------|--------------------------------| | Snap
Ring
Groov | Ring | а
max. | b
min. | $D_{ m 1}$ max. | r_0 max. | $\emph{r}_{ m N}$ min. | $D_{2}^{(\mathrm{mr})}$ | f max. | min. | $m{d}_{\mathbf{a}}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | $r_{ m a}$ max. | $D_{ m x}$ min. | $C_{\scriptscriptstyle m Y}$ max. | approx. | | N
N | NR
NR | 1.7
2.5
— | 1.3
1.3
— | 97.9
107.6
— | 0.4 | 0.5
0.5
— | 104.4
115.7 | 1.12
1.12
— | 84
85
84 | 84.5
87.5
— | 96
105
121 | 0.6
1
0.6 | 106
117
— | 2.5
3.3 | 0.151
0.391
0.621 | | N
N
N | NR
NR
NR
NR | 2.87
4.9
5.69
2.1 | 3.1
3.1
3.5
1.3 | 120.22
135.23
163.65
107.6 | 0.6
0.6
0.6
0.4 | 0.5
0.5
0.5
0.5 | 134.7
149.7
182.9
115.7 | 2.82
2.82
3.1
1.12 | 86.5
89
91
90 | 91
95.5
104.5
90.5 | 118.5
131
159
105 | 1
2
2 | 136.5
152
185
117 | 5.3
7.3
8.4
2.9 | 0.872
1.42
3.67
0.263 | | N
N | NR
—
NR | 3.3
—
2.87 | 1.3
—
3.1 | 117.6
—
125.22 | 0.4 | 0.5 | 125.7
—
139.7 | 1.12
—
2.82 | 91.5
89
91.5 | 94.5
—
96 | 113.5
126
123.5 | 1
0.6 | 127
—
141.5 | 4.1
—
5.3 | 0.55
0.652
0.918 | | N
N | NR
NR
NR | 4.9
5.69 | 3.1
3.1
3.5 | 125.22
145.24
173.66 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 159.7
192.9 | 2.82
2.82
3.1 | 94
98 | 102
110.5 | 141
167 | 1
2
2.5 | 162
195 | 7.3
8.4 | 1.76
4.28 | | N
N | NR
NR | 2.1
3.3
— | 1.3
1.3
— | 112.6
122.6
— | 0.4
0.4
— | 0.5
0.5
— | 120.7
130.7
— | 1.12
1.12
— | 95
96.5
95 | 95.5
98.5
— | 110
118.5
135 | 1
1
1 | 122
132
— | 2.9
4.1
— | 0.276
0.585
0.873 | | N
N
N | NR
NR
NR | 3.71
4.9
5.69 | 3.1
3.1
3.5 | 135.23
155.22
183.64 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 149.7
169.7
202.9 | 2.82
2.82
3.1 | 98
99
103 | 103
107.5
117 | 132
151
177 | 1.5
2
2.5 | 152
172
205 | 6.1
7.3
8.4 | 1.19
2.18
4.98 | | N
N | NR
NR
— | 2.1
3.3
— | 1.3
1.3
— | 117.6
127.6
— | 0.4
0.4
— | 0.5
0.5
— | 125.7
135.7
— | 1.12
1.12
— | 100
101.5
100 | 101.5
103.5
— | 115
123.5
140 | 1
1
1 | 127
137
— | 2.9
4.1
— | 0.297
0.601
0.904 | | N
N
N | NR
NR
NR | 3.71
5.69
5.69 | 3.1
3.5
3.5 | 140.23
163.65
193.65 | 0.6
0.6
0.6 | 0.5
0.5
0.5 | 154.7
182.9
212.9 | 2.82
3.1
3.1 | 103
106
108 | 108.5
114
123.5 | 137
159
187 | 1.5
2
2.5 | 157
185
215 | 6.1
8.4
8.4 | 1.23
2.64
5.76 | | N
N | NR
NR | 2.1
3.3
— | 1.3
1.9
— | 122.6
137.6
— | 0.4
0.6
— | 0.5
0.5
— | 130.7
145.7
— | 1.12
1.7
— | 105
106.5
105 | 105.5
111
— | 120
133.5
145 | 1
1
1 | 132
147
— | 2.9
4.7
— | 0.31
0.828
0.945 | | N
N | NR
NR | 3.71
5.69
— | 3.1
3.5
— | 145.24
173.66
— | 0.6
0.6 | 0.5
0.5
— | 159.7
192.9
— | 2.82
3.1
— | 108
111
113 | 112.5
121.5
133 | 142
169
202 | 1.5
2
2.5 | 162
195
— | 6.1
8.4
— | 1.29
3.17
7.04 | | N
N | NR
NR
— | 2.1
3.3
— | 1.3
1.9
— | 127.6
142.6
— | 0.4
0.6
— | 0.5
0.5
— | 135.7
150.7
— | 1.12
1.7
— | 110
111.5
110 | 110.5
116
— | 125
138.5
155 | 1
1
1 | 137
152
— | 2.9
4.7
— | 0.324
0.856
1.24 | | N
N | NR
NR
— | 3.71
5.69
— | 3.1
3.5
— | 155.22
183.64
— | 0.6
0.6
— | 0.5
0.5
— | 169.7
202.9
— | 2.82
3.1
— | 114
116
118 | 120
127.5
138 | 151
179
212 | 2
2
2.5 | 172
205
— | 6.1
8.4
— | 1.58
3.79
8.09 | - Remarks 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. Bore Diameter 110 – 160 mm | | | | | | | | VV | | טטע י טטע | | N | | ı | VK . | |-----|-------------------|----------------|-------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|----------------------|--------------------------|-------------------------|-------------------------
-----------------------|-------------------------|-------------------| | Bou | ndary [| | sions | | Basic Load | l Ratings | | Factor | Limiting | Speeds (| min ⁻¹) | | Bearing Nu | mhers | | | (m | m) | | 1) | ۷) | {k | gf} | | Grea | se | Oil | | Dearing iva | ITIDOIS | | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open | Shielded S | ealed | | 110 | 140
150
170 | 16
20
19 | 1
1.1
1 | 28 100
43 500
57 500 | 32 500
44 500
56 500 | 2 860
4 450
5 850 | 3 350
4 550
5 800 | 17.1
16.6
16.3 | 4 300
4 300
3 800 | 2 400
2 400
— | 5 300
5 000
4 500 | 6822
6922
16022 | ZZ VV
ZZ VV | DDU
DDU | | | 170
200
240 | 28
38
50 | 2
2.1
3 | 85 000
144 000
205 000 | 73 000
117 000
179 000 | 8 650
14 700
20 900 | 7 450
11 900
18 300 | 15.5
14.3
13.2 | 3 800
2 800
2 400 | 2 200
2 200
— | 4 500
3 400
3 000 | 6022
6222
6322 | ZZ VV
ZZ VV
ZZ — | DDU
DDU | | 120 | 150
165
180 | 16
22
19 | 1
1.1
1 | 28 900
53 000
56 500 | 35 500
54 000
57 500 | 2 950
5 400
5 800 | 3 650
5 500
5 850 | 17.3
16.5
16.5 | 4 000
3 800
3 600 | 2 200
—
— | 4 800
4 500
4 300 | 6824
6924
16024 | ZZ VV
ZZ —
— — | DD
_
_ | | | 180
215
260 | 28
40
55 | 2
2.1
3 | 88 000
155 000
207 000 | 80 000
131 000
185 000 | 9 000
15 800
21 100 | 8 150
13 400
18 800 | 15.7
14.4
13.5 | 3 600
2 600
2 200 | 2 200
2 000
1 800 | 4 300
3 200
2 800 | 6024
6224
6324 | ZZ VV
ZZ VV
ZZS — | DDU
DDU
DDU | | 130 | 165
180
200 | 18
24
22 | 1.1
1.5
1.1 | 37 000
65 000
75 500 | 44 000
67 500
77 500 | 3 750
6 650
7 700 | 4 450
6 850
7 900 | 17.1
16.5
16.4 | 3 600
3 400
3 000 | 2 000 | 4 300
4 000
3 600 | 6826
6926
16026 | ZZS VV
ZZ —
— — | DD
—
— | | | 200
230
280 | 33
40
58 | 2
3
4 | 106 000
167 000
229 000 | 101 000
146 000
214 000 | 10 800
17 000
23 400 | 10 300
14 900
21 800 | 15.8
14.5
13.6 | 3 000
2 400
2 200 | 1 900
—
— | 3 600
3 000
2 600 | 6026
6226
6326 | ZZ –
ZZ –
ZZS – | DDU
—
— | | 140 | 175
190
210 | 18
24
22 | 1.1
1.5
1.1 | 38 500
66 500
77 500 | 48 000
72 000
82 500 | 3 900
6 800
7 900 | 4 850
7 300
8 400 | 17.3
16.6
16.5 | 3 400
3 200
2 800 | 1 900
—
— | 4 000
3 800
3 400 | 6828
6928
16028 | ZZ VV
ZZS VV
— — | DDU
—
— | | | 210
250
300 | 33
42
62 | 2
3
4 | 110 000
166 000
253 000 | 109 000
150 000
246 000 | 11 200
17 000
25 800 | 11 100
15 300
25 100 | 16.0
14.9
13.6 | 2 800
2 200
2 000 | 1 800
1 700
— | 3 400
2 800
2 400 | 6028
6228
6328 | ZZ —
ZZS —
ZZS — | DDU
DDU | | 150 | 190
210
225 | 20
28
24 | 1.1
2
1.1 | 47 500
85 000
84 000 | 58 500
90 500
91 000 | 4 850
8 650
8 550 | 5 950
9 200
9 250 | 17.1
16.5
16.6 | 3 200
2 600
2 600 | 1 800
1 700
— | 3 800
3 200
3 000 | 6830
6930
16030 | ZZ VV
ZZS —
— — | DDU
DDU | | | 225
270
320 | 35
45
65 | 2.1
3
4 | 126 000
176 000
274 000 | 126 000
168 000
284 000 | 12 800
18 000
28 000 | 12 800
17 100
28 900 | 15.9
15.1
13.9 | 2 600
2 000
1 800 | 1 700
—
— | 3 000
2 600
2 200 | 6030
6230
6330 | ZZ VV
ZZS —
ZZS — | DDU
—
— | | 160 | 200
220
240 | 20
28
25 | 1.1
2
1.5 | 48 500
87 000
99 000 | 61 000
96 000
108 000 | 4 950
8 850
10 100 | 6 250
9 800
11 000 | 17.2
16.6
16.5 | 2 600
2 600
2 400 | 1 700
1 600
— | 3 200
3 000
2 800 | 6832
6932
16032 | ZZS VV
ZZS —
— — | DDU
DDU
— | | | 240
290
340 | 38
48
68 | 2.1
3
4 | 137 000
185 000
278 000 | 135 000
186 000
287 000 | 13 900
18 900
28 300 | 13 800
19 000
29 200 | 15.9
15.4
13.9 | 2 400
1 900
1 700 | 1 600
—
— | 2 800
2 400
2 000 | 6032
6232
6332 | ZZ —
ZZS —
ZZS — | DDU
—
— | ⁽²⁾ When heavy axial loads are applied, increase d_a and decrease D_a from the above values. $\frac{F_a}{F_r} > 0.8$, $P_0 = 0.6F_r + 0.5F_a$ | $F_{\rm a}$ | <00 | D | E | |-------------|--------|-------|---------------| | $F_{\rm r}$ | ·≦0.8, | P_0 | $=P_{\Gamma}$ | | With | With | Sna | Snap Ring Groove Dimensions (I) (mm) | | | | Dimen | sions | Snap Ring (¹) A Dimensions (mm) | | | et Dime | ensions | | Mass
(kg) | |-----------------------|----------|------------------|--------------------------------------|-----------------------|------------|------------------------|---|-----------------|---------------------------------|--------------------------------|-----------------------|------------------------------|-----------------|-----------------|------------------------| | Snap
Ring
Groov | Ring | a
max. | $m{b}$ min. | $D_{ m 1}$ max. | r_0 max. | $\emph{r}_{ m N}$ min. | $D_{\!\scriptscriptstyle 2}^{\scriptscriptstyle (m ff1f}$ max. | f max. | min. | $m{l}_{\mathbf{a}}^{(2)}$ max. | $D_{ m a}^{(2)}$ | $\emph{\textbf{r}}_{a}$ max. | $D_{ m x}$ min. | $C_{ m Y}$ max. | арргох. | | N
N | NR
NR | 2.5
3.3 | 1.9
1.9
— | 137.6
147.6 | 0.6
0.6 | 0.5
0.5 | 145.7
155.7
— | 1.7
1.7
— | 115
116.5
115 | 117
121
— | 135
143.5
165 | 1
1
1 | 147
157
— | 3.9
4.7
— | 0.497
0.893
1.51 | | N
N | NR
NR | 3.71
5.69 | 3.5
3.5
— | 163.65
193.65
— | 0.6
0.6 | 0.5
0.5
— | 182.9
212.9
— | 3.1
3.1
— | 119
121
123 | 124.5
134
147 | 161
189
227 | 2
2
2.5 | 185
215
— | 6.4
8.4 | 1.94
4.45
9.51 | | N
N | NR
NR | 2.5
3.7
— | 1.9
1.9
— | 147.6
161.8
— | 0.6
0.6 | 0.5
0.5
— | 155.7
171.5
— | 1.7
1.7
— | 125
126.5
125 | 127
132
— | 145
158.5
175 | 1
1
1 | 157
173
— | 3.9
5.1 | 0.537
1.21
1.6 | | N
_ | NR
— | 3.71
—
— | 3.5 | 173.66
—
— | 0.6 | 0.5
— | 192.9
—
— | 3.1
_
_ | 129
131
133 | 134.5
146
161 | 171
204
247 | 2
2
2.5 | 195
—
— | 6.4 | 2.08
5.29
12.5 | | N
N | NR
NR | 3.3
3.7
— | 1.9
1.9
— | 161.8
176.8
— | 0.6
0.6 | 0.5
0.5
— | 171.5
186.5
— | 1.7
1.7
— | 136.5
138
136.5 | 138
144
— | 158.5
172
193.5 | 1
1.5
1 | 173
188
— | 4.7
5.1 | 0.758
1.57
2.4 | | N
_ | NR
— | 5.69
—
— | 3.5
—
— | 193.65
—
— | 0.6 | 0.5
— | 212.9
—
— | 3.1
_
_ | 139
143
146 | 148.5
157
175 | 191
217
264 | 2
2.5
3 | 215
—
— | 8.4 | 3.26
5.96
15.2 | | N
N | NR
NR | 3.3
3.7 | 1.9
1.9
— | 171.8
186.8
— | 0.6
0.6 | 0.5
0.5
— | 181.5
196.5
— | 1.7
1.7
— | 146.5
148
146.5 | 148.5
153.5 | 168.5
182
203.5 | 1
1.5
1 | 183
198
— | 4.7
5.1 | 0.832
1.67
2.84 | | _ | _ | _
_ | _ | _
_
_ | _ | _ | _
_
_ | _
_
_ | 149
153
156 | 158.5
171.5
187 | 201
237
284 | 2
2.5
3 | _
_
_ | _ | 3.48
7.68
18.5 | | N
 | NR
— | 3.3 | 1.9
—
— | 186.8
—
— | 0.6 | 0.5 | 196.5
—
— | 1.7
— | 156.5
159
156.5 | 160
166
— | 183.5
201
218.5 | 1
2
1 | 198
—
— | 4.7
— | 1.15
3.01
3.62 | | _ | _ | _
_
_ | _ | — ·
— · | _ | _ | _
_
_ | _ | 161
163
166 | 170
186
203 | 214
257
304 | 2
2.5
3 | — · | _
_
_ | 4.24
10
22.7 | | N
 | NR
— | 3.3 | 1.9
 | 196.8
—
— | 0.6 | 0.5
—
— | 206.5
—
— | 1.7
— | 166.5
169
168 | 170.5
176 | 193.5
211
232 | 1
2
1.5 | 208
 | 4.7
— | 1.23
2.71
4.2 | | _ | = | _ | _ | _ | _ | _ | _
_
_ | | 171
173
176 | 181.5
202
215.5 | 229
277
324 | 2
2.5
3 | _ | _ | 5.15
12.8
26.2 | ϕD_a ϕD_1 Remarks 1. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. ^{2.} Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. Bore Diameter 170 - 240 mm Open Type Shielded Type ZZS Non-Contact Sealed Type VV | | | | | | | | | | | VV | | | |-----|-------------------|----------------|-------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|----------------------|--------------------------|-----------------|-------------------------|--| | Bou | ndary D | | sions | | Basic Load | | | Factor | Limiting | Speeds (| min ⁻¹) | Bearing Numbers | | | (m | m) | | (1 | N) | {k | gf} | | Grea | ise | Oil | 3 | | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shielded Sealed | | 170 | 215
230
260 | 22
28
28 | 1.1
2
1.5 | 60 000
86 000
114 000 | 75 000
97 000
126 000 | 6 100
8 750
11 700 | 7 650
9 850
12 900 | 17.1
16.7
16.5 | 2 600
2 400
2 200 | 1 600
—
— | 3 000
2 800
2 600 | 6834 ZZS VV DDU
6934 ZZS — —
16034 — — — | | | 260
310
360 | 42
52
72 | 2.1
4
4 | 161 000
212
000
325 000 | 161 000
224 000
355 000 | 16 400
21 700
33 500 | 16 400
22 800
36 000 | 15.8
15.3
13.6 | 2 200
1 800
1 600 | _ | 2 600
2 200
2 000 | 6034 ZZS VV —
6234 ZZS — —
6334 — — — | | 180 | 225
250
280 | 22
33
31 | 1.1
2
2 | 60 500
119 000
145 000 | 78 500
128 000
157 000 | 6 200
12 100
14 700 | 8 000
13 100
16 000 | 17.2
16.4
16.3 | 2 400
2 200
2 000 | _ | 2 800
2 600
2 400 | 6836 — VV —
6936 ZZS — —
16036 — — — | | | 280
320
380 | 46
52
75 | 2.1
4
4 | 180 000
227 000
355 000 | 185 000
241 000
405 000 | 18 400
23 200
36 000 | 18 800
24 600
41 500 | 15.6
15.1
13.9 | 2 000
1 700
1 500 | _
_
_ | 2 400
2 000
1 800 | 6036 ZZS VV —
6236 ZZS — —
6336 — — — | | 190 | 240
260
290 | 24
33
31 | 1.5
2
2 | 73 000
113 000
149 000 | 93 500
127 000
168 000 | 7 450
11 500
15 200 | 9 550
13 000
17 100 | 17.1
16.6
16.4 | 2 200
2 200
2 000 | | 2 600
2 600
2 400 | 6838 — VV —
6938 — — —
16038 — — — | | | 290
340
400 | 46
55
78 | 2.1
4
5 | 188 000
255 000
355 000 | 201 000
282 000
415 000 | 19 200
26 000
36 000 | 20 500
28 700
42 500 | 15.8
15.0
14.1 | 2 000
1 600
1 400 | | 2 400
2 000
1 700 | 6038 ZZS — —
6238 ZZS — —
6338 — — — | | 200 | 250
280
310 | 24
38
34 | 1.5
2.1
2 | 74 000
143 000
161 000 | 98 000
158 000
180 000 | 7 550
14 600
16 400 | 10 000
16 100
18 300 | 17.2
16.4
16.4 | 2 200
2 000
1 900 | _ | 2 600
2 400
2 200 | 6840 — — —
6940 ZZS — —
16040 — — — | | | 310
360
420 | 51
58
80 | 2.1
4
5 | 207 000
269 000
380 000 | 226 000
310 000
445 000 | 21 100
27 400
38 500 | 23 000
31 500
45 500 | 15.6
15.2
13.8 | 1 900
1 500
1 300 | | 2 200
1 800
1 600 | 6040 ZZS — —
6240 ZZS — —
6340 — — — | | 220 | 270
300
340 | 24
38
37 | 1.5
2.1
2.1 | 76 500
146 000
180 000 | 107 000
169 000
217 000 | 7 800
14 900
18 400 | 10 900
17 300
22 100 | 17.4
16.6
16.5 | 1 900
1 800
1 600 | | 2 400
2 200
2 000 | 6844 ZZS — —
6944 ZZS — —
16044 — — — | | | 340
400
460 | 56
65
88 | 3
4
5 | 235 000
310 000
410 000 | 271 000
375 000
520 000 | 24 000
31 500
42 000 | 27 600
38 500
53 000 | 15.6
15.1
14.3 | 1 700
1 300
1 200 | _ | 2 000
1 600
1 500 | 6044 ZZS — —
6244 — — —
6344 — — — | | 240 | 300
320
360 | 28
38
37 | 2
2.1
2.1 | 98 500
154 000
196 000 | 137 000
190 000
243 000 | 10 000
15 700
19 900 | 14 000
19 400
24 700 | 17.3
16.8
16.5 | 1 700
1 700
1 500 | _ | 2 000
2 000
1 900 | 6848 — — —
6948 ZZS — —
16048 — — — | | | 360
440
500 | 56
72
95 | 3
4
5 | 244 000
340 000
470 000 | 296 000
430 000
625 000 | 24 900
34 500
48 000 | 30 000
44 000
63 500 | 15.9
15.2
14.2 | 1 500
1 200
1 100 | = | 1 900
1 500
1 300 | 6048 — — —
6248 — — —
6348 — — — | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. **Remarks** When using bearings with rotating outer rings, contact NSK if they are sealed or shielded. $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | |--------------------------|------|---|----------|-----------------------------------|------|--| | Our | | X | Y | X | Y | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | $$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, \ P_0 = F_{\rm r}$$ | | Abutment and Fillet
Dimensions (mm) | | | | | | | | | | | |-------------------|--|-----------------------|-----------------|--|--|--|--|--|--|--|--| | d_{i} min. | max. | $D_{ m a}^{(1)}$ max. | $r_{ m a}$ max. | approx. | | | | | | | | | | | | | 1.86
3.34
5.71
6.89
15.8
36.6
1.98
4.16
7.5
8.88
15.9
43.1
2.53
5.18
9.39
22.3
49.7
2.67
7.28
10
12
26.7
55.3
2.9
7.88
13.1
18.6
6.7
55.3
2.9
7.88
13.1
18.6
19.7
19.7
19.7
19.7
19.7
19.7
19.7
19.7 | | | | | | | | | 253
256
260 | _
_
_ | 347
424
480 | 2.5
3
4 | 19.9
50.5
94.4 | | | | | | | | ϕD_a Bore Diameter 260 - 360 mm ## Dynamic Equivalent Load NSK $$\frac{F_a}{F_r} > 0.8$$, $P_0 = 0.6F_r + 0.5F_a$ $$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, \ P_0 = F_{\rm r}$$ Open Type | Во | oundary [
(m | Dimensio
m) | ons | A) | Basic Load | I Ratings
{kg | gf} | Factor | Limiting : | | Bearing
Numbers | |-----|--|----------------|-----|------------|-------------------|------------------|-------------------|--------|------------|-------|--------------------| | d | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | | 260 | 320 | 28 | 2 | 101 000 | 148 000 | 10 300 | 15 100 | 17.4 | 1 600 | 1 900 | 6852 | | | 360 | 46 | 2.1 | 204 000 | 255 000 | 20 800 | 26 000 | 16.5 | 1 500 | 1 800 | 6952 | | | 400 | 44 | 3 | 237 000 | 310 000 | 24 100 | 31 500 | 16.4 | 1 400 | 1 700 | 16052 | | | 400 | 65 | 4 | 291 000 | 375 000 | 29 700 | 38 500 | 15.8 | 1 400 | 1 700 | 6052 | | | 480 | 80 | 5 | 400 000 | 540 000 | 41 000 | 55 000 | 15.1 | 1 100 | 1 300 | 6252 | | | 540 | 102 | 6 | 505 000 | 710 000 | 51 500 | 72 500 | 14.6 | 1 000 | 1 200 | 6352 | | 280 | 350 | 33 | 2 | 133 000 | 191 000 | 13 600 | 19 500 | 17.3 | 1 500 | 1 700 | 6856 | | | 380 | 46 | 2.1 | 209 000 | 272 000 | 21 300 | 27 700 | 16.6 | 1 400 | 1 700 | 6956 | | | 420 | 44 | 3 | 243 000 | 330 000 | 24 700 | 33 500 | 16.5 | 1 300 | 1 600 | 16056 | | | 420 | 65 | 4 | 300 000 | 410 000 | 31 000 | 41 500 | 16.0 | 1 300 | 1 600 | 6056 | | | 500 | 80 | 5 | 400 000 | 550 000 | 41 000 | 56 000 | 15.2 | 1 000 | 1 300 | 6256 | | | 580 | 108 | 6 | 570 000 | 840 000 | 58 000 | 86 000 | 14.5 | 900 | 1 100 | 6356 | | 300 | 380 | 38 | 2.1 | 166 000 | 233 000 | 17 000 | 23 800 | 17.1 | 1 300 | 1 600 | 6860 | | | 420 | 56 | 3 | 269 000 | 370 000 | 27 400 | 38 000 | 16.4 | 1 300 | 1 500 | 6960 | | | 460 | 50 | 4 | 285 000 | 405 000 | 29 000 | 41 000 | 16.4 | 1 200 | 1 400 | 16060 | | | 460 | 74 | 4 | 355 000 | 500 000 | 36 500 | 51 000 | 15.8 | 1 200 | 1 400 | 6060 | | | 540 | 85 | 5 | 465 000 | 670 000 | 47 500 | 68 500 | 15.1 | 950 | 1 200 | 6260 | | 320 | 400 | 38 | 2.1 | 168 000 | 244 000 | 17 200 | 24 900 | 17.2 | 1 300 | 1 500 | 6864 | | | 440 | 56 | 3 | 266 000 | 375 000 | 27 100 | 38 000 | 16.5 | 1 200 | 1 400 | 6964 | | | 480 | 50 | 4 | 293 000 | 430 000 | 29 800 | 44 000 | 16.5 | 1 100 | 1 300 | 16064 | | | 480 | 74 | 4 | 390 000 | 570 000 | 40 000 | 58 000 | 15.7 | 1 100 | 1 300 | 6064 | | | 580 | 92 | 5 | 530 000 | 805 000 | 54 500 | 82 500 | 15.0 | 850 | 1 100 | 6264 | | 340 | 420 | 38 | 2.1 | 175 000 | 265 000 | 17 800 | 27 100 | 17.3 | 1 200 | 1 400 | 6868 | | | 460 | 56 | 3 | 273 000 | 400 000 | 27 800 | 40 500 | 16.6 | 1 100 | 1 300 | 6968 | | | 520 | 82 | 5 | 440 000 | 660 000 | 45 000 | 67 500 | 15.6 | 1 000 | 1 200 | 6068 | | | 620 | 92 | 6 | 530 000 | 820 000 | 54 000 | 83 500 | 15.3 | 800 | 1 000 | 6268 | | 360 | 440 | 38 | 2.1 | 192 000 | 290 000 | 19 600 | 29 600 | 17.3 | 1 100 | 1 300 | 6872 | | | 480 | 56 | 3 | 280 000 | 425 000 | 28 500 | 43 000 | 16.7 | 1 100 | 1 300 | 6972 | | | 540 | 82 | 5 | 460 000 | 720 000 | 47 000 | 73 500 | 15.7 | 950 | 1 200 | 6072 | | | 650 | 95 | 6 | 555 000 | 905 000 | 57 000 | 92 000 | 15.4 | 750 | 950 | 6272 | | | Abutment and Fillet Dimensions (mm) | | | | | | | | | | | |--|--|-----------------|---------|--|--|--|--|--|--|--|--| | $d_{\!\scriptscriptstyle a}^{\!\scriptscriptstyle (1)}$ min. | $D_{\!\scriptscriptstyle a}^{\scriptscriptstyle (1)}$ max. | $r_{ m a}$ max. | approx. | | | | | | | | | | 269 | 311 | 2 | 4.84 | | | | | | | | | | 271 | 349 | 2 | 14 | | | | | | | | | | 273 | 387 | 2.5 | 21.1 | | | | | | | | | | 276 | 384 | 3 | 29.4 | | | | | | | | | | 280 | 460 | 4 | 67 | | | | | | | | | | 286 | 514 | 5 | 118 | | | | | | | | | | 289 | 341 | 2 | 7.2 | | | | | | | | | | 291 | 369 | 2 | 15.1 | | | | | | | | | | 293 | 407 | 2.5 | 22.7 | | | | | | | | | | 296 | 404 | 3 | 31.2 | | | | | | | | | | 300 | 480 | 4 | 70.4 | | | | | | | | | | 306 | 554 | 5 | 144 | | | | | | | | | | 311 | 369 | 2 | 10.3 | | | | | | | | | | 313 | 407 | 2.5 | 23.9 | | | | | | | | | | 316 | 444 | 3 | 31.5 | | | | | | | | | | 316 | 444 | 3 | 44.2 | | | | | | | | | | 320 | 520 | 4 | 87.8 | | | | | | | | | | 331 | 389 | 2 | 10.8 | | | | | | | | | | 333 | 427 | 2.5 | 25.3 | | | | | | | | | | 336 | 464 | 3 | 33.2 | | | | | | | | | | 336 | 464 | 3 | 46.5 | | | | | | | | | | 340 | 560 | 4 | 111 | | | | | | | | | | 351 | 409 | 2 | 11.5 | | | | | | | | | | 353 | 447 | 2.5 | 26.6 | | | | | | | | | | 360 | 500 | 4
| 62.3 | | | | | | | | | | 366 | 594 | 5 | 129 | | | | | | | | | | 371 | 429 | 2 | 11.8 | | | | | | | | | | 373 | 467 | 2.5 | 27.9 | | | | | | | | | | 380 | 520 | 4 | 65.3 | | | | | | | | | | 386 | 624 | 5 | 145 | | | | | | | | | ϕD_a Note (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. Bore Diameter 380 - 600 mm Open Type | Во | oundary [
(m | Dimension) | ons | 1) | Basic Load | | gf} | Factor | Limiting : | | Bearing
Numbers | |-----|-----------------|------------|---------------------|------------|-------------------|------------|-------------------|--------|------------|-------|--------------------| | d | D | B | $r \atop { m min.}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | | 380 | 480 | 46 | 2.1 | 238 000 | 375 000 | 24 200 | 38 000 | 17.1 | 1 000 | 1 200 | 6876 | | | 520 | 65 | 4 | 325 000 | 510 000 | 33 000 | 52 000 | 16.6 | 950 | 1 200 | 6976 | | | 560 | 82 | 5 | 455 000 | 725 000 | 46 500 | 74 000 | 15.9 | 900 | 1 100 | 6076 | | 400 | 500 | 46 | 2.1 | 241 000 | 390 000 | 24 600 | 40 000 | 17.2 | 950 | 1 200 | 6880 | | | 540 | 65 | 4 | 335 000 | 540 000 | 34 000 | 55 000 | 16.7 | 900 | 1 100 | 6980 | | | 600 | 90 | 5 | 510 000 | 825 000 | 52 000 | 84 000 | 15.7 | 850 | 1 000 | 6080 | | 420 | 520 | 46 | 2.1 | 245 000 | 410 000 | 25 000 | 41 500 | 17.3 | 900 | 1 100 | 6884 | | | 560 | 65 | 4 | 340 000 | 570 000 | 35 000 | 58 500 | 16.8 | 900 | 1 100 | 6984 | | | 620 | 90 | 5 | 530 000 | 895 000 | 54 000 | 91 000 | 15.8 | 800 | 1 000 | 6084 | | 440 | 540 | 46 | 2.1 | 248 000 | 425 000 | 25 300 | 43 500 | 17.4 | 900 | 1 100 | 6888 | | | 600 | 74 | 4 | 395 000 | 680 000 | 40 500 | 69 000 | 16.6 | 800 | 1 000 | 6988 | | | 650 | 94 | 6 | 550 000 | 965 000 | 56 000 | 98 500 | 16.0 | 750 | 900 | 6088 | | 460 | 580 | 56 | 3 | 310 000 | 550 000 | 31 500 | 56 000 | 17.1 | 800 | 1 000 | 6892 | | | 620 | 74 | 4 | 405 000 | 720 000 | 41 500 | 73 500 | 16.7 | 800 | 950 | 6992 | | | 680 | 100 | 6 | 605 000 | 1 080 000 | 62 000 | 110 000 | 15.8 | 710 | 850 | 6092 | | 480 | 600 | 56 | 3 | 315 000 | 575 000 | 32 000 | 58 500 | 17.2 | 800 | 950 | 6896 | | | 650 | 78 | 5 | 450 000 | 815 000 | 45 500 | 83 000 | 16.6 | 750 | 900 | 6996 | | | 700 | 100 | 6 | 605 000 | 1 090 000 | 61 500 | 111 000 | 15.9 | 710 | 850 | 6096 | | 500 | 620 | 56 | 3 | 320 000 | 600 000 | 33 000 | 61 000 | 17.3 | 750 | 900 | 68/500 | | | 670 | 78 | 5 | 460 000 | 865 000 | 47 000 | 88 000 | 16.7 | 710 | 850 | 69/500 | | | 720 | 100 | 6 | 630 000 | 1 170 000 | 64 000 | 120 000 | 16.0 | 670 | 800 | 60/500 | | 530 | 650 | 56 | 3 | 325 000 | 625 000 | 33 000 | 63 500 | 17.4 | 710 | 850 | 68/530 | | | 710 | 82 | 5 | 455 000 | 870 000 | 46 500 | 88 500 | 16.8 | 670 | 800 | 69/530 | | | 780 | 112 | 6 | 680 000 | 1 300 000 | 69 500 | 133 000 | 16.0 | 600 | 750 | 60/530 | | 560 | 680 | 56 | 3 | 330 000 | 650 000 | 33 500 | 66 500 | 17.4 | 670 | 800 | 68/560 | | | 750 | 85 | 5 | 525 000 | 1 040 000 | 53 500 | 106 000 | 16.7 | 600 | 750 | 69/560 | | | 820 | 115 | 6 | 735 000 | 1 500 000 | 75 000 | 153 000 | 16.2 | 560 | 670 | 60/560 | | 600 | 730 | 60 | 3 | 355 000 | 735 000 | 36 000 | 75 000 | 17.5 | 600 | 710 | 68/600 | | | 800 | 90 | 5 | 550 000 | 1 160 000 | 56 500 | 118 000 | 16.9 | 560 | 670 | 69/600 | | | 870 | 118 | 6 | 790 000 | 1 640 000 | 80 500 | 168 000 | 16.1 | 530 | 630 | 60/600 | Note (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. $P = XF_r + YF_a$ | | -1 | 1 · a | | | | | | | | | |-----------------------------|------|--|---|-------------------------------|------|--|--|--|--|--| | $\frac{f_0 F_a}{C_{0r}}$ | e | $e \frac{F_{\rm a}}{F_{\rm r}} \leq e$ | | $\frac{F_{\rm a}}{F_{\rm r}}$ | >e | | | | | | | $\mathcal{O}_{0\mathrm{r}}$ | | X | Y | X | Y | | | | | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | | | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | | | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | | | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | | | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | | | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | | | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | | | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | | | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}}$$ >0.8, P_0 =0.6 $F_{\rm r}$ +0.5 $F_{\rm a}$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8$$, $P_0 = F_{\rm r}$ B 23 ϕD_a $d_{\! m a}^{(1)}$ min. Abutment and Fillet Dimensions (mm) $D_{\!\scriptscriptstyle a}^{\scriptscriptstyle (1)}$ max. 793.5 $r_{\rm a}$ 2.5 2.5 2.5 2.5 2.5 2.5 (kg) approx. 19.5 20.5 88.4 21.4 43.6 92.2 22.3 60.2 34.3 62.6 35.4 73.5 37.2 > 39.8 89.8 41.5 50.9 Bore Diameter 630 - 800 mm Open Type | В | Boundary Dimensions (mm) | | | Basic Load Ratings (N) {kgf} | | | Factor | Limiting S
(min | | Bearing
Numbers | | |-----|--------------------------|-----|-------------|------------------------------|-------------------|------------|-------------------|--------------------|--------|--------------------|--------| | d | D | B | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | | 630 | 780 | 69 | 4 | 420 000 | 890 000 | 43 000 | 90 500 | 17.3 | 560 | 670 | 68/630 | | | 850 | 100 | 6 | 625 000 | 1 350 000 | 64 000 | 138 000 | 16.7 | 530 | 630 | 69/630 | | | 920 | 128 | 7.5 | 750 000 | 1 620 000 | 76 500 | 165 000 | 16.4 | 480 | 600 | 60/630 | | 670 | 820 | 69 | 4 | 435 000 | 965 000 | 44 500 | 98 000 | 17.4 | 500 | 630 | 68/670 | | | 900 | 103 | 6 | 675 000 | 1 460 000 | 68 500 | 149 000 | 16.7 | 480 | 560 | 69/670 | | | 980 | 136 | 7.5 | 765 000 | 1 730 000 | 78 000 | 177 000 | 16.6 | 450 | 530 | 60/670 | | 710 | 870 | 74 | 4 | 480 000 | 1 100 000 | 49 000 | 113 000 | 17.4 | 480 | 560 | 68/710 | | | 950 | 106 | 6 | 715 000 | 1 640 000 | 72 500 | 167 000 | 16.8 | 450 | 530 | 69/710 | | 750 | 920 | 78 | 5 | 525 000 | 1 260 000 | 53 500 | 128 000 | 17.4 | 430 | 530 | 68/750 | | | 1 000 | 112 | 6 | 785 000 | 1 840 000 | 80 000 | 188 000 | 16.7 | 400 | 500 | 69/750 | | 800 | 980 | 82 | 5 | 530 000 | 1 310 000 | 54 000 | 133 000 | 17.5 | 400 | 480 | 68/800 | | | 1 060 | 115 | 6 | 825 000 | 2 050 000 | 84 500 | 209 000 | 16.8 | 380 | 450 | 69/800 | Note (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\rm a}}{F_{ m r}}$ | | | >e | |--------------------------|------|------------------------------|---|------|------| | O _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, \ P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, \ P_0 = F_{\rm r}$$ $$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$$ ϕD_a $d_{\!\scriptscriptstyle a}^{\scriptscriptstyle (1)}$ min. 646 656 662 686 696 702 726 736 770 776 820 826 Abutment and Fillet Dimensions (mm) $D_{\!\scriptscriptstyle m a}^{\scriptscriptstyle (1)}$ 764 824 888 804 874 948 854 924 900 974 960 1 034 $r_{\rm a}$ max. 3 5 6 4 5 4 5 Mass (kg) approx. 71.3 163 285 75.4 181 351 92.6 208 110 245 132 275 ### Bore Diameter 25 – 110 mm Open Type Shielded Type (One Shield) Z Shielded Type (Two Shields) ZZ | В | Soundary D | | ns | , | Basic Loa | d Ratings | gf} | Limiting | | | |-----|------------|----------|------------------|--------------------|--------------------|------------------|------------------|----------------------------------|------------------|------------------| | d | D | В | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | C_{0r} | (mii
Grease
Open
Z · ZZ | Oil
Open
Z | Open | | 25 | 52 | 15 | 1 | 14 400 | 10 500 | 1 470 | 1 070 | 12 000 | 15 000 | BL 205 | | | 62 | 17 | 1.1 | 21 500 | 15 500 | 2 200 | 1 580 | 11 000 | 13 000 | BL 305 | | 30 | 62 | 16 | 1 | 21 000 | 16 300 | 2 150 | 1 660 | 10 000 | 12 000 | BL 206 | | | 72 | 19 | 1.1 | 27 900 | 20 700 | 2 840 | 2 110 | 9 000 | 11 000 | BL 306 | | 35 | 72 | 17 | 1.1 | 27 800 | 22 100 | 2 830 | 2 250 | 9 000 | 11 000 | BL 207 | | | 80 | 21 | 1.5 | 37 000 | 29 100 | 3 800 | 2 970 | 8 000 | 9 500 | BL 307 | | 40 | 80 | 18 | 1.1 | 35 500 | 28 800 | 3 600 | 2 940 | 8 000 | 9 500 | BL 208 | | | 90 | 23 | 1.5 | 46 500 | 36 000 | 4 750 | 3 650 | 7 500 | 9 000 | BL 308 | | 45 | 85 | 19 | 1.1 | 37 000 | 32 000 | 3 800 | 3 250 | 7 500 | 9 000 | BL 209 | | | 100 | 25 | 1.5 | 55 500 | 44 000 | 5 650 | 4 500 | 6 300 | 8 000 | BL 309 | | 50 | 90 | 20 | 1.1 | 39 000 | 35 000 | 3 950 | 3 550 | 6 700 | 8 500 | BL 210 | | | 110 | 27 | 2 | 65 000 | 52 500 | 6 600 | 5 350 | 6 000 | 7 100 | BL 310 | | 55 | 100 | 21 | 1.5 | 48 000 | 44 000 | 4 900 | 4 500 | 6 300 | 7 500 | BL 211 | | | 120 | 29 | 2 | 75 000 | 61 500 | 7 650 | 6 250 | 5 600 | 6 700 | BL 311 | | 60 | 110 | 22 | 1.5 | 58 000 | 54 000 | 5 950 | 5 550 | 5 600 | 6 700 | BL 212 | | | 130 | 31 | 2.1 | 85 500 | 71 500 | 8 700 | 7 300 | 5 000 | 6 000 | BL 312 | | 65 | 120 | 23 | 1.5 | 63 500 | 60 000 | 6 450 | 6 150 | 5 300 | 6 300 | BL 213 | | | 140 | 33 | 2.1 | 103 000 | 89 500 | 10 500 | 9 150 | 4 800 | 5 600 | BL 313 | | 70 | 125 | 24 | 1.5 | 69 000 | 66 000 | 7 050 | 6 750 | 5 000 | 6 000 | BL 214 | | | 150 | 35 | 2.1 | 115 000 | 102 000 | 11 800 | 10 400 | 4 300 | 5 300 | BL 314 | | 75 | 130 | 25 | 1.5 | 72 000 | 72 000 | 7 350 | 7 300 | 4 500 | 5 600 | BL 215 | | | 160 | 37 | 2.1 | 126 000 | 116 000 | 12 800 | 11 800 | 4 000 | 5 000 | BL 315 | | 80 | 140 | 26 | 2 | 84 000 | 85 000 | 8 600 | 8 650 | 4 300 | 5 300 | BL 216 | | | 170 | 39 | 2.1 | 136
000 | 130 000 | 13 900 | 13 300 | 3 800 | 4 500 | BL 316 | | 85 | 150
180 | 28
41 | 2 | 93 000
147 000 | 93 000
145 000 | 9 500
15 000 | 9 450
14 800 | 4 000
3 600 | 5 000
4 300 | BL 217
BL 317 | | 90 | 160
190 | 30
43 | 2 | 107 000
158 000 | 107 000
161 000 | 10 900
16 100 | 10 900
16 400 | 3 800
3 400 | 4 500
4 000 | BL 218
BL 318 | | 95 | 170 | 32 | 2.1 | 121 000 | 123 000 | 12 300 | 12 500 | 3 600 | 4 300 | BL 219 | | | 200 | 45 | 3 | 169 000 | 178 000 | 17 300 | 18 100 | 2 800 | 3 600 | BL 319 | | 100 | 180 | 34 | 2.1 | 136 000 | 140 000 | 13 800 | 14 200 | 3 400 | 4 000 | BL 220 | | 105 | 190 | 36 | 2.1 | 148 000 | 157 000 | 15 000 | 16 000 | 3 200 | 3 800 | BL 221 | | 110 | 200 | 38 | 2.1 | 160 000 | 176 000 | 16 300 | 17 900 | 2 800 | 3 400 | BL 222 | | Bearing Number | -S | Abut | ment and Fill
(mm | | ns | Mass
(kg) | |----------------------|------------------------|------------------------------------|----------------------|-----------------|-----------------------------------|--------------| | With
One Shielded | With
Two Shields | $d_{\scriptscriptstyle m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{max}.$ | approx. | | BL 205 Z | BL 205 ZZ | 30 | 32 | 47 | 1 | 0.133 | | BL 305 Z | BL 305 ZZ | 31.5 | 36 | 55.5 | 1 | 0.246 | | BL 206 Z | BL 206 ZZ | 35 | 38.5 | 57 | 1 | 0.215 | | BL 306 Z | BL 306 ZZ | 36.5 | 42 | 65.5 | 1 | 0.364 | | BL 207 Z | BL 207 ZZ | 41.5 | 44.5 | 65.5 | 1 | 0.307 | | BL 307 Z | BL 307 ZZ | 43 | 44.5 | 72 | 1.5 | 0.486 | | BL 208 Z | BL 208 ZZ | 46.5 | 50 | 73.5 | 1 | 0.394 | | BL 308 Z | BL 308 ZZ | 48 | 52.5 | 82 | 1.5 | 0.685 | | BL 209 Z | BL 209 ZZ | 51.5 | 55.5 | 78.5 | 1 | 0.449 | | BL 309 Z | BL 309 ZZ | 53 | 61.5 | 92 | 1.5 | 0.883 | | BL 210 Z | BL 210 ZZ | 56.5 | 60 | 83.5 | 1 | 0.504 | | BL 310 Z | BL 310 ZZ | 59 | 68 | 101 | 2 | 1.16 | | BL 211 Z | BL 211 ZZ | 63 | 66.5 | 92 | 1.5 | 0.667 | | BL 311 Z | BL 311 ZZ | 64 | 72.5 | 111 | 2 | 1.49 | | BL 212 Z | BL 212 ZZ | 68 | 74.5 | 102 | 1.5 | 0.856 | | BL 312 Z | BL 312 ZZ | 71 | 79 | 119 | 2 | 1.88 | | BL 213 Z | BL 213 ZZ | 73 | 80 | 112 | 1.5 | 1.09 | | BL 313 Z | BL 313 ZZ | 76 | 85.5 | 129 | 2 | 2.36 | | BL 214 Z | BL 214 ZZ | 78 | 84 | 117 | 1.5 | 1.19 | | BL 314 Z | BL 314 ZZ | 81 | 92 | 139 | 2 | 2.87 | | BL 215 Z | BL 215 ZZ | 83 | 90 | 122 | 1.5 | 1.29 | | BL 315 Z | BL 315 ZZ | 86 | 98.5 | 149 | 2 | 3.43 | | BL 216 Z
BL 316 Z | BL 216 ZZ
BL 316 ZZ | 89
91 | 95.5
104.5 | 131
159 | 2 | 1.61
4.08 | | BL 217 Z | BL 217 ZZ | 94 | 102 | 141 | 2 | 1.97 | | BL 317 Z | BL 317 ZZ | 98 | 110.5 | 167 | 2.5 | 4.77 | | BL 218 Z | BL 218 ZZ | 99 | 107.5 | 151 | 2 | 2.43 | | BL 318 Z | BL 318 ZZ | 103 | 117 | 177 | 2.5 | 5.45 | | BL 219 Z | BL 219 ZZ | 106 | 114 | 159 | 2 | 2.95 | | BL 319 Z | BL 319 ZZ | 108 | 124 | 187 | 2.5 | 6.4 | | BL 220 Z
BL 221 Z | BL 220 ZZ
BL 221 ZZ | 111
116 | 121.5
127.5 | 169
179 | 2
2
2 | 3.54
4.23 | | _ | _ | 121 | _ | 189 | 2 | | B 26 B 27 Bore Diameter 4 – 20 mm Outside Diameter Tolerance (Class N) Units : μm Single Plane Mean Outside | Nominai
Outside
Diameter | | | Siriy | Diameter ΔD_{mp} | | | | | | |--------------------------------|------|-------|-------|--------------------------|------|-------|--|--|--| | | D (n | | E Se | eries | EN S | eries | | | | | | Over | Incl. | High | Low | High | Low | | | | | | | 10 | + 8 | 0 | 0 | - 8 | | | | | | 10 | 18 | + 8 | 0 | 0 | - 8 | | | | | | 18 | 30 | + 9 | 0 | 0 | - 9 | | | | | | 30 | 50 | +11 | Ω | 1 0 | _11 | | | | Dynamic Equivalent Load $P = XF_r + YF_a$ | | - | | | | |------------------------------|---|---------------|-------|-----| | $F_{\rm a}/F_{\rm r} \leq e$ | | $F_{\rm a}/I$ | r > e | | | X | Y | X | Y | e | | 1 | 0 | 0.5 | 2.5 | 0.2 | | | Bound | dary Dim
(mm) | ensions | | 1) | Basic Loa | d Ratings
{kg | ιf} | Limiting
(mir | | Bearing | Numbers | |----------|----------------|------------------|----------------------|------------------------|-------------------------|-------------------------|-------------------|-------------------|----------------------------|----------------------------|--------------------|---------------------| | d | D | <i>B, C, T</i> | $r \atop ext{min.}$ | $r_1 \atop ext{min.}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | E Series | EN Series | | 4 | 16 | 5 | 0.15 | 0.1 | 1 650 | 288 | 168 | 29 | 34 000 | 40 000 | E 4 | EN 4 | | 5 | 16 | 5 | 0.15 | 0.1 | 1 650 | 288 | 168 | 29 | 34 000 | 40 000 | E 5 | EN 5 | | 6 | 21 | 7 | 0.3 | 0.15 | 2 490 | 445 | 254 | 46 | 30 000 | 36 000 | E 6 | EN 6 | | 7 | 22 | 7 | 0.3 | 0.15 | 2 490 | 445 | 254 | 46 | 30 000 | 36 000 | E 7 | EN 7 | | 8 | 24 | 7 | 0.3 | 0.15 | 3 450 | 650 | 350 | 66 | 28 000 | 34 000 | E 8 | EN 8 | | 9 | 28 | 8 | 0.3 | 0.15 | 4 550 | 880 | 465 | 90 | 24 000 | 30 000 | E 9 | EN 9 | | 10 | 28 | 8 | 0.3 | 0.15 | 4 550 | 880 | 465 | 90 | 24 000 | 30 000 | E 10 | EN 10 | | 11 | 32 | 7 | 0.3 | 0.15 | 4 400 | 845 | 450 | 86 | 22 000 | 26 000 | E 11 | EN 11 | | 12 | 32 | 7 | 0.3 | 0.15 | 4 400 | 845 | 450 | 86 | 22 000 | 26 000 | E 12 | EN 12 | | 13 | 30 | 7 | 0.3 | 0.15 | 4 400 | 845 | 450 | 86 | 22 000 | 26 000 | E 13 | EN 13 | | 14 | 35 | 8 | 0.3 | 0.15 | 5 800 | 1 150 | 590 | 117 | 19 000 | 22 000 | — | EN 14 | | 15
16 | 35
40
38 | 8
10
10 | 0.3
0.6
0.6 | 0.15
0.3
0.2 | 5 800
7 400
6 900 | 1 150
1 500
1 380 | 590
750
705 | 117
153
141 | 19 000
17 000
17 000 | 22 000
20 000
22 000 | E 15
BO 15
— | EN 15
—
EN 16 | | 17 | 40
44
44 | 10
11
11 | 0.6
0.6
0.6 | 0.3
0.3
0.3 | 7 400
7 350
7 350 | 1 500
1 500
1 500 | 750
750
750 | 153
153
153 | 17 000
16 000
16 000 | 20 000
19 000
19 000 | L 17
BO 17 | EN 17
— | | 18
19 | 40
40 | 9 | 0.6
0.6 | 0.2
0.2 | 5 050
5 050 | 1 030
1 030 | 515
515 | 105
105 | 17 000
17 000 | 20 000
20 000 | E 19 | EN 18
EN 19 | | 20 | 47 | 12 | 1 | 0.6 | 11 000 | 2 380 | 1 120 | 243 | 14 000 | 17 000 | E 20 | EN 20 | | | 47 | 14 | 1 | 0.6 | 11 000 | 2 380 | 1 120 | 243 | 14 000 | 17 000 | L 20 | — | **Remarks** 1. The outside diameters of Magneto Bearings Series E always have plus tolerances. 2. When using Magneto Bearings other than E, please contact NSK. | | ment and I
ensions (n | | Mass
(kg) | |-----------------|--------------------------|-----------------|--------------| | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | approx. | | 5.2 | 14.8 | 0.15 | 0.005 | | 6.2 | 14.8 | 0.15 | 0.004 | | 8 | 19 | 0.3 | 0.011 | | 9 | 20 | 0.3 | 0.013 | | 10 | 22 | 0.3 | 0.014 | | 11 | 26 | 0.3 | 0.022 | | 12 | 26 | 0.3 | 0.021 | | 13 | 30 | 0.3 | 0.029 | | 14 | 30 | 0.3 | 0.028 | | 15 | 28 | 0.3 | 0.021 | | 16 | 33 | 0.3 | 0.035 | | 17 | 33 | 0.3 | 0.034 | | 19 | 36 | 0.6 | 0.055 | | 20 | 34 | 0.6 | 0.049 | | 21 | 36 | 0.6 | 0.051 | | 21 | 40 | 0.6 | 0.080 | | 21 | 40 | 0.6 | 0.080 | | 22 | 36 | 0.6 | 0.051 | | 23 | 36 | 0.6 | 0.049 | | 25 | 42 | 1 | 0.089 | | 25 | 42 | 1 | 0.101 | B 28 B 29 # EXTRA SMALL BALL BEARINGS AND MINIATURE BALL **BEARINGS** ### EXTRA SMALL BALL BEARINGS · MINIATURE BALL BEARINGS | Metric Design | Bore Diameter 1 – 9mm····· | B34 | |---------------|------------------------------------|-----| | With Flange | Bore Diameter 1 – 9mm····· | B38 | | Inch Design | Bore Diameter 1.016 – 9.525mm····· | B42 | | With Flange | Bore Diameter 1.191 – 9.525mm····· | B44 | ### **DESIGN AND TYPES** The size ranges of extra small and miniature ball bearings are shown in Table 1. The design, types, and type symbols are shown in Table 2. Those types among them that are listed in the bearing tables are indicated by the shading in Table 2. Table 1 Size Ranges of Bearings Units: mm | Design | Extra Small Ba | II Bearings | Miniature Ball Bearings | |--------|-----------------------------------|------------------------|------------------------------| | Metric | Outside diameter
Bore diameter | | Outside diameter $D < 9$ | | Inch | Outside diameter
Bore diameter | $D \ge 9.525$ $d < 10$ | Outside diameter $D < 9.525$ | Please refer to NSK Miniature Ball Bearings (CAT. No. E126) for details. B 31 ZZS Table 2 Design, Types, and Type Symbols | | | | Type S | ymbols | | | |--------------------------------------|---|----------|--------|--------|---------|---| | D | Design · Types | Metric | Inch | Spe | cial | Remarks | | | | ivietric | IIICII | Metric | Inch | | | | | 600 | R | MR | _ | Shielded · sealed
bearings are
available. | | | Thin section | _ | _ | SMT | _ | | | Ball Bearings | With flange | F6 0 0 | FR | MF | _ | Shielded · sealed
bearings are
available. | | Single-Row Deep Groove Ball Bearings | Extended inner ring | _ | _ | _ | RW | Shielded bearings
are available. | | Sinç | With flange
and extended
inner ring | _ | _ | _ | FRW | Shielded bearings are available. | | | For synchro motors | _ | _ | _ | SR00X00 | Shielded bearings are available. | | Pivot Ball
Bearings | | _ | _ | BCF | _ | | | Thrust Ball
Bearings | | _ | _ | F | _ | | **Remarks** Single-row angular contact ball bearings are available besides those shown above. ### TOLERANCES AND RUNNING ACCURACY METRIC DESIGN BEARINGS Table 8.2(Pages A60 to A63) The flange tolerances for metric design bearings are listed in Table 3. Table 3 Flange Tolerances for Metric Flanged Bearings | (1) Tolerand | ces of Flange | e Outside Diame | ter | | Units : µm | |--------------|---------------|-----------------|--------------------|------------------|------------| | Nomina | l Flange | | Deviation of Flang | e Outside Diamet | er | | Outside (| Diameter | | Δ | D_{1S} | | | D_1 (r | nm) | (1 | 2) | | | | over | incl. | high | low | high | low | | | 10 | +220 | -36 | 0 | -36 | |
10 | 18 | +270 | -43 | 0 | -43 | | 18 | 30 | +330 | - 52 | 0 | -52 | **Remarks** ②is applied when the flange outside diameter is used for positioning. (2) Flange Width Tolerances and Running Accuracies Related to Flange Units: µm | Nominal
Bearing Outside
Diameter
D
(mm) | | Flange | ation of e Width | Va
Flange | Outside
Genera
with Fla | on of Bea
e Surface
strix Inclination ange Bac
S_{D1} | nation
kface | Flange Backface Runout with Raceway $S_{\rm ea1}$ Class 5 Class 4 Class 2 | | | | | | |---|----------------------------|---------------------------|--|----------------------------|-------------------------------|--|-----------------|---|---------|---------|---------|---------|---------| | | | Normal and | Classes 6,5,4,2 | Normal and class 6 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | | over | incl. | high | low | | max. | | | | max. | | | max. | | | 2.5(1) | 6 | Use the $\Delta B_{ m S}$ | tolerance for d | Use the $\Delta v_{ m BS}$ | 5 | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | | 6 18 | of the same bearing of the | | tolerance for d of
the same bearing | | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | | | 18 | 30 | same class | | of the same class | 5 | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | Notes (1) 2.5 mm is included INCH DESIGN BEARINGS Table 8.2 (Pages A60 to A63) The flange tolerances for inch design flanged bearings are listed in Table 8.8(2) (Pages A76 and A77). INSTRUMENT BALL BEARINGS Table 8.8 (Pages A76 to A77) ### RECOMMENDED FITS Please refer to NSK Miniature Ball Bearings (CAT.No.E126). INTERNAL CLEARANCES......Table 9.10 (Page A89) ### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing toad conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information Metric Design Bore Diameter 1 – 4 mm Open Type Shielded Type ZZ · ZZ1 Remarks When using bearings with a rotating outer ring, please contact NSK if they are shielded. | Bearing Numbers | | | Abutn | nent and F
(m | | nsions | | Ma
(g | | |---------------------------------|--------|------------------------|-------------------|------------------------|-------------------|---|----------------------------|--------------------------|----------------------| | Shielded | Sealed | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $D_{ m b}$ min. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $\emph{\emph{r}}_{b}$ max. | app
Open | rox.
Shielded | | _
_
_ | | 1.4
1.4
1.8 | _ | 2.6
2.6
3.2 | _ | 0.05
0.05
0.1 | _
_
_ | 0.03
0.04
0.09 | _ | | MR 41 XZZ | | 2.0 | 1.9 | 3.2 | 3.5 | 0.1 | 0.1 | 0.10 | 0.14 | | 681 XZZ | | 1.9 | 2.1 | 3.6 | 3.6 | 0.05 | 0.05 | 0.07 | 0.11 | | 691 XZZ | | 2.7 | 2.5 | 3.8 | 4.3 | 0.15 | 0.15 | 0.17 | 0.20 | | 601 XZZ | | 2.7 | 3.0 | 4.8 | 5.4 | 0.15 | 0.15 | 0.33 | 0.38 | | 682 ZZ | = = | 2.6 | 2.7 | 4.4 | 4.2 | 0.08 | 0.08 | 0.12 | 0.17 | | MR 52 BZZ | | 2.8 | 2.7 | 4.2 | 4.4 | 0.1 | 0.1 | 0.16 | 0.23 | | 692 ZZ | | 3.2 | 3.0 | 4.8 | 5.4 | 0.15 | 0.15 | 0.28 | 0.38 | | MR 62 ZZ | | 3.2 | 3.0 | 4.8 | 5.2 | 0.15 | 0.15 | 0.30 | 0.29 | | MR 72 ZZ | | 3.2 | 3.8 | 5.8 | 6.2 | 0.15 | 0.15 | 0.45 | 0.49 | | 602 ZZ | | 3.2 | 3.8 | 5.8 | 6.2 | 0.15 | 0.15 | 0.51 | 0.58 | | 682 XZZ | | 3.1 | 3.7 | 5.4 | 5.4 | 0.08 | 0.08 | 0.23 | 0.29 | | 692 XZZ | | 3.7 | 3.8 | 5.8 | 6.2 | 0.15 | 0.15 | 0.41 | 0.55 | | — | | 4.1 | — | 6.4 | — | 0.2 | — | 0.56 | — | | 602 XZZ | | 3.7 | 4.1 | 6.8 | 7.0 | 0.15 | 0.15 | 0.63 | 0.83 | | MR 63 ZZ
683 AZZ | | 3.8
3.8
4.2 | 3.7
4.0 | 5.2
6.2
6.8 | 5.4
6.4 | 0.13
0.1
0.1
0.15 | 0.1
0.1
0.1 | 0.20
0.32
0.54 | 0.27
0.45 | | 693 ZZ | = = | 4.2 | 4.3 | 6.8 | 7.3 | 0.15 | 0.15 | 0.61 | 0.83 | | MR 93 ZZ | | 4.6 | 4.3 | 7.4 | 7.9 | 0.2 | 0.15 | 0.73 | 1.18 | | 603 ZZ | | 4.2 | 4.3 | 7.8 | 7.9 | 0.15 | 0.15 | 0.87 | 1.45 | | 623 ZZ | | 4.2 | 4.3 | 8.8 | 8.0 | 0.15 | 0.15 | 1.65 | 1.66 | | 633 ZZ | | 4.6 | 6.0 | 11.4 | 11.3 | 0.2 | 0.2 | 3.38 | 3.33 | | MR 74 ZZ
MR 84 ZZ
684 AZZ | | 4.8
—
5.2
4.8 | 4.8
5.0
5.2 | 6.2
—
6.8
8.2 | 6.3
7.4
8.1 | 0.1

0.15
0.1 | 0.1
0.1
0.1 | 0.22

0.36
0.63 | 0.29
0.56
1.01 | | MR 104 BZZ | | 5.6 | 5.9 | 8.4 | 8.8 | 0.2 | 0.15 | 1.04 | 1.42 | | 694 ZZ | | 5.2 | 5.6 | 9.8 | 9.9 | 0.15 | 0.15 | 1.7 | 1.75 | | 604 ZZ | | 5.6 | 5.6 | 10.4 | 9.9 | 0.2 | 0.2 | 2.25 | 2.29 | | 624 ZZ | = = | 5.6 | 6.0 | 11.4 | 11.3 | 0.2 | 0.2 | 3.03 | 3.04 | | 634 ZZ1 | | 6.0 | 7.5 | 14.0 | 13.8 | 0.3 | 0.3 | 5.24 | 5.21 | Shielded Type ZZ · ZZ1 Metric Design Open Type Bore Diameter 5 – 9 mm Non-Contact Sealed Type Contact Sealed Type | | | | | | | | | | V | V | | DD | - JF - | |---|----------------------------|------------------------|-----------------------|-----------------------------------|-----------------------------------|---|---------------------------------------|---------------------------------|-------------------------------|--|--|--|---------------------------------| | | Е | | / Dimens
mm) | sions | | B
(N | | d Ratings
{kg | gf} | Limitir
Grea | ng Speeds (
se | min ⁻¹)
Oil | | | d | D | В | B_1 | r (¹)
min. | $r_1^{(1)}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Open
Z · ZZ
V · VV | D · DD | Open
Z | Open | | 5 | 8
9
10
11 | 2
2.5
3 | 2.5
3
4
4 | 0.1

0.15
0.15 | 0.1
0.15
0.15
0.15 | 310
278
430
430
715 | 120
131
168
168
276 | 31
28
44
44
73 | 12
13
17
17
28 | 53 000
53 000
50 000
50 000
48 000 |

 | 63 000
63 000
60 000
60 000
56 000 | MR 85
MR 95
MR 105 | | | 11
13
14 | 3
4
5 | 5
4
5 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 715
1 080
1 330 | 281
430
505 | 73
110
135 | 29
44
52 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | 685
695
605 | | | 16
19 | 5
6 | 5
6 | 0.3
0.3 | 0.3
0.3 | 1 730
2 340 | 670
885 | 177
238 | 68
90 | 36 000
32 000 | 32 000
30 000 | 43 000
40 000 | 625
635 | | 6 | 10
12
13 | 2.5
3
3.5 | 3
4
5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 495
715
1 080 | 218
292
440 | 51
73
110 | 22
30
45 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | MR 106
MR 126
686 A | | | 15
17
19
22 | 5
6
6
7 | 5
6
6
7 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 1 730
2 260
2 340
3 300 | 670
835
885
1 370 | 177
231
238
335 | 68
85
90
140 | 40 000
38 000
32 000
30 000 | 36 000
34 000
30 000
28 000 | 45 000
45 000
40 000
36 000 | 696
606
626
636 | | 7 | 11
13
14 | 2.5
3
3.5 | 3
4
5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 455
540
1 170 | 201
276
510 | 47
55
120 | 21
28
52 | 43 000
40 000
40 000 | _
34 000 | 50 000
48 000
45 000 | MR 117
MR 137
687 | | | 17
19
22
26 | 5
6
7
9 | 5
6
7
9 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 1 610
2 340
3 300
4 550 | 710
885
1 370
1 970 | 164
238
335
465 | 73
90
140
201 | 36 000
36 000
30 000
28 000 | 28 000
32 000
28 000
22 000 | 43 000
43 000
36 000
34 000 | 697
607
627
637 | | 8 | 12
14
16 | 2.5
3.5
4 | 3.5
4
5 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 545
820
1 610 | 274
385
710 | 56
83
164 | 28
39
73 | 40 000
38 000
36 000 | 32 000
28 000 | 48 000
45 000
43 000 | MR 128
MR 148
688 A | | 9 | 19
22
24
28
17 | 6
7
8
9 | 6
7
8
9
5 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 2 240
3 300
3 350
4 550
1 330 | 910
1 370
1 430
1 970
665 | 228
335
340
465
136 | 93
140
146
201
68 | 36 000
34 000
28 000
28 000
36 000 | 28 000
28 000
24 000
22 000
24 000 | 43 000
40 000
34 000
34 000
43 000 | 698
608
628
638
689 | | 7 | 20
24
26
30 | 4
6
7
8
10 | 6
7
8
10 | 0.2
0.3
0.3
(0.6)
0.6 | 0.2
0.3
0.3
(0.6)
0.6 | 1 720
3 350
4 550 | 840
1 430
1 970
2 390 | 175
340
465 | 86
146
201
244 | 36 000
34 000
32 000
28 000
24 000 | 24 000
24 000
24 000
22 000 | 43 000
40 000
38 000
34 000
30 000 | 689
699
609
629
639 | **Remarks** 1. When using bearings with a rotating outer ring, please contact NSK if they are sealed or shielded. | Bearing Numbers | | Abutn | nent and F
(m | | ensions | | Ma
(g | | |---|--|---|---|---|---|-------------------|---|---| | Shielded Sealed | $d_{\scriptscriptstyle m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $D_{ m b}$ min. |
$oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $r_{ m b}$ max. | app
Open | rox.
Shielded | | MR 85 ZZ | 5.8

6.2
6.2

6.2
6.6
6.6 | 5.8
6.0
6.0
6.3
6.2
6.6
6.9 | 7.2
7.8
8.8
—
9.8
11.4
12.4 | 7.4
8.2
8.4
9.8
9.9
11.2
12.2 | 0.1
0.15
0.15
0.15
0.15
0.2
0.2 | | 0.26
—
0.50
0.95
—
1.2
2.45
3.54 | 0.34
0.58
1.29
1.49
1.96
2.5
3.48 | | 605 ZZ — DD
625 ZZ1 VV DD
635 ZZ1 VV DD | 7.0
7.0 | 7.5
8.5 | 14.0
17.0 | 13.8
16.5 | 0.2
0.3
0.3 | 0.2
0.3
0.3 | 4.95
8.56 | 4.86
8.34 | | MR 106 ZZ1 — — — MR 126 ZZ — DD 686 AZZ VV DD | 7.2 | 7.0 | 8.8 | 9.3 | 0.15 | 0.1 | 0.56 | 0.68 | | | 7.6 | 7.2 | 10.4 | 10.9 | 0.2 | 0.15 | 1.27 | 1.74 | | | 7.2 | 7.4 | 11.8 | 11.7 | 0.15 | 0.15 | 1.91 | 2.69 | | 696 ZZ1 VV DD | 7.6 | 7.9 | 13.4 | 13.3 | 0.2 | 0.2 | 3.88 | 3.72 | | 606 ZZ VV DD | 8.0 | 8.2 | 15.0 | 14.8 | 0.3 | 0.3 | 5.97 | 6.08 | | 626 ZZ1 VV DD | 8.0 | 8.5 | 17.0 | 16.5 | 0.3 | 0.3 | 8.15 | 7.94 | | 636 ZZ VV DD | 8.0 | 10.5 | 20.0 | 19.0 | 0.3 | 0.3 | 14 | 14 | | MR 117 ZZ — — | 8.2 | 8.0 | 9.8 | 10.5 | 0.15 | 0.1 | 0.62 | 0.72 | | MR 137 ZZ — — | 8.6 | 9.0 | 11.4 | 11.6 | 0.2 | 0.15 | 1.58 | 2.02 | | 687 ZZ1 VV DD | 8.2 | 8.5 | 12.8 | 12.7 | 0.15 | 0.15 | 2.13 | 2.97 | | 697 ZZ1 VV DD | 9.0 | 10.2 | 15.0 | 14.8 | 0.3 | 0.3 | 5.26 | 5.12 | | 607 ZZ1 VV DD | 9.0 | 9.1 | 17.0 | 16.5 | 0.3 | 0.3 | 7.67 | 7.51 | | 627 ZZ VV DD | 9.0 | 10.5 | 20.0 | 19.0 | 0.3 | 0.3 | 12.7 | 12.9 | | 637 ZZ1 VV DD | 9.0 | 12.8 | 24.0 | 22.8 | 0.3 | 0.3 | 24 | 25 | | MR 128 ZZ1 — — | 9.2 | 9.0 | 10.8 | 11.3 | 0.15 | 0.1 | 0.71 | 0.97 | | MR 148 ZZ VV DD | 9.6 | 9.2 | 12.4 | 12.8 | 0.2 | 0.15 | 1.86 | 2.16 | | 688 AZZ1 VV DD | 9.6 | 10.2 | 14.4 | 14.2 | 0.2 | 0.2 | 3.12 | 4.02 | | 698 ZZ VV DD | 10.0 | 10.0 | 17.0 | 16.5 | 0.3 | 0.3 | 7.23 | 7.18 | | 608 ZZ VV DD | 10.0 | 10.5 | 20.0 | 19.0 | 0.3 | 0.3 | 12.1 | 12.2 | | 628 ZZ VV DD | 10.0 | 12.0 | 22.0 | 20.5 | 0.3 | 0.3 | 17.2 | 17.4 | | 638 ZZ1 VV DD | 10.0 | 12.8 | 26.0 | 22.8 | 0.3 | 0.3 | 28.3 | 28.6 | | 689 ZZ1 VV DD | 10.6 | 11.5 | 15.4 | 15.2 | 0.2 | 0.2 | 3.53 | 4.43 | | 699 ZZ1 VV DD | 11.0 | 12.0 | 18.0 | 17.2 | 0.3 | 0.3 | 8.45 | 8.33 | | 609 ZZ VV DD | 11.0 | 12.0 | 22.8 | 20.5 | 0.3 | 0.3 | 14.5 | 14.7 | | 629 ZZ VV DD | 11.0 | 12.8 | 24.0 | 22.8 | 0.3 | 0.3 | 19.5 | 19.3 | | 639 ZZ VV — | 13.0 | 16.1 | 26.0 | 25.6 | 0.6 | 0.6 | 36.5 | 36 | ^{2.} Bearings with snap rings are also available, please contact NSK. Metric Design With Flange Bore Diameter 1 – 4 mm Open Type Shielded Type ZZ · ZZ1 | | Bearing Numbers | | Abut | ment and
(r | Fillet Dim
mm) | nensions | | ass
(g) | |---|--|--------|--------------------------------|-----------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | Open | Shielded | Sealed | $d_{\scriptscriptstyle a}$ min | | $m{r_{ m a}}$ max. | $r_{ m b}$ max. | | orox.
Shielded | | F 681
F 691 | | = = | · 1.4
· 1.8 | | 0.05
0.1 | _ | 0.04
0.14 | _ | | MF 41 X | _ | | 2.0 |) — | 0.1 | _ | 0.12 | _ | | F 681 X
F 691 X
F 601 X | F 681 XZZ
F 691 XZZ
F 601 XZZ | | 2.7 | 7 2.5 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 0.09
0.23
0.42 | 0.14
0.28
0.52 | | F 682
MF 52 B
F 692 | F 682 ZZ
MF 52 BZZ
F 692 ZZ | = = | 2.8 | 3 2.7 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 0.16
0.21
0.35 | 0.22
0.27
0.48 | | MF 62
MF 72
F 602 | MF 72 ZZ
F 602 ZZ | = = | | 3.8 | 0.15
0.15
0.15 | 0.15
0.15 | 0.36
0.52
0.60 | 0.56
0.71 | | F 682 X
F 692 X
MF 82 X
F 602 X | F 682 XZZ
F 692 XZZ
—
F 602 XZZ | | 3.7 | 7 3.8
I — | 0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 0.25
0.51
0.62
0.74 | 0.36
0.68
—
0.98 | | MF 63
F 683 A
MF 83 | MF 63 ZZ
F 683 AZZ | = = | 3.8 | 3 4.0 | 0.1
0.1
0.15 | 0.1
0.1
— | 0.27
0.37
0.56 | 0.33
0.53
— | | F 693
MF 93
F 603
F 623
F 633 | F 693 ZZ
MF 93 ZZ
F 603 ZZ
F 623 ZZ
F 633 ZZ | | 4.2 | 4.3
2 4.3
2 4.3 | 0.15
0.2
0.15
0.15
0.2 | 0.15
0.15
0.15
0.15
0.2 | 0.70
0.81
1.0
1.85
3.73 | 0.97
1.34
1.63
1.86
3.59 | | MF 74
MF 84
F 684 | MF 74 ZZ
MF 84 ZZ
F 684 ZZ | | 5.2 | 4.8
2 5.0 | 0.1
-
0.15
0.1 | 0.1
0.1
0.1 | 0.29
—
0.44
0.70 | 0.35
0.63
1.14 | | MF 104 B
F 694
F 604 | MF 104 BZZ
F 694 ZZ
F 604 ZZ | = = | 5.2 | 5.6 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 1.13
1.91
2.53 | 1.59
1.96
2.53 | | F 624
F 634 | F 624 ZZ
F 634 ZZ1 | = = | 5.6 | | 0.2
0.3 | 0.2
0.3 | 3.38
5.73 | 3.53
5.62 | Note (1) The values in parentheses are not based on ISO 15. **Remarks** When using bearings with a rotating outer ring, please contact NSK if they are shielded. | Open Type Bounda | | | | | | | Z · ZZ1 | | | | Sealed VV | | | | Sealed Type
DD | 9 | |-------------------|----------------------|--------------------------|----------------------|--------------------|------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|----------------------------|--------------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | | Bour | idary D
(mr | | ons | | | | Ba
(N | | d Ratings
{kg | gf} | Limitin
Grea | g Speeds (r
se | nin ⁻¹)
Oil | | d | D | D_1 | D_2 | В | B_1 | C_1 | C_2 | r
min. | r_1 min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Open
Z · ZZ
V · VV | D · DD | Open
Z | | 5 | 8
8
9
10 | 9.2
—
10.2
11.2 | 9.2
10.2
11.6 | 2
—
2.5
3 | 2.5
3
4 | 0.6

0.6
0.6 | 0.6
0.6
0.8 | 0.1

0.15
0.15 | 0.1
0.15
0.15 | 310
278
430
430 | 120
131
168
168 | 31
28
44
44 | 12
13
17
17 | 53 000
53 000
50 000
50 000 | _
_
_
_ | 63 000
63 000
60 000
60 000 | | | 11
13
14 | 12.5
15
16 | 12.5
15
16 | 3
4
5 | 5
4
5 | 0.8
1
1 | 1
1
1 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 715
1 080
1 330 | 281
430
505 | 73
110
135 | 29
44
52 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | | | 16
19 | 18
22 | 18
22 | 5
6 | 5
6 | 1
1.5 | 1
1.5 | 0.3
0.3 | 0.3
0.3 | 1 730
2 340 | 670
885 | 177
238 | 68
90 | 36 000
32 000 | 32 000
30 000 | 43 000
40 000 | | 6 | 10
12
13 | 11.2
13.2
15 | 11.2
13.6
15 | 2.5
3
3.5 | 3
4
5 | 0.6
0.6
1 | 0.6
0.8
1.1 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 495
715
1 080 | 218
292
440 | 51
73
110 | 22
30
45 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | | | 15
17
19
22 | 17
19
22
25 | 17
19
22
25 | 5
6
6
7 | 5
6
6
7 | 1.2
1.2
1.5
1.5 | 1.2
1.2
1.5
1.5 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 1 730
2 260
2 340
3 300 | 670
835
885
1 370 | 177
231
238
335 | 68
85
90
140 | 40 000
38 000
32 000
30 000 | 36 000
34 000
30 000
28 000 | 45 000
45 000
40 000
36 000 | | 7 | 11
13
14 | 12.2
14.2
16 | 12.2
14.6
16 | 2.5
3
3.5 | 3
4
5 | 0.6
0.6
1 | 0.6
0.8
1.1 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 455
540
1 170 | 201
276
510 | 47
55
120 | 21
28
52 | 43 000
40 000
40 000 | <u> </u> | 50 000
48 000
45 000 | | | 17
19
22 | 19
22
25 | 19
22
25 | 5
6
7 | 5
6
7 | 1.2
1.5
1.5 | 1.2
1.5
1.5 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 1 610
2 340
3 300 | 715
885
1 370 | 164
238
335 | 73
90
140 | 36 000
36 000
30 000 | 28 000
32 000
28 000 | 43 000
43 000
36 000 | | 8 | 12
14
16 | 13.2
15.6
18 | 13.6
15.6
18 | 2.5
3.5
4 | 3.5
4
5 | 0.6
0.8
1 | 0.8
0.8
1.1 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 545
820
1 610 | 274
385
710 | 56
83
164 | 28
39
73 | 40 000
38 000
36 000 | 32 000
30 000 | 48 000
45 000
43 000 | | | 19
22 | 22
25 | 22
25 | 6
7 | 6
7 | 1.5
1.5 | 1.5
1.5 | 0.3
0.3 | 0.3
0.3 | 2 240
3 300 | 910
1 370 | 228
335 | 93
140 | 36 000
34 000 | 28 000
28 000 | 43 000
40 000 | | 9 | 17
20 | 19
23 | 19
23 | 4 | 5
6 | 1
1.5 | 1.1
1.5 | 0.2
0.3 | 0.2
0.3 | 1 330
1 720 | 665
840 | 136
175 | 68
86 | 36 000
34 000 | 24 000
24 000 | 43 000
40 000 | | | Bearing Numbers | | | | | and Fille
ns (mm | | Ma
(g | | |----------------------------------|--|------------------|----------------------|--------------------------|---------------------------|--------------------------|--------------------------|------------------------------|------------------------------| | Open | Shielded | Sea | led | $d_{ m a}$ min. | $d_{ m b}$ max. | $m{r_{a}}$ max. | $r_{ m b}$ max. | appı
Open | rox.
Shielded | | MF 85
MF 95
MF 105 | MF 85 ZZ
MF 95 ZZ1
MF 105 ZZ | _
_
_
_ | _
_
_ | 5.8
—
6.2
6.2 | 5.8
6.0
6.0 | 0.1

0.15
0.15 |
0.1
0.15
0.15 | 0.33
—
0.59
1.05 |
0.41
0.66
1.46 | | F 685
F 695
F 605 | F 685 ZZ
F 695 ZZ
F 605 ZZ | vv
– | DD
DD |
6.2
6.6
6.6 | 6.2
6.6
6.9 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 1.37
2.79
3.9 | 2.18
2.84
3.85 | | F 625
F 635 | F 625 ZZ1
F 635 ZZ1 | VV
VV | DD
DD | 7.0
7.0 | 7.5
8.5 | 0.3
0.3 | 0.3
0.3 | 5.37
9.49 | 5.27
9.49 | | MF 106
MF 126
F 686 A | MF 106 ZZ1
MF 126 ZZ
F 686 AZZ | _
_
VV | DD
DD | 7.2
7.6
7.2 | 7.0
7.2
7.4 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.65
1.38
2.25 | 0.77
1.94
3.04 | | F 696
F 606
F 626
F 636 | F 696 ZZ1
F 606 ZZ
F 626 ZZ1
F 636 ZZ | VV
VV
VV | DD
DD
DD
DD | 7.6
8.0
8.0
8.0 | 7.9
8.2
8.5
10.5 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 4.34
6.58
9.09
14.6 | 4.26
6.61
9.09
14.7 | | MF 117
MF 137
F 687 | MF 117 ZZ
MF 137 ZZ
F 687 ZZ1 | _
VV | _
_
DD | 8.2
8.6
8.2 | 8.0
9.0
8.5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.72
1.7
2.48 | 0.82
2.23
3.37 | | F 697
F 607
F 627 | F 697 ZZ1
F 607 ZZ1
F 627 ZZ | VV
VV
VV | DD
DD
DD | 9.0
9.0
9.0 | 10.2
9.1
10.5 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 5.65
8.66
14.2 | 5.65
8.66
14.2 | | MF 128
MF 148
F 688 A | MF 128 ZZ1
MF 148 ZZ
F 688 AZZ | VV
VV | DD
DD | 9.2
9.6
9.6 | 9.0
9.2
10.2 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 0.82
2.09
3.54 | 1.15
2.39
4.47 | | F 698
F 608 | F 698 ZZ
F 608 ZZ | VV
VV | DD
DD | 10.0
10.0 | 10.0
10.5 | 0.3
0.3 | 0.3
0.3 | 8.35
13.4 | 8.3
13.5 | | F 689
F 699 | F 689 ZZ1
F 699 ZZ1 | VV
VV | DD
DD | 10.6
11.0 | 11.5
12.0 | 0.2
0.3 | 0.2
0.3 | 3.97
9.51 | 4.91
9.51 | **Remarks** When using bearings with a rotating outer ring, please contact NSK if they are shielded. Inch Design Bore Diameter 1.016 – 9.525 mm Shielded Type ZZ · ZZS | | Bound | ary Dimens
(mm) | ions | | | Basic Lo
V) | ad Ratings
{k | gf} | Limiting
(mi | • | Bearing | |-------|--------------------------|-------------------------|-------------------------|--------------------|---------------------|-------------------|------------------|-------------------|----------------------------|----------------------------|-------------------------| | d | D | В | B_1 | <i>r</i>
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease
Open
Z · ZZ | Oil
Open
Z | Open | | 1.016 | 3.175 | 1.191 | _ | 0.1 | 80 | 23 | 8 | 2.5 | 130 000 | 150 000 | R 09 | | 1.191 | 3.967 | 1.588 | 2.380 | 0.1 | 138 | 35 | 14 | 3.5 | 110 000 | 130 000 | R 0 | | 1.397 | 4.762 | 1.984 | 2.779 | 0.1 | 231 | 66 | 24 | 6.5 | 90 000 | 110 000 | R 1 | | 1.984 | 6.350 | 2.380 | 3.571 | 0.1 | 310 | 108 | 32 | 11 | 67 000 | 80 000 | R 1-4 | | 2.380 | 4.762
4.762
7.938 | 1.588
—
2.779 | 2.380
3.571 | 0.1
0.1
0.15 | 188
143
550 | 60
52
175 | 19
15
56 | 6
5.5
18 | 80 000
80 000
60 000 | 95 000
95 000
71 000 | R 133

R 1-5 | | 3.175 | 6.350
7.938
9.525 | 2.380
2.779
2.779 | 2.779
3.571
3.571 | 0.1
0.1
0.15 | 283
560
640 | 95
179
225 | 29
57
65 | 9.5
18
23 | 67 000
60 000
53 000 | 80 000
67 000
63 000 | R 144
R 2-5
R 2-6 | | | 9.525
12.700 | 3.967
4.366 | 3.967
4.366 | 0.3
0.3 | 630
640 | 218
225 | 64
65 | 22
23 | 56 000
53 000 | 67 000
63 000 | R 2
R 2A | | 3.967 | 7.938 | 2.779 | 3.175 | 0.1 | 360 | 149 | 37 | 15 | 53 000 | 63 000 | R 155 | | 4.762 | 7.938
9.525
12.700 | 2.779
3.175
3.967 | 3.175
3.175
4.978 | 0.1
0.1
0.3 | 360
710
1 300 | 149
270
485 | 37
73
133 | 15
28
49 | 53 000
50 000
43 000 | 63 000
60 000
53 000 | R 156
R 166
R 3 | | 6.350 | 9.525
12.700 | 3.175
3.175 | 3.175
4.762 | 0.1
0.15 | 420
1 080 | 204
440 | 43
110 | 21
45 | 48 000
40 000 | 56 000
50 000 | R 168B
R 188 | | | 15.875
19.050 | 4.978
5.558 | 4.978
7.142 | 0.3
0.4 | 1 610
2 620 | 660
1 060 | 164
267 | 68
108 | 38 000
36 000 | 45 000
43 000 | R 4B
R 4AA | | 7.938 | 12.700 | 3.967 | 3.967 | 0.15 | 540 | 276 | 55 | 28 | 40 000 | 48 000 | R 1810 | | 9.525 | 22.225 | 5.558 | 7.142 | 0.4 | 3 350 | 1 410 | 340 | 144 | 32 000 | 38 000 | R 6 | ^{2.} Bearings with double shields (ZZ, ZZS) are also available with single shields (Z, ZS). | Numbers | А | butment a | S | | lass
(g) | | | |-----------------------------------|-------------------|-------------------|--------------------|--------------------|--------------------|----------------------|----------------------| | Shielded | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $D_{ m b}$ min. | $r_{ m a}$ max. | ap
Open | prox.
Shielded | | _ | 1.9 | _ | 2.3 | _ | 0.1 | 0.04 | _ | | R 0 ZZ | 2.0 | 1.9 | 3.1 | 3.5 | 0.1 | 0.09 | 0.11 | | R 1 ZZ | 2.2 | 2.3 | 3.9 | 4.1 | 0.1 | 0.15 | 0.19 | | R 1-4 ZZ | 2.8 | 3.9 | 5.5 | 5.9 | 0.1 | 0.35 | 0.50 | | R 133 ZZS
R 1-5 ZZ | 3.2
—
3.6 | 3.0
4.1 | 3.9
-
6.7 |
4.2
7.0 | 0.1
0.1
0.15 | 0.10

0.60 | 0.13
0.72 | | R 144 ZZ
R 2-5 ZZ
R 2-6 ZZS | 4.0
4.0
4.4 | 3.9
4.3
4.6 | 5.5
7.1
8.3 | 5.9
7.3
8.2 | 0.1
0.1
0.15 | 0.25
0.55
0.96 | 0.27
0.72
1.13 | | R 2 ZZ
R 2A ZZ | 5.2
5.2 | 4.8
4.6 | 7.5
10.7 | 8.0
8.2 | 0.3
0.3 | 1.36
3.3 | 1.39
3.23 | | R 155 ZZS | 4.8 | 5.5 | 7.1 | 7.3 | 0.1 | 0.51 | 0.56 | | R 156 ZZS
R 166 ZZ
R 3 ZZ | 5.6
5.6
6.8 | 5.5
5.9
6.5 | 7.1
8.7
10.7 | 7.3
8.8
11.2 | 0.1
0.1
0.3 | 0.39
0.81
2.21 | 0.42
0.85
2.79 | | R 168 BZZ
R 188 ZZ | 7.2
7.6 | 7.0
7.4 | 8.7
11.5 | 8.9
11.6 | 0.1
0.15 | 0.58
1.53 | 0.62
2.21 | | R 4B ZZ
R 4AA ZZ | 8.4
9.4 | 8.4
9.0 | 13.8
16.0 | 13.8
16.6 | 0.3
0.4 | 4.5
7.48 | 4.43
9.17 | | R 1810 ZZ | 9.2 | 9.0 | 11.5 | 11.6 | 0.15 | 1.56 | 1.48 | | R 6 ZZ | 12.6 | 11.9 | 19.2 | 20.0 | 0.4 | 9.02 | 11 | Inch Design With Flange Bore Diameter 1.191 – 9.525 mm Open Type Shielded Type ZZ · ZZS | | | Е | | | | oad Ratings | | | | | | |-------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|--------------------------|-------------------------|----------------------|-----------------------| | | | | (mn | n) | | | | (1 | N) | {k | :gf} | | d | D | D_1 | В | B_1 | C_1 | C_2 | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | | 1.191 | 3.967 | 5.156 | 1.588 | 2.380 | 0.330 | 0.790 | 0.1 | 138 | 35 | 14 | 3.5 | | 1.397 | 4.762 | 5.944 | 1.984 | 2.779 | 0.580 | 0.790 | 0.1 | 231 | 66 | 24 | 6.5 | | 1.984 | 6.350 | 7.518 | 2.380 | 3.571 | 0.580 | 0.790 | 0.1 | 310 | 108 | 32 | 11 | | 2.380 | 4.762
4.762
7.938 | 5.944
5.944
9.119 | 1.588
—
2.779 |
2.380
3.571 | 0.460

0.580 | —
0.790
0.790 | 0.1
0.1
0.15 | 188
143
550 | 60
52
175 | 19
15
56 | 6
5.5
18 | | 3.175 | 6.350
7.938
9.525
9.525 | 7.518
9.119
10.719
11.176 | 2.380
2.779
2.779
3.967 | 2.779
3.571
3.571
3.967 | 0.580
0.580
0.580
0.760 | 0.790
0.790
0.790
0.760 | 0.1
0.1
0.15
0.3 | 283
560
640
630 | 95
179
225
218 | 29
57
65
64 | 9.5
18
23
22 | | 3.967 | 7.938 | 9.119 | 2.779 | 3.175 | 0.580 | 0.910 | 0.1 | 360 | 149 | 37 | 15 | | 4.762 | 7.938
9.525
12.700 | 9.119
10.719
14.351 | 2.779
3.175
4.978 | 3.175
3.175
4.978 | 0.580
0.580
1.070 | 0.910
0.790
1.070 | 0.1
0.1
0.3 | 360
710
1 300 | 149
270
485 | 37
73
133 | 15
28
49 | | 6.350 | 9.525
12.700
15.875 | 10.719
13.894
17.526 | 3.175
3.175
4.978 | 3.175
4.762
4.978 | 0.580
0.580
1.070 | 0.910
1.140
1.070 | 0.1
0.15
0.3 | 420
1 080
1 610 | 204
440
660 | 43
110
164 | 21
45
68 | | 7.938 | 12.700 | 13.894 | 3.967 | 3.967 | 0.790 | 0.790 | 0.15 | 540 | 276 | 55 | 28 | | 9.525 | 22.225 | 24.613 | 7.142 | 7.142 | 1.570 | 1.570 | 0.4 | 3 350 | 1 410 | 340 | 144 | | Limiting S | Speeds | Beari | ng Numbers | Abutment and Fillet Mas | | | | | |--------------------------------------|--------------------------------------|------------------------------------|---|--------------------------|--------------------------|---------------------------|------------------------------|------------------------------| | (min- | -1) | | | Dimensions (mm) | | | (g) | | | Grease
Open
Z · ZZ | Oil
Open
Z | Open | Shielded | $d_{ m a}$ min. | $d_{ m b}$ max. | $m{r_{a}}$ max. | app
Open | rox.
Shielded | | 110 000 | 130 000 | FR 0 | FR 0 ZZ | 2.0 | 1.9 | 0.1 | 0.11 | 0.16 | | 90 000 | 110 000 | FR 1 | FR 1 ZZ | 2.2 | 2.3 | 0.1 | 0.20 | 0.25 | | 67 000 | 80 000 | FR 1-4 | FR 1-4 ZZ | 2.8 | 3.9 | 0.1 | 0.41 | 0.58 | | 80 000
80 000
60 000 | 95 000
95 000
71 000 | FR 133
FR 1-5 |
FR 133 ZZS
FR 1-5 ZZ | 3.2
—
3.6 | 3.0
4.1 | 0.1
0.1
0.15 | 0.13
—
0.68 | 0.19
0.82 | | 67 000
60 000
53 000
56 000 | 80 000
67 000
63 000
67 000 | FR 144
FR 2-5
FR 2-6
FR 2 | FR 144 ZZ
FR 2-5 ZZ
FR 2-6 ZZS
FR 2 ZZ | 4.0
4.0
4.4
5.2 | 3.9
4.3
4.6
4.8 | 0.1
0.1
0.15
0.3 | 0.31
0.62
1.04
1.51 | 0.35
0.81
1.25
1.55 | | 53 000 | 63 000 | FR 155 | FR 155 ZZS | 4.8 | 5.5 | 0.1 | 0.59 | 0.67 | | 53 000
50 000
43 000 | 63 000
60 000
53 000 | FR 156
FR 166
FR 3 | FR 156 ZZS
FR 166 ZZ
FR 3 ZZ | 5.6
5.6
6.8 |
5.5
5.9
6.5 | 0.1
0.1
0.3 | 0.47
0.90
2.97 | 0.53
0.98
3.09 | | 48 000
40 000
38 000 | 56 000
50 000
45 000 | FR 168B
FR 188
FR 4B | FR 168 BZZ
FR 188 ZZ
FR 4B ZZ | 7.2
7.6
8.4 | 7.0
7.4
8.4 | 0.1
0.15
0.3 | 0.66
1.64
4.78 | 0.75
2.49
4.78 | | 40 000 | 48 000 | FR 1810 | FR 1810 ZZ | 9.2 | 9.0 | 0.15 | 1.71 | 1.63 | | 32 000 | 38 000 | FR 6 | FR 6 ZZ | 12.6 | 11.9 | 0.4 | 10.1 | 12.1 | # ANGULAR CONTACT BALL BEARINGS # SINGLE-ROW AND MATCHED ANGULAR CONTACT BALL BEARINGS | | Bore Diameter | 10 - 65mm····· | B50 | | | | | | | |--------------------------------|---------------|----------------------------|-----|--|--|--|--|--|--| | | Bore Diameter | 70 – 120 mm ······ | B60 | | | | | | | | | Bore Diameter | 130 – 200 mm ······ | B66 | | | | | | | | UBLE-ROW ANGULAR CONTACT | Bore Diameter | 10 – 85 mm ······ | B70 | | | | | | | | UR-POINT CONTACT BALL BEARINGS | | | | | | | | | | | | Bore Diameter | 30 – 200mm····· | B72 | | | | | | | ### DESIGN, TYPES, AND FEATURES #### SINGLE-ROW ANGULAR CONTACT BALL BEARINGS DO BA FO Since these bearings have a contact angle, they can sustain significant axial loads in one direction together with radial loads. Because of their design, when a radial load is applied, an axial force component is produced; therefore, two opposed bearings or a combination of more than two must be used. Since the rigidity of single-row angular contact ball bearings can be increased by preloading, they are often used in the main spindles of machine tools, for which high running accuracy is required. (Refer to Chapter 10, Preload, Page A96). Usually, the cages for angular contact ball bearings with a contact angle of 30° (Symbol A) or 40° (Symbol B) are in accordance with Table 1, but depending on the application, machined synthetic resin cages or molded polyamide resin cages are also used. The basic load ratings given in the bearing tables are based on the cage classification listed in Table 1. Though the figures in the bearing tables (Pages B50 to B65; bearing bore diameters of 10 to 120) show bearings with single-shoulder-type inner rings, both-shoulder-type bearings are also available. Please consult NSK for more detailed information. Table 1 Standard Cages for Angular Contact Ball Bearings | Series | Pressed Steel Cages | Machined Brass Cages | | | | | |---------|---------------------|----------------------|--|--|--|--| | 79A5, C | _ | 7900 – 7940 | | | | | | 70A | 7000 – 7018 | 7019 – 7040 | | | | | | 70C | _ | 7000 – 7022 | | | | | | 72A, B | 7200 – 7222 | 7224 – 7240 | | | | | | 72C | _ | 7200 – 7240 | | | | | | 73A, B | 7300 – 7320 | 7321 – 7340 | | | | | In addition, for bearings with the same serial number, if the type of cages are different, the number of balls may also be different. In such a case, the load rating will differ from the one listed in the bearing tables. Angular Contact Ball Bearings with contact angles of 15° (Symbol C) and 25° (Symbol A5) are primarily for high precision or high speed applications, and machined brass or synthetic resin cages or molded polyamide cages are used. The maximum operating temperature of molded polyamide cages is 120°C. #### MATCHED ANGULAR CONTACT BALL BEARINGS The types and features of matched angular contact ball bearings are shown in Table 2 Table 2 Types and Features of Matched Angular Contact Ball Bearings | Figure | Arrangement | Features | |----------------|--|--| | a ₀ | Back-to-back
(DB)
(Example)
7208 A DB | Radial loads and axial loads in both directions can be sustained. Since the distance between the effective load centers \boldsymbol{a}_0 is big, this type is suitable if moments are applied. | | -a0- | Face-to-face
(DF)
(Example)
7208 B DF | Radial loads and axial loads in both directions can be sustained. Compared with the DB Type, the distance between the effective load centers is small, so the capacity to sustain moments is inferior to the DB Type. | | | Tandem
(DT)
(Example)
7208 A DT | Radial loads and axial loads in one direction can be sustained. Since two bearings share the axial load, this arrangement is used when the load in one direction is heavy. | #### **NSKHPS ANGULAR CONTACT BALL BEARINGS** In comparison with standard angular contact ball bearings, these bearings have high capacity, high limiting speed, and highly accurate universal matching as the features. The molded polyamide cages are standard specification for the HPS type. ### DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS This is basically a back-to-back mounting of two single-row angular contact ball bearings, but their inner and outer rings are each integrated into one. Axial loads in both directions can be sustained, and the capacity to sustain moments is good. This type is used as fixed-end bearings. Their cages are pressed steel. #### FOUR-POINT CONTACT BALL BEARINGS The inner ring is split radially into two pieces. Their design allows one bearing to sustain significant axial loads in either direction. The contact angle is 35°, so the axial load capacity is high. This type is suitable for carrying pure axial loads or combined loads where the axial loads are high. The cages are made of machined brass. # PRECAUTIONS FOR USE OF ANGULAR CONTACT BALL BEARINGS Under severe operating conditions where the speed and temperature are close to their limits, lubrication is marginal, vibration and moment loads are heavy, they may not be suitable, particularly for certain types of cages. In such a case, please consult with NSK beforehand. And if the load on angular contact ball bearings becomes too small, or if the ratio of the axial and radial loads for matched bearings exceeds 'e' (e is listed in the bearings tables) during operation, slippage occurs between the balls and raceways, which may result in smearing. Especially with large bearings since the weight of the balls and cage is high. If such load conditions are expected, please consult with NSK for selection of the bearings. ### TOLERANCES AND RUNNING ACCURACY | | SINGLE-ROW ANGULAR CONTACT | | | | |-----|---------------------------------------|-----------|-------------------|------| | | BALL BEARINGS | Table 8.2 | (Pages A60 to A | 163) | | | NSKHPS ANGULAR CONTACT BALL BEARINGS | Tubic 0.2 | (1 ages 7100 to 7 | 100) | | | | | | | | | Tolerance for Dimensions: Class 6, | T.I. 0.0 | /D 4/01 4 | | | | Running Accuracy: Class 5 | Table 8.2 | (Pages A60 to A | 163) | | | MATCHEĎ ANGULÁR CONTACT | | | | | | BALL BEARINGS | Table 8.2 | (Pages A60 to A | 463) | | | DOUBLE-ROW ANGULAR CONTACT | | . • | | | | BALL BEARINGS | Table 8.2 | (Pages A60 to A | 163) | | | FOUR-POINT CONTACT BALL | 10010 012 | (. agos 7.00 to 7 | .00) | | | BEARINGS | Table 9.2 | (Dance AAO to / | 1431 | | | | Table 0.2 | (rages Add to F | 103) | | REC | OMMENDED FITS | | | | | | SINGLE-ROW ANGULAR CONTACT BALL | | | | | | BEARINGS AND HPS ANGULAR CONTACT | | | | | | | T-61- 0 0 | (Dama 404) | | | | BALL BEARINGS | Table 9.2 | (Page A84) | | | | | | (Page A85) | | | | MATCHED ANGULAR CONTACT BALL BEARINGS | | | | | | | Table 9.4 | (Page A85) | | | | DOUBLE-ROW ANGULAR CONTACT BALL | | | | | | BEARINGS | Table 9.2 | (Page A84) | | | | | | (Page A85) | | | | FOUR-POINT CONTACT BALL BEARINGS | Table 0.2 | (Dago 184) | | | | TOOK-TOINT CONTACT DALL DEAKINGS | | | | | | | Table 9.4 | (Page A85) | | ### INTERNAL CLEARANCES #### MATCHED ANGULAR CONTACT BALL BEARINGS..... Table 9. 17 (Page A94) Matched angular contact ball bearings with precision better than P5 are primarily used in the main spindles of machine tools, so they are used with a preload for rigidity. For convenience of selection, internal clearances are adjusted to produce Very Light, Light, Medium, and Heavy Preloads. Their fitting is also special. Concerning these matters, please refer to Tables 10.1 and 10.2 (Pages A98 and A99). The clearance (or preload) of matched bearings is obtained by axially tightening a pair of bearings till the side faces of their inner or outer rings are pressed against each other #### NSKHPS ANGULAR CONTACT BALL BEARINGS | Axial Internal Clearance (Measured Clearances) Units : μm | | | | | | | | | | | |---|-------------|------|--------------------------|------|------|--|--|--|--|--| | Nominal Bo | re Diameter | | Axial Internal Clearance | | | | | | | | | <i>d</i> (n | nm) | CN | ΝB | GA | | | | | | | | over | incl. | min. | max. | min. | max. | | | | | | | 12 | 18 | 17 | 25 | | | | | | | | | 18 | 30 | 20 | 28 | -2 | 6 | | | | | | | 30 | 50 | 24 | 32 | | | | | | | | | 50 | 80 | 29 | 41 | -3 | 9 | | | | | | #### DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS For the clearance in double-row angular contact ball bearings, please consult with NSK. FOUR-POINT CONTACT BALL BEARINGS.....Table 9.18 (Page A94) LIMITING SPEEDS In cases of single-row and matched angular contact ball bearings, the Limiting speeds listed in the bearing table are for bearings with machined cage. For those with pressed cages, the listed speeds must be reduced by 20%. The limiting speeds of bearings with contact angles of 15° (Symbol C) and 25° (Symbol A5) are for bearings with precision of P5 and better (with machined synthetic-resin cages or molded polyamide cages). The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. B 48 B 49 # SINGLE/MATCHED MOUNTINGS Bore Diameter 10 - 15 mm Back-to-Back DB Face-to-Face DF Tandem DT | Dynamic Equival | ent Load P | $' = X F_r + Y F_s$
| |-----------------|------------|---------------------| | Contact | | $if_0F_a^*$ | | Single, DT | | | | DB or DF | | | | |---------|---------|-------------|------|------------------|---|---------|-------|----------|------------|---------------|------| | | Contact | | e | $F_a/F_r \leq e$ | | F_a/I | r > e | F_a/I | $r \leq e$ | $F_a/F_r > e$ | | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | | 15. | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | | | | | | | | | | | | *For I, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | | | | | |---------|-----------------------|------------|------------|------------|---------------------------|--|--|--| | Angle | <i>X</i> ₀ | Y 0 | X 0 | Y 0 | Single or DT | | | | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | | | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5 F_r + Y_0 F_a$ | | | | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | | | | 40° | 0.5 | 0.26 | 1 | 0.52 | 0 -1 | | | | | Bearing Numbers (2) | | | | c Load Rating:
N) | . , | gf} | Speeds (1) | iting
(Matched)
n-1) | Load (
Spacing | s (mm) | | nent and
nsions (r | | |------------------------------|---------------|--------------|----------------|-------------------------|-------------------------|-------------------|----------------------------|----------------------------|----------------------|--------------------|--------------------------------|-----------------------|-----------------------------------| | Single | D | uplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | DB | O DF | d _b (³) min. | $D_{ m b}$ max. | Γ _b (³)
max. | | 7900 A5
7900 C
7000 A | DB | DF D
DF D | f 4 900 | 2 900
3 050
5 200 | 475
500
890 | 296
310
530 | 32 000
38 000
24 000 | 43 000
53 000
34 000 | 13.5
10.3
18.4 | 1.5
1.7
2.4 | _
_
11.2 | 20.8
20.8
24.8 | 0.15
0.15
0.15 | | 7000 C
7200 A
7200 B | DB | DF D
DF D | 8 800 | 5 000
5 400
5 000 | 880
900
825 | 510
555
510 | 36 000
22 000
16 000 | 50 000
30 000
22 000 | 12.8
20.5
25.8 | 3.2
2.5
7.8 | —
12.5
12.5 | 24.8
27.5
27.5 | 0.15
0.3
0.3 | | 7200 C
7300 A
7300 B | DB | DF DO | 1 5 100 | 5 200
8 600
8 100 | 895
1 540
1 450 | 530
880
825 | 32 000
16 000
14 000 | 45 000
22 000
20 000 | 14.4
24.0
29.9 | 3.6
2.0
7.9 | —
12.5
12.5 | 27.5
32.5
32.5 | 0.3
0.3
0.3 | | 7901 A5
7901 C
7001 A | | DF D
DF D | 5 450 | 3 550
3 700
5 950 | 530
555
955 | 360
380
610 | 30 000
36 000
22 000 | 43 000
50 000
30 000 | 14.4
10.8
19.5 | 2.4
1.2
3.5 | —
—
13.2 | 22.8
22.8
26.8 | 0.15
0.15
0.15 | | 7001 C
7201 A
7201 B | DB | DF D
DF D | T 13 000 | 5 800
8 050
7 500 | 960
1 330
1 230 | 590
820
765 | 32 000
20 000
15 000 | 45 000
28 000
20 000 | 13.4
22.7
28.5 | 2.6
2.7
8.5 | —
14.5
14.5 | 26.8
29.5
29.5 | 0.15
0.3
0.3 | | *7201 BE
7201 C
7301 A | A
DB
DB | DF D | | 7 700
9 000 | 1 310
1 570 | —
785
915 | 16 000
30 000
15 000 | 24 000
40 000
20 000 | 28.5
15.9
26.1 | 8.5
4.1
2.1 | 14.5
—
17 | 29.5
29.5
32 | 0.3
0.3
0.6 | | 7301 B
*7301 BE | | DF D | 14 400
— | 8 400
— | 1 460
— | 855
— | 13 000
15 000 | 18 000
22 000 | 32.6
32.6 | 8.6
8.6 | 17
17 | 32
32 | 0.6
0.6 | | 7902 A5
7902 C
7002 A | | DF D
DF D | 7 750 | 5 050
5 300
6 850 | 755
790
1 010 | 515
540
700 | 26 000
30 000
19 000 | 34 000
43 000
26 000 | 17.0
12.8
22.6 | 3.0
1.2
4.6 | —
—
16.2 | 26.8
26.8
30.8 | 0.15
0.15
0.15 | | 7002 C
7202 A
7202 B | DB | DF D
DF D | T 14 000 | 6 750
9 300
8 600 | 1 030
1 430
1 310 | 690
950
875 | 28 000
18 000
13 000 | 38 000
24 000
18 000 | 15.3
25.4
32.0 | 2.7
3.4
10.0 | —
17.5
17.5 | 30.8
32.5
32.5 | 0.15
0.3
0.3 | | *7202 BE
7202 C
7302 A | DB | DF D | | 9 050
14 200 | 1 440
2 220 | 925
1 440 | 14 000
26 000
13 000 | 20 000
36 000
17 000 | 32.0
17.7
29.5 | 10.0
4.3
3.5 | 17.5
—
20 | 32.5
32.5
37 | 0.3
0.3
0.6 | | 7302 B
*7302 BE | | DF D | 20 200
— | 13 200
— | 2 060
— | 1 340
— | 11 000
13 000 | 15 000
18 000 | 36.9
36.9 | 10.9
10.9 | 20
20 | 37
37 | 0.6
0.6 | Note (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. #### Limiting **Boundary Dimensions** Basic Load Ratings (Single) Factor Eff.Load | Abutment and Fillet | Mass Speeds (1) Centers Dimensions (mm) (mm) (kg) (N) {kgf} (min⁻¹) (mm) Oil. Grease $d D B r r_1$ $C_{\rm r}$ C_{0r} $C_{\rm r}$ C_{0r} f_0 $D_{\rm a}$ $r_{\rm a}$ а min. min. min. max. max. approx. 22 2 880 294 148 40 000 56 000 10 6 0.3 0.15 1 450 12.5 19.5 0.3 0.009 6.7 305 155 63 000 12.5 19.5 0.3 0.009 22 6 0.3 0.15 3 000 1 520 14.1 48 000 5.1 26 8 0.3 0.15 5 350 2 600 550 266 32 000 43 000 9.2 12.5 23.5 0.3 0.019 26 8 0.3 0.15 5 300 2 490 540 45 000 23.5 0.3 0.021 254 12.6 63 000 12.5 6.4 15 15 30 30 9 0.6 0.3 555 276 255 38 000 10.3 12.9 5 400 2 710 28 000 25 25 0.6 | 0.032 _ 9 0.6 0.3 2 500 510 20 000 28 000 5 000 0.6 | 0.032 30 9 0.6 0.3 5 400 2 610 550 266 13.2 40 000 56 000 15 25 0.6 0.036 7.2 35 35 11 0.6 0.3 9 300 4 300 950 440 20 000 26 000 12.0 15 15 30 30 0.6 0.053 _ 11 0.6 0.3 8 750 4 050 890 410 18 000 24 000 14.9 0.6 0.054 12 24 6 0.3 0.15 3 200 1 770 325 181 38 000 21.5 0.3 0.011 53 000 14.5 24 28 340 189 14.7 45 000 63 000 5.4 14.5 21.5 0.3 0.011 25.5 0.3 0.021 6 0.3 0.15 3 350 1 860 590 305 8 0.3 0.15 5 800 2 980 28 000 9.8 14.5 38 000 40 000 25.5 0.3 0.024 28 8 0.3 0.15 5 800 2 900 590 296 13.2 56 000 6.7 14.5 10 0.6 0.3 10 0.6 0.3 32 32 8 000 4 050 815 410 26 000 34 000 11.4 17 27 27 0.6 0.037 _ 3 750 760 380 14.2 17 7 450 18 000 26 000 0.6 32 10 0.6 0.3 8 150 3 750 830 380 20 000 30 000 27 0.6 0.036 14.2 32 37 10 0.6 0.3 7 900 3 850 805 395 12.5 36 000 50 000 7.9 17 27 31 0.6 0.041 12 1 0.6 9 450 4 500 965 460 18 000 24 000 13.1 18 0.060 37 12 8 850 4 200 900 425 16 000 22 000 18 31 0.062 1 0.6 16.3 37 12 1 0.6 11 100 4 950 1 130 505 _ 18 000 26 000 16.3 18 31 0.061 28 465 15 7 0.3 0.15 4 550 2 5 3 0 258 32 000 43 000 25.5 0.3 0.015 28 7 0.3 0.15 4 750 2 640 485 270 14.5 38 000 53 000 17.5 25.5 0.3 0.015 6.4 32 9 0.3 0.15 6 100 3 450 625 350 24 000 32 000 11.3 17.5 29.5 0.3 0.030 9 0.3 0.15 32 35 6 250 3 400 635 345 14.1 34 000 48 000 7.6 17.5 29.5 0.3 0.034 11 0.6 0.3 8 650 880 475 22 000 30 000 12.7 20 30 0.6 0.045 4 650 35 0.6 0.046 11 0.6 0.3 7 950 4 300 810 440 16 000 22 000 16.0 20 30 35 11 0.6 0.3 9 800 4 800 995 490 18 000 26 000 16.0 20 30 0.6 0.044 35 885 30 0.6 0.052 11 0.6 0.3 8 650 4 550 460 | 13.2 | 32 000 45 000 8.8 20 42 13 1 0.6 13 400 7 100 1 370 720 _ 16 000 22 000 14.7 21 36 0.084 42 13 12 500 6 600 1 270 670 14 000 19 000 0.086 1 0.6 18.5 21 36 42 13 1 0.6 14 300 6 900 1 460 705 16 000 22 000 18.5 21 36 0.084 _ Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. # SINGLE/MATCHED MOUNTINGS Bore Diameter 17 – 25 mm Back-to-Back Face-to-Face | Contont | $if_0F_a^*$ | l | Sirigle, DT | | | | DD 01 DF | | | | |---------|-------------|------|------------------|---|---------|-------|----------|-------------------|---------------|------| | | | e | $F_a/F_r \leq e$ | | F_a/I | r > e | F_a/I | 7 _r ≦e | $F_a/F_r > e$ | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15. | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | ^{*}For I, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | | | |---------|------------|-------|------------|-------|------------------| | Angle | X 0 | Y_0 | X 0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_{\rm r}>0.51$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | _ |
Single or DT | |---|---| | _ | mounting | | _ | When | | _ | $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$ | | _ | use P_0 = $F_{ m r}$ | | _ | | | | JIII | jic | | | | В | , | DF | i acc | | DT | | | | | | |----|----------------|----------------|-------------------|--|----------------------------|----------------------------|---|-------------------------|----------------|----------------------------|----------------------------|----------------------|----------------------|----------------------|-------------------|-------------------------| | Во | undar | y Dim
(mm) | nensio | ensions Basic Load Ratings (Single) Factor (N) {kgf} | | | Limiting Eff.Load
Speeds (¹) Centers
(min-¹) (mm) | | Abutm
Dimer | | Mass
(kg) | | | | | | | d | D | В | $m{r}$ min. | $r_{ m 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{\rm a}$ max. | арргох. | | 17 | 30
30
35 | 7
7
10 | 0.3 | 0.15
0.15
0.15 | 4 750
5 000
6 400 | 2 800
2 940
3 800 | 485
510
655 | 286
299
390 | 14.8
— | 30 000
34 000
22 000 | 40 000
48 000
30 000 | 9.0
6.6
12.5 | 19.5
19.5
19.5 | 27.5
27.5
32.5 | 0.3
0.3
0.3 | 0.017
0.017
0.040 | | | 35
40
40 | 10
12
12 | 0.3
0.6
0.6 | | 6 600
10 800
9 950 | 3 800
6 000
5 500 | 675
1 100
1 010 | 390
610
565 | 14.5
—
— | 32 000
20 000
14 000 | 43 000
28 000
19 000 | 8.5
14.2
18.0 | 19.5
22
22 | 32.5
35
35 | 0.3
0.6
0.6 | 0.044
0.067
0.068 | | | 40
40
47 | 12
12
14 | 0.6
0.6
1 | 0.3
0.3
0.6 | 11 600
10 900
15 900 | 6 100
5 850
8 650 | 1 180
1 110
1 630 | 625
595
880 | 13.3
— | 16 000
28 000
14 000 | 22 000
38 000
19 000 | 18.2
9.8
16.2 | 22
22
23 | 35
35
41 | 0.6
0.6
1 | 0.065
0.075
0.116 | | | 47
47 | 14
14 | 1 | 0.6
0.6 | 14 800
16 800 | 8 000
8 300 | 1 510
1 720 | 820
850 | _ | 13 000
14 000 | 17 000
20 000 | 20.4
20.4 | 23
23 | 41
41 | 1
1 | 0.118
0.113 | | 20 | 37
37
42 | 9
9
12 | 0.3 | 0.15
0.15
0.3 | 6 600
6 950
10 800 | 4 050
4 250
6 600 | 675
710
1 110 | 410
430
670 | 14.9
— | 24 000
28 000
18 000 | 32 000
38 000
24 000 | 11.1
8.3
14.9 | 22.5
22.5
25 | 34.5
34.5
37 | 0.3
0.3
0.6 | 0.036
0.036
0.068 | | | 42
47
47 | 12
14
14 | 0.6
1
1 | 0.3
0.6
0.6 | 11 100
14 500
13 300 | 6 550
8 300
7 650 | 1 130
1 480
1 360 | 665
845
780 | 14.0
— | 26 000
17 000
12 000 | 36 000
22 000
16 000 | 10.1
16.7
21.1 | 25
26
26 | 37
41
41 | 0.6
1
1 | 0.076
0.106
0.109 | | | 47
47
52 | 14
14
15 | 1
1
1.1 | 0.6
0.6
0.6 | 15 600
14 600
18 700 | 8 150
8 050
10 400 | 1 590
1 480
1 910 | 830
825
1 060 | 13.3
— | 13 000
24 000
13 000 | 19 000
34 000
17 000 | 21.1
11.5
17.9 | 26
26
27 | 41
41
45 | 1
1
1 | 0.103
0.118
0.146 | | | 52
52 | 15
15 | 1.1
1.1 | 0.6
0.6 | 17 300
19 800 | 9 650
10 500 | 1 770
2 020 | 985
1 070 | _ | 11 000
13 000 | 15 000
18 000 | 22.6
22.6 | 27
27 | 45
45 | 1
1 | 0.15
0.149 | | 25 | 42
42
47 | 9
9
12 | | 0.15
0.15
0.3 | 7 450
7 850
11 300 | 5 150
5 400
7 400 | 760
800
1 150 | 525
555
750 | _
15.5
_ | 20 000
24 000
16 000 | 28 000
34 000
22 000 | 12.3
9.0
16.4 | 27.5
27.5
30 | 39.5
39.5
42 | 0.3
0.3
0.6 | 0.043
0.042
0.079 | | | 47
52
52 | 12
15
15 | 0.6
1
1 | 0.3
0.6
0.6 | 11 700
16 200
14 800 | 7 400
10 300
9 400 | 1 190
1 650
1 510 | 755
1 050
960 | 14.7
— | 22 000
15 000
10 000 | 30 000
20 000
14 000 | 10.8
18.6
23.7 | 30
31
31 | 42
46
46 | 0.6
1
1 | 0.089
0.13
0.133 | | | 52
52
62 | 15
15
17 | 1
1
1.1 | 0.6
0.6
0.6 | 17 600
16 600
26 400 | 10 200
10 200
15 800 | 1 790
1 690
2 690 | 1 040
1 040
1 610 | 14.0
— | 12 000
22 000
10 000 | 17 000
28 000
14 000 | 23.7
12.7
21.1 | 31
31
32 | 46
46
55 | 1
1
1 | 0.127
0.143
0.235 | | Notes | (1) | For applications | operating near | the limiting speed, refer | r to Page B49 . | |-------|-----|------------------|----------------|---------------------------|------------------------| |-------|-----|------------------|----------------|---------------------------|------------------------| ⁽²⁾ The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing Numbers (2) | | | 2) | Basic
(N | Load Ratings | (Matched)
(kg | | | (Matched) | Load C
Spacings | s (mm) | Abutment and Fill
Dimensions (mm | | | |------------------------------|------------------|----------------|----------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------------------|----------------------------|----------------------|--------------------|-------------------------------------|----------------------|--------------------------------| | Single | ı | Duple | K | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | n ⁻¹)
Oil | DB DB | DF | d _b (³)
min. | $D_{ m b}$ max. | Γ _b (³) max. | | 7903 A
7903 C
7003 A | 5 DB
DB
DB | DF
DF
DF | DT
DT
DT | 7 750
8 150
10 400 | 5 600
5 850
7 650 | 790
830
1 060 | 570
600
780 | 24 000
28 000
17 000 | 32 000
38 000
24 000 | 18.0
13.3
25.0 | 4.0
0.7
5.0 | _
_
18.2 | 28.8
28.8
33.8 | 0.15
0.15
0.15 | | 7003 C
7203 A
7203 B | DB
DB
DB | DF
DF
DF | DT
DT
DT | 10 700
17 600
16 100 | 7 600
12 000
11 000 | 1 100
1 790
1 650 | 775
1 220
1 130 | 26 000
16 000
11 000 | 34 000
22 000
15 000 | 17.0
28.5
35.9 | 3.0
4.5
11.9 | —
19.5
19.5 | 33.8
37.5
37.5 | 0.15
0.3
0.3 | | *7203 BI
7203 C
7303 A | EA
DB
DB | | DT
DT | 17 600
25 900 | 11 700
17 300 | 1 800
2 640 | 1 190
1 760 | 13 000
22 000
11 000 | 18 000
32 000
15 000 | 36.3
19.6
32.5 | 12.3
4.4
4.5 | 19.5
—
22 | 37.5
37.5
42 | 0.3
0.3
0.6 | | 7303 B
*7303 BI | | DF | DT | 24 000
— | 16 000
— | 2 450
— | 1 640
— | 10 000
11 000 | 14 000
16 000 | 40.9
40.9 | 12.9
12.9 | 22
22 | 42
42 | 0.6
0.6 | | 7904 A
7904 C
7004 A | 5 DB
DB
DB | DF
DF
DF | DT
DT
DT | 10 700
11 300
17 600 | 8 100
8 500
13 200 | 1 090
1 150
1 800 | 825
865
1 340 | 19 000
22 000
15 000 | 26 000
32 000
20 000 | 22.3
16.6
29.9 | 4.3
1.4
5.9 | _
_
22.5 | 35.8
35.8
39.5 | 0.15
0.15
0.3 | | 7004 C
7204 A
7204 B | DB
DB
DB | DF
DF
DF | DT
DT
DT | 18 000
23 500
21 600 | 13 100
16 600
15 300 | 1 840
2 400
2 210 | 1 330
1 690
1 560 | 20 000
13 000
9 500 | 30 000
19 000
13 000 | 20.3
33.3
42.1 | 3.7
5.3
14.1 |
25
25 | 39.5
42
42 | 0.3
0.6
0.6 | | *7204 BI
7204 C
7304 A | EA
DB
DB | DF
DF | DT
DT | 23 600
30 500 | 16 100
20 800 | 2 410
3 100 | 1 650
2 130 | 11 000
19 000
10 000 | 16 000
26 000
13 000 | 42.1
23.0
35.8 | 14.1
5.0
5.8 | 25
—
25 | 42
42
47 | 0.6
0.6
0.6 | | 7304 B
*7304 BI | | DF | DT | 28 200
— | 19 300
— | 2 870
— | 1 970
— | 9 000
10 000 | 12 000
14 000 | 45.2
45.2 | 15.2
15.2 | 25
25 | 47
47 | 0.6
0.6 | | 7905 A
7905 C
7005 A | 5 DB
DB
DB | DF | DT
DT
DT | 12 100
12 700
18 300 | 10 300
10 800
14 800 | 1 230
1 300
1 870 | 1 050
1 110
1 510 | 16 000
19 000
13 000 | 22 000
26 000
17 000 | 24.6
18.0
32.8 | 6.6
0.0
8.8 | _
_
27.5 | 40.8
40.8
44.5 | 0.15
0.15
0.3 | | 7005 C
7205 A
7205 B | DB
DB
DB | DF
DF
DF | DT
DT
DT | 19 000
26 300
24 000 | 14 800
20 500
18 800 | 1 940
2 690
2 450 | 1 510
2 090
1 920 | 18 000
12 000
8 500 | 26 000
16 000
11 000 | 21.6
37.2
47.3 | 2.4
7.2
17.3 |
30
30 | 44.5
47
47 | 0.3
0.6
0.6 | | *7205 BI
7205 C
7305 A | DB | DF
DF | DT
DT | 27 000
43 000 | 20 400
31 500 | 2 750
4 400 | 2 080
3 250 | 9 500
17 000
8 500 | 14 000
24 000
11 000 | 47.3
25.3
42.1 | 17.3
4.7
8.1 | 30
—
30 | 47
47
57 | 0.6
0.6
0.6 | | Note | (3) | For h | nearin | ns markad _ | in the colum | on for d d | and r | for chafts | ara d (m | in) and r | (may) r | asnactiva | lv | | Note (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. # SINGLE/MATCHED MOUNTINGS Bore Diameter 25 – 40 mm Back-to-Back DB Single Tandem DT *For I, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ Dynamic Equivalent Load $P = XF_r + YF_a$ | ontact | Singl | e, DT | DB c | r DF | | |--------|------------|-------|------------|-------|--------------------------| | Angle | X 0 | Y_0 | X
0 | Y_0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_{\rm r}>0.5F_{\rm r}$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | _ | Single or DT | |---|---| | - | mounting | | - | When | | _ | $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$ | | _ | use $P_0 = F_{ m r}$ | | | | | Во | undar | y Dim
mm) | ensio | ons | Basi
(N | | ngs (Single)
{kg | gf} | Factor | Limi
Spee | ds (¹) | Eff.Load
Centers | | ent and
sions (r | | Mass
(kg) | |----|----------------|----------------|-------------------|---------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------|----------------------------|----------------------------|----------------------|--------------------|---------------------|--------------------|-------------------------| | d | D | В | $m{r}$ min. | r_1 min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | (mi
Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{r}_{ m a}$ max. | арргох. | | 25 | 62
62 | 17
17 | 1.1
1.1 | 0.6
0.6 | 24 400
27 200 | 14 600
14 900 | 2 490
2 770 | 1 490
1 520 | _ | 9 000
10 000 | 13 000
15 000 | 26.7
26.8 | 32
32 | 55
55 | 1
1 | 0.241
0.229 | | 30 | 47
47
55 | 9
9
13 | 0.3
0.3
1 | 0.15
0.15
0.6 | 7 850
8 300
14 500 | 5 950
6 250
10 100 | 800
845
1 480 | 605
640
1 030 |
15.9
 | 18 000
22 000
13 000 | 24 000
28 000
18 000 | 13.5
9.7
18.8 | 32.5
32.5
36 | 44.5
44.5
49 | 0.3
0.3
1 | 0.049
0.049
0.116 | | | 55
62
62 | 13
16
16 | 1
1
1 | 0.6
0.6
0.6 | 15 100
22 500
20 500 | 10 300
14 800
13 500 | 1 540
2 300
2 090 | 1 050
1 510
1 380 | 14.9
—
— | 19 000
12 000
8 500 | 26 000
17 000
12 000 | 12.2
21.3
27.3 | 36
36
36 | 49
56
56 | 1
1
1 | 0.134
0.197
0.202 | | | 62
62
72 | 16
16
19 | 1
1
1.1 | 0.6
0.6
0.6 | 23 700
23 000
33 500 | 14 300
14 700
20 900 | 2 420
2 350
3 450 | 1 460
1 500
2 130 | 13.9
— | 10 000
18 000
9 000 | 14 000
24 000
12 000 | 27.3
14.2
24.2 | 36
36
37 | 56
56
65 | 1
1
1 | 0.194
0.222
0.346 | | | 72
72 | 19
19 | 1.1
1.1 | 0.6
0.6 | 31 000
36 500 | 19 300
20 600 | 3 150
3 700 | 1 960
2 100 | _ | 8 000
9 000 | 11 000
13 000 | 30.9
30.9 | 37
37 | 65
65 | 1
1 | 0.354
0.336 | | 35 | 55
55
62 | 10
10
14 | 0.6
0.6
1 | 0.3
0.3
0.6 | 11 400
12 100
18 300 | 8 700
9 150
13 400 | 1 170
1 230
1 870 | 885
930
1 370 | _
15.7
_ | 15 000
18 000
12 000 | 20 000
24 000
16 000 | 15.5
11.0
21.0 | 40
40
41 | 50
50
56 | 0.6
0.6
1 | 0.074
0.074
0.153 | | | 62
72
72 | 14
17
17 | 1
1.1
1.1 | 0.6
0.6
0.6 | 19 100
29 700
27 100 | 13 700
20 100
18 400 | 1 950
3 050
2 760 | 1 390
2 050
1 870 | 15.0
—
— | 17 000
10 000
7 500 | 22 000
14 000
10 000 | 13.5
23.9
30.9 | 41
42
42 | 56
65
65 | 1
1
1 | 0.173
0.287
0.294 | | | 72
72
80 | 17
17
21 | 1.1
1.1
1.5 | 0.6
0.6
1 | 32 500
30 500
40 000 | 19 600
19 900
26 300 | 3 300
3 100
4 050 | 1 990
2 030
2 680 | 13.9
— | 8 500
15 000
8 000 | 12 000
20 000
10 000 | 30.9
15.7
27.1 | 42
42
44 | 65
65
71 | 1
1
1.5 | 0.271
0.32
0.464 | | | 80
80 | 21
21 | 1.5
1.5 | 1 | 36 500
40 500 | 24 200
24 400 | 3 750
4 100 | 2 460
2 490 | _ | 7 100
8 000 | 9 500
11 000 | 34.6
34.6 | 44
44 | 71
71 | 1.5
1.5 | 0.474
0.451 | | 40 | 62
62
68 | 12
12
15 | 0.6
0.6
1 | 0.3
0.3
0.6 | 14 300
15 100
19 500 | 11 200
11 700
15 400 | 1 460
1 540
1 990 | 1 140
1 200
1 570 | _
15.7
_ | 14 000
16 000
10 000 | 18 000
22 000
14 000 | 17.9
12.8
23.1 | 45
45
46 | 57
57
62 | 0.6
0.6
1 | 0.11
0.109
0.19 | | | 68
80
80 | 15
18
18 | 1
1.1
1.1 | 0.6
0.6
0.6 | 20 600
35 500
32 000 | 15 900
25 100
23 000 | 2 100
3 600
3 250 | 1 620
2 560
2 340 | 15.4
— | 15 000
9 500
6 700 | 20 000
13 000
9 000 | 14.7
26.3
34.2 | 46
47
47 | 62
73
73 | 1
1
1 | 0.213
0.375
0.383 | Face-to-Face | Notes | (1) | For applications operating near the li | imiting speed, refer to Page B49. | |-------|-----|--|-----------------------------------| |-------|-----|--|-----------------------------------| (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing | Numl | bers (²) | Basi
(1 | c Load Ratings | s (Matched)
{kg | | Speeds (1) | iting
(Matched) | Load (
Spacing | s (mm) | | nent and
nsions (r | | |------------------------------|----------------|--------------|-----------------|----------------------------|-------------------------|-------------------------|----------------------------|----------------------------|----------------------|---------------------|-----------------------------------|-----------------------|-----------------------------------| | Single | [| Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | in ⁻¹)
Oil | а
 | O DF | d _b (³)
min. | $D_{ m b}$ max. | Г _b (³)
max. | | 7305 B
*7305 BE | | DF D | 39 500
— | 29 300
— | 4 050 | 2 980
— | 7 500
8 500 | 10 000
12 000 | 53.5
53.5 | 19.5
19.5 | 30
30 | 57
57 | 0.6
0.6 | | 7906 A5
7906 C
7006 A | DB
DB
DB | DF D
DF D | T 13 500 | 11 900
12 500
20 200 | 1 300
1 380
2 410 | 1 210
1 280
2 060 | 14 000
17 000
11 000 | 19 000
24 000
15 000 | 27.0
19.3
37.5 | 9.0
1.3
11.5 | _
_
35 | 45.8
45.8
50 | 0.15
0.15
0.6 | | 7006 C
7206 A
7206 B | DB
DB
DB | DF D
DF D | T 36 500 | 20 500
29 500
27 000 | 2 510
3 750
3 400 | 2 090
3 000
2 760 | 15 000
10 000
7 100 | 22 000
13 000
9 500 | 24.4
42.6
54.6 | 1.6
10.6
22.6 | —
35
35 | 50
57
57 | 0.6
0.6
0.6 | | *7206 BE
7206 C
7306 A | A
DB
DB | DF D | | 29 300
41 500 | 3 800
5 600 | 2 990
4 250 | 8 000
14 000
7 100 | 11 000
20 000
9 500 | 54.6
28.3
48.4 | 22.6
3.7
10.4 | 35
—
35 | 57
57
67 | 0.6
0.6
0.6 | | 7306 B
*7306 BE | | DF D | T 50 500 | 38 500
— | 5 150
— | 3 950
— | 6 300
7 100 | 8 500
10 000 | 61.8
61.8 | 23.8
23.8 | 35
35 | 67
67 | 0.6
0.6 | | 7907 A5
7907 C
7007 A | DB
DB
DB | DF D
DF D | T 19 600 | 17 400
18 300
26 800 | 1 890
2 000
3 050 | 1 770
1 860
2 740 | 12 000
14 000
9 500 | 17 000
20 000
13 000 | 31.0
22.1
42.0 | 11.0
2.1
14.0 | _
_
40 | 52.5
52.5
57 | 0.3
0.3
0.6 | | 7007 C
7207 A
7207 B | DB
DB
DB | DF D
DF D | T 48 500 | 27 300
40 000
36 500 | 3 150
4 900
4 500 | 2 790
4 100
3 750 | 13 000
8 500
6 000 | 19 000
12 000
8 000 | 27.0
47.9
61.9 | 1.0
13.9
27.9 | -
40
40 | 57
67
67 | 0.6
0.6
0.6 | | *7207BE/
7207 C
7307 A | DB
DB | DF D | | 40 000
52 500 | 5 050
6 600 | 4 050
5 350 | 6 700
12 000
6 300 | 9 500
17 000
8 500 | 61.9
31.3
54.2 | 27.9
2.7
12.2 | 40
—
41 | 67
67
74 | 0.6
0.6
1 | | 7307 B
*7307 BE | | DF D | T 59 500 | 48 500
— | 6 100
— | 4 950
— | 5 600
6 300 | 7 500
9 000 | 69.2
69.2 | 27.2
27.2 | 41
41 | 74
74 | 1
1 | | 7908 A5
7908 C
7008 A | DB
DB
DB | DF D
DF D | T 24 600 | 22 300
23 500
31 000 | 2 370
2 510
3 250 | 2 270
2 390
3 150 | 11 000
13 000
8 500 | 15 000
18 000
11 000 | 35.8
25.7
46.2 | 11.8
1.7
16.2 | _
_
45 | 59.5
59.5
63 | 0.3
0.3
0.6 | | 7008 C
7208 A
7208 B | DB
DB
DB | DF D
DF D | T 57 500 | 32 000
50 500
46 000 | 3 400
5 850
5 300 | 3 250
5 150
4 700 | 12 000
7 500
5 300 | 17 000
10 000
7 500 | 29.5
52.6
68.3 | 0.5
16.6
32.3 | —
45
45 | 63
75
75 | 0.6
0.6
0.6 | | Note | (3) | For box | rings marked | in the colum | on for d | l and n | for abofta | oro d (m | in \ and = | · (may) | roopooth | , alv | | Note (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. DB # SINGLE/MATCHED MOUNTINGS Bore Diameter 40 – 55 mm Face-to-Face Tandem DT Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |-----------|-------------|------|---------|-------------------|---------|-------|---------|------------|---------|-------| | Angle Cor | | e | F_a/I | 7 _r ≦e | F_a/I | r > e | F_a/I | $r \leq e$ | F_a/I | r > e | | Arigie | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 13 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 |
1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For I, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-----------------------|-------|------------|------------|-------------------------------| | Angle | <i>X</i> ₀ | Y_0 | X 0 | Y 0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_{\rm r} > 0.5 F_{\rm r} +$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | | Single or DT | |---|-------------------------| | | mounting | | _ | When | | | $F_r > 0.5F_r + Y_0F_a$ | | | use $P_0 = F_r$ | | | 0 -1 | | | | | Во | oundar | y Dim
(mm) | | ons | Basic Load Ratings (Single) (N) $\{kgf\}$ C_r C_0 C_r C_0 | | | Factor | | iting
ds (¹)
n-¹) | Eff.Load
Centers | | nent and
nsions | | Mass
(kg) | | |----|-----------------|----------------|-------------------|-------------------|---|----------------------------|-------------------------|-------------------------|----------------|---------------------------|----------------------------|----------------------|--------------------|-----------------|---|-------------------------| | d | D | В | $m{r}$ min. | $r_{ m 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | арргох. | | 40 | 80
80
90 | 18
18
23 | 1.1 | 0.6
0.6
1 | 38 500
36 500
49 000 | 24 500
25 200
33 000 | 3 900
3 700
5 000 | 2 500
2 570
3 350 | 14.1
— | 7 500
14 000
7 100 | 11 000
19 000
9 000 | 34.2
17.0
30.3 | 47
47
49 | 73
73
81 | 1
1
1.5 | 0.357
0.418
0.633 | | | 90
90 | 23
23 | | 1
1 | 45 000
53 000 | 30 500
33 000 | 4 550
5 400 | 3 100
3 350 | _ | 6 300
7 100 | 8 500
10 000 | 38.8
38.8 | 49
49 | 81
81 | 1.5
1.5 | 0.648
0.619 | | 45 | 68
68
75 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 15 100
16 000
23 100 | 12 700
13 400
18 700 | 1 540
1 630
2 360 | 1 290
1 360
1 910 | 16.0
— | 12 000
14 000
9 500 | 17 000
20 000
13 000 | 19.2
13.6
25.3 | 50
50
51 | 63
63
69 | 0.6
0.6
1 | 0.13
0.129
0.25 | | | 75
85
85 | 16
19
19 | 1
1.1
1.1 | 0.6
0.6
0.6 | 24 400
39 500
36 000 | 19 300
28 700
26 200 | 2 490
4 050
3 650 | 1 960
2 930
2 680 | 15.4
—
— | 14 000
8 500
6 300 | 19 000
12 000
8 500 | 16.0
28.3
36.8 | 51
52
52 | 69
78
78 | 1
1
1 | 0.274
0.411
0.421 | | | 85
85
100 | 19
19
25 | 1.1
1.1
1.5 | 0.6
0.6
1 | 40 500
41 000
63 500 | 27 100
28 800
43 500 | 4 100
4 150
6 450 | 2 760
2 940
4 450 | 14.2
— | 7 100
12 000
6 300 | 10 000
17 000
8 500 | 36.8
18.2
33.4 | 52
52
54 | 78
78
91 | 1
1
1.5 | 0.40
0.468
0.848 | | | 100
100 | 25
25 | 1.5
1.5 | 1
1 | 58 500
62 500 | 40 000
39 500 | 5 950
6 400 | 4 100
4 050 | _ | 5 600
6 300 | 7 500
9 000 | 42.9
42.9 | 54
54 | 91
91 | 1.5
1.5 | 0.869
0.823 | | 50 | 72
72
80 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 15 900
16 900
24 500 | 14 200
15 000
21 100 | 1 630
1 720
2 500 | 1 450
1 530
2 150 | 16.2
— | 11 000
13 000
8 500 | 15 000
18 000
12 000 | 20.2
14.2
26.8 | 55
55
56 | 67
67
74 | 0.6
0.6
1 | 0.132
0.13
0.263 | | | 80
90
90 | 16
20
20 | 1
1.1
1.1 | 0.6
0.6
0.6 | 26 000
41 500
37 500 | 21 900
31 500
28 600 | 2 650
4 200
3 800 | 2 230
3 200
2 920 | 15.7
—
— | 12 000
8 000
5 600 | 17 000
11 000
8 000 | 16.7
30.2
39.4 | 56
57
57 | 74
83
83 | 1
1
1 | 0.293
0.466
0.477 | | | 90
90
110 | 20
20
27 | 1.1
1.1
2 | 0.6
0.6
1 | 42 000
43 000
74 000 | 29 700
31 500
52 000 | 4 300
4 350
7 550 | 3 050
3 250
5 300 | 14.5
— | 6 300
12 000
5 600 | 9 500
16 000
7 500 | 39.4
19.4
36.6 | 57
57
60 | 83
83
100 | 1
1
2 | 0.453
0.528
1.1 | | | 110
110 | 27
27 | 2 | 1
1 | 68 000
78 000 | 48 000
50 500 | 6 950
7 950 | 4 900
5 150 | _
_ | 5 000
5 600 | 6 700
8 000 | 47.1
47.1 | 60
60 | 100
100 | 2 | 1.12
1.07 | | 55 | 80
80
90 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 18 100
19 100
32 500 | 16 800
17 700
27 700 | 1 840
1 950
3 300 | 1 710
1 810
2 830 | _
16.3
_ | 10 000
12 000
7 500 | 14 000
16 000
11 000 | 22.2
15.5
29.9 | 61
61
62 | 74
74
83 | 1
1
1 | 0.184
0.182
0.391 | | Notes (| (1) | For applications | operating near th | e limiting speed, | refer to Page B49. | |---------|-----|------------------|-------------------|-------------------|--------------------| |---------|-----|------------------|-------------------|-------------------|--------------------| (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing | Numbers (²) | Ва | asic Load Ratir
(N) | ngs (Matched
{kg | | Speeds (1) | iting
(Matched) | Spacing | Center
gs (mm) | | nent and
nsions (r | | |-------------------------------|-------------|----------------------------------|------------------------|-------------------------|-------------------------|--------------------------|----------------------------|----------------------|---------------------|--------------------------------|-----------------------|-----------------------------------| | Single | Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | in ⁻¹)
Oil | DB | DF | d _b (³) min. | $D_{ m b}$ max. | Г _b (³)
max. | | *7208 BEA
7208 C
7308 A | DB DF D | T 59 000
T 79 500 | | 6 000
8 100 | 5 150
6 700 | 6 000
11 000
5 600 | 8 500
15 000
7 500 | 68.3
34.1
60.5 | 32.3
1.9
14.5 | 45
—
46 | 75
75
84 | 0.6
0.6
1 | | 7308 B
*7308 BE | DB DF D | 73 000
- | 60 500 | 7 400 | 6 200
— | 5 000
5 600 | 6 700
8 000 | 77.5
77.5 | 31.5
31.5 | 46
46 | 84
84 | 1
1 | | 7909 A5
7909 C
7009 A | DB DF D | 24 600
T 26 000
T 37 500 | 26 800 | 2 510
2 660
3 850 | 2 590
2 730
3 800 | 9 500
12 000
7 500 | 13 000
16 000
10 000 | 38.4
27.1
50.6 | 14.4
3.1
18.6 | —
—
50 | 65.5
65.5
70 | 0.3
0.3
0.6 | | 7009 C
7209 A
7209 B | DB DF D | 39 500
0T 64 500
0T 58 500 | 57 500 | 4 050
6 550
5 950 | 3 950
5 850
5 350 | 11 000
7 100
5 000 | 15 000
9 500
6 700 | 32.1
56.5
73.5 | 0.1
18.5
35.5 |
50
50 | 70
80
80 | 0.6
0.6
0.6 | | *7209 BEA
7209 C
7309 A | DB DF D | T 66 500
T 103 000 | | 6 750
10 500 | 5 850
8 900 | 5 600
10 000
5 000 | 8 000
14 000
6 700 | 73.5
36.4
66.9 | 35.5
1.6
16.9 | 50
—
51 | 80
80
94 | 0.6
0.6
1 | | 7309 B
*7309 BE | DB DF DA | 95 000
- | 80 500 | 9 650
— | 8 200
— | 4 500
5 000 | 6 000
7 100 | 85.8
85.8 | 35.8
35.8 | 51
51 | 94
94 | 1
1 | | 7910 A5
7910 C
7010 A | DB DF D | 25 900
27 27 400
40 000 | 30 000 | 2 640
2 800
4 050 | 2 900
3 050
4 300 | 9 000
11 000
7 100 | 12 000
15 000
9 500 | 40.5
28.3
53.5 | 16.5
4.3
21.5 | —
—
55 | 69.5
69.5
75 | 0.3
0.3
0.6 | | 7010 C
7210 A
7210 B | DB DF D | 42 000
T 67 000
T 60 500 | 63 000 | 4 300
6 850
6 200 | 4 450
6 400
5 850 | 10 000
6 300
4 500 | 14 000
9 000
6 300 | 33.4
60.4
78.7 | 1.4
20.4
38.7 | —
55
55 | 75
85
85 | 0.6
0.6
0.6 | | *7210 BEA
7210 C
7310 A | DB DF D | 69 500
T 121 000 | | 7 100
12 300 | 6 450
10 600 | 5 000
9 500
4 500 | 7 500
13 000
6 000 | 78.7
38.7
73.2 | 38.7
1.3
19.2 | 55
—
56 | 85
85
104 | 0.6
0.6
1 | | 7310 B
*7310 BE | | 111 000
- | 96 000 | 11 300
— | 9 800
— | 4 000
4 500 | 5 600
6 700 | 94.1
94.1 | 40.1
40.1 | 56
56 | 104
104 | 1
1 | | 7911 A5
7911 C
7011 A | DB DF D | 29 300
T 31 000
T 52 500 | 35 500 | 2 990
3 150
5 350 | 3 400
3 600
5 650 | 8 000
9 500
6 300 | 11 000
13 000
8 500 | 44.5
31.1
59.9 | 18.5
5.1
23.9 | —
—
60 | 75
75
85 | 0.6
0.6
0.6 | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. # SINGLE/MATCHED MOUNTINGS Bore Diameter 55 – 65 mm Single Back-to-Back DB Face-to-Face DF DT | Camban | * | | | Singl | e, DT | | | DB c | or DF | | |---------|--------|------|--------|--------|-------|------|----|------|-------|------| | Contact | | | a/ | r≦ | a/ | r> | a/ | r≦ | a/ | r> | | Angle | Cor | | | | | | | | | | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 |
1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15. | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | * | 1100 3 | f DD | DF === | 1 f DT | | | | | | | *For , use 2 for DB, DF and 1 for DT Dynamic Equivalent Load = r + a | Contact | Singl | e, DT | DB c | r DF | | |---------|-------|-------|------|------|------------------| | Angle | 0 | 0 | 0 | 0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | r>0.5 r | | 30° | 0.5 | 0.33 | 1 | 0.66 | use 0= r | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | Bearing | Numbers (²) | Basi
(1 | ic Load Rating
N) | ıs (Matched
{kç | | Speeds (1) | iting
(Matched) | Load (
Spacing | s (mm) | | nent and
nsions (| | |------------------------------|---------------------------|------------|------------------------------|---------------------------|---------------------------|-------------------------|---------------------------|-----------------------|---------------------|-----------------------------------|----------------------|-----------------------------------| | Single | Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | n ⁻¹)
Oil | DB | O
DF | d _b (3)
min. | $D_{ m b}$ max. | Γ _b (³)
max. | | 7011 C
7211 A
7211 B | DB DF DT DB DF DT | 83 000 | 57 500
79 000
72 000 | 5 650
8 450
7 650 | 5 850
8 050
7 350 | 9 000
6 000
4 000 | 12 000
8 000
5 600 | 37.4
65.7
86.0 | 1.4
23.7
44.0 | —
61
61 | 85
94
94 | 0.6
1
1 | | *7211 BE
7211 C
7311 A | A
DB DF D1
DB DF D1 | | 80 000
123 000 | 8 800
14 200 | 8 150
12 500 | 4 500
8 500
4 000 | 6 700
12 000
5 600 | 86.0
41.7
79.5 | 44.0
0.3
21.5 | 61
—
61 | 94
94
114 | 1
1
1 | | 7311 B
*7311 BE | DB DF D1 | 128 000 | 113 000 | 13 100
— | 11 500
— | 3 600
4 000 | 5 000
6 000 | 102.4
102.4 | 44.4
44.4 | 61
61 | 114
114 | 1
1 | | 7912 A5
7912 C
7012 A | DB DF DT DB DF DT | 31 500 | 35 500
37 500
59 000 | 3 050
3 200
5 450 | 3 600
3 800
6 000 | 7 500
9 000
6 000 | 10 000
12 000
8 000 | 46.8
32.4
62.7 | 20.8
6.4
26.7 | —
—
65 | 80
80
90 | 0.6
0.6
0.6 | | 7012 C
7212 A
7212 B | DB DF DT DB DF DT | 100 000 | 61 500
97 500
89 000 | 5 800
10 200
9 300 | 6 250
9 950
9 050 | 8 500
5 300
3 800 | 12 000
7 100
5 300 | 38.8
71.1
93.3 | 2.8
27.1
49.3 | —
66
66 | 90
104
104 | 0.6
1
1 | | *7212 BE
7212 C
7312 A | A
DB DF D1
DB DF D1 | | 98 500
143 000 | 10 600
16 200 | 10 000
14 500 | 4 300
7 500
3 800 | 6 000
11 000
5 000 | 93.3
44.8
85.9 | 49.3
0.8
23.9 | 66
—
67 | 104
104
123 | 1
1
1 | | 7312 B
*7312 BE | DB DF DT | 146 000 | 131 000 | 14 900
— | 13 400
— | 3 400
3 800 | 4 500
5 600 | 110.7
110.7 | 48.7
48.7 | 67
67 | 123
123 | 1
1 | | 7913 A5
7913 C
7013 A | DB DF DT DB DF DT | 33 000 | 39 000
41 000
65 500 | 3 150
3 350
5 750 | 3 950
4 200
6 700 | 7 100
8 500
5 600 | 9 500
12 000
7 500 | 49.1
33.8
65.6 | 23.1
7.8
29.6 | —
—
70 | 85
85
95 | 0.6
0.6
0.6 | | 7013 C
7213 A
7213 B | DB DF DT DB DF DT | 114 000 | 68 500
116 000
105 000 | 6 150
11 600
10 500 | 7 000
11 800
10 700 | 8 000
4 800
3 400 | 11 000
6 700
4 800 | 40.1
76.4
100.6 | 4.1
30.4
54.6 | —
71
71 | 95
114
114 | 0.6
1
1 | | *7213 BE
7213 C
7313 A | A
DB DF D1
DB DF D1 | | 117 000
164 000 | 12 100
18 400 | 12 000
16 700 | 3 800
7 100
3 600 | 5 600
9 500
4 800 | 100.6
47.8
92.2 | 54.6
1.8
26.2 | 71
—
72 | 114
114
133 | 1
1
1 | | 7313 B
*7313 BE | DB DF DT | 166 000 | 151 000
— | 16 900
— | 15 400
— | 3 200
3 600 | 4 300
5 000 | 119.0
119.0 | 53.0
53.0 | 72
72 | 133
133 | 1
1 | Note (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. | Во | oundar
(| y Dim
mm) | | ns | (N) $\{kgf\}$ $C_{\rm r}$ $C_{\rm 0r}$ $C_{\rm r}$ $C_{\rm 0r}$ | | | Factor | Limi
Spee
(mi | ds (¹) | Eff.Load
Centers
(mm) | | nent and
nsions (| | Mass
(kg) | | |----|-------------------|----------------|-------------------|-------------------|---|----------------------------|--------------------------|-------------------------|---------------------|--------------------------|-----------------------------|----------------------|----------------------|-------------------|--------------------|-------------------------| | d | D | В | $m{r}$ min. | $r_{ m 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | 0 | Grease | '' ['] Oil | a | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{r}_{ m a}$ max. | арргох. | | 55 | 90
100
100 | 18
21
21 | 1.1
1.5
1.5 | 0.6
1
1 | 34 000
51 000
46 500 | 28 600
39 500
36 000 | 3 500
5 200
4 700 | 2 920
4 050
3 700 | 15.5
— | 11 000
7 100
5 300 | 15 000
10 000
7 100 | 18.7
32.9
43.0 | 62
64
64 | 83
91
91 | 1
1.5
1.5 | 0.43
0.613
0.627 | | | 100
100
120 | 21
21
29 | 1.5
1.5
2 | 1
1
1 | 51 500
53 000
86 000 | 37 000
40 000
61 500 | 5 250
5 400
8 750 | 3 800
4 100
6 250 | 14.5
— | 6 000
10 000
5 000 | 8 500
14 000
6 700 | 43.0
20.9
39.8 | 64
64
65 | 91
91
110 | 1.5
1.5
2 | 0.596
0.688
1.41 | | | 120
120 | 29
29 | 2 | 1 | 79 000
89 000 | 56 500
58 500 | 8 050
9 100 | 5 750
6 000 | _ | 4 500
5 000 | 6 300
7 500 | 51.2
51.2 | 65
65 | 110
110 | 2 | 1.45
1.36 | | 60 | 85
85
95 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 18 300
19 400
33 000 | 17 700
18 700
29 500 | 1 870
1 980
3 350 | 1 810
1 910
3 000 | 16.5
— | 9 500
11 000
7 100 | 13 000
15 000
10 000 | 23.4
16.2
31.4 | 66
66
67 | 79
79
88 | 1
1
1 | 0.197
0.194
0.417 | | | 95
110
110 | 18
22
22 | 1.1
1.5
1.5 | 0.6
1
1 | 35 000
62 000
56 000 | 30 500
48 500
44 500 | 3 600
6 300
5 700 | 3 150
4 950
4 550 | 15.7
—
— | 10 000
6 700
4 800 | 14 000
9 000
6 300 | 19.4
35.5
46.7 | 67
69
69 | 88
101
101 | 1
1.5
1.5 | 0.46
0.798
0.815 | | | 110
110
130 | 22
22
31 | 1.5
1.5
2.1 | 1
1
1.1 | 61 500
64 000
98 000 | 45 000
49 000
71 500 | 6 300
6 550
10 000 | 4 600
5 000
7 250 | 14.4
— | 5 300
9 500
4 800 | 7 500
13 000
6 300 | 46.7
22.4
42.9 | 69
69
72 | 101
101
118 | 1.5
1.5
2 | 0.791
0.889
1.74 | | | 130
130 | 31
31 | 2.1
2.1 | 1.1
1.1 | 90 000
102 000 | 65 500
68 500 | 9 200
10 500 | 6 700
7 000 | _ | 4 300
4 800 | 5 600
6 700 | 55.4
55.4 | 72
72 | 118
118 | 2 | 1.78
1.7 | | 65 | 90
90
100 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 19 100
20 200
35 000 | 19 400
20 500
33 000 | 1 940
2 060
3 550 | 1 980
2 090
3 350 | 16.7
— | 9 000
10 000
6 700 | 12 000
14 000
9 500 | 24.6
16.9
32.8 | 71
71
72 | 84
84
93 | 1
1
1 | 0.211
0.208
0.455 | | | 100
120
120 | 18
23
23 | 1.1
1.5
1.5 | 0.6
1
1 | 37 000
70 500
63 500 | 34 500
58 000
52 500 | 3 800
7 150
6 500 | 3 500
5 900
5 350 | 15.9
—
— | 10 000
6 000
4 300 | 13 000
8 500
6 000 | 20.0
38.2
50.3 | 72
74
74 | 93
111
111 | 1
1.5
1.5 | 0.493
1.03
1.05 | | | 120
120
140 | 23
23
33 | 1.5
1.5
2.1 | 1
1
1.1 | 70 000
73 000
111 000 | 53 500
58 500
82 000 | 7 150
7 450
11 300 | 5 450
6 000
8 350 | 14.6
— | 4 800
9 000
4 300 | 7 100
12 000
6 000 | 50.3
23.9
46.1 | 74
74
77 | 111
111
128 | 1.5
1.5
2 | 1.01
1.14
2.12 | | | 140
140 | 33
33 | 2.1
2.1 | 1.1
1.1 | 102 000
114 000 | 75 500
77 000 | 10 400
11 600 | 7 700
7 850 | _ | 3 800
4 300 | 5 300
6 300 | 59.5
59.5 | 77
77 | 128
128 | 2 2 | 2.17
2.09 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. # SINGLE/MATCHED MOUNTINGS Back-to-Back DB Single Tandem DT Dynamic Equivalent Load $P = XF_r + YF_a$ | if E* | | | Singl | e, DT | | | DB c | r DF | | |-------|--|--
---|---|---|---|---|---|---| | | e | F_a/I | 7 _r ≦e | F_a/I | r > e | F_a/I | $r \leq e$ | F_a/I | r > e | | Cor | | X | Y | X | Y | X | Y | X | Y | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | 0.357
0.714
1.07
1.43
2.14
3.57 | Cor e 0.178 0.38 0.357 0.40 0.714 0.43 1.07 0.46 1.43 0.47 2.14 0.50 3.57 0.55 5.38 0.56 — 0.68 — 0.80 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-----------------------|------------|------------|------------|---------------------------| | Angle | <i>X</i> ₀ | Y 0 | X 0 | Y 0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5 F_r + Y_0 F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | 0 1 | | Bear | ring Numb | ers (²) | Basio
(N | c Load Rating | s (Matched
{kg | | | iting
(Matched) | Load (
Spacing
<i>a</i> | s (mm) | | nent and
nsions (| | |-------------------------------|--------------|-------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|---------------------------------|-----------------------------|-----------------------------------|--------------------------|-----------------------------------| | Singl | le D | uplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | DB | O DF | d _b (³)
min. | $D_{ m b}$ max. | Γ _b (³)
max. | | 7914
7914
7014 | C DB | DF DT
DF DT
DF DT | 43 000
45 500
71 500 | 52 500
55 500
82 500 | 4 400
4 650
7 300 | 5 350
5 650
8 450 | 6 300
7 500
5 000 | 9 000
11 000
6 700 | 55.6
38.8
72.0 | 23.6
6.8
32.0 | —
—
75 | 95
95
105 | 0.6
0.6
0.6 | | 7014
7214
7214 | A DB | DF DT | 76 000
124 000
112 000 | 86 000
127 000
116 000 | 7 750
12 600
11 500 | 8 750
13 000
11 800 | 7 100
4 500
3 200 | 10 000
6 300
4 500 | 44.1
80.3
105.8 | 4.1
32.3
57.8 | —
76
76 | 105
119
119 | 0.6
1
1 | | *7214
7214
7314 | C DB | DF DT
DF DT | 129 000
203 000 | 129 000
187 000 | 13 200
20 700 | 13 200
19 100 | 3 600
6 700
3 200 | 5 300
9 000
4 300 | 105.8
50.1
98.5 | 57.8
2.1
28.5 | 76
—
77 | 119
119
143 | 1
1
1 | | 7314
*7314 | | DF DT | 186 000
— | 172 000
— | 19 000
— | 17 500
— | 2 800
3 200 | 4 000
4 800 | 127.3
127.3 | 57.3
57.3 | 77
77 | 143
143 | 1
1 | | 7915
7915
7015 | C DB | DF DT
DF DT
DF DT | 44 000
46 500
73 000 | 55 500
58 500
87 500 | 4 450
4 750
7 450 | 5 650
5 950
8 900 | 6 000
7 100
4 800 | 8 500
10 000
6 700 | 58.0
40.1
74.8 | 26.0
8.1
34.8 | —
80 | 100
100
110 | 0.6
0.6
0.6 | | 7015
7215
7215 | A DB | DF DT
DF DT
DF DT | 78 000
123 000
112 000 | 91 500
129 000
117 000 | 7 950
12 600
11 400 | 9 300
13 100
11 900 | 6 700
4 300
3 200 | 9 500
6 000
4 300 | 45.4
84.2
111.0 | 5.4
34.2
61.0 | 81
81 | 110
124
124 | 0.6
1
1 | | *7215
7215
7315
7315 | C DB
A DB | DF DT
DF DT
DF DT | 134 000
221 000
202 000 | 140 000
212 000
195 000 | 13 700
22 500
20 600 | 14 200
21 600
19 800 | 3 600
6 300
3 000
2 800 | 5 000
9 000
4 000
3 800 | 111.0
52.4
104.8
135.6 | 61.0
2.4
30.8
61.6 | 81
—
82
82 | 124
124
153
153 | 1
1
1 | | 7916
7916
7016 | C DB | DF DT
DF DT
DF DT | 44 500
47 000
89 500 | 58 000
61 500
106 000 | 4 550
4 800
9 150 | 5 900
6 250
10 800 | 5 600
6 700
4 300 | 8 000
9 500
6 000 | 60.3
41.5
81.2 | 28.3
9.5
37.2 | —
—
85 | 105
105
120 | 0.6
0.6
0.6 | | 7016
7216
7216 | A DB | DF DT | 95 500
145 000
131 000 | 111 000
152 000
139 000 | 9 700
14 700
13 300 | 11 300
15 600
14 100 | 6 300
4 000
2 800 | 9 000
5 600
4 000 | 49.4
89.5
118.3 | 5.4
37.5
66.3 | —
86
86 | 120
134
134 | 0.6
1
1 | | *7216
7216
7316
7316 | C DB
A DB | DF DT
DF DT
DF DT | 151 000
239 000
219 000 | 155 000
238 000
218 000 | 15 400
24 400
22 400 | 15 800
24 200
22 300 | 3 200
6 000
2 800
2 600 | 4 800
8 000
3 800
3 400 | 118.3
55.5
111.2
143.9 | 66.3
3.5
33.2
65.9 | 86
—
87
87 | 134
134
163
163 | 1
1
1
1 | Note (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. Remarks The bearings denoted by an asterisk (*) are NSKHPS Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. | В | oundar
(| y Dim
mm) | nensio | ons | (N) {kgf} | | | Factor | Lim
Spee | ds (¹) | Eff.Load
Centers | | nent and
nsions | | Mass
(kg) | | |----|--------------------------|----------------------|--------------------------|---------------------------------|--|---------------------------------------|------------------------------------|-----------------------------------|-------------|----------------------------------|-----------------------------------|------------------------------|----------------------|--------------------------|----------------------|------------------------------| | d | D | В | $m{r}$ min. | $r_{\scriptscriptstyle 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | n ⁻¹)
Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | арргох. | | 70 | 100 | 16 | 1 | 0.6 | 26 500 | 26 300 | 2 710 | 2 680 | _ | 8 000 | 11 000 | 27.8 | 76 | 94 | 1 | 0.341 | | | 100 | 16 | 1 | 0.6 | 28 100 | 27 800 | 2 870 | 2 830 | 16.4 | 9 500 | 13 000 | 19.4 | 76 | 94 | 1 | 0.338 | | | 110 | 20 | 1.1 | 0.6 | 44 000 | 41 500 | 4 500 | 4 200 | _ | 6 300 | 8 500 | 36.0 | 77 | 103 | 1 | 0.625 | | | 110 | 20 | 1.1 | 0.6 | 47 000 | 43 000 | 4 800 | 4 400 | 15.7 | 9 000 | 12 000 | 22.1 | 77 | 103 | 1 | 0.698 | | | 125 | 24 | 1.5 | 1 | 76 500 | 63 500 | 7 800 | 6 500 | — | 5 600 | 8 000 | 40.1 | 79 | 116 | 1.5 | 1.11 | | | 125 | 24 | 1.5 | 1 | 69 000 | 58 000 | 7 050 | 5 900 | — | 4 000 | 5 600 | 52.9 | 79 | 116 | 1.5 | 1.14 | | | 125
125
150 | 24
24
35 | 1.5
1.5
2.1 | 1
1
1.1 | 75 500
79 500
125 000 | 58 500
64 500
93 500 | 7 700
8 100
12 700 | 6 000
6 600
9 550 | 14.6
— | 4 500
8 500
4 000 | 6 700
11 000
5 300 | 52.9
25.1
49.3 | 79
79
82 | 116
116
138 | 1.5
1.5
2 | 1.08
1.24
2.6 | | | 150
150 | 35
35 | 2.1
2.1 | 1.1
1.1 | 114 000
124 000 | 86 000
87 500 | 11 700
12 600 | 8 750
8 900 | _ | 3 600
4 000 | 5 000
6 000 | 63.6
63.7 | 82
82 | 138
138 | 2 | 2.65
2.53 | | 75 | 105 | 16 | 1 | 0.6 | 26 900 | 27 700 | 2 750 | 2 820 | — | 7 500 | 10 000 | 29.0 | 81 | 99 | 1 | 0.355 | | | 105 | 16 | 1 | 0.6 | 28 600 | 29 300 | 2 910 | 2 980 | 16.6 | 9 000 | 12 000 | 20.1 | 81 | 99 | 1 | 0.357 | | | 115 | 20 | 1.1 | 0.6 | 45 000 | 43 500 | 4 600 | 4 450 | — | 6 000 | 8 000 | 37.4 | 82 | 108 | 1 | 0.661 | | | 115 | 20 | 1.1 | 0.6 | 48 000 | 45 500 | 4 900 | 4 650 | 15.9 | 8 500 | 12 000 | 22.7 | 82 | 108 | 1 | 0.748 | | | 130 | 25 | 1.5 | 1 | 76 000 | 64 500 | 7 750 | 6 550 | — | 5 600 | 7 500 | 42.1 | 84 | 121 | 1.5 | 1.19 | | | 130 | 25 | 1.5 | 1 | 68 500 | 58 500 | 7 000 | 5 950 | — | 3 800 | 5 300 | 55.5 | 84 | 121 | 1.5 | 1.22 | | | 130
130
160
160 | 25
25
37
37 | 1.5
1.5
2.1
2.1 | 1
1
1.1
1.1 | 78 500
83 000
136 000
125 000 | 63 500
70 000
106 000
97 500 | 8 000
8 450
13 800
12 700 | 6 450
7 100
10 800
9 900 | 14.8
— | 4 300
8 000
3 800
3 400 | 6 300
11 000
5 000
4 800 | 55.5
26.2
52.4
67.8 | 84
84
87
87 | 121
121
148
148 | 1.5
1.5
2
2 | 1.18
1.36
3.13
3.19 | | 80 | 110 | 16 | 1 | 0.6 | 27 300 | 29 000 | 2 790 | 2 960 | _ | 7 100 | 10 000 | 30.2 | 86 | 104 | 1 | 0.38 | | | 110 | 16 | 1 | 0.6 | 29 000 | 30 500 | 2 960 | 3 150 | 16.7 | 8 500 | 12 000 | 20.7 | 86 | 104 | 1 | 0.376 | | | 125 | 22 | 1.1 | 0.6 | 55 000 | 53 000 | 5 650 | 5 400 | _ | 5 600 | 7 500 | 40.6 | 87 | 118 | 1 | 0.88 | | | 125 | 22 | 1.1 | 0.6 | 58 500 | 55 500 | 6 000 | 5 650 | 15.7 | 8 000 | 11 000 | 24.7 | 87 | 118 | 1 | 0.966 | | | 140 | 26 | 2 | 1 | 89 000 | 76 000 | 9 100 | 7 750 | — | 5 000 | 7 100 | 44.8 | 90
 130 | 2 | 1.46 | | | 140 | 26 | 2 | 1 | 80 500 | 69 500 | 8 200 | 7 050 | — | 3 600 | 5 000 | 59.1 | 90 | 130 | 2 | 1.49 | | | 140 | 26 | 2 | 1 | 87 500 | 70 000 | 8 950 | 7 150 | | 4 000 | 6 000 | 59.2 | 90 | 130 | 2 | 1.42 | | | 140 | 26 | 2 | 1 | 93 000 | 77 500 | 9 450 | 7 900 | 14.7 | 7 500 | 10 000 | 27.7 | 90 | 130 | 2 | 1.63 | | | 170 | 39 | 2.1 | 1.1 | 147 000 | 119 000 | 15 000 | 12 100 | | 3 600 | 4 800 | 55.6 | 92 | 158 | 2 | 3.71 | | | 170 | 39 | 2.1 | 1.1 | 135 000 | 109 000 | 13 800 | 11 100 | | 3 200 | 4 300 | 71.9 | 92 | 158 | 2 | 3.79 | Face-to-Face | Notes | (1) | For applications | operating near | the limiting speed, re | fer to Page B49 . | |-------|-----|------------------|----------------|------------------------|--------------------------| |-------|-----|------------------|----------------|------------------------|--------------------------| ⁽²⁾ The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. ### SINGLE/MATCHED MOUNTINGS Bore Diameter 85 – 100 mm Back-to-Back Face-to-Face DF Factor Eff.Load Abutment and Fillet Mass Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | if ₀ F _a * | | | Single, DT | | | | DB or DF | | | | |---------|----------------------------------|------|------------------|------------|---------------|------|------------------|----------|---------|-------|--| | | | e | $F_a/F_r \leq e$ | | $F_a/F_r > e$ | | $F_a/F_r \leq e$ | | F_a/I | r > e | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | | 13. | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | | | | | | | | | | | | | *For I, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | or DF | | |---------|-----------------------|------------|------------|------------|-------------------------| | Angle | <i>X</i> ₀ | Y 0 | X 0 | Y 0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting
When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_r > 0.5F_r + Y_0F_a$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | 0 -1 | | Bearing | Numbers (2) | Basi
(N | c Load Rating | s (Matched)
{kg | | Limii
Speeds (¹)
(mir | (Matched) | Load (
Spacing
<i>a</i> | s (mm) | | nent and
nsions (| | |----------------------------|----------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-----------------------------|-------------------------|-------------------------------|---------------------|-----------------------------------|----------------------|-----------------------------------| | Single | Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | DB | O DF | d _b (3)
min. | $D_{ m b}$ max. | r _b (³)
max. | | 7917 A5 | DB DF DT | 59 500 | 77 000 | 6 100 | 7 850 | 5 300 | 7 500 | 65.8 | 29.8 | — | 115 | 0.6 | | 7917 C | DB DF DT | 63 000 | 81 500 | 6 450 | 8 300 | 6 300 | 9 000 | 45.5 | 9.5 | — | 115 | 0.6 | | 7017 A | DB DF DT | 91 500 | 112 000 | 9 350 | 11 400 | 4 300 | 5 600 | 84.1 | 40.1 | 90 | 125 | 0.6 | | 7017 C
7217 A
7217 B | DB DF DT
DB DF DT
DB DF DT | 98 000
167 000
151 000 | 117 000
178 000
162 000 | 9 950
17 100
15 400 | 12 000
18 200
16 500 | 6 000
3 800
2 800 | 8 500
5 300
3 800 | 50.8
95.8
126.6 | 6.8
39.8
70.6 | 91
91 | 125
144
144 | 0.6
1
1 | | 7217 C
7317 A
7317 B | DB DF DT
DB DF DT
DB DF DT | 174 000
258 000
236 000 | 181 000
265 000
244 000 | 17 800
26 300
24 100 | 18 500
27 000
24 800 | 5 600
2 600
2 400 | 7 500
3 600
3 200 | 59.5
117.5
152.2 | 3.5
35.5
70.2 | 92
92 | 144
173
173 | 1
1
1 | | 7918 A5 | DB DF DT | 64 000 | 87 000 | 6 500 | 8 900 | 5 000 | 7 100 | 68.1 | 32.1 | — | 120 | 0.6 | | 7918 C | DB DF DT | 67 500 | 92 000 | 6 900 | 9 400 | 6 000 | 8 500 | 46.8 | 10.8 | — | 120 | 0.6 | | 7018 A | DB DF DT | 109 000 | 133 000 | 11 200 | 13 500 | 3 800 | 5 300 | 90.4 | 42.4 | 96 | 134 | 1 | | 7018 C | DB DF DT | 116 000 | 138 000 | 11 900 | 14 100 | 5 600 | 8 000 | 54.8 | 6.8 | — | 134 | 1 | | 7218 A | DB DF DT | 191 000 | 206 000 | 19 500 | 21 000 | 3 600 | 5 000 | 102.2 | 42.2 | 96 | 154 | 1 | | 7218 B | DB DF DT | 173 000 | 188 000 | 17 700 | 19 100 | 2 600 | 3 400 | 134.9 | 74.9 | 96 | 154 | 1 | | 7218 C | DB DF DT | 199 000 | 209 000 | 20 300 | 21 400 | 5 300 | 7 100 | 63.5 | 3.5 | — | 154 | 1 | | 7318 A | DB DF DT | 277 000 | 294 000 | 28 300 | 30 000 | 2 600 | 3 400 | 123.8 | 37.8 | 97 | 183 | 1 | | 7318 B | DB DF DT | 254 000 | 270 000 | 25 900 | 27 600 | 2 200 | 3 000 | 160.5 | 74.5 | 97 | 183 | 1 | | 7919 A5 | DB DF DT | 64 500 | 91 000 | 6 600 | 9 250 | 4 800 | 6 700 | 70.5 | 34.5 | _ | 125 | 0.6 | | 7919 C | DB DF DT | 68 500 | 96 000 | 7 000 | 9 800 | 5 600 | 8 000 | 48.1 | 12.1 | _ | 125 | 0.6 | | 7019 A | DB DF DT | 109 000 | 134 000 | 11 100 | 13 600 | 3 800 | 5 000 | 93.3 | 45.3 | _ | 139 | 1 | | 7019 C | DB DF DT | 119 000 | 146 000 | 12 200 | 14 900 | 5 300 | 7 500 | 56.1 | 8.1 | — | 139 | 1 | | 7219 A | DB DF DT | 208 000 | 221 000 | 21 200 | 22 600 | 3 400 | 4 500 | 108.5 | 44.5 | 102 | 163 | 1 | | 7219 B | DB DF DT | 188 000 | 202 000 | 19 200 | 20 500 | 2 400 | 3 200 | 143.2 | 79.2 | 102 | 163 | 1 | | 7219 C | DB DF DT | 216 000 | 224 000 | 22 000 | 22 800 | 4 800 | 6 700 | 67.5 | 3.5 | — | 163 | 1 | | 7319 A | DB DF DT | 297 000 | 325 000 | 30 500 | 33 000 | 2 400 | 3 200 | 130.2 | 40.2 | 102 | 193 | 1 | | 7319 B | DB DF DT | 272 000 | 298 000 | 27 700 | 30 500 | 2 200 | 3 000 | 168.7 | 78.7 | 102 | 193 | 1 | | 7920 A5 | DB DF DT | 77 000 | 103 000 | 7 850 | 10 500 | 4 500 | 6 300 | 76.0 | 36.0 | _ | 135 | 0.6 | | 7920 C | DB DF DT | 81 500 | 108 000 | 8 300 | 11 100 | 5 300 | 7 500 | 52.2 | 12.2 | _ | 135 | 0.6 | | 7020 A | DB DF DT | 111 000 | 141 000 | 11 300 | 14 400 | 3 600 | 5 000 | 96.2 | 48.2 | _ | 144 | 1 | (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. | | DB | |---------------------|-----------------------------| | Boundary Dimensions | Basic Load Ratings (Single) | Tandem DT 8 500 4 000 3 600 8 000 9 000 6 000 6 000 3 000 2 600 5 600 6 700 4 500 107 65.1 109 84.3 109 26.1 107 48.1 109 33.7 38.0 107 158 186 186 133 133 3.05 0.804 0.794 2.5 5.83 2.5 5.98 1.5 | 1.48 Limiting | | (| (mm) | | | (1) | 1) | {k | gf} | | | | Centers | | | | (kg) | |----|-------------------|----------------|-------------|-----------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-----------|-------------------------|-------------------------|----------------------|-------------------|-------------------|-----------------|----------------------| | d | D | В | $m{r}$ min. | $r_{ m 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | approx. | | 85 | 120 | 18 | 1.1 | 0.6 | 36 500 | 38 500 | 3 750 | 3 900 | — | 6 700 | 9 000 | 32.9 | 92 | 113 | 1 | 0.541 | | | 120 | 18 | 1.1 | 0.6 | 39 000 | 40 500 | 3 950 | 4 150 | 16.5 | 8 000 | 11 000 | 22.7 | 92 | 113 | 1 | 0.534 | | | 130 | 22 | 1.1 | 0.6 | 56 500 | 56 000 | 5 750 | 5 700 | — | 5 300 | 7 100 | 42.0 | 92 | 123 | 1 | 0.913 | | | 130 | 22 | 1.1 | 0.6 | 60 000 | 58 500 | 6 150 | 6 000 | 15.9 | 7 500 | 10 000 | 25.4 | 92 | 123 | 1 | 1.01 | | | 150 | 28 | 2 | 1 | 103 000 | 89 000 | 10 500 | 9 100 | — | 4 800 | 6 700 | 47.9 | 95 | 140 | 2 | 1.83 | | | 150 | 28 | 2 | 1 | 93 000 | 81 000 | 9 500 | 8 250 | — | 3 400 | 4 800 | 63.3 | 95 | 140 | 2 | 1.87 | | | 150
180
180 | 28
41
41 | 2
3
3 | 1
1.1
1.1 | 107 000
159 000
146 000 | 90 500
133 000
122 000 | 10 900
16 200
14 800 | 9 250
13 500
12 400 | 14.7
— | 6 700
3 400
3 000 | 9 500
4 500
4 000 | 29.7
58.8
76.1 | 95
99
99 | 140
166
166 | 2
2.5
2.5 | 2.04
4.33
4.42 | | 90 | 125 | 18 | 1.1 | 0.6 | 39 500 | 43 500 | 4 000 | 4 450 | _ | 6 300 | 8 500 | 34.1 | 97 | 118 | 1 | 0.56 | | | 125 | 18 | 1.1 | 0.6 | 41 500 | 46 000 | 4 250 | 4 700 | 16.6 | 7 500 | 10 000 | 23.4 | 97 | 118 | 1 | 0.563 | | | 140 | 24 | 1.5 | 1 | 67 500 | 66 500 | 6 850 | 6 750 | _ | 4 800 | 6 700 | 45.2 | 99 | 131 | 1.5 | 1.19 | | | 140 | 24 | 1.5 | 1 | 71 500 | 69 000 | 7 300 | 7 050 | 15.7 | 7 100 | 9 500 | 27.4 | 99 | 131 | 1.5 | 1.34 | | | 160 | 30 | 2 | 1 | 118 000 | 103 000 | 12 000 | 10 500 | — | 4 500 | 6 000 | 51.1 | 100 | 150 | 2 | 2.25 | | | 160 | 30 | 2 | 1 | 107 000 | 94 000 | 10 900 | 9 550 | — | 3 200 | 4 300 | 67.4 | 100 | 150 | 2 | 2.29 | | | 160
190
190 | 30
43
43 | 2
3
3 | 1
1.1
1.1 | 123 000
171 000
156 000 | 105 000
147 000
135 000 | 12 500
17 400
15 900 | 10 700
15 000
13 800 | 14.6
— | 6 300
3 200
2 800 | 9 000
4 300
3 800 | 31.7
61.9
80.2 | 100
104
104 | 150
176
176 | 2
2.5
2.5 | 2.51
5.06
5.17 | | 95 | 130 | 18 | 1.1 | 0.6 | 40 000 | 45 500 | 4 050 | 4 650 | _ | 6 000 | 8 500 | 35.2 | 102
 123 | 1 | 0.597 | | | 130 | 18 | 1.1 | 0.6 | 42 500 | 48 000 | 4 300 | 4 900 | 16.7 | 7 100 | 10 000 | 24.1 | 102 | 123 | 1 | 0.591 | | | 145 | 24 | 1.5 | 1 | 67 000 | 67 000 | 6 800 | 6 800 | _ | 4 500 | 6 300 | 46.6 | 104 | 136 | 1.5 | 1.43 | | | 145 | 24 | 1.5 | 1 | 73 500 | 73 000 | 7 500 | 7 450 | 15.9 | 6 700 | 9 000 | 28.1 | 104 | 136 | 1.5 | 1.42 | | | 170 | 32 | 2.1 | 1.1 | 128 000 | 111 000 | 13 000 | 11 300 | — | 4 300 | 5 600 | 54.2 | 107 | 158 | 2 | 2.68 | | | 170 | 32 | 2.1 | 1.1 | 116 000 | 101 000 | 11 800 | 10 300 | — | 3 000 | 4 000 | 71.6 | 107 | 158 | 2 | 2.74 | 13 500 11 400 14.6 5 250 5 100 5 550 16.5 18 600 16 600 17 100 15 200 6 950 7 200 Notes (1) For applications operating near the limiting speed, refer to Page B49. 51 500 54 000 70 500 133 000 112 000 183 000 162 000 167 000 149 000 47 500 50 000 68 500 (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. 4 850 32 2.1 1.1 45 3 1.1 45 3 1.1 20 1.1 0.6 20 1.1 0.6 150 24 1.5 1 170 200 140 **100** 140 DB or DF 1.65 0.72 1.57 0.72 1.57 0.72 1.46 0.72 1.38 0.72 1.34 0.72 1.26 0.72 1.14 0.72 ### SINGLE/MATCHED MOUNTINGS Bore Diameter 100 - 120 mm Single Back-to-Back DB Face-to-Face Tandem DT | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.5 | |---------------|-------|---------|--------|----------|------|-----| | *For <i>i</i> | use 2 | for DB. | DF and | 1 for DT | | | Dynamic Equivalent Load $P = XF_r + YF_a$ | Static Equivalent Load $P_0 = 1$ | $X_0F_r + Y_0F_a$ | |----------------------------------|-------------------| |----------------------------------|-------------------| | Contact | Singl | e, DT | DB c | | | |---------|-----------------------|------------|------------|------------|-------| | Angle | <i>X</i> ₀ | Y 0 | X 0 | Y 0 | Singl | | 15° | 0.5 | 0.46 | 1 | 0.92 | mour | | 25° | 0.5 | 0.38 | 1 | 0.76 | Fr> | | 30° | 0.5 | 0.33 | 1 | 0.66 | use I | | 40° | 0.5 | 0.26 | 1 | 0.52 | | 0.44 0 0.44 1.12 0 0.44 1.02 0 0.44 1.00 | a | |---| | | | | | Во | oundar | y Dim
mm) | | ons | | sic Load Rat
N) | ings (Single)
{k |)
gf} | Factor | Limi
Speed
(mir | ls (¹) | Eff.Load
Centers | | nent and
nsions (| | Mass
(kg) | |-----|--------------------------|----------------------|----------------------|-----------------------------------|--|--|--------------------------------------|--------------------------------------|------------------|----------------------------------|----------------------------------|-------------------------------|--------------------------|--------------------------|--------------------|------------------------------| | d | D | В | r
min. | $r_{\!\scriptscriptstyle 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{r_{ m a}}$ max. | approx. | | 100 | 150
180
180 | 24
34
34 | 1.5
2.1
2.1 | 1
1.1
1.1 | 75 500
144 000
130 000 | 77 000
126 000
114 000 | 7 700
14 700
13 300 | 7 900
12 800
11 700 | 16.0
— | 6 300
4 000
2 800 | 9 000
5 300
3 800 | 28.7
57.4
75.7 | 109
112
112 | 141
168
168 | 1.5
2
2 | 1.46
3.22
3.28 | | | 180
215
215 | 34
47
47 | 2.1
3
3 | 1.1
1.1
1.1 | 149 000
207 000
190 000 | 127 000
193 000
178 000 | 15 200
21 100
19 400 | 12 900
19 700
18 100 | 14.5
— | 5 600
2 800
2 400 | 8 000
3 800
3 400 | 35.7
69.0
89.6 | 112
114
114 | 168
201
201 | 2
2.5
2.5 | 3.65
7.29
7.43 | | 105 | 145
145
160 | 20
20
26 | 1.1
1.1
2 | 0.6
0.6
1 | 48 000
51 000
80 000 | 54 000
57 000
81 500 | 4 900
5 200
8 150 | 5 500
5 800
8 350 | 16.6
— | 5 600
6 300
4 300 | 7 500
9 000
5 600 | 39.2
26.7
51.2 | 112
112
115 | 138
138
150 | 1
1
2 | 0.82
0.826
1.84 | | | 160
190
190 | 26
36
36 | 2
2.1
2.1 | 1
1.1
1.1 | 88 000
157 000
142 000 | 89 500
142 000
129 000 | 9 000
16 000
14 500 | 9 100
14 400
13 100 | 15.9
—
— | 6 000
3 800
2 600 | 8 500
5 000
3 600 | 30.7
60.6
79.9 | 115
117
117 | 150
178
178 | 2
2
2 | 1.82
3.84
3.92 | | | 190
225
225 | 36
49
49 | 2.1
3
3 | 1.1
1.1
1.1 | 162 000
208 000
191 000 | 143 000
193 000
177 000 | 16 600
21 200
19 400 | 14 600
19 700
18 100 | 14.5
—
— | 5 300
2 600
2 400 | 7 500
3 600
3 200 | 37.7
72.1
93.7 | 117
119
119 | 178
211
211 | 2
2.5
2.5 | 4.33
9.34
9.43 | | 110 | 150
150
170 | 20
20
28 | 1.1
1.1
2 | 0.6
0.6
1 | 49 000
52 000
96 500 | 56 000
59 500
95 500 | 5 000
5 300
9 850 | 5 750
6 050
9 700 | _
16.7
_ | 5 300
6 300
4 000 | 7 100
8 500
5 300 | 40.3
27.4
54.4 | 117
117
120 | 143
143
160 | 1
1
2 | 0.877
0.867
2.28 | | | 170
200
200 | 28
38
38 | 2
2.1
2.1 | 1
1.1
1.1 | 106 000
170 000
154 000 | 104 000
158 000
144 000 | 10 800
17 300
15 700 | 10 600
16 100
14 700 | 15.6
—
— | 5 600
3 600
2 600 | 8 000
4 800
3 400 | 32.7
63.7
84.0 | 120
122
122 | 160
188
188 | 2
2
2 | 2.26
4.49
4.58 | | | 200
240
240 | 38
50
50 | 2.1
3
3 | 1.1
1.1
1.1 | 176 000
220 000
201 000 | 160 000
215 000
197 000 | 17 900
22 500
20 500 | 16 300
21 900
20 100 | 14.5
—
— | 5 000
2 600
2 200 | 7 100
3 400
3 000 | 39.8
75.5
98.4 | 122
124
124 | 188
226
226 | 2
2.5
2.5 | 5.1
11.1
11.2 | | 120 | 165
165
180 | 22
22
28 | 1.1
1.1
2 | 0.6
0.6
1 | 67 500
72 000
102 000 | 77 000
81 000
107 000 | 6 900
7 300
10 400 | 7 850
8 300
10 900 | —
16.5
— | 4 800
5 600
3 600 | 6 300
7 500
5 000 | 44.2
30.1
57.3 | 127
127
130 | 158
158
170 | 1
1
2 | 1.15
1.15
2.45 | | | 215
215
260
260 | 40
40
55
55 | 2.1
2.1
3
3 | 1.1
1.1
1.1
1.1 | 183 000
165 000
246 000
225 000 | 177 000
162 000
252 000
231 000 | 18 600
16 900
25 100
23 000 | 18 100
16 500
25 700
23 600 | _
_
_
_ | 3 200
2 400
2 200
2 000 | 4 500
3 200
3 000
2 800 | 68.3
90.3
82.3
107.2 | 132
132
134
134 | 203
203
246
246 | | 6.22
6.26
14.5
14.4 | | Notes | (1) | For applications operating near | the limiting speed, | refer to Page B49 . | |-------|-----|---------------------------------|---------------------|----------------------------| |-------|-----|---------------------------------|---------------------|----------------------------| ⁽²⁾ The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. | Bearing Numbers (2) | | | Basi
(N | c Load Rating
I) | l)
gf} | Limiting
Speeds (1) (Matched)
(min ⁻¹) | | Load Center
Spacings (mm)
a_0 | | Abutment and Fill
Dimensions (mn | | | | |--------------------------------------|----------------------------------|----------|--|--|--------------------------------------|--|----------------------------------|---------------------------------------|----------------------------------|-------------------------------------|-----------------------------------|--------------------------|------------------------| | Single | Duple | ex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | DB | O
DF | d _b (3)
min. | $D_{ m b}$ max. | $m{r}_{ m b}$ (3) max. | | 7020 C | DB DF | DT | 122 000 | 154 000 | 12 500 | 15 800 | 5 300 | 7 100 | 57.5 | 9.5 | | 144 | 1 | | 7220 A | DB DF | | 233 000 | 251 000 | 23 800 | 25 600 | 3 200 | 4 300 | 114.8 | 46.8 | 107 | 173 | 1 | | 7220 B | DB DF | | 212 000 | 229 000 | 21 600 | 23 300 | 2 200 | 3 000 | 151.5 | 83.5 | 107 | 173 | 1 | | 7220 C | DB DF | DT | 242 000 | 254 000 | 24 700 | 25 900 | 4 500 | 6 300 | 71.5 | 3.5 | | 173 | 1 | | 7320 A | DB DF | | 335 000 | 385 000 | 34 500 | 39 500 | 2 200 | 3 000 | 137.9 | 43.9 | 107 | 208 | 1 | | 7320 B | DB DF | | 310 000 | 355 000 | 31 500 | 36 000 | 2 000 | 2 800 | 179.2 | 85.2 | 107 | 208 | 1 | | 7921 A5 | DB DF | DT | 78 500 | 108 000 | 8 000 | 11 000 | 4 300 | 6 000 | 78.3 | 38.3 | _ | 140 | 0.6 | | 7921 C | DB DF | | 83 000 | 114 000 | 8 450 | 11 600 | 5 300 | 7 100 | 53.5 | 13.5 | _ | 140 | 0.6 | | 7021 A | DB DF | | 130 000 | 163 000 | 13 300 | 16 700 | 3 400 | 4 500 | 102.5 | 50.5 | _ | 154 | 1 | | 7021 C | DB DF | DT | 143 000 | 179 000 | 14 600 | 18 200 | 4 800 | 6 700 | 61.5 | 9.5 | — | 154 | 1 | | 7221 A | DB DF | | 254 000 | 283 000 | 25 900 | 28 900 | 3 000 | 4 000 | 121.2 | 49.2 | 112 | 183 | 1 | | 7221 B | DB DF | | 231 000 | 258 000 | 23 500 | 26 300 | 2 200 | 3 000 | 159.8 | 87.8 | 112 | 183 | 1 | | 7221 C | DB DF | DT | 264 000 | 286 000 | 26 900 | 29 100 | 4 300 | 6 000 | 75.5 | 3.5 | _ | 183 | 1 | | 7321 A | DB DF | | 335 000 | 385 000 | 34 500 | 39 500 | 2 200 | 2 800 | 144.3 | 46.3 | _ | 218 | 1 | | 7321 B | DB DF | | 310 000 | 355 000 | 31 500 | 36 000 | 1 900 | 2 600 | 187.4 | 89.4 | _ | 218 | 1 | | 7922 A5 | DB DF | DT | 79 500 | 112 000 | 8 100 | 11 500 | 4 300 | 5 600 | 80.6 | 40.6 | _ | 145 | 0.6 | | 7922 C | DB DF | | 84 500 | 119 000 | 8 600 | 12 100 | 5 000 | 6 700 | 54.8 | 14.8 | _ | 145 | 0.6 | | 7022 A | DB DF | | 157 000 | 191 000 | 16 000 | 19 400 | 3 200 | 4 300 | 108.8 | 52.8 | _ | 164 | 1 | | 7022 C | DB DF | DT | 172 000 | 208 000 | 17 600 | 21 200 | 4 500 | 6
300 | 65.5 | 9.5 | | 164 | 1 | | 7222 A | DB DF | | 276 000 | 315 000 | 28 100 | 32 500 | 2 800 | 4 000 | 127.5 | 51.5 | 117 | 193 | 1 | | 7222 B | DB DF | | 250 000 | 289 000 | 25 500 | 29 400 | 2 000 | 2 800 | 168.1 | 92.1 | 117 | 193 | 1 | | 7222 C | DB DF | DT | 286 000 | 320 000 | 29 200 | 32 500 | 4 000 | 5 600 | 79.5 | 3.5 | _ | 193 | 1 | | 7322 A | DB DF | | 360 000 | 430 000 | 36 500 | 44 000 | 2 000 | 2 600 | 151.0 | 51.0 | _ | 233 | 1 | | 7322 B | DB DF | | 325 000 | 395 000 | 33 500 | 40 000 | 1 800 | 2 400 | 196.8 | 96.8 | _ | 233 | 1 | | 7924 A5 | DB DF | DT | 110 000 | 154 000 | 11 200 | 15 700 | 3 800 | 5 300 | 88.5 | 44.5 | _ | 160 | 0.6 | | 7924 C | DB DF | | 117 000 | 162 000 | 11 900 | 16 600 | 4 500 | 6 300 | 60.2 | 16.2 | _ | 160 | 0.6 | | 7024 A | DB DF | | 166 000 | 213 000 | 16 900 | 21 700 | 3 000 | 4 000 | 114.6 | 58.6 | _ | 174 | 1 | | 7224 A
7224 B
7324 A
7324 B | DB DF
DB DF
DB DF
DB DF | DT
DT | 297 000
269 000
400 000
365 000 | 355 000
325 000
505 000
460 000 | 30 500
27 400
41 000
37 500 | 36 000
33 000
51 500
47 000 | 2 600
1 900
1 800
1 600 | 3 600
2 600
2 400
2 200 | 136.7
180.5
164.7
214.4 | 56.7
100.5
54.7
104.4 | _
_
_
_ | 208
208
253
253 | 1
1
1
1 | Note (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min.) and r_a (max.) respectively. B 64 B 65 ## SINGLE/MATCHED MOUNTINGS Bore Diameter 130 – 170 mm Single **Boundary Dimensions** (mm) Factor Tandem DT Centers (mm) Limiting Speeds (1) (min⁻¹) Eff.Load Abutment and Fillet Mass Dimensions (mm) (kg) {kgf} Basic Load Ratings (Single) (N) | | | | | | - | | | | | | |---------|----------------------------------|------|---------|------------|---------|-------|---------|------------|---------------|------| | Cantant | if ₀ F _a * | | | Singl | e, DT | | | DB c | or DF | | | Contact | | e | F_a/I | $r \leq e$ | F_a/I | r > e | F_a/I | $r \leq e$ | $F_a/F_r > e$ | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15 | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | Singl | e, DT | DB c | r DF | | |---------|-----------------------|------------|------------|------------|---| | Angle | <i>X</i> ₀ | Y 0 | X 0 | Y 0 | Single or DT | | 15° | 0.5 | 0.46 | 1 | 0.92 | mounting When | | 25° | 0.5 | 0.38 | 1 | 0.76 | $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$ | | 30° | 0.5 | 0.33 | 1 | 0.66 | use $P_0 = F_r$ | | 40° | 0.5 | 0.26 | 1 | 0.52 | | | Bearing | Numbers (²) | Basi
(N | c Load Rating | s (Matched
{kg | | Limi
Speeds (¹) | (Matched) | Spacing | Center
Js (mm) | | nent and
nsions (| | |---------|-------------|------------|-------------------|-------------------|-------------------|--------------------|-----------|---------|-------------------|-----------------------------------|----------------------|-----------------------------------| | Single | Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | (mii
Grease | Oil | DB | DF | d _b (³)
min. | $D_{ m b}$ max. | Г _b (³)
max. | | 7926 A5 | DB DF DT | 120 000 | 172 000 | 12 300 | 17 500 | 3 400 | 4 800 | 96.3 | 48.3 | _ | 174 | 1 | | 7926 C | DB DF DT | 128 000 | 182 000 | 13 000 | 18 500 | 4 000 | 5 600 | 65.5 | 17.5 | _ | 174 | 1 | | 7026 A | DB DF DT | 191 000 | 251 000 | 19 400 | 25 600 | 2 600 | 3 600 | 128.3 | 62.3 | _ | 194 | 1 | | 7226 A | DB DF DT | 310 000 | 385 000 | 31 500 | 39 500 | 1 900 | 2 600 | 143.9 | 63.9 | _ | 223 | 1 | | 7226 B | DB DF DT | 278 000 | 350 000 | 28 300 | 35 500 | 1 700 | 2 400 | 191.0 | 111.0 | _ | 223 | 1 | | 7326 A | DB DF DT | 445 000 | 585 000 | 45 500 | 59 500 | 1 700 | 2 200 | 176.3 | 60.3 | _ | 271 | 1.5 | | 7326 B | DB DF DT | 405 000 | 535 000 | 41 500 | 54 500 | 1 500 | 2 000 | 230.0 | 114.0 | _ | 271 | 1.5 | | 7928 A5 | DB DF DT | 122 000 | 180 000 | 12 400 | 18 400 | 3 200 | 4 500 | 100.9 | 52.9 | _ | 184 | 1 | | 7928 C | DB DF DT | 129 000 | 191 000 | 13 200 | 19 400 | 3 800 | 5 300 | 68.2 | 20.2 | _ | 184 | 1 | | 7028 A | DB DF DT | 194 000 | 265 000 | 19 800 | 27 000 | 2 600 | 3 400 | 134.0 | 68.0 | _ | 204 | 1 | | 7228 A | DB DF DT | 355 000 | 470 000 | 36 000 | 48 000 | 1 800 | 2 400 | 154.6 | 70.6 | _ | 243 | 1 | | 7228 B | DB DF DT | 320 000 | 425 000 | 32 500 | 43 500 | 1 600 | 2 200 | 205.6 | 121.6 | _ | 243 | 1 | | 7328 A | DB DF DT | 490 000 | 670 000 | 50 000 | 68 500 | 1 600 | 2 000 | 189.0 | 65.0 | _ | 291 | 1.5 | | 7328 B | DB DF DT | 445 000 | 615 000 | 45 500 | 63 000 | 1 400 | 1 900 | 246.6 | 122.6 | _ | 291 | 1.5 | | 7930 A5 | DB DF DT | 157 000 | 231 000 | 16 000 | 23 500 | 3 000 | 4 000 | 112.0 | 56.0 | _ | 204 | 1 | | 7930 C | DB DF DT | 166 000 | 244 000 | 16 900 | 24 900 | 3 600 | 4 800 | 76.2 | 20.2 | _ | 204 | 1 | | 7030 A | DB DF DT | 222 000 | 305 000 | 22 700 | 31 500 | 1 900 | 2 400 | 143.3 | 73.3 | _ | 218 | 1 | | 7230 A | DB DF DT | 405 000 | 560 000 | 41 000 | 57 000 | 1 600 | 2 200 | 166.3 | 76.3 | _ | 263 | 1 | | 7230 B | DB DF DT | 365 000 | 510 000 | 37 000 | 52 000 | 1 500 | 2 000 | 221.2 | 131.2 | _ | 263 | 1 | | 7330 A | DB DF DT | 515 000 | 745 000 | 52 500 | 75 500 | 1 500 | 1 900 | 200.7 | 70.7 | _ | 311 | 1.5 | | 7330 B | DB DF DT | 470 000 | 680 000 | 48 000 | 69 500 | 1 300 | 1 800 | 262.2 | 132.2 | _ | 311 | 1.5 | | 7932 C | DB DF DT | 173 000 | 265 000 | 17 600 | 27 000 | 3 000 | 4 000 | 78.9 | 22.9 | _ | 214 | 1 | | 7032 A | DB DF DT | 252 000 | 355 000 | 25 700 | 36 000 | 1 700 | 2 400 | 153.5 | 77.5 | _ | 233 | 1 | | 7232 A | DB DF DT | 425 000 | 615 000 | 43 500 | 62 500 | 1 500 | 2 000 | 177.9 | 81.9 | _ | 283 | 1 | | 7232 B | DB DF DT | 385 000 | 555 000 | 39 500 | 57 000 | 1 400 | 1 900 | 236.8 | 140.8 | _ | 283 | 1 | | 7332 A | DB DF DT | 565 000 | 845 000 | 57 500 | 86 000 | 1 400 | 1 800 | 212.3 | 76.3 | _ | 331 | 1.5 | | 7332 B | DB DF DT | 515 000 | 770 000 | 52 500 | 78 500 | 1 200 | 1 700 | 277.8 | 141.8 | _ | 331 | 1.5 | | 7934 C | DB DF DT | 183 000 | 297 000 | 18 700 | 30 000 | 2 800 | 3 800 | 81.6 | 25.6 | _ | 224 | 1 | | 7034 A | DB DF DT | 300 000 | 430 000 | 31 000 | 43 500 | 1 600 | 2 200 | 166.1 | 82.1 | _ | 253 | 1 | | 7234 A | DB DF DT | 480 000 | 715 000 | 49 000 | 73 000 | 1 400 | 1 900 | 190.6 | 86.6 | _ | 301 | 1.5 | | 7234 B | DB DF DT | 435 000 | 650 000 | 44 000 | 66 500 | 1 300 | 1 700 | 253.4 | 149.4 | _ | 301 | 1.5 | | 7334 A | DB DF DT | 630 000 | 970 000 | 64 500 | 99 000 | 1 300 | 1 700 | 225.0 | 81.0 | _ | 351 | 1.5 | | 7334 B | DB DF DT | 575 000 | 890 000 | 59 000 | 90 500 | 1 100 | 1 600 | 294.3 | 150.3 | _ | 351 | 1.5 | **Note** (3) For bearings marked — in the column for d_{b_1} d_{b_2} and r_{b_3} for shafts are d_{a_3} (min.) and r_{a_3} (max.) respectively. | d | D | В | $m{r}$ min. | $oldsymbol{r_1}{ ext{min.}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Óil | ``a'' | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{max}.$ | approx. | |-----|--------------------------|----------------------|-----------------|------------------------------|--|--|--------------------------------------|--------------------------------------|----------------|----------------------------------|----------------------------------|---------------------------------|--------------------------|--------------------------|-----------------------------------|------------------------------| | 130 | 180
180
200 | 24
24
33 | 1.5
1.5
2 | 1
1
1 | 74 000
78 500
117 000 | 86 000
91 000
125 000 | 7 550
8 000
12 000 | 8 750
9 250
12 800 | _
16.5
_ | 4 300
5 000
3 400 | 6 000
7 100
4 500 | 48.1
32.8
64.1 | 139
139
140 | 171
171
190 | 1.5
1.5
2 | 1.54
1.5
3.68 | | | 230
230
280
280 | 40
40
58
58 | 3
4
4 | 1.1
1.1
1.5
1.5 | 189 000
171 000
273 000
250 000 | 193 000
175 000
293 000
268 000 | 19 300
17 400
27 900
25 500 | | _
_
_ | 2 400
2 200
2 200
1 900 | 3 200
3 000
2 800
2 600 | 72.0
95.5
88.2
115.0 | 144
144
148
148 | 216
216
262
262 | 2.5
2.5
3
3 | 7.06
7.1
17.5
17.6 | | 140 | 190
190
210 | 24
24
33 | 1.5
1.5
2 | 1
1
1 | 75 000
79 500
120 000 | 90 000
95 500
133 000 | 7 650
8 100
12 200 | 9 200
9 700
13 500 | _
16.7
_ | 4 000
4 800
3 200 | 5 600
6 700
4 300 | 50.5
34.1
67.0 | 149
149
150 | 181
181
200 | 1.5
1.5
2 | 1.63
1.63
3.9 | | | 250
250
300
300 | 42
42
62
62 | 3
4
4 | 1.1
1.1
1.5
1.5 | 218 000
197 000
300 000
275 000 | 234 000
213 000
335 000
310 000 | 20 100
30 500 | 23 900
21 700
34 500
31 500 | _
_
_ | 2 200
2 000
2 000
1 700 | 3 000
2 800
2 600
2 400 | 77.3
102.8
94.5
123.3 | 154
154
158
158 |
236
236
282
282 | 2.5
2.5
3
3 | 8.92
8.94
21.4
21.6 | | 150 | 210
210
225 | 28
28
35 | 2
2
2.1 | 1
1
1.1 | 96 500
102 000
137 000 | 115 000
122 000
154 000 | | 11 800
12 400
15 700 | _
16.6
_ | 3 800
4 300
2 400 | 5 000
6 000
3 000 | 56.0
38.1
71.6 | 160
160
162 | 200
200
213 | 2
2
2 | 2.97
2.96
4.75 | | | 270
270
320
320 | 45
45
65
65 | 3
4
4 | 1.1
1.1
1.5
1.5 | 248 000
225 000
315 000
289 000 | 280 000
254 000
370 000
340 000 | 25 300
22 900
32 500
29 400 | 28 500
25 900
38 000
34 500 | _
_
_ | 2 000
1 800
1 800
1 600 | 2 800
2 600
2 400
2 200 | 83.1
110.6
100.3
131.1 | 164
164
168
168 | 256
256
302
302 | 2.5
2.5
3 | 11.2
11.2
26
25.9 | | 160 | 220
240
290 | 28
38
48 | 2
2.1
3 | 1
1.1
1.1 | 106 000
155 000
263 000 | 133 000
176 000
305 000 | 10 800
15 800
26 800 | | 16.7
— | 3 800
2 200
1 900 | 5 000
2 800
2 600 | 39.4
76.7
89.0 | 170
172
174 | 210
228
276 | 2
2
2.5 | 3.1
5.77
14.1 | | | 290
340
340 | 48
68
68 | 3
4
4 | 1.1
1.5
1.5 | 238 000
345 000
315 000 | 279 000
420 000
385 000 | 24 200
35 500
32 000 | 28 400
43 000
39 500 | _
_
_ | 1 700
1 700
1 500 | 2 400
2 200
2 000 | 118.4
106.2
138.9 | 174
178
178 | 276
322
322 | 2.5
3
3 | 14.2
30.7
30.8 | | 170 | 230
260
310 | 28
42
52 | 2
2.1
4 | 1
1.1
1.5 | 113 000
186 000
295 000 | 148 000
214 000
360 000 | 11 500
19 000
30 000 | 15 100
21 900
36 500 | 16.8
—
— | 3 600
2 000
1 800 | 4 800
2 600
2 400 | 40.8
83.1
95.3 | 180
182
188 | 220
248
292 | 2
2
3 | 3.36
7.9
17.3 | | | 310
360
360 | 52
72
72 | 4
4
4 | 1.5
1.5
1.5 | 266 000
390 000
355 000 | 325 000
485 000
445 000 | 27 200
39 500
36 000 | 33 000
49 500
45 500 | _
_
_ | 1 600
1 600
1 400 | 2 200
2 200
2 000 | 126.7
112.5
147.2 | 188
188
188 | 292
342
342 | 3
3
3 | 17.6
35.8
35.6 | Notes (1) For applications operating near the limiting speed, refer to Page B49. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. # SINGLE/MATCHED MOUNTINGS # Bore Diameter 180 - 200 mm 360 420 1.5 80 5 2 420 80 5 2 Back-to-Back Single DB **Boundary Dimensions** Basic Load Ratings (Single) | Face-to-Face | |--------------| | DF | | | Tandem DT 1 800 | 146.5 | 218 1 800 | 129.5 | 222 1 600 | 170.1 | 222 1 300 1 300 1 200 | Boundary Dimensions (mm) | | | | ons | Basic Load Ratings (Single)
(N) {kgf} | | | Factor | Limiting
Speeds (¹)
(min-¹) | | Eff.Load
Centers | | Abutment and Fillet Dimensions (mm) | | | | |--------------------------|-------------------|----------------|-----------------|-------------------|--|-------------------------------|----------------------------|----------------------------|-----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------------------|-------------------|-----------------|----------------------| | d | D | В | $m{r}$ min. | $r_{ m 1}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | ['] Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | арргох. | | 180 | 250
280
320 | 33
46
52 | 2
2.1
4 | 1
1.1
1.5 | 145 000
207 000
305 000 | 184 000
252 000
385 000 | 14 800
21 100
31 000 | 18 800
25 700
39 000 | 16.6
— | 3 200
1 900
1 700 | 4 500
2 400
2 200 | 45.3
89.4
98.2 | 190
192
198 | 240
268
302 | 2
2
3 | 4.9
10.5
18.1 | | | 320
380
380 | 52
75
75 | 4
4
4 | 1.5
1.5
1.5 | 276 000
410 000
375 000 | 350 000
535 000
490 000 | 28 100
41 500
38 000 | 35 500
54 500
50 000 | _
_
_ | 1 500
1 500
1 300 | 2 000
2 000
1 800 | 130.9
118.3
155.0 | 198
198
198 | 302
362
362 | 3
3
3 | 18.4
42.1
42.6 | | 190 | 260
290
340 | 33
46
55 | 2
2.1
4 | 1
1.1
1.5 | 147 000
224 000
315 000 | 192 000
280 000
410 000 | 15 000
22 800
32 000 | 19 600
28 600
42 000 | 16.7
—
— | 3 000
1 800
1 600 | 4 300
2 400
2 200 | 46.6
92.3
104.0 | 200
202
208 | 250
278
322 | 2
2
3 | 4.98
11.3
22.4 | | | 340
400
400 | 55
78
78 | 4
5
5 | 1.5
2
2 | 284 000
450 000
410 000 | 375 000
600 000
550 000 | 28 900
46 000
42 000 | 38 000
61 000
56 000 | _
_
_ | 1 400
1 400
1 300 | 2 000
1 900
1 700 | 138.7
124.2
162.8 | 208
212
212 | 322
378
378 | 3
4
4 | 22.5
47.5
47.2 | | 200 | 280
310
360 | 38
51
58 | 2.1
2.1
4 | 1.1
1.1
1.5 | 189 000
240 000
335 000 | 244 000
310 000
450 000 | 19 300
24 500
34 500 | 24 900
31 500
46 000 | 16.5
— | 2 800
1 700
1 500 | 4 000
2 200
2 000 | 51.2
99.1
109.8 | 212
212
218 | 268
298
342 | 2
2
3 | 6.85
13.7
26.5 | Notes (1) For applications operating near the limiting speed, refer to Page B49. 305 000 410 000 475 000 660 000 430 000 600 000 (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. 31 000 41 500 48 500 67 000 44 000 61 500 Dynamic Equivalent Load $P = XF_r + YF_a$ | | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---|---------|-------------|------|---------|------------|---------|-------|---------|------------|-------------------|-------| | | | | e | F_a/I | $r \leq e$ | F_a/I | r > e | F_a/I | $r \leq e$ | F _a /F | r > e | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | 1 | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | | 15° | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | | 10. | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | | 25° | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | | | | | | | | | | | | *For I, use 2 for DB, DF and 1 for DT ### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Angle X_0 Y_0 X_0 Y_0 Single or DT | | |--|-------| | 15° 0.5 0.46 1 0.92 mounting When | | | 25° 0.5 0.38 1 0.76 E > 0.5E | Vo F. | | 30° 0.5 0.33 1 0.66 use $P_0 = F_r$ | 1013 | | 40° 0.5 0.26 1 0.52 | | | Bearing | Numbers (²) | Bas
(1 | Limiting
Speeds (¹) (Matched)
(min-¹) | | Load Center
Spacings (mm) | | Abutment and Fillet
Dimensions (mm) | | | | | | |----------------------------|----------------------------------|-------------------------------|---|------------|------------------------------|-------------------------|--|-------------------------|------------------------|--------------------------------|-------------------|---------------------| | Single | Duplex | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease Oil | | DB | DF | d _b (3) min. | $D_{ m b}$ max. | $r_{ m b}$ (3) max. | | 7936 C | DB DF DT | 236 000 | 370 000 | 24 000 | 37 500 | 2 600 | 3 600 | 90.6 | 24.6 | _ | 244 | 1 | | 7036 A | DB DF DT | 335 000 | 505 000 | 34 500 | 51 500 | 1 500 | 2 000 | 178.8 | 86.8 | _ | 273 | 1 | | 7236 A | DB DF DT | 495 000 | 770 000 | 50 500 | 78 500 | 1 400 | 1 800 | 196.3 | 92.3 | _ | 311 | 1.5 | | 7236 B | DB DF DT | 450 000 | 700 000 | 45 500 | 71 000 | 1 200 | 1 700 | 261.8 | 157.8 | _ | 311 | 1.5 | | 7336 A | DB DF DT | 665 000 | 1 070 000 | 68 000 | 109 000 | 1 200 | 1 600 | 236.6 | 86.6 | _ | 371 | 1.5 | | 7336 B | DB DF DT | 605 000 | 975 000 | 62 000 | 99 500 | 1 100 | 1 500 | 309.9 | 159.9 | _ | 371 | 1.5 | | 7938 C | DB DF DT | 239 000 | 385 000 | 24 400 | 39 000 | 2 400 | 3 400 | 93.3 | 27.3 | _ | 254 | 1 | | 7038 A | DB DF DT | 365 000 | 560 000 | 37 000 | 57 000 | 1 400 | 1 900 | 184.6 | 92.6 | _ | 283 | 1 | | 7238 A | DB DF DT | 510 000 | 825 000 | 52 000 | 84 000 | 1 300 | 1 700 | 208.0 | 98.0 | _ | 331 | 1.5 | | 7238 B
7338 A
7338 B | DB DF DT
DB DF DT
DB DF DT | 460 000
730 000
670 000 | 750 000
1 200 000
1 100 000 | | 76 000
122 000
112 000 | 1 100
1 100
1 000 | 1 600
1 500
1 400 | 277.3
248.3
325.5 | 167.3
92.3
169.5 | _
_
_ | 331
390
390 | 1.5
2
2 | | 7940 C | DB DF DT | 305 000 | 490 000 | 31 500 | 50 000 | 2 200 | 3 200 | 102.3 | 26.3 | _ | 273 | 1 | | 7040 A | DB DF DT | 390 000 | 620 000 | 40 000 | 63 500 | 1 300 | 1 800 | 198.2 | 96.2 | _ | 303 | 1 | | 7240 A | DB DF DT | 550 000 | 900 000 | 56 000 | 92 000 | 1 200 | 1 600 | 219.6 | 103.6 | _ | 351 | 1.5 | | 7240 B
7340 A
7340 B | DB DF DT
DB DF DT
DB DF DT | 495 000
770 000
700 000 | 815 000
1 320 000
1 200 000 | | 83 000
134 000
123 000 | 1 100
1 100
950 | 1 500
1 400
1 300 | 292.9
259.0
340.1 | 176.9
99.0
180.1 | _
_
_ | 351
410
410 | | **Note** (3) For bearings marked — in the column for d_b , d_b and r_b
for shafts are d_a (min.) and r_a (max.) respectively. B 68 B 69 26.6 54.4 4 55.3 398 4 398 Bore Diameter 10 – 85 mm | Dynamic Equivalent Load | | | | | | | | |------------------------------|-------------------------|---|--|--|--|--|--| | $P = XF_r + YF_a$ | | | | | | | | | $F_{\rm a}/F_{\rm r} \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | ĺ | | | | | | | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | |---------------|------------|---------------|-------|------| | X | Y | X | Y | e | | 1 | 0.92 | 0.67 | 1.41 | 0.68 | | Static Equiva | ien | ιL | .0a | |-----------------|-----|----|---------| | $P_0 = F_r + 0$ |).7 | 6 | F_{z} | | | Boundary Dimensions (mm) | | 1) | Basic Loa | 9 | gf} | ١ ، | Limiting Speeds
(min ⁻¹) | | | |----|--------------------------|------|------------------|------------|-------------------|------------|-------------------|---|--------|--------------------| | d | D | В | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing
Numbers | | 10 | 30 | 14.3 | 0.6 | 7 150 | 3 900 | 730 | 400 | 17 000 | 22 000 | 5200 | | 12 | 32 | 15.9 | 0.6 | 10 500 | 5 800 | 1 070 | 590 | 15 000 | 20 000 | 5201 | | 15 | 35 | 15.9 | 0.6 | 11 700 | 7 050 | 1 190 | 715 | 13 000 | 17 000 | 5202 | | | 42 | 19 | 1 | 17 600 | 10 200 | 1 800 | 1 040 | 11 000 | 15 000 | 5302 | | 17 | 40 | 17.5 | 0.6 | 14 600 | 9 050 | 1 490 | 920 | 11 000 | 15 000 | 5203 | | | 47 | 22.2 | 1 | 21 000 | 12 600 | 2 140 | 1 280 | 10 000 | 13 000 | 5303 | | 20 | 47 | 20.6 | 1 | 19 600 | 12 400 | 2 000 | 1 270 | 10 000 | 13 000 | 5204 | | | 52 | 22.2 | 1.1 | 24 600 | 15 000 | 2 510 | 1 530 | 9 000 | 12 000 | 5304 | | 25 | 52 | 20.6 | 1 | 21 300 | 14 700 | 2 170 | 1 500 | 8 500 | 11 000 | 5205 | | | 62 | 25.4 | 1.1 | 32 500 | 20 700 | 3 350 | 2 110 | 7 500 | 10 000 | 5305 | | 30 | 62 | 23.8 | 1 | 29 600 | 21 100 | 3 000 | 2 150 | 7 100 | 9 500 | 5206 | | | 72 | 30.2 | 1.1 | 40 500 | 28 100 | 4 150 | 2 870 | 6 300 | 8 500 | 5306 | | 35 | 72 | 27 | 1.1 | 39 000 | 28 700 | 4 000 | 2 920 | 6 300 | 8 000 | 5207 | | | 80 | 34.9 | 1.5 | 51 000 | 36 000 | 5 200 | 3 700 | 5 600 | 7 500 | 5307 | | 40 | 80 | 30.2 | 1.1 | 44 000 | 33 500 | 4 500 | 3 400 | 5 600 | 7 100 | 5208 | | | 90 | 36.5 | 1.5 | 56 500 | 41 000 | 5 800 | 4 200 | 5 300 | 6 700 | 5308 | | 45 | 85 | 30.2 | 1.1 | 49 500 | 38 000 | 5 050 | 3 900 | 5 000 | 6 700 | 5209 | | | 100 | 39.7 | 1.5 | 68 500 | 51 000 | 7 000 | 5 200 | 4 500 | 6 000 | 5309 | | 50 | 90 | 30.2 | 1.1 | 53 000 | 43 500 | 5 400 | 4 400 | 4 800 | 6 000 | 5210 | | | 110 | 44.4 | 2 | 81 500 | 61 500 | 8 300 | 6 250 | 4 300 | 5 600 | 5310 | | 55 | 100 | 33.3 | 1.5 | 56 000 | 49 000 | 5 700 | 5 000 | 4 300 | 5 600 | 5211 | | | 120 | 49.2 | 2 | 95 000 | 73 000 | 9 700 | 7 450 | 3 800 | 5 000 | 5311 | | 60 | 110 | 36.5 | 1.5 | 69 000 | 62 000 | 7 050 | 6 300 | 3 800 | 5 000 | 5212 | | | 130 | 54 | 2.1 | 125 000 | 98 500 | 12 800 | 10 000 | 3 400 | 4 500 | 5312 | | 65 | 120 | 38.1 | 1.5 | 76 500 | 69 000 | 7 800 | 7 050 | 3 600 | 4 500 | 5213 | | | 140 | 58.7 | 2.1 | 142 000 | 113 000 | 14 500 | 11 500 | 3 200 | 4 300 | 5313 | | 70 | 125 | 39.7 | 1.5 | 94 000 | 82 000 | 9 600 | 8 400 | 3 400 | 4 500 | 5214 | | | 150 | 63.5 | 2.1 | 159 000 | 128 000 | 16 200 | 13 100 | 3 000 | 3 800 | 5314 | | 75 | 130 | 41.3 | 1.5 | 93 500 | 83 000 | 9 550 | 8 500 | 3 200 | 4 300 | 5215 | | 80 | 140 | 44.4 | 2 | 99 000 | 93 000 | 10 100 | 9 500 | 3 000 | 3 800 | 5216 | | 85 | 150 | 49.2 | 2 | 116 000 | 110 000 | 11 800 | 11 200 | 2 800 | 3 600 | 5217 | | Load Center
Spacings | | utment and Fi
mensions (m | | Mass
(kg) | |------------------------------|-----------------|------------------------------|-----------------------------------|--------------| | (mm)
a₀ | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{max}.$ | approx. | | 14.5 | 15 | 25 | 0.6 | 0.050 | | 16.7 | 17 | 27 | 0.6 | 0.060 | | 18.3 | 20 | 30 | 0.6 | 0.070 | | 22.0 | 21 | 36 | 1 | 0.11 | | 20.8 | 22 | 35 | 0.6 | 0.090 | | 25.0 | 23 | 41 | 1 | 0.14 | | 24.3 | 26 | 41 | 1 | 0.12 | | 26.7 | 27 | 45 | 1 | 0.23 | | 26.8 | 31 | 46 | 1 | 0.19 | | 31.8 | 32 | 55 | 1 | 0.34 | | 31.6 | 36 | 56 | 1 | 0.29 | | 36.5 | 37 | 65 | 1 | 0.51 | | 36.6 | 42 | 65 | 1 | 0.43 | | 41.6 | 44 | 71 | 1.5 | 0.79 | | 41.5 | 47 | 73 | 1 | 0.57 | | 45.5 | 49 | 81 | 1.5 | 1.05 | | 43.4 | 52 | 78 | 1 | 0.62 | | 50.6 | 54 | 91 | 1.5 | 1.4 | | 45.9 | 57 | 83 | 1 | 0.67 | | 55.6 | 60 | 100 | 2 | 1.95 | | 50.1 | 64 | 91 | 1.5 | 0.96 | | 60.6 | 65 | 110 | 2 | 2.3 | | 56.5 | 69 | 101 | 1.5 | 1.35 | | 69.2 | 72 | 118 | 2 | 3.15 | | 59.7 | 74 | 111 | 1.5 | 1.65 | | 72.8 | 77 | 128 | 2 | 3.85 | | 63.8 | 79 | 116 | 1.5 | 1.8 | | 78.3 | 82 | 138 | 2 | 4.9 | | 66.1 | 84 | 121 | 1.5 | 1.9 | | 69.6 | 90 | 130 | 2 | 2.5 | | 75.3 | 95 | 140 | 2 | 3.4 | # <u>NSK</u> Bore Diameter 30 – 95 mm Dynamic Equivalent Load $P_{\rm a} = F_{\rm a}$ Static Equivalent Load $P_{0a} = F_a$ | | Boundary D
(mr | | 5 | (| Basic Load | 9 | gf} | Limiting
(mi | • | |----|-------------------|----|------------------|-------------|------------|------------------|----------|-----------------|--------| | d | D | В | r
min. | $C_{\rm a}$ | C_{0a} | C_{a} | C_{0a} | Grease | Oil | | 30 | 62 | 16 | 1 | 31 000 | 45 000 | 3 150 | 4 600 | 8 500 | 12 000 | | | 72 | 19 | 1.1 | 46 000 | 63 000 | 4 700 | 6 450 | 8 000 | 11 000 | | 35 | 72 | 17 | 1.1 | 41 000 | 61 500 | 4 200 | 6 250 | 7 500 | 10 000 | | | 80 | 21 | 1.5 | 55 000 | 80 000 | 5 600 | 8 150 | 7 100 | 9 500 | | 40 | 80 | 18 | 1.1 | 49 000 | 77 500 | 5 000 | 7 900 | 6 700 | 9 000 | | | 90 | 23 | 1.5 | 67 000 | 100 000 | 6 850 | 10 200 | 6 300 | 8 500 | | 45 | 85 | 19 | 1.1 | 55 000 | 88 500 | 5 600 | 9 000 | 6 300 | 8 500 | | | 100 | 25 | 1.5 | 87 500 | 133 000 | 8 900 | 13 500 | 5 600 | 7 500 | | 50 | 90 | 20 | 1.1 | 57 000 | 97 000 | 5 850 | 9 900 | 5 600 | 8 000 | | | 110 | 27 | 2 | 102 000 | 159 000 | 10 400 | 16 200 | 5 000 | 6 700 | | 55 | 100 | 21 | 1.5 | 71 000 | 122 000 | 7 200 | 12 500 | 5 300 | 7 100 | | | 120 | 29 | 2 | 118 000 | 187 000 | 12 000 | 19 100 | 4 500 | 6 300 | | 60 | 110 | 22 | 1.5 | 85 500 | 150 000 | 8 750 | 15 300 | 4 800 | 6 300 | | | 130 | 31 | 2.1 | 135 000 | 217 000 | 13 800 | 22 200 | 4 300 | 5 600 | | 65 | 120 | 23 | 1.5 | 97 500 | 179 000 | 9 950 | 18 300 | 4 300 | 6 000 | | | 140 | 33 | 2.1 | 153 000 | 250 000 | 15 600 | 25 500 | 3 800 | 5 300 | | 70 | 125 | 24 | 1.5 | 106 000 | 197 000 | 10 800 | 20 100 | 4 000 | 5 600 | | | 150 | 35 | 2.1 | 172 000 | 285 000 | 17 500 | 29 100 | 3 600 | 5 000 | | 75 | 130 | 25 | 1.5 | 110 000 | 212 000 | 11 200 | 21 700 | 3 800 | 5 300 | | | 160 | 37 | 2.1 | 187 000 | 320 000 | 19 100 | 33 000 | 3 400 | 4 800 | | 80 | 125 | 22 | 1.1 | 77 000 | 167 000 | 7 850 | 17 000 | 3 800 | 5 300 | | | 140 | 26 | 2 | 124 000 | 236 000 | 12 600 | 24 100 | 3 600 | 5 000 | | | 170 | 39 | 2.1 | 202 000 | 360 000 | 20 600 | 37 000 | 3 200 | 4 300 | | 85 | 130 | 22 | 1.1 | 79 000 | 176 000 | 8 050 | 18 000 | 3 800 | 5 000 | | | 150 | 28 | 2 | 143 000 | 276 000 | 14 600 | 28 200 | 3 400 | 4 800 | | | 180 | 41 | 3 | 218 000 | 405 000 | 22 300 | 41 000 | 3 000 | 4 000 | | 90 | 140 | 24 | 1.5 | 94 000 | 208 000 | 9 600 | 21 200 | 3 400 | 4 800 | | | 160 | 30 | 2 | 164 000 | 320 000 | 16 700 | 32 500 | 3 200 | 4 300 | | | 190 | 43 | 3 | 235 000 | 450 000 | 23 900 | 45 500 | 2 800 | 3 800 | | 95 | 145 | 24 | 1.5 | 96 500 | 220 000 | 9 800 | 22 500 | 3 400 | 4 500 | | | 170 | 32 | 2.1 | 177 000 | 340 000 | 18 000 | 35 000 | 3 000 | 4 000 | | | 200 | 45 | 3 | 251 000 | 495 000 | 25 600 | 50 500 | 2 600 | 3 600 | | Bearing | Load Center
Spacings | | butment and f
Dimensions (m | | Mass
(kg) | |---------|-------------------------|-----------------|--------------------------------|-----------------------------|--------------| | Numbers | a_0 | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{a}}{}_{max.}$ | approx. | | QJ 206 | 32.2 | 36 | 56 | 1 | 0.24 | | QJ 306 | 35.7 | 37 | 65 | 1 | 0.42 | | QJ 207 | 37.5 | 42 | 65 | 1 | 0.35 | | QJ 307 | 40.3 | 44 | 71 | 1.5 | 0.57 | | QJ 208 | 42.0 | 47 | 73 | 1 | 0.45 | | QJ 308 | 45.5 | 49 | 81 | 1.5 | 0.78 | | QJ 209 | 45.5 | 52 | 78 | 1 | 0.52 | | QJ 309 | 50.8 | 54 | 91 | 1.5 | 1.05 | | QJ 210 | 49.0 | 57 | 83 | 1 | 0.59 | | QJ 310 | 56.0 | 60 | 100 | 2 | 1.35 | | QJ 211 | 54.3 | 64 | 91 | 1.5 | 0.77 | | QJ 311 | 61.3 | 65 | 110 | 2 | 1.75 | | QJ 212 | 59.5 | 69 | 101 | 1.5 | 0.98 | | QJ 312 | 66.5 | 72 | 118 | 2 | 2.15 | | QJ 213 | 64.8 | 74 | 111 | 1.5 | 1.2 | | QJ 313 | 71.8 | 77 | 128 | 2 | 2.7 | | QJ 214 | 68.3 | 79 | 116 | 1.5 | 1.3 | | QJ 314 | 77.0 | 82 | 138 | 2 | 3.18 | | QJ 215 | 71.8 | 84 | 121 | 1.5 | 1.5 | | QJ 315 | 82.3 | 87 | 148 | 2 | 3.9 | | QJ 1016 | 71.8 | 87 | 118 | 1 | 1.05 | | QJ 216 | 77.0 | 90 | 130 | 2 | 1.85 | | QJ 316 | 87.5 | 92 | 158 | 2 | 4.6 | | QJ 1017 | 75.3 | 92 | 123 | 1 | 1.1 | | QJ 217 | 82.3 | 95 | 140 | 2 | 2.2 | | QJ 317 | 92.8 | 99 | 166 | 2.5 | 5.34 | | QJ 1018 | 80.5 | 99 | 131 | 1.5 | 1.45 | | QJ 218 | 87.5 | 100 | 150 | 2 | 2.75 | | QJ 318 | 98.0 | 104 | 176 | 2.5 | 6.4 | | QJ 1019 | 84.0 | 104 | 136 | 1.5 | 1.5 | | QJ 219 | 92.8 | 107 | 158 | 2 | 3.35 | | QJ 319 | 103.3 | 109 | 186 | 2.5 | 7.4 | **Remarks** When using four-point contact ball bearings, please contact NSK. Bore Diameter 100 – 200 mm Dynamic Equivalent Load $P_{\rm a} = F_{\rm a}$ Static Equivalent Load $P_{0a} = F_a$ | E | Boundary D | | | | Basic Load (| | .gf} | Limiting (min | • | |-----|------------|----|-------------|-------------|-------------------|------------------|----------|---------------|-------| | d | D | В | $m{r}$ min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | C_{a} | C_{0a} | Grease | Oil | | 100 | 150 | 24 | 1.5 | 98 500 | 232 000 | 10 000 | 23 700 | 3 200 | 4 300 | | | 180 | 34 | 2.1 | 199 000 | 390 000 | 20 300 | 39 500 | 2 800 | 3 800 | | | 215 | 47 | 3 | 300 000 | 640 000 | 31 000 | 65 500 | 2
400 | 3 400 | | 105 | 160 | 26 | 2 | 115 000 | 269 000 | 11 800 | 27 400 | 3 000 | 4 000 | | | 190 | 36 | 2.1 | 217 000 | 435 000 | 22 100 | 44 500 | 2 600 | 3 600 | | | 225 | 49 | 3 | 305 000 | 640 000 | 31 000 | 65 500 | 2 400 | 3 200 | | 110 | 170 | 28 | 2 | 139 000 | 315 000 | 14 200 | 32 000 | 2 800 | 3 800 | | | 200 | 38 | 2.1 | 235 000 | 490 000 | 24 000 | 50 000 | 2 600 | 3 400 | | | 240 | 50 | 3 | 320 000 | 710 000 | 32 500 | 72 500 | 2 200 | 3 000 | | 120 | 180 | 28 | 2 | 147 000 | 350 000 | 15 000 | 36 000 | 2 600 | 3 600 | | | 215 | 40 | 2.1 | 265 000 | 585 000 | 27 000 | 60 000 | 2 400 | 3 200 | | | 260 | 55 | 3 | 360 000 | 835 000 | 36 500 | 85 500 | 2 000 | 2 800 | | 130 | 200 | 33 | 2 | 169 000 | 415 000 | 17 300 | 42 000 | 2 400 | 3 200 | | | 230 | 40 | 3 | 274 000 | 635 000 | 28 000 | 65 000 | 2 200 | 3 000 | | | 280 | 58 | 4 | 400 000 | 970 000 | 40 500 | 99 000 | 1 900 | 2 600 | | 140 | 210 | 33 | 2 | 172 000 | 435 000 | 17 600 | 44 500 | 2 200 | 3 000 | | | 250 | 42 | 3 | 239 000 | 710 000 | 29 900 | 72 500 | 2 000 | 2 800 | | | 300 | 62 | 4 | 440 000 | 1 110 000 | 44 500 | 114 000 | 1 700 | 2 400 | | 150 | 225 | 35 | 2.1 | 197 000 | 505 000 | 20 100 | 51 500 | 2 000 | 2 800 | | | 270 | 45 | 3 | 315 000 | 785 000 | 32 000 | 80 000 | 1 800 | 2 600 | | | 320 | 65 | 4 | 460 000 | 1 230 000 | 47 000 | 125 000 | 1 600 | 2 200 | | 160 | 240 | 38 | 2.1 | 224 000 | 580 000 | 22 800 | 59 000 | 1 900 | 2 600 | | | 290 | 48 | 3 | 380 000 | 1 010 000 | 39 000 | 103 000 | 1 700 | 2 400 | | | 340 | 68 | 4 | 505 000 | 1 400 000 | 51 500 | 143 000 | 1 500 | 2 000 | | 170 | 260 | 42 | 2.1 | 268 000 | 705 000 | 27 300 | 72 000 | 1 800 | 2 400 | | | 310 | 52 | 4 | 425 000 | 1 180 000 | 43 500 | 121 000 | 1 600 | 2 200 | | | 360 | 72 | 4 | 565 000 | 1 610 000 | 57 500 | 164 000 | 1 400 | 2 000 | | 180 | 280 | 46 | 2.1 | 299 000 | 830 000 | 30 500 | 84 500 | 1 700 | 2 200 | | | 320 | 52 | 4 | 440 000 | 1 270 000 | 45 000 | 130 000 | 1 500 | 2 000 | | | 380 | 75 | 4 | 595 000 | 1 770 000 | 60 500 | 180 000 | 1 300 | 1 800 | | 190 | 290 | 46 | 2.1 | 325 000 | 925 000 | 33 000 | 94 000 | 1 600 | 2 200 | | | 340 | 55 | 4 | 440 000 | 1 290 000 | 44 500 | 131 000 | 1 400 | 2 000 | | | 400 | 78 | 5 | 655 000 | 1 980 000 | 67 000 | 202 000 | 1 300 | 1 700 | | 200 | 310 | 51 | 2.1 | 345 000 | 1 020 000 | 35 500 | 104 000 | 1 500 | 2 000 | | | 360 | 58 | 4 | 490 000 | 1 480 000 | 49 500 | 151 000 | 1 300 | 1 800 | | | 420 | 80 | 5 | 690 000 | 2 180 000 | 70 500 | 222 000 | 1 200 | 1 600 | | Bearing | Load Center
Spacings | Al
D | Mass
(kg) | | | |---------|-------------------------|--------------------|-----------------|------------------------------|---------| | Numbers | (mm) a_0 | d a
min. | $D_{ m a}$ max. | $oldsymbol{r_a}{ ext{max}}.$ | арргох. | | QJ 1020 | 87.5 | 109 | 141 | 1.5 | 1.6 | | QJ 220 | 98.0 | 112 | 168 | 2 | 4.0 | | QJ 320 | 110.3 | 114 | 201 | 2.5 | 9.3 | | QJ 1021 | 92.8 | 115 | 150 | 2 | 2.0 | | QJ 221 | 103.3 | 117 | 178 | 2 | 4.7 | | QJ 321 | 115.5 | 119 | 211 | 2.5 | 10.5 | | QJ 1022 | 98.0 | 120 | 160 | 2 | 2.5 | | QJ 222 | 108.5 | 122 | 188 | 2 | 5.6 | | QJ 322 | 122.5 | 124 | 226 | 2.5 | 12.5 | | QJ 1024 | 105.0 | 130 | 170 | 2 | 2.65 | | QJ 224 | 117.3 | 132 | 203 | 2 | 6.9 | | QJ 324 | 133.0 | 134 | 246 | 2.5 | 15.4 | | QJ 1026 | 115.5 | 140 | 190 | 2 | 4.0 | | QJ 226 | 126.0 | 144 | 216 | 2.5 | 7.7 | | QJ 326 | 143.5 | 148 | 262 | 3 | 19 | | QJ 1028 | 122.5 | 150 | 200 | 2 | 4.3 | | QJ 228 | 136.5 | 154 | 236 | 2.5 | 9.8 | | QJ 328 | 154.0 | 158 | 282 | 3 | 24 | | QJ 1030 | 131.3 | 162 | 213 | 2 | 5.2 | | QJ 230 | 147.0 | 164 | 256 | 2.5 | 12 | | QJ 330 | 164.5 | 168 | 302 | 3 | 29 | | QJ 1032 | 140.0 | 172 | 228 | 2 | 6.4 | | QJ 232 | 157.5 | 174 | 276 | 2.5 | 15 | | QJ 332 | 175.1 | 178 | 322 | 3 | 31 | | QJ 1034 | 150.5 | 182 | 248 | 2 | 8.6 | | QJ 234 | 168.0 | 188 | 292 | 3 | 19.5 | | QJ 334 | 185.6 | 188 | 342 | 3 | 41 | | QJ 1036 | 161.0 | 192 | 268 | 2 | 11 | | QJ 236 | 175.1 | 198 | 302 | 3 | 20.5 | | QJ 336 | 196.1 | 198 | 362 | 3 | 48 | | QJ 1038 | 168.0 | 202 | 278 | 2 | 11.5 | | QJ 238 | 185.6 | 208 | 322 | 3 | 23 | | QJ 338 | 206.6 | 212 | 378 | 4 | 54.5 | | QJ 1040 | 178.6 | 212 | 298 | 2 | 15 | | QJ 240 | 196.1 | 218 | 342 | 3 | 27 | | QJ 340 | 217.1 | 222 | 398 | 4 | 61.5 | **Remarks** When using four-point contact ball bearings, please contact NSK. B 74 B 75 # **SELF-ALIGNING BALL BEARINGS** **SELF-ALIGNING BALL BEARINGS** Bore Diameter 5 – 110 mm ---- B78 ### DESIGN, TYPES, AND FEATURES The outer ring has a spherical raceway and its center of curvature coincides with that of the bearing; therefore, the axis of the inner ring, balls and cage can deflect to some extent around the bearing center. This type is recommended when the alignment of the shaft and housing is difficult and when the shaft may bend. Since the contact angle is small, the axial load capacity is low. Pressed steel cages are usually used. ### PROTRUSION AMOUNT OF BALLS Among self-aligning ball bearings, there are some in which the balls protrude from the side face as shown below. This protrusion amount b_1 is listed in the following table. | Bearing No. | b ₁ (mm) | |------------------------------------|----------------------------| | 2222(K), 2316(K) | 0.5 | | 2319(K), 2320(K)
2321 , 2322(K) | 0.5 | | 1318(K) | 1.5 | | 1319(K) | 2 | | 1320(K), 1321
1322(K) | 3 | B 77 # TOLERANCES AND RUNNING ACCURACY Table 8.2 (Pages A60 to A63) RECOMMENDED FITS...... Table 9.2 (Page A84) Table 9.4 (Page A85) INTERNAL CLEARANCE...... Table 9.12 (Page A90) ### PERMISSIBLE MISALIGNMENT The permissible misalignment of self-aligning ball bearings is approximately 0.07 to 0.12 radian (4° to 7°) under normal loads. However, depending on the surrounding structure, such an angle may not be possible. Use care in the structural design. ### Bore Diameter 5 – 30 mm Tapered Bore | | | | | | | | | ı | | | |----|----------------------|----------------------|------------------|------------------------------------|----------------------------------|--------------------------------|--------------------------|--------------------------------------|--------------------------------------|------------------------------| | Во | oundary Di
mn) | imensior | ns | (N | | ad Ratings | gf} | " | Speeds
n ⁻¹) | Bearing | | d | D | В | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical
Bore | | 5 | 19 | 6 | 0.3 | 2 530 | 475 | 258 | 49 | 30 000 | 36 000 | 135 | | 6 | 19 | 6 | 0.3 | 2 530 | 475 | 258 | 49 | 30 000 | 36 000 | 126 | | 7 | 22 | 7 | 0.3 | 2 750 | 600 | 280 | 61 | 26 000 | 32 000 | 127 | | 8 | 22 | 7 | 0.3 | 2 750 | 600 | 280 | 61 | 26 000 | 32 000 | 108 | | 9 | 26 | 8 | 0.6 | 4 150 | 895 | 425 | 91 | 26 000 | 30 000 | 129 | | 10 | 30 | 9 | 0.6 | 5 550 | 1 190 | 570 | 121 | 22 000 | 28 000 | 1200 | | | 30 | 14 | 0.6 | 7 450 | 1 590 | 760 | 162 | 24 000 | 28 000 | 2200 | | | 35 | 11 | 0.6 | 7 350 | 1 620 | 750 | 165 | 20 000 | 24 000 | 1300 | | | 35 | 17 | 0.6 | 9 200 | 2 010 | 935 | 205 | 18 000 | 22 000 | 2300 | | 12 | 32
32
37
37 | 10
14
12
17 | 0.6
0.6
1 | 5 700
7 750
9 650
12 100 | 1 270
1 730
2 160
2 730 | 580
790
985
1 240 | 130
177
221
278 | 22 000
22 000
18 000
17 000 | 26 000
26 000
22 000
22 000 | 1201
2201
1301
2301 | | 15 | 35
35
42
42 | 11
14
13
17 | 0.6
0.6
1 | 7 600
7 800
9 700
12 300 | 1 750
1 850
2 290
2 910 | 775
795
990
1 250 | 179
188
234
296 | 18 000
18 000
16 000
14 000 | 22 000
22 000
20 000
18 000 | 1202
2202
1302
2302 | | 17 | 40
40
47
47 | 12
16
14
19 | 0.6
0.6
1 | 8 000
9 950
12 700
14 700 | 2 010
2 420
3 200
3 550 | 815
1 010
1 300
1 500 | 205
247
325
365 | 16 000
16 000
14 000
13 000 | 20 000
20 000
17 000
16 000 | 1203
2203
1303
2303 | | 20 | 47 | 14 | 1 | 10 000 | 2 610 | 1 020 | 266 | 14 000 | 17 000 | 1204 | | | 47 | 18 | 1 | 12 800 | 3 300 | 1 310 | 340 | 14 000 | 17 000 | 2204 | | | 52 | 15 | 1.1 | 12 600 | 3 350 | 1 280 | 340 | 12 000 | 15 000 | 1304 | | | 52 | 21 | 1.1 | 18 500 | 4 700 | 1 880 | 480 | 11 000 | 14 000 | 2304 | | 25 | 52 | 15 | 1 | 12 200 | 3 300 | 1 250 | 335 | 12 000 | 14 000 | 1205 | | | 52 | 18 | 1 | 12 400 | 3 450 | 1 270 | 350 | 12 000 | 14 000 | 2205 | | | 62 | 17 | 1.1 | 18 200 | 5 000 | 1 850 | 510 | 10 000 | 13 000 | 1305 | | | 62 | 24 | 1.1 | 24 900 | 6 600 | 2 530 | 675 | 9 500 | 12 000 | 2305 | | 30 | 62 | 16 | 1 | 15 800 | 4 650 | 1 610 | 475 | 10 000 | 12 000 | 1206 | | | 62 | 20 | 1 | 15 300 | 4 550 | 1 560 | 460 | 10 000 | 12 000 | 2206 | | | 72 | 19 | 1.1 | 21 400 | 6 300 | 2 190 | 645 | 8 500 | 11 000 | 1306 | | | 72 | 27 | 1.1 | 32 000 | 8 750 | 3 250 | 895 | 8 000 | 10 000 | 2306 | Note (1) The suffix K represents bearings with tapered bores (1 : 12) Remarks For the dimensions related to adapters, refer to Page B358. Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $T_{\rm r} \leq e$ | $F_{\rm a}/I$ | r > e | | |---------------|-----------------------|---------------|-------|--| | X | Y | X Y | | | | 1 | Y ₃ | 0.65 | Y_2 | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are listed in the table below. | Numbers | Abutment and Fillet Dimensions (mm) | | Constant | Axial Load Factors | | | Mass
(kg) | | |--------------------------------------|-------------------------------------|--------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------|----------------------------------| | Tapered
Bore(1) | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 |
approx. | | _
_
_ | 7
8
9 | 17
17
20 | 0.3
0.3
0.3 | 0.34
0.34
0.31 | 2.9
2.9
3.1 | 1.9
1.9
2.0 | 1.9
1.9
2.1 | 0.009
0.008
0.013 | | _ | 10
13 | 20
22 | 0.3
0.6 | 0.31
0.32 | 3.1
3.1 | 2.0
2.0 | 2.1
2.1 | 0.016
0.021 | | _
_
_
_ | 14
14
14
14 | 26
26
31
31 | 0.6
0.6
0.6
0.6 | 0.32
0.64
0.35
0.71 | 3.1
1.5
2.8
1.4 | 2.0
0.98
1.8
0.89 | 2.1
1.0
1.9
0.93 | 0.033
0.042
0.057
0.077 | | _
_
_
_ | 16
16
17
17 | 28
28
32
32 | 0.6
0.6
1 | 0.36
0.58
0.33
0.60 | 2.7
1.7
2.9
1.6 | 1.8
1.1
1.9
1.1 | 1.8
1.1
2.0
1.1 | 0.039
0.048
0.066
0.082 | | _
_
_
_ | 19
19
20
20 | 31
31
37
37 | 0.6
0.6
1 | 0.32
0.50
0.33
0.51 | 3.1
1.9
2.9
1.9 | 2.0
1.3
1.9
1.2 | 2.1
1.3
2.0
1.3 | 0.051
0.055
0.093
0.108 | | _
_
_
_ | 21
21
22
22 | 36
36
42
42 | 0.6
0.6
1 | 0.31
0.50
0.32
0.51 | 3.1
1.9
3.1
1.9 | 2.0
1.3
2.0
1.2 | 2.1
1.3
2.1
1.3 | 0.072
0.085
0.13
0.15 | | 1204 K
2204 K
1304 K
2304 K | 25
25
26.5
26.5 | 42
42
45.5
45.5 | 1
1
1 | 0.29
0.47
0.29
0.50 | 3.4
2.1
3.4
1.9 | 2.2
1.3
2.2
1.2 | 2.3
1.4
2.3
1.3 | 0.12
0.133
0.165
0.193 | | 1205 K
2205 K
1305 K
2305 K | 30
30
31.5
31.5 | 47
47
55.5
55.5 | 1
1
1 | 0.28
0.41
0.28
0.47 | 3.5
2.4
3.5
2.1 | 2.3
1.5
2.3
1.4 | 2.4
1.6
2.4
1.4 | 0.14
0.15
0.255
0.319 | | 1206 K
2206 K
1306 K
2306 K | 35
35
36.5
36.5 | 57
57
65.5
65.5 | 1
1
1
1 | 0.25
0.38
0.26
0.44 | 3.9
2.5
3.7
2.2 | 2.5
1.6
2.4
1.4 | 2.6
1.7
2.5
1.5 | 0.22
0.249
0.385
0.48 | B 78 B 79 ### Bore Diameter 35 - 70 mm Tapered Bore | <u> </u> | r _a | | |-------------|------------------|------------------| | | $\overline{I_a}$ | | | $\phi D_a $ | | $\phi d_{\rm a}$ | | | | | | | | | Dynamic Equivalent Load | $P = XF_{\rm r} + YF_{\rm a}$ | | | | | | | |-------------------------------|-----------------------|-------------------------|-------|--|--|--| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | | | X | Y | X | Y | | | | | 1 | Y ₃ | 0.65 | Y_2 | | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are listed in the table below. | В | Boundary D
(mr | | ns | (N | Basic Loa | d Ratings
{kg | ıf} | Limiting
(mi | • | Bearing | Numb | |----|--------------------------|----------------------|--------------------------|---------------------------------------|--------------------------------------|-----------------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------|------------------| | d | D | B | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical
Bore | Ta
Bo | | 35 | 72
72
80
80 | 17
23
21
31 | 1.1
1.1
1.5
1.5 | 15 900
21 700
25 300
40 000 | 5 100
6 600
7 850
11 300 | 1 620
2 210
2 580
4 100 | 520
675
800
1 150 | 8 500
8 500
7 500
7 100 | 10 000
10 000
9 500
9 000 | 1207
2207
1307
2307 | 1 | | 40 | 80
80
90
90 | 18
23
23
33 | 1.1
1.1
1.5
1.5 | 19 300
22 400
29 800
45 500 | 6 500
7 350
9 700
13 500 | 1 970
2 290
3 050
4 650 | 665
750
990
1 380 | 7 500
7 500
6 700
6 300 | 9 000
9 000
8 500
8 000 | 1208
2208
1308
2308 | 1
2
1
2 | | 45 | 85
85
100
100 | 19
23
25
36 | 1.1
1.1
1.5
1.5 | 22 000
23 300
38 500
55 000 | 7 350
8 150
12 700
16 700 | 2 240
2 380
3 900
5 600 | 750
830
1 300
1 700 | 7 100
7 100
6 000
5 600 | 8 500
8 500
7 500
7 100 | 1209
2209
1309
2309 | 1
2
1
2 | | 50 | 90
90
110
110 | 20
23
27
40 | 1.1
1.1
2
2 | 22 800
23 300
43 500
65 000 | 8 100
8 450
14 100
20 200 | 2 330
2 380
4 450
6 650 | 830
865
1 440
2 060 | 6 300
6 300
5 600
5 000 | 8 000
8 000
6 700
6 300 | 1210
2210
1310
2310 | 1
2
1
2 | | 55 | 100
100
120
120 | 21
25
29
43 | 1.5
1.5
2
2 | 26 900
26 700
51 500
76 500 | 10 000
9 900
17 900
24 000 | 2 750
2 720
5 250
7 800 | 1 020
1 010
1 820
2 450 | 6 000
6 000
5 000
4 800 | 7 100
7 100
6 300
6 000 | 1211
2211
1311
2311 | 1
2
1
2 | | 60 | 110
110
130
130 | 22
28
31
46 | 1.5
1.5
2.1
2.1 | 30 500
34 000
57 500
88 500 | 11 500
12 600
20 800
28 300 | 3 100
3 500
5 900
9 000 | 1 180
1 290
2 130
2 880 | 5 300
5 300
4 500
4 300 | 6 300
6 300
5 600
5 300 | 1212
2212
1312
2312 | 1
2
1
2 | | 65 | 120
120
140
140 | 23
31
33
48 | 1.5
1.5
2.1
2.1 | 31 000
43 500
62 500
97 000 | 12 500
16 400
22 900
32 500 | 3 150
4 450
6 350
9 900 | 1 280
1 670
2 330
3 300 | 4 800
4 800
4 300
3 800 | 6 000
6 000
5 300
4 800 | 1213
2213
1313
2313 | 1
2
1
2 | | 70 | 125
125
150
150 | 24
31
35
51 | 1.5
1.5
2.1
2.1 | 35 000
44 000
75 000
111 000 | 13 800
17 100
27 700
37 500 | 3 550
4 500
7 650
11 300 | 1 410
1 740
2 830
3 850 | 4 800
4 500
4 000
3 600 | 5 600
5 600
5 000
4 500 | 1214
2214
1314
2314 | | Note (1) The suffix K represents bearings with tapered bores (1 : 12) Remarks For the dimensions related to adapters, refer to Page B358 and B359. | Numbers | Abutment | and Fillet Din
(mm) | nensions | Constant | Axial Load Factors | | | Mass
(kg) | |--------------------|-----------------|------------------------|---|----------|--------------------|-------|-------|--------------| | Tapered
Bore(1) | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | e | Y_2 | Y_3 | Y_0 | approx. | | 1207 K | 41.5 | 65.5 | 1 | 0.23 | 4.2 | 2.7 | 2.8 | 0.32 | | 2207 K | 41.5 | 65.5 | 1 | 0.37 | 2.6 | 1.7 | 1.8 | 0.378 | | 1307 K | 43 | 72 | 1.5 | 0.26 | 3.8 | 2.5 | 2.6 | 0.51 | | 2307 K | 43 | 72 | 1.5 | 0.46 | 2.1 | 1.4 | 1.4 | 0.642 | | 1208 K | 46.5 | 73.5 | 1 | 0.22 | 4.3 | 2.8 | 2.9 | 0.415 | | 2208 K | 46.5 | 73.5 | 1 | 0.33 | 3.0 | 1.9 | 2.0 | 0.477 | | 1308 K | 48 | 82 | 1.5 | 0.24 | 4.0 | 2.6 | 2.7 | 0.715 | | 2308 K | 48 | 82 | 1.5 | 0.43 | 2.3 | 1.5 | 1.5 | 0.889 | | 1209 K | 51.5 | 78.5 | 1 | 0.21 | 4.7 | 3.0 | 3.1 | 0.465 | | 2209 K | 51.5 | 78.5 | 1 | 0.30 | 3.2 | 2.1 | 2.2 | 0.522 | | 1309 K | 53 | 92 | 1.5 | 0.25 | 4.0 | 2.6 | 2.7 | 0.955 | | 2309 K | 53 | 92 | 1.5 | 0.41 | 2.4 | 1.5 | 1.6 | 1.2 | | 1210 K | 56.5 | 83.5 | 1 | 0.21 | 4.7 | 3.1 | 3.2 | 0.525 | | 2210 K | 56.5 | 83.5 | 1 | 0.28 | 3.4 | 2.2 | 2.3 | 0.564 | | 1310 K | 59 | 101 | 2 | 0.23 | 4.2 | 2.7 | 2.8 | 1.25 | | 2310 K | 59 | 101 | 2 | 0.42 | 2.3 | 1.5 | 1.6 | 1.58 | | 1211 K | 63 | 92 | 1.5 | 0.20 | 4.9 | 3.2 | 3.3 | 0.705 | | 2211 K | 63 | 92 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 0.746 | | 1311 K | 64 | 111 | 2 | 0.23 | 4.2 | 2.7 | 2.8 | 1.6 | | 2311 K | 64 | 111 | 2 | 0.41 | 2.4 | 1.5 | 1.6 | 2.03 | | 1212 K | 68 | 102 | 1.5 | 0.18 | 5.3 | 3.4 | 3.6 | 0.90 | | 2212 K | 68 | 102 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 1.03 | | 1312 K | 71 | 119 | 2 | 0.23 | 4.3 | 2.8 | 2.9 | 2.03 | | 2312 K | 71 | 119 | 2 | 0.40 | 2.4 | 1.6 | 1.6 | 2.57 | | 1213 K | 73 | 112 | 1.5 | 0.17 | 5.7 | 3.7 | 3.8 | 1.15 | | 2213 K | 73 | 112 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 1.4 | | 1313 K | 76 | 129 | 2 | 0.23 | 4.2 | 2.7 | 2.9 | 2.54 | | 2313 K | 76 | 129 | 2 | 0.39 | 2.5 | 1.6 | 1.7 | 3.2 | | _ | 78 | 117 | 1.5 | 0.18 | 5.3 | 3.4 | 3.6 | 1.3 | | _ | 78 | 117 | 1.5 | 0.26 | 3.7 | 2.4 | 2.5 | 1.52 | | _ | 81 | 139 | 2 | 0.22 | 4.4 | 2.8 | 3.0 | 3.19 | | _ | 81 | 139 | 2 | 0.38 | 2.6 | 1.7 | 1.8 | 3.9 | B 80 B 81 ### Bore Diameter 75 – 110 mm Tapered Bore | В | oundary Di
(mn | | ns | (N | | oad Ratings
{kg | nf} | Limiting
(min | • | Bearing | |-----|-------------------|----|------------------|-------------|-------------------|--------------------|-------------------|------------------|-------|---------------------| | d | D | В | r
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical
Bore | | 75 | 130 | 25 | 1.5 | 39 000 | 15 700 | 4 000 | 1 600 | 4 300 | 5 300 | 1215 | | | 130 | 31 | 1.5 | 44 500 | 17 800 | 4 550 | 1 820 | 4 300 | 5 300 | 2215 | | | 160 | 37 | 2.1 | 80 000 | 30 000 | 8 150 | 3 050 | 3 800 | 4 500 | 1315 | | | 160 | 55 | 2.1 | 125 000 | 43 000 | 12 700 | 4 400 | 3 400 | 4 300 | 2315 | | 80 | 140 | 26 | 2 | 40 000 | 17 000 | 4 100 | 1 730 | 4 000 | 5 000 | 1216 | | | 140 | 33 | 2 | 49 000 | 19 900 | 5 000 | 2 030 | 4 000 | 5 000 | 2216 | | | 170 | 39 | 2.1 | 89 000 | 33 000 | 9 100 | 3 400 | 3 600 | 4 300 | 1316 | | | 170 | 58 | 2.1 | 130 000 | 45 000 | 13 200 | 4 600 | 3 200 | 4 000 | * 2316 | | 85 | 150 | 28 | 2 | 49 500 | 20 800 | 5 050 | 2 120 | 3 800 | 4 500 | 1217 | | | 150 | 36 | 2 | 58 500 | 23 600 | 5 950 | 2 400 | 3 800 | 4 800 | 2217 | | | 180 | 41 | 3 | 98 500 | 38 000 | 10 000 | 3 850 | 3 400 | 4 000 | 1317 | | | 180 | 60 | 3 | 142 000 | 51 500 | 14 500 | 5 250 | 3 000 | 3 800 | 2317 | | 90 | 160 | 30 | 2 | 57 500 | 23 500 | 5 850 | 2 400 | 3 600 | 4 300 | 1218 | | | 160 | 40 | 2 |
70 500 | 28 700 | 7 200 | 2 930 | 3 600 | 4 300 | 2218 | | | 190 | 43 | 3 | 117 000 | 44 500 | 12 000 | 4 550 | 3 200 | 3 800 | * 1318 | | | 190 | 64 | 3 | 154 000 | 57 500 | 15 700 | 5 850 | 2 800 | 3 600 | 2318 | | 95 | 170 | 32 | 2.1 | 64 000 | 27 100 | 6 550 | 2 770 | 3 400 | 4 000 | 1219 | | | 170 | 43 | 2.1 | 84 000 | 34 500 | 8 550 | 3 500 | 3 400 | 4 000 | 2219 | | | 200 | 45 | 3 | 129 000 | 51 000 | 13 200 | 5 200 | 3 000 | 3 600 | * 1319 | | | 200 | 67 | 3 | 161 000 | 64 500 | 16 400 | 6 550 | 2 800 | 3 400 | * 2319 | | 100 | 180 | 34 | 2.1 | 69 500 | 29 700 | 7 100 | 3 050 | 3 200 | 3 800 | 1220 | | | 180 | 46 | 2.1 | 94 500 | 38 500 | 9 650 | 3 900 | 3 200 | 3 800 | 2220 | | | 215 | 47 | 3 | 140 000 | 57 500 | 14 300 | 5 850 | 2 800 | 3 400 | * 1320 | | | 215 | 73 | 3 | 187 000 | 79 000 | 19 100 | 8 050 | 2 400 | 3 200 | * 2320 | | 105 | 190 | 36 | 2.1 | 75 000 | 32 500 | 7 650 | 3 300 | 3 000 | 3 600 | 1221 | | | 190 | 50 | 2.1 | 109 000 | 45 000 | 11 100 | 4 550 | 3 000 | 3 600 | 2221 | | | 225 | 49 | 3 | 154 000 | 64 500 | 15 700 | 6 600 | 2 600 | 3 200 | * 1321 | | | 225 | 77 | 3 | 200 000 | 87 000 | 20 400 | 8 850 | 2 400 | 3 000 | * 2321 | | 110 | 200 | 38 | 2.1 | 87 000 | 38 500 | 8 900 | 3 950 | 2 800 | 3 400 | 1222 | | | 200 | 53 | 2.1 | 122 000 | 51 500 | 12 500 | 5 250 | 2 800 | 3 400 | * 2222 | | | 240 | 50 | 3 | 161 000 | 72 000 | 16 400 | 7 300 | 2 400 | 3 000 | * 1322 | | | 240 | 80 | 3 | 211 000 | 94 500 | 21 600 | 9 650 | 2 200 | 2 800 | * 2322 | Notes (1) The suffix K represents bearings with tapered bores (1:12) B 82 Remarks For the dimensions related to adapters, refer to Pages B360 and B361. ### Dynamic Equivalent Load | $P = XF_{\rm r}$ | + | YF_{a} | | |------------------|---|----------|--| | | | | | | $F_{\rm a}/I$ | $T_{\rm r} \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | |---------------|-----------------------|-------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y ₃ | 0.65 | Y_2 | | | ### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are listed in the table below. | Numbers | Abutment and Fillet Dimensions (mm) | | Constant | Axial Load Factors | | | Mass
(kg) | | |--------------------|-------------------------------------|-----------------|-----------------|--------------------|-------|-------|--------------|---------| | Tapered
Bore(1) | $d_{\scriptscriptstyle a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 1215 K | 83 | 122 | 1.5 | 0.17 | 5.6 | 3.6 | 3.8 | 1.41 | | 2215 K | 83 | 122 | 1.5 | 0.25 | 3.9 | 2.5 | 2.6 | 1.6 | | 1315 K | 86 | 149 | 2 | 0.22 | 4.4 | 2.8 | 2.9 | 3.65 | | 2315 K | 86 | 149 | 2 | 0.38 | 2.5 | 1.6 | 1.7 | 4.77 | | 1216 K | 89 | 131 | 2 | 0.16 | 6.0 | 3.9 | 4.1 | 1.73 | | 2216 K | 89 | 131 | 2 | 0.25 | 3.9 | 2.5 | 2.7 | 1.97 | | 1316 K | 91 | 159 | 2 | 0.22 | 4.5 | 2.9 | 3.1 | 4.31 | | * 2316 K | 91 | 159 | 2 | 0.39 | 2.5 | 1.6 | 1.7 | 5.54 | | 1217 K | 94 | 141 | 2 | 0.17 | 5.7 | 3.7 | 3.8 | 2.09 | | 2217 K | 94 | 141 | 2 | 0.25 | 3.9 | 2.5 | 2.6 | 2.48 | | 1317 K | 98 | 167 | 2.5 | 0.21 | 4.6 | 2.9 | 3.1 | 5.13 | | 2317 K | 98 | 167 | 2.5 | 0.37 | 2.6 | 1.7 | 1.8 | 6.56 | | 1218 K | 99 | 151 | 2 | 0.17 | 5.8 | 3.8 | 3.9 | 2.55 | | 2218 K | 99 | 151 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 3.13 | | * 1318 K | 103 | 177 | 2.5 | 0.22 | 4.3 | 2.8 | 2.9 | 5.94 | | 2318 K | 103 | 177 | 2.5 | 0.38 | 2.6 | 1.7 | 1.7 | 7.76 | | 1219 K | 106 | 159 | 2 | 0.17 | 5.8 | 3.7 | 3.9 | 3.21 | | 2219 K | 106 | 159 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 3.87 | | * 1319 K | 108 | 187 | 2.5 | 0.23 | 4.3 | 2.8 | 2.9 | 6.84 | | * 2319 K | 108 | 187 | 2.5 | 0.38 | 2.6 | 1.7 | 1.8 | 9.01 | | 1220 K | 111 | 169 | 2 | 0.17 | 5.6 | 3.6 | 3.8 | 3.82 | | 2220 K | 111 | 169 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 4.53 | | * 1320 K | 113 | 202 | 2.5 | 0.24 | 4.1 | 2.7 | 2.8 | 8.46 | | * 2320 K | 113 | 202 | 2.5 | 0.38 | 2.6 | 1.7 | 1.8 | 11.6 | | _ | 116 | 179 | 2 | 0.18 | 5.5 | 3.6 | 3.7 | 4.52 | | _ | 116 | 179 | 2 | 0.28 | 3.5 | 2.3 | 2.4 | 5.64 | | _ | 118 | 212 | 2.5 | 0.23 | 4.2 | 2.7 | 2.9 | 10 | | _ | 118 | 212 | 2.5 | 0.38 | 2.6 | 1.7 | 1.7 | 14.4 | | 1222 K | 121 | 189 | 2 | 0.17 | 5.7 | 3.7 | 3.9 | 5.33 | | * 2222 K | 121 | 189 | 2 | 0.28 | 3.5 | 2.2 | 2.3 | 6.64 | | * 1322 K | 123 | 227 | 2.5 | 0.22 | 4.4 | 2.8 | 3.0 | 12 | | * 2322 K | 123 | 227 | 2.5 | 0.37 | 2.6 | 1.7 | 1.8 | 17.4 | ^(*) The balls of the bearings marked * protrude slightly from the bearing face. The protrusion amounts are shown on Page B77. # CYLINDRICAL ROLLER BEARINGS | SINGLE-ROW CYLINDRICAL ROLLER BEARINGS | Bore Diameter | 20 – | 65 mm ······ | В | 88 | |---|---------------|---------|---------------------|----|-----| | | Bore Diameter | 70 – 1 | 60 mm ······ | В | 94 | | | Bore Diameter | 170 – 5 | 00 mm ······ | В1 | 02 | | L-SHAPED THRUST COLLARS FOR CYLINDRICAL ROLLER BEARINGS | Bore Diameter | 20 – 3 | 20 mm ······ | B1 | 06 | | DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS | Bore Diameter | 25 – 3 | 60 mm ····· | В1 | 110 | Four-Row Cylindrical Roller Bearings are described on Pages B334 to B343. # DESIGN, TYPES, AND FEATURES Depending on the existence of ribs on their rings, Cylindrical Roller Bearings are classified into the following types. Types NU, N, NNU, and NN are suitable as free-end bearings. Types NJ and NF can sustain limited axial loads in one direction. Types NH and NUP can be used as fixed-end bearings. NH-type cylindrical roller bearings consist of the NJ-type cylindrical roller bearings and HJ-type L-shaped thrust collars (See Page B104 to B105). The inner ring loose rib of a NUP-type cylindrical roller bearing should be mounted so that the marked side is on the outside. B 84 B 85 Use pressed, machined, or molded cages for standard cylindrical roller bearings as shown in Table 1. Table 1 Standard Cages for Cylindrical Roller Bearings | Series | Pressed Steel Cages (W) | Machined Brass Cages (M) | Molded Polyamide Cages (T) | |--------------|-------------------------|--------------------------|----------------------------| | NU10** | _ | 1005 – 10/500 | _ | | N2** | 204 – 230 | 232 - 264 | _ | | NU2** | 214 – 230 | 232 - 264 | _ | | NU2**E | 205E – 213E | 214E - 240E | 204E | | NU22** | 2204 - 2230 | 2232 – 2252 | _ | | NU22**E | _ | 2222E - 2240E | 2204E – 2220E | | N3 ** | 304 - 324 | 326 – 352 | _ | | NU3** | 312 – 330 | 332 - 352 | _ | | NU3**E | 305E - 311E | 312E - 340E | 304E | | NU23** | 2304 - 2320 | 2322 - 2340 | _ | | NU23**E | _ | 2322E - 2340E | 2304E - 2320E | | NU4** | 405 – 416 | 417 – 430 | _ | The basic load ratings listed in the bearing tables are based on the Cage Classification in Table 1. For a given bearing number, if the type of cage is not the standard one, the number of rollers may vary; in such a case, the load rating will differ from the one listed in the bearing tables. Among the NN Type of double-row bearings, there are many of high precision that have tapered bores, and they are primarily used in the main spindles of machine tools. Their cages are either molded polyphenylenesulfide (PPS) or machined brass. ### PRECAUTIONS FOR USE OF CYLINDRICAL ROLLER BEARINGS If the load on cylindrical roller bearings becomes too small during operation, slippage between the rollers and raceways occurs, which may result in smearing. Especially with large bearings since the weight of the roller and cage is high In case of strong shock loads or vibration, pressed-steel cages are sometimes inadequate. If very small bearing load or strong shock loads or vibration are expected, please consult with NSK for selection of the bearings. Bearings with molded polyamide cages (ET type) can be used continuously at temperatures between — 40 and 120°C. If the bearings are used in gear oil, nonflammable hydraulic oil, or ester oil at a high temperature over 100°C, please contact NSK beforehand. ### TOLERANCES AND RUNNING ACCURACY | CYLINDRICAL ROLLER BEARINGS | Table 8 | 3.2 (| Pages | A60 | to . | A63) | |-------------------------------|---------|-------|-------|-------|------|------| | DOUBLE-ROW CYLINDRICAL ROLLER | | | | | | | | BEARINGS | Table 8 | 3.2 (| Pages | A60 1 | to i | A63) | | Nomin
Diameter | al Bore
d (mm) | Tolerances fo
NU, NJ, NUP, NH | or $F_{ m w}$ of types H, and NNU ${ extstyle \int_{ m w}}$ | Tolerance
types N, NF, | es for $E_{ m w}$ of and NN \varDelta $E_{ m w}$ | |-------------------|-------------------|----------------------------------|---|---------------------------|--| | over | incl. | high | low | high | low | | _ | 20 | +10 | 0 | 0 | -10 | | 20 | 50 | +15 | 0 | 0 | — 15 | | 50 | 120 | +20 | 0 | 0 | -20 | | 120 | 200 | +25 | 0 | 0 | -25 | | 200 | 250 | +30 | 0 | 0 | -30 | | 250 | 315 | +35 | 0 | 0 | - 35 | | 315 | 400 | +40 | 0 | 0 | -40 | | 400 | 500 | +45 | 0 | _ | _ | ### RECOMMENDED FITS | CYLINDRICAL ROLLER BEARINGS | Table 9.2 (Page A84) | |-------------------------------|----------------------| | | Table 9.4 (Page A85) | | DOUBLE-ROW CYLINDRICAL ROLLER | | | BEARINGS | Table 9.2 (Page A84) | | | Table 9.4 (Page A85) | ### INTERNAL CLEARANCES CYLINDRICAL ROLLER BEARINGS..... Table 9.14 (Page A91) DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS.... Table 9.14 (Page A91) ### PERMISSIBLE MISALIGNMENT The permissible misalignment of cylindrical roller bearings varies depending on the type and internal specifications, but under normal loads, the angles are approximately as follows: For double-row cylindrical roller bearings, nearly no misalignment is allowed. ### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc.
Refer to Page A37 for detailed information. B 86 B 87 Bore Diameter 20 – 35 mm | | | Bou | ndary Dir
(mm | mensions
) | | | Basic Load
(N) | | Limiting S
(min | | |----|----------------|----------------|-------------------|------------------------|-------------------|-------------------|----------------------------|----------------------------|----------------------------|----------------------------| | d | D | В | $m{r}$ min. | $r_1 \atop ext{min.}$ | F_{W} | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 20 | 47
47
47 | 14
14
18 | 1
1
1 | 0.6
0.6
0.6 |
26.5
27 | 40
 | 15 400
25 700
20 700 | 12 700
22 600
18 400 | 15 000
13 000
13 000 | 18 000
16 000
16 000 | | | 47
52
52 | 18
15
15 | 1
1.1
1.1 | 0.6
0.6
0.6 | 26.5
—
27.5 | 44.5
— | 30 500
21 400
31 500 | 28 300
17 300
26 900 | 13 000
12 000
12 000 | 16 000
15 000
15 000 | | | 52
52 | 21
21 | 1.1
1.1 | 0.6
0.6 | 28.5
27.5 | _ | 30 500
42 000 | 27 200
39 000 | 11 000
11 000 | 14 000
14 000 | | 25 | 47
52
52 | 12
15
15 | 0.6
1
1 | 0.3
0.6
0.6 | 30.5
—
31.5 |
45
 | 14 300
17 700
29 300 | 13 100
15 700
27 700 | 15 000
13 000
12 000 | 18 000
16 000
14 000 | | | 52
62
62 | 18
17
17 | 1
1.1
1.1 | 0.6
1.1
1.1 | 31.5
—
34 | 53
— | 35 000
29 300
41 500 | 34 500
25 200
37 500 | 12 000
10 000
10 000 | 14 000
13 000
12 000 | | | 62
80 | 24
21 | 1.1
1.5 | 1.1
1.5 | 34
38.8 | <u> </u> | 57 000
46 500 | 56 000
40 000 | 9 000
9 000 | 11 000
11 000 | | 30 | 55
62
62 | 13
16
16 | 1
1
1 | 0.6
0.6
0.6 | 36.5
—
37.5 | 48.5
53.5
— | 19 700
24 900
39 000 | 19 600
23 300
37 500 | 12 000
11 000
9 500 | 15 000
13 000
12 000 | | | 62
72
72 | 20
19
19 | 1
1.1
1.1 | 0.6
1.1
1.1 | 37.5
—
40.5 | 62
— | 49 000
38 500
53 000 | 50 000
35 000
50 000 | 9 500
8 500
8 500 | 12 000
11 000
10 000 | | | 72
90 | 27
23 | 1.1
1.5 | 1.1
1.5 | 40.5
45 | - | 74 500
62 500 | 77 500
55 000 | 8 000
7 500 | 9 500
9 500 | | 35 | 62
72
72 | 14
17
17 | 1
1.1
1.1 | 0.6
0.6
0.6 | 42
—
44 | 55
61.8
— | 22 600
35 500
50 500 | 23 200
34 000
50 000 | 11 000
9 500
8 500 | 13 000
11 000
10 000 | | | 72
80
80 | 23
21
21 | 1.1
1.5
1.5 | 0.6
1.1
1.1 | 44
—
46.2 | 68.2
— | 61 500
49 500
66 500 | 65 500
47 000
65 500 | 8 500
8 000
7 500 | 10 000
9 500
9 500 | | | 80
100 | 31
25 | 1.5
1.5 | 1.1
1.5 | 46.2
53 | —
83 | 93 000
75 500 | 101 000
69 000 | 6 700
6 700 | 8 500
8 000 | ⁽²) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bea | Bearing Numbers ⁽²⁾ (3) | | | | | | P | butmer | nt and Fi
(mi | llet Dime
m) | nsions | | | | Mass
(kg) | |---------------------------------|------------------------------------|-----------------|-------------|---------|-----------------------------------|-----------------|-----------------------------------|-----------------|------------------|-----------------------|-----------------|-----------------|------------------------------|-------------------|-------------------------| | | NU NJ | NUP | N | NF | d _a (4)
min. | $d_{ m b}$ min. | d ₀ ⁽⁵⁾
max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $\emph{\textbf{r}}_{a}$ max. | $r_{ m b}$ max. | арргох. | | N 204
NU 204 ET
NU2204 |
NU NJ | NUP | N
 | NF
 | 25
25
25 |
24
24 |
25
25 |
29
29 | —
32
32 | —
42
42 | 43
 | 42
— | 1
1
1 | 0.6
0.6
0.6 | 0.107
0.107
0.144 | | NU2204 ET
N 304
NU 304 ET | | NUP
NUP | _
N
_ | NF | 25
26.5
26.5 | 24

24 | 25
—
26 | 29
—
30 | 32
—
33 | 42
—
45.5 |
48
 |
46
 | 1
1
1 | 0.6
0.6
0.6 | 0.138
0.148
0.145 | | NU2304
NU2304 ET | | NUP
NUP | _ | _ | 26.5
26.5 | 24
24 | 27
26 | 30
30 | 33
33 | 45.5
45.5 | _ | _ | 1
1 | 0.6
0.6 | 0.217
0.209 | | NU1005
N 205
NU 205 EW | NU —
— —
NU NJ | _
NUP | _
N
_ | NF | —
30
30 | 27
—
29 | 30
—
30 | 32
—
34 | _
37 | 43
—
47 |
48
 | _
46
_ | 0.6
1
1 | 0.3
0.6
0.6 | 0.094
0.135
0.136 | | NU2205 ET
N 305
NU 305 EW | | NUP
NUP | _
N
_ | NF | 30
31.5
31.5 | 29
—
31.5 | 30
—
32 | 34
—
37 | 37
-
40 | 47
—
55.5 |
55.5
_ |
50
 | 1
1
1 | 0.6
1
1 | 0.16
0.233
0.269 | | NU2305 ET
NU 405 | NU NJ | NUP
— | _
N | _
NF | 31.5
33 | 31.5
33 | 32
37 | 37
41 | 40
46 | 55.5
72 | —
72 | <u> </u> | 1
1.5 | 1
1.5 | 0.338
0.57 | | NU1006
N 206
NU 206 EW | NU —
— —
NU NJ | _
NUP | N
N | NF
— | 35
35
35 | 34

34 | 36
—
36 | 38
—
40 | <u> </u> | 50
—
57 | 51
58
— | 49
56
— | 1
1
1 | 0.5
0.6
0.6 | 0.136
0.208
0.205 | | NU2206 ET
N 306
NU 306 EW | | NUP
NUP | N | NF
— | 35
36.5
36.5 | 34
—
36.5 | 36
—
39 | 40
—
44 | 44
—
48 | 57
—
65.5 |
65.5
_ | 64
— | 1
1
1 | 0.6
1
1 | 0.255
0.353
0.409 | | NU2306 ET
NU 406 | NU NJ | NUP
— | N | _
NF | 36.5
38 | 36.5
38 | 39
43 | 44
47 | 48
52 | 65.5
82 | —
82 |
75 | 1
1.5 | 1
1.5 | 0.518
0.758 | | NU1007
N 207
NU 207 EW | NO N1 | _
NUP | N
N | NF | 40
41.5
41.5 | 39

39 | 41
—
42 | 44
—
46 |
50 | 57
—
65.5 | 58
68
— | 56
64
— | 1
1
1 | 0.5
0.6
0.6 | 0.18
0.301
0.304 | | NU2207 ET
N 307
NU 307 EW | | NUP
—
NUP | _
N
_ | NF | 41.5
43
41.5 | 39
—
41.5 | 42
—
44 | 46
—
48 | 50
—
53 | 65.5
—
72 | 73.5
— |
70
 | 1
1.5
1.5 | 0.6
1
1 | 0.40
0.476
0.545 | | NU2307 ET
NU 407 | NN NN
NN NN | NUP
— | _
N | _
NF | 43
43 | 41.5
43 | 44
51 | 48
55 | 53
61 | 72
92 | —
92 | —
85 | 1.5
1.5 | 1
1.5 | 0.711
1.01 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) d_b (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 40 – 55 mm | Boundary Dimensions (mm) d D B r r_1 r_W | | | | | | | Basic Load | | Limiting S
(min | | |--|-------------------|----------------|-------------------|---------------------------------|-------------------|------------------|-------------------------------|-------------------------------|-------------------------|-------------------------| | d | D | В | $m{r}$ min. | $r_{\scriptscriptstyle 1}$ min. | $F_{ m W}$ | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 40 | 68 | 15 | 1 | 0.6 | 47 | 61 | 27 300 | 29 000 | 10 000 | 12 000 | | | 80 | 18 | 1.1 | 1.1 | — | 70 | 43 500 | 43 000 | 8 500 | 10 000 | | | 80 | 18 | 1.1 | 1.1 | 49.5 | — | 55 500 | 55 500 | 7 500 | 9 000 | | | 80 | 23 | 1.1 | 1.1 | 49.5 | — | 72 500 | 77 500 | 7 500 | 9 000 | | | 90 | 23 | 1.5 | 1.5 | — | 77.5 | 58 500 | 57 000 | 6 700 | 8 500 | | | 90 | 23 | 1.5 | 1.5 | 52 | — | 83 000 | 81 500 | 6 700 | 8 000 | | | 90
110 | 33
27 | 1.5
2 | 1.5
2 | 52
58 | <u> </u> | 114 000
95 500 | 122 000
89 000 | 6 000
6 000 | 7 500
7 500 | | 45 | 75 | 16 | 1 | 0.6 | 52.5 | 67.5 | 32 500 | 35 500 | 9 000 | 11 000 | | | 85 | 19 | 1.1 | 1.1 | — | 75 | 46 000 | 47 000 | 7 500 | 9 000 | | | 85 | 19 | 1.1 | 1.1 | 54.5 | — | 63 000 | 66 500 | 6 700 | 8 000 | | | 85
100
100 | 23
25
25 | 1.1
1.5
1.5 | 1.1
1.5
1.5 | 54.5
—
58.5 | 86.5
— | 76 000
79 000
97 500 | 84 500
77 500
98 500 | 6 700
6 300
6 000 | 8 500
7 500
7 500 | | | 100 | 36 | 1.5 | 1.5 | 58.5 | | 137 000 | 153 000 | 5 300 | 6 700 | | | 120 | 29 | 2 | 2 | 64.5 | 100.5 | 107 000 | 102 000 | 5 600 | 6 700 | | 50 | 80 | 16 | 1 | 0.6 | 57.5 | 72.5 | 32 000 | 36 000 | 8 000 | 10 000 | | | 90 | 20 | 1.1 | 1.1 | — | 80.4 | 48 000 | 51 000 | 7 100 | 8 500 | | | 90 | 20 | 1.1 | 1.1 | 59.5 | — | 69 000 | 76 500 | 6 300 | 7 500 | | | 90
110
110 | 23
27
27 | 1.1
2
2 | 1.1
2
2 | 59.5
—
65 | 95
— | 83 500
87 000
110 000 | 97 000
86 000
113 000 | 6 300
5 600
5 000 | 8 000
6 700
6 000 | | | 110 | 40 | 2 | 2 | 65 | | 163 000 | 187 000 | 5 000 | 6 300 | | | 130 | 31 | 2.1 | 2.1 | — | 110.8 | 139 000 | 136 000 | 5 000 | 6 000 | | | 130 | 31 | 2.1 | 2.1 | 70.8 | 110.8 | 129 000 | 124 000 | 5 000 | 6 000 | | 55 | 90 | 18 | 1.1 | 1 | 64.5 | 80.5 | 37 500 | 44 000 | 7 500 | 9 000 | | | 100 | 21 | 1.5 | 1.1 | — | 88.5 | 58 000 | 62 500 | 6 300 | 7 500 | | | 100 | 21 | 1.5 | 1.1 | 66 | — | 86 500 | 98 500 | 5 600 | 7 100 | | | 100
120
120 | 25
29
29 | 1.5
2
2 | 1.1
2
2 | 66
—
70.5 | 104.5
— | 101 000
111 000
137 000 | 122 000
111 000
143 000 | 5 600
5 000
4 500 | 7 100
6 300
5 600 | | | 120 | 43 | 2 | 2 | 70.5 | | 201 000 | 233 000 | 4 500 | 5 600 | | | 140 | 33 | 2.1 | 2.1 | 77.2 | 117.2 | 139 000 | 138 000 | 4 500 | 5 600 | ⁽²) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120
°C. | Bear | Bearing Numbers ⁽²⁾ (3) NU NJ NUP N NE | | | | | ļ | Abutme | nt and F
(m | illet Dime
m) | ensions | | | | Mass
(kg) | |---------------------------------|---|---------------------|----------|---|-----------------|-----------------------|-----------------|-----------------|-----------------------|-----------------|-------------------|--------------------------|-----------------|-------------------------| | | NN NY N | UP N | NF | $d_{\!\scriptscriptstyle a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $m{r_{\mathrm{a}}}$ max. | $r_{ m b}$ max. | арргох. | | NU1008
N 208
NU 208 EW | | UP N
- N
UP - | NF | 45
46.5
46.5 | 44
—
46.5 | 46
—
48 | 49
—
52 | —
56 | 63
—
73.5 | 64
73.5
— | 62
72
— | 1
1
1 | 0.6
1
1 | 0.223
0.375
0.379 | | NU2208 ET
N 308
NU 308 EW | | UP —
— N
UP — | NF | 46.5
48
48 | 46.5
—
48 | 48
—
50 | 52
—
55 | 56
—
60 | 73.5
—
82 | —
82
— | _
79
_ | 1
1.5
1.5 | 1
1.5
1.5 | 0.480
0.649
0.747 | | NU2308 ET
NU 408 | | UP —
UP N | _
NF | 48
49 | 48
49 | 50
56 | 55
60 | 60
67 | 82
101 | _
101 | <u> </u> | 1.5
2 | 1.5
2 | 0.933
1.28 | | NU1009
N 209
NU 209 EW | NU NJ N | – N
– N
UP – | NF
NF | 50
51.5
51.5 | 49
—
51.5 | 51
—
52 | 54
—
57 | _
61 | 70
—
78.5 | 71
78.5
— | 68
77
— | 1
1
1 | 0.6
1
1 | 0.279
0.429
0.438 | | NU2209 ET
N 309
NU 309 EW | | UP —
— N
UP — | NF | 51.5
53
53 | 51.5
—
53 | 52
—
56 | 57
—
60 | 61
—
66 | 78.5
—
92 | —
92
— | _
77
_ | 1
1.5
1.5 | 1
1.5
1.5 | 0.521
0.869
1.01 | | NU2309 ET
NU 409 | | UP —
UP N | _
NF | 53
54 | 53
54 | 56
62 | 60
66 | 66
74 | 92
111 | _
111 |
103 | 1.5
2 | 1.5
2 | 1.28
1.62 | | NU1010
N 210
NU 210 EW | | UP N
- N
UP - | NF | 55
56.5
56.5 | 54
—
56.5 | 56
—
57 | 59
—
62 | —
—
67 | 75
—
83.5 | 76
83.5
— | 73
82
— | 1
1
1 | 0.6
1
1 | 0.301
0.483
0.50 | | NU2210 ET
N 310
NU 310 EW | | UP —
— N
UP — | NF | 56.5
59
59 | 56.5
—
59 | 57
—
63 | 62
—
67 | 67
—
73 | 83.5
—
101 |
101
 | —
97
— | 1
2
2 | 1
2
2 | 0.562
1.11
1.3 | | NU2310 ET
N 410
NU 410 | | UP —
— N
UP N | NF
NF | 59
65
61 | 59
—
61 | 63
—
68 | 67
—
73 | 73
—
81 | 101
—
119 | —
117
119 | —
113
113.3 | 2
2
2 | 2
2
2 | 1.7
2.0
1.99 | | NU1011
N 211
NU 211 EW | NO NY - | – N
– N
UP – | NF | 61.5
63
63 | 60
—
61.5 | 63
—
64 | 66
—
68 | _
73 | 83.5
—
92 | 85
93.5
— | 82
91
— | 1
1.5
1.5 | 1
1
1 | 0.445
0.634
0.669 | | NU2211 ET
N 311
NU 311 EW | | UP —
— N
UP — | NF | 63
64
64 | 61.5
—
64 | 64
—
68 | 68
—
72 | 73
—
80 | 92
—
111 | 111
— | 107
— | 1.5
2
2 | 1
2
2 | 0.783
1.42
1.64 | | NU2311 ET
NU 411 | | UP —
UP N | _
NF | 64
66 | 64
66 | 68
75 | 72
79 | 80
87 | 111
129 | _
129 | _
119 | 2
2 | 2
2 | 2.18
2.5 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) d_b (max.) are values for adjusting rings for NU, NJ Types. ### Bore Diameter 60 – 75 mm | | | Bou | ndary Dir
(mm | mensions
ı) | | | Basic Load
(N | | Limiting Sp
(min | | |----|--|--|--|--|--|---|---|--|--|--| | d | D | В | $m{r}$ min. | $oldsymbol{r_1}{ ext{min.}}$ | $F_{ m W}$ | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 60 | 95
110
110
110
130
130
130 | 18
22
22
28
31
31
31
46 | 1.1
1.5
1.5
1.5
2.1
2.1
2.1
2.1 | 1
1.5
1.5
1.5
2.1
2.1
2.1
2.1 | 69.5
—
72
72
—
77
77
77 | 85.5
97.5
—
—
113
—
— | 40 000
68 500
97 500
131 000
124 000
124 000
150 000
222 000 | 48 500
75 000
107 000
157 000
126 000
126 000
157 000
262 000 | 6 700
6 000
5 300
5 300
4 800
4 800
4 800
4 300 | 8 500
7 100
6 300
6 300
5 600
5 600
5 600
5 300 | | 65 | 150
100
120
120
120 | 35
18
23
23
31 | 2.1
1.1
1.5
1.5 | 2.1
1
1.5
1.5
1.5 | 74.5
—
78.5
78.5 | 127
90.5
105.6
— | 167 000
41 000
84 000
108 000
149 000 | 168 000
51 000
94 500
119 000
181 000 | 4 300
6 300
5 300
4 800
4 800 | 5 300
8 000
6 300
5 600
6 000 | | | 140
140
140
140
160 | 33
33
33
48
37 | 2.1
2.1
2.1
2.1
2.1 | 2.1
2.1
2.1
2.1
2.1 | 83.5
82.5
82.5
89.3 | 121.5
—
—
—
135.3 | 135 000
135 000
181 000
233 000
182 000 | 139 000
139 000
191 000
265 000
186 000 | 4 300
4 300
4 300
3 800
4 000 | 5 300
5 300
5 300
4 800
4 800 | | 70 | 110
125
125
125
150
150 | 20
24
24
31
35
35 | 1.1
1.5
1.5
1.5
2.1
2.1 | 1
1.5
1.5
1.5
2.1
2.1 | 80
—
83.5
83.5
—
90 | 100
110.5
—
—
130 | 58 500
83 500
119 000
156 000
149 000 | 70 500
95 000
137 000
194 000
156 000 | 6 000
5 000
5 000
4 500
4 000
4 000 | 7 100
6 300
6 300
5 600
5 000
5 000 | | 75 | 150
150
150
180
115 | 35
51
42
20 | 2.1
2.1
2.1
3 | 2.1
2.1
2.1
3 | 89
89
100
85 | —
—
152
105 | 158 000
205 000
274 000
228 000
60 000 | 168 000
222 000
325 000
236 000
74 500 | 4 000
4 000
3 600
3 600
5 600 | 5 000
5 000
4 500
4 300
6 700 | | 73 | 130
130
130
130
160
160
160
160 | 25
25
25
31
37
37
37
55
45 | 1.5
1.5
1.5
2.1
2.1
2.1
2.1
3 | 1.5
1.5
1.5
2.1
2.1
2.1
2.1
3 | 88.5
88.5
—
95.5
95
95 | 116.5
—
—
139.5
—
—
—
—
160.5 | 96 500
130 000
162 000
179 000
179 000
240 000
330 000
262 000 | 111 000
156 000
207 000
189 000
189 000
263 000
395 000
274 000 | 4 800
4 800
4 300
3 800
3 800
3 400
3 400 | 6 000
6 000
5 300
4 800
4 800
4 800
4 300
4 000 | ⁽²) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bear | ring Numbers | S(2) | | | | ļ | Abutmer | nt and Fi
(m | illet Dime
m) | ensions | | | | Mass
(kg) | |----------------------------------|----------------|-----------------------------|--------------|---|----------------------|-----------------------|-----------------|-------------------|-----------------------|-------------------|---------------------|-------------------|-------------------|-------------------------| | | (3)
NU NJ I | NUP N | I NF | $d_{\!\scriptscriptstyle a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $r_{ m a}$ max. | $r_{ m b}$ max. | approx. | | NU1012
N 212
NU 212 EW |

ИИ ИЛ | - 1
- 1
- QUV | | 66.5
68
68 | 65
—
68 | 68
—
70 | 71
—
75 | _
_
80 | 88.5
—
102 | 90
102
— | 87
100
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.474
0.823
0.824 | | NU2212 ET
N 312
NU 312 | | NUP -
- 1
NUP - | NF | 68
71
71 | 68
—
71 | 70
—
75 | 75
—
79 | 80
—
86 | 102
—
119 | 119
— | 115
— | 1.5
2
2 | 1.5
2
2 | 1.06
1.78
1.82 | | NU 312 EM
NU2312 ET
NU 412 | NO NO I | NUP - | | 71
71
71
71 | 71
71
71
71 | 75
75 | 79
79
85 | 86
86 | 119
119
139 | _
139 | _
130 | 2 2 2 | 2 2 2 | 2.06
2.7
3.04 | | NU1013
N 213 | NU NJ | !
! | I NF | 71.5
73 | 70
— | 80
73
— | 76
— | 94
—
— | 93.5 | 95
112 | 92
108 | 1
1.5 | 1
1.5 | 0.504
1.05 | | NU 213 EW
NU2213 ET
N 313 | NU NJ I | NUP -
NUP -
1 |

J NF | 73
73
76 | 73
73
— | 76
76
— | 81
81
— | 87
87
— | 112
112
— | _
129 | _
_
125 | 1.5
1.5
2 | 1.5
1.5
2 | 1.05
1.41
2.17 | | NU 313
NU 313 EM
NU2313 ET | NO NO I | NUP - |
 | 76
76
76 | 76
76
76 | 81
80
80 | 85
85
85 | 93
93
93 | 129
129
129 | _ | _ | 2
2
2 | 2
2
2 | 2.23
2.56
3.16 | | NU 413
NU1014
N 214 | — —
ИП ИЛ I | 1 —
1 QU <i>N</i>
1 — | I NF | 76
76.5
78 | 76
75
— |
86
79
— | 91
82
— | 100 | 149
103.5
— | 149
105
117 | 138.8
101
113 | 2
1
1.5 | 2
1
1.5 | 3.63
0.693
1.14 | | NU 214 EM
NU2214 ET
N 314 | | NUP -
NUP -
- 1 | | 78
78
81 | 78
78
— | 81
81
— | 86
86 | 92
92 | 117
117
— | 139 | 133.5 | 1.5
1.5
2 | 1.5
1.5
2 | 1.29
1.49
2.67 | | NU 314
NU 314 EM | NU NJ I | NUP -
NUP - | | 81
81 | 81
81 | 87
86 | 92
92 | 100 | 139
139 | _ | _ | 2 | 2 | 2.75
3.09 | | NU2314 ET
NU 414
NU1015 | | NUP –
NUP N
1 — | l NF | 81
83
81.5 | 81
83
80 | 86
97
83 | 92
102
87 | 100
112
— | 139
167
108.5 | 167
110 | 155
106 | 2
2.5
1 | 2
2.5
1 | 3.92
5.28
0.731 | | N 215
NU 215 EM
NU2215 ET | | - 1
NUP -
NUP - | NF
 | 83
83
83 | 83
83 | —
86
86 | 90
90 | 96
96 | —
122
122 | 122
— | 119
—
— | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 1.23
1.44
1.57 | | N 315
NU 315
NU 315 EM | NU NJ I | _ NUP - | NF
— — | 86
86
86 | —
86
86 | 93
92 | 97
97 | 106
106 | 149
149 | 149
— | 143 | 2 2 2 | 2 2 2 | 3.2
3.26
3.73 | | NU2315 ET
NU 415 | | NUP -
- I | - — | 86
88 | 86
88 | 92
102 | 97
97
107 | 106
106
118 | 149
149
177 | _
177 |
164 | 2
2.5 | 2
2.5 | 4.86
6.27 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) d_b (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 80 – 95 mm | | | Bou | ndary Di
(mm | mensions
n) | | | Basic Load
(N | | Limiting Sp
(min | | |----|-------------------|----------------|-------------------|------------------------|-------------------------|---------------------|-------------------------------|-------------------------------|-------------------------|-------------------------| | d | D | В | $m{r}$ min. | $oldsymbol{r_1}{min.}$ | F_{W} | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 80 | 125
140
140 | 22
26
26 | 1.1
2
2 | 1
2
2 | 91.5
—
95.3 | 113.5
125.3
— | 72 500
106 000
139 000 | 90 500
122 000
167 000 | 5 300
4 500
4 500 | 6 300
5 300
5 300 | | | 140
170
170 | 33
39
39 | 2
2.1
2.1 | 2
2.1
2.1 | 95.3
—
101 | 147
— | 186 000
190 000
256 000 | 243 000
207 000
282 000 | 4 000
3 600
3 600 | 5 000
4 300
4 300 | | | 170
200 | 58
48 | 2.1 | 2.1
3 | 101
110 |
170 | 355 000
299 000 | 430 000
315 000 | 3 200
3 200 | 4 000
3 800 | | 85 | 130
150
150 | 22
28
28 | 1.1
2
2 | 1
2
2 | 96.5
—
100.5 | 118.5
133.8
— | 74 500
120 000
167 000 | 95 500
140 000
199 000 | 5 000
4 300
4 300 | 6 000
5 000
5 000 | | | 150
180
180 | 36
41
41 | 2
3
3 | 2
3
3 | 100.5
—
108 | 156
— | 217 000
225 000
212 000 | 279 000
247 000
228 000 | 3 800
3 400
3 400 | 4 500
4 000
4 000 | | | 180
180
210 | 41
60
52 | 3
3
4 | 3
3
4 | 108
108
113 | _
_
177 | 291 000
395 000
335 000 | 330 000
485 000
350 000 | 3 400
3 000
3 000 | 4 000
3 800
3 800 | | 90 | 140
160
160 | 24
30
30 | 1.5
2
2 | 1.1
2
2 | 103
—
107 | 127
143
— | 88 000
152 000
182 000 | 114 000
178 000
217 000 | 4 500
4 000
4 000 | 5 600
4 800
4 800 | | | 160
190
190 | 40
43
43 | 2
3
3 | 2
3
3 | 107
—
115 | 165
— | 242 000
240 000
240 000 | 315 000
265 000
265 000 | 3 600
3 200
3 200 | 4 300
3 800
3 800 | | | 190
190
225 | 43
64
54 | 3
3
4 | 3
3
4 | 113.5
113.5
123.5 | _
_
191.5 | 315 000
435 000
375 000 | 355 000
535 000
400 000 | 3 200
2 800
2 800 | 3 800
3 400
3 400 | | 95 | 145
170
170 | 24
32
32 | 1.5
2.1
2.1 | 1.1
2.1
2.1 | 108
—
112.5 | 132
151.5
— | 90 500
166 000
220 000 | 120 000
196 000
265 000 | 4 300
3 800
3 800 | 5 300
4 500
4 500 | | | 170
200
200 | 43
45
45 | 2.1
3
3 | 2.1
3
3 | 112.5
—
121.5 | 173.5
— | 286 000
259 000
259 000 | 370 000
289 000
289 000 | 3 400
3 000
3 000 | 4 000
3 600
3 600 | | | 200
200
240 | 45
67
55 | 3
3
4 | 3
3
4 | 121.5
121.5
133.5 | _
_
201.5 | 335 000
460 000
400 000 | 385 000
585 000
445 000 | 3 000
2 600
2 600 | 3 600
3 400
3 200 | ⁽²) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bear | Bearing Numbers ⁽²⁾ (3) NU NJ NUP N NE | | | | | | ŀ | Abutmer | nt and Fi
(m | illet Dime
m) | ensions | | | | Mass
(kg) | |----------------------------------|---|-------------------|-------------|---------|-----------------------------------|-------------------|-----------------------|--------------------------|--------------------------|--------------------------|-------------------|-----------------|------------------------|------------------------|----------------------| | | NN NY | NUP | N | NF | d _a (4)
min. | $d_{ m b}$ min. | d ₀(5)
max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $r_{ m a}$ max. | $r_{ m b}$ max. | арргох. | | NU1016
N 216
NU 216 EM | NU —
— —
NU NJ | NUP
NUP | N
N | NF | 86.5
89
89 | 85
—
89 | 90
—
92 | 94
—
97 | _
104 | 118.5
—
131 | 120
131
— | 115
128
— | 1
2
2 | 1
2
2 | 0.969
1.47
1.7 | | NU2216 ET
N 316
NU 316 EM | NO NJ | NUP
NUP | _
N | NF | 89
91
91 | 89
—
91 | 92
—
98 | 97
—
105 | 104
—
114 | 131
—
159 | _
159
_ | _
150
_ | 2
2
2 | 2
2
2 | 1.96
3.85
4.45 | | NU2316 ET
NU 416 | NN NN | NUP
— | _
N | _
NF | 91
93 | 91
93 | 98
107 | 105
112 | 114
124 | 159
187 | _
187 |
173 | 2
2.5 | 2
2.5 | 5.73
7.36 | | NU1017
N 217
NU 217 EM | UU
LU UU | _
NUP | N
N | NF | 91.5
94
94 | 90
—
94 | 95
—
98 | 99
—
104 | _
110 | 123.5
—
141 | 125
141
— | 120
137
— | 1
2
2 | 1
2
2 | 1.01
1.87
2.11 | | NU2217 ET
N 317
NU 317 | NU NJ | NUP
NUP | N | NF | 94
98
98 | 94
—
98 | 98
—
105 | 104
—
110 | 110
—
119 | 141
—
167 | _
167
_ | _
159
_ | 2
2.5
2.5 | 2
2.5
2.5 | 2.44
4.53
4.6 | | NU 317 EM
NU2317 ET
NU 417 | NU NJ
NU NJ | NUP
NUP | _
_
N | _
NF | 98
98
101 | 98
98
101 | 105
105
110 | 110
110
115 | 119
119
128 | 167
167
194 | _
_
194 | _
_
180 | 2.5
2.5
3 | 2.5
2.5
3 | 5.26
6.77
9.56 | | NU1018
N 218
NU 218 EM | NU —
— —
NU NJ | NUP
NUP | N
N | NF | 98
99
99 | 96.5
—
99 | 101

104 | 106
—
109 | _
116 | 132
—
151 | 133.5
151
— | 129
146
— | 1.5
2
2 | 1
2
2 | 1.35
2.31
2.6 | | NU2218 ET
N 318
NU 318 | NU NJ | NUP
NUP | N | NF | 99
103
103 | 99
—
103 | 104
—
112 | 109
—
117 | 116
—
127 | 151
—
177 | _
177
_ | 168
— | 2
2.5
2.5 | 2
2.5
2.5 | 3.11
5.31
5.38 | | NU 318 EM
NU2318 ET
NU 418 | NU NJ | NUP
NUP | _
N | _
NF | 103
103
106 | 103
103
106 | 111
111
120 | 117
117
125 | 127
127
139 | 177
177
209 | _
_
209 | _
_
196 | 2.5
2.5
3 | 2.5
2.5
3 | 6.1
7.9
11.5 | | NU1019
N 219
NU 219 EM | NU NJ | _
NUP | N
N | NF | 103
106
106 | 101.5
—
106 | 106
—
110 | 111
—
116 | _
123 | 137
—
159 | 138.5
159
— | 134
155
— | 1.5
2
2 | 1
2
2 | 1.41
2.79
3.17 | | NU2219 ET
N 319
NU 319 | NU NJ | NUP
NUP | N | NF | 106
108
108 | 106
—
108 | 110
—
118 | 116
—
124 | 123
—
134 | 159
—
187 | _
187
_ |
177
 | 2
2.5
2.5 | 2
2.5
2.5 | 3.81
6.09
6.23 | | NU 319 EM
NU2319 ET
NU 419 | MN MY
MN MY
MO MY | NUP
NUP
NUP | _
_
_ | _
NF | 108
108
108
111 | 108
108
111 | 118
118
130 | 124
124
124
136 | 134
134
134
149 | 187
187
187
224 |

224 |

206 | 2.5
2.5
2.5
3 | 2.5
2.5
2.5
3 | 7.13
9.21
13.6 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) d_b (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 100 – 120 mm | | | Bou | ndary Dii
(mm | mensions
n) | | | | ad Ratings
N) | Limiting Sp
(min | | |-----|--------------------------|----------------------|--------------------|------------------------------|--------------------------|------------------|--|--|----------------------------------|----------------------------------| | d | D | В | $m{r}$ min. | $oldsymbol{r_1}{ ext{min.}}$ | F_{W} | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 100 | 150 | 24 | 1.5 | 1.1 | 113 | 137 | 93 000 | 126 000 | 4 300 | 5 300 | | | 180 | 34 | 2.1 | 2.1 | — |
160 | 183 000 | 217 000 | 3 600 | 4 300 | | | 180 | 34 | 2.1 | 2.1 | 119 | — | 249 000 | 305 000 | 3 600 | 4 300 | | | 180
215
215 | 46
47
47 | 2.1
3
3 | 2.1
3
3 | 119
—
129.5 | 185.5
— | 335 000
299 000
299 000 | 445 000
335 000
335 000 | 3 200
2 800
2 800 | 3 800
3 400
3 400 | | | 215 | 47 | 3 | 3 | 127.5 | _ | 380 000 | 425 000 | 2 800 | 3 400 | | | 215 | 73 | 3 | 3 | 127.5 | _ | 570 000 | 715 000 | 2 400 | 3 000 | | | 250 | 58 | 4 | 4 | 139 | 211 | 450 000 | 500 000 | 2 600 | 3 000 | | 105 | 160 | 26 | 2 | 1.1 | 119.5 | 145.5 | 109 000 | 149 000 | 4 000 | 4 800 | | | 190 | 36 | 2.1 | 2.1 | — | 168.8 | 201 000 | 241 000 | 3 400 | 4 000 | | | 190 | 36 | 2.1 | 2.1 | 125 | — | 262 000 | 310 000 | 3 400 | 4 000 | | | 225 | 49 | 3 | 3 | — | 195 | 340 000 | 390 000 | 2 600 | 3 200 | | | 225 | 49 | 3 | 3 | 133 | — | 425 000 | 480 000 | 2 600 | 3 200 | | | 260 | 60 | 4 | 4 | 144.5 | 220.5 | 495 000 | 555 000 | 2 400 | 3 000 | | 110 | 170 | 28 | 2 | 1.1 | 125 | 155 | 131 000 | 174 000 | 3 800 | 4 500 | | | 200 | 38 | 2.1 | 2.1 | — | 178.5 | 229 000 | 272 000 | 3 200 | 3 800 | | | 200 | 38 | 2.1 | 2.1 | 132.5 | — | 293 000 | 365 000 | 3 200 | 3 800 | | | 200
240
240
280 | 53
50
50
65 | 2.1
3
3
4 | 2.1
3
3
4 | 132.5
—
143
155 | 207
—
— | 385 000
380 000
450 000
550 000 | 515 000
435 000
525 000
620 000 | 2 800
2 600
2 600
2 200 | 3 400
3 000
3 000
2 800 | | 120 | 180 | 28 | 2 | 1.1 | 135 | 165 | 139 000 | 191 000 | 3 400 | 4 300 | | | 215 | 40 | 2.1 | 2.1 | — | 191.5 | 260 000 | 320 000 | 3 000 | 3 400 | | | 215 | 40 | 2.1 | 2.1 | 143.5 | — | 335 000 | 420 000 | 3 000 | 3 400 | | | 215
260
260 | 58
55
55 | 2.1
3
3 | 2.1
3
3 | 143.5
—
154 | 226
— | 450 000
450 000
530 000 | 620 000
510 000
610 000 | 2 600
2 200
2 200 | 3 200
2 800
2 800 | | | 260 | 86 | 3 | 3 | 154 | | 795 000 | 1 030 000 | 2 000 | 2 600 | | | 310 | 72 | 5 | 5 | 170 | 260 | 675 000 | 770 000 | 2 000 | 2 400 | ⁽²) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bear | Bearing Numbers ⁽²⁾
(3)
NU NJ NUP N NI | | | | | | P | butmer | it and Fi
(mi | illet Dime
m) | ensions | | | | Mass
(kg) | |---|---|-----------------|-------------|-------------------|---|------------------------|-----------------------------------|------------------------|------------------------|------------------------|--------------------|-----------------|----------------------|----------------------|------------------------------| | | | NUP | N | NF | $d_{\!\scriptscriptstyle a}^{(4)}$ min. | $d_{ m b}$ min. | d ₀ ⁽⁵⁾
max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $r_{ m a}$ max. | $r_{ m b}$ max. | арргох. | | NU1020
N 220
NU 220 EM | NN NY

NN NY | NUP
—
NUP | N
N | NF | 108
111
111 | 106.5
—
111 | 111
—
116 | 116
—
122 | _
_
130 | 142
—
169 | 143.5
169
— | 139
163
— | 1.5
2
2 | 1
2
2 | 1.47
3.36
3.81 | | NU2220 ET
N 320
NU 320 | ИП ИЛ
— —
ИП ИЛ | NUP
—
NUP | _
N
_ | NF
— | 111
113
113 | 111

113 | 116
—
126 | 122
—
132 | 130
—
143 | 169
—
202 |
202
 | _
190
_ | 2
2.5
2.5 | 2
2.5
2.5 | 4.69
7.59
7.69 | | NU 320 EM
NU2320 ET
NU 420 | ИП ИЛ
ИП ИЛ
ИП ИЛ | NUP
NUP | _
_
N | _
_
NF | 113
113
116 | 113
113
116 | 124
124
135 | 132
132
141 | 143
143
156 | 202
202
234 |

234 | _
_
215 | 2.5
2.5
3 | 2.5
2.5
3 | 8.63
11.8
15.5 | | NU1021
N 221
NU 221 EM | NO N7 | _
NUP | N
N | NF
NF | 114
116
116 | 111.5
—
116 | 118
—
121 | 122
—
129 | _
_
137 | 151
—
179 | 153.5
179
— | 147
172
— | 2
2
2 | 1
2
2 | 1.83
4.0
4.58 | | N 321
NU 321 EM
NU 421 | NO N1
NO N1 | NUP | N
—
N | NF
—
NF | 118
118
121 | —
118
121 | —
131
141 | —
137
147 | —
149
162 | —
212
244 | 212
—
244 | 199
—
225 | 2.5
2.5
3 | 2.5
2.5
3 | 8.69
9.84
17.3 | | NU1022
N 222
NU 222 EM | NO N7

NO N7 | _
NUP | N
N | NF
NF | 119
121
121 | 116.5
—
121 | 123
—
129 | 128
—
135 | _
_
144 | 161
—
189 | 163.5
189
— | 157
182
— | 2
2
2 | 1
2
2 | 2.27
4.64
5.37 | | NU2222 EM
N 322
NU 322 EM
NU 422 | NN NY

NN NY | NUP
NUP | _
N
_ | _
NF
_
_ | 121
123
123
126 | 121
—
123
126 | 129
—
139
151 | 135
—
145
157 | 144
—
158
173 | 189
—
227
264 | _
227
_
_ | 211
—
— | 2
2.5
2.5
3 | 2
2.5
2.5
3 | 7.65
10.3
11.8
22.1 | | NU1024
N 224
NU 224 EM | NN NN
— —
NN NN | NUP
—
NUP | N
N | NF | 129
131
131 | 126.5
—
131 | 133
—
140 | 138
—
146 | _
_
156 | 171
—
204 | 173.5
204
— | 167
196
— | 2
2
2 | 1
2
2 | 2.43
5.63
6.43 | | NU2224 EM
N 324
NU 324 EM | NN NN
— —
NN NN | NUP
—
NUP | _
N
_ | NF | 131
133
133 | 131
—
133 | 140
—
150 | 146
—
156 | 156
—
171 | 204
—
247 | 247
— | 230
— | 2
2.5
2.5 | 2
2.5
2.5 | 9.51
12.9
15 | | NU2324 EM
NU 424 | NN NY | NUP
NUP | _
N | _
_ | 133
140 | 133
140 | 150
166 | 156
172 | 171
190 | 247
290 | _
290 | _
266 | 2.5
4 | 2.5
4 | 25
30.2 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. ⁽⁴⁾ If axial loads are applied, increase d_a and reduce D_a from the values listed above. ⁽⁵⁾ d_b (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 130 – 160 mm | | | Bou | ndary Dii
(mm | mensions
n) | | | | nd Ratings
N) | Limiting S _I | | |-----|--------------------------|-----------------------|------------------|------------------------|------------------------|-------------------|--|--|----------------------------------|----------------------------------| | d | D | В | $m{r}$ min. | $r_1 \atop ext{min.}$ | $F_{ m W}$ | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 130 | 200
230
230 | 33
40
40 | 2
3
3 | 1.1
3
3 | 148
—
153.5 | 182
204
— | 172 000
270 000
365 000 | 238 000
340 000
455 000 | 3 200
2 600
2 600 | 3 800
3 200
3 200 | | | 230
280
280 | 64
58
58 | 3
4
4 | 3
4
4 | 153.5
—
167 | 243
— | 530 000
500 000
615 000 | 735 000
570 000
735 000 | 2 400
2 200
2 200 | 3 000
2 600
2 600 | | | 280
340 | 93
78 | 4
5 | 4
5 | 167
185 |
285 | 920 000
825 000 | 1 230 000
955 000 | 1 900
1 800 | 2 400
2 200 | | 140 | 210
250
250 | 33
42
42 | 2
3
3 | 1.1
3
3 | 158
—
169 | 192
221
— | 176 000
297 000
395 000 | 250 000
375 000
515 000 | 3 000
2 400
2 400 | 3 600
3 000
3 000 | | | 250
300
300 | 68
62
62 | 3
4
4 | 3
4
4 | 169
—
180 | 260
— | 550 000
550 000
665 000 | 790 000
640 000
795 000 | 2 200
2 000
2 000 | 2 800
2 400
2 400 | | | 300
360 | 102
82 | 4
5 | 4
5 | 180
198 | 302 | 1 020 000
875 000 | 1 380 000
1 020 000 | 1 700
1 700 | 2 200
2 000 | | 150 | 225
270
270 | 35
45
45 | 2.1
3
3 | 1.5
3
3 | 169.5
—
182 | 205.5
238
— | 202 000
360 000
450 000 | 294 000
465 000
595 000 | 2 800
2 200
2 200 | 3 400
2 800
2 800 | | | 270
320
320 | 73
65
65 | 3
4
4 | 3
4
4 | 182
—
193 | 277
— | 635 000
665 000
760 000 | 930 000
805 000
920 000 | 2 000
1 800
1 800 | 2 600
2 200
2 200 | | | 320
380 | 108
85 | 4
5 | 4
5 | 193
213 | _ | 1 160 000
930 000 | 1 600 000
1 120 000 | 1 600
1 600 | 2 000
2 000 | | 160 | 240
290
290 | 38
48
48 | 2.1
3
3 | 1.5
3
3 | 180
—
195 | 220
255
— | 238 000
430 000
500 000 | 340 000
570 000
665 000 | 2 600
2 200
2 200 | 3 200
2 600
2 600 | | | 290
340
340
340 | 80
68
68
114 | 3
4
4
4 | 3
4
4
4 | 193
—
204
204 | 292
—
— | 810 000
700 000
860 000
1 310 000 | 1 190 000
875 000
1 050 000
1 820 000 | 1 900
1 700
1 700
1 500 | 2 400
2 000
2 000
1 900 | ⁽²) The bearings with suffix ET have polyamide cage. The maximum operating temperature should be less than 120 °C. | Bearing Numbers ⁽²⁾ | Abutment and Fillet Dimensions (mm) | | | | | | | | | Mass
(kg) | | |--|---|------------------------|-----------------------------|------------------------|------------------------|------------------------|-----------------|--------------------|--------------------|--------------------|------------------------------| | (3)
NU NJ NUP N NF | $d_{\!\scriptscriptstyle a}^{(4)}$ min. | $d_{ m b}$ min. | $d_{\mathrm{b}}^{(5)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(4)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $r_{ m a}$ max. | $r_{ m b}$ max. | арргох. | | NU1026 NU NJ — N NE | | 136.5 | 146 | 151 |
— | 191 | 193.5 | 184 | 2 | 1 | 3.66 | | N 226 — — N NE | | — | — | — | — | — | 217 | 208 | 2.5 | 2.5 | 6.48 | | NU 226 EM NU NJ NUP — — | | 143 | 150 | 158 | 168 | 217 | — | — | 2.5 | 2.5 | 8.03 | | NU2226 EM NU NJ NUP — —
N 326 — — N NI
NU326EM NU NJ NUP — — | 143
146
146 | 143
—
146 | 150
—
163 | 158
—
169 | 168
—
184 | 217
—
264 | 264
— |
247.5
_ | 2.5
3
3 | 2.5
3
3 | 9.44
17.7
18.7 | | NU2326EM NU NJ NUP — — | 146 | 146 | 163 | 169 | 184 | 264 | | | 3 | 3 | 30 | | NU 426 NU NJ — — NF | 150 | 150 | 180 | 187 | 208 | 320 | 320 | 291 | 4 | 4 | 39.6 | | NU1028 NU NJ NUP N — | 149 | 146.5 | 156 | 161 | _ | 201 | 203.5 | 194 | 2 | 1 | 3.87 | | N 228 — — N NF | 153 | — | — | — | _ | — | 237 | 225 | 2.5 | 2.5 | 8.08 | | NU228EM NU NJ NUP — — | 153 | 153 | 165 | 171 | 182 | 237 | — | — | 2.5 | 2.5 | 9.38 | | NU2228EM NU NJ NUP | 153 | 153 | 165 | 171 | 182 | 237 | | _ | 2.5 | 2.5 | 15.2 | | N 328 N NF | 156 | — | — | — | — | — | 284 | 266 | 3 | 3 | 21.7 | | NU328EM NU NJ NUP | 156 | 156 | 176 | 182 | 198 | 284 | | _ | 3 | 3 | 22.8 | | NU2328EM NU NJ NUP | 156 | 156 | 176 | 182 | 198 | 284 | | 308 | 3 | 3 | 37.7 | | NU 428 NU NJ N | 160 | 160 | 193 | 200 | 222 | 340 | 340 | | 4 | 4 | 46.4 | | NU1030 NU NJ — N NE | 161 | 158 | 167 | 173 | _ | 214 | 217 | 208 | 2 | 1.5 | 4.77 | | N 230 — — N NE | 163 | — | — | — | _ | — | 257 | 242 | 2.5 | 2.5 | 10.4 | | NU230EM NU NJ NUP — — | 163 | 163 | 177 | 184 | 196 | 257 | — | — | 2.5 | 2.5 | 11.9 | | NU2230EM NU NJ NUP
N 330 N NI
NU330EM NU NJ NUP | 163
166
166 | 163
—
166 | 177
—
188 | 184
—
195 | 196
—
213 | 257
—
304 | 304
— | 283
— | 2.5
3
3 | 2.5
3
3 | 19.3
25.8
27.1 | | NU2330EM NU NJ NUP
NU 430 NU NJ | 166
170 | 166
170 | 188
208 | 195
216 | 213
237 | 304
360 | _ | _ | 3
4 | 3
4 | 45.1
55.8 | | NU1032 NU NJ — N NE | 171 | 168 | 178 | 184 | _ | 229 | 232 | 222 | 2 | 1.5 | 5.81 | | N 232 — — N NE | 173 | — | — | — | _ | — | 277 | 261 | 2.5 | 2.5 | 14.1 | | NU232EM NU NJ NUP — — | 173 | 173 | 190 | 197 | 210 | 277 | — | — | 2.5 | 2.5 | 14.7 | | NU2232EM NU NJ NUP N 332 N NU332EM NU NJ NUP NU2332EM NU NJ NUP | 173
176
176
176 | 173
—
176
176 | 188
—
199
199 | 197
—
211
211 | 210
—
228
228 | 277
—
324
324 | 324
—
— | _
298
_
_ | 2.5
3
3
3 | 2.5
3
3
3 | 24.5
30.8
32.1
53.9 | Notes (3) When L-shaped thrust collars (See section for L-Shaped Thrust Collars starting on page **B104**) are used, the bearings become the NH type. - (4) If axial loads are applied, increase d_a and reduce D_a from the values listed above. - (5) d_b (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 170 – 220 mm | | | Bou | ndary Dii
(mm | mensions
ı) | | | | d Ratings
N) | Limiting Speeds
(min ⁻¹) | | | |-----|--------------------------|-----------------------|------------------|---------------------------------|------------------------|------------------|--|--|---|----------------------------------|--| | d | D | В | $m{r}$ min. | $r_{\scriptscriptstyle 1}$ min. | $F_{ m W}$ | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 170 | 260 | 42 | 2.1 | 2.1 | 193 | 237 | 287 000 | 415 000 | 2 400 | 2 800 | | | | 310 | 52 | 4 | 4 | — | 272 | 475 000 | 635 000 | 2 000 | 2 400 | | | | 310 | 52 | 4 | 4 | 207 | — | 605 000 | 800 000 | 2 000 | 2 400 | | | | 310
360
360
360 | 86
72
72
120 | 4
4
4
4 | 4
4
4 | 205
—
218
216 | 310
—
— | 925 000
795 000
930 000
1 490 000 | 1 330 000
1 010 000
1 150 000
2 070 000 | 1 800
1 600
1 600
1 400 | 2 200
2 000
2 000
1 800 | | | 180 | 280 | 46 | 2.1 | 2.1 | 205 | 255 | 355 000 | 510 000 | 2 200 | 2 600 | | | | 320 | 52 | 4 | 4 | — | 282 | 495 000 | 675 000 | 1 900 | 2 200 | | | | 320 | 52 | 4 | 4 | 217 | — | 625 000 | 850 000 | 1 900 | 2 200 | | | | 320
380
380
380 | 86
75
75
126 | 4
4
4 | 4
4
4
4 | 215
—
231
227 | 328
—
— | 1 010 000
905 000
985 000
1 560 000 | 1 510 000
1 150 000
1 230 000
2 220 000 | 1 700
1 500
1 500
1 300 | 2 000
1 800
1 800
1 700 | | | 190 | 290 | 46 | 2.1 | 2.1 | 215 | 265 | 365 000 | 535 000 | 2 000 | 2 600 | | | | 340 | 55 | 4 | 4 | — | 299 | 555 000 | 770 000 | 1 800 | 2 200 | | | | 340 | 55 | 4 | 4 | 230 | — | 695 000 | 955 000 | 1 800 | 2 200 | | | | 340
400
400
400 | 92
78
78
132 | 4
5
5
5 | 4
5
5
5 | 228
—
245
240 | 345
— | 1 100 000
975 000
1 060 000
1 770 000 | 1 670 000
1 260 000
1 340 000
2 520 000 | 1 600
1 400
1 400
1 300 | 2 000
1 700
1 700
1 600 | | | 200 | 310 | 51 | 2.1 | 2.1 | 229 | 281 | 390 000 | 580 000 | 2 000 | 2 400 | | | | 360 | 58 | 4 | 4 | — | 316 | 620 000 | 865 000 | 1 700 | 2 000 | | | | 360 | 58 | 4 | 4 | 243 | — | 765 000 | 1 060 000 | 1 700 | 2 000 | | | | 360
420
420
420 | 98
80
80
138 | 4
5
5
5 | 4
5
5
5 | 241
—
258
253 | 360
— | 1 220 000
975 000
1 140 000
1 910 000 | 1 870 000
1 270 000
1 450 000
2 760 000 | 1 500
1 300
1 300
1 200 | 1 800
1 600
1 600
1 500 | | | 220 | 340 | 56 | 3 | 3 | 250 | 310 | 500 000 | 750 000 | 1 800 | 2 200 | | | | 400 | 65 | 4 | 4 | — | 350 | 760 000 | 1 080 000 | 1 500 | 1 800 | | | | 400 | 65 | 4 | 4 | 270 | — | 760 000 | 1 080 000 | 1 500 | 1 800 | | | | 400 | 108 | 4 | 4 | 270 | | 1 140 000 | 1 810 000 | 1 300 | 1 600 | | | | 460 | 88 | 5 | 5 | — | 396 | 1 190 000 | 1 570 000 | 1 200 | 1 500 | | | | 460 | 88 | 5 | 5 | 284 | | 1 190 000 | 1 570 000 | 1 200 | 1 500 | | | Bearing Numbers | | Abutment and Fillet Dimensions (mm) | | | | | | | | | Mass
(kg) | |---|-----------------------------------|-------------------------------------|--------------------------------------|------------------------|------------------------|------------------------|-----------------|-----------------|------------------|------------------|------------------------------| | (1)
NU NJ NUP N NI | d _a (2)
min. | $d_{ m b}$ min. | $d_{\mathrm{b}}^{\mathrm{(3)}}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}^{(2)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $r_{ m a}$ max. | $r_{ m b}$ max. | approx. | | NU1034 NU NJ — N —
N 234 — — N N
NU234EM NU NJ NUP — — | 186 | 181
—
186 | 190
—
202 | 197
—
211 | _
_
223 | 249
—
294 | 249
294
— | 239
278
— | 2
3
3 | 2
3
3 | 7.91
17.4
18.3 | | NU2234EM NU NJ NUP N 334 N NU334EM NU NJ NUP NU2334EM NU NJ NUP | | 186
—
186
186 | 200
—
213
210 | 211
—
223
223 | 223
—
241
241 | 294
—
344
344 | 344
—
— | 316
—
— | 3
3
3 | 3
3
3 | 29.9
36.6
37.9
63.4 | | NU1036 NU NJ — N N
N 236 — — N N
NU236EM NU NJ NUP — — | 196 | 191
—
196 | 202
—
212 | 209
—
221 | _
233 | 269
—
304 | 269
304
— | 258
288
— | 2
3
3 | 2
3
3 | 10.2
18.1
19 | | NU2236EM NU NJ NUP — — N 336 — — N N NU336EM NU NJ NUP — — NU2336EM NU NJ NUP — — | 196
196 | 196
—
196
196 | 210
—
226
222 | 221
—
235
235 | 233
—
255
255 | 304
—
364
364 | 364
— | 335
— | 3
3
3
3 | 3
3
3 | 31.4
42.6
44
74.6 | | NU1038 NU NJ — N —
N 238 — — — N N
NU238EM NU NJ NUP — — | 206 | 201
—
206 | 212
—
225 | 219
—
234 | _
247 | 279
—
324 | 279
324
— | 268
305
— | 2
3
3 | 2
3
3 | 10.7
22
23 | | NU2238EM NU NJ NUP — — N 338 — — N N NUP — N NU338EM NU NJ NUP — NU2338EM NU NJ NUP — NU2338EM NU NJ NUP — NU2338EM | 210 | 206
—
210
210 | 223
—
240
235 | 234
—
248
248 | 247
—
268
268 | 324
—
380
380 | 380
— | 352
— | 3
4
4
4 | 3
4
4
4 | 38.3
48.7
50.6
86.2 | | NU1040 NU NJ — N N
N 240 — — N N
NU240EM NU NJ NUP — — | 216 | 211

216 | 226
—
238 | 233
—
247 | _
_
261 | 299
—
344 | 299
344
— | 284
323
— | 2
3
3 | 2
3
3 | 14
26.2
27.4 | | NU2240EM NU NJ NUP — — N 340 — — N N NU340EM NU NJ NUP — — NU2340EM NU NJ NUP — — | 220
220 | 216
—
220
220 | 235
—
252
247 | 247
—
263
263 | 261
—
283
283 | 344
—
400
400 | 400
— | 367
— | 3
4
4
4 | 3
4
4
4 | 46.1
55.3
57.1
99.3 | | NU1044 NU NJ — N —
N 244 — — N N
NU 244 NU NJ NUP — — | 236 | 233

236 | 247
—
264 | 254
—
273 | _
289 | 327
—
384 | 327
384
— | 313
357
— | 2.5
3
3 | 2.5
3
3 | 18.2
37
37.3 | | NU2244 NU — — — — N 344 — — N NU 344 NU NJ — — — | 210 | 236
—
240 | 264
—
278 | 273
—
287 | 289
—
307 | 384
—
440 | 440
— | 403
— | 3
4
4 | 3
4
4 | 61.8
72.8
74.6 | Notes (1) When L-shaped thrust collars (Refer to page B105) are used, the bearings become the NH Type. ⁽²⁾ If axial loads are applied, increase d_a and reduce D_a from the values listed above. ⁽³⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. Bore Diameter 240 – 500 mm | | | Bou | ndary Di
(mm | mensions
n) | | | | nd Ratings
N) | Limiting Speeds
(min ⁻¹) | | | |-----|-------------------|-----------------|-----------------|--------------------|-----------------|------------------|-------------------------------------
-------------------------------------|---|-------------------------|--| | d | D | В | $m{r}$ min. | $r_1 \ ext{min.}$ | $F_{ m W}$ | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 240 | 360
440
440 | 56
72
72 | 3
4
4 | 3
4
4 | 270
—
295 | 330
385
— | 530 000
935 000
935 000 | 820 000
1 340 000
1 340 000 | 1 600
1 300
1 300 | 2 000
1 600
1 600 | | | | 440
500
500 | 120
95
95 | 4
5
5 | 4
5
5 | 295
—
310 | 430 | 1 440 000
1 360 000
1 360 000 | 2 320 000
1 820 000
1 820 000 | 1 200
1 100
1 100 | 1 500
1 300
1 300 | | | 260 | 400
480
480 | 65
80
80 | 4
5
5 | 4
5
5 | 296
—
320 | 364
420
— | 645 000
1 100 000
1 100 000 | 1 000 000
1 580 000
1 580 000 | 1 500
1 200
1 200 | 1 800
1 500
1 500 | | | | 480
540 | 130
102 | 5
6 | 5
6 | 320
336 | _ | 1 710 000
1 540 000 | 2 770 000
2 090 000 | 1 100
1 000 | 1 300
1 200 | | | 280 | 420
500
500 | 65
80
80 | 4
5
5 | 4
5
5 | 316
—
340 | 384
440
— | 660 000
1 140 000
1 140 000 | 1 050 000
1 680 000
1 680 000 | 1 400
1 100
1 100 | 1 700
1 400
1 400 | | | 300 | 460
540 | 74
85 | 4
5 | 4
5 | 340
364 | 420
— | 885 000
1 400 000 | 1 400 000
2 070 000 | 1 300
1 100 | 1 500
1 300 | | | 320 | 480
580
580 | 74
92
92 | 4
5
5 | 4
5
5 | 360
—
390 | 440
510
— | 905 000
1 540 000
1 540 000 | 1 470 000
2 270 000
2 270 000 | 1 200
950
950 | 1 400
1 200
1 200 | | | 340 | 520 | 82 | 5 | 5 | 385 | 475 | 1 080 000 | 1 740 000 | 1 100 | 1 300 | | | 360 | 540 | 82 | 5 | 5 | 405 | 495 | 1 110 000 | 1 830 000 | 1 000 | 1 300 | | | 380 | 560 | 82 | 5 | 5 | 425 | _ | 1 140 000 | 1 910 000 | 1 000 | 1 200 | | | 400 | 600 | 90 | 5 | 5 | 450 | 550 | 1 360 000 | 2 280 000 | 900 | 1 100 | | | 420 | 620 | 90 | 5 | 5 | 470 | 570 | 1 390 000 | 2 380 000 | 850 | 1 100 | | | 440 | 650 | 94 | 6 | 6 | 493 | _ | 1 470 000 | 2 530 000 | 800 | 1 000 | | | 460 | 680 | 100 | 6 | 6 | 516 | 624 | 1 580 000 | 2 740 000 | 750 | 950 | | | 480 | 700 | 100 | 6 | 6 | 536 | 644 | 1 620 000 | 2 860 000 | 750 | 900 | | | 500 | 720 | 100 | 6 | 6 | 556 | 664 | 1 660 000 | 2 970 000 | 710 | 850 | | ⁽²⁾ If axial loads are applied, increase $d_{\rm a}$ and reduce $D_{\rm a}$ from the values listed above. | | Bearing Numbers (1) | | | Abutment and Fillet Dimensions (mm) | | | | | | | | | Mass
(kg) | |---------------------------|------------------------|------------|-----------------------------|-------------------------------------|-----------------------|-----------------|-----------------|-----------------------|-----------------|-----------------|------------------|-----------------|----------------------| | | ии уј иир | N NF | $d_{\mathrm{a}}^{(2)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(3)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(2)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $r_{\rm a}$ max. | $r_{ m b}$ max. | арргох. | | NU1048
N 248
NU 248 | NO NJ —
NO NJ NOP | N –
N N | F 256 | 253
—
256 | 266
—
289 | 275
—
298 | _
316 | 347
—
424 | 347
424
— | 333
392
— | 2.5
3
3 | 2.5
3
3 | 19.5
49.6
50.4 | | NU2248
N 348
NU 348 | NU — —
NU NJ — |
N | 200 | 256
—
260 | 289
—
304 | 298
—
313 | 316
—
333 | 424
—
480 | 480
— | 438 | 3
4
4 | 3
4
4 | 84.9
92.3
94.6 | | NU1052
N 252
NU 252 | NO NY —

NO NJ — | N N
N – | - 280 | 276
—
280 | 292
—
314 | 300
—
323 | _
_
343 | 384
—
460 | 384
460 | 367
428
— | 3
4
4 | 3
4
4 | 29.1
66.2
67.1 | | NU2252
NU 352 | NU — NUP
NU NJ — | | 280
286 | 280
286 | 314
330 | 323
339 | 343
359 | 460
514 | _ | _ | 4
5 | 4 5 | 111
118 | | NU1056
N 256
NU 256 | NU NJ NUP
NU NJ — | N N
N N | | 296
—
300 | 312
—
334 | 320
—
344 | _
364 | 404
—
480 | 404
480
— | 387
448
— | 3
4
4 | 3
4
4 | 30.8
69.6
70.7 | | NU1060
NU 260 | NU NJ — | N N | 320 | 316
320 | 336
358 | 344
368 | _
391 | 444
520 | 444 | 424
— | 3
4 | 3
4 | 43.7
89.2 | | NU1064
N 264
NU 264 | NU — —
NU NJ — | N N
N – | - 340 | 336
—
340 | 356
—
384 | 365
—
394 | _
420 | 464
—
560 | 464
560
— | 444
519
— | 3
4
4 | 3
4
4 | 46.1
110
112 | | NU1068
NU1072 | NU NJ —
NU — — | N N
N N | | 360
380 | 381
400 | 390
410 | _ | 500
520 | 500
520 | 479
499 | 4 | 4 | 61.8
64.6 | | NU1076 | NU — — | | | 400 | 420 | 430 | _ | 540 | _ | _ | 4 | 4 | 67.5 | | NU1080
NU1084 | NU — NUP
NU — — | N –
N – | 120 | 420
440 | 445
465 | 455
475 | _ | 580
600 | 580
600 | 554.5
574.5 | 4
4 | 4 | 88.2
91.7 | | NU1088
NU1092 | NU — —
NU — NUP | | - —
- 486 | 466
486 | 488
511 | 498
521 | _ | 624
654 | —
654 | —
628.5 | 5
5 | 5
5 | 105
123 | | NU1096
NU10/50 | NU NJ — | N – | | 506
526 | 531
551 | 541
558 | _ | 674
694 | 674
694 | 654
674 | 5
5 | 5
5 | 127 | ⁽³⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. L-Shaped Thrust Collars Bore Diameter 20 – 85 mm Bore Diameter 90 – 320 mm L-Shaped Thrust Collar L-Shaped Thrust Collar | | Bounda | ry Dim
(mm) | ensions | | Bearing | Mass
(kg) | |----|--------------|----------------|------------|------------------------|-----------------------------|----------------| | d | d_1 | B_1 | B_2 | $r_1 \atop ext{min.}$ | Numbers | арргох. | | 20 | 30 | 3 | 6.75 | 0.6 | HJ 204 | 0.012 | | | 29.8 | 3 | 5.5 | 0.6 | HJ 204 E | 0.011 | | | 30 | 3 | 7.5 | 0.6 | HJ 2204 | 0.012 | | | 29.8 | 3 | 6.5 | 0.6 | HJ 2204 E | 0.012 | | | 31.7 | 4 | 7.5 | 0.6 | HJ 304 | 0.017 | | | 31.4 | 4 | 6.5 | 0.6 | HJ 304 E | 0.017 | | | 31.8
31.4 | 4 | 8.5
7.5 | 0.6 | HJ 2304
HJ 2304 E | 0.017
0.018 | | 25 | 34.8 | 3 | 6 | 0.6 | HJ 205 E | 0.014 | | | 34.8 | 3 | 6.5 | 0.6 | HJ 2205 E | 0.014 | | | 38.2 | 4 | 7 | 1.1 | HJ 305 E | 0.025 | | | 38.2 | 4 | 8 | 1.1 | HJ 2305 E | 0.026 | | | 43.6 | 6 | 10.5 | 1.5 | HJ 405 | 0.057 | | 30 | 41.3 | 4 | 7 | 0.6 | HJ 206 E | 0.025 | | | 41.4 | 4 | 7.5 | 0.6 | HJ 2206 E | 0.025 | | | 45.1 | 5 | 8.5 | 1.1 | HJ 306 E | 0.042 | | | 45.1 | 5 | 9.5 | 1.1 | HJ 2306 E | 0.043 | | | 50.5 | 7 | 11.5 | 1.5 | HJ 406 | 0.080 | | 35 | 48.2 | 4 | 7 | 0.6 | HJ 207 E | 0.033 | | | 48.2 | 4 | 8.5 | 0.6 | HJ 2207 E | 0.035 | | | 51.1 | 6 | 9.5 | 1.1 | HJ 307 E | 0.060 | | | 51.1 | 6 | 11 | 1.1 | HJ 2307 E | 0.062 | | | 59 | 8 | 13 | 1.5 | HJ 407 | 0.12 | | 40 | 54.1 | 5 | 8.5 | 1.1 | HJ 208 E | 0.049 | | | 54.1 | 5 | 9 | 1.1 | HJ 2208 E | 0.050 | | | 57.6 | 7 | 11 | 1.5 | HJ 308 E | 0.088 | | | 57.7 | 7 | 12.5 | 1.5 | HJ 2308 E | 0.091 | | | 64.8 | 8 | 13 | 2 | HJ 408 | 0.14 | | 45 | 59.1 | 5 | 8.5 | 1.1 | HJ 209 E | 0.055 | | | 59.1 | 5 | 9 | 1.1 | HJ 2209 E | 0.055 | | | 64.5 | 7 | 11.5 | 1.5 | HJ 309 E | 0.11 | | | 64.5 | 7 | 13 | 1.5 | HJ 2309 E | 0.113 | | | 71.7 | 8 | 13.5 | 2 | HJ 409 | 0.175 | | 50 | 64.1 | 5 | 9 | 1.1 | HJ 210 E | 0.061 | | | 64.1 | 5 | 9 | 1.1 | HJ 2210 E | 0.061 | | | 71.4 | 8 | 13 | 2 | HJ 310 E | 0.151 | | | 71.4 | 8 | 14.5 | 2 | HJ 2310 E | 0.155 | | | 78.8 | 9 | 14.5 | 2.1 | HJ 410 | 0.23 | | | Bounda | ıry Dim
(mm) | ensions | | Bearing | Mass
(kg) | |----|--------|-----------------|---------|---------------------------------|---------------|--------------| | d | d_1 | B_1 | B_2 | $r_{\scriptscriptstyle 1}$ min. | Numbers | approx. | | 55 | 70.9 | 6 | 9.5 | 1.1 | HJ 211 E | 0.087 | | | 70.9 | 6 | 10 | 1.1 | HJ 2211 E | 0.088 | | | 77.6 | 9 | 14 | 2 | HJ 311 E | 0.195 | | | 77.6 | 9 | 15.5 | 2 | HJ 2311 E | 0.20 | | | 85.2 | 10 | 16.5 | 2.1 | HJ 411 | 0.29 | | 60 | 77.7 | 6 | 10 | 1.5 | HJ 212 E | 0.108 | | | 77.7 | 6 | 10 | 1.5 | HJ 2212 E | 0.108 | | | 84.5 | 9 | 14.5 | 2.1 | HJ 312 E | 0.231 | | | 84.5 | 9 | 16 | 2.1 | HJ 2312 E | 0.237 | | | 91.8 | 10 | 16.5 | 2.1 | HJ 412 | 0.34 | | 65 | 84.5 | 6 | 10 | 1.5 | HJ 213 E | 0.129 | | | 84.5 | 6 | 10.5 | 1.5 | HJ 2213 E | 0.131 | | | 90.6 | 10 | 15.5 | 2.1 | HJ 313 E | 0.288 | | | 90.6 | 10 | 18 | 2.1 | HJ 2313 E | 0.298 | | | 98.5 | 11 | 18 | 2.1 | HJ 413 | 0.42 | | 70 | 89.5 | 7 | 11 | 1.5 | HJ 214 E | 0.157 | | | 89.5 | 7 | 11.5 | 1.5 | HJ 2214 E | 0.158 | | | 97.5 | 10 | 15.5 | 2.1 | HJ 314 E | 0.33 | | | 97.5 | 10 | 18.5 | 2.1 | HJ 2314 E | 0.345 | | | 110.5 | 12 | 20 | 3 | HJ 414 | 0.605 | | 75 | 94.5 | 7 | 11 | 1.5 | HJ 215 E | 0.166 | | | 94.5 | 7 | 11.5 | 1.5 | HJ 2215 E | 0.167 | | | 104.2 | 11 | 16.5 | 2.1 | HJ 315 E | 0.41 | | | 104.2 | 11 | 19.5 | 2.1 | HJ 2315 E | 0.43 | | | 116 | 13 | 21.5 | 3 | HJ 415 | 0.71 | | 80 | 101.6 | 8 | 12.5 | 2 | HJ 216 E | 0.222 | | | 101.6 | 8 | 12.5 | 2 | HJ 2216 E | 0.222 | | | 110.6 | 11 | 17 | 2.1 | HJ 316 E | 0.46 | | | 110.6 | 11 | 20 | 2.1 | HJ 2316 E | 0.48 | | | 122 | 13 | 22 | 3 | HJ 416 | 0.78 | | 85 | 107.6 | 8 | 12.5 | 2 | HJ 217 E | 0.25 | | | 107.6 | 8 | 13 | 2 | HJ 2217 E | 0.252 | | | 117.9 | 12 | 18.5 | 3 | HJ 317 E | 0.575 | | | 117.9 | 12 | 22 | 3 | HJ 2317 E | 0.595 | | | 126 | 14 | 24 | 4 | HJ 417 | 0.88 | | | Bounda | ry Dim
(mm) | ensions | | Bearing | Mass
(kg) | |-----|----------------------------|----------------|---------|-----------------|---------------|--------------| | d | $d_{\scriptscriptstyle 1}$ | B_1 | B_2 | $r_{ m 1}$ min. | Numbers | approx. | | 90 | 114.3 | 9 | 14 | 2 | HJ 218 E | 0.32 | | | 114.3 | 9 | 15 | 2 | HJ 2218 E | 0.325 | | | 124.2 | 12 | 18.5 | 3 | HJ 318 E | 0.63 | | | 124.2 | 12 | 22 |
3 | HJ 2318 E | 0.66 | | | 137 | 14 | 24 | 4 | HJ 418 | 1.05 | | 95 | 120.6 | 9 | 14 | 2.1 | HJ 219 E | 0.355 | | | 120.6 | 9 | 15.5 | 2.1 | HJ 2219 E | 0.365 | | | 132.2 | 13 | 20.5 | 3 | HJ 319 E | 0.785 | | | 132.2 | 13 | 24.5 | 3 | HJ 2319 E | 0.815 | | | 147 | 15 | 25.5 | 4 | HJ 419 | 1.3 | | 100 | 127.5 | 10 | 15 | 2.1 | HJ 220 E | 0.44 | | | 127.5 | 10 | 16 | 2.1 | HJ 2220 E | 0.45 | | | 139.6 | 13 | 20.5 | 3 | HJ 320 E | 0.89 | | | 139.6 | 13 | 23.5 | 3 | HJ 2320 E | 0.92 | | | 153.5 | 16 | 27 | 4 | HJ 420 | 1.5 | | 105 | 145 | 13 | 20.5 | 3 | HJ 321 E | 0.97 | | | 159.5 | 16 | 27 | 4 | HJ 421 | 1.65 | | 110 | 141.7 | 11 | 17 | 2.1 | HJ 222 E | 0.62 | | | 141.7 | 11 | 19.5 | 2.1 | HJ 2222 E | 0.645 | | | 155.8 | 14 | 22 | 3 | HJ 322 E | 1.21 | | | 155.8 | 14 | 26.5 | 3 | HJ 2322 E | 1.27 | | | 171 | 17 | 29.5 | 4 | HJ 422 | 2.1 | | 120 | 153.4 | 11 | 17 | 2.1 | HJ 224 E | 0.71 | | | 153.4 | 11 | 20 | 2.1 | HJ 2224 E | 0.745 | | | 168.6 | 14 | 22.5 | 3 | HJ 324 E | 1.41 | | | 168.6 | 14 | 26 | 3 | HJ 2324 E | 1.46 | | | 188 | 17 | 30.5 | 5 | HJ 424 | 2.6 | | 130 | 164.2 | 11 | 17 | 3 | HJ 226 E | 0.79 | | | 164.2 | 11 | 21 | 3 | HJ 2226 E | 0.84 | | | 182.3 | 14 | 23 | 4 | HJ 326 E | 1.65 | | | 182.3 | 14 | 28 | 4 | HJ 2326 E | 1.73 | | | 205 | 18 | 32 | 5 | HJ 426 | 3.3 | | 140 | 180 | 11 | 18 | 3 | HJ 228 E | 0.99 | | | 180 | 11 | 23 | 3 | HJ 2228 E | 1.07 | | | 196 | 15 | 25 | 4 | HJ 328 E | 2.04 | | | 196 | 15 | 31 | 4 | HJ 2328 E | 2.14 | | | 219 | 18 | 33 | 5 | HJ 428 | 3.75 | | | | Bounda | ry Dime
(mm) | ensions | | Bearing | Mass
(kg) | |---|-----|--------------------------------|----------------------|------------------------|--------------------|--|------------------------------| | | d | d_1 | B_1 | B_2 | $r_1 \ ext{min.}$ | Numbers | approx. | | • | 150 | 193.7
193.7
210 | 12
12
15 | 19.5
24.5
25 | 3
3
4 | HJ 230 E
HJ 2230 E
HJ 330 E | 1.26
1.35
2.35 | | | | 210
234 | 15
20 | 31.5
36.5 | 4
5 | HJ 2330 E
HJ 430 | 2.48
4.7 | | | 160 | 207.3
206.1
222
222.1 | 12
12
15
15 | 20
24.5
25
32 | 3
3
4
4 | HJ 232 E
HJ 2232 E
HJ 332 E
HJ 2332 E | 1.48
1.55
2.59
2.76 | | | 170 | 220.8
219.5
238 | 12
12
16 | 20
24
33.5 | 4
4
4 | HJ 234 E
HJ 2234 E
HJ 2334 E | 1.7
1.79
3.25 | | | 180 | 230.8
229.5
252 | 12
12
17 | 20
24
35 | 4
4
4 | HJ 236 E
HJ 2236 E
HJ 2336 E | 1.79
1.88
3.85 | | | 190 | 244.5
243.2
260.6 | 13
13
18 | 21.5
26.5
36.5 | 4
4
5 | HJ 238 E
HJ 2238 E
HJ 2338 E | 2.19
2.31
4.45 | | | 200 | 258.2
258
256.9
280 | 14
14
14
18 | 23
34
28
30 | 4
4
4
5 | HJ 240 E
HJ 2240
HJ 2240 E
HJ 340 E | 2.65
2.6
2.78
5.0 | | | 220 | 286
286
307 | 15
15
20 | 27.5
36.5
36 | 4
4
5 | HJ 244
HJ 2244
HJ 344 | 3.55
3.55
7.05 | | | 240 | 313
313
334 | 16
16
22 | 29.5
38.5
39.5 | 4
4
5 | HJ 248
HJ 2248
HJ 348 | 4.65
4.65
8.2 | | | 260 | 340
340
362 | 18
18
24 | 33
40.5
43 | 5
5
6 | HJ 252
HJ 2252
HJ 352 | 6.2
6.2
11.4 | | | 280 | 360 | 18 | 33 | 5 | HJ 256 | 7.4 | | | 300 | 387 | 20 | 34.5 | 5 | HJ 260 | 9.15 | | | 320 | 415 | 21 | 37 | 5 | HJ 264 | 11.3 | ### Bore Diameter 25 – 140 mm | | | | ry Dimensio
(mm) | ons | | Basic Load
(N | | Limiting Speeds
(min ⁻¹) | | | |-----|------------|----------|---------------------|------------|------------------|--------------------|--------------------|---|----------------|--| | d | D | В | $m{r}$ min. | $F_{ m W}$ | E_{W} | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 25 | 47 | 16 | 0.6 | _ | 41.3 | 25 800 | 30 000 | 14 000 | 17 000 | | | 30 | 55 | 19 | 1 | _ | 48.5 | 31 000 | 37 000 | 12 000 | 14 000 | | | 35 | 62 | 20 | 1 | _ | 55 | 39 500 | 50 000 | 10 000 | 12 000 | | | 40 | 68 | 21 | 1 | _ | 61 | 43 500 | 55 500 | 9 000 | 11 000 | | | 45 | 75 | 23 | 1 | _ | 67.5 | 52 000 | 68 500 | 8 500 | 10 000 | | | 50 | 80 | 23 | 1 | _ | 72.5 | 53 000 | 72 500 | 7 500 | 9 000 | | | 55 | 90 | 26 | 1.1 | _ | 81 | 69 500 | 96 500 | 6 700 | 8 000 | | | 60 | 95 | 26 | 1.1 | _ | 86.1 | 73 500 | 106 000 | 6 300 | 7 500 | | | 65 | 100 | 26 | 1.1 | _ | 91 | 77 000 | 116 000 | 6 000 | 7 100 | | | 70 | 110 | 30 | 1.1 | _ | 100 | 97 500 | 148 000 | 5 600 | 6 700 | | | 75 | 115 | 30 | 1.1 | _ | 105 | 96 500 | 149 000 | 5 300 | 6 300 | | | 80 | 125 | 34 | 1.1 | _ | 113 | 119 000 | 186 000 | 4 800 | 6 000 | | | 85 | 130 | 34 | 1.1 | _ | 118 | 125 000 | 201 000 | 4 500 | 5 600 | | | 90 | 140 | 37 | 1.5 | _ | 127 | 143 000 | 228 000 | 4 300 | 5 000 | | | 95 | 145 | 37 | 1.5 | _ | 132 | 150 000 | 246 000 | 4 000 | 5 000 | | | 100 | 140
150 | 40
37 | 1.1
1.5 | 112
— | 137 | 155 000
157 000 | 295 000
265 000 | 4 000
4 000 | 5 000
4 800 | | | 105 | 145
160 | 40
41 | 1.1
2 | 117
— | 146 | 161 000
198 000 | 315 000
320 000 | 3 800
3 800 | 4 800
4 500 | | | 110 | 150
170 | 40
45 | 1.1
2 | 122
— |
155 | 167 000
229 000 | 335 000
375 000 | 3 600
3 400 | 4 500
4 300 | | | 120 | 165
180 | 45
46 | 1.1
2 | 133.5 |
165 | 183 000
239 000 | 360 000
405 000 | 3 200
3 200 | 4 000
3 800 | | | 130 | 180
200 | 50
52 | 1.5
2 | 144 |
182 | 274 000
284 000 | 545 000
475 000 | 3 000
3 000 | 3 800
3 600 | | | 140 | 190
210 | 50
53 | 1.5
2 | 154
— |
192 | 283 000
298 000 | 585 000
515 000 | 2 800
2 800 | 3 600
3 400 | | Remarks Production of double-row cylindrical roller bearings is generally in the high precision classes (Class 5 or better). | Bearing | Numbers | | Ab | utment a | nd Fillet
(mm) | Dimension | S | | Mass
(kg) | |---------------------|-------------------------|------------------------------|----------|---------------------------------|-------------------|--------------|-----------|-----------------|--------------| | Cylindrical Bore | Tapered Bore(1) | $d_{\!\scriptscriptstyle a}$ | max. | $d_{ ext{1a}} \atop ext{min.}$ | $d_{ m c}$ min. | max. | a
min. | $r_{ m a}$ max. | арргох. | | NN 3005 | NN 3005 K | 29 | _ | 29 | _ | 43 | 42 | 0.6 | 0.127 | | NN 3006 | NN 3006 K | 35 | _ | 36 | _ | 50 | 50 | 1 | 0.198 | | NN 3007 | NN 3007 K | 40 | _ | 41 | _ | 57 | 56 | 1 | 0.258 | | NN 3008 | NN 3008 K | 45 | _ | 46 | _ | 63 | 62 | 1 | 0.309 | | NN 3009 | NN 3009 K | 50 | _ | 51 | _ | 70 | 69 | 1 | 0.407 | | NN 3010 | NN 3010 K | 55 | _ | 56 | _ | 75 | 74 | 1 | 0.436 | | NN 3011 | NN 3011 K | 61.5 | _ | 62 | _ | 83.5 | 83 | 1 | 0.647 | | NN 3012 | NN 3012 K | 66.5 | _ | 67 | _ | 88.5 | 88 | 1 | 0.693 | | NN 3013 | NN 3013 K | 71.5 | _ | 72 | _ | 93.5 | 93 | 1 | 0.741 | | NN 3014 | NN 3014 K | 76.5 | _ | 77 | _ | 103.5 | 102 | 1 | 1.06 | | NN 3015 | NN 3015 K | 81.5 | _ | 82 | _ | 108.5 | 107 | 1 | 1.11 | | NN 3016 | NN 3016 K | 86.5 | _ | 87 | _ | 118.5 | 115 | 1 | 1.54 | | NN 3017 | NN 3017 K | 91.5 | _ | 92 | _ | 123.5 | 120 | 1 | 1.63 | | NN 3018 | NN 3018 K | 98 | _ | 99 | _ | 132 | 129 | 1.5 | 2.09 | | NN 3019 | NN 3019 K | 103 | _ | 104 | _ | 137 | 134 | 1.5 | 2.19 | | NNU 4920
NN 3020 | NNU 4920 K
NN 3020 K | 106.5
108 | 111
— | 108
109 | 115
— | 133.5
142 | _
139 | 1
1.5 | 1.9
2.28 | | NNU 4921
NN 3021 | NNU 4921 K
NN 3021 K | 111.5
114 | 116
— | 113
115 | 120
— | 138.5
151 | 148 | 1
2 | 1.99
2.88 | | NNU 4922
NN 3022 | NNU 4922 K
NN 3022 K | 116.5
119 | 121
— | 118
121 | 125
— | 143.5
161 |
157 | 1
2 | 2.07
3.71 | | NNU 4924
NN 3024 | NNU 4924 K
NN 3024 K | 126.5
129 | 133
— | 128
131 | 137
— | 158.5
171 | _
167 | 1
2 | 2.85
4.04 | | NNU 4926
NN 3026 | NNU 4926 K
NN 3026 K | 138
139 | 143
— | 140
141 | 148
— | 172
191 |
185 | 1.5
2 | 3.85
5.88 | 151 153 150 201 158 182 4.08 6.34 195 2 Note (2) d_a (max.) are values for adjusting rings for the NNU Type. NNU 4928 NNU 4928 K 148 NN 3028 NN 3028 K 149 B 106 B 107 Bore Diameter 150 – 360 mm | | | | ry Dimensio
(mm) | ons | | ad Ratings
N) | Limiting Speeds
(min ⁻¹) | | | |-----|------------|------------|---------------------|------------|------------|------------------------|---|----------------|----------------| | d | D | В | $m{r}$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{ m 0r}$ | Grease | Oil | | 150 | 210
225 | 60
56 | 2
2.1 | 167
— |
206 | 350 000
335 000 | 715 000
585 000 | 2 600
2 600 | 3 200
3 000 | | 160 | 220
240 | 60
60 | 2
2.1 | 177
— | 219 | 365 000
375 000 | 760 000
660 000 | 2 400
2 400 | 3 000
2 800 | | 170 | 230
260 | 60
67 | 2
2.1 | 187
— | 236 | 375 000
450 000 | 805 000
805 000 | 2 400
2 200 | 2 800
2 600 | | 180 | 250
280 | 69
74 | 2
2.1 | 200
— |
255 | 480 000
565 000 | 1 020 000
995 000 | 2 200
2 000 | 2 600
2 400 | | 190 | 260
290 | 69
75 | 2
2.1 | 211.5
— |
265 | 485 000
595 000 | 1 060 000
1 080 000 | 2 000
2 000 | 2 600
2 400 | | 200 | 280
310 | 80
82 | 2.1
2.1 | 223 |
282 | 570 000
655 000 | 1 220 000
1 170 000 | 1 900
1 800 | 2 400
2 200 | | 220 | 300
340 | 80
90 | 2.1
3 | 243 | 310 | 600 000
815 000 | 1 330 000
1 480 000 | 1 700
1 700 | 2 200
2 000 | | 240 | 320
360 | 80
92 | 2.1
3 | 263
— | 330 | 625 000
855 000 | 1 450 000
1 600 000 | 1 600
1 500 | 2 000
1 800 | | 260 | 360
400 | 100
104 | 2.1
4 | 289
— | 364 | 935 000
1 030 000 | 2 100 000
1 920 000 | 1 400
1 400 | 1 800
1 700 | |
280 | 380
420 | 100
106 | 2.1
4 | 309 | 384 | 960 000
1 080 000 | 2 230 000
2 080 000 | 1 300
1 300 | 1 700
1 500 | | 300 | 420
460 | 118
118 | 3
4 | 336 | 418 | 1 230 000
1 290 000 | 2 870 000
2 460 000 | 1 200
1 200 | 1 500
1 400 | | 320 | 440
480 | 118
121 | 3
4 | 356
— | 438 | 1 260 000
1 350 000 | 3 050 000
2 670 000 | 1 100
1 100 | 1 400
1 300 | | 340 | 520 | 133 | 5 | _ | 473 | 1 670 000 | 3 300 000 | 1 000 | 1 200 | | 360 | 540 | 134 | 5 | _ | 493 | 1 700 000 | 3 450 000 | 950 | 1 200 | Remarks Production of double-row cylindrical roller bearings is generally in the high precision classes (Class 5 or better). | Bearing Numbers | | Abutment and Fillet Dimensions (mm) | | | | | | | |--------------------------------------|--------------|-------------------------------------|---------------------------------|-----------------|------------|-----------------------|-----------------|--------------| | Cylindrical Bore Tapered Borel | (1)
min | $d_{\mathrm{a}}^{(2)}$ max. | $d_{ ext{1a}} \atop ext{min.}$ | $d_{ m c}$ min. | max. | D_{a} min. | $r_{ m a}$ max. | approx. | | NNU 4930 NNU 4930
NN 3030 NN 3030 | | 166
— | 162
162 | 171
— | 201
214 |
209 | 2
2 | 6.39
7.77 | | NNU 4932 NNU 4932
NN 3032 NN 3032 | | 176
— | 172
172 | 182
— | 211
229 |
222 | 2 2 | 6.76
9.41 | | NNU 4934 NNU 4934
NN 3034 NN 3034 | | 186
— | 182
183 | 192
— | 221
249 |
239 | 2 2 | 7.12
12.8 | | NNU 4936 NNU 4936
NN 3036 NN 3036 | | 199
— | 193
193 | 205
— | 241
269 |
258 | 2 2 | 10.4
16.8 | | NNU 4938 NNU 4938
NN 3038 NN 3038 | | 211
— | 203
203 | 217
— | 251
279 |
268 | 2 2 | 10.9
17.8 | | NNU 4940 NNU 4940
NN 3040 NN 3040 | | 222
— | 214
214 | 228
— | 269
299 |
285 | 2 2 | 15.3
22.7 | | NNU 4944 NNU 4944
NN 3044 NN 3044 | | 242 | 234
236 | 248
— | 289
327 |
313 | 2
2.5 | 16.6
29.6 | | NNU 4948 NNU 4948
NN 3048 NN 3048 | | 262
— | 254
256 | 269
— | 309
347 | 334 | 2
2.5 | 18
32.7 | | NNU 4952 NNU 4952
NN 3052 NN 3052 | | 288
— | 275
278 | 295
— | 349
384 |
368 | 2 3 | 31.1
47.7 | | NNU 4956 NNU 4956
NN 3056 NN 3056 | | 308 | 295
298 | 315
— | 369
404 | 388 | 2 3 | 33
51.1 | | NNU 4960 NNU 4960
NN 3060 NN 3060 | | 335
— | 318
319 | 343 | 407
444 |
422 | 2.5
3 | 51.9
70.7 | | NNU 4964 NNU 4964
NN 3064 NN 3064 | | 355
— | 338
340 | 363
— | 427
464 |
442 | 2.5
3 | 54.9
76.6 | | NN 3068 NN 3068 | K 360 | _ | 365 | _ | 500 | 477 | 4 | 102 | | NN 3072 NN 3072 | K 380 | _ | 385 | _ | 520 | 497 | 4 | 106 | Note (2) d_a (max.) are values for adjusting rings for the NNU Type. # TAPERED ROLLER BEARINGS ### METRIC DESIGN TAPERED ROLLER READINGS INCH The DOU angle | KIC DESIGN I | APERED RULLER | T DEAKINGS | | |---------------|-----------------|---|------| | | Bore Diameter | 15 – 100mm····· | B120 | | | Bore Diameter | 105 – 240mm···· | B128 | | | Bore Diameter 2 | 260 – 440mm···· | B134 | | DESIGN TAPI | ERED ROLLER B | EARINGS | | | | Bore Diameter | 12.000 - 47.625mm | B136 | | | Bore Diameter | 48.412 - 69.850mm····· | B150 | | | Bore Diameter | 70.000 – 206.375mm····· | B158 | | ndex for inch | design tapered | roller bearings is in Appendix 14 (Page C26). | | | BLE-ROW TAP | PERED ROLLER E | BEARINGS | | | | Bore Diameter | 40 – 260mm····· | B172 | Four-Row Tapered Roller Bearings are described on pages B334 to B339. ## DESIGN, TYPES, AND FEATURES Tapered roller bearings are designed so the apices of the cones formed by the raceways of the cone and cup and the conical rollers all coincide at one point on the axis of the bearing. When a radial load is imposed, an axial force component occurs; therefore, it is necessary to use two bearings in opposition or some other multiple arrangement. For metric-design medium-angle and steep-angle tapered roller bearings, the respective contact angle symbol C or D is added after the bore number. For normal-angle tapered roller bearings, no contact angle symbol is used. Medium-angle tapered roller bearings are primarily used for the pinion shafts of differential gears of automobiles. Among those with high load capacity(HR series), some bearings have the basic number suffixed by J to conform to the specifications of ISO for the cup back face raceway diameter, cup width, and contact angle. Therefore, the cone assembly and cup of bearings with the same basic number suffixed by J are internationally interchangeable. Among metric-design tapered roller bearings specified by ISO 355, there are those having new dimensions that are different than the dimension series 3XX used in the past. Part of them are listed in the bearing tables. They conform to the specifications of ISO for the smaller end diameter of the cup and contact angle. The cone and cup assemblies are internationally interchangeable. The bearing number formulation, which is different than that for past metric design, is as follows: B 110 B 111 Besides metric design tapered roller bearings, there are also inch design bearings. For the cone assemblies and cups of inch design bearings, except four-row tapered roller bearings, the bearing numbers are approximately formulated as follows: For tapered roller bearings, besides single-row bearings, there are also various combinations of bearings, besides shighe row bearings, various combinations of bearings. The cages of tapered roller bearings are usually pressed steel. Table 1 Design and Featured of Combinations of Tapered Roller Bearings | Figure | Arrangement | Examples of Bearing No. | Features | | | |--------|--------------|-------------------------|---|--|--| | | Back-to-back | HR30210JDB+KLR10 | Two standard bearings are combined. The bearing clearances are adjusted by cone spacers or cup spacers. The cones and cups and spacers are marked with serial numbers and | | | | | Face-to-face | HR30210JDF+KR | mating marks. Components with the same serial number can be assembled referring to the matching symbols. | | | | | КВЕ Туре | 100KBE31+L | The KBE type is a back-to-back arrangement of bearings with the cup and spacer integrated, and the KH type is a face-to-face arrangement in which the cones are integrated. Since the | | | | | КН Туре | 110KH31+K | bearing clearance is adjusted using spacers, it is necessary for components to have the same serial number for assembly with reference to matching symbols. | | | ### TOLERANCES AND RUNNING ACCURACY METRIC DESIGN TAPERED ROLLER BEARINGS Table 8.3 (Pages A64 to A67) INCH DESIGN TAPERED ROLLER BEARINGS Table 8.4 (Pages A68 and A69) Among inch design tapered roller bearings, there are those to which the following precision classes apply. For more details, please consult with NSK. (1) J line bearings (in the bearing tables, bearings preceded by ▲) Table 2 Tolerances for Cones(CLASS K) Units: µm | отте триг | | | | | | | | | | | |-----------|-------------------------|----------|-------------|-------------------|--------------------|-----------------|--|--|--|--| | (| ore Diameter
d
m) | Δ | <i>d</i> mp | $V_{d\mathrm{p}}$ | $V_{d\mathrm{mp}}$ | K _{ia} | | | | | | over | incl. | high low | | max. | max. | max. | | | | | | 10 | 18 | 0 | - 12 | 12 | 9 | 15 | | | | | | 18 | 30 | 0 | - 12 | 12 | 9 | 18 | | | | | | 30 | 50 | 0 | - 12 | 12 | 9 | 20 | | | | | | 50 | 80 | 0 | - 15 | 15 | 11 | 25 | | | | | | 80 | 120 | 0 | - 20 | 20 | 15 | 30 | | | | | | 120 | 180 | 0 | - 25 | 25 | 19 | 35 | | | | | | 180 | 250 | 0 -30 | | 30 | 23 | 50 | | | | | | 250 | 315 | 0 -35 | | 35 | 26 | 60 | | | | | | 315 | 400 | 0 -40 | | 40 | 30 | 70 | | | | | Table 3 Tolerances for Cups(CALSS K) Units: µm | | | | | | | <u> </u> | |-------------------------|-------|------|-------------|----------|----------------|-----------------| | Nominal
Diam
D (r | | Δ | Dmp | V_{Dp} | $V_{D{ m mp}}$ | K _{ea} | | over | incl. | high | low | max. | max. | max. | | 18 | 30 | 0 | -12 | 12 | 9 | 18 | | 30 | 50 | 0 | -14 | 14 | 11 | 20 | | 50 | 80 | 0 | -16 | 16 | 12 | 25 | | 80 | 120 | 0 | -18 | 18 | 14 | 35 | | 120 | 150 | 0 | -20 | 20 | 15 | 40 | | 150 | 180 | 0 | - 25 | 25 | 19 | 45 | | 180 | 250 | 0 | - 30 | 30 | 23 | 50 | | 250 | 315 | 0 | -35 | 35 | 26 | 60 | | 315 | 400 | 0 | -40 | 40 | 30 | 70 | | 400 | 500 | 0 | - 45 | 45 | 34 | 80 | B 112 B 113 Table 4 Tolerances for Effective Widths of Cone Assemblies and Cups, and Overall Width (CLASS K) Units: µm | | ore Diameter
d
nm) | of Cone | fidth Deviation Assembly $T_{1\mathrm{S}}$ | Deviatio | e Width
n of Cup
T _{2s} | Overall Width Deviation Δ_{T_8} | | | |------|---------------------------------|-----------|--|----------|--|--|------------------|--| | over | incl. | high | low | high low | | high | low | | | 10 | 80 | +100 | 0 | +100 | 0 | +200 | 0 | | | 80 | 120 | +100 | - 100 | +100 | - 100 | +200 | - 200 | | | 120 | 315 | +150 | - 150 | +200 | - 100 | +350 | - 250 | | | 315 | 400 | +200 -200 | | +200 | – 200 | +400 | - 400 | | #### (2) Bearings for Front Axles of Automobiles (In the bearing tables, those preceded by t) Table 5 Tolerances for Bore Diameter and Overall Width Units: µm | 1 | Nominal Boo | re Diameter
1 | | Bore Di
Devia
⊿ | ation | Overall Width Deviation ${\it \Delta}_{\it Ts}$ | | |------|---------------|------------------|----------------|-----------------------|-------
---|-----| | (mm) | ver
1/25.4 | (mm) | icl.
1/25.4 | high | low | high | low | | _ | - | 76.200 | 3.0000 | +20 | 0 | +356 | 0 | The tolerances for outside diameter and those for radial runout of the cones and cups conform to Table 8.4.2 (Pages A68 and A69). ### (3) Special Chamfer Dimensions For bearings marked "spec." in the column of r in the bearing tables, the chamfer dimension of the cone back-face side is as shown on the following figure. ### RECOMMENDED FITS | METRIC DESIGN TAPERED ROLLER | | |-------------------------------------|-------------------------| | BEARINGS | ·· Table 9.2 (Page A84) | | | Table 9.4 (Page A85) | | INCH DESIGN TAPERED ROLLER BEARINGS | · Table 9.6 (Page A86) | | | Table 9.7 (Page A87) | ### INTERNAL CLEARANCE | METRIC DESIGN TAPERED ROLLER BEARINGS | | |---------------------------------------|-----------------------| | (Matched and Double-Row) ······ | Table 9.16 (Page A93) | | INCH DESIGN TAPERED ROLLER BEARINGS | | | (Matched and Double-Row) | Table 9.16 (Page A93) | ### DIMENSIONS RELATED TO MOUNTING The dimensions related to mounting tapered roller bearings are listed in the bearing tables. Since the cages protrude from the ring faces of tapered roller bearings, please use care when designing shafts and housings. When heavy axial loads are imposed, the shaft shoulder dimensions and strength must be sufficient to support the cone rib. ### PERMISSIBLE MISALIGNMENT The permissible misalignment angle for tapered roller bearings is approximately 0.0009 radian (3´). ### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. ### PRECAUTIONS FOR USE OF TAPERED ROLLER BEARINGS - 1. If the load on tapered roller bearings becomes too small, or if the ratio of the axial and radial loads for matched bearings exceeds 'e'(e is listed in the bearing tables)during operation, slippage between the rollers and raceways occurs, which may result in smearing. Especially with large bearings since the weight of the rollers and cage is high. If such load conditions are expected, please contact NSK for selection of the bearings. - 2. Confirm the dimension of "Abutment and Fillet Dimensions" of $D_{\rm a}$, $D_{\rm b}$, $S_{\rm a}$, $S_{\rm b}$ at the time of the HR series adoption. B 114 B 115 Bore Diameter 15 – 28 mm | | | Bounda | ary Dimen | sions | | | Basic Load Ratings | | | | Limiting Speeds | | | |----|----------|----------------|-----------|------------|------------|------------|--------------------|-------------------|----------------|-------------------|-----------------|-------------------|--| | | | | (mm) | | Cone | Cup | 1) | ۷) | {k | gf} | (mii | n ⁻¹) | | | d | D | T | B | C | | r | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | | | | | | | nin. | | | | | | | | | 15 | 35
42 | 11.75
14.25 | 11
13 | 10
11 | 0.6
1 | 0.6
1 | 14 800
23 600 | 13 200
21 100 | 1 510
2 400 | 1 350
2 160 | 11 000
9 500 | 15 000
13 000 | | | 17 | 40 | 13.25 | 12 | 11 | 1 | 1 | 20 100 | 19 900 | 2 050 | 2 030 | 9 500 | 13 000 | | | | 40 | 17.25 | 16 | 14 | 1 | 1 | 27 100 | 28 000 | 2 770 | 2 860 | 9 500 | 13 000 | | | | 47
47 | 15.25
15.25 | 14
14 | 12
10.5 | 1
1 | 1
1 | 29 200
22 000 | 26 700
20 300 | 2 980
2 240 | 2 720
2 070 | 8 500
8 000 | 12 000
11 000 | | | | 47 | 20.25 | 19 | 16 | i | i | 37 500 | 36 500 | 3 800 | 3 750 | 8 500 | 11 000 | | | 20 | 42 | 15 | 15 | 12 | 0.6 | 0.6 | 24 600 | 27 400 | 2 510 | 2 800 | 9 000 | 12 000 | | | | 47
47 | 15.25
15.25 | 14
14 | 12
12 | 1
0.3 | 1
1 | 27 900
23 900 | 28 500
24 000 | 2 850
2 430 | 2 900
2 450 | 8 000
8 000 | 11 000
11 000 | | | | 47 | 19.25 | 18 | 15 | 1 | 1 | 35 500 | 37 500 | 3 650 | 3 850 | 8 500 | 11 000 | | | | 47
52 | 19.25
16.25 | 18
15 | 15
13 | 1
1.5 | 1
1.5 | 31 500
35 000 | 33 500
33 500 | 3 200
3 550 | 3 400
3 400 | 8 000
7 500 | 11 000
10 000 | | | | 52 | 16.25 | 15 | 12 | 1.5 | 1.5 | 25 300 | 24 500 | 2 580 | 2 490 | 7 100 | 10 000 | | | 22 | 52 | 22.25 | 21 | 18 | 1.5 | 1.5 | 45 500 | 47 500 | 4 650 | 4 850 | 8 000 | 11 000 | | | 22 | 44
50 | 15
15.25 | 15
14 | 11.5
12 | 0.6
1 | 0.6
1 | 25 600
29 200 | 29 400
30 500 | 2 610
2 980 | 3 000
3 150 | 8 500
7 500 | 11 000
10 000 | | | | 50 | 15.25 | 14 | 12 | 1 | 1 | 27 200 | 29 500 | 2 780 | 3 000 | 7 500 | 10 000 | | | | 50
50 | 19.25
19.25 | 18
18 | 15
15 | 1
1 | 1
1 | 36 500
33 500 | 40 500
39 500 | 3 750
3 400 | 4 100
4 000 | 7 500
7 500 | 11 000
10 000 | | | | 56 | 17.25 | 16 | 14 | 1.5 | 1.5 | 37 000 | 36 500 | 3 750 | 3 750 | 7 100 | 9 500 | | | 25 | 56
47 | 17.25
15 | 16
15 | 13
11.5 | 1.5
0.6 | 1.5
0.6 | 34 500
27 400 | 34 000
33 000 | 3 500
2 800 | 3 500
3 400 | 6 700
8 000 | 9 500
11 000 | | | 23 | 47 | 17 | 17 | 14 | 0.6 | 0.6 | 31 000 | 38 000 | 3 150 | 3 900 | 8 000 | 11 000 | | | | 52
52 | 16.25
16.25 | 15
15 | 13
12 | 1
1 | 1
1 | 32 000 | 35 000
31 500 | 3 300 | 3 550
3 200 | 7 100
9 700 | 10 000
9 500 | | | | 52 | 19.25 | 18 | 16 | 1 | 1 | 28 100
40 000 | 45 000 | 2 860
4 050 | 3 200
4 600 | 7 100 | 10 000 | | | | 52 | 19.25 | 18 | 15 | 1 | 1 | 35 000 | 42 000 | 3 550 | 4 250 | 7 100 | 9 500 | | | | 52
62 | 22
18.25 | 22
17 | 18
15 | 1
1.5 | 1
1.5 | 47 500
47 500 | 56 500
46 000 | 4 850
4 850 | 5 750
4 700 | 7 500
6 300 | 10 000
8 500 | | | | 62 | 18.25 | 17 | 14 | 1.5 | 1.5 | 42 000 | 45 000 | 4 300 | 4 550 | 6 000 | 8 500 | | | | 62
62 | 18.25
18.25 | 17
17 | 13
13 | 1.5
1.5 | 1.5
1.5 | 38 000
38 000 | 40 500
40 500 | 3 900
3 900 | 4 100
4 100 | 5 600
5 600 | 8 000
8 000 | | | | 62 | 25.25 | 24 | 20 | 1.5 | 1.5 | 62 500 | 66 000 | 6 400 | 6 750 | 6 300 | 8 500 | | | 28 | 52
58 | 16
17.25 | 16
16 | 12
14 | 1
1 | 1
1 | 32 000
39 500 | 39 000
41 500 | 3 300
4 050 | 3 950
4 200 | 7 100
6 300 | 9 500
9 000 | | | | 58 | 17.25 | 16 | 12 | 1 | 1 | 34 000 | 38 500 | 3 450 | 3 900 | 6 300 | 8 500 | | | | 58 | 20.25 | 19 | 16 | 1 | 1 | 47 500 | 54 000 | 4 850 | 5 500 | 6 300 | 9 000 | | | | 58
68 | 20.25
19.75 | 19
18 | 16
15 | 1
1.5 | 1
1.5 | 42 000
55 000 | 49 500
55 500 | 4 300
5 650 | 5 050
5 650 | 6 300
6 000 | 9 000
8 000 | | | | 68 | 19.75 | 18 | 14 | 1.5 | 1.5 | 49 500 | 50 500 | 5 000 | 5 150 | 5 600 | 7 500 | | Remarks The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. Dynamic Equivalent Load $P = XF_r + YF_a$ | $F = A F_{r} + I F_{a}$ | | | | | | | | | | |-------------------------|------------|---------------------------|-----------------------|--|--|--|--|--|--| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | | | | X | Y | X | Y | | | | | | | | 1 | 0 | 0.4 | Y ₁ | | | | | | | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5 F_r + Y_0 F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | | ISO355 | | | Abutn | | d Fillet I
(mm) | Dimens | ions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--|--------------------------------|----------------------|----------------------|----------------------|------------------------|------------------------|------------------|------------------|---------------------------|----------------------|------------------------------|------------------------------|--------------------------|-----------------------------|---------------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone
r a
max | 1 | (mm)
a | e | Y_1 | Y_0 | арргох. | | 30202
HR 30302 J
HR 30203 J | _
2FB
2DB | 23
24
26 | 19
22
23 | 30
36
34 | 30
36
34 | 33
38.5
37.5 | 2
2
2 | 1.5
3
2 | 1 | 0.6
1
1 | 8.2
9.5
9.7 | 0.32
0.29
0.35 | 1.9
2.1
1.7 | 1.0
1.2
0.96 | 0.053
0.098
0.079 | | HR 32203 J
HR 30303 J | 2DD
2FB | 26
26 | 22
24 | 34
41 | 34
40 | 37
43 | 2 | 3 | 1 | i
1 | 11.2
10.4 | 0.31
0.29 | 1.9
2.1 | 1.1 | 0.103
0.134 | | 30303 D
HR 32303 J | 2FD | 29
28 | 23
23 | 41
41 | 34
39 | 44
43 | 2 | 4.5 | 1 | 1 | 15.4
12.5 | 0.81 | 0.74
2.1 | 0.41 | 0.129
0.178 | | HR 32004 XJ
HR 30204 J
HR 30204 C-A- | 3CC
2DB
— | 28
29
29 | 24
27
26 | 37
41
41 | 35
40
37 | 40
44
44 | 3
2
2 | 3
3
3 | 1 | 0.6
1
1 | 10.6
11.0
13.0 | 0.37
0.35
0.55 | 1.6
1.7
1.1 | 0.88
0.96
0.60 | 0.097
0.127
0.126 | | HR 32204 J
HR 32204 CJ
HR 30304 J | 2DD
5DD
2FB | 29
29
31 | 25
25
27 | 41
41
44 | 38
36
44 | 44.5
44
47.5 | 3
2
2 | 4
4
3 | 1 | 1
1
1.5 | 12.6
14.5
11.6 | 0.33
0.52
0.30 | 1.8
1.2
2.0 | 1.0
0.64
1.1 | 0.161
0.166
0.172 | | 30304 D
HR 32304 J | 2FD | 34
33 | 26
26 | 43
43 | 37
42 | 49
48 | 2 | 4 | 1.5 | 1.5
1.5 | 16.7
13.9 | 0.81 | 0.74 | 0.41 | 0.168 | | HR 320/22 XJ
HR 302/22
HR 302/22 C | 3CC | 30
31
31 | 27
29
29 | 39
44
44 | 37
42
40 | 42
47
47 | 3
2
2 | 3.5
3
3 | 1 | 0.6
1
1 | 11.1
11.6
13.0 | 0.40
0.37
0.49 | 1.5
1.6
1.2 |
0.83
0.90
0.67 | 0.103
0.139
0.144 | | HR 322/22
HR 322/22 C
HR 303/22
HR 303/22 C | _
_
_ | 31
31
33
33 | 28
29
30
30 | 44
44
47
47 | 41
39
46
44 | 47
48
50
52.5 | 2
2
2
3 | 4
4
3
4 | 1
1.5 | 1
1
1.5
1.5 | 13.5
15.2
12.4
15.9 | 0.37
0.51
0.32
0.59 | 1.6
1.2
1.9
1.0 | 0.89
0.65
1.0
0.56 | 0.18
0.185
0.208
0.207 | | HR 32005 XJ
HR 33005 J
HR 30205 J | 4CC
2CE
3CC | 33
33
34 | 30
29
31 | 42
42
46 | 40
41
44 | 45
44
48.5 | 3 2 | 3.5
3
3 | 0.6
1 | 0.6
0.6
1 | 11.8
11.0
12.7 | 0.43
0.29
0.37 | 1.4
2.1
1.6 | 0.77
1.1
0.88 | 0.116
0.131
0.157 | | HR 30205 C
HR 32205 J
HR 32205 C | 2CD | 34
34
34 | 32
30
30 | 46
46
46 | 43
44
40 | 49.5
50
50 | 2
2
2 | 4
3
4 | 1 | 1
1
1 | 14.4
13.5
15.8 | 0.53
0.36
0.53 | 1.1
1.7
1.1 | 0.62
0.92
0.62 | 0.155
0.189
0.19 | | HR 33205 J
HR 30305 J
HR 30305 C | 2DE
2FB
— | 34
36
36 | 29
34
35 | 46
54
53 | 43
54
49 | 49.5
57
58.5 | 4
2
3 | 4
3
4 | 1.5
1.5 | 1
1.5
1.5 | 14.1
13.2
16.4 | 0.35
0.30
0.55 | 1.7
2.0
1.1 | 0.94
1.1
0.60 | 0.221
0.27
0.276 | | HR 30305 DJ
HR 31305 J
HR 32305 J | (7FB)
7FB
2FD | 39
39
38 | 34
33
32 | 53
53
53 | 47
47
51 | 59
59
57 | 2
3
3 | 5
5
5 | 1.5 | 1.5
1.5
1.5 | 19.9
19.9
15.6 | 0.83
0.83
0.30 | 0.73
0.73
2.0 | 0.40
0.40
1.1 | 0.265
0.265
0.376 | | HR 320/28 XJ
HR 302/28
HR 302/28 C | 4CC
—
— | 37
37
37 | 33
34
34 | 46
52
52 | 44
50
48 | 50
55
54 | 3
2
2 | 4
3
5 | 1 | 1
1
1 | 12.8
13.2
16.9 | 0.43
0.35
0.64 | 1.4
1.7
0.94 | 0.77
0.93
0.52 | 0.146
0.203
0.198 | | HR 322/28
HR 322/28 CJ
HR 303/28 |
5DD
 | 37
37
39 | 34
33
37 | 52
52
59 | 49
45
58 | 55
55
61 | 2
2
2 | 4
4
4.5 | 1
1.5 | 1
1
1.5 | 14.6
16.8
14.5 | 0.37
0.56
0.31 | 1.6
1.1
1.9 | 0.89
0.59
1.1 | 0.243
0.251
0.341 | | HR 303/28 C | _ | 39 | 38 | 59 | 57 | 63 | 3 | 5.5 | | 1.5 | 17.4 | 0.52 | 1.2 | 0.64 | 0.335 | B 116 B 117 Bore Diameter 30 – 35 mm | | | Bound | ary Dimen | sions | | | | Basic Load | 0 | | Limiting | | |----|----------------------|----------------------------|----------------------|----------------------|------------------|-------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | | | | (mm) | | Cone | Cup | | (N) | {kg | gf} | (mii | , | | d | D | T | В | С | | r
nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 30 | 47 | 12 | 12 | 9 | 0.3 | 0.3 | 17 600 | 24 400 | 1 800 | 2 490 | 7 500 | 10 000 | | | 55 | 17 | 17 | 13 | 1 | 1 | 36 000 | 44 500 | 3 700 | 4 550 | 6 700 | 9 000 | | | 55 | 20 | 20 | 16 | 1 | 1 | 42 000 | 54 000 | 4 250 | 5 500 | 6 700 | 9 000 | | | 62 | 17.25 | 16 | 14 | 1 | 1 | 43 000 | 47 500 | 4 400 | 4 850 | 6 000 | 8 000 | | | 62 | 17.25 | 16 | 12 | 1 | 1 | 35 500 | 37 000 | 3 650 | 3 800 | 5 600 | 7 500 | | | 62 | 21.25 | 20 | 17 | 1 | 1 | 52 000 | 60 000 | 5 300 | 6 150 | 6 000 | 8 500 | | | 62 | 21.25 | 20 | 16 | 1 | 1 | 48 000 | 56 000 | 4 900 | 5 750 | 6 000 | 8 000 | | | 62 | 25 | 25 | 19.5 | 1 | 1 | 66 500 | 79 500 | 6 800 | 8 100 | 6 000 | 8 000 | | | 72 | 20.75 | 19 | 16 | 1.5 | 1.5 | 59 500 | 60 000 | 6 050 | 6 100 | 5 300 | 7 500 | | | 72 | 20.75 | 19 | 14 | 1.5 | 1.5 | 56 500 | 55 500 | 5 800 | 5 650 | 5 300 | 7 100 | | | 72 | 20.75 | 19 | 14 | 1.5 | 1.5 | 49 000 | 52 500 | 5 000 | 5 350 | 4 800 | 6 700 | | | 72 | 20.75 | 19 | 14 | 1.5 | 1.5 | 49 000 | 52 500 | 5 000 | 5 350 | 4 800 | 6 800 | | | 72 | 28.75 | 27 | 23 | 1.5 | 1.5 | 80 000 | 88 500 | 8 150 | 9 000 | 5 600 | 7 500 | | | 72 | 28.75 | 27 | 23 | 1.5 | 1.5 | 76 000 | 86 500 | 7 750 | 8 800 | 5 600 | 7 500 | | 32 | 58
58
65
65 | 17
21
18.25
18.25 | 17
20
17
17 | 13
16
15
14 | 1
1
1
1 | 1
1
1 | 37 500
41 000
48 500
45 500 | 47 000
50 000
54 000
52 500 | 3 800
4 150
4 950
4 650 | 4 800
5 100
5 500
5 350 | 6 300
6 300
5 600
5 600 | 8 500
8 500
8 000
7 500 | | | 65 | 22.25 | 21 | 18 | 1 | 1 | 56 000 | 65 000 | 5 700 | 6 650 | 6 000 | 8 000 | | | 65 | 22.25 | 21 | 17 | 1 | 1 | 49 500 | 60 000 | 5 050 | 6 100 | 5 600 | 7 500 | | | 65 | 26 | 26 | 20.5 | 1 | 1 | 70 000 | 86 500 | 7 150 | 8 850 | 5 600 | 8 000 | | | 75 | 21.75 | 20 | 17 | 1.5 | 1.5 | 56 000 | 56 000 | 5 700 | 5 700 | 5 300 | 7 100 | | 35 | 55 | 14 | 14 | 11.5 | 0.6 | 0.6 | 27 400 | 39 000 | 2 790 | 3 950 | 6 300 | 8 500 | | | 62 | 18 | 18 | 14 | 1 | 1 | 43 500 | 55 500 | 4 400 | 5 650 | 5 600 | 8 000 | | | 62 | 21 | 21 | 17 | 1 | 1 | 49 000 | 65 000 | 4 950 | 6 650 | 5 600 | 8 000 | | | 72 | 18.25 | 17 | 15 | 1.5 | 1.5 | 54 000 | 59 500 | 5 500 | 6 050 | 5 300 | 7 100 | | | 72 | 18.25 | 17 | 13 | 1.5 | 1.5 | 47 000 | 54 500 | 4 750 | 5 550 | 5 000 | 6 700 | | | 72 | 24.25 | 23 | 19 | 1.5 | 1.5 | 70 500 | 83 500 | 7 150 | 8 550 | 5 300 | 7 100 | | | 72 | 24.25 | 23 | 18 | 1.5 | 1.5 | 60 500 | 71 500 | 6 200 | 7 300 | 5 000 | 7 100 | | | 72 | 28 | 28 | 22 | 1.5 | 1.5 | 86 500 | 108 000 | 8 850 | 11 100 | 5 300 | 7 100 | | | 80 | 22.75 | 21 | 18 | 2 | 1.5 | 76 000 | 79 000 | 7 750 | 8 050 | 4 800 | 6 700 | | | 80 | 22.75 | 21 | 16 | 2 | 1.5 | 68 000 | 70 500 | 6 900 | 7 200 | 4 800 | 6 300 | | | 80 | 22.75 | 21 | 15 | 2 | 1.5 | 62 000 | 68 000 | 6 350 | 6 950 | 4 300 | 6 000 | | | 80 | 22.75 | 21 | 15 | 2 | 1.5 | 62 000 | 68 000 | 6 350 | 6 950 | 4 300 | 6 000 | | | 80 | 32.75 | 31 | 25 | 2 | 1.5 | 99 000 | 111 000 | 10 100 | 11 300 | 5 000 | 6 700 | Remarks The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}\!>\!0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of $\emph{e},~Y_1$, and Y_0 are given in the table below. | Davidson Namehouse | ISO355 | | | Abutm | nent an | d Fillet [
(mm) | Dimens | ions | | 0 | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--|--------------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|----------------------------|-----------------------------|----------------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $_{ m max.}$ I | O _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | | $r_{ m a}$ | (mm)
a | e | <i>Y</i> ₁ | Y_0 | approx. | | HR 32906 J | 2BD | 34 | 34 | 44 | 42 | 44 | 3 | 3 | 0.3 | 0.3 | 9.2 | 0.32 | 1.9 | 1.0 | 0.074 | | HR 32006 XJ | 4CC | 39 | 35 | 49 | 47 | 53 | 3 | 4 | 1 | 1 | 13.5 | 0.43 | 1.4 | 0.77 | 0.172 | | HR 33006 J | 2CE | 39 | 35 | 49 | 48 | 52 | 3 | 4 | 1 | 1 | 13.1 | 0.29 | 2.1 | 1.1 | 0.208 | | HR 30206 J | 3DB | 39 | 37 | 56 | 52 | 58 | 2 | 3 | 1 | 1 | 13.9 | 0.37 | 1.6 | 0.88 | 0.238 | | HR 30206 C | | 39 | 36 | 56 | 49 | 59 | 2 | 5 | 1 | 1 | 17.8 | 0.68 | 0.88 | 0.49 | 0.221 | | HR 32206 J | 3DC | 39 | 36 | 56 | 51 | 58.5 | 2 | 4 | 1 | 1 | 15.4 | 0.37 | 1.6 | 0.88 | 0.297 | | HR 32206 C | — | 39 | 35 | 56 | 48 | 59 | 2 | 5 | 1 | 1 | 17.8 | 0.55 | 1.1 | 0.60 | 0.293 | | HR 33206 J | 2DE | 39 | 35 | 56 | 52 | 59.5 | 5 | 5.5 | 1 | 1 | 16.1 | 0.34 | 1.8 | 0.97 | 0.355 | | HR 30306 J | 2FB | 41 | 40 | 63 | 62 | 66 | 3 | 4.5 | 1.5 | 1.5 | 15.1 | 0.32 | 1.9 | 1.1 | 0.403 | | HR 30306 C | — | 41 | 38 | 63 | 59 | 67 | 3 | 6.5 | 1.5 | 1.5 | 18.5 | 0.55 | 1.1 | 0.60 | 0.383 | | HR 30306 DJ
HR 31306 J
HR 32306 J
HR 32306 CJ | (7FB)
7FB
2FD
5FD | 44
44
43
43 | 40
40
38
36 | 63
63
63 | 55
55
59
54 | 68
68
66
68 | 3
3
3 | 6.5
6.5
5.5
5.5 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | 23.1
23.1
18.0
22.0 | 0.83
0.83
0.32
0.55 | 0.73
0.73
1.9
1.1 | 0.40
0.40
1.1
0.60 | 0.393
0.393
0.57
0.583 | | HR 320/32 XJ
330/32
HR 302/32
HR 302/32 C | 4CC
—
— | 41
41
41
41 | 37
37
39
39 | 52
52
59
59 | 49
50
56
54 | 55
55
61
62 | 3
2
3
3 | 4
4
3
4 | 1
1
1
1 | 1
1
1 | 14.2
13.8
14.7
16.9 | 0.45
0.31
0.37
0.55 | 1.3
1.9
1.6
1.1 | 0.73
1.1
0.88
0.60 | 0.191
0.225
0.277
0.273 | | HR 322/32
HR 322/32 C
HR 332/32 J
303/32 | _
2DE
_ | 41
41
41
44 | 38
39
38
42 | 59
59
59
66 | 54
51
55
64 | 61
62
62
68 | 3
3
5
3 | 4
5
5.5
4.5 | 1
1
1
1.5 | 1
1
1
1.5 | 15.9
20.2
17.0
15.9 | 0.37
0.59
0.35
0.33 | 1.6
1.0
1.7
1.8 | 0.88
0.56
0.95
1.0 | 0.336
0.335
0.40
0.435 | | HR 32907 J | 2BD | 43 | 40 | 50 | 50 | 52.5 | 3 | 2.5 | 0.6 | 0.6 | 10.7 | 0.29 | 2.1 | 1.1 | 0.123 | | HR 32007 XJ | 4CC | 44 | 40 | 56 | 54 | 60 | 4 | 4 | 1 | 1 |
15.0 | 0.45 | 1.3 | 0.73 | 0.229 | | HR 33007 J | 2CE | 44 | 40 | 56 | 55 | 59 | 4 | 4 | 1 | 1 | 14.1 | 0.31 | 2.0 | 1.1 | 0.267 | | HR 30207 J | 3DB | 46 | 43 | 63 | 62 | 67 | 3 | 3 | 1.5 | 1.5 | 15.0 | 0.37 | 1.6 | 0.88 | 0.34 | | HR 30207 C | — | 46 | 44 | 63 | 59 | 68 | 3 | 5 | 1.5 | 1.5 | 19.6 | 0.66 | 0.91 | 0.50 | 0.331 | | HR 32207 J | 3DC | 46 | 42 | 63 | 61 | 67.5 | 3 | 5 | 1.5 | 1.5 | 17.9 | 0.37 | 1.6 | 0.88 | 0.456 | | HR 32207 C | — | 46 | 42 | 63 | 58 | 68.5 | 3 | 6 | 1.5 | 1.5 | 20.6 | 0.55 | 1.1 | 0.60 | 0.442 | | HR 33207 J | 2DE | 46 | 41 | 63 | 61 | 68 | 5 | 6 | 1.5 | 1.5 | 18.3 | 0.35 | 1.7 | 0.93 | 0.54 | | HR 30307 J | 2FB | 47 | 45 | 71 | 69 | 74 | 3 | 4.5 | 2 | 1.5 | 16.7 | 0.32 | 1.9 | 1.1 | 0.538 | | HR 30307 C
HR 30307 DJ
HR 31307 J
HR 32307 J | TFB
7FB
2FE | 47
51
51
49 | 44
44
44
43 | 71
71
71
71 | 65
62
62
66 | 74
77
77
74 | 3
3
3 | 6.5
7.5
7.5
7.5 | 2
2
2
2 | 1.5
1.5
1.5
1.5 | 20.3
25.2
25.2
20.7 | 0.55
0.83
0.83
0.32 | 1.1
0.73
0.73
1.9 | 0.60
0.40
0.40
1.1 | 0.518
0.519
0.52
0.765 | Bore Diameter 40 – 50 mm | | Boundary Dimensions
(mm) Cone | | | | | | | Basic Load | 0 | | Limiting | • | |----|----------------------------------|----------------|----------|----------|-----|---------------------|-------------------|--------------------|-----------------|-------------------|----------------|----------------| | _ | (mm)
Co | | | | | Cup | | N) | {kg | - | (min | , | | d | D | T | В | С | | $oldsymbol{r}$ nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 40 | 62 | 15 | 15 | 12 | 0.6 | 0.6 | 34 000 | 47 000 | 3 450 | 4 800 | 5 600 | 7 500 | | | 68 | 19 | 19 | 14.5 | 1 | 1 | 53 000 | 71 000 | 5 400 | 7 250 | 5 300 | 7 100 | | | 68 | 22 | 22 | 18 | 1 | 1 | 59 000 | 81 500 | 6 000 | 8 300 | 5 300 | 7 100 | | | 75 | 26 | 26 | 20.5 | 1.5 | 1.5 | 78 500 | 101 000 | 8 000 | 10 300 | 4 800 | 6 700 | | | 80 | 19.75 | 18 | 16 | 1.5 | 1.5 | 63 500 | 70 000 | 6 450 | 7 150 | 4 800 | 6 300 | | | 80 | 24.75 | 23 | 19 | 1.5 | 1.5 | 77 000 | 90 500 | 7 900 | 9 200 | 4 800 | 6 300 | | | 80 | 24.75 | 23 | 19 | 1.5 | 1.5 | 74 000 | 90 500 | 7 550 | 9 200 | 4 500 | 6 300 | | | 80 | 32 | 32 | 25 | 1.5 | 1.5 | 107 000 | 137 000 | 10 900 | 14 000 | 4 800 | 6 300 | | | 90 | 25.25 | 23 | 20 | 2 | 1.5 | 90 500 | 101 000 | 9 250 | 10 300 | 4 300 | 5 600 | | | 90 | 25.25 | 23 | 18 | 2 | 1.5 | 84 500 | 93 500 | 8 600 | 9 500 | 4 300 | 5 600 | | | 90 | 25.25 | 23 | 17 | 2 | 1.5 | 80 000 | 89 500 | 8 150 | 9 150 | 3 800 | 5 300 | | | 90 | 25.25 | 23 | 17 | 2 | 1.5 | 80 000 | 89 500 | 8 150 | 9 150 | 3 800 | 5 300 | | | 90 | 35.25 | 33 | 27 | 2 | 1.5 | 120 000 | 145 000 | 12 200 | 14 800 | 4 300 | 6 000 | | 45 | 68 | 15 | 15 | 12 | 0.6 | 0.6 | 34 500 | 50 500 | 3 550 | 5 150 | 5 000 | 6 700 | | | 75 | 20 | 20 | 15.5 | 1 | 1 | 60 000 | 83 000 | 6 150 | 8 450 | 4 500 | 6 300 | | | 75 | 24 | 24 | 19 | 1 | 1 | 69 000 | 99 000 | 7 050 | 10 100 | 4 800 | 6 300 | | | 80 | 26 | 26 | 20.5 | 1.5 | 1.5 | 84 000 | 113 000 | 8 550 | 11 600 | 4 500 | 6 000 | | | 85 | 20.75 | 19 | 16 | 1.5 | 1.5 | 68 500 | 79 500 | 6 950 | 8 100 | 4 300 | 6 000 | | | 85 | 24.75 | 23 | 19 | 1.5 | 1.5 | 83 000 | 102 000 | 8 500 | 10 400 | 4 300 | 6 000 | | | 85 | 24.75 | 23 | 19 | 1.5 | 1.5 | 75 500 | 95 500 | 7 700 | 9 750 | 4 300 | 5 600 | | | 85 | 32 | 32 | 25 | 1.5 | 1.5 | 111 000 | 147 000 | 11 300 | 15 000 | 4 300 | 6 000 | | | 95 | 29 | 26.5 | 20 | 2.5 | 2.5 | 88 500 | 109 000 | 9 050 | 11 100 | 3 600 | 5 000 | | | 95 | 36 | 35 | 30 | 2.5 | 2.5 | 139 000 | 174 000 | 14 200 | 17 800 | 4 000 | 5 300 | | | 100 | 27.25 | 25 | 22 | 2 | 1.5 | 112 000 | 127 000 | 11 400 | 12 900 | 3 800 | 5 300 | | | 100 | 27.25 | 25 | 18 | 2 | 1.5 | 95 500 | 109 000 | 9 750 | 11 100 | 3 400 | 4 800 | | | 100
100 | 27.25
38.25 | 25
36 | 18
30 | 2 | 1.5
1.5 | 95 500
144 000 | 109 000
177 000 | 9 750
14 700 | 11 100
18 000 | 3 400
3 800 | 4 800
5 300 | | 50 | 100 | 36 | 35 | 30 | 2.5 | 2.5 | 144 000 | 185 000 | 14 600 | 18 800 | 3 800 | 5 000 | | | 72 | 15 | 15 | 12 | 0.6 | 0.6 | 36 000 | 54 000 | 3 650 | 5 500 | 4 500 | 6 300 | | | 80 | 20 | 20 | 15.5 | 1 | 1 | 61 000 | 87 000 | 6 250 | 8 900 | 4 300 | 6 000 | | | 80 | 24 | 24 | 19 | 1 | 1 | 70 500 | 104 000 | 7 150 | 10 600 | 4 300 | 6 000 | | | 85 | 26 | 26 | 20 | 1.5 | 1.5 | 89 000 | 126 000 | 9 100 | 12 800 | 4 300 | 5 600 | | | 90 | 21.75 | 20 | 17 | 1.5 | 1.5 | 76 000 | 91 500 | 7 750 | 9 300 | 4 000 | 5 300 | | | 90 | 24.75 | 23 | 19 | 1.5 | 1.5 | 87 500 | 109 000 | 8 900 | 11 100 | 4 000 | 5 300 | | | 90 | 24.75 | 23 | 18 | 1.5 | 1.5 | 77 500 | 102 000 | 7 900 | 10 400 | 3 800 | 5 300 | | | 90 | 32 | 32 | 24.5 | 1.5 | 1.5 | 118 000 | 165 000 | 12 100 | 16 800 | 4 000 | 5 300 | | | 105 | 32 | 29 | 22 | 3 | 3 | 109 000 | 133 000 | 11 100 | 13 600 | 3 200 | 4 500 | | | 110 | 29.25 | 27 | 23 | 2.5 | 2 | 130 000 | 148 000 | 13 300 | 15 100 | 3 400 | 4 800 | | | 110 | 29.25 | 27 | 19 | 2.5 | 2 | 114 000 | 132 000 | 11 700 | 13 400 | 3 200 | 4 300 | | | 110 | 29.25 | 27 | 19 | 2.5 | 2 | 114 000 | 132 000 | 11 700 | 13 400 | 3 200 | 4 300 | | | 110 | 42.25 | 40 | 33 | 2.5 | 2 | 176 000 | 220 000 | 17 900 | 22 400 | 3 600 | 4 800 | | | 110 | 42.25 | 40 | 33 | 2.5 | 2 | 164 000 | 218 000 | 16 800 | 22 200 | 3 400 | 4 800 | Remarks The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. Dynamic Equivalent Load P = XF + VF | P = X | $F_{\rm r} + Y F_{\rm a}$ | | | |---------------|---------------------------|---------------|-----------------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}>0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | | ISO355 | | | Abutn | nent an | d Fillet I
(mm) | Dimens | sions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |---|--------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------|------------------|------------------|--------------------------|------------------------------|------------------------------|----------------------------|------------------------------|---------------------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | i | $r_{ m a}$ | (mm)
a | e | Y_1 | Y_0 | арргох. | | HR 32908 J | 2BC | 48 | 44 | 57 | 57 | 59 | 3 | 3 | 0.6 | 0.6 | 11.5 | 0.29 | 2.1 | 1.1 | 0.161 | | HR 32008 XJ | 3CD | 49 | 45 | 62 | 60 | 65.5 | 4 | 4.5 | 1 | 1 | 15.0 | 0.38 | 1.6 | 0.87 | 0.28 | | HR 33008 J | 2BE | 49 | 45 | 62 | 61 | 65 | 4 | 4 | 1 | 1 | 14.6 | 0.28 | 2.1 | 1.2 | 0.322 | | HR 33108 J | 2CE | 51 | 46 | 66 | 65 | 71 | 4 | 5.5 | 1.5 | 1.5 | 18.0 | 0.36 | 1.7 | 0.93 | 0.503 | | HR 30208 J | 3DB | 51 | 48 | 71 | 69 | 75 | 3 | 3.5 | 1.5 | 1.5 | 16.6 | 0.37 | 1.6 | 0.88 | 0.437 | | HR 32208 J | 3DC | 51 | 48 | 71 | 68 | 75 | 3 | 5.5 | 1.5 | 1.5 | 18.9 | 0.37 | 1.6 | 0.88 | 0.548 | | HR 32208 CJ | 5DC | 51 | 47 | 71 | 65 | 76 | 3 | 5.5 | 1.5 | 1.5 | 21.9 | 0.55 | 1.1 | 0.60 | 0.558 | | HR 33208 J | 2DE | 51 | 46 | 71 | 67 | 76 | 5 | 7 | 1.5 | 1.5 | 20.8 | 0.36 | 1.7 | 0.92 | 0.744 | | HR 30308 J | 2FB | 52 | 52 | 81 | 76 | 82 | 3 | 5 | 2 | 1.5 | 19.5 | 0.35 | 1.7 | 0.96 | 0.758 | | HR 30308 C
HR 30308 DJ
HR 31308 J
HR 32308 J | —
7FB
7FB
2FD | 52
56
56
54 | 50
50
50
50 | 81
81
81
81 | 72
70
70
73 | 84
87
87
82 | 3
3
3 | 7
8
8
8 | 2
2
2
2 | 1.5
1.5
1.5
1.5 | 22.8
28.7
28.7
23.4 | 0.53
0.83
0.83
0.35 | 1.1
0.73
0.73
1.7 | 0.62
0.40
0.40
0.96 | 0.735
0.728
0.728
1.05 | | HR 32909 J | 2BC | 53 | 50 | 63 | 62 | 64 | 3 | 3 | 0.6 | 0.6 | 12.3 | 0.32 | 1.9 | 1.0 | 0.187 | | HR 32009 XJ | 3CC | 54 | 51 | 69 | 67 | 72 | 4 | 4.5 | 1 | 1 | 16.6 | 0.39 | 1.5 | 0.84 | 0.354 | | HR 33009 J | 2CE | 54 | 51 | 69 | 67 | 71 | 4 | 5 | 1 | 1 | 16.3 | 0.29 | 2.0 | 1.1 | 0.414 | | HR 33109 J | 3CE | 56 | 51 | 71 | 69 | 77 | 4 | 5.5 | 1.5 | 1.5 | 19.1 | 0.38 | 1.6 | 0.86 | 0.552 | | HR 30209 J | 3DB | 56 | 53 | 76 | 74 | 80 | 3 | 4.5 | 1.5 | 1.5 | 18.3 | 0.41 | 1.5 | 0.81 | 0.488 | | HR 32209 J | 3DC | 56 | 53 | 76 | 73 | 81 | 3 | 5.5 | 1.5 | 1.5 | 20.1 | 0.41 | 1.5 | 0.81 | 0.602 | | HR 32209 CJ | 5DC | 56 | 52 | 76 | 70 | 82 | 3 | 5.5 | 1.5 | 1.5 | 23.6 | 0.59 | 1.0 | 0.56 | 0.603 | | HR 33209 J | 3DE | 56 | 51 | 76 | 72 | 81 | 5 | 7 | 1.5 | 1.5 | 22.0 | 0.39 | 1.6 | 0.86 | 0.817 | | T 7 FC045 | 7FC | 60 | 53 | 83 | 71 | 91 | 3 | 9 | 2 | 2 | 32.1 | 0.87 | 0.69 | 0.38 | 0.918 | | T 2 ED045 | 2ED | 60 | 54 | 83 | 79 | 89 | 5 | 6 | 2 | 2 | 23.5 | 0.32 | 1.9 | 1.02 | 1.22 | | HR 30309 J | 2FB | 57 | 58 | 91 | 86 | 93 | 3 | 5 | 2 | 1.5 | 21.1 | 0.35 | 1.7 | 0.96 | 1.01 | | HR 30309 DJ | 7FB | 61 | 57 | 91 | 79 | 96 | 3 | 9 | 2 | 1.5 | 31.5 | 0.83 | 0.73 | 0.40 | 0.957 | | HR 31309 J
HR 32309 J | 7FB
2FD | 61
59 | 57
56 | 91
91 | 79
82 | 96
93 | 3 | 9
8 | 2 | 1.5
1.5 | 31.5
25.0 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 0.947
1.42 | | T 2 ED050 | 2ED | 65 | 59 | 88 | 83 | 94 | 6 | 6 | 2 | 2 | 24.2 | 0.34 | 1.8 | 0.96 | 1.3 | | HR 32910 J | 2BC | 58 | 54 | 67 | 66 | 69 | 3 | 3 | 0.6 | 0.6 | 13.5 | 0.34 | 1.8 | 0.97 | 0.193 | | HR 32010 XJ | 3CC | 59 | 56 | 74 | 71 | 77 | 4 | 4.5 | 1 | 1 | 17.9 | 0.42 | 1.4 | 0.78 | 0.38 | | HR 33010 J | 2CE | 59 | 55 | 74 | 71 | 76 | 4 | 5 | 1 | 1 | 17.4 | 0.32 | 1.9 | 1.0 | 0.452 |
 HR 33110 J | 3CE | 61 | 56 | 76 | 74 | 82 | 4 | 6 | 1.5 | 1.5 | 20.3 | 0.41 | 1.5 | 0.8 | 0.597 | | HR 30210 J | 3DB | 61 | 58 | 81 | 79 | 85 | 3 | 4.5 | 1.5 | 1.5 | 19.6 | 0.42 | 1.4 | 0.79 | 0.557 | | HR 32210 J | 3DC | 61 | 57 | 81 | 78 | 86 | 3 | 5.5 | 1.5 | 1.5 | 21.0 | 0.42 | 1.4 | 0.79 | 0.642 | | HR 32210 CJ | 5DC | 61 | 58 | 81 | 76 | 87 | 3 | 6.5 | 1.5 | 1.5 | 24.6 | 0.59 | 1.0 | 0.56 | 0.655 | | HR 33210 J | 3DE | 61 | 56 | 81 | 76 | 87 | 5 | 7.5 | 1.5 | 1.5 | 23.2 | 0.41 | 1.5 | 0.80 | 0.867 | | T 7 FC050 | 7FC | 74 | 59 | 91 | 78 | 100 | 5 | 10 | 2.5 | 2.5 | 36.4 | 0.87 | 0.69 | 0.38 | 1.22 | | HR 30310 J | 2FB | 65 | 65 | 100 | 95 | 102 | 3 | 6 | 2 | 2 | 23.1 | 0.35 | 1.7 | 0.96 | 1.28 | | HR 30310 DJ | 7FB | 70 | 62 | 100 | 87 | 105 | 3 | 10 | 2 | 2 | 34.3 | 0.83 | 0.73 | 0.40 | 1.26 | | HR 31310 J | 7FB | 70 | 62 | 100 | 87 | 105 | 3 | 10 | 2 | 2 | 34.3 | 0.83 | 0.73 | 0.40 | 1.26 | | HR 32310 J | 2FD | 68 | 62 | 100 | 91 | 102 | 3 | 9 | 2 | 2 | 28.0 | 0.35 | 1.7 | 0.96 | 1.88 | | HR 32310 CJ | 5FD | 68 | 59 | 100 | 82 | 103 | 3 | 9 | 2 | 2 | 32.8 | 0.55 | 1.1 | 0.60 | 1.93 | Bore Diameter 55 – 65 mm | | | Bounda | ary Dimens | ions | Cone Cup | | | Basic Load | 0 | | Limiting | | |----|------------|----------|------------|----------|----------|---------------------|--------------------|--------------------|------------------|-------------------|-------------------|----------------| | | (mm) | | | Cone | Cup | 1) | 1) | {kṛ | gf} | (min | ı ⁻¹) | | | d | D | T | В | С | | $oldsymbol{r}$ nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 55 | 80 | 17 | 17 | 14 | 1 | 1 | 45 500 | 74 500 | 4 600 | 7 600 | 4 300 | 5 600 | | | 90 | 23 | 23 | 17.5 | 1.5 | 1.5 | 81 500 | 117 000 | 8 300 | 11 900 | 3 800 | 5 300 | | | 90 | 27 | 27 | 21 | 1.5 | 1.5 | 91 500 | 138 000 | 9 300 | 14 000 | 3 800 | 5 300 | | | 95 | 30 | 30 | 23 | 1.5 | 1.5 | 112 000 | 158 000 | 11 500 | 16 100 | 3 800 | 5 000 | | | 100 | 22.75 | 21 | 18 | 2 | 1.5 | 94 500 | 113 000 | 9 650 | 11 500 | 3 600 | 5 000 | | | 100 | 26.75 | 25 | 21 | 2 | 1.5 | 110 000 | 137 000 | 11 200 | 14 000 | 3 600 | 5 000 | | | 100 | 35 | 35 | 27 | 2 | 1.5 | 141 000 | 193 000 | 14 400 | 19 700 | 3 600 | 5 000 | | | 115 | 34 | 31 | 23.5 | 3 | 3 | 126 000 | 164 000 | 12 800 | 16 700 | 3 000 | 4 300 | | | 120 | 31.5 | 29 | 25 | 2.5 | 2 | 150 000 | 171 000 | 15 200 | 17 500 | 3 200 | 4 300 | | | 120 | 31.5 | 29 | 21 | 2.5 | 2 | 131 000 | 153 000 | 13 400 | 15 600 | 2 800 | 4 000 | | | 120 | 31.5 | 29 | 21 | 2.5 | 2 | 131 000 | 153 000 | 13 400 | 15 600 | 2 800 | 4 000 | | | 120 | 45.5 | 43 | 35 | 2.5 | 2 | 204 000 | 258 000 | 20 800 | 26 300 | 3 200 | 4 300 | | | 120 | 45.5 | 43 | 35 | 2.5 | 2 | 195 000 | 262 000 | 19 900 | 26 700 | 3 200 | 4 300 | | 60 | 85 | 17 | 17 | 14 | 1 | 1 | 49 000 | 84 500 | 5 000 | 8 650 | 3 800 | 5 300 | | | 95 | 23 | 23 | 17.5 | 1.5 | 1.5 | 85 500 | 127 000 | 8 700 | 12 900 | 3 600 | 5 000 | | | 95 | 27 | 27 | 21 | 1.5 | 1.5 | 96 000 | 150 000 | 9 800 | 15 300 | 3 600 | 5 000 | | | 100 | 30 | 30 | 23 | 1.5 | 1.5 | 115 000 | 166 000 | 11 700 | 16 900 | 3 400 | 4 800 | | | 110 | 23.75 | 22 | 19 | 2 | 1.5 | 104 000 | 123 000 | 10 600 | 12 500 | 3 400 | 4 500 | | | 110 | 29.75 | 28 | 24 | 2 | 1.5 | 131 000 | 167 000 | 13 400 | 17 000 | 3 400 | 4 500 | | | 110 | 38 | 38 | 29 | 2 | 1.5 | 166 000 | 231 000 | 16 900 | 23 600 | 3 400 | 4 500 | | | 125 | 37 | 33.5 | 26 | 3 | 3 | 151 000 | 197 000 | 15 400 | 20 100 | 2 800 | 3 800 | | | 130 | 33.5 | 31 | 26 | 3 | 2.5 | 174 000 | 201 000 | 17 700 | 20 500 | 3 000 | 4 000 | | | 130 | 33.5 | 31 | 22 | 3 | 2.5 | 151 000 | 177 000 | 15 400 | 18 100 | 2 600 | 3 800 | | | 130 | 33.5 | 31 | 22 | 3 | 2.5 | 151 000 | 177 000 | 15 400 | 18 100 | 2 600 | 3 800 | | | 130 | 48.5 | 46 | 37 | 3 | 2.5 | 233 000 | 295 000 | 23 700 | 30 000 | 3 000 | 4 000 | | | 130 | 48.5 | 46 | 35 | 3 | 2.5 | 196 000 | 249 000 | 20 000 | 25 400 | 2 800 | 3 800 | | 65 | 90 | 17 | 17 | 14 | 1 | 1 | 49 000 | 86 500 | 5 000 | 8 800 | 3 600 | 5 000 | | | 100 | 23 | 23 | 17.5 | 1.5 | 1.5 | 86 500 | 132 000 | 8 800 | 13 500 | 3 400 | 4 500 | | | 100 | 27 | 27 | 21 | 1.5 | 1.5 | 97 500 | 156 000 | 9 950 | 15 900 | 3 400 | 4 500 | | | 110 | 34 | 34 | 26.5 | 1.5 | 1.5 | 148 000 | 218 000 | 15 100 | 22 200 | 3 200 | 4 300 | | | 120 | 24.75 | 23 | 20 | 2 | 1.5 | 122 000 | 151 000 | 12 500 | 15 400 | 3 000 | 4 000 | | | 120 | 32.75 | 31 | 27 | 2 | 1.5 | 157 000 | 202 000 | 16 000 | 20 600 | 3 000 | 4 000 | | | 120 | 41 | 41 | 32 | 2 | 1.5 | 202 000 | 282 000 | 20 600 | 28 800 | 3 000 | 4 000 | | | 140 | 36 | 33 | 28 | 3 | 2.5 | 200 000 | 233 000 | 20 400 | 23 800 | 2 600 | 3 600 | | | 140 | 36 | 33 | 23 | 3 | 2.5 | 173 000 | 205 000 | 17 700 | 20 900 | 2 400 | 3 400 | | De | 140
140 | 36
51 | 33
48 | 23
39 | 3 | 2.5
2.5 | 173 000
267 000 | 205 000
340 000 | 17 700
27 300 | 20 900
35 000 | 2 400
2 800 | 3 400
3 800 | Remarks The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. Dynamic Equivalent Load P = XF + VF | P = X | $F_{\rm r} + Y F_{\rm a}$ | | | |---------------|---------------------------|---------------|----| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | 7× | | X | Y | X | | 0 Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}\!>\!0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of $\emph{e},~Y_1$, and Y_0 are 0.4 given in the table below. | | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | sions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--------------------------|--------------------------------|-----------------|-----------------|------------|------------------------|-------------------|-----------------|-----------------|------------|------------|----------------------|--------------|-------------|--------------|--------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | 1 | $r_{ m a}$ | (mm)
a | e | Y_1 | Y_0 | арргох. | | HR 32911 J | 2BC | 64 | 60 | 74 | 73 | 76 | 4 | 3 | 1 | 1 | 14.6 | 0.31 | 1.9 | 1.1 | 0.282 | | HR 32011 XJ | 3CC | 66 | 62 | 81 | 80 | 86 | 4 | 5.5 | 1.5 | 1.5 | 19.7 | 0.41 | 1.5 | 0.81 | 0.568 | | HR 33011 J | 2CE | 66 | 62 | 81 | 80 | 86 | 5 | 6 | 1.5 | 1.5 | 19.2 | 0.31 | 1.9 | 1.1 | 0.657 | | HR 33111 J | 3CE | 66 | 62 | 86 | 82 | 91 | 5 | 7 | 1.5 | 1.5 | 22.4 | 0.37 | 1.6 | 0.88 | 0.877 | | HR 30211 J | 3DB | 67 | 64 | 91 | 89 | 94 | 4 | 4.5 | 2 | 1.5 | 20.9 | 0.41 | 1.5 | 0.81 | 0.736 | | HR 32211 J | 3DC | 67 | 63 | 91 | 87 | 95 | 4 | 5.5 | 2 | 1.5 | 22.7 | 0.41 | 1.5 | 0.81 | 0.859 | | HR 33211 J | 3DE | 67 | 62 | 91 | 86 | 96 | 6 | 8 | 2 | 1.5 | 25.2 | 0.40 | 1.5 | 0.83 | 1.18 | | T 7 FC055 | 7FC | 73 | 66 | 101 | 86 | 109 | 4 | 10.5 | 2.5 | 2.5 | 39.0 | 0.87 | 0.69 | 0.38 | 1.58 | | HR 30311 J | 2FB | 70 | 71 | 110 | 104 | 111 | 4 | 6.5 | 2 | 2 | 24.6 | 0.35 | 1.7 | 0.96 | 1.63 | | HR 30311 DJ | 7FB | 75 | 67 | 110 | 94 | 114 | 4 | 10.5 | 2 | 2 | 37.0 | 0.83 | 0.73 | 0.40 | 1.58 | | HR 31311 J | 7FB | 75 | 67 | 110 | 94 | 114 | 4 | 10.5 | 2 | 2 | 37.0 | 0.83 | 0.73 | 0.40 | 1.58 | | HR 32311 J | 2FD | 73 | 67 | 110 | 99 | 111 | 4 | 10.5 | 2 | 2 | 29.9 | 0.35 | 1.7 | 0.96 | 2.39 | | HR 32311 CJ | 5FD | 73 | 65 | 110 | 91 | 112 | 4 | 10.5 | 2 | 2 | 35.8 | 0.55 | 1.1 | 0.60 | 2.47 | | HR 32912 J | 2BC | 69 | 65 | 79 | 78 | 81 | 4 | 3 | 1 | 1 | 15.5 | 0.33 | 1.8 | 1.0 | 0.306 | | HR 32012 XJ | 4CC | 71 | 66 | 86 | 85 | 91 | 4 | 5.5 | 1.5 | 1.5 | 20.9 | 0.43 | 1.4 | 0.77 | 0.608 | | HR 33012 J | 2CE | 71 | 66 | 86 | 85 | 90 | 5 | 6 | 1.5 | 1.5 | 20.0 | 0.33 | 1.8 | 1.0 | 0.713 | | HR 33112 J | 3CE | 71 | 68 | 91 | 88 | 96 | 5 | 7 | 1.5 | 1.5 | 23.6 | 0.40 | 1.5 | 0.83 | 0.91 | | HR 30212 J | 3EB | 72 | 69 | 101 | 96 | 103 | 4 | 4.5 | 2 | 1.5 | 22.0 | 0.41 | 1.5 | 0.81 | 0.930 | | HR 32212 J | 3EC | 72 | 68 | 101 | 95 | 104 | 4 | 5.5 | 2 | 1.5 | 24.1 | 0.41 | 1.5 | 0.81 | 1.18 | | HR 33212 J | 3EE | 72 | 68 | 101 | 94 | 105 | 6 | 9 | 2 | 1.5 | 27.6 | 0.40 | 1.5 | 0.82 | 1.56 | | T 7 FC060 | 7FC | 78 | 72 | 111 | 94 | 119 | 4 | 11 | 2.5 | 2.5 | 41.4 | 0.82 | 0.73 | 0.40 | 2.03 | | HR 30312 J | 2FB | 78 | 77 | 118 | 112 | 120 | 4 | 7.5 | 2.5 | 2 | 26.0 | 0.35 | 1.7 | 0.96 | 2.03 | | HR 30312 DJ | 7FB | 84 | 74 | 118 | 103 | 125 | 4 | 11.5 | 2.5 | 2 | 40.3 | 0.83 | 0.73 | 0.40 | 1.98 | | HR 31312 J | 7FB | 84 | 74 | 118 | 103 | 125 | 4 | 11.5 | 2.5 | 2 | 40.3 | 0.83 | 0.73 | 0.40 | 1.98 | | HR 32312 J | 2FD | 81 | 74 | 118 | 107 | 120 | 4 | 11.5 | 2.5 | 2 | 31.4 | 0.35 | 1.7 | 0.96 | 2.96 | | 32312 C | — | 81 | 74 | 116 | 102 | 125 | 4 | 13.5 | 2.5 | 2 | 39.9 | 0.58 | 1.0 | 0.57 | 2.86 | | HR 32913 J | 2BC | 74 | 70 | 84 | 82 | 86 | 4 | 3 | 1 | 1 | 16.8 | 0.35 | 1.7 | 0.93 | 0.323 | | HR 32013 XJ | 4CC | 76 | 71 | 91 | 90 | 97 | 4 | 5.5 | 1.5 | 1.5 | 22.4 | 0.46 | 1.3 | 0.72 | 0.646 | | HR 33013 J | 2CE | 76 | 71 | 91 | 90 | 96 | 5 | 6 | 1.5 | 1.5 | 21.1 | 0.35 | 1.7 | 0.95 | 0.76 | | HR 33113 J | 3DE | 76 | 73 | 101 | 96 | 106 | 6 | 7.5 | 1.5 | 1.5 | 26.0 | 0.39 | 1.5 | 0.85 | 1.32 | | HR 30213 J | 3EB | 77 | 78 | 111 | 106 | 113 | 4 | 4.5 | 2 | 1.5 | 23.8 | 0.41 | 1.5 | 0.81 | 1.18 | | HR 32213 J | 3EC | 77 | 75 | 111 | 104 | 115 | 4 | 5.5 | 2 | 1.5 | 27.1 | 0.41 | 1.5 | 0.81 | 1.55 | | HR 33213 J | 3EE | 77 | 74 | 111 | 102 | 115 | 6 | 9 | 2 | 1.5 | 29.2 | 0.39 | 1.5 | 0.85 | 2.04 | | HR 30313 J | 2GB | 83 | 83 | 128 | 121 | 130 | 4 | 8 | 2.5 | 2 | 27.9 | 0.35 | 1.7 | 0.96 | 2.51 | | HR 30313 DJ | 7GB | 89 | 80 | 128 | 111 | 133 | 4 | 13 | 2.5 | 2 | 43.2 | 0.83 | 0.73 | 0.40 | 2.43 | | HR 31313 J
HR 32313 J | 7GB
2GD | 89
86 | 80
80 | 128
128 | 111
116 | 133
130 | 4 | 13
12 | 2.5
2.5 | 2 | 43.2
34.0 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 2.43
3.6 | Bore Diameter
70 – 80 mm | | Boundary Dimensions
(mm)
Cone | | | | | | | Basic Load | 0 | | Limiting | | |----|-------------------------------------|----------|------|----------|-----|------------------|------------|-------------------|------------|-------------------|----------|-------| | , | | <i>m</i> | , | <i>a</i> | | Cup | (1) | • | {kg | | (min | , | | d | D | T | В | C | | r
nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 70 | 100 | 20 | 20 | 16 | 1 | 1 | 70 000 | 113 000 | 7 150 | 11 500 | 3 200 | 4 500 | | | 110 | 25 | 25 | 19 | 1.5 | 1.5 | 104 000 | 158 000 | 10 600 | 16 100 | 3 200 | 4 300 | | | 110 | 31 | 31 | 25.5 | 1.5 | 1.5 | 127 000 | 204 000 | 12 900 | 20 800 | 3 000 | 4 300 | | | 120 | 37 | 37 | 29 | 2 | 1.5 | 177 000 | 262 000 | 18 100 | 26 700 | 3 000 | 4 000 | | | 125 | 26.25 | 24 | 21 | 2 | 1.5 | 132 000 | 163 000 | 13 500 | 16 700 | 2 800 | 4 000 | | | 125 | 33.25 | 31 | 27 | 2 | 1.5 | 157 000 | 205 000 | 16 100 | 20 900 | 2 800 | 4 000 | | | 125 | 41 | 41 | 32 | 2 | 1.5 | 209 000 | 299 000 | 21 300 | 30 500 | 2 800 | 4 000 | | | 140 | 39 | 35.5 | 27 | 3 | 3 | 177 000 | 229 000 | 18 000 | 23 400 | 2 400 | 3 400 | | | 150 | 38 | 35 | 30 | 3 | 2.5 | 227 000 | 268 000 | 23 200 | 27 400 | 2 400 | 3 400 | | | 150 | 38 | 35 | 25 | 3 | 2.5 | 192 000 | 229 000 | 19 600 | 23 300 | 2 200 | 3 200 | | | 150 | 38 | 35 | 25 | 3 | 2.5 | 192 000 | 229 000 | 19 600 | 23 300 | 2 200 | 3 200 | | | 150 | 54 | 51 | 42 | 3 | 2.5 | 300 000 | 390 000 | 30 500 | 39 500 | 2 600 | 3 400 | | | 150 | 54 | 51 | 42 | 3 | 2.5 | 280 000 | 390 000 | 28 600 | 39 500 | 2 400 | 3 400 | | 75 | 105 | 20 | 20 | 16 | 1 | 1 | 72 500 | 120 000 | 7 400 | 12 300 | 3 200 | 4 300 | | | 115 | 25 | 25 | 19 | 1.5 | 1.5 | 109 000 | 171 000 | 11 100 | 17 400 | 3 000 | 4 000 | | | 115 | 31 | 31 | 25.5 | 1.5 | 1.5 | 133 000 | 220 000 | 13 500 | 22 500 | 3 000 | 4 000 | | | 125 | 37 | 37 | 29 | 2 | 2 | 182 000 | 275 000 | 18 600 | 28 100 | 2 800 | 3 800 | | | 130 | 27.25 | 25 | 22 | 2 | 1.5 | 143 000 | 182 000 | 14 600 | 18 500 | 2 800 | 3 800 | | | 130 | 33.25 | 31 | 27 | 2 | 1.5 | 165 000 | 219 000 | 16 900 | 22 400 | 2 800 | 3 800 | | | 130 | 41 | 41 | 31 | 2 | 1.5 | 215 000 | 315 000 | 21 900 | 32 000 | 2 800 | 3 800 | | | 160 | 40 | 37 | 31 | 3 | 2.5 | 253 000 | 300 000 | 25 800 | 30 500 | 2 400 | 3 200 | | | 160 | 40 | 37 | 26 | 3 | 2.5 | 211 000 | 251 000 | 21 500 | 25 600 | 2 200 | 3 000 | | | 160 | 40 | 37 | 26 | 3 | 2.5 | 211 000 | 251 000 | 21 500 | 25 600 | 2 200 | 3 000 | | | 160 | 58 | 55 | 45 | 3 | 2.5 | 340 000 | 445 000 | 35 000 | 45 500 | 2 400 | 3 200 | | | 160 | 58 | 55 | 43 | 3 | 2.5 | 310 000 | 420 000 | 32 000 | 43 000 | 2 200 | 3 200 | | 80 | 110 | 20 | 20 | 16 | 1 | 1 | 75 000 | 128 000 | 7 650 | 13 100 | 3 000 | 4 000 | | | 125 | 29 | 29 | 22 | 1.5 | 1.5 | 140 000 | 222 000 | 14 300 | 22 700 | 2 800 | 3 600 | | | 125 | 36 | 36 | 29.5 | 1.5 | 1.5 | 172 000 | 282 000 | 17 500 | 28 800 | 2 800 | 3 600 | | | 130 | 37 | 37 | 29 | 2 | 1.5 | 186 000 | 289 000 | 19 000 | 29 400 | 2 600 | 3 600 | | | 140 | 28.25 | 26 | 22 | 2.5 | 2 | 157 000 | 195 000 | 16 000 | 19 900 | 2 600 | 3 400 | | | 140 | 28.25 | 26 | 20 | 2.5 | 2 | 147 000 | 190 000 | 15 000 | 19 400 | 2 400 | 3 400 | | | 140 | 35.25 | 33 | 28 | 2.5 | 2 | 192 000 | 254 000 | 19 600 | 25 900 | 2 600 | 3 400 | | | 140 | 46 | 46 | 35 | 2.5 | 2 | 256 000 | 385 000 | 26 200 | 39 000 | 2 600 | 3 400 | | | 170 | 42.5 | 39 | 33 | 3 | 2.5 | 276 000 | 330 000 | 28 200 | 33 500 | 2 200 | 3 000 | | | 170 | 42.5 | 39 | 27 | 3 | 2.5 | 235 000 | 283 000 | 24 000 | 28 900 | 2 000 | 2 800 | | | 170 | 42.5 | 39 | 27 | 3 | 2.5 | 235 000 | 283 000 | 24 000 | 28 900 | 2 000 | 2 800 | | | 170 | 61.5 | 58 | 48 | 3 | 2.5 | 385 000 | 505 000 | 39 000 | 51 500 | 2 200 | 3 000 | | | 170 | 61.5 | 58 | 48 | 3 | 2.5 | 365 000 | 530 000 | 37 500 | 54 000 | 2 200 | 3 000 | Remarks The suffix CA represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix CA. Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}\!>\!0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of $\emph{e},~Y_1$, and Y_0 are given in the table below. | Danis Number | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | ions | 0 | 0 | Eff. Load
Centers | Constant | Axial
Fact | | Mass
(kg) | |-----------------|--------------------------------|-----------------|-----------------|-------|------------------------|-------------------|-----------------|-----------------|-----|------------|----------------------|----------|---------------|-------|--------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | | $r_{ m a}$ | (mm)
a | e | Y_1 | Y_0 | арргох. | | HR 32914 J | 2BC | 79 | 76 | 94 | 93 | 96 | 4 | 4 | 1 | 1 | 17.6 | 0.32 | 1.9 | 1.1 | 0.494 | | HR 32014 XJ | 4CC | 81 | 77 | 101 | 98 | 105 | 5 | 6 | 1.5 | 1.5 | 23.7 | 0.43 | 1.4 | 0.76 | 0.869 | | HR 33014 J | 2CE | 81 | 78 | 101 | 100 | 105 | 5 | 5.5 | 1.5 | 1.5 | 22.2 | 0.28 | 2.1 | 1.2 | 1.11 | | HR 33114 J | 3DE | 82 | 79 | 111 | 104 | 115 | 6 | 8 | 2 | 1.5 | 27.9 | 0.38 | 1.6 | 0.87 | 1.71 | | HR 30214 J | 3EB | 82 | 81 | 116 | 110 | 118 | 4 | 5 | 2 | 1.5 | 25.6 | 0.42 | 1.4 | 0.79 | 1.3 | | HR 32214 J | 3EC | 82 | 80 | 116 | 108 | 119 | 4 | 6 | 2 | 1.5 | 28.6 | 0.42 | 1.4 | 0.79 | 1.66 | | HR 33214 J | 3EE | 82 | 78 | 116 | 107 | 120 | 7 | 9 | 2 | 1.5 | 30.4 | 0.41 | 1.5 | 0.81 | 2.15 | | T 7 FC070 | 7FC | 88 | 79 | 126 | 106 | 133 | 5 | 12 | 2.5 | 2.5 | 46.4 | 0.87 | 0.69 | 0.38 | 2.55 | | HR 30314 J | 2GB | 88 | 89 | 138 | 132 | 140 | 4 | 8 | 2.5 | 2 | 29.7 | 0.35 | 1.7 | 0.96 | 3.03 | | HR 30314 DJ | 7GB | 94 | 85 | 138 | 118 | 142 | 4 | 13 | 2.5 | 2 | 45.8 | 0.83 | 0.73 | 0.40 | 2.94 | | HR 31314 J | 7GB | 94 | 85 | 138 | 118 | 142 | 4 | 13 | 2.5 | 2 | 45.8 | 0.83 | 0.73 | 0.40 | 2.94 | | HR 32314 J | 2GD | 91 | 86 | 138 | 124 | 140 | 4 | 12 | 2.5 | 2 | 36.1 | 0.35 | 1.7 | 0.96 | 4.35 | | HR 32314 CJ | 5GD | 91 | 84 | 138 | 115 | 141 | 4 | 12 | 2.5 | 2 | 43.3 | 0.55 | 1.1 | 0.60 | 4.47 | | HR 32915 J | 2BC | 84 | 81 | 99 | 98 | 101 | 4 | 4 | 1 | 1 | 18.7 | 0.33 | 1.8 | 0.99 | 0.53 | | HR 32015 XJ | 4CC | 86 | 82 | 106 | 103 | 110 | 5 | 6 | 1.5 | 1.5 | 25.1 | 0.46 | 1.3 | 0.72 | 0.925 | | HR 33015 J | 2CE | 86 | 83 | 106 | 104 | 110 | 6 | 5.5 | 1.5 | 1.5 | 23.0 | 0.30 | 2.0 | 1.1 | 1.18 | | HR 33115 J | 3DE | 87 | 83 | 115 | 109 | 120 | 6 | 8 | 2 | 2 | 29.2 | 0.40 | 1.5 | 0.83 | 1.8 | | HR 30215 J | 4DB | 87 | 85 | 121 | 115 | 124 | 4 | 5 | 2 | 1.5 | 27.0 | 0.44 | 1.4 | 0.76 | 1.43 | | HR 32215 J | 4DC | 87 | 84 | 121 | 113 | 125 | 4 | 6 | 2 | 1.5 | 29.8 | 0.44 | 1.4 | 0.76 | 1.72 | | HR 33215 J | 3EE | 87 | 83 | 121 | 111 | 125 | 7 | 10 | 2 | 1.5 | 31.6 | 0.43 | 1.4 | 0.77 | 2.25 | | HR 30315 J | 2GB | 93 | 95 | 148 | 141 | 149 | 4 | 9 | 2.5 | 2 | 31.8 | 0.35 | 1.7 | 0.96 | 3.63 | | HR 30315 DJ | 7GB | 99 | 91 | 148 | 129 | 152 | 6 | 14 | 2.5 | 2 | 48.8 | 0.83 | 0.73 | 0.40 | 3.47 | | HR 31315 J | 7GB | 99 | 91 | 148 | 129 | 152 | 6 | 14 | 2.5 | 2 | 48.8 | 0.83 | 0.73 | 0.40 | 3.47 | | HR 32315 J | 2GD | 96 | 91 | 148 | 134 | 149 | 4 | 13 | 2.5 | 2 | 38.9 | 0.35 | 1.7 | 0.96 | 5.31 | | 32315 CA | — | 96 | 90 | 148 | 124 | 153 | 4 | 15 | 2.5 | 2 | 47.7 | 0.58 | 1.0 | 0.57 | 5.3 | | HR 32916 J | 2BC | 89 | 85 | 104 | 102 | 106 | 4 | 4 | 1 | 1 | 19.8 | 0.35 | 1.7 | 0.94 | 0.56 | | HR 32016 XJ | 3CC | 91 | 89 | 116 | 112 | 120 | 6 | 7 | 1.5 | 1.5 | 26.9 | 0.42 | 1.4 | 0.78 | 1.32 | | HR 33016 J | 2CE | 91 | 88 | 116 | 112 | 119 | 6 | 6.5 | 1.5 | 1.5 | 25.5 | 0.28 | 2.2 | 1.2 | 1.66 | | HR 33116 J | 3DE | 82 | 88 | 121 | 113 | 126 | 6 | 8 | 2 | 1.5 | 30.4 | 0.42 | 1.4 | 0.79 | 1.88 | | HR 30216 J | 3EB | 95 | 91 | 130 | 124 | 132 | 4 | 6 | 2 | 2 | 28.1 | 0.42 | 1.4 | 0.79 | 1.68 | | 30216 CA | — | 95 | 92 | 130 | 122 | 133 | 4 | 8 | 2 | 2 | 33.8 | 0.58 | 1.0 | 0.57 | 1.66 | | HR 32216 J | 3EC | 95 | 90 | 130 | 122 | 134 | 4 | 7 | 2 | 2 | 30.6 | 0.42 | 1.4 | 0.79 | 2.13 | | HR 33216 J | 3EE | 95 | 89 | 130 | 119 | 135 | 7 | 11 | 2 | 2 | 34.8 | 0.43 | 1.4 | 0.78 | 2.93 | | HR 30316 J | 2GB | 98 | 102 | 158 | 150 | 159 | 4 | 9.5 | 2.5 | 2 | 34.0 | 0.35 | 1.7 | 0.96 | 4.27 | | HR 30316 DJ | 7GB | 104 | 97 | 158 | 136 | 159 | 6 | 15.5 | 2.5 | 2 | 51.8 | 0.83 | 0.73 | 0.40 | 4.07 | | HR 31316 J | 7GB | 104 | 97 | 158 | 136 | 159 | 6 | 15.5 | 2.5 | 2 | 51.8 | 0.83 | 0.73 | 0.40 | 4.07 | | HR 32316 J | 2GD | 101 | 98 | 158 | 143 | 159 | 4 | 13.5 | 2.5 | 2 | 41.4 | 0.35 | 1.7 | 0.96 | 6.35 | | HR 32316 CJ | 5GD | 101 | 95 | 158 | 132 | 160 | 4 | 13.5 | 2.5 | 2 | 49.3 | 0.55 | 1.1 | 0.60 | 6.59 | B 124 B 125 Bore Diameter 85 – 100 mm | | | Bound | lary Dimens | ions | | | | Basic Load | 3 | | Limiting | • | |-----|------------|--------------|-------------|------------|------------|-------------|--------------------|--------------------|------------------|-------------------|----------------|----------------| | | | | (mm) | | Cone | Cup | (1) | • | {kṛ | - | (min | , | | d | D | T | B | C | n | r
nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 85 | 120 | 23 | 23 | 18 | 1.5 | 1.5 | 93 500 | 157 000 | 9 550 | 16 000 | 2 800 | 3 800 | | | 130
130 | 29
36 | 29
36 | 22
29.5 | 1.5
1.5 | 1.5
1.5 | 143 000 | 231 000 | 14 600 | 23 600 | 2 600 | 3 600 | | | 140 | 41 | 41 | 32 | 2.5 | | 180 000
230 000 | 305 000
365 000 | 18 400
23 500 | 31 000
37 000 | 2 600
2 400 | 3 600
3 400 | | | 150
150 | 30.5
30.5 | 28
28 | 24
22 | 2.5
2.5 | 2
2
2 | 184 000
171 000 | 233 000
226 000 | 18 700
17 500 |
23 800
23 000 | 2 400
2 200 | 3 200
3 200 | | | 150 | 38.5 | 36 | 30 | 2.5 | | 210 000 | 277 000 | 21 400 | 28 200 | 2 200 | 3 200 | | | 150
180 | 49
44.5 | 49
41 | 37
34 | 2.5
4 | 2
2
3 | 281 000
310 000 | 415 000
375 000 | 28 700
31 500 | 42 500
38 000 | 2 400
2 000 | 3 200
2 800 | | | 180
180 | 44.5 | 41 | 28 | 4 | 3 | 261 000 | 315 000 | 26 600 | 32 000 | 1 900 | 2 600 | | | 180 | 63.5 | 44.5 41 28 | | | 3 | 261 000
410 000 | 315 000
535 000 | 26 600
42 000 | 32 000
54 500 | 1 900
2 000 | 2 600
2 800 | | 90 | 125
140 | 23 | 23 | | 1.5 | 1.5
1.5 | 97 000
170 000 | 167 000
273 000 | 9 850
17 300 | 17 000
27 800 | 2 600
2 400 | 3 600
3 200 | | | 140 | 39 | 39 | 32.5 | 2 | 1.5 | 220 000 | 360 000 | 22 400 | 37 000 | 2 400 | 3 200 | | | 150
160 | 45
32.5 | 45
30 | 35
26 | 2.5
2.5 | 2 | 259 000
201 000 | 405 000
256 000 | 26 500
20 500 | 41 500
26 100 | 2 400
2 200 | 3 200
3 000 | | | 160 | 42.5 | 40 | 34 | 2.5 | 2 2 | 256 000 | 350 000 | 26 100 | 35 500 | 2 200 | 3 000 | | | 190
190 | 46.5
46.5 | 43
43 | 36
30 | 4 | 3
3
3 | 345 000
264 000 | 425 000
315 000 | 35 500
26 900 | 43 000
32 000 | 1 900
1 800 | 2 600
2 400 | | | 190
190 | 46.5
67.5 | 43
64 | 30
53 | 4
4 | 3 | 264 000
450 000 | 315 000
590 000 | 26 900
46 000 | 32 000
60 500 | 1 800
2 000 | 2 400
2 600 | | 95 | 130 | 23 | 23 | 18 | 1.5 | 1.5 | 98 000 | 172 000 | 10 000 | 17 500 | 2 400 | 3 400 | | | 145
145 | 32
39 | 32
39 | 24
32.5 | 2 | 1.5
1.5 | 173 000
231 000 | 283 000
390 000 | 17 600
23 500 | 28 900
39 500 | 2 400
2 400 | 3 200
3 200 | | | 160
170 | 46
34.5 | 46
32 | 38
27 | 3 | 3
2.5 | 283 000
223 000 | 445 000
286 000 | 28 800
22 800 | 45 500
29 200 | 2 200
2 200 | 3 000
2 800 | | | 170 | 45.5 | 43 | 37 | 3 | 2.5 | 289 000 | 400 000 | 29 500 | 40 500 | 2 200 | 2 800 | | | 200
200 | 49.5
49.5 | 45
45 | 38
36 | 4 | 3 | 370 000
350 000 | 455 000
435 000 | 38 000
35 500 | 46 500
44 000 | 1 900
1 800 | 2 600
2 400 | | | 200 | 49.5 | 45 | 32 | 4 | 3 | 310 000 | 375 000 | 31 500 | 38 500 | 1 700 | 2 400 | | | 200
200 | 49.5
71.5 | 45
67 | 32
55 | 4
4 | 3 | 310 000
525 000 | 375 000
710 000 | 31 500
53 500 | 38 500
72 500 | 1 700
1 900 | 2 400
2 600 | | 100 | 140
145 | 25
24 | 25
22.5 | 20
17.5 | 1.5
3 | 1.5
3 | 117 000
113 000 | 205 000
163 000 | 12 000
11 500 | 20 900
16 600 | 2 200
2 200 | 3 200
3 000 | | | 150 | 32 | 32 | 24 | 2 | 1.5 | 176 000 | 294 000 | 17 900 | 30 000 | 2 200 | 3 000 | | | 150
165 | 39
52 | 39
52 | 32.5
40 | 2
2.5 | 1.5
2 | 235 000
315 000 | 405 000
515 000 | 24 000
32 500 | 41 500
52 500 | 2 200
2 000 | 3 000
2 800 | | | 180 | 37 | 34 | 29 | 3 | 2.5 | 255 000 | 330 000 | 26 000 | 34 000 | 2 000 | 2 600 | | | 180
180 | 49
63 | 46
63 | 39
48 | 3 | 2.5
2.5 | 325 000
410 000 | 450 000
635 000 | 33 000
42 000 | 46 000
65 000 | 2 000
2 000 | 2 600
2 600 | | | 215
215 | 51.5
56.5 | 47
51 | 39
35 | 4
4 | 3 | 425 000
385 000 | 525 000
505 000 | 43 000
39 000 | 53 500
51 500 | 1 700
1 500 | 2 400
2 200 | | | 215 | 77.5 | 73 | 60 | 4 | 3 | 565 000 | 755 000 | 57 500 | 77 000 | 1 700 | 2 400 | Remarks The suffix CA represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix CA. Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $F_{ m r} > e$ | |---------------|------------|---------------|----------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}\!>\!0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of $\emph{e},~Y_1$, and Y_0 are given in the table below. | Dooring Number | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | sions | 0 0 | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--------------------------------------|--------------------------------|----------------------------|-----------------|-------------------|---------------------|-------------------|-----------------|-----------------|--------------------------------|-----|----------------------|----------------------|-------------------|----------------------|----------------------| | Bearing Numbers | Dimension
Series
approx. | d _a min. | $d_{ m b}$ max. | max. | D _a min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cu
$r_{\rm a}$
max. | Jb | (mm)
<i>a</i> | e | Y_1 | Y_0 | approx. | | HR 32917 J | 2BC | 96 | 92 | 111 | 111 | 115 | 5 | 5 | 1.5 1. | 5 | 20.9 | 0.33 | 1.8 | 1.0 | 0.8 | | HR 32017 XJ | 4CC | 96 | 94 | 121 | 116 | 125 | 6 | 7 | 1.5 1. | | 28.2 | 0.44 | 1.4 | 0.75 | 1.38 | | HR 33017 J | 2CE | 96 | 94 | 121 | 117 | 125 | 6 | 6.5 | 1.5 1. | | 26.5 | 0.29 | 2.1 | 1.1 | 1.75 | | HR 33117 J
HR 30217 J
30217 CA | 3DE
3EB | 100
100
100 | 94
97
98 | 130
140
140 | 122
133
131 | 135
141
142 | 7
5
5 | 9
6.5
8.5 | 2 2
2 2
2 2 | | 32.7
30.3
36.2 | 0.41
0.42
0.58 | 1.5
1.4
1.0 | 0.81
0.79
0.57 | 2.51
2.12
2.07 | | HR 32217 J | 3EC | 100 | 96 | 140 | 131 | 142 | 5 | 8.5 | 2 2 | | 33.9 | 0.42 | 1.4 | 0.79 | 2.64 | | HR 33217 J | 3EE | 100 | 95 | 140 | 129 | 144 | 7 | 12 | 2 2 | | 37.3 | 0.42 | 1.4 | 0.79 | 3.57 | | HR 30317 J | 2GB | 106 | 108 | 166 | 157 | 167 | 5 | 10.5 | 3 2. | | 35.8 | 0.35 | 1.7 | 0.96 | 5.08 | | HR 30317 DJ | 7GB | 113 | 103 | 166 | 144 | 169 | 6 | 16.5 | 3 2. | 5 | 55.4 | 0.83 | 0.73 | 0.40 | 4.88 | | HR 31317 J | 7GB | 113 | 103 | 166 | 144 | 169 | 6 | 16.5 | 3 2. | | 55.4 | 0.83 | 0.73 | 0.40 | 4.88 | | HR 32317 J | 2GD | 110 | 104 | 166 | 151 | 167 | 5 | 14.5 | 3 2. | | 43.6 | 0.35 | 1.7 | 0.96 | 7.31 | | HR 32918 J | 2BC | 101 | 97 | 116 | 116 | 120 | 5 | 5 | 1.5 1. | 5 | 22.0 | 0.34 | 1.8 | 0.96 | 0.838 | | HR 32018 XJ | 3CC | 102 | 99 | 131 | 124 | 134 | 6 | 8 | 2 1. | | 29.7 | 0.42 | 1.4 | 0.78 | 1.78 | | HR 33018 J | 2CE | 102 | 99 | 131 | 129 | 135 | 7 | 6.5 | 2 1. | | 27.9 | 0.27 | 2.2 | 1.2 | 2.21 | | HR 33118 J | 3DE | 105 | 100 | 140 | 132 | 144 | 7 | 10 | 2 2 | | 35.2 | 0.40 | 1.5 | 0.83 | 3.14 | | HR 30218 J | 3FB | 105 | 103 | 150 | 141 | 150 | 5 | 6.5 | 2 2 | | 31.7 | 0.42 | 1.4 | 0.79 | 2.6 | | HR 32218 J | 3FC | 105 | 102 | 150 | 139 | 152 | 5 | 8.5 | 2 2 | | 36.2 | 0.42 | 1.4 | 0.79 | 3.41 | | HR 30318 J | 2GB | 111 | 114 | 176 | 176 | 176 | 5 | 10.5 | 3 2. | 5 5 | 37.3 | 0.35 | 1.7 | 0.96 | 5.91 | | HR 30318 DJ | 7GB | 118 | 110 | 176 | 152 | 179 | 6 | 16.5 | 3 2. | | 58.7 | 0.83 | 0.73 | 0.40 | 5.52 | | HR 31318 J | 7GB | 118 | 110 | 176 | 152 | 179 | 6 | 16.5 | 3 2. | | 58.7 | 0.83 | 0.73 | 0.40 | 5.52 | | HR 32318 J | 2GD | 115 | 109 | 176 | 158 | 177 | 5 | 14.5 | 3 2. | | 46.5 | 0.35 | 1.7 | 0.96 | 8.6 | | HR 32919 J | 2BC | 106 | 102 | 121 | 121 | 125 | 5 | 5 | 1.5 1. | 5 | 23.2 | 0.36 | 1.7 | 0.92 | 0.877 | | HR 32019 XJ | 4CC | 107 | 104 | 136 | 131 | 140 | 6 | 8 | 2 1. | | 31.2 | 0.44 | 1.4 | 0.75 | 1.88 | | HR 33019 J | 2CE | 107 | 103 | 136 | 133 | 139 | 7 | 6.5 | 2 1. | | 28.6 | 0.28 | 2.2 | 1.2 | 2.3 | | T 2 ED095 | 2ED | 113 | 108 | 146 | 141 | 152 | 6 | 8 | 2.5 2. | | 34.5 | 0.34 | 1.8 | 0.97 | 3.74 | | HR 30219 J | 3FB | 113 | 110 | 158 | 150 | 159 | 5 | 7.5 | 2.5 2 | | 33.7 | 0.42 | 1.4 | 0.79 | 3.13 | | HR 32219 J | 3FC | 113 | 108 | 158 | 147 | 161 | 5 | 8.5 | 2.5 2 | | 39.3 | 0.42 | 1.4 | 0.79 | 4.22 | | HR 30319 J | 2GB | 116 | 119 | 186 | 172 | 184 | 5 | 11.5 | 3 2. | 5 5 | 38.6 | 0.35 | 1.7 | 0.96 | 6.92 | | 30319 CA | — | 116 | 119 | 186 | 168 | 188 | 5 | 13.5 | 3 2. | | 48.6 | 0.54 | 1.1 | 0.61 | 6.71 | | HR 30319 DJ | 7GB | 123 | 115 | 186 | 158 | 187 | 6 | 17.5 | 3 2. | | 61.9 | 0.83 | 0.73 | 0.40 | 6.64 | | HR 31319 J | 7GB | 123 | 115 | 186 | 158 | 187 | 6 | 17.5 | 3 2. | 5 5 | 61.9 | 0.83 | 0.73 | 0.40 | 6.64 | | HR 32319 J | 2GD | 120 | 115 | 186 | 167 | 186 | 5 | 16.5 | 3 2. | | 48.6 | 0.35 | 1.7 | 0.96 | 10.4 | | HR 32920 J | 2CC | 111 | 109 | 132 | 132 | 134 | 5 | 5 | 1.5 1. | | 24.2 | 0.33 | 1.8 | 1.0 | 1.18 | | T 4 CB100 | 4CB | 118 | 108 | 135 | 135 | 142 | 6 | 6.5 | 2.5 2. | 5 | 30.1 | 0.47 | 1.3 | 0.70 | 1.18 | | HR 32020 XJ | 4CC | 112 | 109 | 141 | 136 | 144 | 6 | 8 | 2 1. | | 32.5 | 0.46 | 1.3 | 0.72 | 1.95 | | HR 33020 J | 2CE | 112 | 107 | 141 | 137 | 143 | 7 | 6.5 | 2 1. | | 29.3 | 0.29 | 2.1 | 1.2 | 2.38 | | HR 33120 J | 3EE | 115 | 110 | 155 | 144 | 159 | 8 | 12 | 2 2 | | 40.5 | 0.41 | 1.5 | 0.81 | 4.32 | | HR 30220 J | 3FB | 118 | 116 | 168 | 158 | 168 | 5 | 8 | 2.5 2 | | 36.1 | 0.42 | 1.4 | 0.79 | 3.78 | | HR 32220 J | 3FC | 118 | 115 | 168 | 155 | 171 | 5 | 10 | 2.5 2 | | 41.5 | 0.42 | 1.4 | 0.79 | 5.05 | | HR 33220 J | 3FE | 118 | 113 | 168 | 152 | 172 | 10 | 15 | 2.5 2 | | 46.0 | 0.40 | 1.5 | 0.82 | 6.76 | | HR 30320 J | 2GB | 121 | 128 | 201 | 185 | 197 | 5 | 12.5 | 3 2. | | 41.4 | 0.35 | 1.7 | 0.96 | 8.41 | | HR 31320 J | 7GB | 136 | 125 | 201 | 169 | 202 | 7 | 21.5 | 3 2. | | 67.7 | 0.83 | 0.73 | 0.40 | 9.02 | | HR 32320 J | 2GD | 125 | 125 | 201 | 178 | 202 | 5 | 17.5 | 3 2. | | 53.2 | 0.83 | 1.7 | 0.40 | 12.7 | Bore Diameter 105 – 130 mm | | | Bound | ary Dimen | sions | | | | Basic Load I | 5 | | Limiting | • | |-----|-------------------|----------------|----------------|----------------|--------|------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------|-------------------------| | , | _ | _ | (mm) | _ | Cone | Cup | , | N) | {kg | | (mir | , | | d | D | T | В | С | n | r
nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$
| $C_{0\mathrm{r}}$ | Grease | Oil | | 105 | 145 | 25 | 25 | 20 | 1.5 | 1.5 | 119 000 | 212 000 | 12 100 | 21 600 | 2 200 | 3 000 | | | 160 | 35 | 35 | 26 | 2.5 | 2 | 204 000 | 340 000 | 20 800 | 34 500 | 2 000 | 2 800 | | | 160 | 43 | 43 | 34 | 2.5 | 2 | 256 000 | 435 000 | 26 100 | 44 000 | 2 000 | 2 800 | | | 190 | 39 | 36 | 30 | 3 | 2.5 | 280 000 | 365 000 | 28 500 | 37 500 | 1 900 | 2 600 | | | 190 | 53 | 50 | 43 | 3 | 2.5 | 360 000 | 510 000 | 37 000 | 52 000 | 1 900 | 2 600 | | | 225 | 53.5 | 49 | 41 | 4 | 3 | 455 000 | 565 000 | 46 500 | 57 500 | 1 600 | 2 200 | | | 225 | 58 | 53 | 36 | 4 | 3 | 415 000 | 540 000 | 42 000 | 55 000 | 1 500 | 2 000 | | | 225 | 81.5 | 77 | 63 | 4 | 3 | 670 000 | 925 000 | 68 000 | 94 500 | 1 700 | 2 200 | | 110 | 150
170
170 | 25
38
47 | 25
38
47 | 20
29
37 | | | 123 000
236 000
294 000 | 224 000
390 000
515 000 | 12 500
24 000
30 000 | 22 800
40 000
52 500 | 2 200
2 000
2 000 | 2 800
2 600
2 600 | | | 180 | 56 | 56 | 43 | 2.5 | 2 | 365 000 | 610 000 | 37 500 | 62 000 | 1 900 | 2 600 | | | 200 | 41 | 38 | 32 | 3 | 2.5 | 315 000 | 420 000 | 32 000 | 43 000 | 1 800 | 2 400 | | | 200 | 56 | 53 | 46 | 3 | 2.5 | 400 000 | 565 000 | 40 500 | 57 500 | 1 800 | 2 400 | | | 240 | 54.5 | 50 | 42 | 4 | 3 | 485 000 | 595 000 | 49 500 | 60 500 | 1 500 | 2 000 | | | 240 | 63 | 57 | 38 | 4 | 3 | 470 000 | 605 000 | 48 000 | 62 000 | 1 400 | 1 900 | | | 240 | 84.5 | 80 | 65 | 4 | 3 | 675 000 | 910 000 | 68 500 | 93 000 | 1 500 | 2 000 | | 120 | 165 | 29 | 29 | 23 | 1.5 | 1.5 | 161 000 | 291 000 | 16 400 | 29 700 | 1 900 | 2 600 | | | 170 | 27 | 25 | 19.5 | 3 | 3 | 153 000 | 243 000 | 51 600 | 24 800 | 1 800 | 2 600 | | | 180 | 38 | 38 | 29 | 2.5 | 2 | 242 000 | 405 000 | 24 600 | 41 000 | 1 800 | 2 400 | | | 180 | 48 | 48 | 38 | 2.5 | 2 | 300 000 | 540 000 | 30 500 | 55 000 | 1 800 | 2 600 | | | 200 | 62 | 62 | 48 | 2.5 | 2 | 460 000 | 755 000 | 46 500 | 77 000 | 1 700 | 2 400 | | | 215 | 43.5 | 40 | 34 | 3 | 2.5 | 335 000 | 450 000 | 34 000 | 46 000 | 1 600 | 2 200 | | | 215 | 61.5 | 58 | 50 | 3 | 2.5 | 440 000 | 635 000 | 44 500 | 65 000 | 1 600 | 2 200 | | | 260 | 59.5 | 55 | 46 | 4 | 3 | 535 000 | 655 000 | 54 500 | 67 000 | 1 400 | 1 900 | | | 260 | 68 | 62 | 42 | 4 | 3 | 560 000 | 730 000 | 57 000 | 74 500 | 1 300 | 1 800 | | | 260 | 90.5 | 86 | 69 | 4 | 3 | 770 000 | 1 060 000 | 78 500 | 108 000 | 1 400 | 1 900 | | 130 | 180 | 32 | 30 | 26 | 2 | 1.5 | 167 000 | 281 000 | 17 000 | 28 600 | 1 800 | 2 400 | | | 180 | 32 | 32 | 25 | 2 | 1.5 | 200 000 | 365 000 | 20 400 | 37 500 | 1 800 | 2 400 | | | 185 | 29 | 27 | 21 | 3 | 3 | 183 000 | 296 000 | 18 600 | 30 000 | 1 700 | 2 400 | | | 200 | 45 | 45 | 34 | 2.5 | 2 | 320 000 | 535 000 | 32 500 | 54 500 | 1 600 | 2 200 | | | 200 | 55 | 55 | 43 | 2.5 | 2 | 395 000 | 715 000 | 40 500 | 73 000 | 1 700 | 2 200 | | | 230 | 43.75 | 40 | 34 | 4 | 3 | 375 000 | 505 000 | 38 000 | 51 500 | 1 500 | 2 000 | | | 230 | 67.75 | 64 | 54 | 4 | 3 | 530 000 | 790 000 | 54 000 | 80 500 | 1 500 | 2 000 | | | 280 | 63.75 | 58 | 49 | 5 | 4 | 545 000 | 675 000 | 56 000 | 68 500 | 1 300 | 1 800 | | | 280 | 63.75 | 58 | 49 | 5 | 4 | 650 000 | 820 000 | 66 000 | 83 500 | 1 300 | 1 800 | | | 280
280 | 72
98.75 | 66
93 | 44
78 | 5
5 | 4 | 625 000
830 000 | 820 000
1 150 000 | 63 500
84 500 | 83 500
117 000 | 1 200
1 300 | 1 700
1 800 | # Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | 7 _r e | $F_{\rm a}/I$ | $F_{\rm r}$ e | |---------------|------------------|---------------|-----------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | NSK Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}=0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | | ISO355 | | | Abutn | nent ar | nd Fillet
(mm) | Dimens | ions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |----------------------------------|--------------------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-----------------|-----------------|---------------|--------------------------|----------------------|----------------------|-------------------|----------------------|----------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | i | e Cup $r_{ m a}$
nax. | (mm)
a | e | Y_1 | Y_0 | арргох. | | HR 32921 J | 2CC | 116 | 114 | 137 | 137 | 140 | 5 | 5 | 1.5 | 1.5 | 25.3 | 0.34 | 1.8 | 0.96 | 1.23 | | HR 32021 XJ | 4DC | 120 | 115 | 150 | 144 | 154 | 6 | 9 | 2 | 2 | 34.3 | 0.44 | 1.4 | 0.74 | 2.48 | | HR 33021 J | 2DE | 120 | 115 | 150 | 146 | 153 | 7 | 9 | 2 | 2 | 30.9 | 0.28 | 2.1 | 1.2 | 3.03 | | HR 30221 J | 3FB | 123 | 123 | 178 | 166 | 177 | 6 | 9 | 2.5 | 2 | 38.1 | 0.42 | 1.4 | 0.79 | 4.51 | | HR 32221 J | 3FC | 123 | 120 | 178 | 162 | 180 | 5 | 10 | 2.5 | 2 | 44.8 | 0.42 | 1.4 | 0.79 | 6.25 | | HR 30321 J | 2GB | 126 | 133 | 211 | 195 | 206 | 6 | 12.5 | 3 | 2.5 | 43.3 | 0.35 | 1.7 | 0.96 | 9.52 | | HR 31321 J | 7GB | 141 | 130 | 211 | 177 | 211 | 7 | 22 | 3 | 2.5 | 70.2 | 0.83 | 0.73 | 0.40 | 10 | | HR 32321 J | 2GD | 130 | 129 | 211 | 186 | 209 | 6 | 18.5 | | 2.5 | 55.2 | 0.35 | 1.7 | 0.96 | 14.9 | | HR 32922 J | 2CC | 121 | 119 | 142 | 142 | 145 | 5 | 5 | 1.5 | 1.5 | 26.5 | 0.36 | 1.7 | 0.93 | 1.29 | | HR 32022 XJ | 4DC | 125 | 121 | 160 | 153 | 163 | 7 | 9 | 2 | 2 | 35.9 | 0.43 | 1.4 | 0.77 | 3.09 | | HR 33022 J | 2DE | 125 | 121 | 160 | 153 | 161 | 7 | 10 | 2 | 2 | 33.7 | 0.29 | 2.1 | 1.2 | 3.84 | | HR 33122 J | 3EE | 125 | 121 | 170 | 156 | 174 | 9 | 13 | 2 | 2 | 44.1 | 0.42 | 1.4 | 0.79 | 5.54 | | HR 30222 J | 3FB | 128 | 129 | 188 | 175 | 187 | 6 | 9 | 2.5 | 2 | 40.2 | 0.42 | 1.4 | 0.79 | 5.28 | | HR 32222 J | 3FC | 128 | 127 | 188 | 171 | 190 | 5 | 10 | 2.5 | 2 | 47.2 | 0.42 | 1.4 | 0.79 | 7.35 | | HR 30322 J | 2GB | 131 | 143 | 226 | 208 | 220 | 6 | 12.5 | 3 | 2.5 | 45.1 | 0.35 | 1.7 | 0.96 | 11 | | HR 31322 J | 7GB | 146 | 136 | 226 | 191 | 224 | 7 | 25 | 3 | 2.5 | 74.8 | 0.83 | 0.73 | 0.40 | 12.3 | | HR 32322 J | 2GD | 135 | 139 | 226 | 201 | 222 | 6 | 19.5 | 3 | 2.5 | 58.6 | 0.35 | 1.7 | 0.96 | 17.1 | | HR 32924 J | 2CC | 131 | 129 | 156 | 155 | 160 | 6 | 6 | 1.5 | 1.5 | 29.2 | 0.35 | 1.7 | 0.95 | 1.8 | | T 4 CB120 | 4CB | 138 | 129 | 158 | 158 | 164 | 7 | 7.5 | 2.5 | 2.5 | 35.0 | 0.47 | 1.3 | 0.70 | 1.78 | | HR 32024 XJ | 4DC | 135 | 131 | 170 | 162 | 173 | 7 | 9 | 2 | 2 | 39.7 | 0.46 | 1.3 | 0.72 | 3.27 | | HR 33024 J | 2DE | 135 | 130 | 168 | 161 | 171 | 6 | 10 | 2 | 2 | 36.0 | 0.31 | 2.0 | 1.1 | 4.2 | | HR 33124 J | 3FE | 135 | 133 | 190 | 173 | 192 | 9 | 14 | 2 | 2 | 47.9 | 0.40 | 1.5 | 0.83 | 7.67 | | HR 30224 J | 4FB | 138 | 141 | 203 | 190 | 201 | 6 | 9.5 | 2.5 | 2 | 44.4 | 0.44 | 1.4 | 0.76 | 6.28 | | HR 32224 J | 4FD | 138 | 137 | 203 | 181 | 204 | 6 | 11.5 | 2.5 | 2 | 52.1 | 0.44 | 1.4 | 0.76 | 9.0 | | HR 30324 J | 2GB | 141 | 154 | 246 | 223 | 237 | 6 | 13.5 | 3 | 2.5 | 50.0 | 0.35 | 1.7 | 0.96 | 13.9 | | HR 31324 J | 7GB | 156 | 148 | 246 | 206 | 244 | 9 | 26 | 3 | 2.5 | 81.7 | 0.83 | 0.73 | 0.40 | 15.6 | | HR 32324 J | 2GD | 145 | 149 | 246 | 216 | 239 | 6 | 21.5 | 3 | 2.5 | 62.5 | 0.35 | 1.7 | 0.96 | 21.8 | | 32926
HR 32926 J
T 4 CB130 | 2CC
4CB | 142
142
148 | 141
140
141 | 171
170
171 | 168
168
171 | 175
173
179 | 6
6
8 | 6
7
8 | 2
2
2.5 | 1.5
1.5
2.5 | 34.7
31.4
37.5 | 0.36
0.34
0.47 | 1.7
1.8
1.3 | 0.92
0.97
0.70 | 2.25
2.46
2.32 | | HR 32026 XJ | 4EC | 145 | 144 | 190 | 179 | 192 | 8 | 11 | 2 | 2 | 43.9 | 0.43 | 1.4 | 0.76 | 5.06 | | HR 33026 J | 2EE | 145 | 144 | 188 | 179 | 192 | 8 | 12 | 2 | 2 | 42.4 | 0.34 | 1.8 | 0.97 | 6.25 | | HR 30226 J | 4FB | 151 | 151 | 216 | 205 | 217 | 7 | 9.5 | 3 | 2.5 | 45.9 | 0.44 | 1.4 | 0.76 | 7.25 | | HR 32226 J | 4FD | 151 | 147 | 216 | 196 | 219 | 7 | 13.5 | 3 | 2.5 | 57.0 | 0.44 | 1.4 | 0.76 | 11.3 | | 30326 | — | 157 | 168 | 262 | 239 | 255 | 8 | 14.5 | 4 | 3 | 53.9 | 0.36 | 1.7 | 0.92 | 16.6 | | HR 30326 J | 2GB | 157 | 166 | 262 | 241 | 255 | 8 | 14.5 | 4 | 3 | 52.8 | 0.35 | 1.7 | 0.96 | 17.2 | | HR 31326 J
32326 | 7GB
— | 174
162 | 159
165 | 262
262 | 220
233 | 261
263 | 9
8 | 28
20.5 | 4 | 3 | 87.1
69.2 | 0.83
0.36 | 0.73
1.7 | 0.40
0.92 | 18.8
26.6 | Bore Diameter 140 – 170 mm | | | | | | | | - a - | | | | | | |-----|--------------------------|-----------------------|-----------------------|----------------------|------------------|------------------|--|--|-------------------|---|----------------------------------|----------------------------------| | | | Bound | lary Dimer
(mm) | nsions | | | , | Basic Load F | 0 | f) | Limiting : | | | d | D | T | В | С | | $m{r}$ Cup | $C_{\rm r}$ | (N) $C_{0\mathrm{r}}$ | $C_{ m r}$ | gf $ brace$ $C_{0 m r}$ | (min
Grease | Oil | | 140 | 190 | 32 | 32 | 25 | 2 | 1.5 | 206 000 | 390 000 | 21 000 | 39 500 | 1 700 | 2 200 | | | 210 | 45 | 45 | 34 | 2.5 | 2 | 325 000 | 555 000 | 33 000 | 57 000 | 1 600 | 2 200 | | | 210 | 56 | 56 | 44 | 2.5 | 2 | 410 000 | 770 000 | 42 000 | 78 500 | 1 600 | 2 200 | | | 250 | 45.75 | 42 | 36 | 4 | 3 | 390 000 | 515 000 | 40 000 | 52 500 | 1 400 | 1 900 | | | 250 | 71.75 | 68 | 58 | 4 | 3 | 610 000 | 915 000 | 62 000 | 93 500 | 1 400 | 1 900 | | | 300 | 67.75 | 62 | 53 | 5 | 4 | 740 000 | 945 000 | 75 500 | 96 500 | 1 200 | 1 700 | | | 300
300 | 77
107.75 | 70
102 | 47
85 | 5
5 | 4 | 695 000
985 000 | 955 000
1 440 000 | 71 000
101 000 | 97 500
147 000 | 1 100
1 200 | 1 500
1 600 | | 150 | 210 | 38 | 36 | 31 | 2.5 | 2 | 247 000 |
440 000 | 25 200 | 45 000 | 1 500 | 2 000 | | | 210 | 38 | 38 | 30 | 2.5 | 2 | 281 000 | 520 000 | 28 600 | 53 000 | 1 500 | 2 000 | | | 225 | 48 | 48 | 36 | 3 | 2.5 | 375 000 | 650 000 | 38 000 | 66 500 | 1 400 | 2 000 | | | 225 | 59 | 59 | 46 | 3 | 2.5 | 435 000 | 805 000 | 44 000 | 82 000 | 1 400 | 2 000 | | | 270 | 49 | 45 | 38 | 4 | 3 | 485 000 | 665 000 | 49 000 | 67 500 | 1 300 | 1 800 | | | 270 | 77 | 73 | 60 | 4 | 3 | 705 000 | 1 080 000 | 71 500 | 110 000 | 1 300 | 1 800 | | | 320
320
320
320 | 72
72
82
114 | 65
65
75
108 | 55
55
50
90 | 5
5
5
5 | 4
4
4
4 | 690 000
825 000
790 000
1 120 000 | 860 000
1 060 000
1 100 000
1 700 000 | 80 500 | 87 500
108 000
112 000
174 000 | 1 100
1 100
1 000
1 100 | 1 500
1 600
1 400
1 500 | | 160 | 220 | 38 | 38 | 30 | 2.5 | 2 | 296 000 | 570 000 | 30 000 | 58 000 | 1 400 | 1 900 | | | 240 | 51 | 51 | 38 | 3 | 2.5 | 425 000 | 750 000 | 43 500 | 76 500 | 1 300 | 1 800 | | | 290 | 52 | 48 | 40 | 4 | 3 | 530 000 | 730 000 | 54 000 | 74 500 | 1 200 | 1 600 | | | 290
340
340 | 84
75
75 | 80
68
68 | 67
58
58 | 4
5
5 | 3
4
4 | 795 000
765 000
870 000 | 1 220 000
960 000
1 110 000 | 78 000 | 125 000
98 000
113 000 | 1 200
1 000
1 100 | 1 600
1 400
1 400 | | | 340 | 75 | 68 | 48 | 5 | 4 | 675 000 | 875 000 | 69 000 | 89 000 | 950 | 1 300 | | | 340 | 121 | 114 | 95 | 5 | 4 | 1 210 000 | 1 770 000 | 123 000 | 181 000 | 1 000 | 1 400 | | 170 | 230 | 38 | 36 | 31 | 2.5 | 2.5 | 258 000 | 485 000 | 26 300 | 49 500 | 1 300 | 1 800 | | | 230 | 38 | 38 | 30 | 2.5 | 2 | 294 000 | 560 000 | 30 000 | 57 000 | 1 400 | 1 800 | | | 260 | 57 | 57 | 43 | 3 | 2.5 | 505 000 | 890 000 | 51 500 | 90 500 | 1 200 | 1 700 | | | 310 | 57 | 52 | 43 | 5 | 4 | 630 000 | 885 000 | 64 000 | 90 000 | 1 100 | 1 500 | | | 310 | 91 | 86 | 71 | 5 | 4 | 930 000 | 1 450 000 | 94 500 | 148 000 | 1 100 | 1 500 | | | 360 | 80 | 72 | 62 | 5 | 4 | 845 000 | 1 080 000 | 86 000 | 110 000 | 950 | 1 300 | | | 360
360
360 | 80
80
127 | 72
72
120 | 62
50
100 | 5
5
5 | 4
4
4 | 960 000
760 000
1 370 000 | 1 230 000
1 040 000
2 050 000 | | 125 000
106 000
209 000 | 1 000
900
1 000 | 1 300
1 200
1 300 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $F_{\rm r} > e$ | |---------------|------------|---------------|-----------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}\!>\!0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of $\emph{e},~Y_1$, and Y_0 are given in the table below. | | ISO355 | | | Abutn | nent ar | nd Fillet
(mm) | Dimens | sions | | | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------|----------------------|----------------------------------|--------------------|------------------------------|------------------------------|---------------------------|------------------------------|----------------------------| | Bearing Numbers | Dimension
Series
approx. | d a min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | | $r_{ m a}$
lax. | (mm)
a | e | <i>Y</i> ₁ | Y_0 | approx. | | HR 32928 J | 2CC | 152 | 150 | 180 | 178 | 184 | 6 | 7 | 2 | 1.5 | 33.6 | 0.36 | 1.7 | 0.92 | 2.64 | | HR 32028 XJ | 4DC | 155 | 152 | 200 | 189 | 202 | 8 | 11 | 2 | 2 | 46.6 | 0.46 | 1.3 | 0.72 | 5.32 | | HR 33028 J | 2DE | 155 | 153 | 198 | 189 | 202 | 7 | 12 | 2 | 2 | 45.5 | 0.36 | 1.7 | 0.92 | 6.74 | | HR 30228 J | 4FB | 161 | 164 | 236 | 221 | 234 | 7 | 9.5 | 3 | 2.5 | 48.9 | 0.44 | 1.4 | 0.76 | 8.74 | | HR 32228 J | 4FD | 161 | 159 | 236 | 213 | 238 | 9 | 13.5 | 3 | 2.5 | 60.5 | 0.44 | 1.4 | 0.76 | 14.3 | | HR 30328 J | 2GB | 167 | 177 | 282 | 256 | 273 | 9 | 14.5 | 4 | 3 | 55.7 | 0.35 | 1.7 | 0.96 | 21.1 | | HR 31328 J | 7GB | 184 | 174 | 282 | 236 | 280 | 9 | 30 | 4 | 3 | 92.9 | 0.83 | 0.73 | 0.40 | 28.5 | | 32328 | — | 172 | 177 | 282 | 246 | 281 | 9 | 22.5 | 4 | 3 | 76.4 | 0.37 | 1.6 | 0.88 | 33.9 | | 32930
HR 32930 J
HR 32030 XJ | 2DC
4EC | 165
165
168 | 162
163
164 | 200
198
213 | 195
196
202 | 201
202
216 | 7
7
8 | 7
8
12 | 2
2
2.5 | 2
2
2 | 36.7
36.5
49.8 | 0.33
0.33
0.46 | 1.8
1.8
1.3 | 1.0
1.0
0.72 | 3.8
4.05
6.6 | | HR 33030 J
HR 30230 J
HR 32230 J | 2EE
2GB
4GD | 168
171
171 | 165
175
171 | 213
256
256 | 203
236
228 | 217
250
254 | 8
7
8 | 13
11
17 | 2.5 2
2.5 2
3 2.5
3 2.5 | | 48.7
51.3
64.7 | 0.36
0.44
0.44 | 1.7
1.4
1.4 | 0.90
0.76
0.76 | 8.07
11.2
17.8 | | 30330
HR 30330 J
HR 31330 J
32330 | —
2GB
7GB | 177
177
194
182 | 193
190
187
191 | 302
302
302
302 | 275
276
253
262 | 292
292
300
297 | 8
8
9
8 | 17
17
32
24 | 4
4
4
4 | 3
3
3
3 | 61.4
60.0
99.3
81.5 | 0.36
0.35
0.83
0.37 | 1.7
1.7
0.73
1.6 | 0.92
0.96
0.40
0.88 | 24.2
25
28.5
41.4 | | HR 32932 J | 2DC | 175 | 173 | 208 | 206 | 212 | 7 | 8 | 2 | 2 | 38.7 | 0.35 | 1.7 | 0.95 | 4.32 | | HR 32032 XJ | 4EC | 178 | 175 | 228 | 216 | 231 | 8 | 13 | 2.5 | 2 | 53.0 | 0.46 | 1.3 | 0.72 | 7.93 | | HR 30232 J | 4GB | 181 | 189 | 276 | 253 | 269 | 8 | 12 | 3 | 2.5 | 55.0 | 0.44 | 1.4 | 0.76 | 13.7 | | HR 32232 J | 4GD | 181 | 184 | 276 | 243 | 274 | 10 | 17 | 3 | 2.5 | 70.5 | 0.44 | 1.4 | 0.76 | 22.7 | | 30332 | — | 187 | 205 | 322 | 293 | 311 | 10 | 17 | 4 | 3 | 64.6 | 0.36 | 1.7 | 0.92 | 28.4 | | HR 30332 J | 2GB | 187 | 201 | 322 | 293 | 310 | 10 | 17 | 4 | 3 | 62.9 | 0.35 | 1.7 | 0.96 | 29.2 | | 30332 D
32332 | _ | 196
192 | 198
202 | 322
322 | 270
281 | 313
319 | 9
10 | 27
26 | 4
4 | 3 | 99.4
87.1 | 0.81
0.37 | 0.74
1.6 | 0.41
0.88 | 27.5
48.3 | | 32934
HR 32934 J
HR 32034 XJ | 3DC
4EC | 185
185
188 | 183
180
187 | 220
218
248 | 216
215
232 | 223
222
249 | 7
7
10 | 7
8
14 | 2
2
2.5 | 2
2
2 | 41.6
41.7
56.6 | 0.36
0.38
0.44 | 1.7
1.6
1.4 | 0.90
0.86
0.74 | 4.3
4.44
10.6 | | HR 30234 J | 4GB | 197 | 202 | 292 | 273 | 288 | 8 | 14 | 4 | 3 | 59.4 | 0.44 | 1.4 | 0.76 | 17.1 | | HR 32234 J | 4GD | 197 | 197 | 292 | 262 | 294 | 10 | 20 | 4 | 3 | 76.4 | 0.44 | 1.4 | 0.76 | 28 | | 30334 | — | 197 | 221 | 342 | 312 | 332 | 10 | 18 | 4 | 3 | 70.1 | 0.37 | 1.6 | 0.90 | 33.5 | | HR 30334 J | 2GB | 197 | 214 | 342 | 310 | 329 | 10 | 18 | 4 | 3 | 67.3 | 0.35 | 1.7 | 0.96 | 34.5 | | 30334 D | — | 206 | 215 | 342 | 288 | 332 | 10 | 30 | 4 | 3 | 107.3 | 0.81 | 0.74 | 0.41 | 33.4 | | 32334 | — | 202 | 213 | 342 | 297 | 337 | 10 | 27 | 4 | 3 | 91.3 | 0.37 | 1.6 | 0.88 | 57 | B 130 B 131 Bore Diameter 180 - 240 mm #### Dynamic Equivalent Load $P = XF_r + YF_a$ $F_{\rm a}/F_{\rm r} \leq e$ $F_{\rm a}/F_{\rm r} > e$ X YYX Y_1 1 0 0.4 Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$, use $P_0 = F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. Eff. Load | Constant | 53.9 0.48 96.6 0.37 e 60.4 0.42 1.4 61.8 0.45 1.3 55.3 0.48 1.3 63.4 0.44 1.4 65.6 0.44 1.4 80.5 0.44 1.4 76.1 0.36 1.7 102.7 | 0.37 | 1.6 53.4 0.37 1.6 54.2 0.39 1.5 67.4 0.43 1.4 Centers (mm) Axial Load Factors Y_1 Y_0 0.69 0.78 14.3 0.73 17.8 0.88 | 66.8 0.76 35.2 0.92 46 0.88 78.9 0.69 0.75 0.88 0.84 1.3 78.9 0.45 1.3 0.73 29.8 72.5 0.36 1.7 0.92 39.3 113.1 0.81 0.74 0.41 38.5 1.6 Mass (kg) approx. 6.56 6.83 14.9 0.76 21.4 9.26 9.65 0.77 18.9 | | | Bou | ndary Dimer
(mm) | nsions | | | (1 | Basic Load R | atings
{kg | afl. | Limiting (| | | ISO355 | | | Abutn | nent an | d Fillet (
(mm) | Dimens | ions | | | |----------|--------------------------|-----------------------|-----------------------|-----------------------|------------------|-------------------|--|--|-------------------------------|--|----------------------------|----------------------------------|---|--------------------------------|-------------------------------|--------------------------|--------------------------|--------------------------|--------------------|----------------------|----------------------|------------------------------|----| | <u>d</u> | D | T | В | С | | r Cup
nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{\scriptscriptstyle m a}$ | $d_{ m b}$ max. | 1
max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone C $oldsymbol{r_a}$ max. | up | | 180 | 250
280
320 | 45
64
57 | 45
64
52 | 34
48
43 | 2.5
3
5 | 2
2.5
4 | 350 000
640 000
650 000 | 685 000
1 130 000
930 000 | | 69 500
115 000
95 000 | 1 300
1 200
1 100 | 1 700
1 600
1 400 | HR 32936 J
HR 32036 XJ
HR 30236 J | 4DC
3FD
4GB | 195
198
207 | 192
199
210 | 240
268
302 | 227
248
281 | 267 | 8
10
9 | 11
16
14 | 2 2
2.5 2
4 3 | | | | 320
380
380
380 | 91
83
83
134 | 86
75
75
126 | 71
64
53
106 | 5
5
5
5 | 4
4
4
4 | 960 000
935 000
820 000
1 520 000 | 1 540 000
1 230 000
1 120 000
2 290 000 | 95 500 | 157
000
126 000
114 000
234 000 | 1 100
900
850
950 | 1 400
1 300
1 200
1 300 | HR 32236 J
30336
30336 D
32336 | 4GD
—
—
— | 207
207
216
212 | 205
233
229
225 | 302
362
362
362 | 270
324
304
310 | 345
352 | 10
10
10
10 | 20
19
30
28 | 4 3
4 3
4 3
4 3 | | | 190 | 260
290
340 | 45
64
60 | 45
64
55 | 34
48
46 | 2.5
3
5 | 2
2.5
4 | 365 000
650 000
715 000 | 715 000
1 170 000
1 020 000 | | 73 000
119 000
104 000 | 1 200
1 100
1 000 | 1 600
1 500
1 300 | HR 32938 J
HR 32038 XJ
HR 30238 J | 4DC
4FD
4GB | 205
208
217 | 201
209
223 | 250
278
322 | 237
258
302 | | 8
10
9 | 11
16
14 | 2
2.5
2
4
3 | | | | 340
400
400 | 97
86
140 | 92
78
132 | 75
65
109 | 5
6
6 | 4
5
5 | 1 110 000
1 010 000
1 660 000 | 1 770 000
1 340 000
2 580 000 | 113 000
103 000
169 000 | 136 000 | 1 000
850
850 | 1 400
1 200
1 200 | HR 32238 J
30338
32338 | 4GD
—
— | 217
223
229 | 216
248
243 | 322
378
378 | | 323
366
375 | 10
11
11 | 22
21
31 | 4 3
5 4
5 4 | | | 200 | 280
280
310 | 51
51
70 | 48
51
70 | 41
39
53 | 3
3
3 | 2.5
2.5
2.5 | 410 000
480 000
760 000 | 780 000
935 000
1 370 000 | 42 000
48 500
77 500 | 80 000
95 000
139 000 | 1 100
1 100
1 000 | 1 500
1 500
1 400 | 32940
HR 32940 J
HR 32040 XJ | —
3EC
4FD | 218
218
218 | 217
216
221 | 268
268
298 | | 269
271
297 | 9
9
11 | 10
12
17 | 2.5 2
2.5 2
2.5 2 | | | | 360
360
420 | 64
104
89 | 58
98
80 | 48
82
67 | 5
5
6 | 4
4
5 | 795 000
1 210 000
1 030 000 | 1 120 000
1 920 000
1 390 000 | 81 000
123 000
105 000 | | 950
950
850 | 1 300
1 300
1 200 | HR 30240 J
HR 32240 J
30340 | 4GB
3GD
— | 227
227
233 | 236
230
253 | 342
342
398 | 318
305
346 | 340 | 10
11
11 | 16
22
22 | 4 3
4 3
5 4 | | | | 420
420 | 89
146 | 80
138 | 56
115 | 6
6 | 5
5 | 965 000
1 820 000 | 1 330 000
2 870 000 | 98 500
185 000 | 136 000
292 000 | 750
800 | 1 000
1 100 | 30340 D
32340 | _ | 244
239 | 253
253 | 398
398 | 336
346 | | 11
11 | 33
31 | 5 4
5 4 | | | 220 | 300
340
400 | 51
76
72 | 51
76
65 | 39
57
54 | 3
4
5 | 2.5
3
4 | 490 000
885 000
810 000 | 990 000
1 610 000
1 150 000 | 90 500 | 101 000
164 000
117 000 | 1 000
950
850 | 1 400
1 300
1 100 | HR 32944 J
HR 32044 XJ
30244 | 3EC
4FD
— | 238
241
247 | 235
244
267 | 288
326
382 | 278
303
350 | 326 | 9
12
11 | 12
19
18 | 2.5 2
3 2.
4 3 | .5 | | | 400
460
460 | 114
97
154 | 108
88
145 | 90
73
122 | 5
6
6 | 4
5
5 | 1 340 000
1 430 000
2 020 000 | 2 210 000
1 990 000
3 200 000 | 137 000
146 000
206 000 | 203 000 | 850
750
750 | 1 100
1 000
1 000 | 32244
30344
32344 | _
_
_ | 247
253
259 | 260
283
274 | 382
438
438 | 340
390
372 | 414 | 12
12
12 | 24
24
32 | 4 3
5 4
5 4 | | | 240 | 320
360
440 | 51
76
79 | 51
76
72 | 39
57
60 | 3
4
5 | 2.5
3
4 | 500 000
920 000
990 000 | 1 040 000
1 730 000
1 400 000 | | 107 000
177 000
142 000 | 950
850
750 | 1 300
1 200
1 000 | HR 32948 J
HR 32048 XJ
30248 | 4EC
4FD
— | 258
261
267 | 255
262
288 | 308
346
422 | | 314
346
408 | 9
12
11 | 12
19
19 | 2.5 2
3 2.
4 3 | .5 | | | 440
500
500 | 127
105
165 | 120
95
155 | 100
80
132 | 5
6
6 | 4
5
5 | 1 630 000
1 660 000
2 520 000 | 2 730 000
2 340 000
4 100 000 | 166 000
169 000
257 000 | 238 000 | 750
670
670 | 1 000
950
900 | 32248
30348
32348 | _
_
_ | 267
273
279 | 285
308
301 | 422
478
478 | 374
422
410 | | 12
12
12 | 27
25
33 | 4 3
5 4
5 4 | | | | 360
360
420 | 64
104
89 | 58
98
80 | 48
82
67 | 5
5
6 | 4
4
5 | 1 210 000 | 1 120 000
1 920 000
1 390 000 | 81 000 114 000
123 000 196 000
105 000 142 000 | 950
950
850 | 1 300
1 300
1 200 | HR 30240 J
HR 32240 J
30340 | 4GB
3GD | | 236
230
253 | 342
342
398 | 318
305
346 | 340 | 10
11
11 | 16
22
22 | 4
4
5 | 3
3
4 | 69.1
85.1
81.4 | 0.44
0.41
0.37 | 1.4
1.5
1.6 | 0.76
0.81
0.88 | 25.5
42.6
52.3 | |---|-------------------|-------------------|------------------|------------------|-------------|---------------|-------------------------------------|-------------------------------------|---|---------------------|-------------------------|------------------------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-----|----------------|----------------|---------------|---------------|----------------------|----------------------|-------------------|----------------------|----------------------| | | 420
420 | 89
146 | 80
138 | 56
115 | 6
6 | 5
5 | 965 000
1 820 000 | | 98 500 136 000
185 000 292 000 | 750
800 | 1 000
1 100 | 30340 D
32340 | _ | 244
239 | 253
253 | 398
398 | 336
346 | | 11
11 | 33
31 | 5
5 | 4
4 | 122.9
106.7 | 0.81
0.37 | 0.74
1.6 | 0.41
0.88 | 49.6
90.9 | | 0 | 300
340
400 | 51
76
72 | 51
76
65 | 39
57
54 | 3
4
5 | 2.5
3
4 | 490 000
885 000
810 000 | | 50 000 101 000
90 500 164 000
82 500 117 000 | 1 000
950
850 | 1 400
1 300
1 100 | HR 32944 J
HR 32044 XJ
30244 | 3EC
4FD
— | 238
241
247 | 235
244
267 | 288
326
382 | 278
303
350 | 326 | 9
12
11 | 12
19
18 | 2.5
3
4 | 2
2.5
3 | | 0.43
0.43
0.40 | 1.4
1.4
1.5 | 0.78
0.77
0.82 | 10.3
24.4
33.6 | | | 400
460
460 | 114
97
154 | 108
88
145 | 90
73
122 | 5
6
6 | 4
5
5 | 1 340 000
1 430 000
2 020 000 | 1 990 000 | 137 000 225 000
146 000 203 000
206 000 325 000 | 850
750
750 | 1 100
1 000
1 000 | 32244
30344
32344 | _
_
_ | 247
253
259 | 260
283
274 | 382
438
438 | 340
390
372 | 414 | 12
12
12 | 24
24
32 | 4
5
5 | 3
4
4 | 85.4 | 0.40
0.36
0.37 | 1.5
1.7
1.6 | 0.82
0.92
0.88 | 72.4 | | 0 | 320
360
440 | 51
76
79 | 51
76
72 | 39
57
60 | 3
4
5 | 2.5
3
4 | 500 000
920 000
990 000 | | 51 000 107 000
94 000 177 000
101 000 142 000 | 950
850
750 | 1 300
1 200
1 000 | HR 32948 J
HR 32048 XJ
30248 | 4EC
4FD
— | | 255
262
288 | 308
346
422 | 297
321
384 | | 9
12
11 | 12
19
19 | 2.5
3
4 | 2
2.5
3 | 65.1
79.1
85.1 | 0.46
0.46
0.44 | 1.3
1.3
1.4 | 0.72
0.72
0.74 | 26.2 | | | 440
500
500 | 127
105
165 | 120
95
155 | 100
80
132 | 5
6
6 | 4
5
5 | 1 630 000
1 660 000
2 520 000 | 2 340 000 | 166 000 278 000
169 000 238 000
257 000 415 000 | 750
670
670 | 1 000
950
900 | 32248
30348
32348 | _
_
_ | 267
273
279 | 285
308
301 | 422
478
478 | 374
422
410 | 447 | 12
12
12 | 27
25
33 | 4
5
5 | 3
4
4 | | 0.40
0.36
0.37 | 1.5
1.7
1.6 | | 78
92.6
145 | | | | | | | | | | | ' | | | | | | | | | | | | | | | | | ' | | B 132 B 133 Bore Diameter 260 – 440 mm | | | Boun | dary Dimen
(mm) | sions | | | (1 | Basic Load R | atings
{kc | ıf) | Limiting : | | |-----|-------------------|-------------------|--------------------|------------------|---------------|--------------------|-------------------------------------|-------------------------------------|-------------------------------|-------------------|-------------------|-----------------------| | d | D | T | В | C | | $m{r}$ Cup
nin. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 260 | 360
400
480 | 63.5
87
89 | 63.5
87
80 | 48
65
67 | 3
5
6 | 2.5
4
5 | 730 000
1 160 000
1 190 000 | 1 450 000
2 160 000
1 700 000 | 74 500
118 000
121 000 | | 850
800
670 | 1 100
1 100
900 | | | 480
540
540 | 137
113
176 | 130
102
165 | 106
85
136 | 6
6
6 | 5
6
6 | 1 900 000
1 870 000
2 910 000 | 3 300 000
2 640 000
4 800 000 | 194 000
190 000
297 000 | 269 000 | 670
630
630 | 950
850
850 | | 280 | 380
420
500 | 63.5
87
89 | 63.5
87
80 | 48
65
67 | 3
5
6 | 2.5
4
5 | 765 000
1 180 000
1 240 000 | 1 580 000
2 240 000
1 900 000 | 78 000
120 000
127 000 | | 800
710
630 | 1 100
1 000
850 | | | 500
580 | 137
187 | 130
175 | 106
145 | 6
6 | 5
6 | 1 950 000
3 300 000 | 3 450 000
5 400 000 | 199 000
335 000 | | 630
560 | 850
800 | | 300 | 420
420
460 | 76
76
100 | 72
76
100 | 62
57
74 | 4
4
5 | 3
3
4 | 895 000
1 010 000
1 440 000 | 1 820 000
2 100 000
2 700 000 | 91 000
103 000
147 000 | | 710
710
670 | 950
950
900 | | | 540
540 | 96
149 | 85
140 | 71
115 | 6
6 | 5
5 | 1 440 000
2 220 000 | 2 100 000
3 700 000 | 147 000
226 000 | | 600
600 | 800
800 | |
320 | 440
440
480 | 76
76
100 | 72
76
100 | 63
57
74 | 4
4
5 | 3
3
4 | 900 000
1 040 000
1 510 000 | 1 880 000
2 220 000
2 910 000 | 92 000
106 000
153 000 | | 970
670
630 | 900
900
850 | | | 580
580
670 | 104
159
210 | 92
150
200 | 75
125
170 | 6
6
7.5 | 5
5
7.5 | 1 640 000
2 860 000
4 200 000 | 2 420 000
5 050 000
7 100 000 | 168 000
292 000
430 000 | 515 000 | 530
530
480 | 750
750
670 | | 340 | 460
460
520 | 76
76
112 | 72
76
106 | 63
57
92 | 4
4
6 | 3
3
5 | 910 000
1 050 000
1 650 000 | 1 940 000
2 220 000
3 400 000 | 93 000
107 000
168 000 | | 630
630
560 | 850
850
750 | | 360 | 480
480
540 | 76
76
112 | 72
76
106 | 62
57
92 | 4
4
6 | 3
3
5 | 945 000
1 080 000
1 680 000 | 2 100 000
2 340 000
3 500 000 | 96 500
110 000
171 000 | | 600
560
530 | 800
800
750 | | 380 | 520 | 87 | 82 | 71 | 5 | 4 | 1 210 000 | 2 550 000 | 124 000 | 260 000 | 560 | 750 | | 400 | 540
600 | 87
125 | 82
118 | 71
100 | 5
6 | 4
5 | 1 250 000
1 960 000 | 2 700 000
4 050 000 | 128 000
200 000 | | 530
480 | 710
670 | | 420 | 560
620 | 87
125 | 82
118 | 72
100 | 5
6 | 4
5 | 1 300 000
2 000 000 | 2 810 000
4 200 000 | 132 000
204 000 | | 500
450 | 670
630 | | 440 | 650 | 130 | 122 | 104 | 6 | 6 | 2 230 000 | 4 600 000 | 227 000 | 470 000 | 430 | 600 | Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}\!>\!0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of $\emph{e},~Y_1$, and Y_0 are given in the table below. | Dansing Numbers | ISO355 | | | Abutr | nent ar | nd Fillet
(mm) | Dimens | sions | 0 | 0 | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |------------------------------|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|-------------|------------------|-----------------------|----------------------|-------------------|----------------------|----------------------| | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | $D_{ m a}$ min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | | e Cup $r_{ m a}$ | (mm)
a | e | Y_1 | Y_0 | арргох. | | HR 32952 J | 3EC | 278 | 278 | 348 | 333 | 347 | 11 | 15.5 | 2.5 | 2 | 69.8 | 0.41 | 1.5 | 0.81 | 18.6 | | HR 32052 XJ | 4FC | 287 | 287 | 382 | 357 | 383 | 14 | 22 | 4 | 3 | 86.3 | 0.43 | 1.4 | 0.76 | 38.5 | | 30252 | — | 293 | 316 | 458 | 421 | 447 | 12 | 22 | 5 | 4 | 94.6 | 0.44 | 1.4 | 0.74 | 60.7 | | 32252 | _ | 293 | 305 | 458 | 394 | 446 | 14 | 31 | 5 | 4 | 116.0 | 0.45 | 1.3 | 0.73 | 103 | | 30352 | _ | 293 | 336 | 512 | 460 | 487 | 16 | 28 | 5 | 5 | 101.6 | 0.36 | 1.7 | 0.92 | 114 | | 32352 | _ | 293 | 328 | 512 | 441 | 495 | 13 | 40 | 5 | 5 | 130.5 | 0.37 | 1.6 | 0.88 | 188 | | HR 32956 J | 4EC | 298 | 297 | 368 | 352 | 368 | 12 | 15.5 | 2.5 | 2 | 75.3 | 0.43 | 1.4 | 0.76 | 20 | | HR 32056 XJ | 4FC | 307 | 305 | 402 | 374 | 402 | 14 | 22 | 4 | 3 | 91.6 | 0.46 | 1.3 | 0.72 | 40.6 | | 30256 | — | 313 | 339 | 478 | 436 | 462 | 12 | 22 | 5 | 4 | 98.5 | 0.44 | 1.4 | 0.74 | 66.3 | | 32256 | _ | 313 | 325 | 478 | 412 | 467 | 14 | 31 | 5 | 4 | 123.1 | 0.47 | 1.3 | 0.70 | 109 | | 32356 | | 319 | 353 | 552 | 475 | 532 | 14 | 42 | 5 | 5 | 139.6 | 0.37 | 1.6 | 0.89 | 224 | | 32960 | — | 321 | 326 | 406 | 386 | 405 | 13 | 14 | 3 | 2.5 | 79.3 | 0.37 | 1.6 | 0.88 | 30.5 | | HR 32960 J | 3FD | 321 | 324 | 406 | 387 | 405 | 13 | 19 | 3 | 2.5 | 79.9 | 0.39 | 1.5 | 0.84 | 31.4 | | HR 32060 XJ | 4GD | 327 | 330 | 442 | 408 | 439 | 15 | 26 | 4 | 3 | 98.4 | 0.43 | 1.4 | 0.76 | 56.6 | | 30260 | _ | 333 | 355 | 518 | 470 | 499 | 14 | 25 | 5 | 4 | 105.1 | 0.44 | 1.4 | 0.74 | 80.6 | | 32260 | | 333 | 352 | 518 | 458 | 514 | 15 | 34 | 5 | 4 | 131.7 | 0.46 | 1.3 | 0.72 | 132 | | 32964 | — | 341 | 345 | 426 | 404 | 425 | 13 | 13 | 3 | 2.5 | 84.3 | 0.39 | 1.5 | 0.84 | 32 | | HR 32964 J | 3FD | 341 | 344 | 426 | 406 | 426 | 13 | 19 | 3 | 2.5 | 85.0 | 0.42 | 1.4 | 0.79 | 33.3 | | HR 32064 XJ | 4GD | 347 | 350 | 462 | 430 | 461 | 15 | 26 | 4 | 3 | 104.5 | 0.46 | 1.3 | 0.72 | 60 | | 30264 | _ | 353 | 381 | 558 | 503 | 533 | 14 | 29 | 5 | 4 | 113.7 | 0.44 | 1.4 | 0.74 | 99.3 | | 32264 | _ | 353 | 383 | 558 | 487 | 550 | 15 | 34 | 5 | 4 | 141.7 | 0.46 | 1.3 | 0.72 | 175 | | 32364 | _ | 383 | 412 | 634 | 547 | 616 | 14 | 42 | 6 | 6 | 157.5 | 0.37 | 1.6 | 0.88 | 343 | | 32968 | | 361 | 364 | 446 | 426 | 446 | 13 | 13 | 3 | 2.5 | 89.2 | 0.41 | 1.5 | 0.80 | 33.6 | | HR 32968 J | 4FD | 361 | 362 | 446 | 427 | 446 | 13 | 19 | 3 | 2.5 | 91.0 | 0.44 | 1.4 | 0.75 | 34.3 | | 32068 | | 373 | 386 | 498 | 464 | 496 | 3.5 | 22 | 5 | 4 | 104.5 | 0.37 | 1.6 | 0.89 | 83.7 | | 32972
HR 32972 J
32072 | 4FD
— | 381
381
393 | 386
381
402 | 466
466
518 | 445
445
480 | 465
466
514 | 14
13
5.5 | 14
19
22 | 3
3
5 | 2.5
2.5
4 | 91.4
96.8
108.6 | 0.40
0.46
0.38 | 1.5
1.3
1.6 | 0.82
0.72
0.86 | 35.8
36.1
86.5 | | 32976 | _ | 407 | 406 | 502 | 478 | 501 | 16 | 16 | 4 | 3 | 95.2 | 0.39 | 1.6 | 0.86 | 49.5 | | 32980 | _ | 427 | 428 | 522 | 499 | 524 | 16 | 16 | 4 | 3 | 100.8 | 0.40 | 1.5 | 0.82 | 52.7 | | 32080 | | 433 | 443 | 578 | 533 | 565 | 5 | 25 | 5 | 4 | 115.3 | 0.36 | 1.7 | 0.92 | 116 | | 32984 | _ | 447 | 448 | 542 | 521 | 544 | 3.5 | 15 | 4 | 3 | 106.1 | 0.41 | 1.5 | 0.81 | 54.8 | | 32084 | | 453 | 463 | 598 | 552 | 586 | 6.5 | 25 | 5 | 4 | 120.0 | 0.37 | 1.6 | 0.88 | 121 | | 32088 | _ | 473 | 487 | 622 | 582 | 616 | 5 | 26 | 5 | 5 | 126.3 | 0.36 | 1.7 | 0.92 | 136 | B 134 B 135 ### Bore Diameter 12.000 – 22.225 mm | | Boundary Dimensions
(mm) | | | | | | | Basic Loa | 0 | | Limiting | | |--------|-----------------------------|----------------------------|----------------------------|--------------------------|-------------------|-------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------|----------------------------| | | | (m | nm) | | Cone | Cup | (| N) | {k | gf} | (mii | ∩ ⁻¹) | | d | D | T | В | C | <i>I</i> mi | , | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 12.000 | 31.991 | 10.008 | 10.785 | 7.938 | 0.8 | 1.3 | 10 300 | 8 900 | 1 050 | 905 | 13 000 | 18 000 | | 12.700 | 34.988 | 10.998 | 10.988 | 8.730 | 1.3 | 1.3 | 11 700 | 10 900 | 1 200 | 1 110 | 12 000 | 16 000 | | 15.000 | 34.988 | 10.998 | 10.988 | 8.730 | 0.8 | 1.3 | 11 700 | 10 900 | 1 200 | 1 110 | 12 000 | 16 000 | | 15.875 | 34.988
39.992
41.275 | 10.998
12.014
14.288 | 10.998
11.153
14.681 | 8.712
9.525
11.112 | 1.3
1.3
1.3 | 1.3
1.3
2.0 | 13 800
14 900
21 300 | 13 400
15 700
19 900 | 1 410
1 520
2 170 | 1 360
1 600
2 030 | | 15 000
13 000
13 000 | | | 42.862 | 14.288 | 14.288 | 9.525 | 1.5 | 1.5 | 17 300 | 17 200 | 1 770 | 1 750 | 8 500 | 12 000 | | | 42.862 | 16.670 | 16.670 | 13.495 | 1.5 | 1.5 | 26 900 | 26 300 | 2 750 | 2 680 | 9 500 | 13 000 | | | 44.450 | 15.494 | 14.381 | 11.430 | 1.5 | 1.5 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | | 49.225 | 19.845 | 21.539 | 14.288 | 0.8 | 1.3 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | 16.000 | 47.000 | 21.000 | 21.000 | 16.000 | 1.0 | 2.0 | 35 000 | 36 500 | 3 600 | 3 750 | 9 000 | 12 000 | | 16.993 | 39.992 | 12.014 | 11.153 | 9.525 | 0.8 | 1.3 | 14 900 | 15 700 | 1 520 | 1 600 | 9 500 | 13 000 | | 17.455 | 36.525 | 11.112 | 11.112 | 7.938 | 1.5 | 1.5 | 11 600 | 11 000 | 1 190 | 1 120 | 10 000 | 14 000 | | 17.462 | 39.878 | 13.843 | 14.605 | 10.668 | 1.3 | 1.3 | 22 500 | 22 500 | 2 290 | 2 290 | 10 000 | 13 000 | | | 47.000 | 14.381 | 14.381 | 11.112 | 0.8 | 1.3 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | 19.050 | 39.992 | 12.014 | 11.153 | 9.525 | 1.0 | 1.3 | 14 900 | 15 700 | 1 520 | 1 600 | 9 500 | 13 000 | | | 45.237 | 15.494 | 16.637 | 12.065 | 1.3 | 1.3 | 28 500 | 28 900 | 2 910 | 2 950 | 9 000 | 12 000 | | | 47.000 | 14.381 | 14.381 | 11.112 | 1.3 | 1.3 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | | 49.225 | 18.034 | 19.050 | 14.288 | 1.3 | 1.3 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 49.225 | 19.845 | 21.539 | 14.288 | 1.2 | 1.3 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 49.225 | 21.209 | 19.050 | 17.462 | 1.3 | 1.5 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 49.225 | 23.020 | 21.539 | 17.462 | C1.5 | 3.5 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | | 53.975 | 22.225 | 21.839 | 15.875 | 1.5 | 2.3 | 40 500 | 39 500 | 4 150 | 4 000 | 7 500 | 10 000 | | 19.990 | 47.000 | 14.381 | 14.381 | 11.112 | 1.5 | 1.3 | 23 800 | 23 900 | 2 430 | 2 440 | 8 500 | 11 000 | | 20.000 | 51.994 | 15.011 | 14.260 | 12.700 | 1.5 | 1.3 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | 20.625 | 49.225 | 23.020 | 21.539 | 17.462 | 1.5 | 1.5 | 37 500 | 37 000 | 3 800 | 3 800 | 8 500 | 11 000 | | 20.638 | 49.225 | 19.845 | 19.845 | 15.875 | 1.5 | 1.5 | 36 000 | 37 000 | 3 650 | 3 750 | 8 000 | 11 000 | | 21.430 | 50.005 | 17.526 | 18.288 | 13.970 | 1.3 | 1.3 | 38 500 | 40 000 | 3 950 | 4 100 | 8 000 | 11 000 | | 22.000 | 45.237
45.975 | 15.494
15.494 | 16.637
16.637 | 12.065
12.065 | 1.3 | 1.3 | 29 200
29 200 | 33 500
33 500 | 2 980
2 980 | 3 400
3 400 | 8 500
8 500 | 11 000
11 000 | | 22.225 | 50.005 | 13.495 | 14.260 | 9.525 | 1.3 | 1.0 | 26 000 | 27 900 | 2
650 | 2 840 | 7 500 | 10 000 | | | 50.005 | 17.526 | 18.288 | 13.970 | 1.3 | 1.3 | 38 500 | 40 000 | 3 950 | 4 100 | 8 000 | 11 000 | | | 52.388 | 19.368 | 20.168 | 14.288 | 1.5 | 1.5 | 40 500 | 43 000 | 4 100 | 4 400 | 7 500 | 10 000 | | | 53.975 | 19.368 | 20.168 | 14.288 | 1.5 | 1.5 | 40 500 | 43 000 | 4 100 | 4 400 | 7 500 | 10 000 | | | 56.896 | 19.368 | 19.837 | 15.875 | 1.3 | 1.3 | 38 000 | 40 500 | 3 900 | 4 150 | 7 100 | 9 500 | | | 57.150 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 48 000 | 50 000 | 4 850 | 5 100 | 7 100 | 9 500 | B 137 #### Dynamic Equivalent Load | P = X | $F_{\rm r}$ + $YF_{\rm a}$ | | | |---------------|----------------------------|---------------|-----------------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ### Static Equivalent Load given in the table below. $P_0=0.5F_{\rm r}+Y_0\,F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0\,F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are | Bearing | J Numbers | Al | outment | and Fille
(mm) | | | C | Eff. Load
Centers | Constant | | Load
tors | | ass
(g) | |-------------|------------|-------------------------------------|-------------------------------|-------------------|-------------------------------|------------------------|-----|----------------------|----------|-------|--------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{\scriptscriptstyle m b}$ | Cone
r
ma | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | *A 2047 | A 2126 | 16.5 | 15.5 | 26 | 29 | 0.8 | 1.3 | 6.8 | 0.41 | 1.5 | 0.81 | 0.023 | 0.017 | | A 4050 | A 4138 | 18.5 | 17 | 29 | 32 | 1.3 | 1.3 | 8.2 | 0.45 | 1.3 | 0.73 | 0.033 | 0.022 | | *A 4059 | A 4138 | 19.5 | 19 | 29 | 32 | 0.8 | 1.3 | 8.2 | 0.45 | 1.3 | 0.73 | 0.029 | 0.022 | | L 21549 | L 21511 | 21.5 | 19.5 | 29 | 32.5 | 1.3 | 1.3 | 7.7 | 0.32 | 1.9 | 1.0 | 0.031 | 0.018 | | A 6062 | A 6157 | 22 | 20.5 | 34 | 37 | 1.3 | 1.3 | 10.3 | 0.53 | 1.1 | 0.63 | 0.044 | 0.031 | | 03062 | 03162 | 21.5 | 20 | 34 | 37.5 | 1.3 | 2 | 9.1 | 0.31 | 1.9 | 1.1 | 0.061 | 0.035 | | 11590 | 11520 | 24.5 | 22.5 | 34.5 | 39.5 | 1.5 | 1.5 | 13.0 | 0.70 | 0.85 | 0.47 | 0.061 | 0.040 | | 17580 | 17520 | 23 | 21 | 36.5 | 39 | 1.5 | 1.5 | 10.6 | 0.33 | 1.8 | 1.0 | 0.075 | 0.048 | | 05062 | 05175 | 23.5 | 21 | 38 | 42 | 1.5 | 1.5 | 11.2 | 0.36 | 1.7 | 0.93 | 0.081 | 0.039 | | 09062 | 09195 | 22 | 21.5 | 42 | 44.5 | 0.8 | 1.3 | 10.7 | 0.27 | 2.3 | 1.2 | 0.139 | 0.065 | | *HM 81649 | **HM 81610 | 27.5 | 23 | 37.5 | 43 | 1 | 2 | 14.9 | 0.55 | 1.1 | 0.60 | 0.115 | 0.082 | | A 6067 | A 6157 | 22 | 21 | 34 | 37 | 0.8 | 1.3 | 10.3 | 0.53 | 1.1 | 0.63 | 0.042 | 0.031 | | A 5069 | A 5144 | 23.5 | 21.5 | 30 | 33.5 | 1.5 | 1.5 | 8.9 | 0.49 | 1.2 | 0.68 | 0.030 | 0.020 | | † LM 11749 | † LM 11710 | 23 | 21.5 | 34 | 37 | 1.3 | 1.3 | 8.7 | 0.29 | 2.1 | 1.2 | 0.055 | 0.028 | | 05068 | 05185 | 23 | 22.5 | 40.5 | 42.5 | 0.8 | 1.3 | 10.1 | 0.36 | 1.7 | 0.93 | 0.082 | 0.047 | | A 6075 | A 6157 | 24 | 23 | 34 | 37 | 1 | 1.3 | 10.3 | 0.53 | 1.1 | 0.63 | 0.037 | 0.031 | | † LM 11949 | † LM 11910 | 25 | 23.5 | 39.5 | 41.5 | 1.3 | 1.3 | 9.5 | 0.30 | 2.0 | 1.1 | 0.081 | 0.044 | | 05075 | 05185 | 25 | 23.5 | 40.5 | 42.5 | 1.3 | 1.3 | 10.1 | 0.36 | 1.7 | 0.93 | 0.077 | 0.047 | | 09067 | 09195 | 25.5 | 24 | 42 | 44.5 | 1.3 | 1.3 | 10.7 | 0.27 | 2.3 | 1.2 | 0.115 | 0.065 | | 09078 | 09195 | 25.5 | 24 | 42 | 44.5 | 1.2 | 1.3 | 10.7 | 0.27 | 2.3 | 1.2 | 0.124 | 0.065 | | 09067 | 09196 | 25.5 | 24 | 41.5 | 44.5 | 1.3 | 1.5 | 13.8 | 0.27 | 2.3 | 1.2 | 0.115 | 0.085 | | 09074 | 09194 | 26 | 24 | 39 | 44.5 | 1.5 | 3.5 | 13.8 | 0.27 | 2.3 | 1.2 | 0.124 | 0.082 | | 21075 | 21212 | 31.5 | 26 | 43 | 50 | 1.5 | 2.3 | 16.3 | 0.59 | 1.0 | 0.56 | 0.156 | 0.097 | | 05079 | 05185 | 26.5 | 24 | 40.5 | 42.5 | 1.5 | 1.3 | 10.1 | 0.36 | 1.7 | 0.93 | 0.073 | 0.047 | | 07079 | 07204 | 27.5 | 27 | 45 | 48 | 1.5 | 1.3 | 12.1 | 0.40 | 1.5 | 0.82 | 0.105 | 0.061 | | 09081 | 09196 | 27.5 | 25.5 | 41.5 | 44.5 | 1.5 | 1.5 | 13.8 | 0.27 | 2.3 | 1.2 | 0.115 | 0.085 | | 12580 | 12520 | 28.5 | 26 | 42.5 | 45.5 | 1.5 | 1.5 | 12.9 | 0.32 | 1.9 | 1.0 | 0.114 | 0.067 | | † M 12649 | † M 12610 | 27.5 | 25.5 | 44 | 46 | 1.3 | 1.3 | 10.9 | 0.28 | 2.2 | 1.2 | 0.115 | 0.059 | | *† LM 12749 | † LM 12710 | 27.5 | 26 | 39.5 | 42.5 | 1.3 | 1.3 | 10.0 | 0.31 | 2.0 | 1.1 | 0.078 | 0.038 | | *† LM 12749 | † LM 12711 | 27.5 | 26 | 40 | 42.5 | 1.3 | 1.3 | 10.0 | 0.31 | 2.0 | 1.1 | 0.078 | 0.043 | | 07087 | 07196 | 28.5 | 27 | 44.5 | 47 | 1.3 | 1 | 10.6 | 0.40 | 1.5 | 0.82 | 0.097 | 0.035 | | † M 12648 | † M 12610 | 28.5 | 26.5 | 44 | 46 | 1.3 | 1.3 | 10.9 | 0.28 | 2.2 | 1.2 | 0.111 | 0.059 | | 1380 | 1328 | 29.5 | 27 | 45 | 48.5 | 1.5 | 1.5 | 11.3 | 0.29 | 2.1 | 1.1 | 0.137 | 0.067 | | 1380 | 1329 | 29.5 | 27 | 46 | 49 | 1.5 | 1.5 | 11.3 | 0.29 | 2.1 | 1.1 | 0.137 | 0.082 | | 1755 | 1729 | 29 | 27.5 | 49 | 51 | 1.3 | 1.3 | 12.2 | 0.31 | 2.0 | 1.1 | 0.152 | 0.102 | | 1280 | 1220 | 29.5 | 29 | 49 | 52 | 0.8 | 1.5 | 15.1 | 0.35 | 1.7 | 0.95 | 0.183 | 0.106 | Notes - * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). - * † The tolerance for the bore diameter is 0 to $-20~\mu m$, and for overall bearing width is +356 to 0 μm . # Bore Diameter 22.606 – 28.575 mm | | | | Dimension | S | | | | | oad Ratings | | Limiting | | |--------|--------|--------|-----------|--------|----------------|-----|------------|-------------------|-------------|-------------------|----------|--------| | _ | | , | nm) | | Cone | Cup | , | N) | | gf} | (mi | , | | d | D | T | В | С | <i>1</i>
mi | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 22.606 | 47.000 | 15.500 | 15.500 | 12.000 | 1.5 | 1.0 | 26 300 | 30 000 | 2 680 | 3 100 | 8 000 | 11 000 | | 23.812 | 50.292 | 14.224 | 14.732 | 10.668 | 1.5 | 1.3 | 27 600 | 32 000 | 2 820 | 3 250 | 7 100 | 10 000 | | | 56.896 | 19.368 | 19.837 | 15.875 | 0.8 | 1.3 | 38 000 | 40 500 | 3 900 | 4 150 | 7 100 | 9 500 | | 24.000 | 55.000 | 25.000 | 25.000 | 21.000 | 2.0 | 2.0 | 49 500 | 55 000 | 5 050 | 5 650 | 7 100 | 9 500 | | 24.981 | 51.994 | 15.011 | 14.260 | 12.700 | 1.5 | 1.3 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 52.001 | 15.011 | 14.260 | 12.700 | 1.5 | 2.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 62.000 | 16.002 | 16.566 | 14.288 | 1.5 | 1.5 | 37 000 | 39 500 | 3 750 | 4 000 | 6 300 | 8 500 | | 25.000 | 50.005 | 13.495 | 14.260 | 9.525 | 1.5 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 51.994 | 15.011 | 14.260 | 12.700 | 1.5 | 1.3 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | 25.400 | 50.005 | 13.495 | 14.260 | 9.525 | 3.3 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 50.005 | 13.495 | 14.260 | 9.525 | 1.0 | 1.0 | 26 000 | 27 900 | 2 650 | 2 840 | 7 500 | 10 000 | | | 50.292 | 14.224 | 14.732 | 10.668 | 1.3 | 1.3 | 27 600 | 32 000 | 2 820 | 3 250 | 7 100 | 10 000 | | | 57.150 | 17.462 | 17.462 | 13.495 | 1.3 | 1.5 | 39 500 | 45 500 | 4 050 | 4 650 | 6 700 | 9 000 | | | 57.150 | 19.431 | 19.431 | 14.732 | 1.5 | 1.5 | 42 500 | 49 000 | 4 300 | 5 000 | 6 700 | 9 000 | | | 59.530 | 23.368 | 23.114 | 18.288 | 0.8 | 1.5 | 50 000 | 58 000 | 5 100 | 5 900 | 6 300 | 9 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 63.500 | 20.638 | 20.638 | 15.875 | 3.5 | 1.5 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 000 | 64 500 | 5 200 | 6 600 | 5 600 | 8 000 | | | 65.088 | 22.225 | 21.463 | 15.875 | 1.5 | 1.5 | 45 000 | 47 500 | 4 600 | 4 850 | 5 600 | 8 000 | | | 68.262 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 55 000 | 64 000 | 5 600 | 6 550 | 5 600 | 7 500 | | | 72.233 | 25.400 | 25.400 | 19.842 | 0.8 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 100 | | | 72.626 | 24.608 | 24.257 | 17.462 | 2.3 | 1.5 | 60 000 | 58 000 | 6 100 | 5 900 | 5 600 | 7 500 | | 26.988 | 50.292 | 14.224 | 14.732 | 10.668 | 3.5 | 1.3 | 27 600 | 32 000 | 2 820 | 3 250 | 7 100 | 10 000 | | | 57.150 | 19.845 | 19.355 | 15.875 | 3.3 | 1.5 | 40 000 | 44 500 | 4 100 | 4 500 | 6 700 | 9 000 | | | 60.325 | 19.842 | 17.462 | 15.875 | 3.5 | 1.5 | 39 500 | 45 500 | 4 050 | 4 650 | 6 700 | 9 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | 28.575 | 57.150 | 19.845 | 19.355 | 15.875 | 3.5 | 1.5 | 40 000 | 44 500 | 4 100 | 4 500 | 6 700 | 9 000 | | | 59.131 | 15.875 | 16.764 | 11.811 | spec. | 1.3 | 34 500 | 41 500 | 3 550 | 4 200 | 6 300 | 8 500 | | | 62.000 | 19.050 | 20.638 | 14.288 | 3.5 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 000 | 53 000 | 4 700 | 5 400 | 6 000 | 8 000 | | | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 000 | 64 500 | 5 200 | 6 600 | 5 600 | 8 000 | | | 68.262 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 55 000 | 64 000 | 5 600 | 6 550 | 5 600 | 7 500 | | | 72.626 | 24.608 | 24.257 | 17.462 | 4.8 | 1.5 | 60 000 | 58 000 | 6 100 | 5 900 | 5 600 | 7 500 | | | 72.626 | 24.608 | 24.257 | 17.462 | 1.5 | 1.5 | 60 000 | 58 000 | 6 100 | 5 900 | 5 600 | 7 500 | | | 73.025 | 22.225 | 22.225 | 17.462 | 0.8 | 3.3 | 54 500 | 64 500 | 5 550 | 6 600 | 5 300 | 7 100 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}>$ 0.5 $F_{\rm r}+Y_0\,F_{\rm a}$,
use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Nu | mbers | Ak | outment | | | sions | | Eff. Load | Constant | Axial | | Mass | - | |-------------------|-------------------|-------------------------------|-------------------------------|-------------------------------|------------|-------------|----------------------------|-----------------|----------|-------|-------|---------------------|---| | | | | | (mm) | | Cone | Cup | Centers
(mm) | | Fac | tors | (kg) | | | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{ m b}$ | $r_{\rm a}$ | r _a max. | | e | Y_1 | Y_0 | approx.
CONE CUP | | | LM 72849 | LM 72810 | 29 | 27 | 40.5 | 44.5 | 1.5 | 1.5 1 | | 0.47 | 1.3 | 0.70 | 0.086 0.046 | _ | | † L 44640 | † L 44610 | 30.5 | 28.5 | 44.5 | 47 | 1.5 | 1.3 | 10.9 | 0.37 | 1.6 | 0.88 | 0.097 0.039 | | | 1779 | 1729 | 29.5 | 28.5 | 49 | 51 | 0.8 | 1.3 | 12.2 | 0.31 | 2.0 | 1.1 | 0.143 0.102 | | | ▲JHM 33449 | ▲JHM 33410 | 35 | 30 | 47 | 52 | 2 | 2 | 15.8 | 0.35 | 1.7 | 0.93 | 0.181 0.107 | | | 07098 | 07204 | 31 | 29 | 45 | 48 | 1.5 | 1.3 | 12.1 | 0.40 | 1.5 | 0.82 | 0.085 0.061 | | | 07098 | 07205 | 31 | 29 | 44.5 | 48 | 1.5 | 2 | 12.1 | 0.40 | 1.5 | 0.82 | 0.085 0.061 | | | 17098 | 17244 | 33 | 30.5 | 54 | 57 | 1.5 | 1.5 | 12.8 | 0.38 | 1.6 | 0.86 | 0.165 0.091 | | | 07097 | 07196 | 31 | 29 | 44.5 | 47 | 1.5 | 1 | 10.6 | 0.40 | 1.5 | 0.82 | 0.085 0.035 | | | 07097 | 07204 | 31 | 29 | 45 | 48 | 1.5 | 1.3 | 12.1 | 0.40 | 1.5 | 0.82 | 0.085 0.061 | | | 07100 SA | 07196 | 35 | 29.5 | 44.5 | 47 | 3.3 | 1 | 10.6 | 0.40 | 1.5 | 0.82 | 0.082 0.035 | | | 07100 | 07196 | 30.5 | 29.5 | 44.5 | 47 | 1 | 1 | 10.6 | 0.40 | 1.5 | 0.82 | 0.084 0.035 | | | † L 44643 | † L 44610 | 31.5 | 29.5 | 44.5 | 47 | 1.3 | 1.3 | 10.9 | 0.37 | 1.6 | 0.88 | 0.090 0.039 | | | 15578 | 15520 | 32.5 | 30.5 | 51 | 53 | 1.3 | 1.5 | 12.4 | 0.35 | 1.7 | 0.95 | 0.151 0.070 | | | M 84548 | M 84510 | 36 | 33 | 48.5 | 54 | 1.5 | 1.5 | 16.1 | 0.55 | 1.1 | 0.60 | 0.156 0.089 | | | M 84249 | M 84210 | 36 | 32.5 | 49.5 | 56 | 0.8 | 1.5 | 18.3 | 0.55 | 1.1 | 0.60 | 0.194 0.13 | | | 15101 | 15245 | 32.5 | 31.5 | 55 | 58 | 0.8 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.222 0.081 | | | 15100 | 15250 X | 38 | 31.5 | 55 | 59 | 3.5 | 1.5 | 14.9 | 0.35 | 1.7 | 0.94 | 0.22 0.113 | | | M 86643 | M 86610 | 38 | 36.5 | 54 | 61 | 1.5 | 1.5 | 17.7 | 0.55 | 1.1 | 0.60 | 0.246 0.128 | | | 23100 | 23256 | 39 | 34.5 | 53 | 61 | 1.5 | 1.5 | 20.0 | 0.73 | 0.82 | 0.45 | 0.214 0.142 | | | 02473 | 02420 | 34.5 | 33.5 | 59 | 63 | 0.8 | 1.5 | 16.9 | 0.42 | 1.4 | 0.79 | 0.28 0.152 | | | HM 88630 | HM 88610 | 39.5 | 39.5 | 60 | 69 | 0.8 | 2.3 | 20.7 | 0.55 | 1.1 | 0.60 | 0.398 0.188 | | | 41100 | 41286 | 41 | 36.5 | 61 | 68 | 2.3 | 1.5 | 20.7 | 0.60 | 1.0 | 0.55 | 0.32 0.177 | | | † L 44649 | † L 44610 | 37.5 | 31 | 44.5 | 47 | 3.5 | 1.3 | 10.9 | 0.37 | 1.6 | 0.88 | 0.081 0.039 | | | 1997 X | 1922 | 37.5 | 31.5 | 51 | 53.5 | 3.3 | 1.5 | 13.9 | 0.33 | 1.8 | 1.0 | 0.152 0.077 | | | 15580 | 15523 | 38.5 | 32 | 51 | 54 | 3.5 | 1.5 | 14.7 | 0.35 | 1.7 | 0.95 | 0.141 0.123 | | | 15106 | 15245 | 33.5 | 33 | 55 | 58 | 0.8 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.211 0.081 | | | 1988 | 1922 | 39.5 | 33.5 | 51 | 53.5 | 3.5 | 1.5 | 13.9 | 0.33 | 1.8 | 1.0 | 0.141 0.077 | | | † LM 67043 | † LM 67010 | 40 | 33.5 | 52 | 56 | 3.5 | 1.3 | 12.6 | 0.41 | 1.5 | 0.80 | 0.147 0.062 | | | 15112 | 15245 | 40 | 34 | 55 | 58 | 3.5 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.199 0.081 | | | 15113 | 15245 | 34.5 | 34 | 55 | 58 | 0.8 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.20 0.081 | | | M 86647 | M 86610 | 40 | 38 | 54 | 61 | 1.5 | 1.5 | 17.7 | 0.55 | 1.1 | 0.60 | 0.223 0.128 | | | 02474 | 02420 | 36.5 | 36 | 59 | 63 | 0.8 | 1.5 | 16.9 | 0.42 | 1.4 | 0.79 | 0.257 0.152 | | | 41125 | 41286 | 48 | 36.5 | 61 | 68 | 4.8 | 1.5 | 20.7 | 0.60 | 1.0 | 0.55 | 0.292 0.177 | _ | | 41126 | 41286 | 41.5 | 36.5 | 61 | 68 | 1.5 | 1.5 | 20.7 | 0.60 | 1.0 | 0.55 | 0.295 0.177 | | | 02872 | 02820 | 37.5 | 37 | 62 | 68 | 0.8 | 3.3 | 18.3 | 0.45 | 1.3 | 0.73 | 0.321 0.16 | | † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. # Bore Diameter 29.000 – 32.000 mm | Boundary Dimensions
(mm) | | | | | | | | | sic Loa | ıd Ratinç | , | | Limiting | | |-----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|----------------------------------|--------------|--------------------------|-----------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | | | , | , | | Cone | Cup | | (N) | | | | gf} | (mir | , | | <i>d</i> | D | T | В | С | | $m{r}$ in. | $C_{ m r}$ | (| C_{0r} | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 29.000
29.367 | 50.292
66.421 | 14.224
23.812 | 14.732
25.433 | 10.668
19.050 | 3.5
3.5 | 1.3
1.3 | 26 80
65 00 | | 000
000 | | 2 730
6 600 | 3 500
7 450 | 7 100
6 000 | 9 500
8 000 | | 30.000 | 62.000
62.000
63.500
72.000 | 16.002
19.050
20.638
19.000 | 16.566
20.638
20.638
18.923 | 14.288
14.288
15.875
15.875 | 1.5
1.3
1.3
1.5 | 1.5
1.3
1.3
1.5 | 37 00
46 00
46 00
52 00 | 0 53
0 53 | 500
000
000
000 | | 3 750
4 700
4 700
5 300 | 4 000
5 400
5 400
5 700 | 6 300
6 000
6 000
5 600 | 8 500
8 000
8 000
7 500 | | 30.112 | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 | 1.3 | 46 00 | 0 53 | 000 | | 4 700 | 5 400 | 6 000 | 8 000 | | 30.162 | 58.738
64.292
68.262 | 14.684
21.433
22.225 | 15.080
21.433
22.225 | 10.716
16.670
17.462 | 3.5
1.5
2.3 | 1.0
1.5
1.5 | 28 80
51 00
55 50 | 0 64 | 500
500
500 | | 2 940
5 200
5 650 | 3 450
6 600
7 200 | 6 000
5 600
5 300 | 8 000
8 000
7 500 | | | 69.850
69.850
76.200 | 23.812
23.812
24.608 | 25.357
25.357
24.074 | 19.050
19.050
16.670 | 2.3
0.8
1.5 | 1.3
1.3
C3.3 | 71 00
71 00
67 50 | 0 84 | 000
000
500 | | 7 200
7 200
6 850 | 8 550
8 550
7 100 | 5 600
5 600
5 000 | 7 500
7 500
6 700 | | 30.213 | 62.000
62.000
62.000 | 19.050
19.050
19.050 | 20.638
20.638
20.638 | 14.288
14.288
14.288 | 3.5
0.8
1.5 | 1.3
1.3
1.3 | 46 00
46 00
46 00 | 0 53 | 000
000
000 | | 4 700
4 700
4 700 | 5 400
5 400
5 400 | 6 000
6 000
6 000 | 8 000
8 000
8 000 | | 30.955 | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 51 00 | 0 64 | 500 | | 5 200 | 6 600 | 5 600 | 8 000 | | 31.750 | 58.738
59.131
62.000 | 14.684
15.875
18.161 | 15.080
16.764
19.050 | 10.716
11.811
14.288 | 1.0
spec.
spec. | 1.0
1.3
1.3 | 28 80
34 50
46 00 | 0 41 | 500
500
000 | | 2 940
3 550
4 700 | 3 450
4 200
5 400 | 6 000
6 300
6 000 | 8 000
8 500
8 000 | | | 62.000
62.000
63.500 | 19.050
19.050
20.638 | 20.638
20.638
20.638 | 14.288
14.288
15.875 | 0.8
3.5
0.8 | 1.3
1.3
1.3 | 46 00
46 00
46 00 | 0 53 | 000
000
000 | | 4 700
4 700
4 700 | 5 400
5 400
5 400 | 6 000
6 000
6 000 | 8 000
8 000
8 000 | | | 68.262
68.262
69.012 | 22.225
22.225
19.845 | 22.225
22.225
19.583 | 17.462
17.462
15.875 | 3.5
1.5
3.5 | 1.5
1.5
1.3 | 55 00
55 50
47 00 | 0 70 | 000
500
000 | | 5 600
5 650
4 800 | 6 550
7 200
5 700 | 5 600
5 300
5 600 | 7 500
7 500
7 500 | | | 69.012
69.850
69.850 | 26.982
23.812
23.812 | 26.721
25.357
25.357 | 15.875
19.050
19.050 | 4.3
0.8
3.5 | 3.3
1.3
1.3 | 47 00
71 00
71 00 | 0 84 | 000
000
000 | | 4 800
7 200
7 200 | 5 700
8 550
8 550 | 5 600
5 600
5 600 | 7 500
7 500
7 500 | | | 72.626
73.025
80.000 | 30.162
29.370
21.000 | 29.997
27.783
22.403 | 23.812
23.020
17.826 | 0.8
1.3
0.8 | 3.3
3.3
1.3 | 79 50
74 00
68 50 | 0 100 | 000
000
500 | | 8 100
7 550
6 950 | 9 200
10 200
7 700 | 5 300
5 000
4 500 | 7 500
7 100
6 300 | | 32.000 | 72.233 | 25.400 | 25.400 | 19.842 | 3.3 | 2.3 | 63 50 | 0 83 | 500 | | 6 500 | 8 500 | 5 000 | 7 100 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{ m r}\!>\!0.5F_{ m r}+Y_0\,F_{ m a}$, use P_0 = $F_{ m r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing | y Numbers | Ab | outment | and Fillet
(mm) | t Dimen | | 0 | Eff. Load
Centers | Constant | Axial
Fac | | Mass
(kg) | | |------------|-----------------------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------|----------------------|----------|--------------|-------|--------------|-------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | Cone
$m{r}_{ m a}$
max | · · | (mm)
a | e | Y_1 | Y_0 | app
CONE | rox.
CUP | | † L 45449 | † L 45410 | 39.5 | 33 | 44.5 | 48 | 3.5 | 1.3 | 10.8 | 0.37 | 1.6 | 0.89 | 0.079 | 0.036 | | 2690 | 2631 | 41 | 35 | 58 | 60 | 3.5 | 1.3 | 14.3 | 0.25 | 2.4 | 1.3 | 0.242 | 0.165 | | * 17118 | 17244 | 37 |
34.5 | 54 | 57 | 1.5 | 1.5 | 12.8 | 0.38 | 1.6 | 0.86 | 0.136 | 0.091 | | * 15117 | 15245 | 36.5 | 35 | 55 | 58 | 1.3 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.189 | 0.081 | | * 15117 | 15250 | 36.5 | 35 | 56 | 59 | 1.3 | 1.3 | 14.9 | 0.35 | 1.7 | 0.94 | 0.189 | 0.113 | | * 26118 | 26283 | 38 | 36 | 62 | 65 | 1.5 | 1.5 | 14.8 | 0.36 | 1.7 | 0.92 | 0.225 | 0.163 | | 15116 | 15245 | 36 | 35.5 | 55 | 58 | 0.8 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.189 | 0.081 | | 08118 | 08231 | 41.5 | 35 | 52 | 55 | 3.5 | 1 | 13.3 | 0.47 | 1.3 | 0.70 | 0.12 | 0.057 | | M 86649 | M 86610 | 41 | 38 | 54 | 61 | 1.5 | 1.5 | 17.7 | 0.55 | 1.1 | 0.60 | 0.211 | 0.128 | | M 88043 | M 88010 | 43.5 | 39.5 | 58 | 65 | 2.3 | 1.5 | 19.1 | 0.55 | 1.1 | 0.60 | 0.263 | 0.146 | | 2558 | 2523 | 40 | 36.5 | 61 | 64 | 2.3 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.297 | 0.169 | | 2559 | 2523 | 37 | 36.5 | 61 | 64 | 0.8 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.298 | 0.169 | | 43118 | 43300 | 45 | 42 | 64 | 73 | 1.5 | 3.3 | 22.9 | 0.67 | 0.90 | 0.49 | 0.383 | 0.146 | | 15118 | 15245 | 41.5 | 35.5 | 55 | 58 | 3.5 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.186 | 0.081 | | 15120 | 15245 | 36 | 35.5 | 55 | 58 | 0.8 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.188 | 0.081 | | 15119 | 15245 | 37.5 | 35.5 | 55 | 58 | 1.5 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.188 | 0.081 | | M 86648 A | M 86610 | 42 | 38 | 54 | 61 | 1.5 | 1.5 | 17.7 | 0.55 | 1.1 | 0.60 | 0.205 | 0.128 | | 08125 | 08231 | 37.5 | 36 | 52 | 55 | 1 | 1 | 13.3 | 0.47 | 1.3 | 0.70 | 0.113 | 0.057 | | † LM 67048 | † LM 67010 | 42.5 | 36 | 52 | 56 | 3.5 | 1.3 | 12.6 | 0.41 | 1.5 | 0.80 | 0.127 | 0.062 | | 15123 | 15245 | 42.5 | 36.5 | 55 | 58 | 3.5 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.165 | 0.081 | | 15126 | 15245 | 37 | 36.5 | 55 | 58 | 0.8 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.176 | 0.081 | | 15125 | 15245 | 42.5 | 36.5 | 55 | 58 | 3.5 | 1.3 | 13.3 | 0.35 | 1.7 | 0.94 | 0.174 | 0.081 | | 15126 | 15250 | 37 | 36.5 | 56 | 59 | 0.8 | 1.3 | 14.9 | 0.35 | 1.7 | 0.94 | 0.176 | 0.113 | | 02475 | 02420 | 44.5 | 38.5 | 59 | 63 | 3.5 | 1.5 | 16.9 | 0.42 | 1.4 | 0.79 | 0.229 | 0.152 | | M 88046 | M 88010 | 43 | 40.5 | 58 | 65 | 1.5 | 1.5 | 19.1 | 0.55 | 1.1 | 0.60 | 0.25 | 0.146 | | 14125 A | 14276 | 44 | 37.5 | 60 | 63 | 3.5 | 1.3 | 15.3 | 0.38 | 1.6 | 0.86 | 0.219 | 0.135 | | 14123 A | 14274 | 41.5 | 37.5 | 59 | 63 | 4.3 | 3.3 | 15.1 | 0.38 | 1.6 | 0.87 | 0.289 | 0.132 | | 2580 | 2523 | 38.5 | 37.5 | 61 | 64 | 0.8 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.282 | 0.169 | | 2582 | 2523 | 44 | 37.5 | 61 | 64 | 3.5 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.28 | 0.169 | | 3188 | 3120 | 39.5 | 39.5 | 61 | 67 | 0.8 | 3.3 | 19.6 | 0.33 | 1.8 | 0.99 | 0.368 | 0.225 | | HM 88542 | HM 88510 | 45.5 | 42.5 | 59 | 70 | 1.3 | 3.3 | 23.5 | 0.55 | 1.1 | 0.60 | 0.379 | 0.242 | | 346 | 332 | 40 | 39.5 | 73 | 75 | 0.8 | 1.3 | 14.6 | 0.27 | 2.2 | 1.2 | 0.419 | 0.146 | | *HM 88638 | HM 88610 | 48.5 | 42.5 | 60 | 69 | 3.3 | 2.3 | 20.7 | 0.55 | 1.1 | 0.60 | 0.337 | 0.188 | | Notes * | The maximum bore diar | meter is I | isted and | d its toler | rance is | negati | ve (S | ee Table | 8.4.1 | on Page | A68). | | | The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). B 140 B 141 ### Bore Diameter 33.338 - 35.000 mm | Boundary Dimensions
(mm) | | | | | | | | | nd Ratings | | Limiting | Speeds | |-----------------------------|--------|--------|--------|--------|-------|-----|------------|-------------------|------------|-------------------|----------|-------------------| | | | | | | | | (| N) | {k | :gf} | (mir | n ⁻¹) | | d | D | T | В | С | | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 33.338 | 66.675 | 20.638 | 20.638 | 15.875 | 3.5 | 1.5 | 46 000 | 53 500 | 4 650 | 5 450 | 5 600 | 7 500 | | | 68.262 | 22.225 | 22.225 | 17.462 | 0.8 | 1.5 | 55 500 | 70 500 | 5 650 | 7 200 | 5 300 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 3.5 | 3.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 0.8 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 69.850 | 23.812 | 25.357 | 19.050 | 3.5 | 1.3 | 71 000 | 84 000 | 7 200 | 8 550 | 5 600 | 7 500 | | | 72.000 | 19.000 | 18.923 | 15.875 | 3.5 | 1.5 | 52 000 | 56 000 | 5 300 | 5 700 | 5 600 | 7 500 | | | 72.626 | 30.162 | 29.997 | 23.812 | 0.8 | 3.3 | 79 500 | 90 000 | 8 100 | 9 200 | 5 300 | 7 500 | | | 73.025 | 29.370 | 27.783 | 23.020 | 0.8 | 3.3 | 74 000 | 100 000 | 7 550 | 10 200 | 5 000 | 7 100 | | | 76.200 | 29.370 | 28.575 | 23.020 | 3.8 | 0.8 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 76.200 | 29.370 | 28.575 | 23.020 | 0.8 | 3.3 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 79.375 | 25.400 | 24.074 | 17.462 | 3.5 | 1.5 | 67 500 | 69 500 | 6 850 | 7 100 | 5 000 | 6 700 | | 34.925 | 65.088 | 18.034 | 18.288 | 13.970 | spec. | 1.3 | 47 500 | 57 500 | 4 850 | 5 900 | 5 600 | 7 500 | | | 65.088 | 20.320 | 18.288 | 16.256 | spec. | 1.3 | 47 500 | 57 500 | 4 850 | 5 900 | 5 600 | 7 500 | | | 66.675 | 20.638 | 20.638 | 16.670 | 3.5 | 2.3 | 53 000 | 62 500 | 5 400 | 6 400 | 5 600 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 3.5 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 69.012 | 19.845 | 19.583 | 15.875 | 1.5 | 1.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 72.233 | 25.400 | 25.400 | 19.842 | 2.3 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 100 | | | 73.025 | 22.225 | 22.225 | 17.462 | 0.8 | 3.3 | 54 500 | 64 500 | 5 550 | 6 600 | 5 300 | 7 100 | | | 73.025 | 22.225 | 23.812 | 17.462 | 3.5 | 3.3 | 63 500 | 77 000 | 6 500 | 7 850 | 5 300 | 7 100 | | | 73.025 | 23.812 | 24.608 | 19.050 | 1.5 | 0.8 | 71 000 | 86 000 | 7 250 | 8 750 | 5 300 | 7 100 | | | 73.025 | 23.812 | 24.608 | 19.050 | 3.5 | 2.3 | 71 000 | 86 000 | 7 250 | 8 750 | 5 300 | 7 100 | | | 76.200 | 29.370 | 28.575 | 23.020 | 0.8 | 0.8 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 76.200 | 29.370 | 28.575 | 23.020 | 3.5 | 0.8 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 76.200 | 29.370 | 28.575 | 23.020 | 3.5 | 3.3 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 76.200 | 29.370 | 28.575 | 23.812 | 1.5 | 3.3 | 80 500 | 96 500 | 8 200 | 9 850 | 5 000 | 6 700 | | | 79.375 | 29.370 | 29.771 | 23.812 | 3.5 | 3.3 | 88 000 | 106 000 | 8 950 | 10 800 | 4 800 | 6 700 | | 34.976 | 68.262 | 15.875 | 16.520 | 11.908 | 1.5 | 1.5 | 45 000 | 53 500 | 4 600 | 5 450 | 5 300 | 7 100 | | | 72.085 | 22.385 | 19.583 | 18.415 | 1.3 | 2.3 | 47 000 | 56 000 | 4 800 | 5 700 | 5 600 | 7 500 | | | 80.000 | 21.006 | 20.940 | 15.875 | 1.5 | 1.5 | 56 500 | 64 500 | 5 750 | 6 600 | 5 000 | 6 700 | | 35.000 | 59.131 | 15.875 | 16.764 | 11.938 | spec. | 1.3 | 35 000 | 47 000 | 3 550 | 4 750 | 6 000 | 8 000 | | | 59.975 | 15.875 | 16.764 | 11.938 | spec. | 1.3 | 35 000 | 47 000 | 3 550 | 4 750 | 6 000 | 8 000 | | | 62.000 | 16.700 | 17.000 | 13.600 | spec. | 1.0 | 38 000 | 50 000 | 3 900 | 5 100 | 5 600 | 8 000 | | | 62.000 | 16.700 | 17.000 | 13.600 | spec. | 1.5 | 38 000 | 50 000 | 3 900 | 5 100 | 5 600 | 8 000 | | | 65.987 | 20.638 | 20.638 | 16.670 | 3.5 | 2.3 | 53 000 | 62 500 | 5 400 | 6 400 | 5 600 | 7 500 | | | 73.025 | 26.988 | 26.975 | 22.225 | 3.5 | 0.8 | 75 500 | 88 500 | 7 650 | 9 050 | 5 300 | 7 500 | B 143 Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}$ | $F_{\rm r} \leq e$ | $F_{\rm a}/I$ | r > e | | | |-------------|--------------------|---------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | 0 | 0.4 | Y ₁ | | | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$, use $P_0 = F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Numbers | А | butment | and Fill
(mm | | | | Eff. Load
Centers | Constant | | Load
tors | | ass
(g) | |---|-------------------------------|-------------------------------|-----------------|-------------------------------|------------------------------|-------------------|----------------------|----------------------|-------------------|----------------------|-------------------------|-------------------------| | CONE CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{\scriptscriptstyle m b}$ | Cone C $oldsymbol{r_a}$ max. | Jup | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | 1680 1620
M 88048 M 88010
14130 14274 | 42.5 | 38.5
41
38.5 | 58
58
59 | 61
65
63 | 0.8 | 1.5
1.5
3.3 | 15.2
19.0
15.3 | 0.37
0.55
0.38 | 1.6
1.1
1.6 | 0.89
0.60
0.86 | 0.196
0.236
0.207 | 0.121
0.146
0.132 | | 14131 14276
2585 2523
26131 26283 | 45 | 38.5
39
38.5 | 60
61
62 | 63
64
65 | 3.5 | 1.3
1.3
1.5 | 15.3
14.5
14.7 | 0.38
0.27
0.36 | 1.6
2.2
1.7 | 0.86
1.2
0.92 | 0.209
0.263
0.20 | 0.135
0.169
0.163 | | 3197 3120
HM 88547 HM 88510
HM 89444 HM 89411 | | 40.5
42.5
44.5 | 61
59
65 | 67
70
73 | 0.8 | 3.3
3.3
0.8 | 19.6
23.5
23.6 | 0.33
0.55
0.55 | 1.8
1.1
1.1 | 0.99
0.60
0.60 | 0.348
0.362
0.419 | 0.225
0.242
0.261 | | HM 89443 HM 89410
43131 43312 | | 44.5
42 | 62
67 | 73
74 | | 3.3
1.5 | 23.6
23.7 | 0.55
0.67 | 1.1
0.90 | 0.60
0.49 | 0.421
0.348 | 0.257
0.22 | | † LM 48548 | 46 | 40
40
40 | 58
58
58 | 61
61
62 | 3.5 | 1.3
1.3
2.3 | 14.1
16.4
15.2 | 0.38
0.38
0.35 | 1.6
1.6
1.7 | 0.88
0.88
0.94 | 0.172
0.172
0.194 | 0.087
0.108
0.112 | | 14138 A 14276
14137 A 14276
HM 88649 HM 88610 | 42 | 40
40
42.5 | 60
60
60 | 63
63
69 | 1.5 | 1.3
1.3
2.3 | 15.3
15.1
20.7 | 0.38
0.38
0.55 |
1.6
1.6
1.1 | 0.86
0.86
0.60 | 0.194
0.196
0.307 | 0.135
0.135
0.188 | | 02878 02820
2877 2820
25877 25821 | | 42
41.5
40.5 | 62
63
65 | 68
68
68 | 3.5 | 3.3
3.3
0.8 | 18.3
16.1
15.7 | 0.45
0.37
0.29 | 1.3
1.6
2.1 | 0.73
0.90
1.1 | 0.266
0.291
0.306 | 0.16
0.15
0.167 | | 25878 25820
HM 89446 A HM 89411
HM 89446 HM 89411 | 47
47.5
53 | 40.5
44.5
44.5 | 64
65
65 | 68
73
73 | 0.8 | 2.3
0.8
0.8 | 15.7
23.6
23.6 | 0.29
0.55
0.55 | 2.1
1.1
1.1 | 1.1
0.60
0.60 | 0.304
0.403
0.40 | 0.165
0.261
0.261 | | HM 89446 HM 89410
31594 31520
3478 3420 | 46 | 44.5
43.5
43.5 | 62
64
67 | 73
72
74 | 1.5 | 3.3
3.3
3.3 | 23.6
21.6
20.0 | 0.55
0.40
0.37 | 1.1
1.5
1.6 | 0.60
0.82
0.90 | 0.40
0.404
0.448 | 0.257
0.235
0.259 | | 19138 19268
14139 14283
28138 28315 | 41.5 | 40.5
40
41 | 61
60
69 | 65
65
73 | 1.3 2 | 1.5
2.3
1.5 | 14.5
17.7
16.0 | 0.44
0.38
0.40 | 1.4
1.6
1.5 | 0.74
0.87
0.82 | 0.196
0.198
0.308 | 0.073
0.21
0.199 | | *† L 68149 | 45.5 | 39
39
40 | 52
53
55 | 56
56
59 | 3.5 | 1.3
1.3
1 | 13.2
13.2
14.4 | 0.42
0.42
0.44 | 1.4
1.4
1.4 | 0.79
0.79
0.74 | 0.117
0.117
0.137 | 0.056
0.064
0.074 | | * LM 78349 | A 46 46 49 | 40
39.5
42 | 54
59
63 | 59
61
68 | 3.5 2 | 1.5
2.3
0.8 | 14.4
15.2
18.1 | 0.44
0.35
0.37 | 1.4
1.7
1.6 | 0.74
0.94
0.89 | 0.138
0.193
0.309 | 0.073
0.103
0.212 | | Notes * The maximum bore | diameter is | listed an | d its tol | erance i | s negative | e (Se | e Table | 8.4.1 | on Page | A68) | | | - The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page B114). - * † The tolerance for the bore diameter is 0 to $-20~\mu m$, and for overall bearing width is +356 to 0 μm . # Bore Diameter 35.717 – 41.275 mm | | | | Dimension | S | | | , | Basic Loa | 9 | E) | Limiting | | |--------|--------|--------|-----------|--------|------------------------|-----|-------------|-------------------|------------|-------------------------|----------------|-------| | d | D | T | В | C | Cone
<i>I</i>
mi | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | gf $ brace$ $C_{0 m r}$ | (mir
Grease | Oil | | 35.717 | 72.233 | 25.400 | 25.400 | 19.842 | 3.5 | 2.3 | 63 500 | 83 500 | 6 500 | 8 500 | 5 000 | 7 100 | | 36.487 | 73.025 | 23.812 | 24.608 | 19.050 | 1.5 | 0.8 | 71 000 | 86 000 | 7 250 | 8 750 | 5 300 | 7 100 | | 36.512 | 76.200 | 29.370 | 28.575 | 23.020 | 3.5 | 3.3 | 78 500 | 106 000 | 8 000 | 10 800 | 4 800 | 6 700 | | | 79.375 | 29.370 | 29.771 | 23.812 | 0.8 | 3.3 | 88 000 | 106 000 | 8 950 | 10 800 | 4 800 | 6 700 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | | 93.662 | 31.750 | 31.750 | 26.195 | 1.5 | 3.3 | 110 000 | 142 000 | 11 200 | 14 400 | 4 000 | 5 600 | | 38.000 | 63.000 | 17.000 | 17.000 | 13.500 | spec. | 1.3 | 38 500 | 52 000 | 3 900 | 5 300 | 5 600 | 7 500 | | 38.100 | 63.500 | 12.700 | 11.908 | 9.525 | 1.5 | 0.8 | 24 100 | 30 500 | 2 460 | 3 100 | 5 300 | 7 100 | | | 65.088 | 18.034 | 18.288 | 13.970 | 2.3 | 1.3 | 42 500 | 55 000 | 4 300 | 5 650 | 5 300 | 7 500 | | | 65.088 | 18.034 | 18.288 | 13.970 | spec. | 1.3 | 42 500 | 55 000 | 4 300 | 5 650 | 5 300 | 7 500 | | | 65.088 | 19.812 | 18.288 | 15.748 | 2.3 | 1.3 | 42 500 | 55 000 | 4 300 | 5 650 | 5 300 | 7 500 | | | 68.262 | 15.875 | 16.520 | 11.908 | 1.5 | 1.5 | 45 000 | 53 500 | 4 600 | 5 450 | 5 300 | 7 100 | | | 69.012 | 19.050 | 19.050 | 15.083 | 2.0 | 2.3 | 49 000 | 61 000 | 4 950 | 6 250 | 5 300 | 7 100 | | | 69.012 | 19.050 | 19.050 | 15.083 | 3.5 | 0.8 | 49 000 | 61 000 | 4 950 | 6 250 | 5 300 | 7 100 | | | 72.238 | 20.638 | 20.638 | 15.875 | 3.5 | 1.3 | 48 500 | 59 500 | 4 950 | 6 050 | 5 300 | 7 100 | | | 73.025 | 23.812 | 25.654 | 19.050 | 3.5 | 0.8 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 76.200 | 23.812 | 25.654 | 19.050 | 3.5 | 3.3 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 76.200 | 23.812 | 25.654 | 19.050 | 3.5 | 0.8 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 79.375 | 29.370 | 29.771 | 23.812 | 3.5 | 3.3 | 88 000 | 106 000 | 8 950 | 10 800 | 4 800 | 6 700 | | | 80.035 | 24.608 | 23.698 | 18.512 | 0.8 | 1.5 | 69 000 | 84 500 | 7 000 | 8 600 | 4 500 | 6 300 | | | 82.550 | 29.370 | 28.575 | 23.020 | 0.8 | 3.3 | 87 000 | 117 000 | 8 850 | 11 900 | 4 500 | 6 000 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | | 88.501 | 26.988 | 29.083 | 22.225 | 3.5 | 1.5 | 96 500 | 109 000 | 9 800 | 11 100 | 4 500 | 6 000 | | | 95.250 | 30.958 | 28.301 | 20.638 | 1.5 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | 39.688 | 73.025 | 25.654 | 22.098 | 21.336 | 0.8 | 2.3 | 62 500 | 80 000 | 6 400 | 8 150 | 5 000 | 6 700 | | | 76.200 | 23.812 | 25.654 | 19.050 | 3.5 | 3.3 | 73 500 | 91 000 | 7 500 | 9 300 | 5 000 | 6 700 | | | 80.167 | 29.370 | 30.391 | 23.812 | 0.8 | 3.3 | 92 500 | 108 000 | 9 450 | 11 000 | 4 800 | 6 300 | | 40.000 | 80.000 | 21.000 | 22.403 | 17.826 | 3.5 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 0.8 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | 41.000 | 68.000 | 17.500 | 18.000 | 13.500 | spec. | 1.5 | 43 500 | 58 000 | 4 450 | 5 950 | 5 300 | 7 100 | | 41.275 | 73.025 | 16.667 | 17.462 | 12.700 | 3.5 | 1.5 | 44 500 | 54 000 | 4 550 | 5 500 | 4 800 | 6 700 | | | 73.431 | 19.558 | 19.812 | 14.732 | 3.5 | 0.8 | 54 500 | 67 000 | 5 550 | 6 850 | 4 800 | 6 700 | | | 73.431 | 21.430 | 19.812 | 16.604 | 3.5 | 0.8 | 54 500 | 67 000 | 5 550 | 6 850 | 4 800 | 6 700 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | Static Equivalent Load P_0 = 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + Y_0 $F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing N | Numbers | Al | outment | and Fille | | nsions | | Eff. Load
Centers | Constant | | Load
tors | | ass
(g) | |-------------|--------------|-------------------------------------|-------------------------------|------------|------------|------------------------|-----|----------------------|----------|-------|--------------|-------|--------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | $D_{ m a}$ | $D_{ m b}$ | Cone
r
ma | a | (mm)
a | e | Y_1 | Y_0 | | orox.
CUP | | HM 88648 | HM 88610 | 52 | 43 | 60 | 69 | 3.5 | 2.3 | 20.7 | 0.55 | 1.1 | 0.60 | 0.298 | 0.188 | | 25880 | 25821 | 44 | 42 | 65 | 68 | 1.5 | 0.8 | 15.7 | 0.29 | 2.1 | 1.1 | 0.291 | 0.167 | | HM 89449 | HM 89410 | 54 | 44.5 | 62 | 73 | 3.5 | 3.3 | 23.6 | 0.55 | 1.1 | 0.60 | 0.38 | 0.257 | | 3479 | 3420 | 45.5 | 44.5 | 67 | 74 | 0.8 | 3.3 | 20.0 | 0.37 | 1.6 | 0.90 | 0.429 | 0.259 | | 44143 | 44348 | 54 | 50 | 75 | 84 | 2.3 | 1.5 | 27.9 | 0.78 | 0.77 | 0.42 | 0.502 | 0.245 | | 46143 | 46368 | 48.5 | 46.5 | 79 | 87 | 1.5 | 3.3 | 24.0 | 0.40 | 1.5 | 0.82 | 0.765 | 0.405 | | ▲ JL 69349 | ▲ JL 69310 | 49 | 42.5 | 56 | 60 | 3.5 | 1.3 | 14.6 | 0.42 | 1.4 | 0.79 | 0.132 | 0.071 | | 13889 | 13830 | 45 | 42.5 | 59 | 60 | 1.5 | 0.8 | 11.9 | 0.35 | 1.7 | 0.95 | 0.109 | 0.046 | | LM 29749 | LM 29710 | 46 | 42.5 | 59 | 62 | 2.3 | 1.3 | 13.7 | 0.33 | 1.8 | 0.99 | 0.16 | 0.079 | | LM 29748 | LM 29710 | 49 | 42.5 | 59 | 62 | 3.5 | 1.3 | 13.7 | 0.33 | 1.8 | 0.99 | 0.158 | 0.079 | | LM 29749 | LM 29711 | 46 | 42.5 | 58 | 62 | 2.3 | 1.3 | 15.5 | 0.33 | 1.8 | 0.99 | 0.16 | 0.094 | | 19150 | 19268 | 45 | 43 | 61 | 65 | 1.5 | 1.5 | 14.5 | 0.44 | 1.4 | 0.74 | 0.173 | 0.073 | | 13687 | 13621 | 46.5 | 43 | 61 | 65 | 2 | 2.3 | 15.8 | 0.40 | 1.5 | 0.82 | 0.193 | 0.104 | | 13685 | 13620 | 49.5 | 43 | 62 | 65 | 3.5 | 0.8 | 15.8 | 0.40 | 1.5 | 0.82 | 0.191 | 0.105 | | 16150 | 16284 | 49.5 | 43 | 63 | 67 | 3.5 | 1.3 | 16.0 | 0.40 | 1.5 | 0.82 | 0.212 | 0.146 | | 2788 | 2735 X | 50 | 43.5 | 66 | 69 | 3.5 | 0.8 | 15.9 | 0.30 | 2.0 | 1.1 | 0.312 | 0.135 | | 2788 | 2720 | 50 | 43.5 | 66 | 70 | 3.5 | 3.3 | 15.9 | 0.30 | 2.0 | 1.1 | 0.312 | 0.187 | | 2788 | 2729 | 50 | 43.5 | 68 | 70 | 3.5 | 0.8 | 15.9 | 0.30 | 2.0 | 1.1 | 0.312 | 0.191 | | 3490 | 3420 | 52 | 45.5 | 67 | 74 | 3.5 | 3.3 | 20.0 | 0.37 | 1.6 | 0.90 | 0.404 | 0.259 | | 27880 | 27820 | 48 | 47 | 68 | 75 | 0.8 | 1.5 | 21.5 | 0.56 | 1.1 | 0.59 | 0.362 | 0.209 | | HM 801346 | HM 801310 | 51 | 49 | 68 | 78 | 0.8 | 3.3 | 24.2 | 0.55 | 1.1 | 0.60 | 0.483 | 0.282 | | 44150 | 44348 | 55 | 51 | 75 | 84 | 2.3 | 1.5 | 27.9 | 0.78 | 0.77 | 0.42 | 0.484 | 0.245 | | 418 | 414 | 51 | 44.5 | 77 | 80 | 3.5 | 1.5 | 17.1 | 0.26 | 2.3 | 1.3 | 0.50 | 0.329 | | 53150 | 53375 | 55 | 53 | 81 | 89 | 1.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.665 | 0.365 | | M 201047 | M 201011 | 45.5 | 48 | 64 | 69 | 0.8 | 2.3 | 19.7 | 0.33 | 1.8 | 0.99 | 0.266 | 0.169 | | 2789 | 2720 | 52 | 45 | 66 | 70 | 3.5 | 3.3 | 15.9 | 0.30 | 2.0 | 1.1 | 0.292 | 0.187 | | 3386 | 3320 | 46.5 | 45.5 | 70 | 75 | 0.8 | 3.3 | 18.4 | 0.27 | 2.2 | 1.2 | 0.442 | 0.217 | | 344 | 332 | 52 | 45.5 | 73 | 75 | 3.5 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.338 | 0.146 | | 344 A | 332 | 46 | 45.5 | 73 | 75 | 0.8 | 1.3 | 14.5 | 0.27 | 2.2 |
1.2 | 0.339 | 0.146 | | 44157 | 44348 | 56 | 51 | 75 | 84 | 2.3 | 1.5 | 27.9 | 0.78 | 0.77 | 0.42 | 0.463 | 0.245 | | * LM 300849 | ** LM 300811 | 52 | 45 | 61 | 65 | 3.5 | 1.5 | 13.9 | 0.35 | 1.7 | 0.95 | 0.16 | 0.082 | | 18590 | 18520 | 53 | 46 | 66 | 69 | 3.5 | 1.5 | 14.0 | 0.35 | 1.7 | 0.94 | 0.199 | 0.086 | | LM 501349 | LM 501310 | 53 | 46.5 | 67 | 70 | 3.5 | 0.8 | 16.3 | 0.40 | 1.5 | 0.83 | 0.226 | 0.108 | | LM 501349 | LM 501314 | 53 | 46.5 | 66 | 70 | 3.5 | 0.8 | 18.2 | 0.40 | 1.5 | 0.83 | 0.226 | 0.129 | tes * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. B 144 B 145 # Bore Diameter 41.275 – 44.450 mm | Boundary Dimensions
(mm)
Cone | | | | | | | | Basic Load | | | Limiting | | |-------------------------------------|--------|--------|--------|--------|----------------|-----|-------------|-------------------|------------|-------------------|----------|-------| | | | , | , | | Cone | Cup | 1) | • | | gf} | (mir | , | | d | D | T | В | С | <i>1</i>
mi | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 41.275 | 76.200 | 18.009 | 17.384 | 14.288 | 1.5 | 1.5 | 42 500 | 51 000 | 4 350 | 5 200 | 4 500 | 6 300 | | | 76.200 | 22.225 | 23.020 | 17.462 | 3.5 | 0.8 | 66 000 | 82 000 | 6 700 | 8 400 | 4 800 | 6 700 | | | 76.200 | 25.400 | 23.020 | 20.638 | 3.5 | 2.3 | 66 000 | 82 000 | 6 700 | 8 400 | 4 800 | 6 700 | | | 79.375 | 23.812 | 25.400 | 19.050 | 3.5 | 0.8 | 77 000 | 98 500 | 7 850 | 10 000 | 4 800 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 0.8 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 3.5 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 80.167 | 25.400 | 25.400 | 20.638 | 3.5 | 3.3 | 77 000 | 98 500 | 7 850 | 10 000 | 4 800 | 6 300 | | | 82.550 | 26.543 | 25.654 | 20.193 | 3.5 | 3.3 | 78 500 | 102 000 | 8 000 | 10 400 | 4 300 | 6 000 | | | 85.725 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 91 000 | 115 000 | 9 300 | 11 700 | 4 300 | 6 000 | | | 87.312 | 30.162 | 30.886 | 23.812 | 0.8 | 3.3 | 96 000 | 120 000 | 9 800 | 12 200 | 4 300 | 6 000 | | | 88.501 | 25.400 | 23.698 | 17.462 | 2.3 | 1.5 | 73 000 | 81 000 | 7 450 | 8 250 | 4 000 | 5 600 | | | 88.900 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 96 500 | 129 000 | 9 800 | 13 200 | 4 000 | 5 600 | | | 88.900 | 30.162 | 29.370 | 23.020 | 0.8 | 3.3 | 96 500 | 129 000 | 9 800 | 13 200 | 4 000 | 5 600 | | | 90.488 | 39.688 | 40.386 | 33.338 | 3.5 | 3.3 | 139 000 | 180 000 | 14 200 | 18 400 | 4 300 | 5 600 | | | 93.662 | 31.750 | 31.750 | 26.195 | 0.8 | 3.3 | 110 000 | 142 000 | 11 200 | 14 400 | 4 000 | 5 600 | | | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | | 98.425 | 30.958 | 28.301 | 20.638 | 1.5 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | 42.862 | 76.992 | 17.462 | 17.145 | 11.908 | 1.5 | 1.5 | 44 000 | 54 000 | 4 450 | 5 500 | 4 500 | 6 000 | | | 82.550 | 19.842 | 19.837 | 15.080 | 2.3 | 1.5 | 58 500 | 69 000 | 5 950 | 7 050 | 4 500 | 6 300 | | | 82.931 | 23.812 | 25.400 | 19.050 | 2.3 | 0.8 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 82.931 | 26.988 | 25.400 | 22.225 | 2.3 | 2.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | 42.875 | 76.200 | 25.400 | 25.400 | 20.638 | 3.5 | 1.5 | 77 000 | 98 500 | 7 850 | 10 000 | 4 800 | 6 300 | | | 80.000 | 21.000 | 22.403 | 17.826 | 3.5 | 1.3 | 68 500 | 75 500 | 6 950 | 7 700 | 4 500 | 6 300 | | | 82.931 | 26.988 | 25.400 | 22.225 | 3.5 | 2.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 83.058 | 23.812 | 25.400 | 19.050 | 3.5 | 3.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | 43.000 | 74.988 | 19.368 | 19.837 | 14.288 | 1.5 | 1.3 | 52 500 | 68 000 | 5 350 | 6 900 | 4 800 | 6 300 | | 44.450 | 80.962 | 19.050 | 17.462 | 14.288 | 0.3 | 1.5 | 45 000 | 57 000 | 4 600 | 5 800 | 4 300 | 6 000 | | | 82.931 | 23.812 | 25.400 | 19.050 | 3.5 | 0.8 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 83.058 | 23.812 | 25.400 | 19.050 | 3.5 | 3.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 87.312 | 30.162 | 30.886 | 23.812 | 3.5 | 3.3 | 96 000 | 120 000 | 9 800 | 12 200 | 4 300 | 6 000 | | | 88.900 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 96 500 | 129 000 | 9 800 | 13 200 | 4 000 | 5 600 | | | 93.264 | 30.162 | 30.302 | 23.812 | 3.5 | 3.2 | 103 000 | 136 000 | 10 500 | 13 900 | 3 800 | 5 300 | | | 93.662 | 31.750 | 31.750 | 25.400 | 0.8 | 3.3 | 120 000 | 147 000 | 12 200 | 15 000 | 4 000 | 5 600 | | | 93.662 | 31.750 | 31.750 | 25.400 | 3.5 | 3.3 | 120 000 | 147 000 | 12 200 | 15 000 | 4 000 | 5 600 | | | 93.662 | 31.750 | 31.750 | 26.195 | 3.5 | 3.3 | 110 000 | 142 000 | 11 200 | 14 400 | 4 000 | 5 600 | | | 95.250 | 27.783 | 29.901 | 22.225 | 3.5 | 2.3 | 106 000 | 126 000 | 10 800 | 12 900 | 4 300 | 5 600 | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ $F_{\rm a}/F_{\rm r} \leq e$ $F_{\rm a}/F_{\rm r} > e$ X YX ### 1 0 0.4 Y_1 ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$, use $P_0 = F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearin | ng Numbers | Al | outment | | | nsions | | Eff. Load Constant
Centers | | | Load | Ma | | |-----------------------------------|----------------------------------|----------------------------|--------------------|----------------------|----------------------|--------------------------|--------------------------|-------------------------------|------------------------------|--------------------------|----------------------------|--------------|----------------------------------| | CONE | CUP | $d_{\scriptscriptstyle a}$ | d_{b} | (mm) $D_{\rm a}$ | $D_{ m b}$ | Cone | | (mm) | | | tors Y_0 | (k | _ | | CONE | 001 | u _a | $u_{\rm b}$ | D _a | D_{b} | r _a
max | | а | e | Y_1 | 10 | appi
CONE | CUP | | 11162 | 11300 | 49 | 46.5 | 67 | 71 | 1.5 | 1.5 | 17.4 | 0.49 | 1.2 | 0.68 | 0.212 | 0.129 | | 24780 | 24720 | 53 | 47.5 | 68 | 72 | 3.5 | 0.8 | 17.0 | 0.39 | 1.5 | 0.84 | 0.279 | 0.15 | | 24780 | 24721 | 54 | 47 | 66 | 72 | 3.5 | 2.3 | 20.2 | 0.39 | 1.5 | 0.84 | 0.279 | 0.189 | | 26882 | 26822 | 54 | 47 | 71 | 74 | 3.5 | 0.8 | 16.4 | 0.32 | 1.9 | 1.0 | 0.349 | 0.186 | | 336 | 332 | 47 | 46 | 73 | 75 | 0.8 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.325 | 0.146 | | 342 | 332 | 53 | 46 | 73 | 75 | 3.5 | 1.3 | 14.5 | 0.27 | 2.2 | 1.2 | 0.323 | 0.146 | | 26882 | 26820 | 54 | 47 | 69 | 74 | 3.5 | 3.3 | 18.0 | 0.32 | 1.9 | 1.0 | | 0.219 | | M 802048 | M 802011 | 57 | 51 | 70 | 79 | 3.5 | 3.3 | 22.9 | 0.55 | 1.1 | 0.60 | | 0.23 | | 3877 | 3820 | 57 | 50 | 73 | 81 | 3.5 | 3.3 | 21.8 | 0.40 | 1.5 | 0.82 | | 0.285 | | 3576 | 3525 | 49 | 48 | 75 | 81 | 0.8 | 3.3 | 19.5 | 0.31 | 2.0 | 1.1 | | 0.304 | | 44162 | 44348 | 57 | 51 | 75 | 84 | 2.3 | 1.5 | 28.0 | 0.78 | 0.77 | 0.42 | | 0.245 | | HM 803146 | HM 803110 | 60 | 53 | 74 | 85 | 3.5 | 3.3 | 25.6 | 0.55 | 1.1 | 0.60 | | 0.322 | | HM 803145 | HM 803110 | 54 | 53 | 74 | 85 | 0.8 | 3.3 | 25.6 | 0.55 | 1.1 | 0.60 | | 0.322 | | 4388 | 4335 | 57 | 51 | 77 | 85 | 3.5 | 3.3 | 24.6 | 0.28 | 2.1 | 1.2 | | 0.459 | | 46162 | 46368 | 52 | 51 | 79 | 87 | 0.8 | 3.3 | 24.0 | 0.40 | 1.5 | 0.82 | | 0.405 | | HM 804840 | HM 804810 | 61 | 54 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | | 0.354 | | 53162 | 53387 | 57 | 53 | 82 | 91 | 1.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | | 0.442 | | 12168 | 12303 | 51 | 48.5 | 68 | 73 | 1.5 | 1.5 | 17.7 | 0.51 | 1.2 | 0.65 | 0.228 | 0.098 | | 22168 | 22325 | 52 | 48.5 | 73 | 76 | 2.3 | 1.5 | 17.6 | 0.43 | 1.4 | 0.77 | 0.283 | 0.176 | | 25578 | 25520 | 53 | 49.5 | 74 | 77 | 2.3 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.383 | 0.203 | | 25578 | 25523 | 53 | 49.5 | 72 | 77 | 2.3 | 2.3 | 20.8 | 0.33 | 1.8 | 0.99 | 0.383 | 0.248 | | 26884
342 \$
25577
25577 | 26823
S 332
25523
25521 | 55
54
55
55 | 48.5
47.5
49 | 69
73
72
72 | 73
75
77
77 | 3.5
3.5
3.5
3.5 | 1.5
1.3
2.3
3.3 | 18.0
14.5
20.8
17.6 | 0.32
0.27
0.33
0.33 | 1.9
2.2
1.8
1.8 | 1.0
1.2
0.99
0.99 | | 0.136
0.146
0.248
0.201 | | * 16986 | 16929 | 51 | 48.5 | 67 | 71 | 1.5 | 1.3 | 17.2 | 0.44 | 1.4 | 0.74 | 0.24 | 0.106 | | 13175 | 13318 | 50 | 50 | 72 | 76 | 0.3 | 1.5 | 20.1 | 0.53 | 1.1 | 0.63 | 0.252 | 0.144 | | 25580 | 25520 | 57 | 50 | 74 | 77 | 3.5 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.359 | 0.203 | | 25580 | 25521 | 56 | 51 | 72 | 78 | 3.5 | 3.3 | 17.6 | 0.33 | 1.8 | 0.99 | 0.359 | 0.201 | | 3578 | 3525 | 57 | 51 | 75 | 81 | 3.5 | 3.3 | 19.5 | 0.31 | 2.0 | 1.1 | 0.477 | 0.304 | | HM 803149 | HM 803110 | 62 | 53 | 74 | 85 | 3.5 | 3.3 | 25.6 | 0.55 | 1.1 | 0.60 | 0.528 | 0.322 | | 3782 | 3720 | 58 | 52 | 82 | 88 | 3.5 | 3.2 | 22.4 | 0.34 | 1.8 | 0.97 | 0.678 | 0.292 | | 49176 | 49368 | 54 | 53 | 82 | 87 | 0.8 | 3.3 | 21.6 | 0.36 | 1.7 | 0.92 | 0.648 | 0.371 | | 49175 | 49368 | 59 | 53 | 82 | 87 | 3.5 | 3.3 | 21.6 | 0.36 | 1.7 | 0.92 | 0.645 | 0.371 | | 46176 | 46368 | 60 | 54 | 79 | 87 | 3.5 | 3.3 | 24.0 | 0.40 | 1.5 | 0.82 | 0.635 | 0.405 | | 438 | 432 | 57 | 51 | 83 | 87 | 3.5 | 2.3 | 18.6 | 0.28 | 2.1 | 1.2 | 0.555 | 0.384 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). B 147 B 146 ### Bore Diameter 44.450 – 47.625 mm | | Boundary Dimensions
(mm)
Cone | | | | | | | ad Ratings | £) | Limiting | | | |--------|-------------------------------------|--------|--------|--------|----------------------|-----|------------|----------------|--|-----------------------|----------------|-------| | d | D | T | В | С | Cone Cup $m{r}$ min. | | $C_{ m r}$ | N) $C_{0 m
r}$ | $C_{ m r}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | gf} $C_{0\mathrm{r}}$ | (mir
Grease | Oil | | 44.450 | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | | 95.250 | 30.958 | 28.301 | 20.638 | 3.5 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | | 95.250 | 30.958 | 28.301 | 20.638 | 1.3 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | | 95.250 | 30.958 | 28.301 | 20.638 | 2.0 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | | 95.250 | 30.958 | 28.301 | 22.225 | 1.3 | 0.8 | 100 000 | 122 000 | 10 200 | 12 500 | 3 600 | 5 000 | | | 95.250 | 30.958 | 28.575 | 22.225 | 3.5 | 0.8 | 100 000 | 122 000 | 10 200 | 12 500 | 3 600 | 5 000 | | | 98.425 | 30.958 | 28.301 | 20.638 | 3.5 | 0.8 | 87 500 | 97 000 | 8 950 | 9 850 | 3 600 | 5 300 | | | 103.188 | 43.658 | 44.475 | 36.512 | 1.3 | 3.3 | 178 000 | 238 000 | 18 100 | 24 300 | 3 800 | 5 000 | | | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 3.3 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | | 107.950 | 27.783 | 29.317 | 22.225 | 3.5 | 0.8 | 116 000 | 149 000 | 11 800 | 15 200 | 3 400 | 4 800 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | | | 114.300 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 172 000 | 205 000 | 17 500 | 20 900 | 3 600 | 4 800 | | 44.983 | 82.931 | 23.812 | 25.400 | 19.050 | 1.5 | 0.8 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | 45.000 | 93.264 | 20.638 | 22.225 | 15.082 | 0.8 | 1.3 | 77 000 | 93 000 | 7 900 | 9 500 | 3 800 | 5 300 | | 45.230 | 79.985 | 19.842 | 20.638 | 15.080 | 2.0 | 1.3 | 62 000 | 78 500 | 6 300 | 8 000 | 4 500 | 6 000 | | 45.242 | 73.431 | 19.558 | 19.812 | 15.748 | 3.5 | 0.8 | 53 500 | 75 000 | 5 450 | 7 650 | 4 800 | 6 300 | | | 77.788 | 19.842 | 19.842 | 15.080 | 3.5 | 0.8 | 56 000 | 71 000 | 5 700 | 7 250 | 4 500 | 6 300 | | | 77.788 | 21.430 | 19.842 | 16.667 | 3.5 | 0.8 | 56 000 | 71 000 | 5 700 | 7 250 | 4 500 | 6 300 | | 45.618 | 82.931 | 23.812 | 25.400 | 19.050 | 3.5 | 0.8 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | | 82.931 | 26.988 | 25.400 | 22.225 | 3.5 | 2.3 | 76 500 | 99 000 | 7 800 | 10 100 | 4 500 | 6 000 | | 46.000 | 75.000 | 18.000 | 18.000 | 14.000 | 2.3 | 1.5 | 51 000 | 71 500 | 5 200 | 7 300 | 4 500 | 6 300 | | 46.038 | 79.375 | 17.462 | 17.462 | 13.495 | 2.8 | 1.5 | 46 000 | 57 000 | 4 700 | 5 800 | 4 500 | 6 000 | | | 80.962 | 19.050 | 17.462 | 14.288 | 0.8 | 1.5 | 45 000 | 57 000 | 4 600 | 5 800 | 4 300 | 6 000 | | | 85.000 | 20.638 | 21.692 | 17.462 | 2.3 | 1.3 | 71 500 | 81 500 | 7 300 | 8 300 | 4 300 | 6 000 | | | 85.000 | 25.400 | 25.608 | 20.638 | 3.5 | 1.3 | 79 500 | 105 000 | 8 100 | 10 700 | 4 300 | 6 000 | | | 95.250 | 27.783 | 29.901 | 22.225 | 3.5 | 0.8 | 106 000 | 126 000 | 10 800 | 12 900 | 4 300 | 5 600 | | 47.625 | 88.900 | 20.638 | 22.225 | 16.513 | 3.5 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 88.900 | 25.400 | 25.400 | 19.050 | 3.5 | 3.3 | 86 000 | 107 000 | 8 750 | 10 900 | 4 000 | 5 600 | | | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | | 101.600 | 34.925 | 36.068 | 26.988 | 3.5 | 3.3 | 137 000 | 169 000 | 14 000 | 17 200 | 3 800 | 5 000 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | | | 112.712 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | | | 117.475 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 137 000 | 156 000 | 13 900 | 15 900 | 3 200 | 4 300 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | ### Dynamic Equivalent Load ### Static Equivalent Load $P_0=0.5F_r+Y_0F_a$ When $F_r>0.5F_r+Y_0F_a$, use $P_0=F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing N | lumbers | A | outmen | t and Fille
(mm | | | | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | | ass
(g) | |-------------|--------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------|-----|----------------------|----------|--------------|--------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | Cone
r
ma | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | HM 804843 | HM 804810 | 63 | 57 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.677 | 0.354 | | 53177 | 53375 | 63 | 53 | 81 | 89 | 3.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.572 | 0.365 | | 53176 | 53375 | 59 | 53 | 81 | 89 | 1.3 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.574 | 0.365 | | 53178 | 53375 | 60 | 53 | 81 | 89 | 2 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.574 | 0.365 | | HM 903247 | HM 903210 | 61 | 54 | 81 | 91 | 1.3 | 0.8 | 31.5 | 0.74 | 0.81 | 0.45 | 0.651 | 0.389 | | HM 903249 | HM 903210 | 65 | 54 | 81 | 91 | 3.5 | 0.8 | 31.5 | 0.74 | 0.81 | 0.45 | 0.635 | 0.389 | | 53177 | 53387 | 63 | 53 | 82 | 91 | 3.5 | 0.8 | 30.7 | 0.74 | 0.81 | 0.45 | 0.568 | 0.442 | | 5356 | 5335 | 58 | 56 | 89 | 97 | 1.3 | 3.3 | 27.0 | 0.30 | 2.0 | 1.1 | 1.23 | 0.637 | | HM 807040 | HM 807010 | 66 | 59 | 89 | 100 | 3.5 | 3.3 | 29.7 | 0.49 | 1.2 | 0.68 | 1.14 | 0.502 | | 460 | 453 A | 60 | 54 | 97 | 100 | 3.5 | 0.8 | 20.7 | 0.34 | 1.8 | 0.98 | 0.93 | 0.42 | | 55175 | 55437 | 67 | 60 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.867 | 0.514 | | 65385 | 65320 | 65 | 59 | 97 | 107 | 3.5 | 3.3 | 32.2 | 0.43 | 1.4 | 0.77 | 1.39 | 0.894 | | 25584 | 25520 | 53 | 51 | 74 | 77 | 1.5 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.354 | 0.203 | | 376 | 374 | 54 | 54 | 85 | 88 | 0.8 | 1.3 | 17.1 | 0.34 | 1.8 | 0.97 | 0.492 | 0.174 | | 17887 | 17831 | 57 | 52 | 68 | 74 | 2 | 1.3 | 15.9 | 0.37 | 1.6 | 0.90 | 0.274 | 0.136 | | LM 102949 | LM 102910 | 56 | 50 | 68 | 70 | 3.5 | 0.8 | 14.6 | 0.31 | 2.0 | 1.1 | 0.213 | 0.102 | | LM 603049 | LM 603011 | 57 | 50 | 71 | 74 | 3.5 | 0.8 | 17.2 | 0.43 | 1.4 | 0.77 | 0.249 | 0.119 | | LM 603049 | LM 603012 | 57 | 50 | 70 | 74 | 3.5 | 0.8 | 18.8 | 0.43 | 1.4 | 0.77 | 0.249 | 0.137 | | 25590 | 25520 | 58 | 51 | 74 | 77 | 3.5 | 0.8 | 17.6 | 0.33 | 1.8 | 0.99 | 0.343 | 0.203 | | 25590 | 25523 | 58 | 51 | 72 | 77 | 3.5 | 2.3 | 20.8 | 0.33 | 1.8 | 0.99 | 0.343 | 0.248 | | * LM 503349 | ** LM 503310 | 55 | 51 | 67 | 71 | 2.3 | 1.5 | 15.9 | 0.40 | 1.5 | 0.82 | 0.209 | 0.096 | | 18690 | 18620 | 56 | 51 | 71 | 74 | 2.8 | 1.5 | 15.5 | 0.37 | 1.6 | 0.88 | 0.211 | 0.126 | | 13181 | 13318 | 52 | 52 | 72 | 76 | 0.8 | 1.5 | 20.1 | 0.53 | 1.1 | 0.63 | 0.236 | 0.144 | | 359 S | 354 A | 55 | 51 | 77 | 80 | 2.3 | 1.3 | 15.4 | 0.31 | 2.0 | 1.1 | 0.343 | 0.162 | | 2984 | 2924 | 58 | 52 | 76 | 80 | 3.5 | 1.3 | 19.0 | 0.35 | 1.7 | 0.95 | 0.397 | 0.223 | | 436 | 432 A | 59 | 52 | 84 | 87 | 3.5 | 0.8 | 18.6 | 0.28 | 2.1 | 1.2 | 0.536 | 0.381 | | 369 A | 362 A | 60 | 53 | 81 | 84 | 3.5 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.381 | 0.166 | | M 804049 | M 804010 | 63 | 56 | 77 | 85 | 3.5 | 3.3 | 23.8 | 0.55 | 1.1 | 0.60 | 0.455 | 0.218 | | HM 804846 | HM 804810 | 66 | 57 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.626 | 0.354 | | 528 | 522 | 62 | 55 | 89 | 95 | 3.5 | 3.3 | 22.1 | 0.29 | 2.1 | 1.2 | 0.894 | 0.416 | | 55187 | 55437 | 69 | 62 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.817 | 0.514 | | 55187 | 55443 | 69 | 62 | 92 | 106 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.816 | 0.554 | | 66187 | 66462 | 66 | 62 | 100 | 111 | 3.5 | 3.3 | 32.1 | 0.63 | 0.96 | 0.53 | 1.19 | 0.552 | | 72187 | 72487 | 72 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.29 | 0.79 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). # Bore Diameter 48.412 – 52.388 mm | Boundary Dimensions (mm) | | | | | | | | | d Ratings | | Limiting | | |--------------------------|--------------------|------------------|------------------|------------------|----------------|-----|--------------------|--------------------|------------------|-------------------|----------------|----------------| | , | _ | , | , | ~ | | | | N) | | gf} | (mir | , | | d | D | T | В | C | <i>I</i>
mi | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 48.412 | 95.250 | 30.162 | 29.370 | 23.020 | 3.5 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | | 95.250 | 30.162 | 29.370 | 23.020 | 2.3 | 3.3 | 106 000 | 143 000 | 10 800 | 14 500 | 3 800 | 5 300 | | 49.212 | 104.775
114.300 | 36.512
44.450 | 36.512
44.450 | 28.575
36.068 | 3.5
3.5 | 0.8 | 139 000
196 000 | 192 000
243 000 | 14 200
20 000 | 19 600
24 800 | 3 400
3 400 | 4 800
4 800 | | 50.000 | 82.000 | 21.500 | 21.500 | 17.000 | 3.0 | 0.5 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 82.550 | 21.590 | 22.225 | 16.510 | 0.5 | 1.3 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 88.900 | 20.638 | 22.225 | 16.513 | 2.3 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 90.000 | 28.000 | 28.000 | 23.000 | 3.0 | 2.5 | 104 000 | 136 000 | 10 600 | 13 900 | 4 000 | 5 600 | | | 105.000 | 37.000 | 36.000 | 29.000 | 3.0 | 2.5 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | 50.800 | 80.962 | 18.258 | 18.258 | 14.288 | 1.5 | 1.5 | 53 000 | 81 000 | 5 400 | 8 250 | 4 300 | 5 600 | | | 82.550 | 23.622 | 22.225 | 18.542 | 3.5 | 0.8 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 82.931 | 21.590 | 22.225 | 16.510 | 3.5 | 1.3 | 71 000 | 96 000 | 7 250 | 9 800 | 4 300 | 5 600 | | | 85.000 | 17.462 | 17.462 | 13.495 | 3.5 | 1.5 | 48 500 | 63 000 | 4 950 | 6 450 | 4 300 | 5 600 | | | 85.725 | 19.050 | 18.263 | 12.700 | 1.5 | 1.5 | 42 500 | 54 000 | 4 350 | 5 500 | 4 000 | 5 300 | |
| 88.900 | 20.638 | 22.225 | 16.513 | 3.5 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 88.900 | 20.638 | 22.225 | 16.513 | 1.5 | 1.3 | 73 000 | 85 000 | 7 450 | 8 650 | 4 000 | 5 600 | | | 92.075 | 24.608 | 25.400 | 19.845 | 3.5 | 0.8 | 84 500 | 117 000 | 8 600 | 11 900 | 4 000 | 5 300 | | | 93.264 | 30.162 | 30.302 | 23.812 | 0.8 | 0.8 | 103 000 | 136 000 | 10 500 | 13 900 | 3 800 | 5 300 | | | 93.264 | 30.162 | 30.302 | 23.812 | 3.5 | 0.8 | 103 000 | 136 000 | 10 500 | 13 900 | 3 800 | 5 300 | | | 95.250 | 27.783 | 28.575 | 22.225 | 3.5 | 2.3 | 110 000 | 144 000 | 11 200 | 14 700 | 3 800 | 5 300 | | | 101.600 | 31.750 | 31.750 | 25.400 | 3.5 | 3.3 | 118 000 | 150 000 | 12 100 | 15 200 | 3 600 | 5 000 | | | 101.600 | 34.925 | 36.068 | 26.988 | 0.8 | 3.3 | 137 000 | 169 000 | 14 000 | 17 200 | 3 800 | 5 000 | | | 101.600 | 34.925 | 36.068 | 26.988 | 3.5 | 3.3 | 137 000 | 169 000 | 14 000 | 17 200 | 3 800 | 5 000 | | | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 0.8 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | | 104.775 | 36.512 | 36.512 | 28.575 | 3.5 | 3.3 | 139 000 | 192 000 | 14 200 | 19 600 | 3 400 | 4 800 | | | 108.966 | 34.925 | 36.512 | 26.988 | 3.5 | 3.3 | 145 000 | 181 000 | 14 700 | 18 500 | 3 600 | 4 800 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 113 000 | 152 000 | 11 500 | 15 400 | 3 000 | 4 300 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | | | 127.000 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 199 000 | 258 000 | 20 200 | 26 300 | 3 000 | 4 000 | | | 127.000 | 50.800 | 52.388 | 41.275 | 3.5 | 3.3 | 236 000 | 300 000 | 24 000 | 31 000 | 3 200 | 4 300 | | 52.388 | 92.075 | 24.608 | 25.400 | 19.845 | 3.5 | 0.8 | 84 500 | 117 000 | 8 600 | 11 900 | 4 000 | 5 300 | | | 100.000 | 25.000 | 22.225 | 21.824 | 2.3 | 2.0 | 77 000 | 93 000 | 7 900 | 9 500 | 3 800 | 5 300 | | | 111.125 | 30.162 | 26.909 | 20.638 | 3.5 | 3.3 | 92 500 | 110 000 | 9 450 | 11 200 | 3 200 | 4 300 | Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | | |---------------|------------|---------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | 0 | 0.4 | Y ₁ | | | Static Equivalent Load given in the table below. $P_0=0.5\,F_{\rm r}+Y_0\,F_{\rm a}$ When $F_{\rm r}>0.5\,F_{\rm r}+Y_0\,F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are | Bearing Nu | umbers | A | butmen | t and Fill
(mm | | | Cun | Eff. Load
Centers | Constant | | Load
tors | | ass
(g) | |---------------|--------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------|-----|----------------------|----------|-------|--------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | Cone
r a
max | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | HM 804849 | HM 804810 | 66 | 57 | 81 | 91 | 3.5 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.61 | 0.354 | | HM 804848 | HM 804810 | 63 | 57 | 81 | 91 | 2.3 | 3.3 | 26.1 | 0.55 | 1.1 | 0.60 | 0.614 | 0.354 | | HM 807044 | HM 807011 | 69 | 63 | 91 | 100 | 3.5 | 0.8 | 29.7 | 0.49 | 1.2 | 0.68 | 1.03 | 0.508 | | HH 506348 | HH 506310 | 71 | 61 | 97 | 107 | 3.5 | 3.3 | 30.8 | 0.40 | 1.5 | 0.82 | 1.43 | 0.837 | | ▲ JLM 104948 | ▲ JLM 104910 | 60 | 55 | 76 | 78 | 3 | 0.5 | 16.1 | 0.31 | 2.0 | 1.1 | 0.306 | 0.129 | | * LM 104947 A | LM 104911 | 55 | 55 | 75 | 78 | 0.5 | 1.3 | 15.7 | 0.31 | 2.0 | 1.1 | 0.316 | 0.133 | | 366 | 362 A | 59 | 55 | 81 | 84 | 2.3 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.351 | 0.166 | | ▲ JM 205149 | ▲ JM 205110 | 62 | 57 | 80 | 85 | 3 | 2.5 | 19.9 | 0.33 | 1.8 | 1.0 | 0.507 | 0.246 | | ▲ JHM 807045 | ▲ JHM 807012 | 69 | 63 | 90 | 100 | | 2.5 | 29.7 | 0.49 | 1.2 | 0.68 | 1.01 | 0.523 | | L 305649 | L 305610 | 58 | 56 | 73 | 77 | 1.5 | 1.5 | 15.7 | 0.36 | 1.7 | 0.93 | 0.239 | 0.119 | | LM 104949 | LM 104911 A | 62 | 55 | 75 | 78 | 3.5 | 0.8 | 17.8 | 0.31 | 2.0 | 1.1 | 0.303 | 0.156 | | LM 104949 | LM 104912 | 62 | 55 | 75 | 78 | 3.5 | 1.3 | 15.7 | 0.31 | 2.0 | 1.1 | 0.301 | 0.14 | | 18790 | 18720 | 62 | 56 | 77 | 80 | 3.5 | 1.5 | 16.7 | 0.41 | 1.5 | 0.81 | 0.239 | 0.136 | | 18200 | 18337 | 59 | 56 | 76 | 81 | 1.5 | 1.5 | 21.0 | 0.57 | 1.1 | 0.58 | 0.268 | 0.136 | | 368 A | 362 A | 62 | 56 | 81 | 84 | 3.5 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.338 | 0.166 | | 368 | 362 A | 58 | 56 | 81 | 84 | 1.5 | 1.3 | 16.6 | 0.32 | 1.9 | 1.0 | 0.341 | 0.166 | | 28580 | 28521 | 63 | 57 | 83 | 87 | 3.5 | 0.8 | 20.0 | 0.38 | 1.6 | 0.87 | 0.46 | 0.247 | | 3775 | 3730 | 58 | 58 | 84 | 88 | 0.8 | 0.8 | 22.4 | 0.34 | 1.8 | 0.97 | 0.568 | 0.297 | | 3780 | 3730 | 64 | 58 | 84 | 88 | 3.5 | 0.8 | 22.4 | 0.34 | 1.8 | 0.97 | 0.564 | 0.297 | | 33889 | 33821 | 64 | 58 | 85 | 90 | 3.5 | 2.3 | 19.8 | 0.33 | 1.8 | 1.0 | 0.601 | 0.267 | | 49585 | 49520 | 66 | 59 | 88 | 96 | 3.5 | 3.3 | 23.4 | 0.40 | 1.5 | 0.82 | 0.744 | 0.389 | | 529 | 522 | 59 | 58 | 89 | 95 | 0.8 | 3.3 | 22.1 | 0.29 | 2.1 | 1.2 | 0.822 | 0.416 | | 529 X | 522 | 65 | 58 | 89 | 95 | 3.5 | 3.3 | 22.1 | 0.29 | 2.1 | 1.2 | 0.819 | 0.416 | | HM 807046 | HM 807011 | 70 | 63 | 91 | 100 | 3.5 | 0.8 | 29.7 | 0.49 | 1.2 | 0.68 | 0.992 | 0.508 | | HM 807046 | HM 807010 | 70 | 63 | 89 | 100 | 3.5 | 3.3 | 29.7 | 0.49 | 1.2 | 0.68 | 0.993 | 0.502 | | 59200 | 59429 | 68 | 61 | 93 | 101 | 3.5 | 3.3 | 25.4 | 0.40 | 1.5 | 0.82 | 0.943 | 0.594 | | 55200 C | 55437 | 71 | 65 | 92 | 105 | 3.5 | 3.3 | 37.6 | 0.88 | 0.68 | 0.37 | 0.845 | 0.514 | | 55200 | 55437 | 71 | 64 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.767 | 0.514 | | 72200 C | 72487 | 77 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.33 | 0.79 | | 72200 | 72487 | 74 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.22 | 0.79 | | 65200 | 65500 | 75 | 69 | 107 | 119 | 3.5 | 3.3 | 35.0 | 0.49 | 1.2 | 0.68 | 1.86 | 1.03 | | 6279 | 6220 | 71 | 65 | 108 | 117 | 3.5 | 3.3 | 30.7 | 0.30 | 2.0 | 1.1 | 2.08 | 1.22 | | 28584 | 28521 | 65 | 58 | 83 | 87 | 3.5 | 0.8 | 20.0 | 0.38 | 1.6 | 0.87 | 0.435 | 0.247 | | 377 | 372 | 62 | 58 | 86 | 90 | 2.3 | 2 | 21.4 | 0.34 | 1.8 | 0.97 | 0.392 | 0.435 | | 55206 | 55437 | 72 | 64 | 92 | 105 | 3.5 | 3.3 | 37.3 | 0.88 | 0.68 | 0.37 | 0.737 | 0.514 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. # Bore Diameter 53.975 – 58.738 mm | | | | Dimension | S | | | | Basic Loa | 0 | | Limiting | • | |--------|---------|--------|-----------|--------|-----------------|-----|------------|-------------------|------------|-------------------|----------|-------------------| | | | (m | nm) | | Cone | Cup | (| N) | {k | gf} | (mir | ı ⁻¹) | | d | D | T | В | С | <i>r</i>
mir | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 53.975 | 104.775 | 39.688 | 40.157 | 33.338 | 3.5 | 3.3 | 148 000 | 207 000 | 15 100 | 21 100 | 3 600 | 4 800 | | | 107.950 | 36.512 | 36.957 | 28.575 | 3.5 | 3.3 | 144 000 | 182 000 | 14 700 | 18 500 | 3 600 | 4 800 | | | 122.238 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 135 000 | 156 000 | 13 800 | 15 900 | 3 000 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 127.000 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 199 000 | 258 000 | 20 200 | 26 300 | 3 000 | 4 000 | | | 127.000 | 50.800 | 52.388 | 41.275 | 3.5 | 3.3 | 236 000 | 300 000 | 24 000 | 31 000 | 3 200 | 4 300 | | | 130.175 | 36.512 | 33.338 | 23.812 | 3.5 | 3.3 | 133 000 | 154 000 | 13 600 | 15 700 | 2 600 | 3 600 | | 55.000 | 90.000 | 23.000 | 23.000 | 18.500 | 1.5 | 0.5 | 79 000 | 111 000 | 8 050 | 11 300 | 3 800 | 5 300 | | | 95.000 | 29.000 | 29.000 | 23.500 | 1.5 | 2.5 | 111 000 | 152 000 | 11 300 | 15 500 | 3 800 | 5 000 | | | 96.838 | 21.000 | 21.946 | 15.875 | 2.3 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | 110.000 | 39.000 | 39.000 | 32.000 | 3.0 | 2.5 | 177 000 | 225 000 | 18 000 | 23 000 | 3 400 | 4 500 | | | 115.000 | 41.021 | 41.275 | 31.496 | 3.0 | 3.0 | 172 000 | 214 000 | 17 500 | 21 800 | 3 200 | 4 500 | | 55.562 | 97.630 | 24.608 | 24.608 | 19.446 | 3.5 | 0.8 | 89 000 | 129 000 | 9 100 | 13 100 | 3 600 | 5 000 | | | 122.238 | 43.658 | 43.764 | 36.512 | 1.3 | 3.3 | 198 000 | 292 000 | 20 200 | 29 700 | 3 000 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 143 000 | 160 000 | 14 600 | 16 400 | 3 000 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | 57.150 | 96.838 | 21.000 | 21.946 | 15.875 | 3.5 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | 96.838 | 21.000 | 21.946 | 15.875 | 2.3 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | 96.838 | 25.400 | 21.946 | 20.275 | 3.5 | 2.3 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | 98.425 | 21.000 | 21.946 | 17.826 | 3.5 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | | 104.775 | 30.162 | 29.317 | 24.605 | 3.5 | 3.3 | 116 000 | 149 000 | 11 800 | 15 200 | 3 400 | 4 800 | | | 104.775 | 30.162 | 29.317 | 24.605 | 2.3 | 3.3 | 116 000 | 149 000 | 11 800 | 15 200 | 3 400 | 4 800 | | | 104.775 | 30.162 | 30.958 | 23.812 | 0.8 | 3.3 | 130 000 | 170 000 | 13 300 | 17 400 | 3 400 | 4 800 | | | 104.775 | 30.162 | 30.958
| 23.812 | 0.8 | 0.8 | 130 000 | 170 000 | 13 300 | 17 400 | 3 400 | 4 800 | | | 122.238 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 135 000 | 156 000 | 13 800 | 15 900 | 3 000 | 4 000 | | | 123.825 | 36.512 | 32.791 | 25.400 | 3.5 | 3.3 | 162 000 | 199 000 | 16 500 | 20 300 | 2 800 | 4 000 | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 140.030 | 36.512 | 33.236 | 23.520 | 3.5 | 2.3 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | 144.983 | 36.000 | 33.236 | 23.007 | 3.5 | 3.5 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | 149.225 | 53.975 | 54.229 | 44.450 | 3.5 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | 57.531 | 96.838 | 21.000 | 21.946 | 15.875 | 3.5 | 0.8 | 80 500 | 100 000 | 8 200 | 10 200 | 3 600 | 5 000 | | 58.738 | 112.712 | 33.338 | 30.048 | 26.988 | 3.5 | 3.3 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | ### Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 \, F_{\rm a}$ When $F_{\rm r} > 0.5F_{\rm r} + Y_0 \, F_{\rm a}$, use $P_0 = F_{\rm r}$ The values of \emph{e}_{\imath} \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | Bearing No | umbers | A | butmen | t and Fill
(mm | | | | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | | ass
(g) | |-------------|-------------|-------------------------------|-------------------------------|-------------------|-------------------------------|--------------------------|-----|----------------------|----------|--------------|--------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{\scriptscriptstyle m b}$ | Cone
r a
ma | a | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | 4595 | 4535 | 70 | 63 | 90 | 99 | 3.5 | 3.3 | 27.4 | 0.34 | 1.79 | 0.98 | 0.989 | 0.589 | | 539 | 532 X | 68 | 61 | 94 | 100 | 3.5 | 3.3 | 24.3 | 0.30 | 2.0 | 1.1 | 0.88 | 0.57 | | 66584 | 66520 | 75 | 68 | 105 | 116 | 3.5 | 3.3 | 34.3 | 0.67 | 0.90 | 0.50 | 1.2 | 0.558 | | 72212 | 72487 | 77 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.16 | 0.79 | | 72212 C | 72487 | 79 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.27 | 0.79 | | 557 S | 552 A | 71 | 65 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.49 | 0.764 | | 65212 | 65500 | 77 | 71 | 107 | 119 | 3.5 | 3.3 | 35.0 | 0.49 | 1.2 | 0.68 | 1.76 | 1.03 | | 6280 | 6220 | 74 | 67 | 108 | 117 | 3.5 | 3.3 | 30.7 | 0.30 | 2.0 | 1.1 | 1.97 | 1.22 | | HM911242 | HM911210 | 79 | 74 | 109 | 124 | 3.5 | 3.3 | 42.2 | 0.82 | 0.73 | 0.40 | 1.45 | 0.725 | | ▲ JLM506849 | ▲ JLM506810 | 63 | 61 | 82 | 86 | 1.5 | 0.5 | 19.7 | 0.40 | 1.5 | 0.82 | 0.378 | 0.186 | | ▲ JM207049 | ▲ JM207010 | 64 | 62 | 85 | 91 | 1.5 | 2.5 | 21.3 | 0.33 | 1.8 | 0.99 | 0.59 | 0.26 | | 385 | 382 A | 65 | 61 | 89 | 92 | 2.3 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.455 | 0.179 | | ▲ JH307749 | ▲ JH307710 | 71 | 64 | 97 | 104 | 3 | 2.5 | 27.2 | 0.35 | 1.7 | 0.95 | 1.13 | 0.567 | | 622 X | 614 X | 70 | 64 | 101 | 108 | | 3 | 26.6 | 0.31 | 1.9 | 1.1 | 1.3 | 0.597 | | 28680 | 28622 | 68 | 62 | 88 | 92 | 3.5 | 0.8 | 21.3 | 0.40 | 1.5 | 0.82 | 0.499 | 0.27 | | 5566 | 5535 | 70 | 68 | 106 | 116 | 1.3 | 3.3 | 29.9 | 0.36 | 1.7 | 0.92 | 1.76 | 0.815 | | 72218 | 72487 | 78 | 66 | 102 | 116 | 3.5 | 3.3 | 37.0 | 0.74 | 0.81 | 0.45 | 1.12 | 0.79 | | 72218 C | 72487 | 80 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.23 | 0.79 | | 387 A | 382 A | 69 | 62 | 89 | 92 | 3.5 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.42 | 0.179 | | 387 | 382 A | 66 | 62 | 89 | 92 | 2.3 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.423 | 0.179 | | 387 A | 382 S | 69 | 62 | 87 | 91 | 3.5 | 2.3 | 22.0 | 0.35 | 1.7 | 0.93 | 0.42 | 0.249 | | 387 A | 382 | 69 | 62 | 90 | 92 | 3.5 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.42 | 0.226 | | 469 | 453 X | 70 | 63 | 92 | 98 | 3.5 | 3.3 | 23.1 | 0.34 | 1.8 | 0.98 | 0.692 | 0.376 | | 462 | 453 X | 67 | 63 | 92 | 98 | 2.3 | 3.3 | 23.1 | 0.34 | 1.8 | 0.98 | 0.694 | 0.376 | | 45289 | 45220 | 65 | 65 | 93 | 99 | 0.8 | 3.3 | 21.9 | 0.33 | 1.8 | 0.99 | 0.752 | 0.347 | | 45289 | 45221 | 65 | 65 | 95 | 99 | 0.8 | 0.8 | 21.9 | 0.33 | 1.8 | 0.99 | 0.76 | 0.35 | | 66587 | 66520 | 77 | 71 | 105 | 116 | 3.5 | 3.3 | 34.3 | 0.67 | 0.90 | 0.50 | 1.14 | 0.558 | | 72225 C | 72487 | 81 | 67 | 102 | 116 | 3.5 | 3.3 | 38.0 | 0.74 | 0.81 | 0.45 | 1.19 | 0.79 | | 555 S | 552 A | 83 | 68 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.41 | 0.764 | | 78225 | 78551 | 83 | 77 | 117 | 132 | 3.5 | 2.3 | 44.2 | 0.87 | 0.69 | 0.38 | 1.67 | 0.926 | | 78225 | 78571 | 83 | 77 | 118 | 132 | 3.5 | 3.5 | 43.6 | 0.87 | 0.69 | 0.38 | 1.68 | 1.08 | | 6455 | 6420 | 81 | 75 | 129 | 140 | 3.5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 3.49 | 1.63 | | 388 A | 382 A | 69 | 63 | 89 | 92 | 3.5 | 0.8 | 17.6 | 0.35 | 1.7 | 0.93 | 0.416 | 0.179 | | 3981 | 3926 | 73 | 67 | 98 | 106 | 3.5 | | 28.7 | 0.40 | 1.5 | 0.82 | 0.899 | 0.541 | # Bore Diameter 60.000 – 64.963 mm | | | | Dimension | S | | | | Basic Load | 0 | | Limiting | • | |--------|---------|--------|-----------|--------|-----------------|-----|------------|-------------------|------------|-------------------|----------|-------| | | | , | nm) | | Cone | Cup | 1) | V) | {k | gf} | (mir | , | | d | D | T | В | С | <i>T</i>
mir | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 60.000 | 95.000 | 24.000 | 24.000 | 19.000 | 5.0 | 2.5 | 86 500 | 125 000 | 8 800 | 12 800 | 3 600 | 5 000 | | | 104.775 | 21.433 | 22.000 | 15.875 | 2.3 | 2.0 | 83 500 | 107 000 | 8 500 | 10 900 | 3 400 | 4 500 | | | 110.000 | 22.000 | 21.996 | 18.824 | 0.8 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 122.238 | 33.338 | 31.750 | 23.812 | 3.5 | 3.3 | 135 000 | 156 000 | 13 800 | 15 900 | 3 000 | 4 000 | | 60.325 | 100.000 | 25.400 | 25.400 | 19.845 | 3.5 | 3.3 | 91 000 | 135 000 | 9 250 | 13 700 | 3 400 | 4 800 | | | 101.600 | 25.400 | 25.400 | 19.845 | 3.5 | 3.3 | 91 000 | 135 000 | 9 250 | 13 700 | 3 400 | 4 800 | | | 122.238 | 38.100 | 36.678 | 30.162 | 2.3 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 8.0 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 122.238 | 43.658 | 43.764 | 36.512 | 0.8 | 3.3 | 198 000 | 292 000 | 20 200 | 29 700 | 3 000 | 4 000 | | | 127.000 | 44.450 | 44.450 | 34.925 | 3.5 | 3.3 | 199 000 | 258 000 | 20 200 | 26 300 | 3 000 | 4 000 | | | 130.175 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 135.755 | 53.975 | 56.007 | 44.450 | 3.5 | 3.3 | 264 000 | 355 000 | 27 000 | 36 000 | 2 800 | 3 800 | | 61.912 | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | | 146.050 | 41.275 | 39.688 | 25.400 | 3.5 | 3.3 | 193 000 | 225 000 | 19 700 | 22 900 | 2 400 | 3 400 | | | 152.400 | 47.625 | 46.038 | 31.750 | 3.5 | 3.3 | 237 000 | 267 000 | 24 200 | 27 300 | 2 400 | 3 400 | | 63.500 | 94.458 | 19.050 | 19.050 | 15.083 | 1.5 | 1.5 | 59 000 | 100 000 | 6 050 | 10 200 | 3 600 | 4 800 | | | 104.775 | 21.433 | 22.000 | 15.875 | 2.0 | 2.0 | 83 500 | 107 000 | 8 500 | 10 900 | 3 400 | 4 500 | | | 107.950 | 25.400 | 25.400 | 19.050 | 1.5 | 3.3 | 90 000 | 138 000 | 9 150 | 14 100 | 3 200 | 4 300 | | | 110.000 | 22.000 | 21.996 | 18.824 | 3.5 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 110.000 | 22.000 | 21.996 | 18.824 | 1.5 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.048 | 23.812 | 3.5 | 3.2 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 142 000 | 202 000 | 14 500 | 20 600 | 3 200 | 4 300 | | | 112.712 | 33.338 | 30.048 | 26.988 | 3.5 | 3.3 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 122.238 | 38.100 | 38.354 | 29.718 | 7.0 | 3.3 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 7.0 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 122.238 | 43.658 | 43.764 | 36.512 | 3.5 | 3.3 | 198 000 | 292 000 | 20 200 | 29 700 | 3 000 | 4 000 | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 130.175 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 136.525 | 36.512 | 33.236 | 23.520 | 2.3 | 3.3 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 140.030 | 36.512 | 33.236 | 23.520 | 2.3 | 2.3 | 152 000 | 183 000 | 15 500 | 18 700 | 2 600 | 3 600 | | 64.963 | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | ### Dynamic Equivalent Load ### Static Equivalent Load $P_0=0.5F_{\rm r}+Y_0F_{\rm a}$ When $F_{\rm r}>0.5F_{\rm r}+Y_0F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing | Numbers | Al | outmen | t and Fille
(mm | | | | Eff. Load
Centers | Constant | | Load
tors | | ass
(g) | |----------------|--------------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------|-----|----------------------|----------|-------|--------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ |
$d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | Cone $m{r}_{\!a}$ | · · | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | ▲ JLM 508748 | ▲ JLM 508710 | 75 | 66 | 85 | 91 | 5 | 2.5 | 21.6 | 0.40 | 1.5 | 0.82 | 0.43 | 0.20 | | * 39236 | 39412 | 71 | 67 | 96 | 100 | 2.3 | 2 | 20.0 | 0.39 | 1.5 | 0.85 | 0.559 | 0.186 | | 397 | 394 A | 69 | 68 | 101 | 104 | 0.8 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.642 | 0.263 | | 66585 | 66520 | 79 | 73 | 105 | 116 | 3.5 | 3.3 | 34.3 | 0.67 | 0.90 | 0.50 | 1.07 | 0.558 | | 28985 | 28921 | 73 | 67 | 89 | 96 | 3.5 | 3.3 | 22.9 | 0.43 | 1.4 | 0.78 | 0.538 | 0.232 | | 28985 | 28920 | 73 | 67 | 90 | 97 | 3.5 | 3.3 | 22.9 | 0.43 | 1.4 | 0.78 | 0.538 | 0.272 | | 558 | 553 X | 73 | 69 | 108 | 115 | 2.3 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.33 | 0.692 | | HM 212044 | HM 212010 | 85 | 70 | 110 | 116 | 8 | 1.5 | 27.0 | 0.34 | 1.8 | 0.98 | 1.43 | 0.604 | | 5582 | 5535 | 73 | 72 | 106 | 116 | 0.8 | 3.3 | 29.9 | 0.36 | 1.7 | 0.92 | 1.61 | 0.815 | | 65237 | 65500 | 82 | 71 | 107 | 119 | 3.5 | 3.3 | 35.0 | 0.49 | 1.2 | 0.68 | 1.56 | 1.03 | | 637 | 633 | 78 | 72 | 116 | 124 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.87 | 0.712 | | 6376 | 6320 | 81 | 74 | 117 | 126 | 3.5 | 3.3 | 35.0 | 0.32 | 1.8 | 1.0 | 2.45 | 1.39 | | H 715334 | H 715311 | 84 | 78 | 119 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.51 | 0.961 | | H 913842 | H 913810 | 90 | 82 | 124 | 138 | 3.5 | 3.3 | 44.4 | 0.78 | 0.77 | 0.42 | 2.2 | 0.898 | | 9180 | 9121 | 90 | 81 | 130 | 145 | 3.5 | 3.3 | 44.3 | 0.66 | 0.92 | 0.50 | 2.77 | 1.21 | | L 610549 | L 610510 | 71 | 69 | 86 | 91 | 1.5 | 1.5 | 19.6 | 0.42 | 1.4 | 0.78 | 0.306 | 0.154 | | 39250 | 39412 | 73 | 69 | 96 | 100 | 2 | 2 | 20.0 | 0.39 | 1.5 | 0.85 | 0.501 | 0.186 | | 29586 | 29520 | 73 | 71 | 96 | 103 | 1.5 | 3.3 | 24.0 | 0.46 | 1.3 | 0.72 | 0.661 | 0.281 | | 395 | 394 A | 77 | 70 | 101 | 104 | 3.5 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.58 | 0.263 | | 390 A | 394 A | 73 | 70 | 101 | 104 | 1.5 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.583 | 0.263 | | 3982 | 3920 | 77 | 71 | 99 | 106 | 3.5 | 3.2 | 25.5 | 0.40 | 1.5 | 0.82 | 0.789 | 0.454 | | 39585 | 39520 | 77 | 71 | 101 | 107 | 3.5 | 3.3 | 23.5 | 0.34 | 1.8 | 0.97 | 0.899 | 0.359 | | 3982 | 3926 | 78 | 71 | 98 | 106 | 3.5 | 3.3 | 28.7 | 0.40 | 1.5 | 0.82 | 0.789 | 0.541 | | HM 212047 | HM 212011 | 87 | 73 | 108 | 116 | 7 | 3.3 | 26.9 | 0.34 | 1.8 | 0.98 | 1.34 | 0.598 | | HM 212047 | HM 212010 | 87 | 73 | 110 | 116 | 7 | 1.5 | 26.9 | 0.34 | 1.8 | 0.98 | 1.34 | 0.604 | | HM 212046 | HM 212010 | 80 | 73 | 110 | 116 | 3.5 | 1.5 | 26.9 | 0.34 | 1.8 | 0.98 | 1.35 | 0.604 | | 5584 | 5535 | 81 | 75 | 106 | 116 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.92 | 1.5 | 0.815 | | 559 | 522 A | 78 | 73 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.23 | 0.764 | | 565 | 563 | 80 | 73 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.46 | 0.655 | | 639 | 633 | 81 | 74 | 116 | 124 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.77 | 0.712 | | 78250 | 78537 | 85 | 79 | 115 | 130 | 2.3 | 3.3 | 44.2 | 0.87 | 0.69 | 0.38 | 1.51 | 0.782 | | 639 | 632 | 79 | 76 | 119 | 125 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.77 | 1.04 | | 78250 | 78551 | 85 | 79 | 117 | 132 | 2.3 | 2.3 | 44.2 | 0.87 | 0.69 | 0.38 | 1.51 | 0.926 | | 569
Notes * | 563 | 81 | 74 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.41 | 0.655 | * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. # Bore Diameter 65.000 – 69.850 mm | | | | Dimension | s | | | | | nd Ratings | | Limiting | | |--------|---------|--------|-----------|--------|----------------|-----|------------|-------------------|------------|-------------------|----------|-------| | ı | Б | , | • | a | Cone | | , | N) | | gf} | (mir | , | | d | D | T | В | С | <i>I</i>
mi | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 65.000 | 105.000 | 24.000 | 23.000 | 18.500 | 3.0 | 1.0 | 93 000 | 126 000 | 9 500 | 12 900 | 3 400 | 4 500 | | | 110.000 | 28.000 | 28.000 | 22.500 | 3.0 | 2.5 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 120.000 | 29.002 | 29.007 | 23.444 | 2.3 | 3.3 | 123 000 | 169 000 | 12 500 | 17 200 | 3 000 | 4 000 | | | 120.000 | 39.000 | 38.500 | 32.000 | 3.0 | 2.5 | 185 000 | 249 000 | 18 800 | 25 400 | 3 000 | 4 000 | | 65.088 | 135.755 | 53.975 | 56.007 | 44.450 | 3.5 | 3.3 | 264 000 | 355 000 | 27 000 | 36 000 | 2 800 | 3 800 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | 66.675 | 110.000 | 22.000 | 21.996 | 18.824 | 0.8 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 110.000 | 22.000 | 21.996 | 18.824 | 3.5 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.048 | 23.812 | 3.5 | 3.2 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.048 | 23.812 | 5.5 | 3.2 | 120 000 | 173 000 | 12 200 | 17 700 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.162 | 23.812 | 3.5 | 0.8 | 142 000 | 202 000 | 14 500 | 20 600 | 3 200 | 4 300 | | | 112.712 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 142 000 | 202 000 | 14 500 | 20 600 | 3 200 | 4 300 | | | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 122.238 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 1.5 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 3.3 | 188 000 | 245 000 | 19 200 | 25 000 | 3 000 | 4 000 | | | 123.825 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | 68.262 | 110.000 | 22.000 | 21.996 | 18.824 | 2.3 | 1.3 | 85 500 | 113 000 | 8 750 | 11 500 | 3 200 | 4 300 | | | 120.000 | 29.795 | 29.007 | 24.237 | 3.5 | 2.0 | 123 000 | 169 000 | 12 500 | 17 200 | 3 000 | 4 000 | | | 122.238 | 38.100 | 36.678 | 30.162 | 3.5 | 3.3 | 161 000 | 221 000 | 16 400 | 22 500 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 229 000 | 297 000 | 23 300 | 30 500 | 2 600 | 3 600 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | | 152.400 | 47.625 | 46.038 | 31.750 | 3.5 | 3.3 | 237 000 | 267 000 | 24 200 | 27 300 | 2 400 | 3 400 | | 69.850 | 112.712 | 22.225 | 21.996 | 15.875 | 1.5 | 0.8 | 85 000 | 113 000 | 8 650 | 11 500 | 3 000 | 4 000 | | | 112.712 | 25.400 | 25.400 | 19.050 | 1.5 | 3.3 | 96 000 | 152 000 | 9 800 | 15 500 | 2 800 | 4 000 | | | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 120.000 | 32.545 | 32.545 | 26.195 | 3.5 | 3.3 | 152 000 | 225 000 | 15 500 | 22 900 | 3 000 | 4 000 | | | 120.650 | 25.400 | 25.400 | 19.050 | 1.5 | 3.3 | 96 000 | 152 000 | 9 800 | 15 500 | 2 800 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 0.8 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 130.175 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 146.050 | 41.275 | 39.688 | 25.400 | 3.5 | 3.3 | 193 000 | 225 000 | 19 700 | 22 900 | 2 400 | 3 400 | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 149.225 | 53.975 | 54.229 | 44.450 | 5.0 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | ### Dynamic Equivalent Load | P = X | $F_{\rm r} + Y F_{\rm a}$ | | | |---------------|---------------------------|---------------|----| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | 7> | | X | Y | X | | # ### Static Equivalent Load $$\begin{split} P_0 &= 0.5F_{\rm r} + Y_0\,F_{\rm a} \\ \text{When } F_{\rm r} &> 0.5F_{\rm r} + Y_0\,F_{\rm a}, \text{ use } P_0 = F_{\rm r} \end{split}$$ The values of $e,~Y_1$, and Y_0 are given in the table below. | Bearing N | umbers | A | butmen | t and Fill
(mm | | nsions
Cone | C | Eff. Load
Centers | Constant | | Load
tors | | ass
(g) | |--------------|--------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------|-----|----------------------|----------|-------|--------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | Cone $oldsymbol{r_{ m a}}$ | 1 | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | ▲ JLM 710949 | ▲ JLM 710910 | 77 | 71 | 96 | 101 | 3 | 1 | 23.7 | 0.45 | 1.3 | 0.73 | 0.526 | 0.237 | | ▲ JM 511946 | ▲ JM 511910 | 78 | 72 | 99 | 105 | 3 | 2.5 | 24.5 | 0.40 | 1.5 | 0.82 | 0.72 | 0.342 | | 478 | 472 A | 77 | 73 | 106 | 114 | 2.3 | 3.3 | 24.3 | 0.38 | 1.6 | 0.86 | 0.942 | 0.466 | | ▲ JH 211749 | ▲ JH 211710 | 80 | 74 | 107 | 114 | 3 | 2.5 | 27.9 | 0.34 | 1.8 | 0.98 | 1.25 | 0.625 | | 6379 | 6320 | 84 | 77 | 117 | 126 | 3.5 | 3.3 | 35.0 | 0.32 | 1.8 | 1.0 | 2.25 | 1.39 | | H 715340 | H 715311 | 88 | 82 | 118 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.4 | 0.961 | | 395 A | 394 A | 73 | 73 | 101 | 104 | 0.8 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.528 | 0.263 | | 395 S | 394 A | 79 | 73 | 101 | 104 | 3.5 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.524 | 0.263 | | 3984 | 3920 | 80 | 74 | 99 | 106 | 3.5 | 3.2 | 25.5 | 0.40 | 1.5 | 0.82 | 0.712 | 0.454 | | 3994 | 3920 | 84 | 74 | 99 | 106 | 5.5 | 3.2 | 25.5 | 0.40 | 1.5 | 0.82 | 0.706 | 0.454 | | 39590 | 39521 | 80 | 74 | 103 | 107 | 3.5 |
0.8 | 23.5 | 0.34 | 1.8 | 0.97 | 0.822 | 0.365 | | 39590 | 39520 | 80 | 74 | 101 | 107 | 3.5 | 3.3 | 23.5 | 0.34 | 1.8 | 0.97 | 0.822 | 0.359 | | 33262 | 33462 | 81 | 75 | 104 | 112 | 3.5 | 3.3 | 26.8 | 0.44 | 1.4 | 0.76 | 0.911 | 0.442 | | 560 | 553 X | 81 | 75 | 108 | 115 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.14 | 0.692 | | HM 212049 | HM 212010 | 82 | 75 | 110 | 116 | 3.5 | 1.5 | 26.9 | 0.34 | 1.8 | 0.98 | 1.25 | 0.604 | | HM 212049 | HM 212011 | 81 | 74 | 108 | 116 | 3.5 | 3.3 | 26.9 | 0.34 | 1.8 | 0.98 | 1.25 | 0.598 | | 560 | 552 A | 81 | 75 | 109 | 116 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.14 | 0.764 | | H 715341 | H 715311 | 89 | 83 | 118 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.34 | 0.961 | | 399 A | 394 A | 78 | 74 | 101 | 104 | 2.3 | 1.3 | 20.9 | 0.40 | 1.5 | 0.82 | 0.497 | 0.263 | | 480 | 472 | 83 | 76 | 106 | 113 | 3.5 | 2 | 25.1 | 0.38 | 1.6 | 0.86 | 0.862 | 0.493 | | 560 S | 553 X | 83 | 76 | 108 | 115 | 3.5 | 3.3 | 28.8 | 0.35 | 1.7 | 0.95 | 1.09 | 0.692 | | 570 | 563 | 83 | 77 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.32 | 0.655 | | H 414245 | H 414210 | 86 | 82 | 121 | 129 | 3.5 | 3.3 | 30.6 | 0.36 | 1.7 | 0.92 | 1.95 | 0.796 | | H 715343 | H 715311 | 90 | 84 | 118 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.28 | 0.961 | | 9185 | 9121 | 94 | 81 | 130 | 145 | 3.5 | 3.3 | 44.3 | 0.66 | 0.92 | 0.50 | 2.53 | 1.21 | | LM 613449 | LM 613410 | 78 | 76 | 104 | 107 | 1.5 | 0.8 | 22.1 | 0.42 | 1.4 | 0.79 | 0.562 | 0.238 | | 29675 | 29620 | 80 | 77 | 101 | 109 | 1.5 | 3.3 | 26.3 | 0.49 | 1.2 | 0.68 | 0.695 | 0.273 | | 33275 | 33462 | 84 | 77 | 104 | 112 | 3.5 | 3.3 | 26.8 | 0.44 | 1.4 | 0.76 | 0.83 | 0.442 | | 47487 | 47420 | 84 | 78 | 107 | 114 | 3.5 | 3.3 | 26.0 | 0.36 | 1.7 | 0.92 | 1.02 | 0.477 | | 29675 | 29630 | 79 | 78 | 105 | 113 | 1.5 | 3.3 | 26.3 | 0.49 | 1.2 | 0.68 | 0.695 | 0.489 | | 566 | 563 X | 85 | 78 | 114 | 120 | 3.5 | 0.8 | 28.3 | 0.36 | 1.6 | 0.91 | 1.27 | 0.658 | | 643 | 633 | 86 | 80 | 116 | 124 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.56 | 0.712 | | H 913849 | H 913810 | 95 | 82 | 124 | 138 | 3.5 | 3.3 | 44.4 | 0.78 | 0.77 | 0.42 | 1.95 | 0.898 | | 655 | 653 | 88 | 82 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 2.35 | 0.891 | | 6454 | 6420 | 94 | 85 | 129 | 140 | 5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 2.95 | 1.63 | | 745 A | 742 | 88 | 82 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.82 | 1.07 | # Bore Diameter 70.000 – 76.200 mm | | | | Dimension | S | | | // | Basic Loa | 9 | f) | Limiting | | |--------|---------|--------|-----------|--------|-----------|-----|-------------|-------------------|------------|----------|----------------|-------------| | d | D | T | В | С | Cone
1 | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | C_{0r} | (mir
Grease | ۱¬۱)
Oil | | | | | | | mi | n. | • | • | • | | | | | 70.000 | 110.000 | 26.000 | 25.000 | 20.500 | 1.0 | 2.5 | 98 500 | 152 000 | 10 000 | 15 500 | 3 000 | 4 000 | | | 115.000 | 29.000 | 29.000 | 23.000 | 3.0 | 2.5 | 126 000 | 177 000 | 12 900 | 18 100 | 3 000 | 4 000 | | | 120.000 | 29.795 | 29.007 | 24.237 | 2.0 | 2.0 | 123 000 | 169 000 | 12 500 | 17 200 | 3 000 | 4 000 | | 71.438 | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 120.000 | 32.545 | 32.545 | 26.195 | 3.5 | 3.3 | 152 000 | 225 000 | 15 500 | 22 900 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 6.4 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 130.175 | 41.275 | 41.275 | 31.750 | 6.4 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 19 800 | 26 800 | 2 800 | 3 800 | | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 229 000 | 297 000 | 23 300 | 30 500 | 2 600 | 3 600 | | | 136.525 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 233 000 | 370 000 | 23 800 | 37 500 | 2 600 | 3 400 | | 73.025 | 112.712 | 25.400 | 25.400 | 19.050 | 3.5 | 3.3 | 96 000 | 152 000 | 9 800 | 15 500 | 2 800 | 4 000 | | | 117.475 | 30.162 | 30.162 | 23.812 | 3.5 | 3.3 | 119 000 | 179 000 | 12 200 | 18 300 | 3 000 | 4 000 | | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 149.225 | 53.975 | 54.229 | 44.450 | 3.5 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | 73.817 | 127.000 | 36.512 | 36.170 | 28.575 | 0.8 | 3.3 | 166 000 | 234 000 | 16 900 | 23 900 | 2 800 | 3 800 | | 74.612 | 150.000 | 41.275 | 41.275 | 31.750 | 3.5 | 3.0 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | 75.000 | 115.000 | 25.000 | 25.000 | 19.000 | 3.0 | 2.5 | 101 000 | 150 000 | 10 300 | 15 300 | 3 000 | 4 000 | | | 120.000 | 31.000 | 29.500 | 25.000 | 3.0 | 2.5 | 129 000 | 198 000 | 13 100 | 20 200 | 2 800 | 3 800 | | | 145.000 | 51.000 | 51.000 | 42.000 | 3.0 | 2.5 | 283 000 | 410 000 | 28 900 | 41 500 | 2 600 | 3 400 | | 76.200 | 121.442 | 24.608 | 23.012 | 17.462 | 2.0 | 2.0 | 89 000 | 124 000 | 9 100 | 12 600 | 2 800 | 3 800 | | | 127.000 | 30.162 | 31.000 | 22.225 | 3.5 | 3.3 | 134 000 | 195 000 | 13 700 | 19 900 | 2 800 | 3 800 | | | 127.000 | 30.162 | 31.001 | 22.225 | 6.4 | 3.3 | 134 000 | 195 000 | 13 700 | 19 900 | 2 800 | 3 800 | | | 133.350 | 33.338 | 33.338 | 26.195 | 0.8 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | 135.733 | 44.450 | 46.101 | 34.925 | 3.5 | 3.3 | 216 000 | 340 000 | 22 000 | 35 000 | 2 600 | 3 600 | | | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 136.525 | 30.162 | 29.769 | 22.225 | 6.4 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | 139.992 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | 149.225 | 53.975 | 54.229 | 44.450 | 3.5 | 3.3 | 287 000 | 410 000 | 29 300 | 41 500 | 2 600 | 3 400 | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 152.400 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | 161.925 | 49.212 | 46.038 | 31.750 | 3.5 | 3.3 | 248 000 | 290 000 | 25 300 | 29 600 | 2 200 | 3 000 | | | 161.925 | 53.975 | 55.100 | 42.862 | 3.5 | 3.3 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | | | 161.925 | 53.975 | 55.100 | 42.862 | 6.4 | 3.3 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | | | 161.925 | 53.975 | 55.100 | 42.862 | 6.4 | 0.8 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | ### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{ m r}\!>\!0.5F_{ m r}+Y_0\,F_{ m a}$, use P_0 = $F_{ m r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Nu | umbers | Al | butment | t and Fill
(mm | | | C | Eff. Load
Centers | Constant | | Load
ctors | | ass
kg) | |--------------|--------------|-------------------------------|-------------------------------|-------------------------------|------------|------------------------|-----|----------------------|----------|-----------------------|---------------|-------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{ m b}$ | Cone
r
ma | a ' | (mm)
a | e | <i>Y</i> ₁ | Y_0 | app
CONE | prox.
CUP | | ▲ JLM 813049 | ▲ JLM 813010 | 78 | 77 | 98 | 105 | 1 | 2.5 | 26.2 | 0.49 | 1.2 | 0.68 | 0.604 | | | ▲ JM 612949 | ▲ JM 612910 | 83 | 77 | 103 | 110 | 3 | 2.5 | 26.4 | 0.43 | 1.4 | 0.77 | 0.800 | | | 484 | 472 | 80 | 78 | 106 | 113 | 2 | 2 | 25.1 | 0.38 | 1.6 | 0.86 | 0.822 | | | 33281 | 33462 | 85 | 79 | 104 | 112 | 3.5 | 3.3 | 26.8 | 0.44 | 1.4 | 0.76 | 0.789 | 0.655 | | 47490 | 47420 | 86 | 79 | 107 | 114 | 3.5 | 3.3 | 26.0 | 0.36 | 1.7 | 0.92 | 0.983 | | | 567 S | 563 | 92 | 80 | 112 | 120 | 6.4 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.21 | | | 567 A | 563 | 86 | 80 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.23 | 0.655 | | 645 | 633 | 93 | 81 | 116 | 124 | 6.4 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.49 | 0.712 | | 644 | 632 | 87 | 81 | 118 | 125 | 3.5 | 3.3 | 29.9 | 0.36 | 1.7 | 0.91 | 1.5 | 1.04 | | H 414249 | H 414210 | 89 | 83 | 121 | 129 | 3.5 | 3.3 | 30.6 | 0.36 | 1.7 | 0.92 | 1.83 | 0.796 | | H 715345 | H 715311 | 92 | 84 | 119 | 132 | 3.5 | 3.3 | 37.1 | 0.47 | 1.3 | 0.70 | 2.15 | 0.961 | | 29685 | 29620 | 86 | 80 | 101 | 109 | 3.5 | 3.3 | 26.3 | 0.49 | 1.2 | 0.68 | 0.62 | 0.273 | | 33287 | 33462 | 87 | 80 | 104 | 112 | 3.5 | 3.3 | 26.8 | 0.44 | 1.4 | 0.76 | 0.746 | 0.442 | | 567 | 563 | 88 | 81 | 112 | 120 | 3.5 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.17 | 0.655 | | 657 | 653 | 91 | 85 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 2.24 | 0.891 | | 6460 | 6420 | 93 | 87 | 129 | 140 | 3.5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 2.8 | 1.63 | | 568 | 563 | 83 | 82 | 112 | 120 | 0.8 | 3.3 | 28.3 | 0.36 | 1.6 | 0.91 | 1.15 | 0.655 | | 658 | 653 X | 92 | 86 | 133 | 141 | 3.5 | 3 | 33.2 | 0.41 | 1.5 | 0.81 | 2.37 | 0.932 | | ▲ JLM 714149 | ▲ JLM 714110 | 87 | 81 | 104 | 110 | 3 | 2.5 | 25.3 | 0.46 | 1.3 | 0.72 | 0.638 | 0.272 | | ▲ JM 714249 | ▲ JM 714210 | 88 | 83 | 108 | 115 | 3 | 2.5 | 28.8 | 0.44 | 1.4 | 0.74 | 0.863 | 0.436 | | ▲ JH 415647 | ▲ JH 415610 | 94 | 89 | 129 | 139 | 3 | 2.5 | 36.7 | 0.36 | 1.7 | 0.91 | 2.64 | 1.19 | | 34300 | 34478 | 86 | 84 | 111 | 116 | 2 | 2 | 26.3 | 0.45 | 1.3 | 0.73 | 0.65 | 0.316 | | 42687 | 42620 | 90 | 84 | 114 | 121 | 3.5 | 3.3 | 27.3 | 0.42 | 1.4 | 0.79 | 1.03 | 0.438 | | 42688 | 42620 | 94 | 84 | 114 | 121 | 6.4 | 3.3 | 27.3 | 0.42 |
1.4 | 0.79 | 1.01 | 0.438 | | 47680 | 47620 | 86 | 85 | 119 | 128 | 0.8 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.39 | 0.577 | | 5760 | 5735 | 94 | 88 | 119 | 130 | 3.5 | 3.3 | 32.9 | 0.41 | 1.5 | 0.81 | 1.86 | 0.887 | | 495 A | 493 | 92 | 86 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.27 | 0.55 | | 495 AX | 493 | 98 | 86 | 122 | 130 | 6.4 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.26 | 0.55 | | 575 | 572 | 92 | 86 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.61 | 0.788 | | 6461 | 6420 | 96 | 89 | 129 | 140 | 3.5 | 3.3 | 39.0 | 0.36 | 1.7 | 0.91 | 2.64 | 1.63 | | 590 A | 592 A | 95 | 89 | 135 | 145 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 2.2 | 1.06 | | 659 | 652 | 93 | 87 | 134 | 141 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 2.11 | 1.26 | | 9285 | 9220 | 103 | 90 | 138 | 153 | 3.5 | 3.3 | 49.8 | 0.71 | 0.85 | 0.47 | 2.82 | 1.4 | | 6576 | 6535 | 99 | 92 | 141 | 154 | 3.5 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.74 | 1.67 | | 6575 | 6535 | 104 | 92 | 141 | 154 | 6.4 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.73 | 1.67 | | 6575 | 6536 | 104 | 92 | 144 | 154 | 6.4 | 0.8 | 40.7 | 0.40 | 1.5 | 0.82 | 3.73 | 1.68 | The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. B 158 B 159 # Bore Diameter 76.200 – 83.345 mm | | Boundary Dimensions
(mm) | | | | | | | Basic Load | 0 | | Limiting Speeds | | | |--------|-----------------------------|--------|--------|--------|-----------------|-----|------------|-------------------|------------|-------------------|-----------------|-------|--| | , | _ | , | , | _ | Cone | Cup | ` | N) | | gf}
- | (min | , | | | d | D | T | В | С | <i>T</i>
mir | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 76.200 | 168.275 | 53.975 | 56.363 | 41.275 | 6.4 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | | 168.275 | 53.975 | 56.363 | 41.275 | 0.8 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | | 171.450 | 49.212 | 46.038 | 31.750 | 3.5 | 3.3 | 257 000 | 310 000 | 26 200 | 32 000 | 2 000 | 2 800 | | | | 177.800 | 55.562 | 50.800 | 34.925 | 3.5 | 3.3 | 257 000 | 310 000 | 26 200 | 32 000 | 2 000 | 2 800 | | | 77.788 | 121.442 | 24.608 | 23.012 | 17.462 | 3.5 | 2.0 | 89 000 | 124 000 | 9 100 | 12 600 | 2 800 | 3 800 | | | | 127.000 | 30.162 | 31.000 | 22.225 | 3.5 | 3.3 | 134 000 | 195 000 | 13 700 | 19 900 | 2 800 | 3 800 | | | | 135.733 | 44.450 | 46.101 | 34.925 | 3.5 | 3.3 | 216 000 | 340 000 | 22 000 | 35 000 | 2 600 | 3 600 | | | 79.375 | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | 80.000 | 130.000 | 35.000 | 34.000 | 28.500 | 3.0 | 2.5 | 166 000 | 251 000 | 17 000 | 25 600 | 2 600 | 3 600 | | | 80.962 | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 139.700 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 139.992 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | 82.550 | 125.412 | 25.400 | 25.400 | 19.845 | 3.5 | 1.5 | 102 000 | 164 000 | 10 400 | 16 700 | 2 600 | 3 600 | | | | 133.350 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 133.350 | 33.338 | 33.338 | 26.195 | 3.5 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | | 133.350 | 33.338 | 33.338 | 26.195 | 0.8 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | | 133.350 | 33.338 | 33.338 | 26.195 | 6.8 | 3.3 | 154 000 | 237 000 | 15 700 | 24 200 | 2 600 | 3 600 | | | | 133.350 | 39.688 | 39.688 | 32.545 | 6.8 | 3.3 | 179 000 | 310 000 | 18 300 | 31 500 | 2 600 | 3 600 | | | | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 139.700 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 139.992 | 36.512 | 36.098 | 28.575 | 3.5 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 139.992 | 36.512 | 36.098 | 28.575 | 6.8 | 3.3 | 175 000 | 260 000 | 17 800 | 26 500 | 2 600 | 3 400 | | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 150.000 | 44.455 | 46.672 | 35.000 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | | 152.400 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 161.925 | 53.975 | 55.100 | 42.862 | 3.5 | 3.3 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | | | | 168.275 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 168.275 | 53.975 | 56.363 | 41.275 | 3.5 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | 83.345 | 125.412 | 25.400 | 25.400 | 19.845 | 3.5 | 1.5 | 102 000 | 164 000 | 10 400 | 16 700 | 2 600 | 3 600 | | | | 125.412 | 25.400 | 25.400 | 19.845 | 0.8 | 1.5 | 102 000 | 164 000 | 10 400 | 16 700 | 2 600 | 3 600 | | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | | |---------------|------------|---------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | 0 | 0.4 | Y ₁ | | | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}>0.5F_{\rm r}+Y_0\,F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Nun | nhers | Abutment and Fillet Dimensions | | | | | | | Constant | | | Mass | | |--------------------|--------------------|--------------------------------|-------------------------------|-------------------------------|------------|----------------|-----|-----------------|-----------|-------|-------|-------------|------------| | Dodning Null | | A | Jan 11011 | (mm | | Cone | Cun | Centers
(mm) | Jonatuill | | tors | | ass
(g) | | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{ m b}$ | r _a | i ' | a | e | Y_1 | Y_0 | app
CONE | CUP | | 843 | 832 | 101 | 89 | 149 | 155 | 6.4 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 4.11 | 1.74 | | 837 | 832 | 90 | 89 | 149 | 155 | 0.8 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 4.13 | 1.74 | | 9380 | 9321 | 105 | 98 | 147 | 164 | 3.5 | 3.3 | 54.1 | 0.76 | 0.79 | 0.43 | 3.47 | 1.51 | | 9378 | 9320 | 105 | 98 | 148 | 164 | 3.5 | 3.3 | 57.3 | 0.76 | 0.79 | 0.43 | 3.71 | 2.24 | | 34306 | 34478 | 90 | 84 | 110 | 116 | 3.5 | 2 | 26.3 | 0.45 | 1.3 | 0.73 | 0.612 | 0.316 | | 42690 | 42620 | 91 | 85 | 114 | 121 | 3.5 | 3.3 | 27.3 | 0.42 | 1.4 | 0.79 | 0.976 | 0.438 | | 5795 | 5735 | 96 | 89 | 119 | 130 | 3.5 | 3.3 | 32.9 | 0.41 | 1.5 | 0.81 | 1.79 | 0.887 | | 661 | 653 | 96 | 90 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.99 | 0.891 | | 750 | 742 | 96 | 90 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.42 | 1.07 | | ▲ JM 515649 | ▲ JM 515610 | 94 | 88 | 117 | 125 | 3 | 2.5 | 29.9 | 0.39 | 1.5 | 0.85 | 1.18 | 0.583 | | 496 | 493 | 95 | 89 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.13 | 0.55 | | 581 | 572 X | 96 | 90 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.44 | 0.774 | | 581 | 572 | 96 | 90 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.44 | 0.788 | | 27687 | 27620 | 96 | 89 | 115 | 120 | 3.5 | 1.5 | 25.7 | 0.42 | 1.4 | 0.79 | 0.747 | 0.348 | | 495 | 492 A | 97 | 90 | 120 | 128 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.08 | 0.434 | | 47686 | 47620 | 97 | 90 | 119 | 128 | 3.5 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.18 | 0.577 | | 47685 | 47620 | 90 | 90 | 119 | 128 | 0.8 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.18 | 0.577 | | 47687 | 47620 | 103 | 90 | 119 | 128 | 6.8 | 3.3 | 29.0 | 0.40 | 1.5 | 0.82 | 1.16 | 0.577 | | HM 516448 | HM 516410 | 105 | 92 | 118 | 128 | 6.8 | 3.3 | 32.4 | 0.40 | 1.5 | 0.82 | 1.35 | 0.767 | | 495 | 493 | 97 | 90 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.08 | 0.55 | | 580 | 572 X | 98 | 91 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.39 | 0.774 | | 580 | 572 | 98 | 91 | 125 | 133 | 3.5 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.39 | 0.788 | | 582 | 572 | 104 | 91 | 125 | 133 | 6.8 | 3.3 | 31.1 | 0.40 | 1.5 | 0.82 | 1.37 | 0.788 | | 663 | 653 | 99 | 92 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.85 | 0.891 | | 749 A | 743 | 99 | 93 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.26 | 1.04 | | 749 A | 742 | 98 | 93 | 135 | 143 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.26 | 1.07 | | 663 | 652 | 99 | 92 | 134 | 141 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.85 | 1.26 | | 757 | 752 | 100 | 94 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.79 | 1.61 | | 6559 | 6535 | 104 | 98 | 141 | 154 | 3.5 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.4 | 1.67 | | 757 | 753 | 100 | 94 | 147 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.79 | 2.1 | | 842 | 832 | 101 | 94 | 149 | 155 | 3.5 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 3.76 | 1.74 | | 27690 | 27620 | 96 | 90 | 115 | 120 | 3.5 | 1.5 | 25.7 | 0.42 | 1.4 | 0.79 | 0.727 | 0.348 | | 27689 | 27620 | 90 | 90 | 115 | 120 | 0.8 | 1.5 | 25.7 | 0.42 | 1.4 | 0.79 | 0.732 | 0.348 | ### Bore Diameter 84.138 – 90.488 mm | | | | Dimension | S | | | | Basic Loa | | | Limiting Speeds | | | |--------|---------|--------|-----------|--------|--------------|-----|------------|-------------------|------------|-------------------|-----------------|-------|--| | | | (m | nm) | | Cone | Cup | 1) | ۷) | {k | gf} | (mir | , | | | d | D | T | В | С | <i>I</i> mir | • ' | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 84.138 | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 |
13 300 | 19 600 | 2 600 | 3 400 | | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 171.450 | 49.212 | 46.038 | 31.750 | 3.5 | 3.3 | 257 000 | 310 000 | 26 200 | 32 000 | 2 000 | 2 800 | | | 85.000 | 130.000 | 30.000 | 29.000 | 24.000 | 6.0 | 2.5 | 138 000 | 222 000 | 14 100 | 22 700 | 2 600 | 3 600 | | | | 130.000 | 30.000 | 29.000 | 24.000 | 3.0 | 2.5 | 138 000 | 222 000 | 14 100 | 22 700 | 2 600 | 3 600 | | | | 140.000 | 39.000 | 38.000 | 31.500 | 3.0 | 2.5 | 202 000 | 305 000 | 20 600 | 31 000 | 2 400 | 3 400 | | | | 150.000 | 46.000 | 46.000 | 38.000 | 3.0 | 2.5 | 275 000 | 390 000 | 28 000 | 40 000 | 2 400 | 3 200 | | | 85.026 | 150.089 | 44.450 | 46.672 | 36.512 | 3.5 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | | 150.089 | 44.450 | 46.672 | 36.512 | 5.0 | 3.3 | 265 000 | 370 000 | 27 000 | 37 500 | 2 400 | 3 200 | | | 85.725 | 133.350 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 136.525 | 30.162 | 29.769 | 22.225 | 3.5 | 3.3 | 130 000 | 192 000 | 13 300 | 19 600 | 2 600 | 3 400 | | | | 142.138 | 42.862 | 42.862 | 34.133 | 4.8 | 3.3 | 221 000 | 360 000 | 22 500 | 36 500 | 2 400 | 3 400 | | | | 146.050 | 41.275 | 41.275 | 31.750 | 6.4 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 146.050 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 207 000 | 296 000 | 21 100 | 30 000 | 2 400 | 3 200 | | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | 87.312 | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 88.900 | 149.225 | 31.750 | 28.971 | 24.608 | 3.0 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | | 152.400 | 39.688 | 39.688 | 30.162 | 6.4 | 3.3 | 253 000 | 365 000 | 25 800 | 37 500 | 2 200 | 3 200 | | | | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 161.925 | 47.625 | 48.260 | 38.100 | 7.0 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 161.925 | 53.975 | 55.100 | 42.862 | 3.5 | 3.3 | 325 000 | 480 000 | 33 000 | 49 000 | 2 200 | 3 000 | | | | 168.275 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | | 168.275 | 53.975 | 56.363 | 41.275 | 3.5 | 3.3 | 345 000 | 470 000 | 35 000 | 48 000 | 2 200 | 3 000 | | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 90.000 | 145.000 | 35.000 | 34.000 | 27.000 | 3.0 | 2.5 | 190 000 | 285 000 | 19 400 | 29 000 | 2 400 | 3 200 | | | | 147.000 | 40.000 | 40.000 | 32.500 | 7.0 | 3.5 | 229 000 | 345 000 | 23 400 | 35 000 | 2 400 | 3 200 | | | | 155.000 | 44.000 | 44.000 | 35.500 | 3.0 | 2.5 | 274 000 | 395 000 | 28 000 | 40 000 | 2 200 | 3 000 | | | 90.488 | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 28 000 | 40 000 | 2 200 | 3 000 | | Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}>$ 0.5 $F_{\rm r}+Y_0$ $F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing Numbers | | Abutmen | t and Fil | lat Diman | olono | Eff. Load | Constant | nt Axial Load | | Mass | | | |--|-------------------------|-----------------------|-------------------------------|-------------------------------|------------------|-----------------------------|------------------------------|------------------------------|--------------------------|------------------------------|--------------------------------|---------------------------------| | Bearing Numbers | | Abutmen | it and Fil
(mn | | | | Centers | CONSIGNI | | tors | | ass
:g) | | CONE CUP | a | $d_{ m a}$ $d_{ m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | i | e Cup
r a
nax. | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | 498 493 | 98 | 91 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 1.04 | 0.55 | | 664 653 | 99 | 93 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.79 | 0.891 | | 9385 9321 | 111 | 98 | 147 | 164 | 3.5 | 3.3 | 54.1 | 0.76 | 0.79 | 0.43 | 3.11 | 1.51 | | ▲ JM 716648
▲ JM 716649
▲ JHM 516849
▲ JH 217249
▲ JH 217210 | 104
98
100
101 | 92
92
94
95 | 117
117
125
134 | 125
125
134
142 | 6
3
3
3 | 2.5
2.5
2.5
2.5 | 29.5
29.5
33.3
33.9 | 0.44
0.44
0.41
0.33 | 1.4
1.4
1.5
1.8 | 0.74
0.74
0.81
0.99 | 0.931
0.943
1.55
2.29 | 0.461
0.461
0.768
1.09 | | 749 742 | 101 | 95 | 134 | 142 | 3.5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.14 | 1.07 | | 749 S 742 | 104 | 95 | 134 | 142 | 5 | 3.3 | 32.5 | 0.33 | 1.8 | 1.0 | 2.14 | 1.07 | | 497 492 <i>I</i> | 99 | 93 | 120 | 128 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 0.987 | 0.434 | | 497 493 | 99 | 93 | 122 | 130 | 3.5 | 3.3 | 28.7 | 0.44 | 1.4 | 0.74 | 0.987 | 0.55 | | HM 617049 HM 617010 | 106 | 95 | 125 | 137 | 4.8 | 3.3 | 35.4 | 0.43 | 1.4 | 0.76 | 1.77 | 0.911 | | 665 A 653 | 107 | 95 | 131 | 139 | 6.4 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.71 | 0.891 | | 665 653 | 102 | 95 | 131 | 139 | 3.5 | 3.3 | 33.2 | 0.41 | 1.5 | 0.81 | 1.72 | 0.891 | | 596 592 A | 102 | 96 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.85 | 1.06 | | 758 752 | 103 | 97 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.63 | 1.61 | | 677 672 | 105 | 99 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.91 | 1.24 | | HH 221432 HH 221410 | 118 | 103 | 171 | 179 | 8 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 5.51 | 2.24 | | 42350 42587 | 104 | 98 | 134 | 143 | 3 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.39 | 0.711 | | 593 592 / | 104 | 98 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.73 | 1.06 | | HM 518445 HM 518410 | 107 | 96 | 137 | 148 | 6.4 | 3.3 | 33.1 | 0.40 | 1.5 | 0.82 | 2.11 | 0.776 | | 759 752 | 106 | 99 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.47 | 1.61 | | 766 752 | 113 | 99 | 144 | 150 | 7 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.45 | 1.61 | | 6580 6535 | 109 | 102 | 141 | 154 | 3.5 | 3.3 | 40.7 | 0.40 | 1.5 | 0.82 | 3.03 | 1.67 | | 759 753 | 106 | 99 | 147 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.47 | 2.1 | | 850 832 | 106 | 100 | 149 | 155 | 3.5 | 3.3 | 35.2 | 0.30 | 2.0 | 1.1 | 3.39 | 1.74 | | 855 854 | 118 | 103 | 170 | 174 | 8 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.99 | 2.55 | | HH 221434 HH 221410 | 120 | 105 | 171 | 179 | | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 5.41 | 2.24 | | ▲ JM 718149
*HM 218248
▲ JHM 318448
▲ JHM 318440 | 105
111
106 | 99
98
100 | 131
133
140 | 139
141
148 | 3
7
3 | 2.5
3.5
2.5 | 33.0
30.8
34.1 | 0.44
0.33
0.34 | 1.4
1.8
1.7 | 0.74
0.99
0.96 | 1.49
1.77
2.32 | 0.66
0.796
1.01 | | 760 752 | 107 | 101 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.38 | 1.61 | Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). - ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. # Bore Diameter 92.075 – 100.012 mm | | Boundary Dimensions
(mm) | | | | | | | | nd Ratings | | Limiting Speeds | | | |---------|-----------------------------|--------|--------|--------|----------------|-----|------------|-------------------|------------|-------------------|-----------------|-------|--| | , | | , | • | | Cone | | (1) | * | | gf} | (mir | , | | | d | D | T | В | С | <i>1</i>
mi | | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 92.075 | 146.050 | 33.338 | 34.925 | 26.195 | 3.5 | 3.3 | 169 000 | 280 000 | 17 300 | 28 500 | 2 400 | 3 200 | | | | 148.430 | 28.575 | 28.971 | 21.433 | 3.5 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | | 152.400 | 39.688 | 36.322 | 30.162 | 6.4 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | 93.662 | 148.430 | 28.575 | 28.971 | 21.433 | 3.0 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 149.225 | 31.750 | 28.971 | 24.608 | 3.0 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 95.000 | 150.000 | 35.000 | 34.000 | 27.000 | 3.0 | 2.5 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | 95.250 | 146.050 | 33.338 | 34.925 | 26.195 | 3.5 | 3.3 | 169 000 | 280 000 | 17 300 | 28 500 | 2 400 | 3 200 | | | | 148.430 | 28.575 | 28.971 | 21.433 | 3.0 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 149.225 | 31.750 | 28.971 | 24.608 | 3.5 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 152.400 | 39.688 | 36.322 | 30.162 | 3.5 | 3.2 | 183 000
| 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | | 152.400 | 39.688 | 36.322 | 33.338 | 3.5 | 3.3 | 183 000 | 285 000 | 18 700 | 29 100 | 2 200 | 3 200 | | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | | 171.450 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 282 000 | 415 000 | 28 800 | 42 500 | 2 000 | 2 800 | | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 96.838 | 148.430 | 28.575 | 28.971 | 21.433 | 3.5 | 3.0 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | | 149.225 | 31.750 | 28.971 | 24.606 | 3.5 | 3.3 | 140 000 | 218 000 | 14 300 | 22 300 | 2 200 | 3 000 | | | 98.425 | 161.925 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | | 190.500 | 57.150 | 57.531 | 44.450 | 3.5 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | | 190.500 | 57.150 | 57.531 | 46.038 | 3.5 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 99.982 | 190.500 | 57.150 | 57.531 | 46.038 | 6.4 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 100.000 | 150.000 | 32.000 | 30.000 | 26.000 | 2.3 | 2.3 | 146 000 | 235 000 | 14 900 | 24 000 | 2 200 | 3 000 | | | | 155.000 | 36.000 | 35.000 | 28.000 | 3.0 | 2.5 | 191 000 | 325 000 | 19 500 | 33 000 | 2 000 | 2 800 | | | | 160.000 | 41.000 | 40.000 | 32.000 | 3.0 | 2.5 | 239 000 | 380 000 | 24 400 | 38 500 | 2 000 | 2 800 | | | 100.012 | 157.162 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | | ### Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | | | |---------------|------------|---------------------------|-----------------------|--|--|--|--|--|--| | X | Y | X | Y | | | | | | | | 1 | 0 | 0.4 | Y ₁ | | | | | | | ### Static Equivalent Load $P_0 = 0.5\,F_r + Y_0\,F_a$ When $F_r > 0.5\,F_r + Y_0\,F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearin | ng Numbers | Α | lbutmen | nt and Fil
(mn | let Dimer
n) | | | Eff. Load
Centers | Constant | | l Load
ctors | Mass
(kg) | | |----------------------------------|----------------------------------|-------------------------------------|-------------------------------|--------------------------|--------------------------|-----------------|-----------------------------|------------------------------|------------------------------|--------------------------|------------------------------|-----------------------------|------------------------------| | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | 1 | e Cup $oldsymbol{r_a}$ nax. | (mm)
a | e | <i>Y</i> ₁ | Y_0 | ap
CONE | prox.
CUP | | 47890 | 47820 | 107 | 101 | 131 | 140 | 3.5 | 3.3 | 32.3 | 0.45 | 1.3 | 0.74 | 1.46 | 0.664 | | 42362 | 42584 | 107 | 101 | 134 | 142 | 3.5 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.29 | 0.553 | | 598 | 592 A | 107 | 101 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.6 | 1.06 | | 598 <i>A</i> | 592 A | 113 | 101 | 135 | 144 | 6.4 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.59 | 1.06 | | 681 | 672 | 110 | 104 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.62 | 1.24 | | 857 | 854 | 121 | 106 | 170 | 174 | 8 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.78 | 2.55 | | 42368 | 42584 | 107 | 102 | 134 | 142 | 3 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.24 | 0.553 | | 42368 | 42587 | 107 | 102 | 134 | 143 | 3 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.24 | 0.711 | | 597 | 592 A | 109 | 102 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.54 | 1.06 | | ▲ JM 719149 | ▲ JM 719113 | 109 | 104 | 135 | 143 | 3 | 2.5 | 33.4 | 0.44 | 1.4 | 0.75 | 1.46 | 0.765 | | 47896 | 47820 | 110 | 103 | 131 | 140 | 3.5 | 3.3 | 32.3 | 0.45 | 1.3 | 0.74 | 1.33 | 0.664 | | 42375 | 42584 | 108 | 103 | 134 | 142 | 3 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.18 | 0.553 | | 42376 | 42587 | 109 | 103 | 134 | 143 | 3.5 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.18 | 0.711 | | 594 | 592 A | 110 | 104 | 135 | 144 | 3.5 | 3.2 | 37.1 | 0.44 | 1.4 | 0.75 | 1.47 | 1.06 | | 594 | 592 | 109 | 103 | 135 | 145 | 3.5 | 3.3 | 37.1 | 0.44 | 1.4 | 0.75 | 1.47 | 1.12 | | 683 | 672 | 113 | 106 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.47 | 1.24 | | 77375
776
864
HH 221440 | 77675
772
854
HH 221410 | 117
114
123
125 | 105
107
108
110 | 152
161
170
171 | 159
168
174
179 | 3.5
3.5
8 | 3.3
3.3
3.3
3.3 | 37.8
39.1
41.8
42.3 | 0.37
0.39
0.33
0.33 | 1.6
1.6
1.8
1.8 | 0.90
0.86
0.99
0.99 | 2.91
3.25
4.57
5.0 | 1.67
1.99
2.55
2.24 | | 42381 | 42584 | 110 | 104 | 134 | 142 | 3.5 | 3 | 31.8 | 0.49 | 1.2 | 0.67 | 1.13 | 0.553 | | 42381 | 42587 | 111 | 105 | 135 | 143 | 3.5 | 3.3 | 34.9 | 0.49 | 1.2 | 0.67 | 1.13 | 0.711 | | 52387 | 52637 | 114 | 108 | 144 | 154 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.89 | 0.942 | | 685 | 672 | 116 | 109 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.32 | 1.24 | | 779 | 772 | 116 | 110 | 161 | 168 | 3.5 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 3.06 | 1.99 | | 866 | 854 | 118 | 111 | 170 | 174 | 3.5 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.38 | 2.55 | | HH 221442 | HH 221410 | 119 | 113 | 171 | 179 | 3.5 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 4.81 | 2.24 | | HH 221447 | HH 221410 | 126 | 114 | 171 | 179 | 6.4 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 4.68 | 2.24 | | ▲ JLM 820048 | ▲ JLM 820012 | 111 | 107 | 135 | 144 | 2.3 | 2.3 | 36.8 | 0.50 | 1.2 | 0.66 | 1.27 | 0.616 | | ▲ JM 720249 | ▲ JM 720210 | 115 | 109 | 140 | 149 | 3 | 2.5 | 36.8 | 0.47 | 1.3 | 0.70 | 1.68 | 0.772 | | ▲ JHM 720249 | ▲ JHM 720210 | 117 | 109 | 143 | 154 | 3 | 2.5 | 38.2 | 0.47 | 1.3 | 0.70 | 2.09 | 0.974 | | 52393 | 52618 | 116 | 109 | 142 | 152 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.81 | 0.702 | | Note A | The tolerances are liste | d in Tahl | los 2 2 | and 1 or | Dagge P | 1112 a | nd D11 | 1 | | | | | | # Bore Diameter 101.600 – 117.475 mm | | | | Dimensio
mm) | ns | | | 1) | | nd Ratings | gf} | Limiting Speeds
(min ⁻¹) | | |---------|---------|--------|-----------------|--------|------------------------|-----|-------------|-------------------|------------|-------------------|---|-------| | d | D | T | В | С | Cone
<i>1</i>
mi | , ' | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 101.600 | 157.162 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | | | 161.925 | 36.512 | 36.116 | 26.195 | 3.5 | 3.3 | 191 000 | 310 000 | 19 500 | 31 500 | 2 000 | 2 800 | | | 168.275 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 223 000 | 345 000 | 22 700 | 35 000 | 2 000 | 2 800 | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 190.500 | 57.150 | 57.531 | 44.450 | 8.0 | 3.3 | 355 000 | 500 000 | 36 000 | 51 000 | 1 900 | 2 600 | | | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 39 500 | 53 500 | 1 900 | 2 600 | | | 212.725 | 66.675 | 66.675 | 53.975 | 7.0 | 3.3 | 570 000 | 810 000 | 58 000 | 82 500 | 1 700 | 2 200 | | 104.775 | 180.975 | 47.625 | 48.006 | 38.100 | 7.0 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 180.975 | 47.625 | 48.006 | 38.100 | 3.5 | 3.3 | 258 000 | 375 000 | 26 300 | 38 500 | 2 000 | 2 600 | | | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | 106.362 | 165.100 | 36.512 | 36.512 | 26.988 | 3.5 | 3.3 | 195 000 | 320 000 | 19 800 | 33 000 | 2 000 | 2 600 | | 107.950 | 158.750 | 23.020 | 21.438 | 15.875 | 3.5 | 3.3 | 102 000 | 165 000 | 10 400 | 16 800 | 2 000 | 2 800 | | | 159.987 | 34.925 | 34.925 | 26.988 | 3.5 | 3.3 | 164 000 | 315 000 | 16 700 | 32 000 | 2 000 | 2 800 | | | 161.925 | 34.925 | 34.925 | 26.988 | 3.5 | 3.3 | 164 000 | 280 000 | 16 800 | 28 600 | 2 000 | 2 800 | | | 165.100 | 36.512 | 36.512 | 26.988 | 3.5 | 3.3 | 195 000 | 320 000 | 19 800 | 33 000 | 2 000 | 2 600 | | | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | | 212.725 | 66.675 | 66.675 | 53.975 | 8.0 | 3.3 | 570 000 | 810 000 | 58 000 | 82 500 | 1 700 | 2 200 | | 109.987 | 159.987 | 34.925 | 34.925 | 26.988 | 3.5 | 3.3 | 164 000 | 315 000 | 16 700 | 32 000 | 2 000 | 2 800 | | | 159.987 | 34.925 | 34.925 | 26.988 | 8.0 | 3.3 | 164 000 | 315 000 | 16 700 | 32 000 | 2 000 | 2 800 | | 109.992 | 177.800 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 232 000 | 375 000 | 23 700 | 38 000 | 1 800 | 2 600 | | 110.000 | 165.000 | 35.000 | 35.000 | 26.500 | 3.0 | 2.5 | 195 000 | 320 000 | 19 800 | 33 000 | 2 000 | 2 600 | | | 180.000 | 47.000 | 46.000 | 38.000 | 3.0 | 2.5 | 310 000 | 490 000 | 31 500 | 50 000 | 1 900 | 2 600 | | 111.125 | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | 114.300 | 152.400 | 21.433 | 21.433 | 16.670 | 1.5 | 1.5 | 89 500 | 178 000 | 9 100 | 18 100 | 2 000 | 2 800 | | | 177.800 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 232 000 | 375 000 | 23 700 | 38 000 | 1 800 | 2 600 | | | 180.000 | 34.925 | 31.750 | 25.400 | 3.5 | 0.8 | 174 000 | 254 000 | 17 800 | 25 900 | 1 800 | 2 400 | | | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | | 212.725 | 66.675 | 66.675
 53.975 | 7.0 | 3.3 | 475 000 | 700 000 | 48 500 | 71 500 | 1 700 | 2 400 | | | 212.725 | 66.675 | 66.675 | 53.975 | 7.0 | 3.3 | 570 000 | 810 000 | 58 000 | 82 500 | 1 700 | 2 200 | | 115.087 | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 30 000 | 47 000 | 1 800 | 2 400 | | 117.475 | 180.975 | 34.925 | 31.750 | 25.400 | 3.5 | 3.3 | 174 000 | 254 000 | 17 800 | 25 900 | 1 800 | 2 400 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | | |---------------|------------|---------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | 0 | 0.4 | Y ₁ | | | Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}>$ 0.5 $F_{\rm r}+Y_0\,F_{\rm a}$, use $P_0=F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing | Numbers | Α | butmen | t and Fil
(mr | let Dimer | sions | | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | | ass
:g) | |------------------------------|----------------|-------------------------------|-------------------------------|-------------------------------|------------|------------|-----------------|----------------------|--------------|--------------|--------------|--------------|-------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{ m b}$ | | Cup
a
ax. | (mm)
a | e | Y_1 | Y_0 | | rox.
CUP | | 52400 | 52618 | 117 | 111 | 142 | 152 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.75 | 0.702 | | 52400 | 52637 | 117 | 111 | 144 | 154 | 3.5 | 3.3 | 36.1 | 0.47 | 1.3 | 0.69 | 1.75 | 0.942 | | 687 | 672 | 118 | 112 | 149 | 160 | 3.5 | 3.3 | 38.3 | 0.47 | 1.3 | 0.70 | 2.15 | 1.24 | | 780 | 772 | 119 | 113 | 161 | 168 | 3.5 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 2.88 | 1.99 | | 861 | 854 | 129 | 114 | 170 | 174 | 8 | 3.3 | 41.8 | 0.33 | 1.8 | 0.99 | 4.13 | 2.55 | | HH 221449 | HH 221410 | 131 | 116 | 171 | 179 | 8 | 3.3 | 42.3 | 0.33 | 1.8 | 0.99 | 4.55 | 2.24 | | HH 224335 | HH 224310 | 132 | 121 | 192 | 202 | 7 | 3.3 | 47.3 | 0.33 | 1.8 | 1.0 | 8.14 | 3.06 | | 787 | 772 | 129 | 116 | 161 | 168 | 7 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 2.66 | 1.99 | | 782 | 772 | 122 | 116 | 161 | 168 | 3.5 | 3.3 | 39.1 | 0.39 | 1.6 | 0.86 | 2.68 | 1.99 | | 71412 | 71750 | 124 | 118 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 4.0 | 1.71 | | 56418 | 56650 | 122 | 116 | 149 | 159 | 3.5 | 3.3 | 38.6 | 0.50 | 1.2 | 0.66 | 1.87 | 0.861 | | 37425 | 37625 | 122 | 115 | 143 | 152 | 3.5 | 3.3 | 37.0 | 0.61 | 0.99 | 0.54 | 0.886 | 0.488 | | LM 522546 | LM 522510 | 122 | 116 | 146 | 154 | 3.5 | 3.3 | 33.7 | 0.40 | 1.5 | 0.82 | 1.65 | 0.784 | | 48190 | 48120 | 122 | 116 | 146 | 156 | 3.5 | 3.3 | 38.7 | 0.51 | 1.2 | 0.65 | 1.59 | 0.83 | | 56425 | 56650 | 123 | 117 | 149 | 159 | 3.5 | 3.3 | 38.6 | 0.50 | 1.2 | 0.66 | 1.8 | 0.861 | | 71425 | 71750 | 126 | 120 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 3.79 | 1.71 | | HH 224340 | HH 224310 | 139 | 126 | 192 | 202 | 8 | 3.3 | 47.3 | 0.33 | 1.8 | 1.0 | 7.58 | 3.06 | | LM 522549 | LM 522510 | 124 | 118 | 146 | 154 | 3.5 | 3.3 | 33.7 | 0.40 | 1.5 | 0.82 | 1.55 | 0.784 | | LM 522548 | LM 522510 | 133 | 118 | 146 | 154 | 8 | 3.3 | 33.7 | 0.40 | 1.5 | 0.82 | 1.53 | 0.784 | | 64433 | 64700 | 128 | 121 | 160 | 172 | 3.5 | 3.3 | 42.4 | 0.52 | 1.2 | 0.64 | 2.64 | 1.11 | | ▲ JM 822049 | ▲ JM 822010 | 124 | 119 | 149 | 159 | 3 | 2.5 | 38.3 | 0.50 | 1.2 | 0.66 | 1.64 | 0.842 | | ▲ JHM 522649 | ▲ JHM 522610 | 127 | 122 | 162 | 172 | | 2.5 | 40.9 | 0.41 | 1.5 | 0.81 | 3.12 | 1.51 | | 71437 | 71750 | 129 | 123 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 3.58 | 1.71 | | L 623149 | L 623110 | 123 | 121 | 143 | 148 | 1.5 | 1.5 | 27.4 | 0.41 | 1.5 | 0.80 | 0.725 | 0.344 | | 64450 | 64700 | 131 | 125 | 160 | 172 | 3.5 | 3.3 | 42.4 | 0.52 | 1.2 | 0.64 | 2.39 | 1.11 | | 68450 | ** 68709 | 130 | 123 | 165 | 172 | 3.5 | 0.8 | 40.0 | 0.50 | 1.2 | 0.66 | 1.95 | 1.0 | | 71450 | 71750 | 132 | 125 | 171 | 181 | 3.5 | 3.3 | 40.1 | 0.42 | 1.4 | 0.79 | 3.37 | 1.71 | | 938 | 932 | 141 | 128 | 187 | 193 | 7 | 3.3 | 46.9 | 0.33 | 1.8 | 1.0 | 6.01 | 4.11 | | HH 224346 | HH 224310 | 143 | 131 | 192 | 202 | 7 | 3.3 | 47.3 | 0.33 | 1.8 | 1.0 | 7.01 | 3.06 | | 71453
68462
Notes ** T | 71750
68712 | 133
132 | 126
125 | 171
163 | 181
172 | 3.5
3.5 | 3.3 | 40.1
40.0 | 0.42
0.50 | 1.4 | 0.79
0.66 | 3.31
1.73 | 1.71 | Notes ** The maximum outside diameter is listed and its tolerance is negative (See Table 8.4.2 on Pages A68 and A69). The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. B 166 B 167 ### Bore Diameter 120.000 – 165.100 mm | | Boundary Dimensions
(mm) | | | | | | | Basic Lo | ~f) | Limiting Speeds
(min ⁻¹) | | | |---------|-----------------------------|--------|--------|--------|------------------------|-----|------------|-------------------|------------|---|--------|-------| | d | D | T | В | С | Cone
<i>I</i>
mi | , ' | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 120.000 | 170.000 | 25.400 | 25.400 | 19.050 | 3.3 | 3.3 | 130 000 | 219 000 | 13 200 | 22 300 | 1 900 | 2 600 | | | 174.625 | 35.720 | 36.512 | 27.783 | 3.5 | 1.5 | 212 000 | 385 000 | 21 600 | 39 000 | 1 900 | 2 600 | | 120.650 | 182.562 | 39.688 | 38.100 | 33.338 | 3.5 | 3.3 | 228 000 | 445 000 | 23 200 | 45 000 | 1 800 | 2 400 | | | 206.375 | 47.625 | 47.625 | 34.925 | 3.3 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | 123.825 | 182.562 | 39.688 | 38.100 | 33.338 | 3.5 | 3.3 | 228 000 | 445 000 | 23 200 | 45 000 | 1 800 | 2 400 | | 125.000 | 175.000 | 25.400 | 25.400 | 18.288 | 3.3 | 3.3 | 134 000 | 232 000 | 13 700 | 23 600 | 1 800 | 2 400 | | 127.000 | 165.895 | 18.258 | 17.462 | 13.495 | 1.5 | 1.5 | 84 500 | 149 000 | 8 650 | 15 200 | 1 900 | 2 600 | | | 182.562 | 39.688 | 38.100 | 33.338 | 3.5 | 3.3 | 228 000 | 445 000 | 23 200 | 45 000 | 1 800 | 2 400 | | | 196.850 | 46.038 | 46.038 | 38.100 | 3.5 | 3.3 | 315 000 | 560 000 | 32 000 | 57 500 | 1 700 | 2 200 | | | 215.900 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | 128.588 | 206.375 | 47.625 | 47.625 | 34.925 | 3.3 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | 130.000 | 206.375 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | 130.175 | 203.200 | 46.038 | 46.038 | 38.100 | 3.5 | 3.3 | 315 000 | 560 000 | 32 000 | 57 500 | 1 700 | 2 200 | | | 206.375 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 320 000 | 530 000 | 32 500 | 54 000 | 1 600 | 2 200 | | 133.350 | 177.008 | 25.400 | 26.195 | 20.638 | 1.5 | 1.5 | 124 000 | 258 000 | 12 700 | 26 300 | 1 800 | 2 400 | | | 190.500 | 39.688 | 39.688 | 33.338 | 3.5 | 3.3 | 240 000 | 485 000 | 24 500 | 49 500 | 1 700 | 2 200 | | | 196.850 | 46.038 | 46.038 | 38.100 | 3.5 | 3.3 | 315 000 | 560 000 | 32 000 | 57 500 | 1 700 | 2 200 | | | 215.900 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | 136.525 | 190.500 | 39.688 | 39.688 | 33.338 | 3.5 | 3.3 | 216 000 | 440 000 | 22 000 | 45 000 | 1 700 | 2 200 | | | 217.488 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | 139.700 | 187.325 | 28.575 | 29.370 | 23.020 | 1.5 | 1.5 | 153 000 | 305 000 | 15 600 | 31 500 | 1 700 | 2 200 | | | 215.900 | 47.625 | 47.625 | 34.925 | 3.5 | 3.3 | 287 000 | 495 000 | 29 300 | 50 000 | 1 500 | 2 000 | | | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | 142.875 | 200.025 | 41.275 | 39.688 | 34.130 | 3.5 | 3.3 | 227 000 | 460 000 | 23 100 | 46 500 | 1 600 | 2 200 | | 146.050 | 193.675 | 28.575 | 28.575 | 23.020 | 1.5 | 1.5 | 170 000 | 355 000 | 17 300 | 36 500 | 1 600 | 2 200 | | | 236.538 | 57.150 | 56.642 | 44.450 | 3.5 | 3.3 | 455 000 | 720 000 | 46 000 | 73 500 | 1 400 | 1 900 | | | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | 149.225 | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | 152.400 | 254.000 | 66.675 | 66.675 | 47.625 | 7.0 | 3.3 | 515 000 | 830 000 | 52 500 | 84 500 | 1 300 | 1 800 | | 158.750 | 225.425 | 41.275 | 39.688 | 33.338 | 3.5 | 3.3 | 240 000 | 540 000 | 24 400 | 55 000 | 1 400 | 1 900 | | 165.100 | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 35 500 | 71 500 | 1 300 | 1 700 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y ₁ | Static Equivalent Load $P_0 = 0.5\,F_r + Y_0\,F_a$ When $F_r > 0.5\,F_r + Y_0\,F_a$, use $P_0 = F_r$ The values of \emph{e}_{\imath} \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | Bearing No | umbers | ŀ | Abutmen | t and Fill
(mm | let Dimer
n) | | C | Eff. Load
Centers | Constant | | Load
ctors | | ass
(g) | |----------------|----------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------|-----|----------------------|----------|------------|---------------|--------------|--------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{\scriptscriptstyle m b}$ | Cone Cup $m{r}_{ m a}$ max. | | (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | ▲ JL 724348 | ▲ JL 724314 | 132 | 127 | 156 | 163 | 3.3 | 3.3 | 32.9 | 0.46 | 1.3 | 0.72 | 1.08 | 0.591 | | * M 224748 | M 224710 | 135 | 129 | 163 | 168 | 3.5 | 1.5 | 32.2 | 0.33 | 1.8 | 0.99 | 1.9 | 0.866 | | 48282 | 48220 | 136 | 133 | 168 | 176 | 3.5 | 3.3 | 34.2 | 0.31 | 2.0 | 1.1 | 2.56 | 1.14 | | 795 | 792 |
139 | 134 | 186 | 198 | 3.3 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 4.44 | 1.9 | | 48286 | 48220 | 139 | 133 | 168 | 176 | 3.5 | 3.3 | 34.2 | 0.31 | 2.0 | 1.1 | 2.37 | 1.14 | | ▲ JL 725346 | ▲ JL 725316 | 138 | 133 | 161 | 168 | 3.3 | 3.3 | 34.3 | 0.48 | 1.3 | 0.69 | 1.19 | 0.573 | | LL 225749 | LL 225710 | 135 | 132 | 158 | 160 | 1.5 | 1.5 | 24.2 | 0.33 | 1.8 | 0.99 | 0.647 | 0.288 | | 48290 | 48220 | 141 | 135 | 168 | 176 | 3.5 | 3.3 | 34.2 | 0.31 | 2.0 | 1.1 | 2.19 | 1.14 | | 67388 | 67322 | 144 | 138 | 180 | 189 | 3.5 | 3.3 | 39.7 | 0.34 | 1.7 | 0.96 | 3.74 | 1.46 | | 74500 | 74850 | 148 | 141 | 196 | 208 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 4.92 | 1.99 | | 799 | 792 | 146 | 140 | 186 | 198 | 3.3 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 3.86 | 1.9 | | 797 | 792 | 148 | 141 | 186 | 198 | 3.5 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 3.76 | 1.9 | | 67389 | 67320 | 146 | 141 | 183 | 191 | 3.5 | 3.3 | 39.7 | 0.34 | 1.7 | 0.96 | 3.51 | 2.06 | | 799 A | 792 | 148 | 142 | 186 | 198 | 3.5 | 3.3 | 45.7 | 0.46 | 1.3 | 0.72 | 3.74 | 1.9 | | L 327249 | L 327210 | 143 | 141 | 167 | 171 | 1.5 | 1.5 | 29.5 | 0.35 | 1.7 | 0.95 | 1.18 | 0.55 | | 48385 | 48320 | 148 | 142 | 177 | 184 | 3.5 | 3.3 | 35.9 | 0.32 | 1.9 | 1.0 | 2.58 | 1.16 | | 67390 | 67322 | 149 | 143 | 180 | 189 | 3.5 | 3.3 | 39.7 | 0.34 | 1.7 | 0.96 | 3.27 | 1.46 | | 74525 | 74850 | 152 | 146 | 196 | 208 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 4.44 | 1.99 | | 48393 | 48320 | 151 | 144 | 177 | 184 | 3.5 | 3.3 | 35.9 | 0.32 | 1.9 | 1.0 | 2.31 | 1.16 | | 74537 | 74856 | 155 | 148 | 197 | 210 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 4.19 | 2.13 | | LM 328448 | LM 328410 | 149 | 147 | 176 | 182 | 1.5 | 1.5 | 31.7 | 0.36 | 1.7 | 0.93 | 1.59 | 0.67 | | 74550 | 74850 | 158 | 151 | 196 | 208 | 3.5 | 3.3 | 48.4 | 0.49 | 1.2 | 0.68 | 3.93 | 1.99 | | 99550 | 99100 | 170 | 156 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 9.99 | 3.83 | | 48685 | 48620 | 158 | 151 | 185 | 193 | 3.5 | 3.3 | 37.6 | 0.34 | 1.8 | 0.98 | 2.63 | 1.19 | | 36690 | 36620 | 155 | 154 | 182 | 188 | 1.5 | 1.5 | 33.5 | 0.37 | 1.6 | 0.90 | 1.64 | 0.725 | | HM 231140 | HM 231110 | 164 | 160 | 217 | 224 | 3.5 | 3.3 | 45.9 | 0.32 | 1.9 | 1.0 | 6.07 | 2.93 | | 99575 | 99100 | 175 | 162 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 9.24 | 3.83 | | 99587 | 99100 | 178 | 165 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 8.86 | 3.83 | | 99600 | 99100 | 181 | 167 | 227 | 238 | 7 | 3.3 | 55.3 | 0.41 | 1.5 | 0.81 | 8.46 | 3.83 | | 46780
67780 | 46720
67720 | 176
185 | 169
179 | 209
229 | 218
240 | 3.5
3.5 | 3.3 | 44.3
52.4 | 0.38 | 1.6
1.4 | 0.86 0.75 | 3.69
5.83 | 1.66
2.33 | otes * The maximum bore diameter is listed and its tolerance is negative (See Table 8.4.1 on Page A68). ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages B113 and B114. Bore Diameter 170.000 – 206.375 mm | | Boundary Dimensions
(mm) | | | | | | Basic Load Ratings
(N) {kgf} | | | gf} | Limiting Speeds
(min ⁻¹) | | | |---------|-----------------------------|--------|--------|--------|-----------------|----------------|---------------------------------|-------------------|------------|-------------------|---|-------|--| | d | D | T | В | С | Cone
I
mi | Cup
r
n. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 170.000 | 230.000 | 39.000 | 38.000 | 31.000 | 3.0 | 2.5 | 278 000 | 520 000 | 28 300 | 53 000 | 1 300 | 1 800 | | | | 240.000 | 46.000 | 44.500 | 37.000 | 3.0 | 2.5 | 380 000 | 720 000 | 39 000 | 73 000 | 1 300 | 1 800 | | | 174.625 | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 35 500 | 71 500 | 1 300 | 1 700 | | | 177.800 | 227.012 | 30.162 | 30.162 | 23.020 | 1.5 | 1.5 | 181 000 | 415 000 | 18 500 | 42 000 | 1 300 | 1 800 | | | | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 35 500 | 71 500 | 1 300 | 1 700 | | | | 260.350 | 53.975 | 53.975 | 41.275 | 3.5 | 3.3 | 455 000 | 835 000 | 46 500 | 85 000 | 1 200 | 1 700 | | | 190.000 | 260.000 | 46.000 | 44.000 | 36.500 | 3.0 | 2.5 | 370 000 | 730 000 | 38 000 | 74 500 | 1 100 | 1 600 | | | 190.500 | 266.700 | 47.625 | 46.833 | 38.100 | 3.5 | 3.3 | 345 000 | 720 000 | 35 000 | 73 000 | 1 100 | 1 500 | | | 200.000 | 300.000 | 65.000 | 62.000 | 51.000 | 3.5 | 2.5 | 615 000 | 1 130 000 | 62 500 | 116 000 | 1 000 | 1 400 | | | 203.200 | 282.575 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 365 000 | 800 000 | 37 500 | 81 500 | 1 000 | 1 400 | | | 206.375 | 282.575 | 46.038 | 46.038 | 36.512 | 3.5 | 3.3 | 365 000 | 800 000 | 37 500 | 81 500 | 1 000 | 1 400 | | ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | | |---------------|------------|-------------------------|-----------------------|--|--|--| | X | Y | X | Y | | | | | 1 | 0 | 0.4 | Y ₁ | | | | NSK # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r} > 0.5 F_{\rm r} + Y_0 F_{\rm a}$, use $P_0 = F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | Bearing | Numbers | Α | Abutmen | t and Fil
mn) | let Dimer | isions | | Eff. Load
Centers | Constant | | Load
tors | | ass | |--------------|--------------|-------------------------------|-------------------------------|------------------|------------|--------|----------------------------------|----------------------|----------|-----------------------|--------------|------|-------------------| | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{ m a}$ | $D_{ m b}$ | 1 | Cone Cup $m{r_{ m a}}_{ m max.}$ | | e | <i>Y</i> ₁ | Y_0 | | g)
rox.
CUP | | ▲ JHM 534149 | ▲ JHM 534110 | 184 | 178 | 217 | 224 | 3 | 2.5 | 43.2 | 0.38 | 1.6 | 0.86 | 3.1 | 1.3 | | ▲ JM 734449 | ▲ JM 734410 | 185 | 180 | 222 | 232 | | 2.5 | 50.5 | 0.44 | 1.4 | 0.75 | 4.42 | 2.02 | | 67787 | 67720 | 192 | 185 | 229 | 240 | 3.5 | 3.3 | 52.4 | 0.44 | 1.4 | 0.75 | 4.88 | 2.33 | | 36990 | 36920 | 189 | 186 | 214 | 221 | 1.5 | 1.5 | 42.9 | 0.44 | 1.4 | 0.75 | 2.1 | 0.907 | | 67790 | 67720 | 194 | 188 | 229 | 240 | 3.5 | 3.3 | 52.4 | 0.44 | 1.4 | 0.75 | 4.56 | 2.33 | | M 236849 | M 236810 | 195 | 192 | 241 | 249 | 3.5 | 3.3 | 47.5 | 0.33 | 1.8 | 0.99 | 6.49 | 2.86 | | ▲ JM 738249 | ▲ JM 738210 | 206 | 200 | 242 | 252 | 3 | 2.5 | 56.4 | 0.48 | 1.3 | 0.69 | 4.73 | 2.2 | | 67885 | 67820 | 209 | 203 | 246 | 259 | 3.5 | 3.3 | 57.9 | 0.48 | 1.3 | 0.69 | 5.4 | 2.64 | | ▲ JHM 840449 | ▲ JHM 840410 | 223 | 215 | 273 | 289 | 3.5 | 2.5 | 73.1 | 0.52 | 1.2 | 0.63 | 10.3 | 5.19 | | 67983 | 67920 | 222 | 216 | 260 | 275 | 3.5 | 3.3 | 61.9 | 0.51 | 1.2 | 0.65 | 6.03 | 2.82 | | 67985 | 67920 | 224 | 219 | 260 | 275 | 3.5 | 3.3 | 61.9 | 0.51 | 1.2 | 0.65 | 5.66 | 2.82 | # **NSK** Bore Diameter 40 – 90 mm | | | | Dimensions | 5 | | | nd Ratings
N) | Limiting Spe | eds (min ⁻¹) | |----|-----|-------|------------|-------------|-----------------------------|------------|-------------------|--------------|--------------------------| | d | D | B_2 | C | $m{r}$ min. | $oldsymbol{arGamma}_1$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 40 | 80 | 45 | 37.5 | 1.5 | 0.6 | 109 000 | 140 000 | 3 700 | 5 100 | | 45 | 85 | 47 | 37.5 | 1.5 | 0.6 | 117 000 | 159 000 | 3 400 | 4 700 | | | 85 | 55 | 43.5 | 1.5 | 0.6 | 143 000 | 204 000 | 3 400 | 4 700 | | 50 | 90 | 48 | 38.5 | 1.5 | 0.6 | 131 000 | 183 000 | 3 200 | 4 400 | | | 90 | 49 | 39.5 | 1.5 | 0.6 | 131 000 | 183 000 | 3 200 | 4 400 | | | 90 | 55 | 43.5 | 1.5 | 0.6 | 150 000 | 218 000 | 3 200 | 4 400 | | | 110 | 64 | 51.5 | 2.5 | 0.6 | 224 000 | 297 000 | 2 700 | 3 700 | | 55 | 100 | 51 | 41.5 | 2 | 0.6 | 162 000 | 226 000 | 2 900 | 3 900 | | | 100 | 52 | 42.5 | 2 | 0.6 | 162 000 | 226 000 | 2 900 | 3 900 | | | 100 | 60 | 48.5 | 2 | 0.6 | 188 000 | 274 000 | 2 900 | 3 900 | | | 120 | 70 | 57 | 2.5 | 0.6 | 256 000 | 342 000 | 2 500 | 3 400 | | 60 | 110 | 53 | 43.5 | 2 | 0.6 | 178 000 | 246 000 | 2 700 | 3 600 | | | 110 | 66 | 54.5 | 2 | 0.6 | 225 000 | 335 000 | 2 700 | 3 600 | | | 130 | 74 | 59 | 3 | 1 | 298 000 | 405 000 | 2 300 | 3 200 | | 65 | 120 | 56 | 46.5 | 2 | 0.6 | 210 000 | 300 000 | 2 400 | 3 200 | | | 120 | 57 | 47.5 | 2 | 0.6 | 210 000 | 300 000 | 2 400 | 3 200 | | | 120 | 73 | 61.5 | 2 | 0.6 | 269 000 | 405 000 | 2 400 | 3 300 | | | 140 | 79 | 63 | 3 | 1 | 340 000 | 465 000 | 2 100 | 2 900 | | 70 | 125 | 57 | 46.5 | 2 | 0.6 | 227 000 | 325 000 | 2 300 | 3 100 | | | 125 | 59 | 48.5 | 2 | 0.6 | 227 000 | 325 000 | 2 300 | 3 100 | | | 125 | 74 | 61.5 | 2 | 0.6 | 270 000 | 410 000 | 2 300 | 3 100 | | | 150 | 83 | 67 | 3 | 1 | 390 000 | 535 000 | 2 000 | 2 700 | | 75 | 130 | 62 | 51.5 | 2 | 0.6 | 245 000 | 365 000 | 2 200 | 3 000 | | | 130 | 74 | 61.5 | 2 | 0.6 | 283 000 | 440 000 | 2 200 | 3 000 | | | 160 | 87 | 69 | 3 | 1 | 435 000 | 600 000 | 1 900 | 2 500 | | 80 | 140 | 61 | 49 | 2.5 | 0.6 | 269 000 | 390 000 | 2 000 | 2 800 | | | 140 | 64 | 51.5 | 2.5 | 0.6 | 269 000 | 390 000 | 2 000 | 2 800 | | | 140 | 78 | 63.5 | 2.5 | 0.6 | 330 000 | 505 000 | 2 000 | 2 800 | | | 170 | 92 | 73 | 3 | 1 | 475 000 | 655 000 | 1 700 | 2 400 | | 85 | 150 | 70 | 57 | 2.5 | 0.6 | 315 000 | 465 000 | 1 900 | 2 600 | | | 150 | 86 | 69 | 2.5 | 0.6 | 360 000 | 555 000 | 1 900 | 2 600 | | | 180 | 98 | 77 | 4 | 1 | 530 000 | 745 000 | 1 600 | 2 200 | | 90 | 160 | 71 | 58 | 2.5 | 0.6 | 345 000 | 510 000 | 1 800 | 2 400 | | | 160 | 74 | 61 | 2.5 | 0.6 | 345 000 | 510 000 | 1 800 | 2 400 | | | 160 | 94 | 77 | 2.5 | 0.6 | 440 000 | 700 000 | 1 800 | 2 400 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | |---------------|-----------------------|---------------------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and
\emph{Y}_{0} are given in the table below. | | Abutme | ent and F
(m | | ensions | Constant | P | xial Load
Factors | t | Mass
(kg) | |------------------|-----------------|-----------------|---|-----------------|----------|-------|----------------------|-------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $r_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | HR 40 KBE 42+L | 51 | 75 | 1.5 | 0.6 | 0.37 | 2.7 | 1.8 | 1.8 | 0.97 | | HR 45 KBE 42+L | 56 | 81 | 1.5 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.08 | | HR 45 KBE 52X+L | 56 | 81 | 1.5 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.31 | | HR 50 KBE 042+L | 61 | 87 | 1.5 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 1.20 | | HR 50 KBE 42+L | 61 | 87 | 1.5 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 1.22 | | HR 50 KBE 52X+L | 61 | 87 | 1.5 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 1.39 | | HR 50 KBE 043+L | 65 | 104 | 2 | 0.6 | 0.35 | 2.9 | 2.0 | 1.9 | 2.77 | | HR 55 KBE 042+L | 67 | 96 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.59 | | HR 55 KBE 1003+L | 67 | 96 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.63 | | HR 55 KBE 52X+L | 67 | 97 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 1.88 | | HR 55 KBE 43+L | 70 | 113 | 2 | 0.6 | 0.35 | 2.9 | 2.0 | 1.9 | 3.52 | | HR 60 KBE 042+L | 72 | 105 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.03 | | HR 60 KBE 52X+L | 72 | 106 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.52 | | HR 60 KBE 43+L | 78 | 122 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 4.40 | | HR 65 KBE 42+L | 77 | 115 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.58 | | HR 65 KBE 1202+L | 77 | 115 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 2.61 | | HR 65 KBE 52X+L | 77 | 117 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 3.35 | | HR 65 KBE 43+L | 83 | 132 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 5.42 | | HR 70 KBE 042+L | 82 | 120 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 2.79 | | HR 70 KBE 42+L | 82 | 120 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 2.85 | | HR 70 KBE 52X+L | 82 | 121 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 3.58 | | HR 70 KBE 43+L | 88 | 142 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 6.45 | | HR 75 KBE 42+L | 87 | 126 | 2 | 0.6 | 0.44 | 2.3 | 1.6 | 1.5 | 3.15 | | HR 75 KBE 52X+L | 87 | 127 | 2 | 0.6 | 0.44 | 2.3 | 1.6 | 1.5 | 3.73 | | HR 75 KBE 043+L | 93 | 151 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 7.66 | | HR 80 KBE 042+L | 95 | 134 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 3.70 | | HR 80 KBE 42+L | 95 | 134 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 3.70 | | HR 80 KBE 52X+L | 95 | 136 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 4.59 | | HR 80 KBE 043+L | 98 | 161 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 9.02 | | HR 85 KBE 42+L | 100 | 143 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 4.69 | | HR 85 KBE 52X+L | 100 | 144 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 5.70 | | HR 85 KBE 043+L | 106 | 169 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 10.8 | | HR 90 KBE 042+L | 105 | 152 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 5.53 | | HR 90 KBE 42+L | 105 | 152 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 5.71 | | HR 90 KBE 52X+L | 105 | 154 | 2 | 0.6 | 0.42 | 2.4 | 1.6 | 1.6 | 7.26 | Remarks For other double-row tapered roller bearings not listed above, please contact NSK. # NSK ### Bore Diameter 90 – 120 mm | | | | y Dimension
(mm) | ns | | | ad Ratings
(N) | Limiting Spe | eds (min ⁻¹) | |-----|-----|-------|---------------------|-------------|------------------------------------|-------------|-------------------|--------------|--------------------------| | d | D | B_2 | С | $m{r}$ min. | $oldsymbol{arGamma_1}{ ext{min.}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 90 | 190 | 102 | 81 | 4 | 1 | 595 000 | 845 000 | 1 600 | 2 100 | | | 190 | 144 | 115 | 4 | 1 | 770 000 | 1 180 000 | 1 600 | 2 200 | | 95 | 170 | 78 | 63 | 3 | 1 | 385 000 | 570 000 | 1 700 | 2 300 | | | 170 | 100 | 83 | 3 | 1 | 495 000 | 800 000 | 1 700 | 2 300 | | | 200 | 108 | 85 | 4 | 1 | 640 000 | 910 000 | 1 500 | 2 000 | | 100 | 165 | 52 | 46 | 2.5 | 0.6 | 222 000 | 340 000 | 1 700 | 2 300 | | | 180 | 81 | 64 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 81 | 65 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 82 | 66 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 83 | 67 | 3 | 1 | 435 000 | 665 000 | 1 600 | 2 200 | | | 180 | 105 | 85 | 3 | 1 | 555 000 | 905 000 | 1 600 | 2 200 | | | 180 | 107 | 87 | 3 | 1 | 555 000 | 905 000 | 1 600 | 2 200 | | | 180 | 110 | 90 | 3 | 1 | 555 000 | 905 000 | 1 600 | 2 200 | | | 215 | 112 | 87 | 4 | 1 | 725 000 | 1 050 000 | 1 400 | 1 900 | | 105 | 190 | 88 | 70 | 3 | 1 | 480 000 | 735 000 | 1 500 | 2 000 | | | 190 | 117 | 96 | 3 | 1 | 620 000 | 1 020 000 | 1 500 | 2 000 | | | 190 | 115 | 95 | 3 | 1 | 620 000 | 1 020 000 | 1 500 | 2 000 | | | 225 | 116 | 91 | 4 | 1 | 780 000 | 1 130 000 | 1 300 | 1 800 | | 110 | 180 | 56 | 50 | 2.5 | 0.6 | 264 000 | 400 000 | 1 500 | 2 000 | | | 180 | 70 | 56 | 2.5 | 0.6 | 340 000 | 555 000 | 1 500 | 2 000 | | | 180 | 125 | 100 | 2.5 | 0.6 | 550 000 | 1 060 000 | 1 500 | 2 100 | | | 200 | 90 | 72 | 3 | 1 | 540 000 | 840 000 | 1 400 | 1 900 | | | 200 | 92 | 74 | 3 | 1 | 540 000 | 840 000 | 1 400 | 1 900 | | | 200 | 120 | 100 | 3 | 1 | 685 000 | 1 130 000 | 1 400 | 1 900 | | | 200 | 121 | 101 | 3 | 1 | 685 000 | 1 130 000 | 1 400 | 1 900 | | | 240 | 118 | 93 | 4 | 1.5 | 830 000 | 1 190 000 | 1 200 | 1 700 | | 120 | 180 | 46 | 41 | 2.5 | 0.6 | 184 000 | 296 000 | 1 500 | 2 000 | | | 180 | 58 | 46 | 2.5 | 0.6 | 260 000 | 450 000 | 1 500 | 2 000 | | | 200 | 62 | 55 | 2.5 | 0.6 | 310 000 | 500 000 | 1 400 | 1 800 | | | 200 | 78 | 62 | 2.5 | 0.6 | 415 000 | 690 000 | 1 400 | 1 900 | | | 200 | 100 | 84 | 2.5 | 0.6 | 515 000 | 885 000 | 1 400 | 1 800 | | | 215 | 97 | 78 | 3 | 1 | 575 000 | 900 000 | 1 300 | 1 800 | | | 215 | 132 | 109 | 3 | 1 | 750 000 | 1 270 000 | 1 300 | 1 800 | | | 260 | 128 | 101 | 4 | 1 | 915 000 | 1 310 000 | 1 100 | 1 500 | | | 260 | 188 | 145 | 4 | 1 | 1 320 000 | 2 110 000 | 1 100 | 1 500 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}$ | $T_{\rm r} \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | |-------------|-----------------------|---------------------------|-----------------------|--|--|--| | X | Y | X | Y | | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Desaile a Niverbore | Abutm | ent and F
(m | | ensions | Constant | F | xial Load
Factors | b | Mass
(kg) | |------------------------|-----------------|-----------------|-------------------------------|-----------------|----------|-------|----------------------|-------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $oldsymbol{arGamma}_{a}$ max. | $r_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | HR 90 KBE 043+L | 111 | 178 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 12.7 | | HR 90 KBE1901+L | 111 | 179 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 17.9 | | HR 95 KBE 42+L | 113 | 161 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 6.75 | | HR 95 KBE 52+L | 113 | 163 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.60 | | HR 95 KBE 43+L | 116 | 187 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 14.7 | | 100 KBE 31+L | 115 | 156 | 2 | 0.6 | 0.33 | 3.0 | 2.0 | 2.0 | 4.04 | | HR100 KBE 1805+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.16 | | HR100 KBE 042+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.13 | | HR100 KBE 1801+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.22 | | HR100 KBE 42+L | 118 | 170 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 8.7 | | HR100 KBE 1802+L | 118 | 173 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 10.6 | | HR100 KBE 52X+L | 118 | 173 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 10.7 | | HR100 KBE 1804+L | 118 | 173 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 11 | | HR100 KBE 043+L | 121 | 200 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 18.1 | | HR105 KBE 42X+L | 123 | 179 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 9.76 | | HR105 KBE 1902+L | 123 | 182 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 13.4 | | HR105 KBE 52+L | 123 | 182 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 13.1 | | HR105 KBE 043+L | 126 | 209 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 20.4 | | 110 KBE 31+L | 125 | 172 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 5.11 | | 110 KBE 031+L | 125 | 172 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 6.33 | | 110 KBE 1802+L | 125 | 172 | 2 | 0.6 | 0.26 | 3.8 | 2.6 | 2.5 | 11.4 | | HR110 KBE 42+L | 128 | 190 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 11.2 | | HR110 KBE 42X+L | 128 | 190 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 11.5 | | HR110 KBE 2001+L | 128 | 193 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 15.4 | | HR110 KBE 52X+L | 128 | 193 | 2.5 | 1 | 0.42 | 2.4 | 1.6 | 1.6 | 15.2 | | HR110 KBE 043+L | 131 | 223 | 3 | 1.5 | 0.35 | 2.9 | 2.0 | 1.9 | 23.6 | | 120 KBE 30+L | 135 | 172 | 2 | 0.6 | 0.40 | 2.5 | 1.7 | 1.6 | 3.75 | | 120 KBE 030+L | 135 | 172 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 4.64 | | 120 KBE 31+L | 135 | 190 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 7.35 | | 120 KBE 031+L | 135 | 190 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 8.97 | | 120 KBE 2001+L | 135 | 193 | 2 | 0.6 | 0.37 | 2.7 | 1.8 | 1.8 | 11.3 | | HR120 KBE 42X+L | 138 | 204 | 2.5 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 13.7 | | HR120 KBE 52X+L | 138 | 207 | 2.5 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 18.8 | | HR120 KBE 43+L | 141 | 240 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 29.4 | | HR120 KBE 2601+L | 141 | 242 | 3 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 44.6 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. Bore Diameter 125 – 150 mm | | | Boundar | y Dimensions | S | | Basic Lo | oad Ratings | Limiting Spe | ode (min-1) | |-----|-----|---------|--------------|-------------|------------------------------|------------|-------------------|--------------|-------------| | | | | (mm) | | | | (N) | " | , , | | d | D | B_2 | С | $m{r}$ min. | $oldsymbol{r_1}{ ext{min.}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 125 | 210 | 110 | 88 | 4 | 1 | 560 000 | 1 030 000 | 1 300 | 1 800 | | 130 | 230 | 98 | 78.5 | 4 | 1 | 640 000 | 1 010 000 | 1
200 | 1 600 | | | 230 | 100 | 80.5 | 4 | 1 | 640 000 | 1 010 000 | 1 200 | 1 600 | | | 280 | 137 | 107.5 | 5 | 1.5 | 940 000 | 1 350 000 | 1 000 | 1 400 | | | 230 | 145 | 115 | 4 | 1 | 905 000 | 1 580 000 | 1 200 | 1 700 | | | 230 | 145 | 117.5 | 4 | 1 | 905 000 | 1 580 000 | 1 200 | 1 700 | | | 230 | 150 | 120 | 4 | 1 | 905 000 | 1 580 000 | 1 200 | 1 700 | | 140 | 210 | 53 | 47 | 2.5 | 0.6 | 280 000 | 495 000 | 1 200 | 1 700 | | | 210 | 66 | 53 | 2.5 | 1 | 305 000 | 530 000 | 1 200 | 1 700 | | | 210 | 106 | 94 | 2.5 | 0.6 | 555 000 | 1 200 000 | 1 300 | 1 700 | | | 225 | 68 | 61 | 3 | 1 | 400 000 | 630 000 | 1 200 | 1 600 | | | 225 | 84 | 68 | 3 | 1 | 490 000 | 850 000 | 1 200 | 1 600 | | | 225 | 85 | 68 | 3 | 1 | 490 000 | 850 000 | 1 200 | 1 600 | | | 230 | 120 | 94 | 3 | 1 | 685 000 | 1 270 000 | 1 200 | 1 600 | | | 230 | 140 | 110 | 3 | 1 | 820 000 | 1 550 000 | 1 200 | 1 600 | | | 240 | 132 | 106 | 4 | 1.5 | 685 000 | 1 360 000 | 1 100 | 1 500 | | | 250 | 102 | 82.5 | 4 | 1 | 670 000 | 1 030 000 | 1 100 | 1 500 | | | 250 | 153 | 125.5 | 4 | 1 | 1 040 000 | 1 830 000 | 1 100 | 1 500 | | | 300 | 145 | 115.5 | 5 | 1.5 | 1 030 000 | 1 480 000 | 1 000 | 1 300 | | 150 | 225 | 56 | 50 | 3 | 1 | 300 000 | 545 000 | 1 200 | 1 600 | | | 225 | 70 | 56 | 3 | 1 | 395 000 | 685 000 | 1 200 | 1 600 | | | 250 | 80 | 71 | 3 | 1 | 510 000 | 810 000 | 1 100 | 1 400 | | | 250 | 100 | 80 | 3 | 1 | 630 000 | 1 090 000 | 1 100 | 1 400 | | | 250 | 115 | 95 | 3 | 1 | 745 000 | 1 320 000 | 1 100 | 1 500 | | | 260 | 150 | 115 | 4 | 1 | 815 000 | 1 520 000 | 1 100 | 1 400 | | | 270 | 109 | 87 | 4 | 1 | 830 000 | 1 330 000 | 1 000 | 1 400 | | | 270 | 164 | 130 | 4 | 1 | 1 210 000 | 2 150 000 | 1 000 | 1 400 | | | 270 | 174 | 140 | 4 | 1 | 1 210 000 | 2 150 000 | 1 000 | 1 400 | | | 320 | 154 | 120 | 5 | 1.5 | 1 420 000 | 2 130 000 | 900 | 1 200 | Remarks For other double-row tapered roller bearings not listed above, please contact NSK. Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | |---------------|-----------------------|-------------------------|-------|--|--| | X | Y | X | Y | | | | 1 | Y ₃ | 0.67 | Y_2 | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Decides Newsland | Abutme | ent and Fi
(m | | ensions | Constant | F | xial Load
Factors | t | Mass
(kg) | |---|--------------------------|--------------------------|---|--------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $r_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 125 KBE 2101+L | 146 | 201 | 3 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 14.5 | | HR130 KBE 42+L | 151 | 220 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 15.8 | | HR130 KBE 2301+L | 151 | 220 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 15.9 | | 130 KBE 43+L | 157 | 258 | 4 | 1.5 | 0.36 | 2.8 | 1.9 | 1.8 | 35 | | HR130 KBE 2302+L | 151 | 221 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 24.1 | | HR130 KBE 52+L | 151 | 222 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 23.8 | | HR130 KBE 2303+L | 151 | 221 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 24.2 | | 140 KBE 30+L | 155 | 202 | 2 | 0.6 | 0.39 | 2.6 | 1.7 | 1.7 | 6.02 | | 140 KBE 030+L | 155 | 202 | 2 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 7.02 | | 140 KBE 2101+L | 155 | 202 | 2 | 0.6 | 0.33 | 3.0 | 2.0 | 2.0 | 12.3 | | 140 KBE 31+L | 158 | 216 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 9.31 | | 140 KBE 031+L | 158 | 215 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 11.6 | | 140 KBE 2201+L | 158 | 215 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 11.7 | | 140 KBE 2301+L | 158 | 220 | 2.5 | 1 | 0.33 | 3.0 | 2.0 | 2.0 | 17.6 | | 140 KBE 2302+L | 158 | 221 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 20.7 | | 140 KBE 2401+L | 161 | 227 | 3 | 1.5 | 0.44 | 2.3 | 1.5 | 1.5 | 22.7 | | HR140 KBE 42+L | 161 | 237 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 18.9 | | HR140 KBE 52X+L | 161 | 241 | 3 | 1 | 0.44 | 2.3 | 1.6 | 1.5 | 29.6 | | 140 KBE 43+L | 167 | 275 | 4 | 1.5 | 0.36 | 2.8 | 1.9 | 1.8 | 42.6 | | 150 KBE 30+L | 168 | 213 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 7.41 | | 150 KBE 030+L | 168 | 215 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 8.70 | | 150 KBE 31+L | 168 | 240 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 14.2 | | 150 KBE 031+L | 168 | 238 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 17.8 | | 150 KBE 2502+L | 168 | 238 | 2.5 | 1 | 0.37 | 2.7 | 1.8 | 1.8 | 20.9 | | 150 KBE 2601+L | 171 | 242 | 3 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 30.0 | | HR150 KBE 42+L
HR150 KBE 52X+L
HR150 KBE 2701+L
HR150 KBE 43+L | 171
171
171
177 | 253
257
257
295 | 3
3
4 | 1
1
1
1.5 | 0.44
0.44
0.44
0.35 | 2.3
2.3
2.3
2.9 | 1.6
1.6
1.6
2.0 | 1.5
1.5
1.5
1.9 | | # NSK Bore Diameter 160 – 200 mm | | | | y Dimensior | ns | | Basic Lo | ad Ratings | Limiting Spe | eds (min ⁻¹) | |-----|-----|-------|-------------|------------------|------------------------------|------------|-------------------|--------------|--------------------------| | | | (| mm) | | | | (N) | | | | d | D | B_2 | С | r
min. | $oldsymbol{r_1}{ ext{min.}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 160 | 240 | 60 | 53 | 3 | 1 | 355 000 | 580 000 | 1 100 | 1 500 | | | 240 | 75 | 60 | 3 | 1 | 395 000 | 710 000 | 1 100 | 1 500 | | | 240 | 110 | 90 | 3 | 1 | 650 000 | 1 290 000 | 1 100 | 1 500 | | | 270 | 86 | 76 | 3 | 1 | 540 000 | 885 000 | 1 000 | 1 300 | | | 270 | 108 | 86 | 3 | 1 | 775 000 | 1 380 000 | 1 000 | 1 300 | | | 270 | 140 | 120 | 3 | 1 | 990 000 | 1 880 000 | 1 000 | 1 300 | | | 280 | 150 | 125 | 4 | 1 | 1 100 000 | 2 020 000 | 1 000 | 1 300 | | | 290 | 115 | 91 | 4 | 1 | 800 000 | 1 220 000 | 900 | 1 300 | | | 290 | 178 | 144 | 4 | 1 | 1 360 000 | 2 440 000 | 1 000 | 1 300 | | | 340 | 160 | 126 | 5 | 1.5 | 1 310 000 | 1 920 000 | 800 | 1 100 | | 165 | 290 | 150 | 125 | 4 | 1 | 1 140 000 | 2 130 000 | 900 | 1 300 | | 170 | 250 | 85 | 65 | 3 | 1 | 435 000 | 845 000 | 1 000 | 1 400 | | | 260 | 67 | 60 | 3 | 1 | 400 000 | 700 000 | 1 000 | 1 300 | | | 260 | 84 | 67 | 3 | 1 | 575 000 | 1 030 000 | 1 000 | 1 300 | | | 280 | 88 | 78 | 3 | 1 | 630 000 | 1 040 000 | 900 | 1 300 | | | 280 | 110 | 88 | 3 | 1 | 820 000 | 1 450 000 | 900 | 1 300 | | | 280 | 150 | 130 | 3 | 1 | 1 110 000 | 2 160 000 | 1 000 | 1 300 | | | 310 | 192 | 152 | 5 | 1.5 | 1 590 000 | 2 910 000 | 900 | 1 200 | | 180 | 280 | 74 | 66 | 3 | 1 | 455 000 | 810 000 | 900 | 1 300 | | | 280 | 93 | 74 | 3 | 1 | 655 000 | 1 220 000 | 900 | 1 200 | | | 300 | 96 | 85 | 4 | 1.5 | 725 000 | 1 210 000 | 900 | 1 200 | | | 300 | 120 | 96 | 4 | 1.5 | 940 000 | 1 690 000 | 900 | 1 200 | | | 320 | 127 | 99 | 5 | 1.5 | 895 000 | 1 390 000 | 800 | 1 200 | | | 320 | 192 | 152 | 5 | 1.5 | 1 640 000 | 3 050 000 | 900 | 1 200 | | | 340 | 180 | 140 | 5 | 1.5 | 1 410 000 | 2 510 000 | 800 | 1 100 | | 190 | 290 | 75 | 67 | 3 | 1 | 490 000 | 845 000 | 900 | 1 200 | | | 290 | 94 | 75 | 3 | 1 | 670 000 | 1 230 000 | 900 | 1 200 | | | 320 | 104 | 92 | 4 | 1.5 | 800 000 | 1 380 000 | 800 | 1 100 | | | 320 | 130 | 104 | 4 | 1.5 | 1 070 000 | 1 960 000 | 800 | 1 100 | | | 340 | 133 | 105 | 5 | 1.5 | 990 000 | 1 580 000 | 800 | 1 100 | | | 340 | 204 | 160 | 5 | 1.5 | 1 910 000 | 3 550 000 | 800 | 1 100 | | 200 | 310 | 152 | 123 | 3 | 1 | 1 300 000 | 2 740 000 | 800 | 1 100 | | | 320 | 146 | 110 | 5 | 1.5 | 990 000 | 2 120 000 | 800 | 1 100 | | | 330 | 180 | 140 | 5 | 1.5 | 1 390 000 | 2 730 000 | 800 | 1 100 | | | 340 | 112 | 100 | 4 | 1.5 | 940 000 | 1 670 000 | 800 | 1 000 | | | 340 | 140 | 112 | 4 | 1.5 | 1 260 000 | 2 250 000 | 800 | 1 000 | | | 360 | 142 | 110 | 5 | 1.5 | 1 100 000 | 1 780 000 | 700 | 1 000 | | | 360 | 218 | 174 | 5 | 1.5 | 2 070 000 | 3 850 000 | 800 | 1 000 | | D | | | | | | | L. I NCV | | | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | |---------------|-----------------------|-------------------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Danis a Novebous | Abutme | ent and F
(m | | ensions | Constant | F | Axial Load
Factors | t | Mass
(kg) | |---|--------------------------|--------------------------|---|--------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $r_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | арргох. | | 160 KBE 30+L | 178 | 231 | 2.5 | 1 | 0.37 | 2.7 | 1.8 | 1.8 | 8.56 | | 160 KBE 030+L | 178 | 230 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 10.5 | | 160 KBE 2401+L | 178 | 232 | 2.5 | 1 | 0.38 | 2.6 | 1.8 | 1.7 | 16.2 | | 160 KBE 31+L | 178 | 255 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 18.6 | | 160 KBE 031+L | 178 | 256 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 23.1 | | 160 KBE 2701+L | 178 | 261 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 30.6 | | 160 KBE 2801+L
160 KBE 42+L
HR160 KBE 52X+L
160 KBE 43+L | 181
181
181
187 | 266
275
277
314 | 3
3
4 | 1
1
1
1.5 | 0.32
0.43
0.44
0.36 | 3.2
2.3
2.3
2.8 | 2.1
1.6
1.6
1.9 | 2.1
1.5
1.5
1.8 | 35.9
28.2
47.3
60.4 | | 165 KBE 2901+L | 186 | 272 | 3 | 1 | 0.33 | 3.1 | 2.1 | 2.0 | 39.5 | | 170 KBE 2501+L | 188 | 241 | 2.5 | 1 | 0.44 | 2.3 |
1.5 | 1.5 | 12.3 | | 170 KBE 30+L | 188 | 248 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 11.8 | | 170 KBE 030+L | 188 | 249 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 14.4 | | 170 KBE 31+L | 188 | 266 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 19.7 | | 170 KBE 031+L | 188 | 268 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 24.2 | | 170 KBE 2802+L | 188 | 269 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 34.6 | | HR170 KBE 52X+L | 197 | 297 | 4 | 1.5 | 0.44 | 2.3 | 1.6 | 1.5 | 57.3 | | 180 KBE 30+L | 198 | 265 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 15.4 | | 180 KBE 030+L | 198 | 265 | 2.5 | 1 | 0.35 | 2.9 | 2.0 | 1.9 | 14.4 | | 180 KBE 31+L | 201 | 284 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 24.8 | | 180 KBE 031+L | 201 | 287 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 31.1 | | 180 KBE 42+L | 207 | 300 | 4 | 1.5 | 0.44 | 2.3 | 1.5 | 1.5 | 36.5 | | HR180 KBE 52X+L | 207 | 308 | 4 | 1.5 | 0.45 | 2.2 | 1.5 | 1.5 | 59.2 | | 180 KBE 3401+L | 207 | 305 | 4 | 1.5 | 0.43 | 2.3 | 1.6 | 1.5 | 68.1 | | 190 KBE 30+L | 208 | 279 | 2.5 | 1 | 0.39 | 2.6 | 1.7 | 1.7 | 16.2 | | 190 KBE 030+L | 208 | 279 | 2.5 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 20.1 | | 190 KBE 31+L | 211 | 301 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 30.9 | | 190 KBE 031+L | 211 | 302 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 39.0 | | 190 KBE 42+L | 217 | 320 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 43.9 | | HR190 KBE 52X+L | 217 | 327 | 4 | 1.5 | 0.44 | 2.3 | 1.6 | 1.5 | 70.8 | | HR200 KBE 3101+L | 218 | 301 | 2.5 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 40.1 | | 200 KBE 3201+L | 227 | 301 | 4 | 1.5 | 0.52 | 1.9 | 1.3 | 1.3 | 41.6 | | 200 KBE 3301+L | 227 | 316 | 4 | 1.5 | 0.42 | 2.4 | 1.6 | 1.6 | 54.4 | | 200 KBE 31+L | 221 | 321 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 38.8 | | 200 KBE 031+L | 221 | 324 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 47.0 | | 200 KBE 42+L | 227 | 338 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 52.6 | | HR200 KBE 52+L | 227 | 344 | 4 | 1.5 | 0.41 | 2.5 | 1.7 | 1.6 | 88.3 | Remarks For other double-row tapered roller bearings not listed above, please contact NSK. # NSK # Bore Diameter 206 – 260 mm | | | | y Dimensior
(mm) | ıs | | | oad Ratings
(N) | Limiting Spe | eds (min ⁻¹) | |-----|-----|-------|---------------------|-------------|------------------------|-------------|--------------------|--------------|--------------------------| | d | D | B_2 | С | $m{r}$ min. | $oldsymbol{r_1}{min.}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 206 | 283 | 102 | 83 | 4 | 1.5 | 580 000 | 1 430 000 | 900 | 1 200 | | 210 | 355 | 116 | 103 | 4 | 1.5 | 905 000 | 1 520 000 | 700 | 1 000 | | 220 | 300 | 110 | 88 | 3 | 1 | 730 000 | 1 710 000 | 800 | 1 100 | | | 340 | 90 | 80 | 4 | 1.5 | 695 000 | 1 280 000 | 700 | 1 000 | | | 340 | 113 | 90 | 4 | 1.5 | 920 000 | 1 830 000 | 700 | 1 000 | | | 370 | 120 | 107 | 5 | 1.5 | 1 110 000 | 1 940 000 | 700 | 1 000 | | | 370 | 150 | 120 | 5 | 1.5 | 1 460 000 | 2 760 000 | 700 | 1 000 | | | 400 | 158 | 122 | 5 | 1.5 | 1 390 000 | 2 300 000 | 600 | 900 | | 240 | 360 | 92 | 82 | 4 | 1.5 | 780 000 | 1 490 000 | 700 | 900 | | | 360 | 115 | 92 | 4 | 1.5 | 1 020 000 | 2 040 000 | 700 | 900 | | | 400 | 128 | 114 | 5 | 1.5 | 1 180 000 | 2 190 000 | 600 | 900 | | | 400 | 160 | 128 | 5 | 1.5 | 1 620 000 | 3 050 000 | 600 | 900 | | | 400 | 209 | 168 | 5 | 1.5 | 2 220 000 | 4 450 000 | 600 | 900 | | 250 | 380 | 98 | 87 | 4 | 1 | 795 000 | 1 460 000 | 600 | 900 | | 260 | 400 | 104 | 92 | 5 | 1.5 | 895 000 | 1 670 000 | 600 | 800 | | | 400 | 130 | 104 | 5 | 1.5 | 1 210 000 | 2 460 000 | 600 | 800 | | | 440 | 144 | 128 | 5 | 1.5 | 1 540 000 | 2 760 000 | 600 | 800 | | | 440 | 172 | 145 | 5 | 1.5 | 1 870 000 | 3 500 000 | 600 | 800 | | | 440 | 180 | 144 | 5 | 1.5 | 2 110 000 | 4 150 000 | 600 | 800 | **Remarks** For other double-row tapered roller bearings not listed above, please contact NSK. Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | |---------------|-----------------------|---------------------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Dessire Number | Abutm | ent and Fi
(m | | ensions | Constant | £ | xial Load
Factors | t | Mass
(kg) | |-----------------|-----------------|------------------|---|-----------------|----------|-------|----------------------|-------|--------------| | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $r_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 206 KBE 2801+L | 227 | 275 | 3 | 1.5 | 0.51 | 2.0 | 1.3 | 1.3 | 18.1 | | 210 KBE 31+L | 231 | 338 | 3 | 1.5 | 0.46 | 2.2 | 1.5 | 1.4 | 41.7 | | 220 KBE 3001+L | 238 | 292 | 2.5 | 1 | 0.37 | 2.7 | 1.8 | 1.8 | 21.2 | | 220 KBE 30+L | 241 | 324 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 27.9 | | 220 KBE 030+L | 241 | 327 | 3 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 34.7 | | 220 KBE 31+L | 247 | 345 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 48.3 | | 220 KBE 031+L | 247 | 349 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 60.2 | | 220 KBE 42+L | 247 | 371 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 74.2 | | 240 KBE 30+L | 261 | 344 | 3 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 30.1 | | 240 KBE 030+L | 261 | 344 | 3 | 1.5 | 0.35 | 2.9 | 2.0 | 1.9 | 37.3 | | 240 KBE 31+L | 267 | 380 | 4 | 1.5 | 0.43 | 2.3 | 1.6 | 1.5 | 60.0 | | 240 KBE 031+L | 267 | 378 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 73.6 | | 240 KBE 4003+L | 267 | 384 | 4 | 1.5 | 0.33 | 3.0 | 2.0 | 2.0 | 96.4 | | 250 KBE 3801+L | 271 | 365 | 3 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 35.5 | | 260 KBE 30+L | 287 | 379 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 43.4 | | 260 KBE 030+L | 287 | 382 | 4 | 1.5 | 0.40 | 2.5 | 1.7 | 1.6 | 54.1 | | 260 KBE 31+L | 287 | 416 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 82.5 | | 260 KBE 4401+L | 287 | 414 | 4 | 1.5 | 0.38 | 2.6 | 1.8 | 1.7 | 98.1 | | 260 KBE 031+L | 287 | 416 | 4 | 1.5 | 0.39 | 2.6 | 1.7 | 1.7 | 104.0 | # SPHERICAL ROLLER BEARINGS ### SPHERICAL ROLLER BEARINGS Cylindrical Bores, Tapered Bores Bore Diameter 20 – 150mm B184 Bore Diameter 160 – 560mm B192 Bore Diameter 600 – 1400mm ····· B202 # DESIGN, TYPES, AND FEATURES Shown in the figures, types EA, C, CD, CA, which are designed for high load capacity, are available. Types EA, C and CD have pressed steel cages, and type CA has machined brass cages. The EA type bearings listed here are classified as NSKHPS bearings, which offer particularly high load-carrying capacity, high limiting speeds, and are highly functional under high-temperature operating conditions of up to 200°C. An oil groove and holes are provided in the outer ring to supply lubricant and the bearing numbers are suffixed with E4. To use bearings with oil grooves and holes, it is recommended to provide an oil groove in the housing bore, since the depth of the groove in the bearing is limited. The number and dimensions of the oil groove and holes are shown in Tables 1 and 2. When bearings with a hole for a locking pin to prevent outer ring rotation are required, please inform NSK. ### PERMISSIBLE MISALIGNMENT Table 2 Number of Oil Holes The permissible misalignment of spherical roller bearings varies depending on the size and load, but it is approximately 0.018 to 0.045 radian (1° to 2.5°) with normal loads. The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A37 for detailed information. CA | | and Holes | S | Units : mm | | | | |------------|------------|------------|------------------------------------|---------------------------------|-------------|-------------| | | Width B | Oil Groove | Hole Diameter | Nominal Outer Ring Dia <i>I</i> | | Number | | over | incl. | Width W | $d_{\scriptscriptstyle extsf{OH}}$ | | | of Holes | | 18 | 30 | 5 | 2.5 | over | incl. | | | 30 | 40 | 6
7 | 3 | _ | 180 | 4 | | 40 | 50 | 7 | 4 | 180 | 250 | 6 | | 50 | 65 | 8 | 5 | 250 | 315 | 6 | | 65 | 80 | 10 | 6 | 315 | 400 | 6 | | 80 | 100 | 12 | 8 | 400 | 500 | | | 100 | 120 | 15 | 10 | 500 | 630 | 6
8 | | 120
160 | 160
200 | 20
25 | 12
15 | 630
800 | 800
1000 | 8
8
8 | | 200 | 250 | 30 | 20 | 1000 | 1250 | 0 | | 250 | 315 | 35 | 20 | | | | | 315 | 400 | 40 | 25 | 1250 | 1600 | 8 | | 400 | _ | 40 | 25 | 1600 | 2000 | 8 | | | | | | | | | And if the load on spherical roller bearings becomes too small during operation or if the ratio of axial and radial loads is larger than the value of 'e'(listed in the bearing tables), slippage occurs between the rollers and raceways, which may result in smearing. The higher the weight of the rollers and cage, the higher this tendency becomes, especially for large spherical roller bearings. If very small bearing loads are expected, please contact NSK for selection of an appropriate bearing. ### Bore Diameter 20 – 55 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | Вс | oundary (m | Dimensi
nm) | ons | (1 | Basic Load
N) | Ratings {k | gf} | Limiting
(mir | • | Bearing | |----|------------|----------------|-------------|------------|-------------------|------------|-------------------|------------------|-------|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 20 | 52 | 15 | 1.1 | 29 300 | 26 900 | 2 980 | 2 740 | 6 300 | 8 200 | 21304CDE4 | | 25 | 52 | 18 | 1 | 37 500 | 37 000 | 3 850 | 3 800 | 7 100 | 9 000 | 22205CE4 | | | 62 | 17 | 1.1 | 43 000 | 40 500 | 4 350 | 4 150 | 5 300 | 6 700 | 21305CDE4 | | 30 | 62 | 20 | 1 | 50 000 | 50 000 | 5 100 | 5 100 | 6 000 | 7 500 | 22206CE4 | | | 72 | 19 | 1.1 | 55 000 | 54 000 | 5 600 | 5 500 | 4 500 | 6 000 | 21306CDE4 | | 35 | 72 | 23 | 1.1 | 69 000 | 71 000 | 7 050 | 7 200 | 5
300 | 6 700 | 22207CE4 | | | 80 | 21 | 1.5 | 71 500 | 76 000 | 7 250 | 7 750 | 4 000 | 5 300 | 21307CDE4 | | 40 | 80 | 23 | 1.1 | 113 000 | 99 500 | 11 500 | 10 100 | 6 700 | 8 500 | *22208EAE4 | | | 90 | 23 | 1.5 | 118 000 | 111 000 | 12 000 | 11 300 | 6 000 | 7 500 | *21308EAE4 | | | 90 | 33 | 1.5 | 170 000 | 153 000 | 17 300 | 15 600 | 5 300 | 6 700 | *22308EAE4 | | 45 | 85 | 23 | 1.1 | 118 000 | 111 000 | 12 000 | 11 300 | 6 000 | 7 500 | *22209EAE4 | | | 100 | 25 | 1.5 | 149 000 | 144 000 | 15 200 | 14 600 | 5 000 | 6 300 | *21309EAE4 | | | 100 | 36 | 1.5 | 207 000 | 195 000 | 21 100 | 19 900 | 4 500 | 5 600 | *22309EAE4 | | 50 | 90 | 23 | 1.1 | 124 000 | 119 000 | 12 600 | 12 100 | 5 600 | 7 100 | *22210EAE4 | | | 110 | 27 | 2 | 178 000 | 174 000 | 18 100 | 17 800 | 4 500 | 5 600 | *21310EAE4 | | | 110 | 40 | 2 | 246 000 | 234 000 | 25 100 | 23 900 | 4 300 | 5 300 | *22310EAE4 | | 55 | 100 | 25 | 1.5 | 149 000 | 144 000 | 15 200 | 14 600 | 5 300 | 6 700 | *22211EAE4 | | | 120 | 29 | 2 | 178 000 | 174 000 | 18 100 | 17 800 | 4 500 | 5 600 | *21311EAE4 | | | 120 | 43 | 2 | 292 000 | 292 000 | 29 800 | 29 800 | 3 800 | 4 800 | *22311EAE4 | Note (1) The suffix K represents bearings with tapered bores (taper 1 : 12). Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | |---------------|-----------------------|-------------------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | А | butment | and Fillet Din
(mm) | nensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |-------------------------|------------|----------|------------------------|----------|-----------------|--------------|------------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ | max. | $D_{ m a}$ max. | min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 21304CDKE4 | 27 | 28 | 45 | 42 | 1 | 0.31 | 3.2 | 2.1 | 2.1 | 0.17 | | 22205CKE4
21305CDKE4 | 31
32 | 31
34 | 46
55 | 45
51 | 1 | 0.35
0.29 | 2.9
3.4 | 1.9
2.3 | 1.9 | 0.17
0.26 | | 22206CKE4 | 36 | 37 | 56 | 54 | 1 | 0.33 | 3.1 | 2.1 | 2.0 | 0.27 | | 21306CDKE4 | 37 | 40 | 65 | 59 | 1 | 0.28 | 3.6 | 2.4 | 2.3 | 0.39 | | 22207CKE4 | 42 | 43 | 65 | 63 | 1 | 0.32 | 3.1 | 2.1 | 2.0 | 0.42 | | 21307CDKE4 | 44 | 47 | 71 | 67 | 1.5 | 0.28 | 3.6 | 2.4 | 2.4 | 0.53 | | *22208EAKE4 | 47 | 49 | 73 | 70 | 1 | 0.28 | 3.6 | 2.4 | 2.4 | 0.50 | | *21308EAKE4 | 49 | 54 | 81 | 75 | 1.5 | 0.25 | 3.9 | 2.7 | 2.6 | 0.73 | | *22308EAKE4 | 49 | 52 | 81 | 77 | 1.5 | 0.35 | 2.8 | 1.9 | 1.9 | 0.98 | | *22209EAKE4 | 52 | 54 | 78 | 75 | 1 | 0.25 | 3.9 | 2.7 | 2.6 | 0.55 | | *21309EAKE4 | 54 | 65 | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 0.96 | | *22309EAKE4 | 54 | 59 | 91 | 86 | 1.5 | 0.34 | 2.9 | 2.0 | 1.9 | 1.34 | | *22210EAKE4 | 57 | 60 | 83 | 81 | 1 | 0.24 | 4.3 | 2.9 | 2.8 | 0.61 | | *21310EAKE4 | 60 | 72 | 100 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 1.21 | | *22310EAKE4 | 60 | 64 | 100 | 93 | 2 | 0.35 | 2.8 | 1.9 | 1.9 | 1.78 | | *22211EAKE4 | 64 | 65 | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 0.81 | | *21311EAKE4 | 65 | 72 | 110 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 1.58 | | *22311EAKE4 | 65 | 73 | 110 | 103 | 2 | 0.34 | 2.9 | 2.0 | 1.9 | 2.3 | Remarks 1. The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. 2. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. The segmentations are: Light Loads ($\leq 0.05\,C_T$): Normal Loads (0.05 to 0.10 C_T); and Heavy Loads ($> 0.10\,C_T$). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages B358 – B359, and B366. ### Bore Diameter 60 – 85 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | Вс | oundary [
(m | Dimension) | ons | (1 | Basic Load | 0 | gf} | Limiting
(mir | | Bearing | |----|-----------------|------------|------------------|------------|-------------------|------------|-------------------|------------------|-------|------------------| | d | D | В | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 60 | 95 | 26 | 1.1 | 98 500 | 141 000 | 10 000 | 14 400 | 3 600 | 4 500 | 23012CE4 | | | 110 | 28 | 1.5 | 178 000 | 174 000 | 18 100 | 17 800 | 4 800 | 6 000 | *22212EAE4 | | | 130 | 31 | 2.1 | 238 000 | 244 000 | 24 200 | 24 900 | 3 800 | 4 800 | *21312EAE4 | | | 130 | 46 | 2.1 | 340 000 | 340 000 | 34 500 | 35 000 | 3 600 | 4 500 | *22312EAE4 | | 65 | 120 | 31 | 1.5 | 221 000 | 230 000 | 22 500 | 23 500 | 4 300 | 5 300 | *22213EAE4 | | | 140 | 33 | 2.1 | 264 000 | 275 000 | 27 000 | 28 000 | 3 600 | 4 500 | *21313EAE4 | | | 140 | 48 | 2.1 | 375 000 | 380 000 | 38 000 | 38 500 | 3 200 | 4 000 | *22313EAE4 | | 70 | 125 | 31 | 1.5 | 225 000 | 232 000 | 22 900 | 23 600 | 4 000 | 5 300 | *22214EAE4 | | | 150 | 35 | 2.1 | 310 000 | 325 000 | 32 000 | 33 500 | 3 200 | 4 000 | *21314EAE4 | | | 150 | 51 | 2.1 | 425 000 | 435 000 | 43 500 | 44 000 | 3 000 | 3 800 | *22314EAE4 | | 75 | 130 | 31 | 1.5 | 238 000 | 244 000 | 24 200 | 24 900 | 4 000 | 5 000 | *22215EAE4 | | | 160 | 37 | 2.1 | 310 000 | 325 000 | 32 000 | 33 500 | 3 200 | 4 000 | *21315EAE4 | | | 160 | 55 | 2.1 | 485 000 | 505 000 | 49 500 | 51 500 | 2 800 | 3 600 | *22315EAE4 | | 80 | 140 | 33 | 2 | 264 000 | 275 000 | 27 000 | 28 000 | 3 600 | 4 500 | *22216EAE4 | | | 170 | 39 | 2.1 | 355 000 | 375 000 | 36 000 | 38 000 | 3 000 | 3 800 | *21316EAE4 | | | 170 | 58 | 2.1 | 540 000 | 565 000 | 55 000 | 58 000 | 2 600 | 3 400 | *22316EAE4 | | 85 | 150 | 36 | 2 | 310 000 | 325 000 | 32 000 | 33 500 | 3 400 | 4 300 | *22217EAE4 | | | 180 | 41 | 3 | 360 000 | 395 000 | 37 000 | 40 000 | 3 000 | 4 000 | *21317EAE4 | | | 180 | 60 | 3 | 600 000 | 630 000 | 61 000 | 64 000 | 2 400 | 3 200 | *22317EAE4 | Note (1) The suffix K represents bearings with tapered bores (taper 1 : 12). Dynamic Equivalent Load | $P = XF_r$ | + | YF_a | |------------|---|--------| |------------|---|--------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}\!>\!e$ | | | | | | |---------------|------------|-----------------------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_3 | 0.67 | Y ₂ | | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | ŀ | Abutment | and Fillet Dir
(mm) | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|---------------------|----------|-------------------------|-----------|-----------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | d_{ϵ} min. | max. | $oldsymbol{D}_{i}$ max. | a
min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23012CKE4 | 67 | 68 | 88 | 85 | 1 | 0.26 | 3.9 | 2.6 | 2.5 | 0.68 | | *22212EAKE4 | 69 | 72 | 101 | 98 | 1.5 | 0.23 | 4.4 | 3.0 | 2.9 | 1.1 | | *21312EAKE4 | 72 | 87 | 118 | 117 | 2 | 0.22 | 4.5 | 3.0 | 3.0 | 1.98 | | *22312EAKE4 | 72 | 79 | 118 | 111 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 2.89 | | *22213EAKE4 | 74 | 80 | 111 | 107 | 1.5 | 0.24 | 4.2 | 2.8 | 2.7 | 1.51 | | *21313EAKE4 | 77 | 94 | 128 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.45 | | *22313EAKE4 | 77 | 84 | 128 | 119 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 3.52 | | *22214EAKE4 | 79 | 84 | 116 | 111 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 1.58 | | *21314EAKE4 | 82 | 101 | 138 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 3.0 | | *22314EAKE4 | 82 | 91 | 138 | 129 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 4.28 | | *22215EAKE4 | 84 | 87 | 121 | 117 | 1.5 | 0.22 | 4.5 | 3.0 | 3.0 | 1.64 | | *21315EAKE4 | 87 | 101 | 148 | 134 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 3.64 | | *22315EAKE4 | 87 | 97 | 148 | 137 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 5.26 | | *22216EAKE4 | 90 | 94 | 130 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.01 | | *21316EAKE4 | 92 | 109 | 158 | 146 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 4.32 | | *22316EAKE4 | 92 | 103 | 158 | 145 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 6.23 | | *22217EAKE4 | 95 | 101 | 140 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.54 | | *21317EAKE4 | 99 | 108 | 166 | 142 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | 5.2 | | *22317EAKE4 | 99 | 110 | 166 | 155 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 7.23 | Remarks 1. The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. 2. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. The segmentations are: Light Loads ($\leq 0.05\,C_1$): Normal Loads (0.05 to 0.10 C_1); and Heavy Loads ($> 0.10\,C_1$). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages B359 – B361, and B366. ### Bore Diameter 90 – 110 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | | | | | ı | | | | | | | |-----|---------------|-----------------|-------------|--------------------|--------------------|------------------|-------------------|------------------|----------------|------------------------| | Во | oundary
(m | Dimensio
nm) | ins | (| Basic Load
(N) | 3 | .gf} | Limiting
(mir | | Bearing | | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 90 | 160 | 40 | 2 | 360 000 | 395 000 | 37 000 | 40 000 | 3 200 | 4 000 | *22218EAE4 | | | 160 | 52.4 | 2 | 340 000 | 490 000 | 34 500 | 50 000 | 1 800 | 2 400 | 23218CE4 | | | 190 | 43 | 3 | 415 000 | 450 000 | 42 000 | 46 000 | 2 800 | 3 600 | *21318EAE4 | | | 190 | 64 | 3 | 665 000 | 705 000 | 68 000 | 72 000 | 2 400 | 3 000 |
*22318EAE4 | | 95 | 170 | 43 | 2.1 | 415 000 | 450 000 | 42 000 | 46 000 | 3 000 | 3 800 | *22219EAE4 | | | 170 | 55.6 | 2.1 | 370 000 | 525 000 | 37 500 | 53 500 | 1 700 | 2 200 | 23219CAE4 | | | 200 | 45 | 3 | 345 000 | 435 000 | 35 000 | 44 500 | 1 500 | 2 000 | 21319CE4 | | | 200 | 67 | 3 | 735 000 | 780 000 | 75 000 | 79 500 | 2 200 | 2 800 | *22319EAE4 | | 100 | 150 | 37 | 1.5 | 212 000 | 335 000 | 21 600 | 34 500 | 2 200 | 2 800 | 23020CDE4 | | | 150 | 50 | 1.5 | 276 000 | 470 000 | 28 100 | 48 000 | 1 800 | 2 400 | 24020CE4 | | | 165 | 52 | 2 | 345 000 | 530 000 | 35 500 | 54 000 | 1 700 | 2 200 | 23120CE4 | | | 165 | 65 | 2 | 345 000 | 535 000 | 35 000 | 55 000 | 1 700 | 2 200 | 24120CAE4 | | | 180 | 46 | 2.1 | 455 000 | 490 000 | 46 500 | 50 000 | 2 800 | 3 600 | *22220EAE4 | | | 180 | 60.3 | 2.1 | 420 000 | 605 000 | 42 500 | 61 500 | 1 600 | 2 200 | 23220CE4 | | | 215
215 | 47
73 | 3 | 395 000
860 000 | 485 000
930 000 | 40 500
88 000 | 49 500
94 500 | 1 400
2 000 | 1 900
2 600 | 21320CE4
*22320EAE4 | | 110 | 170 | 45 | 2 | 293 000 | 465 000 | 29 900 | 47 500 | 2 000 | 2 400 | 23022CDE4 | | | 170 | 60 | 2 | 380 000 | 645 000 | 38 500 | 66 000 | 1 600 | 2 200 | 24022CE4 | | | 180 | 56 | 2 | 385 000 | 630 000 | 39 500 | 64 000 | 1 600 | 2 000 | 23122CE4 | | | 180 | 69 | 2 | 460 000 | 750 000 | 47 000 | 76 500 | 1 600 | 2 000 | 24122CE4 | | | 200 | 53 | 2.1 | 605 000 | 645 000 | 61 500 | 66 000 | 2 600 | 3 200 | *22222EAE4 | | | 200 | 69.8 | 2.1 | 515 000 | 760 000 | 52 500 | 77 500 | 1 500 | 1 900 | 23222CE4 | | | 240 | 50 | 3 | 450 000 | 545 000 | 46 000 | 55 500 | 1 300 | 1 700 | 21322CAE4 | | | 240 | 80 | 3 | 1030 000 | 1 120 000 | 105 000 | 115 000 | 1 900 | 2 400 | *22322EAE4 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). Dynamic Equivalent Load | $P = XF_r + Y$ | F_{z} | |----------------|---------| |----------------|---------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}\!>\!e$ | | | | | | |---------------|------------|-----------------------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_3 | 0.67 | Y ₂ | | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | , | Abutment | and Fillet Dir
(mm) | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |--|-------------------|------------|-------------------------|-------------------|-----------------|----------------------|-------------------|---------------------|-------------------|---------------------| | Tapered Bore(1) | d | a
max. | $oldsymbol{D}_{i}$ max. | a
min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | *22218EAKE4 | 100 | 108 | 150 | 142 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 3.3 | | 23218CKE4 | 100 | 105 | 150 | 138 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 4.51 | | *21318EAKE4 | 104 | 115 | 176 | 152 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | 6.1 | | *22318EAKE4 | 104 | 115 | 176 | 163 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 8.56 | | *22219EAKE4 | 107 | 115 | 158 | 152 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 4.04 | | 23219CAKE4 | 107 | — | 158 | 146 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | 5.33 | | 21319CKE4 | 109 | 127 | 186 | 172 | 2.5 | 0.22 | 4.6 | 3.1 | 3.0 | 6.92 | | *22319EAKE4 | 109 | 121 | 186 | 172 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 9.91 | | 23020CDKE4 | 109 | 112 | 141 | 136 | 1.5 | 0.22 | 4.6 | 3.1 | 3.0 | 2.31 | | 24020CK30E4 | 109 | 110 | 141 | 132 | 1.5 | 0.30 | 3.4 | 2.3 | 2.2 | 3.08 | | 23120CKE4 | 110 | 113 | 155 | 144 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 4.38 | | 24120CAK30E4
*22220EAKE4
23220CKE4 | 110
112
112 | 119
118 | 155
168
168 | 143
160
155 | 2
2
2 | 0.35
0.24
0.32 | 2.9
4.3
3.2 | 1.9
2.9
2.1 | 1.9
2.8
2.1 | 5.42
4.84
6.6 | | 21320CKE4 | 114 | 133 | 201 | 184 | 2.5 | 0.21 | 4.7 | 3.2 | 3.1 | 8.46 | | *22320EAKE4 | 114 | 130 | 201 | 184 | 2.5 | 0.33 | 3.0 | 2.0 | 2.0 | 12.7 | | 23022CDKE4 | 120 | 124 | 160 | 153 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 3.76 | | 24022CK30E4 | 120 | 121 | 160 | 148 | 2 | 0.32 | 3.1 | 2.1 | 2.1 | 4.96 | | 23122CKE4 | 120 | 127 | 170 | 158 | 2 | 0.28 | 3.5 | 2.4 | 2.3 | 5.7 | | 24122CK30E4 | 120 | 123 | 170 | 154 | 2 | 0.36 | 2.8 | 1.9 | 1.8 | 6.84 | | *22222EAKE4 | 122 | 129 | 188 | 178 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | 6.99 | | 23222CKE4 | 122 | 130 | 188 | 170 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 9.54 | | 21322CAKE4 | 124 | | 226 | 206 | 2.5 | 0.22 | 4.6 | 3.1 | 3.0 | 11.2 | | *22322EAKE4 | 124 | 145 | 226 | 206 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 17.6 | - Remarks 1. The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. 2. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. - The segmentations are: Light Loads ($\leq 0.05\,C_7$): Normal Loads (0.05 to 0.10 C_7); and Heavy Loads ($> 0.10\,C_7$). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages B360 B361, and B366 B367. ### Bore Diameter 120 - 150 mm Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | Во | | Dimensi
nm) | ions | | Basic Load | 0 | . 6 | Limiting | • | Bearing | |-----|-----|----------------|-------------|------------|-----------------------|------------|-------------|----------------|-------|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | (N) $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0 m r}$ | (mir
Grease | Oil | Cylindrical Bore | | 120 | 180 | 46 | 2 | 315 000 | 525 000 | 32 000 | 53 500 | 1 800 | 2 200 | 23024CDE4 | | | 180 | 60 | 2 | 395 000 | 705 000 | 40 500 | 72 000 | 1 500 | 2 000 | 24024CE4 | | | 200 | 62 | 2 | 465 000 | 720 000 | 47 500 | 73 500 | 1 400 | 1 800 | 23124CE4 | | | 200 | 80 | 2 | 575 000 | 950 000 | 58 500 | 96 500 | 1 400 | 1 800 | 24124CE4 | | | 215 | 58 | 2.1 | 685 000 | 765 000 | 70 000 | 78 000 | 2 400 | 3 000 | *22224EAE4 | | | 215 | 76 | 2.1 | 630 000 | 970 000 | 64 500 | 99 000 | 1 300 | 1 700 | 23224CE4 | | | 260 | 86 | 3 | 1190 000 | 1 320 000 | 122 000 | 134 000 | 1 700 | 2 200 | *22324EAE4 | | 130 | 200 | 52 | 2 | 400 000 | 655 000 | 40 500 | 67 000 | 1 700 | 2 000 | 23026CDE4 | | | 200 | 69 | 2 | 495 000 | 865 000 | 50 500 | 88 000 | 1 400 | 1 800 | 24026CE4 | | | 210 | 64 | 2 | 505 000 | 825 000 | 51 500 | 84 500 | 1 300 | 1 700 | 23126CE4 | | | 210 | 80 | 2 | 590 000 | 1 010 000 | 60 000 | 103 000 | 1 300 | 1 700 | 24126CE4 | | | 230 | 64 | 3 | 820 000 | 940 000 | 83 500 | 96 000 | 2 200 | 2 600 | *22226EAE4 | | | 230 | 80 | 3 | 700 000 | 1 080 000 | 71 500 | 110 000 | 1 200 | 1 600 | 23226CE4 | | | 280 | 93 | 4 | 995 000 | 1 350 000 | 101 000 | 137 000 | 1 300 | 1 600 | 22326CE4 | | 140 | 210 | 53 | 2 | 420 000 | 715 000 | 43 000 | 73 000 | 1 600 | 1 900 | 23028CDE4 | | | 210 | 69 | 2 | 525 000 | 945 000 | 53 500 | 96 500 | 1 300 | 1 700 | 24028CE4 | | | 225 | 68 | 2.1 | 580 000 | 945 000 | 59 000 | 96 500 | 1 200 | 1 600 | 23128CE4 | | | 225 | 85 | 2.1 | 670 000 | 1 160 000 | 68 500 | 118 000 | 1 200 | 1 600 | 24128CE4 | | | 250 | 68 | 3 | 645 000 | 930 000 | 65 500 | 95 000 | 1 400 | 1 700 | 22228CDE4 | | | 250 | 88 | 3 | 835 000 | 1 300 000 | 85 000 | 133 000 | 1 100 | 1 500 | 23228CE4 | | | 300 | 102 | 4 | 1 160 000 | 1 590 000 | 118 000 | 162 000 | 1 200 | 1 500 | 22328CE4 | | 150 | 225 | 56 | 2.1 | 470 000 | 815 000 | 48 000 | 83 000 | 1 400 | 1 800 | 23030CDE4 | | | 225 | 75 | 2.1 | 590 000 | 1 090 000 | 60 500 | 111 000 | 1 200 | 1 500 | 24030CE4 | | | 250 | 80 | 2.1 | 725 000 | 1 180 000 | 74 000 | 121 000 | 1 100 | 1 400 | 23130CE4 | | | 250 | 100 | 2.1 | 890 000 | 1 530 000 | 91 000 | 156 000 | 1 100 | 1 400 | 24130CE4 | | | 270 | 73 | 3 | 765 000 | 1 120 000 | 78 000 | 114 000 | 1 300 | 1 600 | 22230CDE4 | | | 270 | 96 | 3 | 975 000 | 1 560 000 | 99 500 | 159 000 | 1 100 | 1 400 | 23230CE4 | | | 320 | 108 | 4 | 1 220 000 | 1 690 000 | 125 000 | 172 000 | 1 100 | 1 400 | 22330CAE4 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}\!>\!e$ | | | | | | |---------------|------------|-----------------------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_3 | 0.67 | Y ₂ | | | | | ### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | ļ | Abutment a | and Fillet Din
(mm) | nensions | | Constant | | kial Loa
Factors | d | Mass
(kg) | |-----------------|--------------|------------|------------------------|----------|-----------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | d_{i} min. | a
max. | $D_{ m a}$ max. | min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23024CDKE4 | 130 | 134 | 170 | 163 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 4.11 | | 24024CK30E4 | 130 | 131 | 170 | 158 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 5.33 | | 23124CKE4 | 130 | 138 | 190 | 175 | 2 | 0.29 | 3.5 | 2.4 | 2.3 | 7.85 | | 24124CK30E4 | 130 | 136 | 190 | 171 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 10 | | *22224EAKE4 | 132 | 142 | 203 | 190 | 2 | 0.25 | 3.9 | 2.7 | 2.6 | 8.8 | | 23224CKE4 | 132 | 140 | 203 | 182 | 2 | 0.34 | 2.9 | 2.0 | 1.9 | 12.1 | | *22324EAKE4 | 134 | 157 | 246 | 222 | 2.5 | 0.32 | 3.1 | 2.1 | 2.0 | 22.2 | | 23026CDKE4 | 140 | 147 | 190 | 180 | 2 | 0.23 | 4.3 | 2.9 | 2.8 | 5.98 | | 24026CK30E4 | 140 | 143 | 190 | 175 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 7.84 | | 23126CKE4 | 140 | 149 | 200 | 184 | 2 | 0.28 | 3.6 | 2.4 | 2.4 | 8.69 | | 24126CK30E4 | 140 | 146 | 200 | 180 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 10.7 | | *22226EAKE4 | 144 | 152 | 216 | 204 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 11 | | 23226CKE4 | 144 | 150 | 216 | 196 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 14.3 | | 22326CKE4 | 148 | 166 | 262 | 236 | 3 | 0.34 | 2.9 |
2.0 | 1.9 | 28.1 | | 23028CDKE4 | 150 | 157 | 200 | 190 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 6.49 | | 24028CK30E4 | 150 | 154 | 200 | 186 | 2 | 0.29 | 3.4 | 2.3 | 2.2 | 8.37 | | 23128CKE4 | 152 | 158 | 213 | 198 | 2 | 0.28 | 3.6 | 2.4 | 2.3 | 10.5 | | 24128CK30E4 | 152 | 156 | 213 | 193 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 13 | | 22228CDKE4 | 154 | 167 | 236 | 219 | 2.5 | 0.25 | 4.0 | 2.7 | 2.6 | 14.5 | | 23228CKE4 | 154 | 163 | 236 | 213 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | 18.8 | | 22328CKE4 | 158 | 177 | 282 | 253 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 35.4 | | 23030CDKE4 | 162 | 168 | 213 | 203 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 7.9 | | 24030CK30E4 | 162 | 165 | 213 | 198 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 10.5 | | 23130CKE4 | 162 | 174 | 238 | 218 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 15.8 | | 24130CK30E4 | 162 | 169 | 238 | 212 | 2 | 0.38 | 2.6 | 1.8 | 1.7 | 19.8 | | 22230CDKE4 | 164 | 179 | 256 | 236 | 2.5 | 0.26 | 3.9 | 2.6 | 2.5 | 18.4 | | 23230CKE4 | 164 | 176 | 256 | 230 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | 24.2 | | 22330CAKE4 | 168 | — | 302 | 270 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 41.5 | Remarks 1. The bearings denoted by an asterisk (*) are NSKHPS bearings and an oil groove and holes are standard for them. 2. When making a selection of the recommended fit (Tolerance of Shaft) on Page A84 of the NSK Rolling Bearings catalog, in case of NSKHPS bearings, the conditions are different. The segmentations are: Light Loads ($\leq 0.05\,C_7$): Normal Loads (0.05 to 0.10 C_7); and Heavy Loads ($> 0.10\,C_7$). 3. For the dimensions of adapters and withdrawal sleeves, refer to Pages B361 – B362, and B367 – B368. # NSK # Bore Diameter 160 – 190 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | Во | | Dimensi
nm) | ons | (1 | Basic Load
N) | 3 | gf} | Limiting
(mir | • | Bearing | |-----|-----|----------------|-------------|------------|-------------------|------------|-------------------|------------------|-------|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 160 | 220 | 45 | 2 | 360 000 | 675 000 | 37 000 | 69 000 | 1 400 | 1 800 | 23932CAE4 | | | 240 | 60 | 2.1 | 540 000 | 955 000 | 55 000 | 97 500 | 1 300 | 1 700 | 23032CDE4 | | | 240 | 80 | 2.1 | 680 000 | 1 260 000 | 69 000 | 128 000 | 1 100 | 1 400 | 24032CE4 | | | 270 | 86 | 2.1 | 855 000 | 1 400 000 | 87 000 | 143 000 | 1 000 | 1 300 | 23132CE4 | | | 270 | 109 | 2.1 | 1 040 000 | 1 760 000 | 106 000 | 179 000 | 1 000 | 1 300 | 24132CE4 | | | 290 | 80 | 3 | 910 000 | 1 320 000 | 93 000 | 135 000 | 1 200 | 1 500 | 22232CDE4 | | | 290 | 104 | 3 | 1 100 000 | 1 770 000 | 112 000 | 180 000 | 1 000 | 1 300 | 23232CE4 | | | 340 | 114 | 4 | 1 360 000 | 1 900 000 | 139 000 | 193 000 | 1 100 | 1 300 | 22332CAE4 | | 170 | 230 | 45 | 2 | 350 000 | 660 000 | 35 500 | 67 500 | 1 400 | 1 800 | 23934BCAE4 | | | 260 | 67 | 2.1 | 640 000 | 1 090 000 | 65 000 | 112 000 | 1 200 | 1 600 | 23034CDE4 | | | 260 | 90 | 2.1 | 825 000 | 1 520 000 | 84 000 | 155 000 | 1 000 | 1 300 | 24034CE4 | | | 280 | 88 | 2.1 | 940 000 | 1 570 000 | 96 000 | 160 000 | 1 000 | 1 300 | 23134CE4 | | | 280 | 109 | 2.1 | 1 080 000 | 1 860 000 | 110 000 | 190 000 | 1 000 | 1 300 | 24134CE4 | | | 310 | 86 | 4 | 990 000 | 1 500 000 | 101 000 | 153 000 | 1 100 | 1 400 | 22234CDE4 | | | 310 | 110 | 4 | 1 200 000 | 1 910 000 | 122 000 | 195 000 | 900 | 1 200 | 23234CE4 | | | 360 | 120 | 4 | 1 580 000 | 2 110 000 | 161 000 | 215 000 | 1 000 | 1 200 | 22334CAE4 | | 180 | 250 | 52 | 2 | 470 000 | 890 000 | 48 000 | 90 500 | 1 200 | 1 600 | 23936CAE4 | | | 280 | 74 | 2.1 | 750 000 | 1 270 000 | 76 000 | 129 000 | 1 200 | 1 400 | 23036CDE4 | | | 280 | 100 | 2.1 | 965 000 | 1 750 000 | 98 500 | 178 000 | 950 | 1 200 | 24036CE4 | | | 300 | 96 | 3 | 1 050 000 | 1 760 000 | 108 000 | 180 000 | 900 | 1 200 | 23136CE4 | | | 300 | 118 | 3 | 1 190 000 | 2 040 000 | 121 000 | 208 000 | 900 | 1 200 | 24136CE4 | | | 320 | 86 | 4 | 1 020 000 | 1 540 000 | 104 000 | 157 000 | 1 100 | 1 300 | 22236CDE4 | | | 320 | 112 | 4 | 1 300 000 | 2 110 000 | 133 000 | 215 000 | 850 | 1 100 | 23236CE4 | | | 380 | 126 | 4 | 1 740 000 | 2 340 000 | 177 000 | 238 000 | 950 | 1 200 | 22336CAE4 | | 190 | 260 | 52 | 2 | 460 000 | 875 000 | 47 000 | 89 500 | 1 200 | 1 500 | 23938CAE4 | | | 290 | 75 | 2.1 | 775 000 | 1 350 000 | 79 000 | 138 000 | 1 100 | 1 400 | 23038CAE4 | | | 290 | 100 | 2.1 | 975 000 | 1 840 000 | 99 500 | 188 000 | 900 | 1 200 | 24038CE4 | | | 320 | 104 | 3 | 1 190 000 | 2 020 000 | 121 000 | 206 000 | 850 | 1 100 | 23138CE4 | | | 320 | 128 | 3 | 1 370 000 | 2 330 000 | 140 000 | 238 000 | 850 | 1 100 | 24138CE4 | | | 340 | 92 | 4 | 1 140 000 | 1 730 000 | 116 000 | 176 000 | 1 000 | 1 200 | 22238CAE4 | | | 340 | 120 | 4 | 1 440 000 | 2 350 000 | 147 000 | 240 000 | 800 | 1 100 | 23238CE4 | | | 400 | 132 | 5 | 1 890 000 | 2 590 000 | 193 000 | 264 000 | 900 | 1 100 | 22338CAE4 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | | 1 a | | | |---------------|-----------------------|---------------|-----------------------| | $F_{\rm a}/I$ | $F_{\rm r} \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y ₃ | 0.67 | Y ₂ | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Numbers | , | Abutment | and Fillet Dii
(mm) | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |---|-------------------|------------|------------------------|-------------------|-----------------|----------------------|-------------------|---------------------|-------------------|----------------------| | Tapered Bore(1) | d
min. | a
max. | $oldsymbol{D}$ max. | a
min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23932CAKE4 | 170 | | 210 | 203 | 2 | 0.18 | 5.6 | 3.8 | 3.7 | 4.97 | | 23032CDKE4 | 172 | 179 | 228 | 216 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 9.66 | | 24032CK30E4 | 172 | 177 | 228 | 212 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 12.7 | | 23132CKE4 | 172 | 185 | 258 | 234 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 20.3 | | 24132CK30E4 | 172 | 179 | 258 | 229 | 2 | 0.39 | 2.6 | 1.7 | 1.7 | 25.4 | | 22232CDKE4 | 174 | 190 | 276 | 255 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 23.1 | | 23232CKE4 | 174 | 189 | 276 | 245 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 30.5 | | 22332CAKE4 | 178 | — | 322 | 287 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 49.3 | | 23934BCAKE4 | 180 | — | 220 | 213 | 2 | 0.17 | 5.8 | 3.9 | 3.8 | 5.38 | | 23034CDKE4 | 182 | 191 | 248 | 233 | 2 | 0.23 | 4.3 | 2.9 | 2.8 | 13 | | 24034CK30E4 | 182 | 188 | 248 | 228 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 17.3 | | 23134CKE4 | 182 | 194 | 268 | 245 | 2 | 0.29 | 3.5 | 2.3 | 2.3 | 21.8 | | 24134CK30E4 | 182 | 190 | 268 | 239 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 26.6 | | 22234CDKE4 | 188 | 206 | 292 | 270 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 28.8 | | 23234CKE4
22334CAKE4 | 188
188 | 201 | 292
342 | 261
304 | 3 | 0.34
0.35 | 2.9
2.9 | 2.0
1.9 | 1.9
1.9 | 36.4
57.9 | | 23936CAKE4
23036CDKE4
24036CK30E4 | 190
192
192 | 202
200 | 240
268
268 | 230
249
245 | 2
2
2 | 0.18
0.24
0.32 | 5.5
4.2
3.1 | 3.7
2.8
2.1 | 3.6
2.8
2.0 | 7.64
17.1
22.7 | | 23136CKE4 | 194 | 206 | 286 | 260 | 2.5 | 0.30 | 3.4 | 2.3 | 2.2 | 27.5 | | 24136CK30E4 | 194 | 202 | 286 | 255 | 2.5 | 0.37 | 2.7 | 1.8 | 1.8 | 33.1 | | 22236CDKE4 | 198 | 212 | 302 | 278 | 3 | 0.26 | 3.9 | 2.6 | 2.6 | 30.2 | | 23236CKE4 | 198 | 211 | 302 | 274 | 3 | 0.33 | 3.0 | 2.0 | 2.0 | 38.9 | | 22336CAKE4 | 198 | — | 362 | 322 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 67 | | 23938CAKE4
23038CAKE4
24038CK30E4 | 200
202
202 |
210 | 250
278
278 | 240
261
253 | 2
2
2 | 0.18
0.24
0.31 | 5.7
4.2
3.2 | 3.8
2.8
2.2 | 3.7
2.8
2.1 | 8.03
17.6
24 | | 23138CKE4 | 204 | 219 | 306 | 276 | 2.5 | 0.31 | 3.3 | 2.2 | 2.2 | 34.5 | | 24138CK30E4 | 204 | 211 | 306 | 269 | 2.5 | 0.40 | 2.5 | 1.7 | 1.6 | 41.5 | | 22238CAKE4 | 208 | — | 322 | 296 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 35.5 | | 23238CKE4 | 208 | 222 | 322 | 288 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 47.6 | | 22338CAKE4 | 212 | — | 378 | 338 | 4 | 0.34 | 2.9 | 2.0 | 1.9 | 77.6 | Remarks For the dimensions of adapters and withdrawal sleeves, refer to Pages B362 and B368. Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | Вс | | Dimensi
nm) | ions | (1 | Basic Load | 3 | gf} | Limiting
(mir | | Bearing | |-----|-----|----------------|-------------|------------|-------------------|------------|-------------------|------------------|-------|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 200 | 280 | 60 | 2.1 | 570 000 | 1 060 000 | 58 000 | 108 000 | 1 100 | 1 400 | 23940CAE4 | | | 310 | 82 | 2.1 | 940 000 | 1 700 000 | 96 000 | 174 000 | 1 000 | 1 300 | 23040CAE4 | | | 310 | 109 | 2.1 | 1 140 000 | 2 120 000 | 116 000 | 216 000 | 850 | 1 100 | 24040CE4 | | | 340 | 112 | 3 | 1 360 000 | 2 330 000 | 139 000 | 238 000 | 800 | 1 000 | 23140CE4 | | | 340 | 140 | 3 | 1 570 000 | 2 670 000 | 160 000 | 272 000 | 800 | 1 000 | 24140CE4 | | | 360 | 98 | 4 | 1 300 000 | 2 010 000 | 133 000 | 204 000 | 950 | 1 200 | 22240CAE4 | | | 360 | 128 | 4 | 1 660 000 | 2 750 000 | 169 000 | 281 000 | 750 | 1 000 | 23240CE4 | | | 420 | 138 | 5 | 2 000 000 | 2 990 000 | 204 000 | 305 000 | 850 | 1 000 | 22340CAE4 | | 220 | 300 | 60 | 2.1 | 625 000 | 1 240 000 | 64 000 | 126 000 | 1 000 | 1 300 | 23944CAE4 | | | 340 | 90 | 3 | 1 090 000 | 1 980 000 | 111 000 | 202 000 | 950 | 1 200 | 23044CAE4 | | | 340 | 118 | 3 | 1 360 000 | 2 600 000 | 138 000 | 265 000 | 750 | 1 000 | 24044CE4 | | | 370 | 120 | 4 | 1 570 000 | 2 710 000 | 160 000 | 276 000 |
710 | 950 | 23144CE4 | | | 370 | 150 | 4 | 1 800 000 | 3 200 000 | 183 000 | 325 000 | 710 | 950 | 24144CE4 | | | 400 | 108 | 4 | 1 570 000 | 2 430 000 | 160 000 | 247 000 | 850 | 1 000 | 22244CAE4 | | | 400 | 144 | 4 | 2 020 000 | 3 400 000 | 206 000 | 350 000 | 670 | 900 | 23244CE4 | | | 460 | 145 | 5 | 2 350 000 | 3 400 000 | 240 000 | 345 000 | 750 | 950 | 22344CAE4 | | 240 | 320 | 60 | 2.1 | 635 000 | 1 300 000 | 65 000 | 133 000 | 950 | 1 200 | 23948CAE4 | | | 360 | 92 | 3 | 1 160 000 | 2 140 000 | 118 000 | 218 000 | 850 | 1 100 | 23048CAE4 | | | 360 | 118 | 3 | 1 390 000 | 2 730 000 | 141 000 | 278 000 | 710 | 950 | 24048CE4 | | | 400 | 128 | 4 | 1 790 000 | 3 100 000 | 182 000 | 320 000 | 670 | 850 | 23148CE4 | | | 400 | 160 | 4 | 2 130 000 | 3 800 000 | 217 000 | 385 000 | 670 | 850 | 24148CE4 | | | 440 | 120 | 4 | 1 870 000 | 2 890 000 | 191 000 | 294 000 | 750 | 950 | 22248CAE4 | | | 440 | 160 | 4 | 2 440 000 | 4 050 000 | 249 000 | 415 000 | 630 | 800 | 23248CAE4 | | | 500 | 155 | 5 | 2 600 000 | 3 800 000 | 265 000 | 385 000 | 670 | 850 | 22348CAE4 | | 260 | 360 | 75 | 2.1 | 930 000 | 1 870 000 | 95 000 | 191 000 | 850 | 1 000 | 23952CAE4 | | | 400 | 104 | 4 | 1 430 000 | 2 580 000 | 145 000 | 263 000 | 800 | 950 | 23052CAE4 | | | 400 | 140 | 4 | 1 810 000 | 3 500 000 | 185 000 | 360 000 | 630 | 850 | 24052CAE4 | | | 440 | 144 | 4 | 2 160 000 | 3 750 000 | 221 000 | 385 000 | 600 | 800 | 23152CAE4 | | | 440 | 180 | 4 | 2 560 000 | 4 700 000 | 261 000 | 480 000 | 600 | 800 | 24152CAE4 | | | 480 | 130 | 5 | 2 180 000 | 3 400 000 | 222 000 | 345 000 | 670 | 850 | 22252CAE4 | | | 480 | 174 | 5 | 2 740 000 | 4 550 000 | 279 000 | 460 000 | 560 | 750 | 23252CAE4 | | | 540 | 165 | 6 | 3 100 000 | 4 600 000 | 320 000 | 470 000 | 630 | 800 | 22352CAE4 | Dynamic Equivalent Load $P = XF_r + YF_a$ | | -r · a | | | |---------------|------------|---------------|-----------------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y ₂ | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | Numbers | , | Abutment | and Fillet Dir
(mm) | mensions | | Constant | | xial Loa
Factors | | Mass
(kg) | |---|-------------------|-----------|------------------------|-------------------|--------------------|----------------------|-------------------|---------------------|-------------------|----------------------| | Tapered Bore(1) | d min. | a
max. | $oldsymbol{D}$ max. | a
min. | $m{r_{ m a}}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23940CAKE4 | 212 | _ | 268 | 258 | 2 | 0.20 | 5.1 | 3.4 | 3.3 | 11 | | 23040CAKE4 | 212 | _ | 298 | 279 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | 22.6 | | 24040CK30E4 | 212 | 223 | 298 | 271 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | 30.4 | | 23140CKE4 | 214 | 232 | 326 | 293 | 2.5 | 0.31 | 3.2 | 2.2 | 2.1 | 42.7 | | 24140CK30E4 | 214 | 226 | 326 | 290 | 2.5 | 0.39 | 2.6 | 1.8 | 1.7 | 51.3 | | 22240CAKE4 | 218 | — | 342 | 315 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 42.6 | | 23240CKE4 | 218 | 237 | 342 | 307 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 57.1 | | 22340CAKE4 | 222 | | 398 | 352 | 4 | 0.34 | 2.9 | 2.0 | 1.9 | 92.6 | | 23944CAKE4
23044CAKE4
24044CK30E4 | 232
234
234 |
244 | 288
326
326 | 278
302
296 | 2
2.5
2.5 | 0.18
0.24
0.31 | 5.7
4.1
3.2 | 3.8
2.8
2.1 | 3.7
2.7
2.1 | 12.2
29.7
40.5 | | 23144CKE4 | 238 | 254 | 352 | 320 | 3 | 0.30 | 3.3 | 2.2 | 2.2 | 53 | | 24144CK30E4 | 238 | 248 | 352 | 313 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | 66.7 | | 22244CAKE4 | 238 | — | 382 | 348 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | 59 | | 23244CKE4 | 238 | 260 | 382 | 337 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 80.4 | | 22344CAKE4 | 242 | — | 438 | 391 | 4 | 0.33 | 3.0 | 2.0 | 2.0 | 116 | | 23948CAKE4 | 252 | | 308 | 298 | 2 | 0.17 | 6.0 | 4.0 | 3.9 | 13.3 | | 23048CAKE4 | 254 | | 346 | 324 | 2.5 | 0.24 | 4.2 | 2.8 | 2.7 | 32.6 | | 24048CK30E4 | 254 | 265 | 346 | 317 | 2.5 | 0.29 | 3.4 | 2.3 | 2.2 | 43.4 | | 23148CKE4 | 258 | 275 | 382 | 347 | 3 | 0.30 | 3.3 | 2.2 | 2.2 | 66.9 | | 24148CK30E4 | 258 | 268 | 382 | 341 | 3 | 0.38 | 2.7 | 1.8 | 1.8 | 79.5 | | 22248CAKE4 | 258 | — | 422 | 383 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | 80.2 | | 23248CAKE4 | 258 | _ | 422 | 372 | 3 | 0.37 | 2.7 | 1.8 | 1.8 | 106 | | 22348CAKE4 | 262 | | 478 | 423 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 147 | | 23952CAKE4 | 272 | | 348 | 333 | 2 | 0.19 | 5.4 | 3.6 | 3.5 | 23 | | 23052CAKE4 | 278 | | 382 | 356 | 3 | 0.25 | 4.1 | 2.7 | 2.7 | 46.6 | | 24052CAK30E4 | 278 | | 382 | 348 | 3 | 0.32 | 3.1 | 2.1 | 2.1 | 62.6 | | 23152CAKE4 | 278 | _ | 422 | 380 | 3 | 0.32 | 3.2 | 2.1 | 2.1 | 88.2 | | 24152CAK30E4 | 278 | _ | 422 | 371 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | 109 | | 22252CAKE4 | 282 | _ | 458 | 418 | 4 | 0.27 | 3.7 | 2.5 | 2.5 | 104 | | 23252CAKE4 | 282 | _ | 458 | 406 | 4 | 0.37 | 2.7 | 1.8 | 1.8 | 137 | | 22352CAKE4 | 288 | | 512 | 462 | 5 | 0.32 | 3.2 | 2.1 | 2.1 | 180 | **Remarks** For the dimensions of adapters and withdrawal sleeves, refer to Pages **B363** and **B369**. B 195 B 194 ### Bore Diameter 280 - 340 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | В | | Dimens | ions | (| Basic Load | 9 | gf} | Limiting S | | Bearing | |-----|-----|--------|-------------|------------|-------------------|------------|-------------------|------------|-----|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 280 | 380 | 75 | 2.1 | 925 000 | 1 950 000 | 94 500 | 199 000 | 800 | 950 | 23956CAE4 | | | 420 | 106 | 4 | 1 540 000 | 2 950 000 | 157 000 | 300 000 | 710 | 900 | 23056CAE4 | | | 420 | 140 | 4 | 1 880 000 | 3 800 000 | 191 000 | 385 000 | 600 | 800 | 24056CAE4 | | | 460 | 146 | 5 | 2 230 000 | 4 000 000 | 228 000 | 410 000 | 560 | 750 | 23156CAE4 | | | 460 | 180 | 5 | 2 640 000 | 5 000 000 | 269 000 | 505 000 | 560 | 750 | 24156CAE4 | | | 500 | 130 | 5 | 2 280 000 | 3 650 000 | 233 000 | 370 000 | 630 | 800 | 22256CAE4 | | | 500 | 176 | 5 | 2 880 000 | 4 900 000 | 294 000 | 500 000 | 530 | 670 | 23256CAE4 | | | 580 | 175 | 6 | 3 500 000 | 5 150 000 | 355 000 | 525 000 | 560 | 710 | 22356CAE4 | | 300 | 420 | 90 | 3 | 1 230 000 | 2 490 000 | 125 000 | 254 000 | 710 | 900 | 23960CAE4 | | | 460 | 118 | 4 | 1 920 000 | 3 700 000 | 196 000 | 375 000 | 670 | 850 | 23060CAE4 | | | 460 | 160 | 4 | 2 310 000 | 4 600 000 | 235 000 | 470 000 | 530 | 710 | 24060CAE4 | | | 500 | 160 | 5 | 2 670 000 | 4 800 000 | 273 000 | 490 000 | 500 | 670 | 23160CAE4 | | | 500 | 200 | 5 | 3 100 000 | 5 800 000 | 315 000 | 595 000 | 500 | 670 | 24160CAE4 | | | 540 | 140 | 5 | 2 610 000 | 4 250 000 | 266 000 | 430 000 | 600 | 750 | 22260CAE4 | | | 540 | 192 | 5 | 3 400 000 | 5 900 000 | 350 000 | 600 000 | 480 | 630 | 23260CAE4 | | 320 | 440 | 90 | 3 | 1 300 000 | 2 750 000 | 132 000 | 281 000 | 670 | 850 | 23964CAE4 | | | 480 | 121 | 4 | 1 960 000 | 3 850 000 | 200 000 | 395 000 | 630 | 800 | 23064CAE4 | | | 480 | 160 | 4 | 2 440 000 | 5 050 000 | 249 000 | 515 000 | 500 | 670 | 24064CAE4 | | | 540 | 176 | 5 | 3 050 000 | 5 500 000 | 315 000 | 560 000 | 480 | 600 | 23164CAE4 | | | 540 | 218 | 5 | 3 550 000 | 6 650 000 | 360 000 | 675 000 | 480 | 600 | 24164CAE4 | | | 580 | 150 | 5 | 2 990 000 | 4 850 000 | 305 000 | 495 000 | 530 | 670 | 22264CAE4 | | | 580 | 208 | 5 | 3 900 000 | 6 900 000 | 395 000 | 700 000 | 450 | 600 | 23264CAE4 | | 340 | 460 | 90 | 3 | 1 330 000 | 2 840 000 | 136 000 | 289 000 | 630 | 800 | 23968CAE4 | | | 520 | 133 | 5 | 2 280 000 | 4 400 000 | 232 000 | 445 000 | 560 | 710 | 23068CAE4 | | | 520 | 180 | 5 | 2 920 000 | 6 050 000 | 298 000 | 615 000 | 480 | 600 | 24068CAE4 | | | 580 | 190 | 5 | 3 600 000 | 6 600 000 | 370 000 | 670 000 | 430 | 560 | 23168CAE4 | | | 580 | 243 | 5 | 4 250 000 | 7 900 000 | 430 000 | 810 000 | 430 | 560 | 24168CAE4 | | | 620 | 224 | 6 | 4 400 000 | 7 800 000 | 450 000 | 795 000 | 400 | 530 | 23268CAE4 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). Dynamic Equivalent Load $P = XF_r + YF_s$ | F = A | $\Gamma_{\rm r}$ + $I \Gamma_{\rm a}$ | | | |---------------|---------------------------------------|---------------|-----------------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y ₃ | 0.67 | Y ₂ | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Numbers | Abutme | ent and Fille
(mm | | ons | Constant | А | xial Loa
Factors | | Mass
(kg) | |-----------------|-----------------|----------------------|--------------------|-----------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ min. | L max. |) a
min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23956CAKE4 | 292 | 368 | 351 | 2 | 0.18 | 5.7 | 3.9 | 3.8 | 24.5 | | 23056CAKE4 | 298 | 402 | 377 | 3 | 0.24 | 4.2 | 2.8 | 2.7 | 50.5 | | 24056CAK30E4 | 298 | 402 | 369 | 3 | 0.31 | 3.3 | 2.2 | 2.2 | 66.4 | | 23156CAKE4 | 302 | 438 | 400 | 4 | 0.30 | 3.3 | 2.2 | 2.2 | 94.3 | | 24156CAK30E4 | 302 | 438 | 392 | 4 | 0.37 | 2.7 | 1.8 | 1.8 | 115 | | 22256CAKE4 | 302 | 478 | 439 | 4 | 0.25 | 4.0 | 2.7 | 2.6 | 110 | | 23256CAKE4 | 302 | 478 | 425 | 4 | 0.35 | 2.9 | 1.9 | 1.9 | 147 | | 22356CAKE4 | 308 | 552 | 496 | 5 | 0.31 | 3.2 | 2.1 | 2.1 | 221 | | 23960CAKE4 | 314 | 406 | 386 | 2.5 | 0.19 | 5.2 | 3.5 | 3.4 | 38.2 | | 23060CAKE4 | 318 | 442 | 413 | 3 | 0.24 | 4.2 | 2.8 | 2.7 | 70.5 | | 24060CAK30E4 | 318 | 442 | 400 | 3 | 0.32 | 3.1 | 2.1 | 2.0 | 93.6 | | 23160CAKE4 | 322 | 478 | 433 | 4 4 | 0.31 | 3.3 | 2.2 | 2.2 | 125 | | 24160CAK30E4 | 322 | 478 | 423 | | 0.38 | 2.6 | 1.8 | 1.7 | 152 | | 22260CAKE4 | 322 | 518 | 473 | 4 4
| 0.25 | 4.0 | 2.7 | 2.6 | 139 | | 23260CAKE4 | 322 | 518 | 458 | | 0.35 | 2.9 | 1.9 | 1.9 | 189 | | 23964CAKE4 | 334 | 426 | 406 | 2.5 | 0.18 | 5.5 | 3.7 | 3.6 | 40.6 | | 23064CAKE4 | 338 | 462 | 432 | 3 | 0.24 | 4.2 | 2.8 | 2.8 | 75.6 | | 24064CAK30E4 | 338 | 462 | 422 | 3 | 0.31 | 3.3 | 2.2 | 2.2 | 99.7 | | 23164CAKE4 | 342 | 518 | 466 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 162 | | 24164CAK30E4 | 342 | 518 | 456 | | 0.39 | 2.6 | 1.7 | 1.7 | 196 | | 22264CAKE4 | 342 | 558 | 508 | 4 4 | 0.26 | 3.9 | 2.6 | 2.6 | 174 | | 23264CAKE4 | 342 | 558 | 488 | | 0.36 | 2.8 | 1.9 | 1.8 | 239 | | 23968CAKE4 | 354 | 446 | 427 | 2.5 | 0.18 | 5.7 | 3.8 | 3.7 | 42.4 | | 23068CAKE4 | 362 | 498 | 465 | 4 | 0.24 | 4.2 | 2.8 | 2.8 | 101 | | 24068CAK30E4 | 362 | 498 | 454 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 135 | | 23168CAKE4 | 362 | 558 | 499 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 206 | | 24168CAK30E4 | 362 | 558 | 489 | 4 | 0.40 | 2.5 | 1.7 | 1.7 | 257 | | 23268CAKE4 | 368 | 592 | 521 | 5 | 0.36 | 2.8 | 1.9 | 1.8 | 295 | Remarks For the dimensions of adapters and withdrawal sleeves, refer to Pages B363 – B364, and B369 – B370. B 196 B 197 # Bore Diameter 360 – 440 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | Во | | Dimensi
nm) | ons | | Basic Load | 0 | -£) | Limiting S | | Bearing | |-----|-------------------|-------------------|------------------|------------|--|-------------------------------|-----------------------|-------------------|-------------------|-------------------------------------| | d | D | В | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | gf} $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 360 | 480 | 90 | 3 | 1 390 000 | 3 050 000 | 142 000 | 315 000 | 600 | 750 | 23972CAE4 | | | 540 | 134 | 5 | 2 390 000 | 4 700 000 | 244 000 | 480 000 | 530 | 670 | 23072CAE4 | | | 540 | 180 | 5 | 2 930 000 | 6 100 000 | 299 000 | 625 000 | 450 | 600 | 24072CAE4 | | | 600 | 192 | 5 | 3 800 000 | 7 100 000 | 390 000 | 725 000 | 400 | 530 | 23172CAE4 | | | 600 | 243 | 5 | 4 200 000 | 8 000 000 | 430 000 | 815 000 | 400 | 530 | 24172CAE4 | | | 650 | 232 | 6 | 4 800 000 | 8 550 000 | 490 000 | 870 000 | 380 | 500 | 23272CAE4 | | 380 | 520 | 106 | 4 | 1 870 000 | 4 100 000 | 190 000 | 420 000 | 530 | 670 | 23976CAE4 | | | 560 | 135 | 5 | 2 500 000 | 5 100 000 | 255 000 | 520 000 | 530 | 630 | 23076CAE4 | | | 560 | 180 | 5 | 3 050 000 | 6 600 000 | 315 000 | 670 000 | 430 | 560 | 24076CAE4 | | | 620 | 194 | 5 | 4 000 000 | 7 600 000 | 405 000 | 775 000 | 400 | 500 | 23176CAE4 | | | 620 | 243 | 5 | 4 350 000 | 8 450 000 | 440 000 | 865 000 | 400 | 500 | 24176CAE4 | | | 680 | 240 | 6 | 5 150 000 | 9 200 000 | 525 000 | 940 000 | 360 | 480 | 23276CAE4 | | 400 | 540 | 106 | 4 | 1 890 000 | 4 250 000 | 193 000 | 435 000 | 530 | 630 | 23980CAE4 | | | 600 | 148 | 5 | 2 970 000 | 5 900 000 | 305 000 | 605 000 | 480 | 600 | 23080CAE4 | | | 600 | 200 | 5 | 3 600 000 | 7 600 000 | 370 000 | 775 000 | 400 | 500 | 24080CAE4 | | | 650
650
720 | 200
250
256 | 6
6
6 | | 7 900 000
10 100 000
10 400 000 | 420 000
505 000
590 000 | | 380
380
340 | 480
480
450 | 23180CAE4
24180CAE4
23280CAE4 | | 420 | 560 | 106 | 4 | 1 870 000 | 4 250 000 | 191 000 | 430 000 | 500 | 600 | 23984CAE4 | | | 620 | 150 | 5 | 2 910 000 | 5 850 000 | 297 000 | 595 000 | 450 | 560 | 23084CAE4 | | | 620 | 200 | 5 | 3 750 000 | 8 100 000 | 380 000 | 825 000 | 380 | 480 | 24084CAE4 | | | 700
700
760 | 224
280
272 | 6
6
7.5 | | 9 400 000
12 000 000
11 700 000 | 510 000
610 000
660 000 | | 340
340
320 | 450
450
430 | 23184CAE4
24184CAE4
23284CAE4 | | 440 | 600 | 118 | 4 | 2 190 000 | 4 800 000 | 223 000 | 490 000 | 450 | 560 | 23988CAE4 | | | 650 | 157 | 6 | 3 150 000 | 6 350 000 | 320 000 | 645 000 | 430 | 530 | 23088CAE4 | | | 650 | 212 | 6 | 4 150 000 | 9 100 000 | 425 000 | 930 000 | 360 | 450 | 24088CAE4 | | | 720
720
790 | 226
280
280 | 6
6
7.5 | 6 000 000 | 10 300 000
12 100 000
12 800 000 | 540 000
610 000
705 000 | 1 230 000 | 320
320
300 | 430
430
400 | 23188CAE4
24188CAE4
23288CAE4 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1 : 12 or 1 : 30). Dynamic Equivalent Load $P = XF_r + YF_a$ | | 1 4 | | | |---------------|-----------------------|---------------|-----------------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y ₃ | 0.67 | Y ₂ | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Numbers | Abutme | ent and Fille
(mm | | ons | Constant | | xial Loa
Factors | | Mass
(kg) | |-----------------|-----------------|----------------------|--------------------|-------------------------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ min. | $oldsymbol{L}$ max. |) a
min. | $oldsymbol{arGamma}_{a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23972CAKE4 | 374 | 466 | 447 | 2.5 | 0.17 | 6.0 | 4.1 | 4.0 | 44.7 | | 23072CAKE4 | 382 | 518 | 485 | 4 | 0.24 | 4.2 | 2.8 | 2.8 | 106 | | 24072CAK30E4 | 382 | 518 | 476 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 139 | | 23172CAKE4 | 382 | 578 | 520 | 4 | 0.31 | 3.2 | 2.2 | 2.1 | 217 | | 24172CAK30E4 | 382 | 578 | 507 | 4 | 0.40 | 2.5 | 1.7 | 1.7 | 264 | | 23272CAKE4 | 388 | 622 | 549 | 5 | 0.36 | 2.8 | 1.9 | 1.8 | 342 | | 23976CAKE4 | 398 | 502 | 482 | 3 | 0.18 | 5.5 | 3.7 | 3.6 | 65.4 | | 23076CAKE4 | 402 | 538 | 506 | 4 | 0.22 | 4.5 | 3.0 | 3.0 | 113 | | 24076CAK30E4 | 402 | 538 | 496 | 4 | 0.29 | 3.4 | 2.3 | 2.3 | 148 | | 23176CAKE4 | 402 | 598 | 540 | 4 | 0.30 | 3.3 | 2.2 | 2.2 | 229 | | 24176CAK30E4 | 402 | 598 | 529 | 4 | 0.38 | 2.6 | 1.8 | 1.7 | 275 | | 23276CAKE4 | 408 | 652 | 578 | 5 | 0.35 | 2.9 | 1.9 | 1.9 | 372 | | 23980CAKE4 | 418 | 522 | 501 | 3 | 0.18 | 5.7 | 3.9 | 3.8 | 69.1 | | 23080CAKE4 | 422 | 578 | 540 | 4 | 0.23 | 4.4 | 3.0 | 2.9 | 146 | | 24080CAK30E4 | 422 | 578 | 527 | 4 | 0.31 | 3.3 | 2.2 | 2.2 | 193 | | 23180CAKE4 | 428 | 622 | 569 | 5 | 0.29 | 3.4 | 2.3 | 2.3 | 257 | | 24180CAK30E4 | 428 | 622 | 551 | 5 | 0.37 | 2.7 | 1.8 | 1.8 | 316 | | 23280CAKE4 | 428 | 692 | 610 | 5 | 0.36 | 2.8 | 1.9 | 1.9 | 449 | | 23984CAKE4 | 438 | 542 | 521 | 3 | 0.17 | 6.0 | 4.0 | 3.9 | 71.6 | | 23084CAKE4 | 442 | 598 | 562 | 4 | 0.23 | 4.3 | 2.9 | 2.8 | 151 | | 24084CAK30E4 | 442 | 598 | 549 | 4 | 0.31 | 3.2 | 2.2 | 2.1 | 199 | | 23184CAKE4 | 448 | 672 | 607 | 5 | 0.31 | 3.3 | 2.2 | 2.2 | 341 | | 24184CAK30E4 | 448 | 672 | 598 | 5 | 0.38 | 2.6 | 1.8 | 1.7 | 421 | | 23284CAKE4 | 456 | 724 | 644 | 6 | 0.35 | 2.9 | 1.9 | 1.9 | 534 | | 23988CAKE4 | 458 | 582 | 555 | 3 | 0.18 | 5.7 | 3.9 | 3.8 | 96.3 | | 23088CAKE4 | 468 | 622 | 587 | 5 | 0.23 | 4.3 | 2.9 | 2.8 | 173 | | 24088CAK30E4 | 468 | 622 | 576 | 5 | 0.31 | 3.2 | 2.1 | 2.1 | 237 | | 23188CAKE4 | 468 | 692 | 627 | 5 | 0.3 | 3.3 | 2.2 | 2.2 | 360 | | 24188CAK30E4 | 468 | 692 | 617 | 5 | 0.37 | 2.7 | 1.8 | 1.8 | 433 | | 23288CAKE4 | 476 | 754 | 669 | 6 | 0.35 | 2.9 | 1.9 | 1.9 | 594 | Remarks For the dimensions of adapters and withdrawal sleeves, refer to Pages B364, and B370 – B371. ### Bore Diameter 460 - 560 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | E | Boundary
(r | Dimens
nm) | ions | (| Basic Load | 0 | (gf) | Limiting Speeds
(min ⁻¹) | | Bearing | |-----|----------------|---------------|-------------|------------|-------------------|------------|-------------------|---|-----|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 460 | 620 | 118 | 4 | 2 220 000 | 4 950 000 | 227 000 | 505 000 | 430 | 530 | 23992CAE4 | | | 680 | 163 | 6 | 3 450 000 | 7 100 000 | 355 000 | 725 000 | 400 | 500 | 23092CAE4 | | | 680 | 218 | 6 | 4 500 000 | 9 950 000 | 460 000 | 1 010 000 | 340 | 430 | 24092CAE4 | | | 760 | 240 | 7.5 | 5 700 000 | 10 900 000 | 580 000 | 1 110 000 | 300 | 400 | 23192CAE4 | | | 760 | 300 | 7.5 | 6 300 000 | 12 400 000 | 640 000 | 1 270 000 | 300 | 400 | 24192CAE4 | | | 830 | 296 | 7.5 | 7 350 000 | 13 700 000 | 750 000 | 1 400 000 | 280 | 380 | 23292CAE4 | | 480 | 650 | 128 | 5 | 2 580 000 | 5 850 000 | 263 000 | 595 000 | 400 | 500 | 23996CAE4 | | | 700 | 165 | 6 | 3 800 000 | 7 950 000 | 385 000 | 810 000 | 400 | 480 | 23096CAE4 | | | 700 | 218 | 6 | 4 600 000 | 10 200 000 | 470 000 | 1 040 000 | 320 | 430 | 24096CAE4 | | | 790 | 248 | 7.5 | 6 050 000 | 11 700 000 | 620 000 | 1 200 000 | 300 | 380 | 23196CAE4 | | | 790 | 308 | 7.5 | 7 150 000 | 14 600 000 | 730 000 | 1 490 000 | 300 | 380 | 24196CAE4 | | | 870 | 310 | 7.5 | 7 850 000 | 14 400 000 | 805 000 | 1 470 000 | 260 | 360 | 23296CAE4 | | 500 | 670 | 128 | 5 | 2 460 000 | 5 550 000 | 250 000 | 565 000 | 400 | 500 | 239/500CAE4 | | | 720 | 167 | 6 | 3 750 000 | 8 100 000 | 385 000 | 825 000 | 380 | 480 | 230/500CAE4 | | | 720 | 218 | 6 | 4 450 000 | 9 900 000 | 450 000 | 1 010 000 | 300 | 400 | 240/500CAE4 | | | 830 | 264 | 7.5 | 6 850 000 | 13 400 000 | 700 000 | 1 360 000 | 280 | 360 | 231/500CAE4 | | | 830 | 325 | 7.5 | 8 000 000 | 16 000 000 | 815 000 | 1 630 000 | 280 | 360 | 241/500CAE4 | | | 920 | 336 | 7.5 | 9 000 000 | 16 600 000 | 915 000 | 1 690 000 | 260 | 320 | 232/500CAE4 | | 530 | 710 | 136 | 5 | 2 930 000 | 6 800 000 | 299 000 | 695 000 | 360 | 450 | 239/530CAE4 | | | 780 | 185 | 6 | 4 400 000 | 9 200 000 | 450 000 | 940 000 | 340 | 430 | 230/530CAE4 | | | 780 | 250 | 6 | 5 400 000 | 11 800 000 | 550 000 | 1 210 000 | 280 | 360 | 240/530CAE4 | | | 870 | 272 | 7.5 | 7 150 000 | 14 100 000 | 730 000 | 1 440 000 | 260 | 340 | 231/530CAE4 | | | 870 | 335 | 7.5 | 8 500 000 | 17 500 000 | 870 000 | 1 790 000 | 260 | 340 | 241/530CAE4 | | |
980 | 355 | 9.5 | 10 100 000 | 18 800 000 | 1 030 000 | 1 920 000 | 240 | 300 | 232/530CAE4 | | 560 | 750 | 140 | 5 | 3 100 000 | 7 250 000 | 320 000 | 740 000 | 340 | 430 | 239/560CAE4 | | | 820 | 195 | 6 | 5 000 000 | 10 700 000 | 510 000 | 1 090 000 | 320 | 400 | 230/560CAE4 | | | 820 | 258 | 6 | 5 950 000 | 13 300 000 | 605 000 | 1 360 000 | 260 | 340 | 240/560CAE4 | | | 920 | 280 | 7.5 | 7 850 000 | 15 500 000 | 800 000 | 1 580 000 | 240 | 320 | 231/560CAE4 | | | 920 | 355 | 7.5 | 9 400 000 | 19 600 000 | 960 000 | 2 000 000 | 240 | 320 | 241/560CAE4 | | | 1 030 | 365 | 9.5 | 10 900 000 | 20 500 000 | 1 110 000 | 2 090 000 | 220 | 280 | 232/560CAE4 | Dynamic Equivalent Load $P = XF_{r} + YF_{a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | |---------------|-----------------------|---------------------------|-------|--| | X | X Y | | Y | | | 1 | Y ₃ | 0.67 | Y_2 | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Numbers | Abutme | ent and Fille
(mm | | ons | Constant | А | xial Loa
Factors | | Mass
(kg) | |-----------------|-----------------|----------------------|--------------------|-----------------|----------|-------|---------------------|-------|--------------| | Tapered Bore(1) | $d_{ m a}$ min. | max. |) a
min. | $r_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 23992CAKE4 | 478 | 602 | 575 | 3 | 0.17 | 5.9 | 4.0 | 3.9 | 100 | | 23092CAKE4 | 488 | 652 | 615 | 5 | 0.22 | 4.6 | 3.1 | 3.0 | 201 | | 24092CAK30E4 | 488 | 652 | 604 | 5 | 0.29 | 3.4 | 2.3 | 2.3 | 266 | | 23192CAKE4 | 496 | 724 | 661 | 6 | 0.31 | 3.3 | 2.2 | 2.2 | 423 | | 24192CAK30E4 | 496 | 724 | 646 | 6 | 0.39 | 2.6 | 1.7 | 1.7 | 512 | | 23292CAKE4 | 496 | 794 | 702 | 6 | 0.36 | 2.8 | 1.9 | 1.8 | 691 | | 23996CAKE4 | 502 | 628 | 602 | 4 | 0.18 | 5.7 | 3.8 | 3.7 | 121 | | 23096CAKE4 | 508 | 672 | 633 | 5 | 0.22 | 4.6 | 3.1 | 3.0 | 211 | | 24096CAK30E4 | 508 | 672 | 625 | 5 | 0.30 | 3.4 | 2.3 | 2.2 | 270 | | 23196CAKE4 | 516 | 754 | 688 | 6 | 0.31 | 3.3 | 2.2 | 2.2 | 475 | | 24196CAK30E4 | 516 | 754 | 670 | 6 | 0.39 | 2.6 | 1.7 | 1.7 | 567 | | 23296CAKE4 | 516 | 834 | 733 | 6 | 0.36 | 2.8 | 1.9 | 1.8 | 795 | | 239/500CAKE4 | 522 | 648 | 622 | 4 | 0.17 | 6.0 | 4.0 | 3.9 | 124 | | 230/500CAKE4 | 528 | 692 | 655 | 5 | 0.21 | 4.8 | 3.2 | 3.1 | 220 | | 240/500CAK30E4 | 528 | 692 | 643 | 5 | 0.30 | 3.4 | 2.3 | 2.2 | 276 | | 231/500CAKE4 | 536 | 794 | 720 | 6 | 0.31 | 3.2 | 2.2 | 2.1 | 567 | | 241/500CAK30E4 | 536 | 794 | 703 | 6 | 0.39 | 2.6 | 1.7 | 1.7 | 666 | | 232/500CAKE4 | 536 | 884 | 773 | 6 | 0.38 | 2.7 | 1.8 | 1.8 | 969 | | 239/530CAKE4 | 552 | 688 | 659 | 4 | 0.17 | 6.0 | 4.0 | 3.9 | 149 | | 230/530CAKE4 | 558 | 752 | 706 | 5 | 0.22 | 4.6 | 3.1 | 3.0 | 298 | | 240/530CAK30E4 | 558 | 752 | 690 | 5 | 0.31 | 3.3 | 2.2 | 2.2 | 390 | | 231/530CAKE4 | 566 | 834 | 758 | 6 | 0.30 | 3.3 | 2.2 | 2.2 | 628 | | 241/530CAK30E4 | 566 | 834 | 740 | 6 | 0.38 | 2.6 | 1.8 | 1.7 | 773 | | 232/530CAKE4 | 574 | 936 | 824 | 8 | 0.38 | 2.7 | 1.8 | 1.7 | 1 170 | | 239/560CAKE4 | 582 | 728 | 697 | 4 | 0.16 | 6.1 | 4.1 | 4.0 | 172 | | 230/560CAKE4 | 588 | 792 | 742 | 5 | 0.22 | 4.5 | 3.0 | 2.9 | 344 | | 240/560CAK30E4 | 588 | 792 | 729 | 5 | 0.30 | 3.3 | 2.2 | 2.2 | 440 | | 231/560CAKE4 | 596 | 884 | 804 | 6 | 0.30 | 3.4 | 2.3 | 2.2 | 727 | | 241/560CAK30E4 | 596 | 884 | 782 | 6 | 0.39 | 2.6 | 1.8 | 1.7 | 886 | | 232/560CAKE4 | 604 | 986 | 870 | 8 | 0.36 | 2.8 | 1.9 | 1.8 | 1 320 | Remarks For the dimensions of adapters and withdrawal sleeves, refer to Pages B365 and B371. # NSK ### Bore Diameter 600 – 800 mm Cylindrical Bore Tapered Bore | Е | oundary
(r | Dimens | ions | (1) | Basic Load | 0 | gf} | Limiting S | • | Bearing | |-----|---------------|--------|-------------|------------|-------------------|------------|-------------------|------------|-----|------------------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 600 | 800 | 150 | 5 | 3 450 000 | 8 100 000 | 350 000 | 830 000 | 320 | 400 | 239/600CAE4 | | | 870 | 200 | 6 | 5 450 000 | 12 200 000 | 555 000 | 1 240 000 | 300 | 360 | 230/600CAE4 | | | 870 | 272 | 6 | 6 600 000 | 15 100 000 | 675 000 | 1 540 000 | 240 | 320 | 240/600CAE4 | | | 980 | 300 | 7.5 | 8 750 000 | 17 500 000 | 895 000 | 1 790 000 | 220 | 280 | 231/600CAE4 | | | 980 | 375 | 7.5 | 10 400 000 | 21 900 000 | 1 060 000 | 2 230 000 | 220 | 280 | 241/600CAE4 | | | 1 090 | 388 | 9.5 | 12 700 000 | 24 900 000 | 1 300 000 | 2 540 000 | 200 | 260 | 232/600CAE4 | | 630 | 850 | 165 | 6 | 4 000 000 | 9 350 000 | 405 000 | 950 000 | 300 | 360 | 239/630CAE4 | | | 920 | 212 | 7.5 | 5 900 000 | 12 700 000 | 600 000 | 1 300 000 | 280 | 340 | 230/630CAE4 | | | 920 | 290 | 7.5 | 7 550 000 | 17 700 000 | 770 000 | 1 810 000 | 220 | 300 | 240/630CAE4 | | | 1 030 | 315 | 7.5 | 9 600 000 | 19 400 000 | 980 000 | 1 970 000 | 200 | 260 | 231/630CAE4 | | | 1 030 | 400 | 7.5 | 11 300 000 | 23 900 000 | 1 160 000 | 2 440 000 | 200 | 260 | 241/630CAE4 | | | 1 150 | 412 | 12 | 13 400 000 | 25 600 000 | 1 370 000 | 2 610 000 | 180 | 240 | 232/630CAE4 | | 670 | 900 | 170 | 6 | 4 350 000 | 10 300 000 | 445 000 | 1 050 000 | 260 | 340 | 239/670CAE4 | | | 980 | 230 | 7.5 | 6 850 000 | 15 000 000 | 700 000 | 1 530 000 | 240 | 320 | 230/670CAE4 | | | 980 | 308 | 7.5 | 8 450 000 | 19 500 000 | 860 000 | 1 990 000 | 200 | 260 | 240/670CAE4 | | | 1 090 | 336 | 7.5 | 10 600 000 | 21 600 000 | 1 080 000 | 2 200 000 | 190 | 240 | 231/670CAE4 | | | 1 090 | 412 | 7.5 | 12 400 000 | 26 500 000 | 1 270 000 | 2 700 000 | 190 | 240 | 241/670CAE4 | | | 1 220 | 438 | 12 | 14 900 000 | 28 700 000 | 1 520 000 | 2 920 000 | 170 | 220 | 232/670CAE4 | | 710 | 950 | 180 | 6 | 4 800 000 | 11 700 000 | 490 000 | 1 200 000 | 240 | 300 | 239/710CAE4 | | | 1 030 | 236 | 7.5 | 7 100 000 | 15 800 000 | 725 000 | 1 610 000 | 240 | 280 | 230/710CAE4 | | | 1 030 | 315 | 7.5 | 8 850 000 | 20 700 000 | 905 000 | 2 110 000 | 190 | 240 | 240/710CAE4 | | | 1 150 | 438 | 9.5 | 13 900 000 | 30 500 000 | 1 410 000 | 3 100 000 | 170 | 220 | 241/710CAE4 | | | 1 280 | 450 | 12 | 15 700 000 | 30 500 000 | 1 600 000 | 3 100 000 | 160 | 200 | 232/710CAE4 | | 750 | 1 000 | 185 | 6 | 5 250 000 | 12 800 000 | 535 000 | 1 310 000 | 220 | 280 | 239/750CAE4 | | | 1 090 | 250 | 7.5 | 7 750 000 | 17 200 000 | 790 000 | 1 750 000 | 220 | 260 | 230/750CAE4 | | | 1 090 | 335 | 7.5 | 10 100 000 | 24 000 000 | 1 030 000 | 2 450 000 | 180 | 220 | 240/750CAE4 | | | 1 360 | 475 | 15 | 17 700 000 | 35 500 000 | 1 800 000 | 3 600 000 | 140 | 190 | 232/750CAE4 | | 800 | 1 060 | 195 | 6 | 5 600 000 | 13 700 000 | 570 000 | 1 400 000 | 220 | 260 | 239/800CAE4 | | | 1 150 | 258 | 7.5 | 8 350 000 | 19 100 000 | 850 000 | 1 950 000 | 200 | 240 | 230/800CAE4 | | | 1 150 | 345 | 7.5 | 10 900 000 | 26 300 000 | 1 110 000 | 2 680 000 | 160 | 200 | 240/800CAE4 | | | 1 280 | 375 | 9.5 | 13 800 000 | 29 200 000 | 1 410 000 | 2 970 000 | 150 | 190 | 231/800CAE4 | | | 1 420 | 488 | 15 | 20 300 000 | 41 000 000 | 2 070 000 | 4 150 000 | 130 | 170 | 232/800CAE4 | Dynamic Equivalent Load $P = XF_{r} + YF_{o}$ | $F = AF_r + IF_a$ | | | | | | | | | |-------------------|-----------------------|---------------------------|-----------------------|--|--|--|--|--| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | | | X | Y | X | Y | | | | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Νι | umbers | Abutm | ent and Fil
(mr | let Dimens
n) | ions | Constant | nstant Axial Load
Factors | | | Mass
(kg) | |----|--|--------------------------|----------------------------|--------------------------|---------------|------------------------------|------------------------------|--------------------------|--------------------------|----------------------------| | | Tapered Bore(1) | $d_{ m a}$ min. | max. | $D_{ m a}$ min. | $m{r_a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 2: | 39/600CAKE4 | 622 | 778 | 745 | 4 | 0.17 | 5.9 | 3.9 | 3.9 | 205 | | | 30/600CAKE4 | 628 | 842 | 794 | 5 | 0.21 | 4.8 | 3.3 | 3.2 | 389 | | | 40/600CAK30E4 | 628 | 842 | 772 | 5 | 0.30 | 3.3 | 2.2 | 2.2 | 529 | | | 31/600CAKE4 | 636 | 944 | 856 | 6 | 0.30 | 3.4 | 2.3 | 2.2 | 898 | | | 41/600CAK30E4 | 636 | 944 | 836 | 6 | 0.39 | 2.6 | 1.8 | 1.7 | 1 050 | | | 32/600CAKE4 | 644 | 1 046 | 923 | 8 | 0.36 | 2.8 | 1.9 | 1.8 | 1 590 | | 2 | 39/630CAKE4 | 658 | 822 | 786 | 5 | 0.18 | 5.6 | 3.8 | 3.7 | 259 | | | 30/630CAKE4 | 666 | 884 | 835 | 6 | 0.22 | 4.7 | 3.1 | 3.1 | 468 | | | 40/630CAK30E4 | 666 | 884 | 815 | 6 | 0.30 | 3.3 | 2.2 | 2.2 | 637 | | 2 | 31/630CAKE4 | 666 | 994 | 900 | 6 | 0.30 | 3.4 | 2.3 | 2.2 | 1 040 | | | 41/630CAK30E4 | 666 | 994 | 876 | 6 | 0.38 | 2.7 | 1.8 | 1.7 | 1 250 | | | 32/630CAKE4 | 684 | 1 096 | 970 | 10 | 0.36 | 2.8 | 1.9 | 1.8 | 1 850 | | 2 | 39/670CAKE4
30/670CAKE4
40/670CAK30E4
31/670CAKE4 | 698
706
706
706 | 872
944
944
1 054 | 836
891
868
952 | 5
6
6 | 0.17
0.22
0.30
0.30 | 5.8
4.7
3.3
3.3 | 3.9
3.1
2.2
2.2 | 3.8
3.1
2.2
2.2 | 300
571
773
1 230 | | | 41/670CAK30E4 | 706 | 1 054 | 934 | 6 | 0.37 | 2.7 | 1.8 | 1.8 | 1 440 | | | 32/670CAKE4 | 724 | 1 166 | 1 024 | 10 | 0.37 | 2.7 | 1.8 | 1.8 | 2 210 | | 2 | 39/710CAKE4 | 738 | 922 | 883 | 5 | 0.17 | 5.8 | 3.9 | 3.8 | 352 | | | 30/710CAKE4 | 746 | 994 | 936 | 6 | 0.22 | 4.6 | 3.1 | 3.0 | 647 | | | 40/710CAK30E4 | 746 | 994 | 916 | 6 | 0.29 | 3.4 | 2.3 | 2.2 | 861 | | | 41/710CAK30E4 | 754 | 1 106 | 981 | 8 | 0.38 | 2.6 | 1.8 | 1.7 | 1 730 | | | 32/710CAKE4 | 764 | 1
226 | 1 080 | 10 | 0.36 | 2.8 | 1.9 | 1.8 | 2 470 | | | 39/750CAKE4 | 778 | 972 | 931 | 5 | 0.17 | 6.0 | 4.1 | 4.0 | 398 | | | 30/750CAKE4 | 786 | 1 054 | 990 | 6 | 0.22 | 4.6 | 3.1 | 3.0 | 768 | | | 40/750CAK30E4 | 786 | 1 054 | 969 | 6 | 0.29 | 3.4 | 2.3 | 2.2 | 1 030 | | | 32/750CAKE4 | 814 | 1 296 | 1 148 | 12 | 0.36 | 2.8 | 1.9 | 1.8 | 2 980 | | 2 | 39/800CAKE4 | 828 | 1 032 | 987 | 5 | 0.17 | 6.0 | 4.0 | 3.9 | 462 | | | 30/800CAKE4 | 836 | 1 114 | 1 045 | 6 | 0.21 | 4.7 | 3.2 | 3.1 | 870 | | | 40/800CAK30E4 | 836 | 1 114 | 1 029 | 6 | 0.27 | 3.7 | 2.5 | 2.5 | 1 130 | | | 31/800CAKE4 | 844 | 1 236 | 1 127 | 8 | 0.28 | 3.6 | 2.4 | 2.3 | 1870 | | | 32/800CAKE4 | 864 | 1 356 | 1 208 | 12 | 0.35 | 2.8 | 1.9 | 1.9 | 3 250 | ### Bore Diameter 850 – 1400 mm Cylindrical Bore Tapered Bore | Е | Boundary
(r | Dimens
nm) | ions | 1) | Basic Load
N) | 3 | gf} | Limiting Speeds
(min ⁻¹) | | Bearing | |-------|-------------------------|-------------------|-------------------|---------------------------------------|--|-----------------------------------|-------------------------------------|---|-------------------|---| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical Bore | | 850 | 1 120
1 220 | 200
272 | 6
7.5 | 6 100 000
9 300 000 | 15 200 000
21 400 000 | 620 000
945 000 | 1 550 000
2 190 000 | 190
180 | 240
220 | 239/850CAE4
230/850CAE4 | | | 1 220
1 500 | 365
515 | 7.5
15 | 11 600 000
22 300 000 | 28 300 000
45 500 000 | 1 180 000
2 270 000 | 2 890 000
4 650 000 | 150
120 | 190
160 | 240/850CAE4
232/850CAE4 | | 900 | 1 180
1 280 | 206
280 | 6
7.5 | 6 600 000
9 850 000 | 16 700 000
22 800 000 | 670 000
1 000 000 | 1 700 000
2 330 000 | 180
160 | 220
200 | 239/900CAE4 230/900CAE4 | | | 1 280
1 580 | 375
515 | 7.5
15 | 12 800 000
23 400 000 | 31 500 000
47 500 000 | | 3 250 000
4 850 000 | 140
110 | 180
140 | 240/900CAE4
232/900CAE4 | | 950 | 1 250
1 360 | 224
300 | 7.5
7.5 | 7 600 000
11 300 000 | 19 900 000
26 500 000 | 775 000
1 160 000 | 2 030 000
2 710 000 | 160
150 | 200
190 | 239/950CAE4
230/950CAE4 | | | 1 360
1 660 | 412
530 | 7.5
15 | 14 500 000
24 700 000 | 36 500 000
50 500 000 | 1 480 000
2 520 000 | 3 700 000
5 150 000 | 120
100 | 160
130 | 240/950CAE4
232/950CAE4 | | 1 000 | 1 320
1 420
1 420 | 236
308
412 | 7.5
7.5
7.5 | 8 200 000
11 900 000
15 300 000 | 21 700 000
28 100 000
38 500 000 | 835 000
1 210 000
1 560 000 | 2 210 000
2 860 000
3 950 000 | 150
140
110 | 190
170
150 | 239/1000CAE4
230/1000CAE4
240/1000CAE4 | | 1 060 | 1 400
1 500
1 500 | 250
325
438 | 7.5
9.5
9.5 | 9 300 000
13 000 000
16 800 000 | 24 400 000
31 500 000
43 000 000 | 950 000
1 330 000
1 720 000 | 2 490 000
3 200 000
4 350 000 | 130
120
100 | 170
160
130 | 239/1060CAE4 230/1060CAE4 240/1060CAE4 | | 1 120 | 1 580
1 580 | 345
462 | 9.5
9.5 | 15 400 000
18 700 000 | 38 000 000
49 500 000 | 1 570 000
1 910 000 | 3 850 000
5 050 000 | 110
95 | 140
120 | 230/1120CAE4
240/1120CAE4 | | 1 180 | 1 660 | 475 | 9.5 | 20 200 000 | 52 500 000 | 2 060 000 | 5 350 000 | 85 | 110 | 240/1180CAE4 | | 1 250 | 1 750 | 500 | 9.5 | 21 000 000 | 59 500 000 | 2 140 000 | 6 050 000 | 75 | 100 | 240/1250CAE4 | | 1 320 | 1 850 | 530 | 12 | 22 600 000 | 63 500 000 | 2 310 000 | 6 500 000 | 67 | 85 | 240/1320CAE4 | | 1 400 | 1 950 | 545 | 12 | 24 500 000 | 65 000 000 | 2 500 000 | 6 650 000 | 60 | 75 | 240/1400CAE4 | Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}>e$ | | | | |---------------|-----------------------|-------------------------|-----------------------|--|--| | X | X Y | | Y | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Numbers | Abutm | Abutment and Fillet Dimensions (mm) | | | Constant | Axial Load
Factors | | | Mass
(kg) | |--|-----------------------------------|-------------------------------------|-------------------------|--------------------|----------------------|-----------------------|-------------------|-------------------|-------------------------| | Tapered Bore(1) | $d_{\!\scriptscriptstyle a}$ min. | max. | $D_{ m a}$ min. | $m{r}_{ m a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 239/850CAKE4
230/850CAKE4 | 878
886 | 1 092
1 184 | 1 046
1 109 | 5
6 | 0.16
0.21 | 6.2
4.8 | 4.2
3.2 | 4.1
3.1 | 523
1 020 | | 240/850CAK30E4
232/850CAKE4 | 886
914 | 1 184
1 436 | 1 093
1 274 | 6
12 | 0.28
0.35 | 3.6
2.8 | 2.4
1.9 | 2.4
1.9 | 1 350
3 890 | | 239/900CAKE4 230/900CAKE4 | 928
936 | 1 152
1 244 | 1 103
1 169 | 5
6 | 0.16
0.20 | 6.4
4.9 | 4.3
3.3 | 4.2
3.2 | 591
1 160 | | 240/900CAK30E4
232/900CAKE4 | 936
964 | 1 244
1 516 | 1 147
1 354 | 6
12 | 0.28
0.33 | 3.6
3.0 | 2.4
2.0 | 2.4
2.0 | 1 520
4 300 | | 239/950CAKE4
230/950CAKE4 | 986
986 | 1 214
1 324 | 1 169
1 241 | 6 | 0.16
0.21 | 6.3
4.8 | 4.2
3.2 | 4.1
3.2 | 732
1 400 | | 240/950CAK30E4
232/950CAKE4 | 986
1 014 | 1 324
1 596 | 1 219
1 428 | 6
12 | 0.28
0.32 | 3.6
3.1 | 2.4
2.1 | 2.3
2.1 | 1 880
4 800 | | 239/1000CAKE4
230/1000CAKE4
240/1000CAK30E4 | 1 036
1 036
1 036 | 1 284
1 384
1 384 | 1 229
1 298
1 275 | 6
6
6 | 0.16
0.20
0.27 | 6.4
4.9
3.7 | 4.3
3.3
2.5 | 4.2
3.2
2.4 | 881
1 560
2 010 | | 239/1060CAKE4
230/1060CAKE4
240/1060CAK30E4 | 1 096
1 104
1 104 | 1 364
1 456
1 456 | 1 302
1 368
1 346 | 6
8
8 | 0.16
0.21
0.28 | 6.1
4.9
3.6 | 4.1
3.3
2.4 | 4.0
3.2
2.4 | 1 030
1 790
2 410 | | 230/1120CAKE4
240/1120CAK30E4 | 1 164
1 164 | 1 536
1 536 | 1 444
1 421 | 8 | 0.20
0.27 | 5.0
3.7 | 3.4
2.5 | 3.3
2.5 | 2 120
2 790 | | 240/1180CAK30E4 | 1 224 | 1 616 | 1 494 | 8 | 0.27 | 3.7 | 2.5 | 2.4 | 3 180 | | 240/1250CAK30E4 | 1 294 | 1 706 | 1 579 | 8 | 0.25 | 4.0 | 2.7 | 2.6 | 3 700 | | 240/1320CAK30E4 | 1 374 | 1 796 | 1 656 | 10 | 0.26 | 3.9 | 2.6 | 2.6 | 4 400 | | 240/1400CAK30E4 | 1 454 | 1 896 | 1 767 | 10 | 0.25 | 4.0 | 2.7 | 2.6 | 4 900 | # THRUST BEARINGS ### SINGLE-DIRECTION THRUST BALL BEARINGS | With Flat Seat, Aligning Seat, or Aligning Seat Washer | Bore Diameter | 10 – 100 mm ······ | B210 | |--|---------------|----------------------------|------| | | Bore Diameter | 110 – 360 mm ······ | B21 | | DOLIDLE DIDECTION TUDUCT DALL DEADINGS | | | | #### DOUBLE-DIRECTION THRUST BALL BEARINGS | With Flat Seat, Aligning Seat, or Aligning Seat Washer | Bore Diameter | 10 – 190 mm ······ | B218 | |--|---------------|---------------------------|------| | THRUST CYLINDRICAL ROLLER BEARINGS | Bore Diameter | 35 – 320mm····· | B224 | | THRUST SPHERICAL ROLLER BEARINGS | Bore Diameter | 60 – 500mm····· | B228 | Angular Contact Thrust Ball Bearings are described on pages B234 to B243. ### THRUST BALL BEARINGS Thrust ball bearings are classified into those with flat seats or aligning seats depending on the shape of the outer ring seat (housing washer). They can sustain axial loads but no radial loads. sustain axial loads but no radial loads. The series of thrust ball bearings available are shown in Table 1. For Single-Direction Thrust Ball Bearings, pressed steel cages and machined brass cages are usually used as shown in Table 2. The cages in Double-Direction Thrust Ball Bearings are the same as those in Single-Direction Thrust Ball Bearings of the same diameter series. The basic load ratings listed in the bearing tables are based on the standard cage type shown in Table 2. If the type of cage is different for bearings with the same number, the number of balls may vary, in such a case, the load rating will differ from the one listed in the bearing tables. Table1 Series of Thrust Ball Bearings | | W/Flat
Seat | W/Aligning
Seat | W/Aligning
Seat
Washer | |-----------|----------------|--------------------|------------------------------| | | 511 | _ | _ | | Single- | 512 | 532 | 532U | | Direction | 513 | 533 | 533U | | | 514 | 534 | 534U | | Double- | 522 | 542 | 542U | | Direction | 523 | 543 | 543U | | Direction | 524 | 544 | 544U | | | | | | Table 2 Standard Cages for Thrust Ball Bearings | Pressed Steel | Machined Brass | |----------------|-----------------| | 51100 - 51152X | 51156X - 51172X | | 51200 - 51236X | 51238X - 51272X | | 51305 - 51336X | 51338X - 51340X | | 51405 - 51418X | 51420X - 51436X | | 53200 - 53236X | 53238X - 53272X | | 53305 - 53336X | 53338X - 53340X | | 53405 - 53418X | 53420X - 53436X | B 206 B 207 #### THRUST CYLINDRICAL ROLLER BEARINGS These are thrust bearings containing cylindrical rollers. They can sustain only axial loads, but they are suitable for heavy loads and have high axial rigidity. The cages are machined brass. ### THRUST SPHERICAL ROLLER BEARINGS These are thrust bearings containing convex rollers. They have a selfaligning capability and are free of any influence of mounting error or shaft deflection. Besides the original type, the E type with pressed cages for high load capacity is also available. Their bearing numbers are
suffixed by E. For horizontal shaft or high speed application, machined brass cages are recommended. For details, contact NSK. Since there are several places where lubrication is difficult, such as the area between the roller heads and inner ring rib, the sliding surfaces between cage and guide sleeve, etc., oil lubrication should be used even at low speed. The cages in the original type are machined brass. ### TOLERANCES AND RUNNING ACCURACY | THRUST BALL BEARINGS | ·· Table 8.6 (Pages A72 to A74) | |------------------------------------|---------------------------------| | THRUST CYLINDRICAL ROLLER BEARINGS | | | According to | o Table 8.2 (Pages A72 to A74) | | THRUST SPHERICAL ROLLER BEARINGS | ··Table 8.7 (Pages A75) | ### RECOMMENDED FITS | THRUST BALL BEARINGS | Table | 9.3 | (Pages | A84) | |------------------------------------|-------|-----|--------|------| | | Table | 9.5 | (Pages | A85) | | THRUST CYLINDRICAL ROLLER BEARINGS | Table | 9.3 | (Pages | A84) | | | Table | 9.5 | (Pages | A85) | | THRUST SPHERICAL ROLLER BEARINGS | Table | 9.3 | (Pages | A84) | | | Table | 9.5 | (Pages | A85) | ### DIMENSIONS RELATED TO MOUNTING The dimensions related to mounting of thrust spherical roller bearings are listed in the Bearing Table. If the bearing load is heavy, it is necessary to design the shaft shoulder with ample strength in order to provide sufficient support for the shaft ### PERMISSIBLE MISALIGNMENT The permissible misalignment of thrust spherical roller bearings varies depending on the size, but it is approximately 0.018 to 0.036 radian (1° to 2°) with average loads. ### MINIMUM AXIAL LOAD It is necessary to apply some axial load to thrust bearings to prevent slippage between the rolling elements and raceways. For more details, please refer to Page A99. B 208 B 209 With Flat Seat With Aligning Seat With Aligning Seat Washer | Bearin | g Numbers | | | | Dimens
(mm | | | | | nent and
nsions | | | Mass(kg)
approx. | | |-----------------------|---------------|----------------------------|----------------------|---------------------|--------------------|----------------------|-----------------------|---------------------|----------------------|----------------------|----------------------|----------------------------------|--------------------------|---------------------------------| | Witl
Aligni
Sea | ng Aligning | $d_{\scriptscriptstyle 1}$ | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 5320 |
0 53200 U | 24
26 | 11
12 |
18 |
28 |
3.5 | —
8.5 |
22 | 18
20 | 16
16 | 0.3
0.6 | 0.019
0.028 |
0.029 |
0.036 | | 5320 |
1 53201 U | 26
28 | 13
14 | _
20 | 30 |
3.5 |
11.5 |
25 | 20
22 | 18
18 | 0.3
0.6 | 0.021
0.031 | 0.031 | 0.039 | | 5320 |
2 53202 U | 28
32 | 16
17 |
24 |
35 | 4 |
12 |
28 | 23
25 | 20
22 | 0.3
0.6 | 0.023
0.043 |
0.048 |
0.059 | | 5320 |
3 53203 U | 30
35 | 18
19 |
26 | 38 | 4 |
16 |
32 | 25
28 | 22
24 | 0.3
0.6 | 0.025
0.050 |
0.055 | 0.069 | | 5320 |
4 53204 U | 35
40 | 21
22 |
30 | <u>-</u> | - 5 |
18 |
36 | 29
32 | 26
28 | 0.3
0.6 | 0.037
0.077 | 0.080 | 0.096 | | 5320
5330
5340 | 5 53305 U | 42
47
52
60 | 26
27
27
27 | —
36
38
42 | 50
55
62 | 5.5
6
8 |
19
21
19 | 40
45
50 | 35
38
41
46 | 32
34
36
39 | 0.6
0.6
1 | 0.056
0.111
0.169
0.334 | 0.123
0.182
0.353 |
0.151
0.224
0.426 | | 5320
5330
5340 | 6 53306 U | 47
52
60
70 | 32
32
32
32 | 42
45
50 | 55
62
75 | 5.5
7
9 | —
22
22
20 | 45
50
56 | 40
43
48
54 | 37
39
42
46 | 0.6
0.6
1 | 0.064
0.137
0.267
0.519 | 0.154
0.28
0.535 | 0.183
0.336
0.666 | | 5320
5330
5340 | 7 53307 U | 52
62
68
80 | 37
37
37
37 | —
48
52
58 |
65
72
85 | | 24
24
23 | 50
56
64 | 45
51
55
62 | 42
46
48
53 | 0.6
1
1
1 | 0.081
0.21
0.386
0.769 | 0.231
0.403
0.785 | 0.292
0.488
0.967 | | 5320
5330
5340 | 8 53308 U | 60
68
78
90 | 42
42
42
42 | 55
60
65 | 72
82
95 | —
7
8.5
12 | —
28.5
28
26 | —
56
64
72 | 52
57
63
70 | 48
51
55
60 | 0.6
1
1
1 | 0.12
0.27
0.536
1.1 | 0.289
0.581
1.12 | 0.355
0.704
1.38 | | 5320
5330
5340 | 9 53309 U | 65
73
85
100 | 47
47
47
47 |
60
65
72 | 78
90
105 | 7.5
10
12.5 |
26
25
29 | 56
64
80 | 57
62
69
78 | 53
56
61
67 | 0.6
1
1
1 | 0.143
0.31
0.672
1.46 | 0.333
0.702
1.53 | 0.419
0.888
1.87 | | 5321
5331
5341 | 0 53310 U | 70
78
95
110 | 52
52
52
52 |
62
72
80 | 82
100
115 | —
7.5
11
14 |
32.5
28
35 |
64
72
90 | 62
67
77
86 | 58
61
68
74 | 0.6
1
1
1.5 | 0.153
0.378
0.931
1.94 | 0.404
1.01
1.98 | 0.504
1.27
2.41 | B 210 B 211 With Flat Seat With Aligning Seat With Aligning Seat Washer | Bearing N | umbers(1) | | | | Dimensi
(mm | | | | | nent and
nsions (| | | Mass(kg)
approx. |) | |---------------------------|---------------------------------|--------------------------|--------------------------|-------------------|-------------------|------------------------|---------------------|-------------------|--------------------------|--------------------------|----------------------|--------------------------------|--------------------------|---------------------------------| | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 53211
53311
53411 | 53211 U
53311 U
53411 U | 78
90
105
120 | 57
57
57
57 | 72
80
88 | 95
110
125 | 9
11.5
15.5 | —
35
30
28 | 72
80
90 | 69
76
85
94 | 64
69
75
81 | 0.6
1
1
1.5 | 0.227
0.599
1.31
2.58 | 0.656
1.45
2.59 | 0.819
1.78
3.16 | | 53212
53312
53412 | 53212 U
53312 U
53412 U | 85
95
110
130 | 62
62
62
62 | 78
85
95 | 100
115
135 | —
9
11.5
16 | 32.5
41
34 | 72
90
100 | 75
81
90
102 | 70
74
80
88 | 1
1
1
1.5 | 0.281
0.673
1.4
3.16 | 0.731
1.51
3.2 | 0.897
1.83
3.91 | | 53213
53313
53413 | 53213 U
53313 U
53413 U | 90
100
115
140 | 67
67
67
68 | 82
90
100 | 105
120
145 | —
9
12.5
17.5 | 40
38.5
40 | 80
90
112 | 80
86
95
110 | 75
79
85
95 | 1
1
1
2 | 0.324
0.756
1.54
4.1 | 0.812
1.67
4.22 | 0.989
2.04
5.13 | | 53214
53314
53414 | 53214 U
53314 U
53414 U | 95
105
125
150 | 72
72
72
73 | 88
98
110 | 110
130
155 | —
9
13
19.5 | 38
43
34 | 80
100
112 | 85
91
103
118 | 80
84
92
102 | 1
1
1
2 | 0.346
0.793
2.0
5.05 | 0.866
2.2
5.12 | 1.05
2.64
6.21 | | 53215
53315
53415 | 53215 U
53315 U
53415 U | 100
110
135
160 | 77
77
77
78 | 92
105
115 | 115
140
165 | 9.5
15
21 | 49
37
42 | 90
100
125 | 90
96
111
125 | 85
89
99
110 | 1
1
1.5
2 | 0.389
0.845
2.6
6.15 | 1.27
2.8
6.23 | 1.11
3.42
7.58 | | 53216
53316
53416 | 53216 U
53316 U
53416 U | 105
115
140
170 | 82
82
82
83 | 98
110
125 | 120
145
175 | 10
15
22 | 46
50
36 | 90
112
125 | 95
101
116
133 | 90
94
104
117 | 1
1
1.5
2 | 0.417
0.931
2.74
7.21 | 1.01
2.94
7.33 | 1.23
3.55
8.9 | | 53217
53317
53417 X | 53217 U
53317 U
53317 XU | 110
125
150
177 | 87
88
88
88 | 105
115
130 | 130
155
185 |
11
17.5
23 | 52
43
47 | 100
112
140 | 100
109
124
141 | 95
101
111
124 | 1
1
1.5
2 | 0.44
1.22
3.57
8.51 | 1.35
3.78
8.72 | 1.63
4.67
10.4 | | 53218
53318
53418 X | 53218 U
53318 U
53418 XU | 120
135
155
187 | 92
93
93
93 | 110
120
140 | 140
160
195 |
13.5
18
25.5 | 45
40
40 | 100
112
140 | 108
117
129
149 | 102
108
116
131 | 1
1
1.5
2 | 0.646
1.69
3.83
10.2 | 1.89
4.11
10.3 | 2.38
5.09
12.4 | | 53220
53320
53420 X | 53220 U
53320 U
53420 XU | 135
150
170
205 | 102
103
103
103 | 125
135
155 | 155
175
220 |
14
18
27 | —
52
46
50 | 112
125
160 | 121
130
142
165 | 114
120
128
145 | 1
1
1.5
2.5 | 0.96
2.25
4.98
14.8 | 2.49
5.31
15 | 3.03
6.37
18.1 | Note (1) The outside diameter d_i of the shaft washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | В | Ť | umbers(1) | | | | Dimensi
(mm | | | | | nent and
nsions (| | | Mass(kg)
approx. | | |---|--------------------------|----------------------------------|----------------------------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|--------------------------|--------------------------|----------------------
------------------------------|---------------------------|---------------------------------| | F | With
Aligning
Seat | With
Aligning
Seat Washer | $d_{\scriptscriptstyle 1}$ | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 5 | | 53222 U
53322 XU
53422 XU | 145
160
187
225 | 112
113
113
113 | —
135
150
170 | —
165
195
240 | —
14
20.5
29 |
65
51
59 | —
125
140
180 | 131
140
158
181 | 124
130
142
159 | 1
1
2
2.5 | 1.04
2.42
7.19
20 | | | | 5 | | 53224 U
53324 XU
53424 XU | 155
170
205
245 | 122
123
123
123 | 145
165
185 | 175
220
260 | —
15
22
32 | —
61
63
70 | 125
160
200 | 141
150
173
196 | 134
140
157
174 | 1
1
2
3 | 1.12
2.7
9.7
26.2 | 2.94
10.1
26.5 | 3.58
12.4
31.3 | | 5 | 3326 X | 53226 XU
53326 XU
53426 XU | 170
187
220
265 | 132
133
134
134 | 160
177
200 | 195
235
280 |
17
26
38 | 67
53
58 | 140
160
200 | 154
166
186
212 | 146
154
169
188 | 1
1.5
2
3 | 1.68
3.95
12.1
32.3 | 4.35
12.7
32.4 | 5.33
15.8
38.8 | | 5 | 3328 X | 53228 XU
53328 XU
53428 XU | 178
197
235
275 | 142
143
144
144 | 170
190
206 | 210
250
290 |
17
26
38 | 87
68
83 | 160
180
225 | 164
176
199
222 | 156
164
181
198 | 1
1.5
2
3 | 1.83
4.3
14.2
34.7 |
4.74
16.3
34.8 | | | 5 | 3330 X | 53230 XU
53330 XU
53430 XU | 188
212
245
295 | 152
153
154
154 | 180
200
225 | 225
260
310 |
20.5
26
41 | —
79
89.5
69 | 160
200
225 | 174
189
209
238 | 166
176
191
212 | 1
1.5
2
3 | 1.95
5.52
15
43.5 |
6.09
17.3
43.8 |
7.82
20.5
51.9 | | 5 | 3332 X | 53232 XU
53332 XU
53432 XU | 198
222
265
315 | 162
163
164
164 | 190
215
240 | 235
280
330 | —
21
29
41.5 | 74
77
84 | 160
200
250 | 184
199
225
254 | 176
186
205
226 | 1
1.5
2.5
4 | 2.07
6.04
19.6
52.7 |
6.78
22.3
52.9 |
8.7
26.7
62 | | 5 | 3334 X | 53234 XU
53334 XU
53434 XU | 213
237
275
335 | 172
173
174
174 | 200
220
255 | 250
290
350 | —
21.5
29
46 | 91
105
74 | 180
225
250 | 197
212
235
269 | 188
198
215
241 | 1
1.5
2.5
4 | 2.72
7.41
20.3
61.2 | 8.21
23.2
61.3 | | | 5 | 3336 X | 53236 XU
53336 XU
53436 XU | 222
247
295
355 | 183
183
184
184 | 210
240
270 | 260
310
370 | —
21.5
32
46.5 |
112
91
97 | 200
225
280 | 207
222
251
285 | 198
208
229
255 | 1
1.5
2.5
4 | 2.79
7.94
25.9
70.5 | —
8.57
29.2
72.1 | | | | | 53238 XU
53338 XU | 237
267
315 | 193
194
195 | 230
255 | 280
330 |
23
33 | 98
104 | 200
250 | 220
238
266 | 210
222
244 | 1
2
3 | 3.6
11.8
36.5 |
12.9
38.1 |
15.7
44.7 | With Flat Seat With Aligning Seat With Aligning Seat Washer | | E | | y Dimensio | ons | | // | Basic Load R | 5 | -£) | , | Speeds | | |-----|-------------------|-----------------|-------------------|----------------|------------------|-------------------------------|-----------------------------------|------------------|------------------------------|---------------------|---------------------------|-------------------------------| | d | D | T | T_3 | T_4 | r
min. | $C_{\rm a}$ | N) $C_{0\mathrm{a}}$ | $C_{ m a}$ | C_{0a} | Grease | in ⁻¹)
Oil | With
Flat
Seat | | 200 | 250
280
340 | 37
62
110 |
65.3
118.4 | —
74
130 | 1.1
2
4 | 173 000
315 000
600 000 | 675 000
1 110 000
2 220 000 | | 69 000
113 000
227 000 | 1 000
710
480 | 1 500
1 100
710 | 51140 X
51240 X
51340 X | | 220 | 270
300 | 37
63 | <u> </u> |
75 | 1.1
2 | 179 000
325 000 | 740 000
1 210 000 | 18 200
33 500 | 75 500
123 000 | 950
670 | 1 500
1 000 | 51144 X
51244 X | | 240 | 300
340 | 45
78 | —
81.6 | —
92 | 1.5
2.1 | 229 000
420 000 | 935 000
1 650 000 | 23 400
43 000 | 95 000
168 000 | 850
560 | 1 200
850 | 51148 X
51248 X | | 260 | 320
360 | 45
79 | <u> </u> | <u> </u> | 1.5
2.1 | 233 000
435 000 | 990 000
1 800 000 | | 101 000
184 000 | 800
560 | 1 200
850 | 51152 X
51252 X | | 280 | 350
380 | 53
80 |
85 | <u> </u> | 1.5
2.1 | 315 000
450 000 | 1 310 000
1 950 000 | | 134 000
199 000 | 710
530 | 1 000
800 | 51156 X
51256 X | | 300 | 380
420 | 62
95 | 100.5 |
112 | 2 | 360 000
540 000 | 1 560 000
2 410 000 | | 159 000
246 000 | 600
450 | 900
670 | 51160 X
51260 X | | 320 | 400
440 | 63
95 | 100.5 |
112 | 2 3 | 365 000
585 000 | 1 660 000
2 680 000 | | 169 000
273 000 | 600
450 | 900
670 | 51164 X
51264 X | | 340 | 420
460 | 64
96 |
100.3 |
113 | 2 | 375 000
595 000 | 1 760 000
2 800 000 | | 179 000
285 000 | 560
430 | 850
630 | 51168 X
51268 X | | 360 | 440
500 | 65
110 | _
116.7 | _
130 | 2 4 | 385 000
705 000 | 1 860 000
3 500 000 | | 190 000
355 000 | 560
380 | 800
560 | 51172 X
51272 X | Note (1) The outside diameter d_1 of the shaft washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | Bearing Nu | | | | | Dimensi
(mm | | | | | nent and
nsions (| | | Mass(kg)
approx. | | |--------------------------|---------------------------------|----------------------------|-------------------|----------------|----------------|--------------|----------------|-----------------|-------------------|----------------------|--------------------------|----------------------|--------------------------|---------------------------------| | With
Aligning
Seat | With
Aligning
Seat Washer | $d_{\scriptscriptstyle 1}$ | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{r_{\mathrm{a}}}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | |
53240 XU
53340 XU | 247
277
335 | 203
204
205 |
240
270 |
290
350 |
23
38 | —
125
92 | —
225
250 | 230
248
282 | 220
232
258 | 1
2
3 | 3.75
12.3
43.6 |
13.4
46.2 | —
16.1
54.8 | | 53244 X |
53244 XU | 267
297 | 223
224 |
260 | 310 |
25 | 118 |
225 | 250
268 | 240
252 | 1 2 | 4.09
13.6 |
14.9 |
18 | | 53248 X |
53248 XU | 297
335 | 243
244 |
290 |
350 |
30 |
122 |
250 | 276
299 | 264
281 | 1.5
2 | 6.55
23.7 |
25.6 |
30.7 | | 53252 X |
53252 XU | 317
355 | 263
264 |
305 |
370 | 30 |
152 |
280 | 296
319 | 284
301 | 1.5
2 | 7.01
25.1 | | 33.2 | | 53256 X |
53256 XU | 347
375 | 283
284 |
325 |
390 | <u> </u> | 143 |
280 | 322
339 | 308
321 | 1.5
2 | 12
27.1 |
30.3 | -
37 | | 53260 X |
53260 XU | 376
415 | 304
304 |
360 | 430 | 34 |
164 | 320 | 348
371 | 332
349 | 2
2.5 | 17.2
43.5 | -
47.7 |
56.1 | | 53264 X |
53264 XU | 396
435 | 324
325 | 380 |
450 |
36 |
157 | 320 | 368
391 | 352
369 | 2
2.5 | 18.6
45 | —
49.9 |
59.4 | | 53268 X |
53268 XU | 416
455 | 344
345 |
400 |
470 |
36 |
199 |
360 | 388
411 | 372
389 | 2
2.5 | 19.9
47.9 |
52.7 | <u> </u> | | 53272 X |
53272 XU | 436
495 | 364
365 |
430 | _
510 |
43 |
172 |
360 | 408
442 | 392
418 | 2
3 | 21.5
68.8 | —
76.3 | —
90.9 | B 216 B 217 #### Bore Diameter 10 – 55 mm | | | | | | Di | mensio
(mm) | ns | | | | | | nent an
nsions | d Fillet
(mm) | ı | Mass(kg
approx. |) | |--|-------------------------|----------------------|----------------|--------------------------|------------------------|--------------------------|------------------------|----------------------|-------------------------|--------------------------|------------------------|-----------------------|-------------------------------|------------------------|------------------------------|------------------------------|---------------------------------| | With
Aligning
Seat Washer | d_3 | D_1 | D_2 | D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | $D_{ m a}$ max. | r _a
max. | $r_{ m b}$ max. | With
Flat Seat | | With
Aligning
Seat Washer | | 54202 U | 32 | 17 | 24 | 35 | 13.5 | 14.8 | 16.5 | 5 | 4 | 10.5 | 28 | 24 | 0.6 | 0.3 | 0.081 | 0.090 | 0.113 | | 54204 U
54405 U | 40
60 | 22
27 | 30
42 | 42
62 | 16
28 | 16.7
30.4 | 19
33 | 6
11 | 5
8 | 16
15 | 36
50 | 30
42 | 0.6
1 | 0.3
0.6 | 0.148
0.641 | 0.151
0.68 | 0.185
0.825 | | 54205 U
54305 U
54406 U | 47
52
70 | 27
27
32 | 36
38
50 | 50
55
75 | 17.5
21
32 | 19.2
22.8
34.1 | 21.5
25
37 | 7
8
12 | 5.5
6
9 | 16.5
18
16 | 40
45
56 | 36
38
50 | 0.6
1
1 | 0.3
0.3
0.6 | 0.213
0.324
0.978 | 0.236
0.35
1.01 | 0.293
0.434
1.27 | | 54206 U
54306 U
54407 U | 52
60
80 | 32
32
37 | 42
45
58 | 55
62
85 | 18
23.5
36.5 | 19.8
25.1
38.5 | 22
27.5
41.5 |
7
9
14 | 5.5
7
10 | 20
19.5
18.5 | 45
50
64 | 42
45
58 | 0.6
1
1 | 0.3
0.3
0.6 | 0.254
0.483
1.43 | 0.288
0.511
1.47 | 0.345
0.621
1.83 | | 54207 U
54307 U
54208 U | 62
68
68 | 37
37
42 | 48
52
55 | 65
72
72 | 21
27
22.5 | 22.9
28.6
23.8 | 25
31
26.5 | 8
10
9 | 7
7.5
7 | 21
21
25 | 50
56
56 | 48
52
55 | 1
1
1 | 0.3
0.3
0.6 | 0.406
0.71
0.543 | 0.447
0.744
0.581 | 0.57
0.915
0.713 | | 54308 U
54408 U | 78
90 | 42
42 | 60
65 | 82
95 | 30.5
40 | 33
42.2 | 35.5
46 | 12
15 | 8.5
12 | 23.5
22 | 64
72 | 60
65 | 1
1 | 0.6
0.6 | 1.04
1.98 | 1.13
2.02 | 1.38
2.54 | | 54209 U
54309 U
54409 U | 73
85
100 | 47
47
47 | 60
65
72 | 78
90
105 | 23
32
44.5 | 24.3
34.1
47.9 | 27
37
51.5 | 9
12
17 | 7.5
10
12.5 | 23
21
23.5 | 56
64
80 | 60
65
72 | 1
1
1 | 0.6
0.6
0.6 | 0.606
1.28
2.71 | 0.652
1.34
2.85 | 0.823
1.71
3.53 | | 54210 U
54310 U
54410 U | 78
95
110 | 52
52
52 | | 82
100
115 | 24
36
48 | 25.5
39.3
50.6 | 28
42
55 | 9
14
18 | 7.5
11
14 | 30.5
23
30 | 64
72
90 | 62
72
80 | 1
1
1.5 | 0.6
0.6
0.6 | 0.697
1.78
3.51 | 0.75
1.94
3.59 | 0.949
2.46
4.45 | | 54211 U
54311 U
54411 U | 90
105
120 | 57
57
57 | | 95
110
125 | 27.5
39.5
53.5 | 29.8
43.8
56 | 32.5
46.5
60.5 | 10
15
20 | 9
11.5
15.5 | 32.5
25.5
22.5 | 72
80
90 | 72
80
88 | 1
1
1.5 | 0.6
0.6
0.6 | 1.11
2.43
4.66 | 1.22
2.7
4.68 | 1.55
3.35
5.82 | | 54212 U
54312 U
54412 U
54413 U | 95
110
130
140 | 62
62
62
68 | 85 | 100
115
135
145 | 28
39.5
57
62 | 30
42.8
60
66.2 | 33
46.5
64
71 | 10
15
21
23 | 9
11.5
16
17.5 | 30.5
36.5
28
34 | 72
90
100
112 | 78
85
95
100 | 1
1
1.5
2 | 0.6
0.6
0.6
1 | 1.22
2.59
5.74
7.41 | 1.33
2.82
5.82
7.66 | 1.66
3.45
7.24
9.47 | | 54213 U
54313 U
54214 U | 100
115
105 | 67
67
72 | 90 | 105
120
110 | 28.5
40
28.5 | 30.2
43.4
30.3 | 33.5
47
33.5 | 10
15
10 | 9
12.5
9 | 38.5
34.5
36.5 | 80
90
80 | 82
90
88 | 1
1
1 | 0.6
0.6
1 | 1.34
2.8
1.44 | 1.45
3.06
1.59 | 1.81
3.8
1.95 | | 54314 U
54414 U | 125
150 | 72
73 | 98
110 | 130
155 | 44
65.5 | 48.2
69.1 | 52
74.5 | 16
24 | 13
19.5 | 39
28.5 | 100
112 | 98
110 | 1 | 1
1 | 3.67
8.99 | 4.07
9.12 | 4.95
11.3 | # Bore Diameter 60 – 130 mm | | | Bou | | Dimensio | ons | | | (1 | Basic Load R | 0 | gf} | Limiting
(mi) | • | Bearing Numbers | (1) | |----------|----------------------|--------------------------|------------------------|----------------------------|------------------------|------------------------|--------------------|---|--|-------------------------------------|--------------------------------------|---------------------|-------------------------|---|-----| | d_2 | d | D | T_1 | T_5 | T_7 | $m{r}$ min. | $r_{ m 1}$ min. | C_{a} | C_{0a} | $C_{\rm a}$ | C_{0a} | Grease | Oil | With With
Flat Seat Alignin
Seat | g | | 60 | 75
75
75 | 110
135
160 | 47
79
115 | 49.6
87.2
123 | 57
95
135 | 1
1.5
2 | 1
1
1 | 78 000
159 000
254 000 | 209 000
365 000
560 000 | 7 950
16 200
25 900 | 21 300
37 500
57 000 | 1 200 | 2 600
1 800
1 400 | | | | 65 | 80
80
80
85 | 115
140
170
180 | 48
79
120
128 | 51
86.2
128.4
138 | 58
95
140
150 | 1
1.5
2.1
2.1 | 1
1
1
1.1 | 79 000
164 000
272 000
310 000 | 218 000
395 000
620 000
755 000 | 8 050
16 700
27 800
31 500 | 22 300
40 000
63 500
77 000 | 1 200
850 | | | x | | 70 | 85
85
90 | 125
150
190 | 55
87
135 | 59.2
95.2
143.4 | 67
105
157 | 1
1.5
2.1 | 1
1
1.1 | 96 000
207 000
330 000 | 264 000
490 000
825 000 | 9 800
21 100
33 500 | 26 900
50 000
84 000 | 1 100 | 2 200
1 600
1 100 | | X | | 75
80 | 90
90
100 | 135
155
210 | 62
88
150 | 69
97.2
160 | 76
106
176 | 1.1
1.5
3 | 1
1
1.1 | 114 000
214 000
370 000 | 310 000
525 000
985 000 | 11 600
21 900
38 000 | 31 500
53 500
100 000 | 1 100 | 2 000
1 600
1 000 | | X | | 85
90 | 100
100
110 | 150
170
230 | 67
97
166 | 72.8
105.4
— | 81
115
— | 1.1
1.5
3 | 1
1
1.1 | 135 000
239 000
415 000 | 375 000
595 000
1 150 000 | 13 700
24 300
42 000 | 38 500
61 000
118 000 | 1 300
950
600 | 1 900
1 500
900 | | | | 95 | 110
110
120 | 160
190
250 | 67
110
177 | 71.4
118.4
— | 81
128
— | 1.1
2
4 | 1
1
1.5 | 136 000
282 000
515 000 | 395 000
755 000
1 540 000 | 13 900
28 800
52 500 | 40 000
77 000
157 000 | | | 52222 54222
52322 X 54322
52424 X — | X | | 100 | 120
120
130 | 170
210
270 | 68
123
192 | 71.6
131.2
— | 82
143
— | 1.1
2.1
4 | 1.1
1.1
1.5 | 141 000
330 000
525 000 | 430 000
930 000
1 590 000 | 14 400
33 500
53 500 | 44 000
95 000
162 000 | | | 52224 54224
52324 X 54324
52426 X — | X | | 110 | 130
130
140 | 190
225
280 | 80
130
196 | 85.8
—
— | 96
—
— | 1.5
2.1
4 | 1.1
1.1
1.5 | | 550 000
1 030 000
1 750 000 | 18 700
35 500
56 500 | 56 000
105 000
178 000 | | 1 100 | 52226 X 54226
52326 X —
52428 X — | X | | 120 | 140
140
150 | 200
240
300 | 81
140
209 | 86.2
—
— | 99
—
— | 1.5
2.1
4 | 1.1
1.1
2 | | 575 000
1 130 000
2 010 000 | 18 900
37 500
63 000 | | 1 000
670
480 | 1 000 | 52228 X 54228
52328 X —
52430 X — | X | | 130 | 150
150
160 | 215
250
320 | 89
140
226 | 95.6
—
— | 109
—
— | 1.5
2.1
5 | 1.1
1.1
2 | | 735 000
1 200 000
2 210 000 | 24 300
39 000
66 000 | 75 000
123 000
226 000 | 900
630
430 | 950 | 52230 X 54230
52330 X —
52432 X — | X | Note (1) The outside diameter d_s of the central washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | | | | | | Di | mensio
(mm) | ns | | | | | | nent an
nsions | d Fillet
(mm) | 1 | Mass(kg
approx. |) | |---|----------------------------|----------------------|-------------------|-------------------|----------------------------|------------------------------|----------------------------|----------------------|----------------------|----------------------------|-------------------------|-------------------------|--------------------|------------------|------------------------------|------------------------------|---------------------------------| | With
Aligning
Seat Washer | d_3 | D_1 | D_2 | D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | $D_{ m a}$ max. | $r_{ m a}$ max. | $r_{ m b}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 54215 U
54315 U
54415 U | 110
135
160 | 77
77
78 | 105 | 115
140
165 | 28.5
48.5
70.5 | 29.8
52.6
74.5 | 33.5
56.5
80.5 | 10
18
26 | 9.5
15
21 | 47.5
32.5
36.5 | 90
100
125 | 92
105
115 | 1
1.5
2 | 1
1
1 | 1.54
4.74
10.8 | 1.66
5.14
11 | 2.06
6.38
13.7 | | 54216 U
54316 U
54416 U
54417 XU | 115
140
170
179.5 | 82
82
83
88 | 110
125 | | 29
48.5
73.5
78.5 | 30.5
52.1
77.7
83.5 | 34
56.5
83.5
89.5 | 10
18
27
29 | 10
15
22
23 | 45
45.5
30.5
40.5 | 90
112
125
140 | 98
110
125
130 | 1
1.5
2
2 | 1
1
1 | 1.66
4.99
12.6
15.4 | 1.78
5.39
12.8
15.8 | 2.21
6.61
16
19.5 | | 54217 U
54317 U
54418 XU | 125
150
189.5 | 88
88
93 | 105
115
140 | | 33.5
53
82.5 | 35.6
57.1
86.7 | 39.5
62
93.5 | 12
19
30 | 11
17.5
25.5 | 49.5
39
34.5 | 100
112
140 | 105
115
140 | 1
1.5
2 | 1
1
1 | 2.26
6.38
17.5 | 2.45
6.8
18.1 | 3.02
10.5
22.5 | | 54218 U
54318 U
54420 XU | 135
155
209.5 | 93
93
103 | 120 | 140
160
220 | 38
53.5
91.5 | 41.5
58.1
96.5 | 45
62.5
104.5 | 14
19
33 | 13.5
18
27 | 42
36.5
43.5 | 100
112
160 | 110
120
155 | 1
1.5
2.5 | 1
1
1 | 3.09
6.79
26.8 | 3.42
7.33
27.2 | 4.39
9.29
33.4 | | 54220 U
54320 U
— | 150
170
229 | 103
103
113 | 125
135
— | | 41
59
101.5 | 43.9
63.2
— | 48
68
— | 15
21
37 | 14
18
— | 49
42
— | 112
125
— | 125
135
159 | 1
1.5
2.5 | 1
1
1 | 4.08
8.82
35.6 | 4.54
9.47
— | 5.64
11.6
— | | 54222 U
54322 XU
— | 160
189.5
249 | 113
113
123 | 135
150
— | 165
195
— | 41
67
108.5 | 43.2
71.2
— | 48
76
— | 15
24
40 | 14
20.5
— | 62
47
— | 125
140
— | 135
150
174 | 1
2
3 | 1
1
1.5 | 4.39
12.7
47.6 | 4.83
13.5
— | 5.94
16.6
— | | 54224 U
54324
XU
— | 170
209.5
269 | 123
123
134 | 145
165
— | | 41.5
75
117 | 43.3
79.1
— | 48.5
85
— | 15
27
42 | 15
22
— | 58.5
58
— | 125
160
— | 145
165
188 | 1
2
3 | 1
1
1.5 | 4.92
17.6
57.8 | 5.4
16.4
— | 6.68
22.9
— | | 54226 XU
—
— | 189.5
224
279 | 133
134
144 | 160
— | 195
—
— | 49
80
120 | 51.9
—
— | 57
—
— | 18
30
44 | 17
—
— | 63
—
— | 140
— | 160
169
198 | 1.5
2
3 | 1
1
1.5 | 7.43
21.5
62.4 | 8.24
— | 10.2
—
— | | 54228 XU
—
— | 199.5
239
299 | 143
144
153 | 170
— | 210
—
— | 49.5
85.5
127.5 | 52.1
—
— | 58.5
—
— | 18
31
46 | 17
— | 83.5
—
— | 160
— | 170
181
212 | 1.5
2
3 | 1
1
2 | 8.01
24.8
77.8 | 8.87
— | 11.2
—
— | | 54230 XU
—
— | 214.5
249
319 | 153
154
164 | 180
— | 225
—
— | 54.5
85.5
138 | 57.8
—
— | 64.5
— | 20
31
50 | 20.5
— | 74.5
— | 160
— | 180
191
226 | 1.5
2
4 | 1
1
2 | 10.4
30.3
93.6 | 11.5
—
— | 15
—
— | B 220 B 221 Bore Diameter 135 – 190 mm | | | Bou | | Dimensionm) | ons | | | | Basic Load R | atings
{kgf} | Limiting Speeds
(min ⁻¹) | Bearing Numbers ⁽¹⁾ | |-------|--------------------------|--------------------------|------------------------|--------------------------|----------------------|----------------------|------------------------|--|--|--|---|---| | d_2 | d | D | T_1 | T_5 | T_7 | $m{r}$ min. | $r_1 \atop ext{min.}$ | C _a | C_{0a} | $C_{\rm a}$ $C_{0 \rm a}$ | Grease Oil | With With
Flat Seat Aligning
Seat | | 135 | 170 | 340 | 236 | _ | _ | 5 | 2.1 | 715 000 | 2 480 000 | 73 000 253 000 | 400 600 | 52434 X — | | 140 | 160
160
180 | 225
270
360 | 90
153
245 | 97.4
—
— | 110
— | 1.5
3
5 | 1.1
1.1
3 | 249 000
475 000
750 000 | 805 000
1 570 000
2 730 000 | 25 400 82 000
48 500 160 000
76 500 278 000 | 600 900 | 52232 X 54232 X
52332 X —
52436 X — | | 150 | 170
170
180
180 | 240
280
250
300 | 97
153
98
165 | 104.4
—
102.4
— | 117
—
118
— | 1.5
3
1.5
3 | 1.1
1.1
2
2 | 280 000
465 000
284 000
480 000 | 915 000
1 570 000
955 000
1 680 000 | 28 500 93 000
47 500 160 000
28 900 97 000
49 000 171 000 | 560 850
800 1 200 | 52334 X — | | 160 | 190
190 | 270
320 | 109
183 | 116.4 | 131 | 2
4 | 2 | 320 000
550 000 | 1 110 000
1 960 000 | 32 500 113 000
56 000 199 000 | | 52238 X 54238 X
52338 X — | | 170 | 200
200 | 280
340 | 109
192 | 115.6
— | 133 | 2 | 2 | 315 000
600 000 | 1 110 000
2 220 000 | 32 500 113 000
61 500 227 000 | 710 1 000
450 670 | 52240 X 54240 X
52340 X — | | 190 | 220 | 300 | 110 | 115.2 | 134 | 2 | 2 | 325 000 | 1 210 000 | 33 500 123 000 | 670 1 000 | 52244 X 54244 X | Note (!) The outside diameter d_s of the central washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. | | | | | | Di | mensio
(mm) | ns | | | | | | nent an
nsions | d Fillet
(mm) | ı | Mass(ko
approx | | |---------------------------------|----------------------------|--------------------------|-----------------|----------------------|-------------------------|------------------------|----------------------|----------------------|------------------------|-----------------------|--------------------|--------------------------|--------------------------|--------------------|------------------------------|--------------------------|---------------------------------| | With
Aligning
Seat Washer | d_3 | D_1 | D_2 | D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | $D_{ m a}$ max. | r а
тах. | $r_{ m b}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | _ | 339 | 174 | _ | _ | 143 | _ | _ | 50 | _ | _ | _ | 240 | 4 | 2 | 110 | _ | _ | | 54232 XU
 | 224.5
269
359 | 163
164
184 | 190
— | 235
—
— | 55
93
148.5 | 58.7
—
— | 65
—
— | 20
33
52 | 21
—
— | 70
— | 160
— | 190
205
254 | 1.5
2.5
4 | 1
1
2.5 | 11.2
35.1
126 | 12.7
—
— | 16.5
—
— | | 54234 XU
54236 XU | 239.5
279
249
299 | 173
174
183
184 | 200
210
— | 250
—
260
— | 59
93
59.5
101 | 62.7
—
61.7
— | 69
—
69.5
— | 21
33
21
37 | 21.5
—
21.5
— | 87
—
108.5
— | 180

200
 | 200
215
210
229 | 1.5
2.5
1.5
2.5 | 1
1
2
2.5 | 13.6
40.8
14.8
46.3 | 15.2
—
16.1
— | 19.8
—
20.6
— | | 54238 XU
— | 269
319 | 194
195 | 230 | 280
— | 66.5
111.5 | 70.2
— | 77.5
— | 24
40 | 23 | 93.5
— | 200 | 230
244 | 2 | 2 | 22.1
113 | 22.2
— | 29.8
— | | 54240 XU
— | 279
339 | 204
205 | 240
— | 290
— | 66.5
117 | 69.8
— | 78.5
— | 24
42 | 23 | 120.5
— | 225
— | 240
258 | 2 | 2 | 23.1
78.4 | 23.2 | 30.6 | | 54244 XU | 299 | 224 | 260 | 310 | 67 | 69.6 | 79 | 24 | 25 | 114 | 225 | 260 | 2 | 2 | 25.2 | 27.8 | 34.1 | Bore Diameter 35 – 130 mm | | Boundary D
(mr | | | | ad Ratings
N) | 1 | J Speeds
in ⁻¹) | |-----|-------------------|----|------------------|-------------|-------------------|--------|--------------------------------| | d | D | T | r
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Grease | Oil | | 35 | 80 | 32 | 1.1 | 95 500 | 247 000 | 1 000 | 3 000 | | 40 | 78 | 22 | 1 | 63 000 | 194 000 | 1 200 | 3 600 | | 45 | 65 | 14 | 0.6 | 33 000 | 100 000 | 1 700 | 5 000 | | | 85 | 24 | 1 | 71 000 | 233 000 | 1 100 | 3 400 | | 50 | 110 | 27 | 1.1 | 139 000 | 470 000 | 900 | 2 800 | | | 95 | 27 | 1.1 | 113 000 | 350 000 | 1 000 | 3 000 | | 55 | 105 | 30 | 1.1 | 134 000 | 450 000 | 900 | 2 600 | | 60 | 95 | 26 | 1 | 99 000 | 325 000 | 1 000 | 3 000 | | | 110 | 30 | 1.1 | 139 000 | 480 000 | 850 | 2 600 | | 65 | 100 | 27 | 1 | 110 000 | 325 000 | 950 | 2 800 | | | 115 | 30 | 1.1 | 145 000 | 515 000 | 850 | 2 600 | | 70 | 150 | 36 | 2 | 259 000 | 935 000 | 670 | 2 000 | | | 125 | 34 | 1.1 | 191 000 | 635 000 | 750 | 2 200 | | 75 | 100 | 19 | 1 | 63 500 | 221 000 | 1 100 | 3 400 | | | 135 | 36 | 1.5 | 209 000 | 735 000 | 710 | 2 200 | | 80 | 115 | 28 | 1 | 120 000 | 420 000 | 900 | 2 600 | | | 140 | 36 | 1.5 | 208 000 | 740 000 | 710 | 2 000 | | 85 | 110 | 19 | 1 | 75 000 | 298 000 | 1 100 | 3 200 | | | 125 | 31 | 1 | 151 000 | 485 000 | 800 | 2 400 | | | 150 | 39 | 1.5 | 257 000 | 995 000 | 630 | 1 900 | | 90 | 120 | 22 | 1 | 96 000 | 370 000 | 950 | 3 000 | | | 155 | 39 | 1.5 | 250 000 | 885 000 | 630 | 1 900 | | 100 | 170 | 42 | 1.5 | 292 000 | 1 110 000 | 560 | 1 700 | | 110 | 160 | 38 | 1.1 | 228 000 | 855 000 | 630 | 1 900 | | | 190 | 48 | 2 | 390 000 | 1 490 000 | 500 | 1 500 | | 120 | 170 | 39 | 1.1 | 233 000 | 895 000 | 600 | 1 800 | | | 210 | 54 | 2.1 | 505 000 | 1 930 000 | 450 | 1 400 | | 130 | 190 | 45 | 1.5 | 300 000 | 1 090 000 | 530 | 1 600 | | | 225 | 58 | 2.1 | 585 000 | 2 370 000 | 430 | 1 300 | | | 270 | 85 | 4 | 895 000 | 3 300 000 | 320 | 950 | | Bearing Numbers | | | ensions
nm) | | | tment and I
ensions (n | | Mass
(kg) | |-----------------|----------------------------|-------|----------------|------|--------------------|---------------------------|--------------------|--------------| | bearing Numbers | $d_{\scriptscriptstyle 1}$ | D_1 | $D_{ m w}$ | t | d a
min. | $D_{ m a}$ max. | $m{r}_{ m a}$ max. | approx. | | 35 TMP 14 | 80 | 37 | 12 | 10 | 71 | 46 | 1 | 0.97 | | 40 TMP 93 | 78 | 42 | 8 | 7 | 71 | 48 | 1 | 0.525 | | 45 TMP 11 | 65 | 47 | 6 | 4 | 60 | 49 | 0.6 | 0.144 | | 45 TMP 93 | 85 | 47 | 8 | 8 | 78 | 53 | 1 | 0.665 | | 50 TMP 74 | 109 | 52 | 11 | 8 | 100 | 61 | 1 | 1.52 | | 50 TMP 93 | 93 | 52 | 11 | | 89 | 57 | 1 | 0.94 | | 55 TMP 93 | 105 | 55.2 | 11 | 9.5 | 98 | 63 | 1 | 1.28 | | 60 TMP 12 | 95 | 62 | 10 | 8 | 88 | 67 | 1 | 0.735 | | 60 TMP 93 | 110 | 62 | 11 | 9.5 | 103 | 68 | 1 | 1.36 | | 65 TMP 12 | 100 | 67 | 12.5 | 7.25 | 93 | 71 | 1 | 0.805 | | 65 TMP 93 | 115 | 65.2 | 11 | 9.5 | 108 | 73 | 1 | 1.44 | | 70 TMP 74 | 149 | 72 | 15 | 10.5 | 137 | 84 | 2 | 3.8 | | 70 TMP 93 | 125 | 72 | 14 | 10 | 117 | 78 | 1 | 1.95 | | 75 TMP 11 | 100 | 77 | 8 | 5.5 | 96 | 79 | 1 | 0.41 | | 75 TMP 93 | 135 | 77 | 14 | 11 | 125 | 84 | 1.5 | 2.42 | | 80 TMP 12 | 115 | 82 | 11 | 8.5 | 109 | 86 | 1 | 1.02 | | 80 TMP 93 | 138 | 82 | 14 | 11 | 130 | 91 | 1.5 | 2.54 | | 85 TMP 11 | 110 | 87 | 7.5 | 5.75 | 105 | 89 | 1 | 0.46 | | 85 TMP 12 | 125 | 88 | 14 | 8.5 | 118 | 92 | 1 | 1.36 | | 85 TMP 93 | 148 | 87 | 14 | 12.5 | 140 | 95 | 1.5 | 3.2 | | 90 TMP 11 | 119 | 91.5 | 9 | 6.5 | 114 | 95 | 1 | 0.725 | | 90 TMP 93 | 155 | 90.2 | 16 | 11.5 | 144 | 101 | 1.5 | 3.3 | | 100 TMP 93 | 170 | 103 | 16 | 13 | 159 | 110 | 1.5 | 4.25 | | 110 TMP 12 | 160 | 113 | 15 | 11.5 | 150 | 119 | 1 | 2.66 | | 110 TMP 93 | 190 | 113 | 19 | 14.5 | 179 | 120 | 2 | 6.15 | | 120 TMP 12 | 170 | 123 | 15 | 12 | 160 | 129 | 1 | 2.93 | | 120 TMP 93 | 210 | 123 | 22 | 16 | 199 | 129 | 2 | 8.55 | | 130 TMP 12 | 187 | 133 | 19 | 13 | 177 | 142 | 1.5 | 4.5 | | 130 TMP 93 | 225 | 133 | 22 | 18 | 214 | 140 | 2 | 10.4 | | 130 TMP 94 | 270 | 133 | 32 | 26.5 | 254 | 150 | 3 | 26.2 | **Remarks** For cylindrical roller thrust bearings not listed adove, please contact NSK. NSN Bore Diameter 140 – 320 mm | | Boundary [
(m | | | | ad Ratings
(N) | ١ | J Speeds
in ⁻¹) | |-----|------------------
----------|-------------|----------------------|------------------------|------------|--------------------------------| | d | D | T | $m{r}$ min. | $C_{\rm a}$ | C_{0a} | Grease | Oil | | 140 | 200 | 46 | 2 | 285 000 | 1 120 000 | 500 | 1 500 | | | 240 | 60 | 2.1 | 610 000 | 2 360 000 | 400 | 1 200 | | | 280 | 85 | 4 | 990 000 | 3 800 000 | 300 | 900 | | 150 | 215 | 50 | 2 | 375 000 | 1 500 000 | 480 | 1 400 | | | 250 | 60 | 2.1 | 635 000 | 2 510 000 | 400 | 1 200 | | 160 | 200 | 31 | 1 | 173 000 | 815 000 | 630 | 1 900 | | | 270 | 67 | 3 | 745 000 | 3 150 000 | 360 | 1 100 | | 170 | 240 | 55 | 1.5 | 485 000 | 1 960 000 | 430 | 1 300 | | | 280 | 67 | 3 | 800 000 | 3 500 000 | 340 | 1 000 | | 180 | 300 | 73 | 3 | 1 000 000 | 4 000 000 | 320 | 950 | | | 360 | 109 | 5 | 1 640 000 | 6 200 000 | 240 | 710 | | 190 | 270 | 62 | 3 | 705 000 | 2 630 000 | 360 | 1 100 | | | 320 | 78 | 4 | 1 080 000 | 4 500 000 | 300 | 900 | | 200 | 250 | 37 | 1.1 | 365 000 | 1 690 000 | 500 | 1 500 | | | 340 | 85 | 4 | 1 180 000 | 5 150 000 | 280 | 800 | | 220 | 270 | 37 | 1.1 | 385 000 | 1 860 000 | 480 | 1 500 | | | 300 | 63 | 2 | 770 000 | 3 100 000 | 340 | 1 000 | | 240 | 300 | 45 | 1.5 | 435 000 | 2 160 000 | 400 | 1 200 | | | 340 | 78 | 2.1 | 965 000 | 4 100 000 | 280 | 850 | | 260 | 320 | 45 | 1.5 | 460 000 | 2 350 000 | 400 | 1 200 | | | 360 | 79 | 2.1 | 995 000 | 4 350 000 | 280 | 850 | | 280 | 350 | 53 | 1.5 | 545 000 | 2 800 000 | 340 | 1 000 | | | 380 | 80 | 2.1 | 1 050 000 | 4 750 000 | 260 | 800 | | 300 | 380
420 | 62
95 | 2 3 | 795 000
1 390 000 | 4 000 000
6 250 000 | 300
220 | 900
670 | | 320 | 400
440 | 63
95 | 2 3 | 820 000
1 420 000 | 4 250 000
6 550 000 | 300
220 | 900
670 | | Bearing Numbers | | | ensions
mm) | | | tment and I
nensions (n | | Mass
(kg) | |-----------------|----------------------------|-------|----------------|------|-----------------|----------------------------|---|--------------| | bearing numbers | $d_{\scriptscriptstyle 1}$ | D_1 | $D_{ m w}$ | t | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | approx. | | 140 TMP 12 | 197 | 143 | 17 | 14.5 | 188 | 153 | 2 | 4.85 | | 140 TMP 93 | 240 | 143 | 25 | 17.5 | 226 | 154 | 2 | 12.2 | | 140 TMP 94 | 280 | 143 | 32 | 26.5 | 262 | 158 | 3 | 27.5 | | 150 TMP 12 | 215 | 153 | 19 | 15.5 | 202 | 163 | 2 2 | 6.15 | | 150 TMP 93 | 250 | 153 | 25 | 17.5 | 236 | 165 | | 12.8 | | 160 TMP 11 | 200 | 162 | 11 | 10 | 191 | 168 | 1 | 2.21 | | 160 TMP 93 | 265 | 164 | 25 | 21 | 255 | 173 | 2.5 | 16.9 | | 170 TMP 12 | 237 | 173 | 22 | 16.5 | 227 | 182 | 1.5 | 8.2 | | 170 TMP 93 | 280 | 173 | 25 | 21 | 265 | 183 | 2.5 | 17.7 | | 180 TMP 93 | 300 | 185 | 32 | 20.5 | 284 | 194 | 2.5 | 22.5 | | 180 TMP 94 | 354 | 189 | 45 | 32 | 335 | 205 | 4 | 58.2 | | 190 TMP 12 | 266 | 195 | 30 | 16 | 255 | 200 | 2.5 | 11.8 | | 190 TMP 93 | 320 | 195 | 32 | 23 | 303 | 205 | 3 | 27.6 | | 200 TMP 11 | 247 | 203 | 17 | 10 | 242 | 207 | 1 | 4.1 | | 200 TMP 93 | 340 | 205 | 32 | 26.5 | 322 | 218 | 3 | 34.5 | | 220 TMP 11 | 267 | 223 | 17 | 10 | 262 | 227 | 1 2 | 4.5 | | 220 TMP 12 | 297 | 224 | 30 | 16.5 | 287 | 232 | | 13.5 | | 240 TMP 11 | 297 | 243 | 18 | 13.5 | 288 | 251 | 1.5 | 7.2 | | 240 TMP 12 | 335 | 244 | 32 | 23 | 322 | 258 | 2 | 23.3 | | 260 TMP 11 | 317 | 263 | 18 | 13.5 | 308 | 272 | 1.5 | 7.75 | | 260 TMP 12 | 355 | 264 | 32 | 23.5 | 342 | 276 | 2 | 25.2 | | 280 TMP 11 | 347 | 283 | 20 | 16.5 | 335 | 294 | 1.5 | 11.6 | | 280 TMP 12 | 375 | 284 | 32 | 24 | 362 | 296 | 2 | 27.2 | | 300 TMP 11 | 376 | 304 | 25 | 18.5 | 365 | 315 | 2 | 16.7 | | 300 TMP 12 | 415 | 304 | 38 | 28.5 | 398 | 322 | 2.5 | 42 | | 320 TMP 11 | 396 | 324 | 25 | 19 | 385 | 335 | 2 | 18 | | 320 TMP 12 | 435 | 325 | 38 | 28.5 | 418 | 340 | 2.5 | 44.5 | **Remarks** For cylindrical roller thrust bearings not listed adove, please contact NSK. B 226 B 227 # Bore Diameter 60 – 200 mm Mass (kg) approx. d_1 D_1 Dimensions (mm) B_2 C A B,B_1 Spacer Sleeve Dimensions (mm) max. $d_{ m S1}$ max. Dynamic Equivalent Load $P=1.2F_{\rm r}+F_{\rm a}$ Static Equivalent Load $P_0=2.8F_{\rm r}+F_{\rm a}$ However, $F_{\rm r}/F_{\rm a}\!\leqq\!0.55$ must be satisfied. Abutment and Fillet Dimensions (mm) D_{b} min. $r_{\rm a}$ max. $d_{a}^{(1)}$ D_{a} max. min. | | | Dimensior
nm) | IS | (| Basic Load I
N) | • | gf} | Limiting
Speeds | Bearing | |----------|-------------------|------------------|-------------------|-------------------------------|-------------------------------------|----------------------------|-------------------------------|-----------------------------|-------------------------------| | d | D | T | $m{r}$ min. | C_{a} | $C_{0\mathrm{a}}$ | C_{a} | C_{0a} | (min ⁻¹)
Oil | Numbers | | 60 | 130 | 42 | 1.5 | 330 000 | 885 000 | 33 500 | 90 000 | 2 600 | 29412 E | | 65 | 140 | 45 | 2 | 405 000 | 1 100 000 | 41 500 | 112 000 | 2 400 | 29413 E | | 70 | 150 | 48 | 2 2 | 450 000 | 1 240 000 | 46 000 | 126 000 | 2 400 | 29414 E | | 75 | 160 | 51 | | 515 000 | 1 430 000 | 52 500 | 146 000 | 2 200 | 29415 E | | 80
85 | 170
150
180 | 54
39
58 | 2.1
1.5
2.1 | 575 000
330 000
630 000 | 1 600 000
1 040 000
1 760 000 | 58 500
34 000
64 500 | 163 000
106 000
179 000 | 2 000
2 400
1 900 | 29416 E
29317 E
29417 E | | 90 | 155 | 39 | 1.5 | 350 000 | 1 080 000 | 35 500 | 110 000 | 2 200 | 29318 E | | | 190 | 60 | 2.1 | 695 000 | 1 950 000 | 70 500 | 199 000 | 1 800 | 29418 E | | 100 | 170 | 42 | 1.5 | 410 000 | 1 280 000 | 41 500 | 131 000 | 2 000 | 29320 E | | | 210 | 67 | 3 | 840 000 | 2 400 000 | 86 000 | 245 000 | 1 600 | 29420 E | | 110 | 190
230 | 48
73 | 2 3 | 530 000
1 010 000 | 1 710 000
2 930 000 | 54 000
103 000 | 174 000
299 000 | 1 800
1 500 | 29322 E
29422 E | | 120 | 210 | 54 | 2.1 | 645 000 | 2 100 000 | 65 500 | 214 000 | 1 600 | 29324 E | | | 250 | 78 | 4 | 1 160 000 | 3 400 000 | 119 000 | 350 000 | 1 400 | 29424 E | | 130 | 225 | 58 | 2.1 | 740 000 | 2 450 000 | 75 500 | 250 000 | 1 500 | 29326 E | | | 270 | 85 | 4 | 1 330 000 | 3 900 000 | 135 000 | 400 000 | 1 200 | 29426 E | | 140 | 240 | 60 | 2.1 | 840 000 | 2 810 000 | 85 500 | 287 000 | 1 400 | 29328 E | | | 280 | 85 | 4 | 1 370 000 | 4 200 000 | 140 000 | 425 000 | 1 200 | 29428 E | | 150 | 250 | 60 | 2.1 | 870 000 | 2 900 000 | 89 000 | 296 000 | 1 400 | 29330 E | | | 300 | 90 | 4 | 1 580 000 | 4 900 000 | 162 000 | 500 000 | 1 100 | 29430 E | | 160 | 270 | 67 | 3 | 1 010 000 | 3 400 000 | 103 000 | 345 000 | 1 300 | 29332 E | | | 320 | 95 | 5 | 1 740 000 | 5 400 000 | 178 000 | 550 000 | 1 100 | 29432 E | | 170 | 280 | 67 | 3 | 1 050 000 | 3 500 000 | 107 000 | 355 000 | 1 200 | 29334 E | | | 340 | 103 | 5 | 1 680 000 | 5 800 000 | 171 000 | 595 000 | 1 000 | 29434 | | 180 | 300 | 73 | 3 | 1 230 000 | 4 200 000 | 125 000 | 430 000 | 1 100 | 29336 E | | | 360 | 109 | 5 | 1 870 000 | 6 500 000 | 190 000 | 660 000 | 900 | 29436 | | 190 | 320 | 78 | 4 | 1 370 000 | 4 700 000 | 140 000 | 480 000 | 1 100 | 29338 E | | | 380 | 115 | 5 | 2 100 000 | 7 450 000 | 215 000 | 760 000 | 850 | 29438 | | 200 | 280 | 48 | 2 | 540 000 | 2 310 000 | 55 000 | 236 000 | 1 500 | 29240 | | | 340 | 85 | 4 | 1 570 000 | 5 450 000 | 160 000 | 555 000 | 1 000 | 29340 E | | | 400 | 122 | 5 | 2 290 000 | 8 150 000 | 234 000 | 835 000 | 800 | 29440 | | 114.5 | 89 | 27 | 38 | 20 | 38 | 67 | 67 | 90 | 108 | 133 | 1.5 | 2.55 | |---------------------|-------------------|------------------|-----------------|----------------|-------------------|----------|----------|-------------------|-------------------|----------|-------------|--------------------| | 121.5 | 93 | 29.5 | 40.5 | 22 | 42 | 72 | 72 | 100 | 115 | 143 | 2 | 3.2 | | 131.5 | 102 | 31 | 43 | 24 | 44 | 78 | 78 | 105 | 125 | 153 | 2 | 3.9 | | 138 | 107 | 33.5 | 46 | 25 | 47 | 83 | 83 | 115 | 132 | 163 | | 4.65 | | 148 | 114.5 | 35 | 48.5 | 27 | 50 | 89 | 89 | 120 | 140 | 173 | 2 | 5.55 | | 134.5 | 112 | 24.5 | 35.5 | 19 | 50 | 91 | 91 | 115 | 135 | 153 | 1.5 | 2.7 | | 156.5 | 124 | 37 | 51.5 | 28 | 54 | 95 | 95 | 130 | 150 | 183 | 2 | 6.55 | | 139.5 | 118 | 24.5 | 35 | 19 | 52 | 97 | 97 | 120 | 140 | 158 | 1.5 | 2.83 | | 165.5 | 129.5 | 39 | 54.5 | 29 | 56 | 100 | 100 | 135 | 157 | 193 | 2 | 7.55 | | 152 | 128 | 26.2 | 38 | 20.8 | 58 | 107 | 107 | 130 | 150 | 173 | 1.5 | 3.6 | | 185 | 144 | 43 | 59.5 | 33 | 62 | 111 | 111 | 150 | 175 | 214 | 2.5 | 10.3 | | 169.5 | 142.5 | 30.3 | 43.5 | 24 | 64 | 117 | 117 | 145 | 165 | 193 | 2 | 5.25 | | 200 | 157 | 47 | 64.5 | 36 | 69 | 121 | 129 | 165 | 190 | 234 | 2.5 | 13.3 | | 187.5 | 156.5 | 34 | 48.5 | 27 | 70 | 130 | 130 | 160 | 180 | 214 | 2 | 7.3 | | 215 | 171 | 50.5 | 69.5 | 38 | 74 | 132 | 142 | 180 | 205 | 254 | | 16.6 | | 203.5 | 168.5 | 37 | 53.5 | 28 | 76 | 141 | 143 | 170 | 195 | 229 | 2 3 | 8.95 | | 235 | 185 | 54 | 74.5 | 42 | 81 | 143 | 153 | 195 | 225 | 275 | | 21.1 | | 216.5 | 179 | 38.5 | 54 | 30 | 82 | 148 | 154 | 185 | 205 | 244 | 2 | 10.4 | | 244.5 | 195.5 | 54 | 74.5 | 42 | 86 | 153 | 162 | 205 | 235 | 285 | | 22.2 | | 224 | 190 | 38 | 54.5 | 29 | 87 | 158 | 163 | 195 | 215 | 254 | 2 | 10.8 | | 266 | 209 | 58 | 81 | 44 | 92 | 164 | 175 | 220 | 250 | 306 | | 27.3 | | 243 | 203 | 42 | 60 | 33 | 92 | 169 | 176 | 210 | 235 | 275 | 2.5 | 14.3 | | 278 | 224.5 | 60.5 | 84.5 | 46 | 99 | 175 | 189 | 230 | 265 | 326 | 4 | 32.1 | | 252 | 214.5 | 42.2 | 60.5 | 32 | 96 | 178 | 188 | 220 | 245 | 285 | 2.5 | 14.8 | | 310 | 243 | 37 | 99 | 50 | 104 | — | — | 245 | 285 | — | 4 | 43.5 | | 270 | 227 | 46 | 65.5 | 36 | 103 | 189 | 195 | 235 | 260 | 306 | 2.5 | 19 | | 330 | 255 | 39 | 105 | 52 | 110 | — | — | 260 | 300 | | 4 | 52 | | 288.5 | 244 | 49 | 69 | 38 | 110 | 200 | 211 | 250 | 275 | 326 | 3 | 23 | | 345 | 271 | 41 | 111 | 55 | 117 | — | | 275 | 320 | — | 4 | 60 | | 266
306.5
365 | 236
257
280 |
15
53.5
43 | 46
75
117 | 24
41
59 | 108
116
122 | 211
— | 224
— | 235
265
290 | 255
295
335 | 346
— | 2
3
4 | 8.55
28.5
69 | | | | | | | | | | • | | | | | Note (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. # Bore Diameter 220 – 420 mm Dynamic Equivalent Load $P=1.2F_{\rm r}+F_{\rm a}$ Static Equivalent Load $P_0=2.8F_{\rm r}+F_{\rm a}$ However, $F_{\rm r}/F_{\rm a} {\le} 0.55$ must be satisfied. | | | Dimensior
nm) | าร | | Basic Load
(N) | • | .gf} | Limiting
Speeds | Bearing | |-----|-----|------------------|------------------|------------------|-------------------|------------------|-----------|-----------------------------|----------| | d | D | T | r
min. | C_{a} | C_{0a} | C_{a} | C_{0a} | (min ⁻¹)
Oil | Numbers | | 220 | 300 | 48 | 2 | 560 000 | 2 500 000 | 57 000 | 255 000 | 1 400 | 29244 | | | 360 | 85 | 4 | 1 340 000 | 5 200 000 | 137 000 | 530 000 | 950 | 29344 | | | 420 | 122 | 6 | 2 350 000 | 8 650 000 | 240 000 | 880 000 | 800 | 29444 | | 240 | 340 | 60 | 2.1 | 800 000 | 3 450 000 | 82 000 | 350 000 | 1 200 | 29248 | | | 380 | 85 | 4 | 1 360 000 | 5 400 000 | 139 000 | 550 000 | 950 | 29348 | | | 440 | 122 | 6 | 2 420 000 | 9 100 000 | 247 000 | 930 000 | 750 | 29448 | | 260 | 360 | 60 | 2.1 | 855 000 | 3 850 000 | 87 500 | 395 000 | 1 200 | 29252 | | | 420 | 95 | 5 | 1 700 000 | 6 800 000 | 173 000 | 695 000 | 800 | 29352 | | | 480 | 132 | 6 | 2 820 000 | 10 700 000 | 287 000 | 1 090 000 | 710 | 29452 | | 280 | 380 | 60 | 2.1 | 885 000 | 4 100 000 | 90 000 | 420 000 | 1 100 | 29256 | | | 440 | 95 | 5 | 1 830 000 | 7 650 000 | 187 000 | 780 000 | 800 | 29356 | | | 520 | 145 | 6 | 3 400 000 | 13 100 000 | 345 000 | 1 330 000 | 630 | 29456 | | | 520 | 145 | 6 | 3 950 000 | 14 900 000 | 400 000 | 1 520 000 | 630 | 29456 EM | | 300 | 420 | 73 | 3 | 1 160 000 | 5 150 000 | 118 000 | 525 000 | 950 | 29260 | | | 480 | 109 | 5 | 2 190 000 | 9 100 000 | 224 000 | 925 000 | 710 | 29360 | | | 540 | 145 | 6 | 3 500 000 | 13 700 000 | 355 000 | 1 390 000 | 630 | 29460 | | 320 | 440 | 73 | 3 | 1 190 000 | 5 450 000 | 122 000 | 555 000 | 950 | 29264 | | | 500 | 109 | 5 | 2 230 000 | 9 400 000 | 227 000 | 960 000 | 670 | 29364 | | | 580 | 155 | 7.5 | 3 650 000 | 14 600 000 | 370 000 | 1 490 000 | 560 | 29464 | | 340 | 460 | 73 | 3 | 1 230 000 | 5 750 000 | 125 000 | 590 000 | 900 | 29268 | | | 540 | 122 | 5 | 2 640 000 | 11 200 000 | 269 000 | 1 140 000 | 630 | 29368 | | | 620 | 170 | 7.5 | 4 400 000 | 17 400 000 | 450 000 | 1 780 000 | 530 | 29468 | | 360 | 500 | 85 | 4 | 1 550 000 | 7 300 000 | 158 000 | 745 000 | 800 | 29272 | | | 560 | 122 | 5 | 2 670 000 | 11 500 000 | 272 000 | 1 180 000 | 600 | 29372 | | | 640 | 170 | 7.5 | 4 200 000 | 17 200 000 | 430 000 | 1 750 000 | 500 | 29472 | | | 640 | 170 | 7.5 | 5 450 000 | 20 400 000 | 555 000 | 2 800 000 | 500 | 29472 EM | | 380 | 520 | 85 | 4 | 1 620 000 | 7 800 000 | 165 000 | 795 000 | 800 | 29276 | | | 600 | 132 | 6 | 3 300 000 | 14 500 000 | 335 000 | 1 480 000 | 560 | 29376 | | | 670 | 175 | 7.5 | 4 800 000 | 19 500 000 | 490 000 | 1 990 000 | 480 | 29476 | | 400 | 540 | 85 | 4 | 1 640 000 | 8 000 000 | 167 000 | 815 000 | 750 | 29280 | | | 620 | 132 | 6 | 3 250 000 | 14 500 000 | 330 000 | 1 480 000 | 530 | 29380 | | | 710 | 185 | 7.5 | 5 400 000 | 22 100 000 | 550 000 | 2 250 000 | 450 | 29480 | | 420 | 580 | 95 | 5 | 2 010 000 | 9 800 000 | 205 000 | 1 000 000 | 670 | 29284 | | | 650 | 140 | 6 | 3 500 000 | 15 700 000 | 355 000 | 1 600 000 | 500 | 29384 | | | 730 | 185 | 7.5 | 5 650 000 | 23 500 000 | 575 000 | 2 400 000 | 450 | 29484 | | | | Dimer
(m | | ment and
ensions (r | | Mass
(kg) | | | | |----------------------------|-------|-------------|-------|------------------------|-----|-----------------------------------|-----------------|---|---------| | $d_{\scriptscriptstyle 1}$ | D_1 | B_1 | B_2 | С | A | d _a (1)
min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | approx. | | 285 | 254 | 15 | 46 | 24 | 117 | 260 | 275 | 2 | 9.2 | | 335 | 280 | 29 | 81 | 41 | 125 | 285 | 315 | 3 | 33 | | 385 | 308 | 43 | 117 | 58 | 132 | 310 | 355 | 5 | 74 | | 325 | 283 | 19 | 57 | 30 | 130 | 285 | 305 | 2 | 16.5 | | 355 | 300 | 29 | 81 | 41 | 135 | 300 | 330 | 3 | 35.5 | | 405 | 326 | 43 | 117 | 59 | 142 | 330 | 375 | 5 | 79 | | 345 | 302 | 19 | 57 | 30 | 139 | 305 | 325 | 2 | 18 | | 390 | 329 | 32 | 91 | 45 | 148 | 330 | 365 | 4 | 48.5 | | 445 | 357 | 48 | 127 | 64 | 154 | 360 | 405 | 5 | 105 | | 365 | 323 | 19 | 57 | 30 | 150 | 325 | 345 | 2 | 19 | | 410 | 348 | 32 | 91 | 46 | 158 | 350 | 390 | 4 | 52.5 | | 480 | 384 | 52 | 140 | 68 | 166 | 390 | 440 | 5 | 132 | | 480 | 380 | 52 | 140 | 70 | 166 | 410 | 445 | 5 | 134 | | 400 | 353 | 21 | 69 | 38 | 162 | 355 | 380 | 2.5 | 30 | | 450 | 379 | 37 | 105 | 50 | 168 | 380 | 420 | 4 | 74 | | 500 | 402 | 52 | 140 | 70 | 175 | 410 | 460 | 5 | 140 | | 420 | 372 | 21 | 69 | 38 | 172 | 375 | 400 | 2.5 | 32.5 | | 470 | 399 | 37 | 105 | 53 | 180 | 400 | 440 | 4 | 77 | | 555 | 436 | 55 | 149 | 75 | 191 | 435 | 495 | 6 | 175 | | 440 | 395 | 21 | 69 | 37 | 183 | 395 | 420 | 2.5 | 33.5 | | 510 | 428 | 41 | 117 | 59 | 192 | 430 | 470 | 4 | 103 | | 590 | 462 | 61 | 164 | 82 | 201 | 465 | 530 | 6 | 218 | | 480 | 423 | 25 | 81 | 44 | 194 | 420 | 455 | 3 | 51 | | 525 | 448 | 41 | 117 | 59 | 202 | 450 | 495 | 4 | 107 | | 610 | 480 | 61 | 164 | 82 | 210 | 485 | 550 | 6 | 228 | | 580 | 474 | 61 | 164 | 83 | 210 | 495 | 550 | 6 | 220 | | 496 | 441 | 27 | 81 | 42 | 202 | 440 | 475 | 3 | 52 | | 568 | 477 | 44 | 127 | 63 | 216 | 480 | 525 | 5 | 140 | | 640 | 504 | 63 | 168 | 85 | 230 | 510 | 575 | 6 | 254 | | 517 | 460 | 27 | 81 | 42 | 212 | 460 | 490 | 3 | 55 | | 590 | 494 | 44 | 127 | 64 | 225 | 500 | 550 | 5 | 150 | | 680 | 536 | 67 | 178 | 89 | 236 | 540 | 610 | 6 | 306 | | 553 | 489 | 30 | 91 | 46 | 225 | 490 | 525 | 4 | 72 | | 620 | 520 | 48 | 135 | 68 | 235 | 525 | 575 | 5 | 170 | | 700 | 556 | 67 | 178 | 89 | 244 | 560 | 630 | 6 | 323 | Note (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. B 230 B 231 # Bore Diameter 440 – 500 mm Dynamic Equivalent Load $P=1.2F_{\rm r}+F_{\rm a}$ Static Equivalent Load $P_0=2.8F_{\rm r}+F_{\rm a}$ However, $F_{\rm r}/F_{\rm a}\!\leq\!0.55$ must be satisfied. | | , | Dimension
nm) | S | | Basic Load | d Ratings
{kgf} | Limiting
Speeds | Bearing | |-----|--------------------------|-------------------------|----------------------|--|--|------------------------------------|-----------------------------|-------------------------------------| | d | D | T | r
min. | C_{a} | $C_{0\mathrm{a}}$ | C_{a} C_{0a} | (min ⁻¹)
Oil | Numbers | | 440 | 600
680
780
780 | 95
145
206
206 | 5
6
9.5
9.5 | 2 030 000
3 750 000
6 550 000
8 000 000 | 10 100 000
16 700 000
27 200 000
31 500 000 | 207 000 | 670
480
400
400 | 29288
29388
29488
29488 EM | | 460 | 620
710
800 | 95
150
206 | 5
6
9.5 | 2 060 000
4 100 000
6 750 000 | 10 300 000
18 400 000
28 600 000 | 210 000 | 670
450
380 | 29292
29392
29492 | | 480 | 650
730
850 | 103
150
224 | 5
6
9.5 | 2 370 000
4 150 000
7 200 000 | 12 100 000
19 000 000
31 000 000 | 241 000 | 600
450
360 | 29296
29396
29496 | | 500 | 670
750
870 | 103
150
224 | 5
6
9.5 | 2 390 000
4 350 000
7 850 000 | 12 400 000
20 400 000
33 000 000 | 244 000 | 600
450
340 | 292/500
293/500
294/500 | Note (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. | | | Dimer
(m | | ment and
ensions (r | | Mass
(kg) | | | | |----------------------------|-------|-------------|-------|------------------------|-----|---|-----------------|-----------------|---------| | $d_{\scriptscriptstyle 1}$ | D_1 | B_1 | B_2 | С | A | $d_{\!\scriptscriptstyle m a}^{(^1)}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | approx. | | 575 | 508 | 30 | 91 | 49 | 235 | 510 | 545 | 4 | 77 | | 645 | 548 | 49 | 140 | 70 | 245 | 550 | 600 | 5 | 190 | | 745 | 588 | 74 | 199 | 100 | 260 | 595 | 670 | 8 | 407 | | 710 | 577 | 74 | 199 | 101 | 257 | 605 | 675 | 8 | 402 | | 592 | 530 | 30 | 91 | 46 | 245 | 530 | 570 | 4 | 80 | | 666 | 567 | 51 | 144 | 72 | 257 | 575 | 630 | 5 | 210 | | 765 | 608 | 74 | 199 | 100 | 272 | 615 | 690 | 8 | 420 | | 624 | 556 | 33 | 99 | 55 | 259 | 555 | 595 | 4 | 97 | | 690 | 590 | 51 | 144 | 72 | 270 | 595 | 650 | 5 | 215 | | 810 | 638 | 81 | 216 | 108 | 280 | 645 | 730 | 8 | 545 | | 645 | 574 | 33 | 99 | 55 | 268 | 575 | 615 | 4 | 100 | | 715 | 611 | 51 | 144 | 74 | 280 | 615 | 670 | 5 | 220 | | 830 | 661 | 81 | 216 | 107 | 290 | 670 | 750 | 8 | 560 | # ANGULAR CONTACT THRUST BALL BEARINGS DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS ANGULAR CONTACT THRUST Bore Diameter 35 – 280mm B238 BALL BEARINGS FOR BALL SCREWS Bore Diameter 15 – 60mm B242 #### DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS Double-Direction Angular Contact Thrust Ball Bearings are specially designed high precision bearings for the main spindles of machine tools. Compared with the Thrust Ball Bearings in the 511 Series, this type contains more balls of smaller diameter and has a contact angle of 60°. Consequently, the influence of centrifugal force is less and they can withstand higher speed and have higher rigidity. Bearings in Series 20 and 29 have the same inner and outer diameters as the Bearings in Series 20 and 29 have the same
inner and outer diameters as the double-row cylindrical roller bearings in Series NN30 and NN49 respectively, and they are both used for high axial loads. Their cages are machined brass. There are the BTR, BAR Series of highly rigid angular contact ball bearings suitable for high speed that can be easily replaced by these double- direction angular contact ball bearings. For more details, please contact NSK. Bearings of this type were specially designed to support NSK Precision Ball Screws. They are usually used in combinations of more than two bearings and with a preload. Their contact angle is 60°. For more details, please refer to Catalog CAT. No. E1254 SUPER PRECISION BEARINGS. Their cages are molded polyamide. # TOLERANCES AND RUNNING ACCURACY DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS Table 1 ANGULAR CONTACT THRUST BALL BEARINGS FOR BALL SCREWS Table 2 The limiting chamfer dimensions of bearings of both types conform to Table 8.9.1 The limiting chamfer dimensions of bearings of both types conform to Table 8.9.1 (Page A78). Table 1 Tolerances for Double-Direction Angular Contact Thrust Ball Bearings (Class 7 (1)) Table 1. 1 Tolerances for Bearing Bore and Height and Running Accuracy Units: μm | | ore Diameter
d
m) | Δ_{dmp} | | Δ_{Ts} | | $\mathit{K}_{i\mathrm{a}}$ (or K_{ea}) | S_d | $S_{i\mathrm{a}}$ (or S_{ea}) | |------|-------------------------|----------------|-----|---------------|-------|---|-------|---| | over | incl. | high | low | high | low | max. | max. | max. | | _ | 30 | 0 | - 5 | 0 | - 300 | 5 | 4 | 3 | | 30 | 50 | 0 | - 5 | 0 | - 400 | 5 | 4 | 3 | | 50 | 80 | 0 | - 8 | 0 | - 500 | 6 | 5 | 5 | | 80 | 120 | 0 | - 8 | 0 | - 600 | 6 | 5 | 5 | | 120 | 180 | 0 | -10 | 0 | - 700 | 8 | 8 | 5 | | 180 | 250 | 0 | -13 | 0 | - 800 | 8 | 8 | 6 | | 250 | 315 | 0 | -15 | 0 | - 900 | 10 | 10 | 6 | | 315 | 400 | 0 | -18 | 0 | -1200 | 10 | 12 | 7 | Note (1) Class 7 is NSK Standard. Table 1. 2 Tolerances for Housing Washer | Nominal Outs D (n | | Δ | Ds | |--------------------|-------|------|------| | over | incl. | high | low | | 30 | 50 | -25 | - 41 | | 50 | 80 | -30 | - 49 | | 80 | 120 | -36 | - 58 | | 120 | 180 | -43 | - 68 | | 180 | 250 | -50 | - 79 | | 250 | 315 | -56 | - 88 | | 315 | 400 | -62 | - 98 | | 400 | 500 | -68 | -108 | | 500 | 630 | -76 | -120 | Symbols in the tables are described on Page A59. Table 2 Tolerances and Running Accuracy of Angular Contact Thrust Ball Bearings for Ball Screws (Class 7A (1)) Table 2. 1 Tolerances and Limits for Shaft and Housing Washer Units: µm | | | | | | | | | | OTIRES . µIII | |-------------------------------|-------|------------------------------|------------|------------------|---|------|----------|-------|---------------| | Nominal Bore Diameter d (mm) | | Δ_{dmp} Δ_{Bs} | | Δ_{Bs} (e | Δ_{Bs} (or Δ_{Cs}) V_{Bs} (or V_{Cs}) | | K_{ia} | S_d | S_{ia} | | over | incl. | high | low | high | low | max. | max. | max. | max. | | 10 | 18 | 0 | - 4 | 0 | -120 | 1.5 | 2.5 | 4 | 2.5 | | 18 | 30 | 0 | - 5 | 0 | -120 | 1.5 | 3 | 4 | 2.5 | | 30 | 50 | 0 | - 6 | 0 | -120 | 1.5 | 4 | 4 | 2.5 | | 50 | 80 | 0 | - 7 | 0 | -150 | 1.5 | 4 | 5 | 2.5 | Note (1) Class 7A is NSK Standard. # **RECOMMENDED FITS** #### DOUBLE-DIRECTION ANGULAR CONTACT THRUST BALL BEARINGS The shaft washer and shaft should be in soft contact with neither interference nor clearance, and the housing washer and housing bore should be loosely fitted. For a bearing arrangement with a double-row cylindrical roller bearing, the tolerances for the outside diameter should be ${\bf f6}$ to produce a loose fit. # ANGULAR CONTACT THRUST BALL BEARINGS FOR BALL SCREWS A tolerance of h5 is recommended for shafts and H6 for housing bores. # INTERNAL CLEARANCE AND PRELOAD In order to produce an appropriate preload on bearings when they are mounted, the following axial internal clearances are recommended. | DOUBLE-ROW ANGULAR CONTACT THRUST | | |--|---------------| | BALL BEARINGS | Clearance C7 | | ANGULAR CONTACT THRUST BALL BEARINGS FOR | | | BALL SCREWS | Clearance C10 | Example of Application of Double-Direction Angular Contact Thrust Ball Bearing (Main Spindle of Machine Tool) Table 2. 2 Tolerances and Running Accuracy of Housing Washer Units : µm | | | | | | | Offits . µIII | | | |---|----------------------------------|-------|------|------------|------|---------------|--|--| | - | Nominal Outside Diameter D (mm) | | Δ | Ds | Kea | $S_{ m ea}$ | | | | | over | incl. | high | low | max. | max. | | | | | 30 | 50 | 0 | - 6 | 5 | 2.5 | | | | | 50 | 80 | 0 | - 7 | 5 | 2.5 | | | | | 80 | 120 | 0 | - 8 | 5 | 2.5 | | | B 236 B 237 Bore Diameter 35 – 150 mm | 2 | Abutm | nent and F
(m | illet Dime
m) | ensions | Mass
(kg) | |-----------------|-------------------------------------|------------------|--------------------|-----------------|--------------| | Bearing Numbers | $d_{\scriptscriptstyle \mathrm{a}}$ | $D_{\rm a}$ | $m{r}_{ m a}$ max. | $r_{ m b}$ max. | approx. | | 35 TAC 20X+L | 46 | 58 | 1 | 0.6 | 0.375 | | 40 TAC 20X+L | 51 | 63 | 1 | 0.6 | 0.460 | | 45 TAC 20X+L | 57 | 70 | 1 | 0.6 | 0.580 | | 50 TAC 20X+L | 62 | 75 | 1 | 0.6 | 0.625 | | 55 TAC 20X+L | 69 | 84 | 1 | 0.6 | 0.945 | | 60 TAC 20X+L | 74 | 89 | 1 | 0.6 | 1.000 | | 65 TAC 20X+L | 79 | 94 | 1 | 0.6 | 1.080 | | 70 TAC 20X+L | 87 | 104 | 1 | 0.6 | 1.460 | | 75 TAC 20X+L | 92 | 109 | 1 | 0.6 | 1.550 | | 80 TAC 20X+L | 99 | 117 | 1 | 0.6 | 2.110 | | 85 TAC 20X+L | 104 | 122 | 1 | 0.6 | 2.210 | | 90 TAC 20X+L | 110 | 131 | 1.5 | 1 | 2.930 | | 95 TAC 20X+L | 115 | 136 | 1.5 | 1 | 3.050 | | 100 TAC 29X+L | 117 | 134 | 1 | 0.6 | 1.950 | | 100 TAC 20X+L | 120 | 141 | 1.5 | 1 | 3.200 | | 105 TAC 29X+L | 122 | 139 | 1 | 0.6 | 2.040 | | 105 TAC 20X+L | 127 | 150 | 2 | 1 | 4.100 | | 110 TAC 29X+L | 127 | 144 | 1 | 0.6 | 2.120 | | 110 TAC 20X+L | 134 | 158 | 2 | 1 | 5.150 | | 120 TAC 29X+L | 139 | 157 | 1 | 0.6 | 2.940 | | 120 TAC 20X+L | 144 | 168 | 2 | 1 | 5.500 | | 130 TAC 29X+L | 150 | 170 | 1.5 | 1 | 3.950 | | 130 TAC 20X+L | 160 | 187 | 2 | 1 | 8.200 | | 140 TAC 29D+L | 158 | 182 | 1.5 | 1 | 4.200 | | 140 TAC 20D+L | 167 | 198 | 2 | 1 | 8.750 | | 150 TAC 29D+L | 172 | 200 | 2 | 1 | 6.600 | | 150 TAC 20D+L | 178 | 213 | 2 | 1 | 10.700 | Remarks Nominal bearing bore and outside diameters for 20X · 20D and 29X · 29D bearing series are the same as those for the NN30 and NNU49 · NN49 bearing series respectively. Bore Diameter 160 – 280 mm | | Вс | oundary D
(mr | | ns | | Basic Load Ratings
(N) {kgf} | | | .af} | Limiting Speeds
(min ⁻¹) | | |-----|------------|------------------|----------|-------------|---------------------------------|---------------------------------|----------------------|------------------|-------------------|---|----------------| | d | $D^{(1)}$ | T | С | $m{r}$ min. | $r_{\scriptscriptstyle 1}$ min. | C_{a} | C_{0a} | C_{a} | C_{0a} | Grease | Oil | | 160 | 220
240 | 72
96 | 36
48 | 2
2.1 | 1
1.1 | 118 000
185 000 | 490 000
680 000 | 12 100
18 900 | 50 000
69 500 | 2 400
2 300 | 2 700
2 500 | | 170 | 230
260 | 72
108 | 36
54 | 2
2.1 | 1
1.1 | 120 000
218 000 | 520 000
810 000 | 12 300
22 200 | 53 000
82 500 | 2 300
2 100 | 2 500
2 400 | | 180 | 250
280 | 84
120 | 42
60 | 2
2.1 | 1
1.1 | 158 000
281 000 | 655 000
1 020 000 | 16 100
28 700 | 67 000
104 000 | 2 100
2 000 | 2 400
2 200 | | 190 | 260
290 | 84
120 | 42
60 | 2
2.1 | 1
1.1 | 161 000
285 000 | 695 000
1 060 000 | 16 400
29 000 | 71 000
108 000 | 2 000
1 900 | 2 300
2 100 | | 200 | 280
310 | 96
132 | 48
66 | 2.1
2.1 | 1.1
1.1 | 204 000
315 000 | 855 000
1 180 000 | 20 800
32 000 | 87 000
120 000 | 1 900
1 800 | 2 100
2 000 | | 220 | 300 | 96 | 48 | 2.1 | 1.1 | 210 000 | 930 000 | 21 400 | 95 000 | 1 800 | 2 000 | | 240 | 320 | 96 | 48 | 2.1 | 1.1 | 213 000 | 980 000 | 21 700 | 100 000 | 1 700 | 1 800 | | 260 | 360 | 120 | 60 | 2.1 | 1.1 | 315 000 | 1 390 000 | 32 000 | 141 000 | 1 500 | 1 700 | | 280 | 380 | 120 | 60 | 2.1 | 1.1 | 320 000 | 1 470 000 | 32 500 | 150 000 | 1 400 | 1 600 | Note (1) Outside tolerance is f6. | Davidson Namely or | Abutm | Mass
(kg) | | | | |--------------------------------|-------------------------------|--------------|---|-----------------|------------------| | Bearing Numbers | $d_{\scriptscriptstyle m a}$ | $D_{\rm a}$ | $oldsymbol{r_{\mathrm{a}}}{}_{\mathrm{max.}}$ | $r_{ m b}$ max. | approx. | | 160 TAC 29D+L
160 TAC 20D+L | 182
191 | 210
228 | 2
2 | 1
1 | 7.000
13.000 | | 170 TAC 29D+L
170 TAC 20D+L | 192
206 | 219
245 | 2 2 | 1
1 | 7.350
17.700 | | 180 TAC 29D+L
180 TAC 20D+L | 207
220 | 238
264 | 2 2 | 1
1 | 10.700
23.400 | | 190 TAC 29D+L
190 TAC 20D+L | 217
230 | 247
274 | 2 2 | 1
1 | 11.200
24.400 | | 200 TAC 29D+L
200 TAC 20D+L | 230
245 | 267
291 | 2 2 | 1
1 | 15.700
31.500 | | 220 TAC 29D+L | 250 | 287 | 2 | 1 | 17.000 | | 240 TAC 29D+L | 270 | 307 | 2 | 1 | 18.300 | | 260 TAC 29D+L | 300 | 344 | 2 | 1 | 31.500 | | 280 TAC 29D+L | 320 | 364 | 2 | 1 | 33.500 | Remarks Nominal bearing bore and outside diameters for 20X · 20D and 29X · 29D bearing series are the same as those for the NN30 and NNU49 · NN49 bearing series respectively. B 240 B 241 Bore Diameter 15 – 60 mm | | Boundary Dimensions (mm) | | | | | Dimensions
(mm) | | | Limiting Speeds(1)
(min-1) | | 5 | Mass
(kg) | |----------------------|--------------------------
----------------------|------------------|------------------------------|----------------------------|----------------------|----------------------|------------------------------|----------------------------------|----------------------------------|--|----------------------------------| | d | D | В | $m{r}$ min. | $oldsymbol{r_1}{ ext{min.}}$ | $d_{\scriptscriptstyle 1}$ | d_2 | D_1 | D_2 | Grease | Oil | Bearing Numbers | approx. | | 15
17
20
25 | 47
47
47
62 | 15
15
15
15 | 1
1
1
1 | 0.6
0.6
0.6
0.6 | 27.2
27.2
27.2
37 | 34
34
34
45 | 34
34
34
45 | 39.6
39.6
39.6
50.7 | 6 000
6 000
6 000
4 500 | 8 000
8 000
8 000
6 000 | 15 TAC 47B
17 TAC 47B
20 TAC 47B
25 TAC 62B | 0.144
0.144
0.135
0.252 | | 30
35 | 62
72 | 15
15 | 1
1 | 0.6
0.6 | 39.5
47 | 47
55 | 47
55 | 53.2
60.7 | 4 300
3 600 | 5 600
5 000 | 30 TAC 62B
35 TAC 72B | 0.224
0.31 | | 40 | 72
90 | 15
20 | 1
1 | 0.6
0.6 | 49
57 | 57
68 | 57
68 | 62.7
77.2 | 3 600
3 000 | 4 800
4 000 | 40 TAC 72B
40 TAC 90B | 0.275
0.674 | | 45
50 | 75
100
100 | 15
20
20 | 1
1
1 | 0.6
0.6
0.6 | 54
64
67.5 | 62
75
79 | 62
75
79 | 67.7
84.2
87.7 | 3 200
2 600
2 600 | 4 300
3 600
3 400 | 45 TAC 75B
45 TAC 100B
50 TAC 100B | 0.27
0.842
0.778 | | 55
60 | 100
120
120 | 20
20
20 | 1
1
1 | 0.6
0.6
0.6 | 67.5
82
82 | 79
93
93 | 79
93
93 | 87.7
102.2
102.2 | 2 600
2 200
2 200 | 3 400
3 000
3 000 | 55 TAC 100B
55 TAC 120B
60 TAC 120B | 0.714
1.23
1.16 | Note (1) These values apply when the standard preload (C10) is used. | Y | <u> </u> | | | Dynamic Eq $P_{ m a} = XI$ | uivalent Lo
F _r + <i>YF</i> _a | oad | | | | | | | | |-----|----------|--------|-----|------------------------------|--|------------|-------------|------------|-------------|---------------|------------|-------------|---------------| | | | Rows | | Two I | Rows | Three Rows | | WS | Four Rows | | | | | | | | L ' | Con | nbination | DF | DT | DI | FD | DTD | DFT | DFF | DFT | | | DFF | | | | e=2.17 | Axial Load
Sustained by | One
Row | Two
Rows | One
Row | Two
Rows | Three
Rows | One
Row | Two
Rows | Three
Rows | | | | E /E < | Х | 1.9 | _ | 1.43 | 2.33 | _ | 1.17 | 2.33 | 2.53 | | | | 上 | To Ax | | | $F_{\rm a}/F_{\rm r} \leq e$ | Y | 0.55 | _ | 0.77 | 0.35 | _ | 0.89 | 0.35 | 0.26 | | | | | | | Χ | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | | Basic Load Ratings $C_{ m a}$ | | Limiting Axial Load | | | | | |--------------|-------------------------------|----------------|---------------------|----------------|----------------|--|--| | Sustained by | | | | one row | two rows | three rows | one row | two rows | three rows | | | | DF | DT, DFD, DFF | DTD, DFT | DF | DT, DFD, DFF | DTD, DFT | | | | (N) {kgf} | | | | 21 900 2 240 | 35 500 3 650 | 47 500 4 850 | 26 600 2 710 | 53 000 5 400 | 79 500 8 150 | | | | 21 900 2 240 | 35 500 3 650 | 47 500 4 850 | 26 600 2 710 | 53 000 5 400 | 79 500 8 150 | | | | 21 900 2 240 | 35 500 3 650 | 47 500 4 850 | 26 600 2 710 | 53 000 5 400 | 79 500 8 150 | | | | 28 500 2 910 | 46 500 4 700 | 61 500 6 250 | 40 500 4 150 | 81 500 8 300 | 122 000 12 500 | | | | 29 200 2 980 | 47 500 4 850 | 63 000 6 400 | 43 000 4 400 | 86 000 8 800 | 129 000 13 200 | | | | 31 000 3 150 | 50 500 5 150 | 67 000 6 850 | 50 000 5 100 | 100 000 10 200 | 150 000 15 300 | | | | 31 500 3 250 | 51 500 5 250 | 68 500 7 000 | 52 000 5 300 | 104 000 10 600 | 157 000 16 000 | | | | 59 000 6 000 | 95 500 9 750 | 127 000 13 000 | 89 500 9 150 | 179 000 18 300 | 269 000 27 400 | | | | 33 000 3 350 | 53 500 5 450 | 71 000 7 250 | 57 000 5 800 | 114 000 11 600 | 170 000 17 400 | | | | 61 500 6 300 | 100 000 10 200 | 133 000 13 600 | 99 000 10 100 | 198 000 20 200 | 298 000 30 500 | | | | 63 000 6 400 | 102 000 10 400 | 136 000 13 800 | 104 000 10 600 | 208 000 21 200 | 310 000 32 000 | | | | 63 000 6 400 | 102 000 10 400 | 136 000 13 800 | 104 000 10 600 | 208 000 21 200 | 310 000 32 000 | | | | 67 500 6 850 | 109 000 11 200 | 145 000 14 800 | 123 000 12 600 | 246 000 25 100 | 370 000 37 500 | | | | 67 500 6 850 | 109 000 11 200 | 145 000 14 800 | 123 000 12 600 | 246 000 25 100 | 370 000 37 500 | | | # **NEEDLE ROLLER BEARINGS** CAGE & NEEDLE ROLLER ASSEMBLIES Inscribed Circle Diameter 5 – 100mm···· B252 Cage & Needle Roller Assemblies for Connecting Rod Inscribed Circle Diameter 12 – 30mm··· B256 # DRAWN CUP NEEDLE ROLLER BEARINGS With Cage Full Complement Type Inscribed Circle Diameter Cir For needle roller bearings, there are many designs and types bearings. Catalog Specified catalog, NSK Needle Roller Bearings CAT.No.E1419 lists bearings shown in Table 1. Representative examples selected from them, are shown in this catalog. (shown with in Table 1) For details, please refer individual specified catalog. For bearing selection, please contact NSK. B 244 B 245 Table 1 Types of Needle Roller Bearings # DIMENSIONAL ACCURACY · RUNNING ACCURACY # DRAWN CUP NEEDLE ROLLER BEARINGS The correct form and dimensional accuracy of outer ring of drawn cup needle roller bearing is achieved only by press fitting into proper housing with appropriate interference. Therefore, roller inscribed circle diameter is measured after press fitted into a standard ring gauge. The dimension of ring gauge and tolerance of roller inscribed circle diameter are shown in Tables 2 and 3. Table 2 is applicable to standard drawn cup needle roller bearings (metric series), and Table 3 shows tolerance of roller inscribed circle diameter based on ISO Standards. For bearings assured by ISO Standards, please order by adding symbol of "-1" at the end of bearing number. Table 2 Inspection Gauge Dimensions (General Metric) of Drawn Cup Needle Roller Bearings. (FJ, FJH, MFJ, MFJH) F, FH, MF, MFH | | \1,111,1VII,1V | , | Units mm | | |-----------------------------|----------------|------------|-------------|--| | Nominal Roller
Inscribed | Bore Diameter | Plug Gauge | | | | Circle Diameter, $F_{ m w}$ | of Ring Gauge | GO Gauge | NO-GO Gauge | | | 4 | 7. 996 | 4. 023 | 4. 048 | | | 5 | 8. 996 | 5. 023 | 5. 048 | | | 6 | 9. 996 | 6. 028 | 6. 053 | | | 7 | 10. 995 | 7. 031 | 7. 056 | | | 8 | 11. 995 | 8. 031 | 8. 056 | | | 9 | 12. 995 | 9. 031 | 9. 056 | | | 10 | 13. 995 | 10. 031 | 10. 056 | | | 12 | 15. 995 | 12. 031 | 12. 056 | | | FH 12 | 17. 995 | 12. 031 | 12. 056 | | | 13 | 18. 993 | 13. 034 | 13. 059 | | | 14 | 19. 993 | 14. 034 | 14. 059 | | | 15 | 20. 993 | 15. 034 | 15. 059 | | | 16 | 21. 993 | 16. 034 | 16. 059 | | | 17 | 22. 972 | 17. 013 | 17. 038 | | | 18 | 23. 972 | 18. 013 | 18. 038 | | | 20 | 25. 972 | 20. 013 | 20. 038 | | | 22 | 27. 972 | 22. 013 | 22. 038 | | | 25 | 31. 967 | 25. 013 | 25. 038 | | | 28 | 34. 967 | 28. 013 | 28. 038 | | | 30 | 36. 967 | 30. 013 | 30. 038 | | | 35 | 41. 967 | 35. 013 | 35. 043 | | | 40 | 46. 967 | 40. 013 | 40. 043 | | | 45 | 51. 961 | 45. 013 | 45. 043 | | | 50 | 57. 961 | 50. 013 | 50. 043 | | | 55 | 62. 961 | 55. 013 | 55. 043 | | Remarks This is the gauge dimension for Inspection of minimum diameter, F_{wmin} , of roller inscribed circle diameter. Table 3 Ring Gauge of Drawn Cup Needle Roller Bearings and Tolerance of Roller Inscribed Circle Diameter (ISO Standards) (FJ, FJH, MFJ and MFJH) F, FH, MF and MFH | | | | Units mm | |-----------------------------|-----------------------------|----------------------------------|----------| | Nominal Roller
Inscribed | Bore Diameter of Ring Gauge | Tolerance for R
Circle Diamet | | | Circle Diameter, $F_{ m w}$ | or King Gauge | min. | max. | | 4 | 7. 984 | 4. 010 | 4. 028 | | 5 | 8. 984 | 5. 010 | 5. 028 | | 6 | 9. 984 | 6. 010 | 6. 028 | | 7 | 10. 980 | 7. 013 | 7. 031 | | 8 | 11. 980 | 8. 013 | 8. 031 | | H 8 | 13. 980 | 8. 013 | 8. 031 | | 9 | 12. 980 | 9. 013 | 9. 031 | | H 9 | 14. 980 | 9. 013 | 9. 031 | | 10 | 13. 980 | 10. 013 | 10. 031 | | H 10 | 15. 980 | 10. 013 | 10. 031 | | 12 | 15. 980 | 12. 016 | 12. 034 | | H 12 | 17. 980 | 12. 016 | 12. 034 | | 13 | 18. 976 | 13. 016 | 13. 034 | | 14 | 19. 976 | 14. 016 | 14. 034 | | 15 | 20. 976 | 15. 016 | 15. 034 | | 16 | 21. 976 | 16. 016 | 16. 034 | | 17 | 22. 976 | 17. 016 | 17. 034 | | 18 | 23. 976 | 18. 016 | 18. 034 | | 20 | 25. 976 | 20. 020 | 20. 041 | | 22 | 27. 976 | 22. 020 | 22. 041 | | 25 | 31. 972 | 25. 020 | 25. 041 | | 28 | 34. 972 | 28. 020 | 28. 041 | | 30 | 36. 972 | 30. 020 | 30. 041 | | 35 | 41. 972 | 35. 025 | 35. 050 | | 40 | 46. 972 | 40. 025 | 40. 050 | | 45 | 51. 967 | 45. 025 | 45. 050 | | 50 | 57. 967 | 50. 025 | 50. 050 | | 55 | 62. 967 | 55. 030 | 55. 060 | Note (1) When using a cylinder instead of an inner ring, F_{wmin} is the diameter of the cylinder at which the internal clearance is zero in at least one radial direction. (F_{wmin} is the minimum diameter of each inscribed circle diameter where deviation is assumed.) **Remarks** To measure the roller inscribed circle diameter, use the following plug gauges: GO gauge: The same dimensions as the minimum tolerance of the roller inscribed circle diameter $F_{ m wmin}$. NO-GO gauge: The dimensions should be the maximum tolerance of roller inscribed circle diameter, $F_{ m wmin}$ plus 0.002 mm. #### SOLID NEEDLE ROLLER BEARINGS Table 8. 2 (A60-63 pages) Tolerance of roller inscribed circle diameter for solid needle roller bearings without inner rings are shown in Table 4. Table 4 Inscribed Circle Diameter for Metric Solid Needle Roller Bearings | Nee | die Roller Be | earings | Units µm | | | |----------------------------------|-------------------
---|----------|--|--| | Nominal II
Circle Dian
(mr | neter, $F_{ m w}$ | Deviation (F6) of Minimum Diameter, $F_{ m wmin}$, of Roller Inscribed Circle Diameter $F_{ m wmin}$ | | | | | over | incl. | high | low | | | | 6 | 10 | + 22 | +13 | | | | 10 | 18 | + 27 | +16 | | | | 18 | 30 | + 33 | +20 | | | | 30 | 50 | + 41 | +25 | | | | 50 | 80 | + 49 | +30 | | | | 80 | 120 | + 58 | +36 | | | | 120 | 180 | + 68 | +43 | | | | 180 | 250 | + 79 | +50 | | | | 250 | 315 | + 88 | +56 | | | | 315 | 400 | + 98 | +62 | | | | 400 | 500 | +108 | +68 | | | Note (1) When using a cylinder instead of an inner ring, $F_{\rm wmin}$ is the diameter of the cylinder at which the internal clearance is zero in at least one radial direction. ($F_{\rm wmin}$ is the minimum diameter of each inscribed circle diameter where deviation is assumed.) #### CAM FOLLOWERS · ROLLER FOLLOWERS · Table 8. 2 (A60-63 pages) The tolerance zone class of stud diameter d of cam followers is h7, and the tolerance of assembled width of inner ring of roller followers is shown in bearing table. These tolerances are applied to the bearings before surface treatment. Cam Follower Dimensional Tolerences is always applited to the bearing before surface treatment. # RECOMMENDED FITTING AND BEARING INTERNAL CLEARANCE CAGE & NEEDLE ROLLER ASSEMBLIES Recommended fitting of cage & roller under typical operating condition is shown in Table 5. By combining cage & roller, shaft, and housing, appropriate radial internal clearance is obtained. However, the fitting and the radial internal clearance of cage & roller for connecting rod should be determined by the type of engine, characteristic, and driving condition etc.. For details, please refer to specified catalog. Table 5 Fitting Tolerances for Shafts and Housing Bores | | Fitting Tolerance | | | | | |--|------------------------|--------------------|--------------|--|--| | Operating Conditions | sh | housing bore | | | | | | $F_{\rm w} \leq$ 50 mm | $F_{\rm w}>$ 50 mm | nousing bore | | | | High Accuracy, Oscillating Motion | js5 (j5) | h5 | | | | | Normal | h5 | g5 | G6 | | | | High Temperature, Large Shaft Deflection | f | | | | | | and Mounting Error of Bearings | 1 | | | | | #### DRAWN CUP NEEDLE ROLLER BEARINGS For FJ, FJH, and MFJH types and F, FH, and MFH types, if tolerance of fitting such as shaft:h6, and housing bore:N7 (in case of thick steel housing), are applied under general operating condition, appropriate radial internal clearance is obtained. In case that outer ring rotation, the fitting of shaft: f6, housing bore: R7, and light alloy housing or steel housing of less than 6mm thickness, the housing bore should be smaller than N7 by 0.013-0.025 mm. #### SOLID NEEDLE ROLLER BEARINGS Recommended fitting for solid needle roller bearings with inner rings Table 9. 2 (Page A84) Table 9. 4 (Page A85) Internal clearance of solid needle roller bearings with inner rings Table 9. 14 (Page A91) However, for needle roller bearing of wider bearing width, and with long needle rollers, bearings with CN clearance are not necessarily common, but large clearance is selected frequently. For the solid needle roller bearing without inner ring, it is possible to select radial internal clearance shown in Table 6 by selecting tolerance class of shaft, which is fitting to the bearing. Table 6 Fitting Tolerances and Radial Internal clearance of Shafts Assembled with Solid Needle Roller Bearings without Inner Rings | Nominal Roll
Circle Diamet | | | CN | C3 | C4 | |-------------------------------|-------|----|----|----|----| | over | incl. | | | | | | 6 | 180 | k5 | g5 | f6 | e6 | | 180 | 315 | j6 | f6 | e6 | d6 | | 315 | 490 | h6 | e6 | d6 | с6 | #### THRUST NEEDLE ROLLER BEARINGS Recommended Fitting of Thrust Needle Roller Bearings and Thrust Raceway are shown in Table 7. Table 7 Recommended Fitting of Thrust Needle Roller Bearings and Thrust Raceway Units m | Classification | Tumo | Cage or | Tolerance cl | ass or dimension tolerance | | | |----------------------------|--------------|---------------|--------------|---------------------------------------|--|--| | Ciassification | Type | raceway guide | Shaft | Shaft Housing bore D_c (1)+over 1.0 | | | | Thrust Needle Bearing Cage | FNTA | Bore | h8 | D _c (1)+over 1.0 | | | | & Needle Roller Assemblies | FINIA | Outside | _ | H10 | | | | Thrust Bearing Rings | FTRA to FTRE | Bore | h8 | D _c (1)+over 1.0 | | | | Thrust bearing Rings | TINATOTIKE | Outside | _ | H10 | | | Note (1) D_c represents outside diameter of the cage. Remarks If the cage is guided by outside diameter, to prevent the wear of housing bore, it is necessary to harden the surface at least. B 248 B 249 # CAM FOLLOWERS · ROLLER FOLLOWERS The recommended fittings for the mounting area of cam follower studs are shown in Table 8. Recommended shaft fittings of roller follower are shown in Table 9. Since cam followers are used with cantilevered mounting, they should be fixed with little clearance of the fitting surface as much as possible. Since a roller follower is generally used with outer ring rotation, the fitting with shaft is transition or loose fit. In case that heavy loads impose to the roller follower, it is recommended to use the shaft of quench hardening treatment, and with tight fit. For the details, please refer to specified catalog. Table 8 Recommended Fitting for Stud Mounting Part of Cam Followers | Туре | Fitting Tolerance of
Mounting Hole | |------------------------|---------------------------------------| | FCR, FCRS
FCJ, FCJS | JS7 (J7) | | | | Table 9 Recommended Staft Fittings of Roller Followers | Load | Fitting Tolerance of Shaft | |------------------------|----------------------------| | Light Load/Normal Load | g6 or h6 | | Heavy Load | k6 | # SHAFT AND HOUSING SPECIFICATIONS The specification of shaft and housing for radial needle roller bearings, which are used under general operating condition, is shown in Table 10. Table 10 Shaft and housing Specifications of Radial Needle Roller Bearings (Cage & Needle Roller Assemblies/Drawn Cup Bearings/Solid Bearings) | Category | Sh | aft | Housing Bore | | | | |------------------|--|--|--|--|--|--| | | Raceway Surface | Fitting Surface | Raceway Surface | Fitting Surface | | | | Out-of-Roundness | IT3 | IT3 IT4 | IT3 | IT4 IT5 | | | | Tolerance | $\frac{\text{IT 3}}{2}$ | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | 2 | $\frac{\text{IT}4}{2}$ to $\frac{\text{IT}5}{2}$ | | | | Cylindricity | IT3 | IT3 IT3 IT4 | | $\frac{\text{IT 4}}{2}$ to $\frac{\text{IT 5}}{2}$ | | | | Tolerance | $\frac{\text{IT 3}}{2}$ | $\frac{\text{IT 3}}{2}$ to $\frac{\text{IT 4}}{2}$ | $\frac{\text{IT 3}}{2}$ | $\frac{\text{IT 4}}{2}$ to $\frac{\text{IT 5}}{2}$ | | | | Roughness | 0.4 | 0.8 | 0.8 | 1.6 | | | | $R_a(\mu m)$ | 0.4 | 0.6 | 0.6 | 1.0 | | | | Hardness | HRC58 to 64
Appropriate depth
of hardening layer
required | _ | HRC58 to 64
Appropriate depth
of hardening layer
required | - | | | Remarks 1. For the specification of shaft and housing of cage & needle roller assembly for connecting rod, please refer to specified catalog. 2. These are general recommendation by radius method. For the value of standard tolerance (IT), please refer to Appendix 11 (page C22) Specifications of Thrust Bearings Raceway Surface are shown in Table 11. Table 11 Specifications of Thrust Bearings Raceway Surface | S | Squareness A | 0.5/1000 incl (mm/mm) | | |---|----------------------------------|---|---| | S | iquareness B | 1.0/1000 incl (mm/mm) | | | Ī | Roughness
R _a (μm) | 0.4 | _ | | | Hardness | HRC58 to 64
(HRC60 to 64 is fovorable) | _ | # LIMITING INCLINATION ANGLES The limiting inclination angle of radial needle roller bearing under general load condition is 0.001 radian (3.4') approximately. For the detail, please refer to specified catalog., # PERMISSBLE TRACK LOAD Table 12 Permissble Load Hardness (HRC) 20 25 30 35 40 45 50 55 58 Coefficient of Track Coefficient 0.4 0.5 0.6 0.8 1.0 1.4 1.9 2.6 3.2 The permissble load of the track is determined by compression strength or hardness. The permissble load of the track shown in the bearing table is value of a track made of steel with a hardness of HRC40. Table 12 indicates the permissible load coefficient of the track for each hardness. The permissible load of the track for each hardness can be obtained by multiplying the permissible load coefficient of the track corresponding to each hardness # PRE-PACKED GREASE The cam follower/roller follower with a seal is pre-lubricated with lithium soap-based grease. The range of operating temperature is -10 to $+110\,^{\circ}\text{C}$. For the cam follower/roller follower without seal, please lubricate with suitable lubricant. # MAXIMUM PERMISSIBLE LOAD AND MAXIMUM CLAMP TORQUE OF CAM FOLLOWERS. The maximum radial Load that the cam follower can carry is determined by the bearing strengh and shear strengh of the stud rather than the Load rating for neele bearings. This value is given in the bearing table as the maximum permissible Load. Since the stud of the cam follower receives bending stress and tensile stress from the bearing Load, the screw clamp torque should not exceed the value shown in the bearing table. # LIMITING SPEED The limiting speeds of bearings are shown in bearing tables. However, depending on load condition of the bearing, the limiting speeds are necessary to compensate. Also, improvement of lubrication method allows to take higher limiting speed. For the detail, please refer to A37 page. FWF • FWJ Inscribed
Circle Diameter 5 – 22 mm | Bound | dary Dimen
(mm) | sions | | Basic Loa | ad Ratings | {kgf} | | Limiting
(mi | | |------------|--------------------|----------------------|---------------------------|----------------------------|-----------------|----------------|-------------------------|----------------------------|----------------------------| | $F_{ m W}$ | $E_{ m W}$ | $B_{ m C}^{^{-0.2}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | C | | $C_{0\mathrm{r}}$ | Grease | Oil | | 5
6 | 8
9
9 | 8
8
10 | 2 330
2 200
3 350 | 1 860
1 780
3 050 | 2 | 37
24
40 | 189
182
310 | 60 000
48 000
48 000 | 95 000
75 000
75 000 | | 7 | 10
10 | 8
10 | 2 840
3 650 | 2 560
3 550 | 2 | 90
75 | 261
360 | 40 000
40 000 | 67 000
67 000 | | 8 | 11
11 | 10
13 | 3 950
4 750 | 4 000
5 150 | | 00
85 | 410
525 | 34 000
34 000 | 56 000
56 000 | | 9 | 12
12 | 10
13 | 3 750
5 100 | 3 850
5 750 | | 80
20 | 395
585 | 30 000
30 000 | 50 000
50 000 | | 10 | 13
13
14 | 10
13
13 | 3 950
5 400
6 500 | 4 300
6 350
6 750 | 5 | 05
50
60 | 435
650
690 | 28 000
28 000
28 000 | 45 000
45 000
45 000 | | 12 | 15
15
16 | 10
13
13 | 4 350
5 950
7 350 | 5 100
7 600
8 350 | 6 | 45
05
50 | 520
775
850 | 22 000
22 000
22 000 | 36 000
36 000
38 000 | | 14 | 18
18
20 | 10
13
17 | 6 750
8 050
13 400 | 7 750
9 750
14 600 | | 90
20
70 | 790
995
1 490 | 19 000
19 000
20 000 | 32 000
32 000
32 000 | | 15 | 19
19
21 | 10
13
17 | 7 050
8 400
13 400 | 8 400
10 500
14 800 | | | 855
1 070
1 510 | 18 000
18 000
19 000 | 28 000
28 000
30 000 | | 16 | 20
20
22 | 10
13
17 | 7 350
8 800
14 700 | 9 000
11 300
16 900 | | | 920
1 150
1 720 | 17 000
17 000
17 000 | 26 000
26 000
28 000 | | 17 | 21
21
23 | 10
13
17 | 7 650
10 200
15 100 | 9 650
14 000
17 800 | 7
1 0
1 5 | | 985
1 420
1 810 | 16 000
16 000
16 000 | 26 000
26 000
26 000 | | 18 | 22
22
24 | 10
13
17 | 7 900
9 450
17 400 | 10 300
12 900
21 600 | | 65 | 1 050
1 310
2 210 | 15 000
15 000
15 000 | 24 000
24 000
24 000 | | 20 | 24
24
26 | 10
13
17 | 8 000
9 700
18 000 | 10 700
13 700
23 200 | | 90 | 1 090
1 400
2 370 | 13 000
13 000
14 000 | 20 000
20 000
22 000 | | 22 | 26
26
28 | 10
13
17 | 8 600
10 300
17 300 | 12 200
15 300
22 700 | 8
1 0
1 7 | 50 | 1 240
1 560
2 310 | 12 000
12 000
12 000 | 19 000
19 000
20 000 | | Note (*) | These bearings have polyamide cages. The maximum permissible operating temperature for these bearings is 100 °C | |----------|---| | | for continued operation and 120 °C for short periods. | | Bearing Numbers | Mass
(g) | |-----------------|-------------| | | approx. | | * FBNP-588 | 1.0 | | * FBNP-698 | 1.2 | | * FBNP-6910 | 1.5 | | * FBNP-7108 | 1.3 | | * FBNP-71010 | 1.6 | | * FBNP-81110 | 1.8 | | * FBNP-81113 | 2.6 | | * FBNP-91210 | 2.0 | | * FBNP-91213 | 2.6 | | FBN-101310 | 2.2 | | FBN-101313 | 2.9 | | FWF-101413 | 4.0 | | FBN-121510 | 2.6 | | FBN-121513 | 3.4 | | FWF-121613 | 4.6 | | FWF-141810 | 4.1 | | FWF-141813 | 5.3 | | FWF-142017 | 11 | | FWF-151910 | 4.3 | | FWF-151913 | 5.6 | | FWF-152117 | 12 | | FWF-162010 | 4.6 | | FWF-162013 | 6.0 | | FWF-162217 | 12 | | FWF-172110 | 4.8 | | FWJ-172113 | 6.3 | | FWF-172317 | 14 | | FWF-182210 | 5.1 | | FWF-182213 | 6.6 | | FWJ-182417 | 14 | | FWF-202410 | 5.6 | | FWF-202413 | 7.3 | | FWJ-202617 | 15 | | FWF-222610 | 6.1 | | FWF-222613 | 7.9 | | FWF-222817 | 16 | NSK FWF • FWJ Inscribed Circle Diameter 25 – 100 mm | Bound | dary Dimer | nsions | | Basic Load | • | | Limiting | • | |----------------|----------------|-----------------------|----------------------------|-------------------------------|------------|-------------------|----------------------------|----------------------------| | | (mm) | -0.2 | | (N) | {kgf} | | (mir | 1 ⁻¹) | | $F_{ m W}$ | $E_{ m W}$ | $B_{ m C}$ $^{-0.55}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 25 | 29
29
31 | 10
13
17 | 9 350
11 300
19 200 | 14 100
18 000
26 800 | 1 150 1 | 440
830
740 | 10 000
10 000
10 000 | 17 000
17 000
17 000 | | 28 | 33
33
34 | 13
17
17 | 13 700
17 600
19 900 | 20 400
28 300
29 100 | 1 800 2 | 080
890
970 | 9 500
9 500
9 500 | 15 000
15 000
15 000 | | 30 | 35
35
37 | 13
17
20 | 14 000
18 700
26 000 | 21 600
31 500
38 000 | 1 910 3 | 200
200
850 | 8 500
8 500
9 000 | 14 000
14 000
14 000 | | 32 | 37
37
39 | 13
17
20 | 15 100
18 500
27 300 | 24 400
31 500
41 000 | 1 880 3 | 480
200
200 | 8 000
8 000
8 500 | 13 000
13 000
13 000 | | 35 | 40
40
42 | 13
17
20 | 14 900
20 500
30 000 | 24 600
37 000
47 500 | 2 090 3 | 500
750
850 | 7 500
7 500
7 500 | 12 000
12 000
12 000 | | 40 | 45
45
48 | 17
27
25 | 21 000
32 000
40 500 | 40 000
68 000
66 500 | 3 250 6 | 050
900
800 | 6 300
6 300
6 700 | 10 000
10 000
10 000 | | 45 | 50
50
53 | 17
27
25 | 21 600
34 000
44 000 | 43 000
77 500
77 000 | 3 500 7 | 350
900
850 | 5 600
5 600
5 600 | 9 000
9 000
9 500 | | 50 | 55
55
58 | 20
27
25 | 26 900
35 000
48 500 | 59 000
83 000
90 500 | 3 600 8 | 050
450
200 | 5 000
5 000
5 300 | 8 000
8 000
8 500 | | 55 | 61
61
63 | 20
30
25 | 31 000
47 000
50 000 | 64 000
109 000
97 500 | 4 750 11 | 500
100
950 | 4 500
4 500
4 800 | 7 500
7 500
7 500 | | 60 | 66
66
68 | 20
30
25 | 33 000
50 000
52 000 | 71 500
122 000
105 000 | 5 100 12 | 300
400
700 | 4 300
4 300
4 300 | 6 700
6 700
6 700 | | 65
70
75 | 73
78
83 | 30
30
30 | 61 000
63 000
65 000 | 132 000
140 000
151 000 | 6 400 14 | 400
300
400 | 4 000
3 600
3 400 | 6 300
6 000
5 600 | | 80
85
90 | 88
93
98 | 30
30
30 | 69 000
71 000
70 000 | 166 000
176 000
177 000 | 7 250 17 | 000
900
000 | 3 200
3 000
2 800 | 5 000
4 800
4 500 | | 95
100 | 103
108 | 30
30 | 69 500
75 500 | 177 000
201 000 | | 100
500 | 2 600
2 400 | 4 300
4 000 | | Danis a Novebore | Mass
(g) | |-----------------------------|-------------| | Bearing Numbers | | | | approx. | | FWF-252910 | 6.9 | | FWF-252913
FWF-253117 | 8.9
18 | | FWF-283313 | 13 | | FWF-283317
FWF-283417 | 16
20 | | FWF-303513 | 14 | | FWF-303517A
FWF-303720 | 18
30 | | FWF-303720
FWF-323713 | 30
14 | | FWJ-323717 | 19 | | FWF-323920 | 32 | | FWF-354013
FWF-354017 | 16
20 | | FWJ-354220 | 34 | | FWF-404517A
FWF-404527 | 23
36 | | FWF-404825 | 56 | | FWF-455017
FWF-455027 | 26
41 | | FWF-455325 | 62 | | FWF-505520 | 37 | | FWF-505527
FWF-505825 | 50
77 | | FWF-556120 | 53 | | FWF-556130
FWF-556325 | 81
85 | | FWF-606620 | 57 | | FWF-606630
FWF-606825 | 87 | | FWF-657330 | 91
120 | | FWF-707830 | 125 | | FWF-758330
FWF-808830 | 135
145 | | FWF-859330 | 150 | | FWF-909830 | 160 | | FWF-9510330
FWF-10010830 | 175
185 | - NSK Cage & Needle Roller Assemblies for Large Ends of Connecting Rods Inscribed Circle Diameter 12 – 30 mm | Bou | ndary Dimens | ions | | Basic Load | Ratings
{kgf | F) | | Mass
(g) | |------------|----------------------|-----------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|--|----------------------| | $F_{ m W}$ | $E_{ m W}$ | $B_{ m C}^{{ m -0.2 \over -0.4}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | approx. | | 12
14 | 16
19
20 | 10
10
12 | 6 100
7 800
8 900 | 6 500
8 050
8 600 | 620
795
910 | 665
820
880 | FWF-121610-E
FWF-141910-E
FWF-142012-E | 4.0
6.2
8.3 | | 15 | 19 | 9 | 5 650 | 6 250 | 575 | 640 | FWF-15199-E | 4.1 | | | 20 | 10 | 7 300 | 7 600 | 745 | 775 | FWF-152010-E | 6.0 | | | 21 | 10 | 7 950 | 7 500 | 810 | 765 | FWF-152110-E | 8.5 | | 16 | 21 | 11 | 8 650 | 9 600 | 880 | 980 | FWF-162111-E | 7.5 | | | 22 | 12 | 9 500 | 9 600 | 965 | 980 | FWF-162212-E | 9.5 | | 18 | 23 | 14 | 11 800 | 14 800 | 1 200 | 1 510 | FWF-182314-E | 10 | | | 24 | 12 | 10 000 | 10 600 | 1 020 | 1 080 | FWF-182412-E | 11 | | 20 | 26 | 12 | 12 200 | 14 100 | 1 250 | 1 440 | FWF-202612-E | 13 | | | 26 | 17 | 16 800 | 21 200 | 1 710 | 2 160 | FWF-202617-E | 17 | | | 28 | 18 | 18 100 | 19 400 | 1 840 | 1 970 | FWF-202818-E | 25 | | 22 | 28 | 14 | 13 900 | 17 100 | 1 420 | 1 740 | FWF-222814-E | 14 | | | 29 | 15 | 16 300 | 19 000 | 1 660 | 1 930 | FWF-222915-E | 19 | | | 32 | 16 | 19 700 | 19 400 | 2 010 | 1 970 | FWF-223216-E | 31 | | 23
24 | 31
30
30
31 | 16
15
17
20 | 17 600
15 600
17 900
21 600 | 19 400
20 300
24 300
27 800 | 1 800
1 590
1 830
2 200 | 1 980
2 070
2 480
2 840 | FWF-233116-E
FWF-243015-E
FWF-243017-E
FWF-243120-E | 23
17
19
30 | | 25 | 32 | 16 | 17 700 | 21 900 | 1 810 | 2 230 | FWF-253216-E | 24 | | 28 | 35 | 16 | 18 400 | 23 700 | 1 880 | 2 410 | FWF-283516-E | 25 | | 29.75 | 36.75 | 16.5 | 19 600 | 26 000 | 1 990 | 2 650 | FWF-293616 Z -E | 28 | | 30 | 37 | 16 | 21
900 | 30 500 | 2 230 | 3 100 | FWF-303716-E | 29 | | | 38 | 18 | 25 500 | 34 000 | 2 600 | 3 450 | FWF-303818-E | 35 | | Воц | undary Dimens
(mm) | | | Basic Loa | id Ratings
{kgf | 7) | | Mass
(g) | |------------|-----------------------|--------------------------|-----------------------------------|-------------------------------------|----------------------------|--------------------------------|--|--------------------------| | $F_{ m W}$ | $E_{ m W}$ | $B_{ m C}^{^{-0.2}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | approx. | | 9 | 12 | 11.5 | 4 300 | 4 650 | 440 | 475 | FBN-91211Z-E | 3.5 | | 10 | 14 | 12.7 | 5 900 | 5 950 | 605 | 610 | FBN-101412Z-E | 5.0 | | 12 | 15
16
16
16 | 14.3
13
15.5
16 | 6 400
7 250
8 500
8 500 | 8 400
8 200
10 000
10 000 | 655
740
865
865 | 855
835
1 020
1 020 | FBN-121514Z-E
FBN-121613-E
FBN-121615Z-E
FBN-121616-E | 4.8
6.4
7.0
7.5 | | 14 | 18
18
18
18 | 12
16.5
18
20 | 6 950
9 250
10 700
9 550 | 8 050
11 600
14 000
12 000 | 710
945
1 090
975 | 820
1 180
1 430
1 230 | FBN-141812-E
FBN-141816Z-E
FBN-141818-E
FBN-141820-E1 | 6.5
8.5
11.5
13 | | 15 | 19
21 | 18
18 | 11 300
12 900 | 15 300
13 900 | 1 150
1 310 | 1 560
1 420 | FBN-151918-E
FBN-152118-E | 11
13 | | 16 | 20
20
21 | 22
23.5
20 | 13 700
14 900
14 200 | 20 000
22 300
18 100 | 1 400
1 520
1 450 | 2 040
2 280
1 840 | FBN-162022-E
FBN-162023Z-E
FBN-162120-E | 14
15
16 | | 17 | 21 | 23 | 14 800 | 22 500 | 1 510 | 2 290 | FBN-172123-E | 16 | | 18 | 22
22
22 | 17
22
23.6 | 11 500
14 200
15 400 | 16 500
21 600
24 100 | 1 170
1 440
1 570 | 1 680
2 200
2 460 | FBN-182217-E
FBN-182222-E
FBN-182223Z-E | 12
15
16 | | 19 | 23 | 23.7 | 16 000 | 25 800 | 1 630 | 2 630 | FBN-192323Z-E | 17 | B 256 B 257 # FJ · MFJ (With Cage) # F • MF (Full Complement Type) Inscribed Circle Diameter 4 – 16 mm | Воц | | Dimens | ions | Basic Dynamic L | oad Ratings.
{kgf} | Limiting
(N) | Loads
{kgf} | Limiting
(mi | | | Bearing | |------------------|----------------------|----------------------|--------------------------|-------------------------------------|--------------------------------|-----------------------------------|----------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------| | F_{W} | D | $C^{-0.25}$ | C_1, C_2 max. | | | $P_{ m ma}$ | | Grease | Oil | Wit
Open | h Cage
Closed | | 4
5
6
7 | 8
9
10
11 | 8
9
9 | 0.8
0.8
0.8
0.8 | 1 720
1 860
2 320
2 550 | 175
190
237
260 | 675
745
985
1 110 | 69
76
101
113 | 45 000
43 000
36 000
30 000 | 75 000
71 000
56 000
48 000 | * FJP-48
FJ-59
FJ-69
FJ-79 |
MFJ-59
MFJ-69
MFJ-79 | | 8 | 12 | 10 | 0.8 | 2 840 | 289 | 1 270 | 130 | 26 000 | 43 000 | FJ-810 | MFJ-810 | | | 14 | 10 | 1.0 | 4 300 | 435 | 1 770 | 180 | 28 000 | 45 000 | FJH-810 | MFJH-810 | | | 14 | 10 | 1.9 | 5 550 | 565 | 2 980 | 305 | 6 300 | 10 000 | — | — | | 9 | 13 | 10 | 0.8 | 3 300 | 335 | 1 600 | 163 | 22 000 | 36 000 | FJ-910 | MFJ-910 | | | 15 | 10 | 1.0 | 4 550 | 465 | 1 910 | 194 | 24 000 | 40 000 | FJH-910 | MFJH-910 | | | 15 | 10 | 1.8 | 6 100 | 625 | 3 350 | 340 | 6 000 | 10 000 | — | — | | 10 | 14 | 10 | 0.8 | 3 500 | 360 | 1 760 | 179 | 20 000 | 32 000 | FJ-1010 | MFJ-1010 | | | 16 | 10 | 1.0 | 4 900 | 500 | 2 100 | 214 | 22 000 | 34 000 | FJH-1010 | MFJH-1010 | | | 16 | 10 | 1.9 | 6 650 | 680 | 3 700 | 375 | 5 600 | 9 000 | — | — | | 12 | 16 | 10 | 0.8 | 4 150 | 420 | 2 210 | 225 | 17 000 | 26 000 | FJ-1210 | MFJ-1210 | | | 18 | 12 | 1.0 | 6 450 | 655 | 3 050 | 310 | 17 000 | 28 000 | FJH-1212 | MFJH-1212 | | | 18 | 12 | 1.9 | 9 000 | 920 | 5 700 | 580 | 4 500 | 7 500 | — | — | | 13 | 19 | 12 | 1.0 | 6 950 | 710 | 3 400 | 345 | 16 000 | 26 000 | FJ-1312 | MFJ-1312 | | | 19 | 12 | 1.9 | 9 550 | 975 | 6 100 | 625 | 4 300 | 7 100 | — | — | | 14 | 20
20
20
20 | 12
12
16
16 | 1.0
2.2
1.0
2.2 | 6 500
9 450
9 500
13 300 | 665
965
970
1 360 | 3 250
6 350
5 300
9 850 | 335
645
540
1 000 | 15 000
3 800
15 000
3 800 | 24 000
6 000
24 000
6 000 | FJ-1412
FJ-1416 | MFJ-1412
MFJ-1416 | | 15 | 21 | 12 | 1.0 | 7 650 | 780 | 3 900 | 400 | 14 000 | 22 000 | FJ-1512 | MFJ-1512 | | | 21 | 12 | 1.8 | 10 300 | 1 050 | 6 900 | 705 | 3 800 | 6 000 | — | | | | 21 | 14 | 1.8 | 12 400 | 1 270 | 8 800 | 895 | 3 800 | 6 000 | — | _ | | | 21 | 16 | 1.0 | 11 000 | 1 120 | 6 200 | 635 | 14 000 | 22 000 | FJ-1516 | MFJ-1516 | | | 21 | 16 | 1.8 | 14 500 | 1 480 | 10 700 | 1 090 | 3 800 | 6 000 | — | — | | 16 | 22
22
22
22 | 12
12
16
16 | 1.0
2.2
1.0
2.2 | 7 100
10 200
10 400
14 400 | 725
1 040
1 060
1 460 | 3 750
7 100
6 050
11 100 | 380
725
620
1 130 | 12 000
3 400
12 000
3 400 | 20 000
5 300
20 000
5 300 | FJ-1612

FJ-1616
 | MFJ-1612
MFJ-1616 | Note (*) These bearing have polyamide cages. The maximum permissible operating temperature for these bearings is 100 °C for continued operation and 120 °C for short periods. | Numbers | | | ase of in | ner ring is | used | | | ut Inner Ring
a) | |--------------------|-----------------------|--|----------------------|------------------------------|----------------------------------|--------------------------|--------------------------|----------------------| | Full Compl
Open | lement Type
Closed | of Inner Ring Dimensions (mm) | | Dimensio | and Fillet ons (mm) $ _a$ (max.) | approx.
Open Closed | | | | _
_
_
_ | =
=
= | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 1.3
1.7
2.2
2.3 | 1.9
2.4
2.7 | | _
_
FH-810 | _
_
MFH-810 | _
_
_ | _
_ | _ | _
_
_ | = | 2.7
5.2
6.0 | 3.2
5.5
6.3 | | _
FH-910 | _
_
MFH-910 | _
=
= | _
_ | _
_
_ | _ | _
_
_ | 3.2
5.7
6.4 | 3.6
6.1
6.8 | | _
_
FH-1010 | _
_
MFH-1010 | FIR-71010
FIR-71010
FIR-71010 | 7
7
7 | 10.5
10.5
10.5 | 9
9
9 | 0.3
0.3
0.3 | 3.6
6.1
6.9 | 4.1
6.6
7.3 | | _
_
FH-1212 | _
_
MFH-1212 | FIR-81210
FIR-81212
FIR-81212 | 8
8
8 | 10.5
12.5
12.5 | 10
10
10 | 0.3
0.3
0.3 | 4.1
7.7
10 | 4.5
8.2
11 | | _
F-1312 | MF-1312 | FIR-101312
FIR-101312 | 10
10 | 12.5
12.5 | 12
12 | 0.3
0.3 | 8.6
11 | 9.5
12 | | F-1412
F-1416 | MF-1412
MF-1416 | FIR-101412
FIR-101412
FIR-101416
FIR-101416 | 10
10
10
10 | 12.5
12.5
16.5
16.5 | 12
12
12
12 | 0.3
0.3
0.3
0.3 | 10
12
13
18 | 11
14
14
19 | | F-1512
F-1514 | MF-1512
MF-1514 | FIR-121512
FIR-121512 | 12
12
— | 12.5
12.5
— | 14
14
— | 0.3
0.3
— | 10
12
15 | 11
14
16 | | _
F-1516 | _
MF-1516 | FIR-121516
FIR-121516 | 12
12 | 16.5
16.5 | 14
14 | 0.3
0.3 | 13
17 | 14
18 | | F-1612
F-1616 | MF-1612
MF-1616 | FIR-121612
FIR-121612
FIR-121616
FIR-121616 | 12
12
12
12 | 12.5
12.5
16.5
16.5 | 14
14
14
14 | 0.3
0.3
0.3
0.3 | 11
14
14
18 | 12
15
15
20 | # FJ·MFJ (With Cage) F·MF (Full Complement Type) Inscribed Circle Diameter 17 – 28 mm | Boundary Dimensions
(mm) | | ions | Basic Dynamic L | .oad Ratings
{kgf} | Limiting
(N) | Loads
{kgf} | Limiting Speeds
(min ⁻¹) | | | Bearing | | |-----------------------------|----------------------|----------------------|--------------------------|-------------------------------------|--------------------------------|-----------------------------------|---|------------------------------------|------------------------------------|------------------------|---------------------------| | F_{W} | D | $C^{-0.25}$ | C_1, C_2 max. | $C_{\rm r}$ | | $P_{ m ma}$ | | Grease | Oil | With
Open | Cage | | 17 | 23
23
23
23 | 12
12
16
16 | 1.0
1.8
1.0
1.8 | 8 450
11 300
12 100
15 800 | 860
1 150
1 230
1 610 | 4 450
7 750
7 100
12 000 | 455
790
720
1 220 | 12 000
3 400
12 000
3 400 | 19 000
5 600
19 000
5 600 | FJ-1712
FJ-1716 | MFJ-1712
—
MFJ-1716 | | 18 | 24
24
24
24 | 12
12
16
16 | 1.0
2.2
1.0
2.2 | 7 650
10 900
11 200
15 300 | 780
1 110
1 140
1 560 | 4 200
7 900
6 800
12 300 | 430
805
695
1 250 | 11 000
3 000
11 000
3 000 | 18 000
5 000
18 000
5 000 | FJ-1812
FJ-1816 | MFJ-1812
MFJ-1816 | | 20 | 26
26
26 | 12
12
16 | 1.0
2.2
1.0 | 8 150
11 500
11 900 | 835
1 170
1 210 | 4 650
8 700
7 550 | 475
885
770 | 10 000
2 800
10 000 | 16 000
4 500
16 000 | FJ-2012

FJ-2016 | MFJ-2012
—
MFJ-2016 | | | 26
26
26 | 16
20
20 | 2.2
1.0
2.2 | 16 200
15 300
20 500 | 1 650
1 560
2 090 | 13 500
10 500
18 300 | 1 380
1 070
1 870 | 2 800
10 000
2 800 | 4 500
16 000
4 500 | FJ-2020 | MFJ-2020 | | 22 | 28
28
28 | 12
12
16 | 1.0
2.2
1.0 | 8 650
12 100
12 600 | 880
1 230
1 290 | 5 150
9 500
8 350 | 525
970
850 | 9 000
2 400
9 000 | 14 000
4 000
14 000 | FJ-2212

FJ-2216 | MFJ-2212
—
MFJ-2216 | | |
28
28
28 | 16
20
20 | 2.2
1.0
2.2 | 17 100
16 200
21 600 | 1 740
1 660
2 200 | 14 800
11 500
20 000 | 1 510
1 180
2 040 | 2 400
9 000
2 400 | 4 000
14 000
4 000 | FJ-2220
— | MFJ-2220 | | 25 | 32
32
32 | 16
16
20 | 1.0
2.5
1.0 | 15 200
20 200
19 800 | 1 550
2 060
2 020 | 9 350
16 200
13 100 | 955
1 650
1 340 | 8 000
2 800
8 000 | 13 000
4 500
13 000 | FJ-2516

FJ-2520 | MFJ-2516
—
MFJ-2520 | | | 32
32
32 | 20
26
26 | 2.5
1.0
2.5 | 25 900
26 200
34 000 | 2 640
2 670
3 450 | 22 200
18 800
31 500 | 2 260
1 920
3 200 | 2 800
8 000
2 800 | 4 500
13 000
4 500 | FJ-2526 | MFJ-2526 | | 28 | 35
35
35 | 16
16
20 | 1.0
2.5
1.0 | 15 600
21 300
20 500 | 1 590
2 170
2 090 | 9 950
17 900
14 200 | 1 020
1 820
1 450 | 7 100
2 400
7 100 | 11 000
4 000
11 000 | FJ-2816
FJ-2820 | MFJ-2816
MFJ-2820 | | | 35
35
35 | 20
26
26 | 2.5
1.0
2.5 | 27 300
26 900
35 500 | 2 780
2 750
3 650 | 24 600
20 200
34 500 | 2 510
2 060
3 550 | 2 400
7 100
2 400 | 4 000
11 000
4 000 | FJ-2826
— | MFJ-2826 | | Numbers | | In c | | Mass Without Inner Ring
(g) | | | | | |----------------------|-------------------------|--|---------------------------|---------------------------------|----------------------|---|----------------------|----------------------| | Full Complei | ment Type
Closed | Bearing Numbers of Inner Ring | Bou
Dimens
d | indary
ions (mm)
<i>B</i> | Dįmensi | at and Fillet
ons (mm)
r_a (max.) | | orox.
Closed | | F-1712
F-1716 | MF-1712
MF-1716 | -
-
-
- | _
_
_
_ | _
_
_
_ | _
_
_ | _
_
_
_ | 10
14
14
18 | 11
15
16
20 | | F-1812
F-1816 | MF-1812
MF-1816 | FIR-151812
FIR-151812
FIR-151816
FIR-151816 | 15
15
15
15 | 12.5
12.5
16.5
16.5 | 17
17
17
17 | 0.3
0.3
0.3
0.3 | 12
14
16
19 | 14
16
18
22 | | F-2012 | MF-2012 | FIR-172012
FIR-172012
FIR-172016 | 17
17
17 | 12.5
12.5
16.5 | 19
19
19 | 0.3
0.3
0.3 | 13
17
17 | 15
19
19 | | F-2016

F-2020 | MF-2016
MF-2020 | FIR-172016
FIR-172020
FIR-172020 | 17
17
17 | 16.5
20.5
20.5 | 19
19
19 | 0.3
0.3
0.3 | 22
22
28 | 25
24
30 | | F-2212 | MF-2212 | FIR-172212
FIR-172212
FIR-172216 | 17
17
17 | 12.5
12.5
16.5 | 19
19
19 | 0.3
0.3
0.3 | 14
18
19 | 17
21
22 | | F-2216

F-2220 | MF-2216
—
MF-2220 | FIR-172216
FIR-172220
FIR-172220 | 17
17
17 | 16.5
20.5
20.5 | 19
19
19 | 0.3
0.3
0.3 | 24
23
30 | 27
26
33 | | F-2516 | MF-2516 | FIR-202516
FIR-202516
FIR-202520 | 20
20
20 | 16.5
16.5
20.5 | 22
22
22 | 0.3
0.3
0.3 | 24
31
31 | 27
35
34 | | F-2520

F-2526 | MF-2520
—
MF-2526 | FIR-202520
FIR-202526
FIR-202526 | 20
20
20 | 20.5
26.5
26.5 | 22
22
22 | 0.3
0.3
0.3 | 40
40
52 | 43
43
55 | | F-2816 | MF-2816 | FIR-222816
FIR-222816
FIR-222820 | 22
22
22 | 16.5
16.5
20.5 | 24
24
24 | 0.3
0.3
0.3 | 27
35
34 | 31
40
38 | | F-2820

F-2826 | MF-2820
MF-2826 | FIR-222820
FIR-222826
FIR-222826 | 22
22
22 | 20.5
26.5
26.5 | 24
24
24 | 0.3
0.3
0.3 | 44
45
57 | 48
49
62 | B 260 B 261 # FJ·MFJ (With Cage) F·MF (Full Complement Type) Inscribed Circle Diameter 30 – 55 mm | | | | | 1 | | | | | | | | |------------|----------|----------|------------|------------------|-----------------------|------------------|----------------|------------------|-----------------|--------------|----------| | Воц | | Dimens | sions | Basic Dynamic I | Load Ratings
{kgf} | Limiting
(N) | Loads
{kgf} | Limiting
(mi) | | | Bearing | | $F_{ m W}$ | D | 'n | C_1, C_2 | 1 ' ' | | $P_{ m ma}$ | | ` | , | With | Cage | | 1.M | D | C | max. | C ₁ | • | 1 ma | ix | Grease | Oil | Open | Closed | | 30 | 37 | 16 | 1.0 | 15 600 | 1 590 | 10 100 | 1 030 | 6 700 | 10 000 | FJ-3016L | MFJ-3016 | | | 37
37 | 16
20 | 2.5
1.0 | 22 100
19 400 | 2 250
1 970 | 18 900
13 300 | 1 930
1 360 | 2 400
6 700 | 3 800
10 000 | FJ-3020 | MFJ-3020 | | | 37 | 20 | 2.5 | 28 400 | 2 900 | 26 200 | 2 670 | 2 400 | 3 800 | | | | | 37 | 26 | 1.0 | 26 000 | 2 660 | 19 500 | 1 990 | 6 700 | 10 000 | FJ-3026 | MFJ-3026 | | | 37 | 26 | 2.5 | 37 000 | 3 800 | 37 000 | 3 750 | 2 400 | 3 800 | _ | _ | | 35 | 42
42 | 16
16 | 1.0
2.5 | 18 100
24 000 | 1 850
2 450 | 12 800
22 000 | 1 300
2 240 | 5 600
2 000 | 9 000
3 400 | FJ-3516 | MFJ-3516 | | | 42 | 20 | 1.0 | 23 600 | 2 410 | 17 900 | 1 830 | 5 600 | 9 000 | FJ-3520 | MFJ-3520 | | | 42 | 20 | 2.5 | 31 000 | 3 150 | 30 000 | 3 100 | 2 000 | 3 400 | _ | _ | | | 42
42 | 26
26 | 1.0
2.5 | 31 500
40 000 | 3 200
4 100 | 25 800
42 500 | 2 630
4 350 | 5 600
2 000 | 9 000
3 400 | FJ-3526 | MFJ-3526 | | | | | | | | | | | | | | | 40 | 47
47 | 16
16 | 1.0
2.5 | 18 600
25 700 | 1 890
2 620 | 13 600
24 900 | 1 390
2 540 | 4 800
1 800 | 7 500
3 000 | FJ-4016
— | MFJ-4016 | | | 47 | 20 | 1.0 | 23 500 | 2 400 | 18 500 | 1 890 | 4 800 | 7 500 | FJ-4020 | MFJ-4020 | | | 47 | 20 | 2.5 | 32 500 | 3 350 | 34 000 | 3 450 | 1 800 | 3 000 | | | | | 47 | 26 | 1.0 | 31 500 | 3 200 | 26 900 | 2 740 | 4 800 | 7 500 | FJ-4026 | MFJ-4026 | | 45 | 52
52 | 16
16 | 1.0
2.5 | 19 900
27 300 | 2 030
2 790 | 15 400
27 800 | 1 570
2 840 | 4 300
1 600 | 6 700
2 600 | FJ-4516 | MFJ-4516 | | | 52
52 | 20
20 | 1.0
2.5 | 25 500
35 000 | 2 600
3 550 | 21 200
38 500 | 2 160
3 900 | 4 300
1 600 | 6 700
2 600 | FJ-4520 | MFJ-4520 | | | 52 | 20 | 2.5 | 35 000 | 3 330 | 38 500 | 3 900 | 1 600 | 2 600 | _ | _ | | 50 | 58
58 | 20
20 | 1.1
2.8 | 28 900
39 500 | 2 940
4 050 | 23 100
41 500 | 2 350
4 250 | 3 800
1 700 | 6 300
2 800 | FJ-5020L | MFJ-5020 | | | 58
58 | 24
24 | 1.1 | 36 000
48 000 | 3 700
4 900 | 30 500
53 000 | 3 150
5 400 | 3 800
1 700 | 6 300
2 800 | FJ-5024 | MFJ-5024 | | | | | | | | | | | | _ | _ | | 55 | 63
63 | 20
20 | 1.1
2.8 | 30 000
41 500 | 3 100
4 250 | 25 100
45 500 | 2 560
4 650 | 3 400
1 600 | 5 600
2 400 | FJ-5520 | MFJ-5520 | | | 63 | 24
24 | 1.1 | 37 500
50 500 | 3 850
5 150 | 33 500
58 000 | 3 400
5 950 | 3 400
1 600 | 5 600
2 400 | FJ-5524 | MFJ-5524 | | | 50 | | 0 | | 2 .00 | 000 | 2 700 | . 000 | 00 | | | | Numbers | | In c | ase of in | ner ring is i | used | | | out Inner Ring
(g) | |--------------------|----------------------|--|-------------------|--------------------------|-------------------|--------------------------------------|-----------------------|------------------------| | Full Compl
Open | ement Type
Closed | Bearing Numbers
of Inner Ring | | indary
ions (mm)
B | Dimens | nt and Fillet ions (mm) r_a (max.) | | orox.
Closed | | F-3016 | MF-3016 |
FIR-253020 | _
_
25 | _
20.5 | _
_
27 | _
0.3 | 26
35
35 | 31
40
39 | | F-3020
F-3026 | MF-3020
MF-3026 | FIR-253020
FIR-253026
FIR-253026 | 25
25
25 | 20.5
26.5
26.5 | 27
27
27 | 0.3
0.3
0.3 | 46
46
61 | 51
50
66 | | F-3516 | MF-3516 | _
_
FIR-303520 | _
_
30 | _
20.5 | _
34 | _
_
0.6 | 32
53
41 | 38
60
45 | | F-3520
F-3526 | MF-3520
MF-3526 | FIR-303520
FIR-303526
FIR-303526 | 30
30
30 | 20.5
26.5
26.5 | 34
34
34 | 0.6
0.6
0.6 | 42
54
70 | 49
58
76 | | F-4016 | MF-4016 | _
_
FIR-354020 | _
_
35 | _
20.5 | _
_
39 | _
_
0.6 | 34
48
46 | 43
56
51 | | F-4020
— | MF-4020
— | FIR-354020
FIR-354026 | 35
35 | 20.5
26.5 | 39
39 | 0.6
0.6 | 60
60 | 69
65 | | F-4516
F-4520 | MF-4516
MF-4520 |
FIR-404520
FIR-404520 | -
40
40 |
20.5
20.5 | 44
44 |
0.6
0.6 | 39
53
53
67 | 50
64
59
78 | | F-5020
F-5024 | MF-5024 | FIR-455020
—
—
— | 45
—
—
— | 20.5

 | 49
—
—
— | 0.6
_
_
_ | 56
81
69
98 | 71
95
84
110 | | F-5520
F-5524 | MF-5520
MF-5524 | _
_
_
_ | _
_
_
_ | _
_
_
_ | _
_
_
_ | _
_
_
_ | 60
88
72
105 | 79
105
90
125 | B 262 B 263 RLM • LM RNA • NA | Вог | undary D
(mi | | ons | (1 | Basic Load | Ratings
{kg | nf) | ١ ، | g Speeds
in ⁻¹) | Bearing | |------------------|----------------------|----------------------|--------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------| | F_{W} | D | С | $m{r}$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Without Inner Ring | | 9 | 16 | 12 | 0.3 | 6 150 | 5 400 | 625 | 550 | 24 000 | 40 000 | RLM 912 | | | 16 | 16 | 0.3 | 7 900 | 7 450 | 805 | 760 | 24 000 | 40 000 | RLM 916 | | 10 | 17
17 | 10
15 | 0.3 | 5 350
8 050 | 4 650
7 800 | 545
820 | 470
795 | 22 000
22 000 | 36 000
36 000 | RLM 101710
RLM 101715 | | 12 | 17 | 12 | 0.3 | 6 150 | 7 650 | 625 | 780 | 18 000 | 30 000 | RLM 1212 | | | 19 | 12 | 0.3 | 7
300 | 7 150 | 745 | 730 | 18 000 | 30 000 | RLM 121912 | | 14 | 22
22
22 | 13
16
20 | 0.3
0.3
0.3 | 9 150
12 100
15 500 | 9 950
12 700
17 500 | 930
1 230
1 580 | 1 010
1 300
1 790 | 20 000
15 000
15 000 | 32 000
24 000
24 000 | RLM 1416
RLM 1420 | | 15 | 20 | 15 | 0.3 | 8 100 | 11 700 | 825 | 1 190 | 14 000 | 24 000 | RLM 1515 | | | 20 | 20 | 0.3 | 11 100 | 17 400 | 1 130 | 1 770 | 14 000 | 24 000 | RLM 1520 | | | 22 | 15 | 0.3 | 9 900 | 11 100 | 1 010 | 1 140 | 14 000 | 24 000 | RLM 152215 | | 16 | 24
24
24
24 | 13
16
20
22 | 0.3
0.3
0.3
0.3 | 10 100
12 900
16 500
17 900 | 11 700
14 200
19 500
24 500 | 1 030
1 310
1 680
1 830 | 1 190
1 450
1 990
2 500 | 17 000
13 000
13 000
17 000 | 28 000
22 000
22 000
28 000 | RLM 1616
RLM 1620 | | 17 | 22 | 10 | 0.3 | 5 850 | 7 950 | 595 | 810 | 13 000 | 20 000 | RLM 1710 | | | 24 | 25 | 0.5 | 18 200 | 25 300 | 1 850 | 2 580 | 13 000 | 20 000 | RLM 172425 | | 18 | 25 | 15 | 0.5 | 11 500 | 14 300 | 1 170 | 1 450 | 12 000 | 20 000 | RLM 1815 | | | 25 | 20 | 0.5 | 15 800 | 21 500 | 1 610 | 2 190 | 12 000 | 20 000 | RLM 1820 | | 20 | 27 | 10 | 0.5 | 7 950 | 9 150 | 810 | 930 | 11 000 | 18 000 | RLM 2010 | | | 27 | 15 | 0.5 | 11 900 | 15 400 | 1 220 | 1 570 | 11 000 | 18 000 | RLM 2015 | | | 27 | 20 | 0.5 | 16 400 | 23 200 | 1 670 | 2 370 | 11 000 | 18 000 | RLM 2020 | | | 27 | 25 | 0.5 | 19 800 | 29 500 | 2 010 | 3 000 | 11 000 | 18 000 | RLM 2025 | | | 28
28
28 | 13
18
23 | 0.3
0.3
0.3 | 10 800
15 700
19 300 | 13 600
21 900
28 600 | 1 100
1 600
1 960 | 1 390
2 240
2 920 | 13 000
13 000
13 000 | 22 000
22 000
22 000 | | | 22 | 29 | 20 | 0.5 | 17 700 | 26 400 | 1 810 | 2 690 | 10 000 | 16 000 | RLM 2220 | | | 29 | 25 | 0.5 | 21 300 | 33 500 | 2 170 | 3 400 | 10 000 | 16 000 | RLM 2225 | | | 30
30
30
30 | 13
18
20
23 | 0.3
0.3
0.5
0.3 | 11 600
16 800
20 000
20 700 | 15 400
24 800
27 200
32 500 | 1 190
1 720
2 030
2 110 | 1 570
2 530
2 780
3 300 | 12 000
12 000
10 000
12 000 | 20 000
20 000
16 000
20 000 |
RLM 223020
 | Remarks If a full complement roller bearing is required, please contact NSK. | Numbers | | | Dimensions
nm) | Abutment | and Fillet Di | mensions | Mass
(kg) | | | |----------------------------------|--|----------------------|------------------------------|----------------------|----------------------|--------------------------|----------------------------------|----------------------------------|--| | Without Inner Ring | With Inner Ring | d | В | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | appr
Without Inner Ring | | | | = | LM 91612-1
— | 6
— | 12
— | 8
— | 14
14 | 0.3
0.3 | 0.009
0.011 | 0.013 | | | = | _ | _ | _ | _
_ | 15
15 | 0.3
0.3 | 0.008
0.012 | _ | | | _ | LM 1212
LM 121912 | 8
8 | 12.2
12.2 | 10
10 | 15
17 | 0.3
0.3 | 0.007
0.011 | 0.013
0.017 | | | RNA 4900
 | NA 4900
LM 1416
LM 1420 | 10
10
10 | 13
16.2
20.2 | 12
12
12 | 20
20
20 | 0.3
0.3
0.3 | 0.016
0.019
0.024 | 0.024
0.028
0.036 | | | | LM 1515
LM 1520
LM 152215 | 10
10
10 | 15.2
20.2
15.2 | 12
12
12 | 18
18
20 | 0.3
0.3
0.3 | 0.011
0.015
0.016 | 0.022
0.03
0.027 | | | RNA 4901
—
RNA 6901 | NA 4901
LM 1616
LM 1620
NA 6901 | 12
12
12
12 | 13
16.2
20.2
22 | 14
14
14
14 | 22
22
22
22 | 0.3
0.3
0.3
0.3 | 0.018
0.021
0.027
0.03 | 0.027
0.032
0.041
0.045 | | | = | LM 1710
LM 172425 | 12
12 | 10.2
25.2 | 14
16 | 20
20 | 0.3
0.5 | 0.008
0.03 | 0.017
0.052 | | | _ | LM 1815
LM 1820 | 15
15 | 15.2
20.2 | 19
19 | 21
21 | 0.5
0.5 | 0.019
0.025 | 0.028
0.037 | | | _
_
_ | LM 2010
LM 2015
LM 2020
LM 2025 | 15
15
15
15 | 10.2
15.2
20.2
25.2 | 19
19
19
19 | 23
23
23
23 | 0.5
0.5
0.5
0.5 | 0.014
0.021
0.028
0.035 | 0.025
0.037
0.049
0.061 | | | RNA 4902
RNA 5902
RNA 6902 | NA 4902
NA 5902
NA 6902 | 15
15
15 | 13
18
23 | 17
17
17 | 26
26
26 | 0.3
0.3
0.3 | 0.021
0.032
0.039 | 0.035
0.051
0.064 | | | = | LM 2220
LM 2225 | 17
17 | 20.2
25.2 | 21
21 | 25
25 | 0.5
0.5 | 0.03
0.038 | 0.054
0.068 | | | RNA 4903
RNA 5903
RNA 6903 | NA 4903
NA 5903
LM 223020
NA 6903 | 17
17
17
17 | 13
18
20.2
23 | 19
19
21
19 | 28
28
26
28 | 0.3
0.3
0.5
0.3 | 0.023
0.034
0.035
0.041 | 0.038
0.055
0.06
0.068 | | RLM • LM RNA • NA Inscribed Circle Diameter 25 – 35 mm | Вог | Boundary Dimensions
(mm) | | ons | | Basic Load | Ratings
{kc | vf) | ` | J Speeds
in-1) | Bearing | |------------------|-----------------------------|----------------|-------------------|----------------------------|----------------------------|-------------------------|-------------------------|-------------------------|----------------------------|--------------------| | F_{W} | D | C | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Without Inner Ring | | 25 | 32 | 12 | 0.5 | 10 300 | 13 700 | 1 050 | 1 400 | 8 500 | 14 000 | RLM 2512 | | | 32 | 20 | 0.5 | 18 800 | 29 700 | 1 920 | 3 050 | 8 500 | 14 000 | RLM 2520 | | | 32 | 25 | 0.5 | 22 700 | 37 500 | 2 310 | 3 850 | 8 500 | 14 000 | RLM 2525 | | | 37 | 17 | 0.3 | 19 700 | 22 900 | 2 010 | 2 340 | 11 000 | 18 000 | _ | | | 37 | 23 | 0.3 | 27 800 | 35 500 | 2 830 | 3 650 | 11 000 | 18 000 | _ | | | 37 | 30 | 0.3 | 36 500 | 50 500 | 3 700 | 5 150 | 11 000 | 18 000 | _ | | 28 | 35 | 20 | 0.5 | 19 900 | 33 000 | 2 030 | 3 350 | 7 500 | 12 000 | RLM 2820 | | | 35 | 25 | 0.5 | 23 900 | 42 000 | 2 440 | 4 250 | 7 500 | 12 000 | RLM 2825 | | | 37 | 30 | 0.5 | 34 000 | 52 500 | 3 450 | 5 350 | 7 500 | 12 000 | RLM 283730 | | | 39
39
39 | 17
23
30 | 0.3
0.3
0.3 | 22 400
28 300
37 000 | 30 500
41 500
58 500 | 2 290
2 890
3 800 | 3 150
4 200
6 000 | 9 500
9 500
9 500 | 15 000
15 000
15 000 | | | 30 | 37 | 25 | 0.5 | 24 500 | 44 000 | 2 490 | 4 500 | 7 100 | 12 000 | RLM 3025 | | | 40 | 20 | 0.5 | 25 000 | 36 000 | 2 550 | 3 650 | 7 100 | 12 000 | RLM 304020 | | | 40 | 30 | 0.5 | 35 000 | 56 000 | 3 600 | 5 700 | 7 100 | 12 000 | RLM 304030 | | | 42 | 17 | 0.3 | 21 400 | 26 800 | 2 180 | 2 740 | 9 000 | 14 000 | _ | | | 42 | 23 | 0.3 | 30 000 | 41 500 | 3 100 | 4 250 | 9 000 | 14 000 | _ | | | 42 | 30 | 0.3 | 39 500 | 59 000 | 4 050 | 6 050 | 9 000 | 14 000 | _ | | 32 | 42 | 20 | 0.5 | 25 800 | 38 000 | 2 630 | 3 900 | 6 700 | 11 000 | RLM 3220 | | | 42 | 30 | 0.5 | 36 500 | 59 000 | 3 700 | 6 050 | 6 700 | 11 000 | RLM 3230 | | | 45 | 17 | 0.3 | 22 200 | 28 700 | 2 270 | 2 930 | 8 500 | 13 000 | _ | | | 45 | 23 | 0.3 | 31 500 | 44 500 | 3 200 | 4 550 | 8 500 | 13 000 | _ | | | 45 | 30 | 0.3 | 41 000 | 63 500 | 4 200 | 6 450 | 8 500 | 13 000 | _ | | 35 | 42 | 20 | 0.5 | 22 300 | 41 000 | 2 270 | 4 200 | 6 300 | 10 000 | RLM 3520 | | | 42 | 30 | 0.5 | 31 000 | 63 500 | 3 200 | 6 450 | 6 300 | 10 000 | RLM 3530 | | | 45 | 20 | 0.5 | 27 500 | 42 500 | 2 800 | 4 350 | 6 300 | 10 000 | RLM 354520 | | | 45 | 25 | 0.5 | 33 000 | 54 500 | 3 400 | 5 550 | 6 300 | 10 000 | RLM 354525 | | | 45 | 30 | 0.5 | 38 500 | 66 000 | 3 950 | 6 750 | 6 300 | 10 000 | RLM 354530 | | | 47
47
47 | 17
23
30 | 0.3
0.3
0.3 | 23 900
33 500
44 000 | 32 500
50 500
71 500 | 2 430
3 450
4 500 | 3 300
5 150
7 300 | 7 500
7 500
7 500 | 12 000
12 000
12 000 | | **Remarks** If a full complement roller bearing is required, please contact NSK. | Numbers | I | | Dimensions
nm) | Abutment | and Fillet Dir
(mm) | mensions | Ma:
(kg | | |--------------------|-----------------|----|-------------------|-----------------|------------------------|-----------------|----------------------------|-------| | Without Inner Ring | With Inner Ring | d | В | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | appr
Without Inner Ring | | | _ | LM 2512 | 20 | 12.2 | 24 | 28 | 0.5 | 0.02 | 0.036 | | _ | LM 2520 | 20 | 20.2 | 24 | 28 | 0.5 | 0.034 | 0.061 | | _ | LM 2525 | 20 | 25.2 | 24 | 28 | 0.5 | 0.042 | 0.076 | | RNA 4904 | NA 4904 | 20 | 17 | 22 | 35 | 0.3 | 0.055 | 0.077 | | RNA 5904 | NA 5904 | 20 | 23 | 22 | 35 | 0.3 | 0.089 | 0.12 | | RNA 6904 | NA 6904 | 20 | 30 | 22 | 35 | 0.3 | 0.098 | 0.14 | | = | LM 2820 | 22 | 20.2 | 26 | 31 | 0.5 | 0.038 | 0.062 | | | LM 2825 | 22 | 25.2 | 26 | 31 | 0.5 | 0.047 | 0.092 | | | LM 283730 | 22 | 30.2 | 26 | 33 | 0.5 | 0.075 | 0.13 | | RNA 49/22 | NA 49/22 | 22 | 17 | 24 | 37 | 0.3 | 0.056 | 0.086 | | RNA 59/22 | NA 59/22 | 22 | 23 | 24 | 37 | 0.3 | 0.091 | 0.135 | | RNA 69/22 | NA 69/22 | 22 | 30 | 24 | 37 | 0.3 | 0.096 | 0.15 | | = | LM 3025 | 25 | 25.2 | 29 | 33 | 0.5 | 0.05 | 0.092 | | | LM 304020 | 25 | 20.2 | 29 | 36 | 0.5 | 0.06 | 0.093 | | | LM 304030 | 25 | 30.2 | 29 | 36 | 0.5 | 0.09 | 0.14 | | RNA 4905 | NA 4905 | 25 | 17 | 27 | 40 | 0.3 | 0.063 | 0.091 | | RNA 5905 | NA 5905 | 25 | 23 | 27 | 40 | 0.3 | 0.10 | 0.14 | | RNA 6905 | NA 6905 | 25 | 30 | 27 | 40 | 0.3 | 0.11 | 0.16 | | _ | LM 3220 | 28 | 20.2 | 32 | 38 | 0.5 | 0.064 | 0.09 | | | LM 3230 | 28 | 30.2 | 32 | 38 | 0.5 | 0.096 | 0.14 | | RNA 49/28 | NA 49/28 | 28 | 17 | 30 | 43 | 0.3 | 0.076 | 0.099 | | RNA 59/28 | NA 59/28 | 28 | 23 | 30 | 43 | 0.3 | 0.11 | 0.145 | | RNA 69/28 | NA 69/28 | 28 | 30 | 30 | 43 | 0.3 | 0.13 | 0.175 | | Ξ | LM 3520 | 30 | 20.2 | 34 | 38 | 0.5 | 0.046 | 0.085 | | | LM 3530 | 30 | 30.2 | 34 | 38 | 0.5 | 0.07 | 0.13
| | = | LM 354520 | 30 | 20.2 | 34 | 41 | 0.5 | 0.069 | 0.11 | | | LM 354525 | 30 | 25.2 | 34 | 41 | 0.5 | 0.086 | 0.135 | | | LM 354530 | 30 | 30.2 | 34 | 41 | 0.5 | 0.10 | 0.16 | | RNA 4906 | NA 4906 | 30 | 17 | 32 | 45 | 0.3 | 0.072 | 0.105 | | RNA 5906 | NA 5906 | 30 | 23 | 32 | 45 | 0.3 | 0.11 | 0.15 | | RNA 6906 | NA 6906 | 30 | 30 | 32 | 45 | 0.3 | 0.13 | 0.19 | B 266 B 267 RLM • LM RNA • NA RLM | Вог | undary D | | ons | | Basic Load | 3 | | ١ ٠ | Speeds | Bearing | |------------|----------------|----------------|--------------------|----------------------------|------------------------------|-------------------------|---------------------------|-------------------------|----------------------------|----------------------| | $F_{ m W}$ | (mr | m)
C | r | $C_{ m r}$ | (N) $C_{0\mathrm{r}}$ | $C_{ m r}$ | gf} $C_{0\mathrm{r}}$ | (mi
Grease | n ⁻¹)
Oil | Without Inner Ring | | 37 | 47
47 | 20
30 | min.
0.6
0.6 | 28 200
39 500 | 45 000
69 500 | 2 880
4 050 | 4 550
7 100 | 6 000
6 000 | 9 500
9 500 | RLM 3720
RLM 3730 | | 38 | 48 | 20 | 0.6 | 29 000 | 47 000 | 2 960 | 4 800 | 5 600 | 9 000 | RLM 3820 | | | 48 | 30 | 0.6 | 41 000 | 73 000 | 4 150 | 7 450 | 5 600 | 9 000 | RLM 3830 | | 40 | 50 | 20 | 0.6 | 29 700 | 49 000 | 3 050 | 5 000 | 5 300 | 9 000 | RLM 4020 | | | 50 | 30 | 0.6 | 42 000 | 76 500 | 4 250 | 7 800 | 5 300 | 9 000 | RLM 4030 | | | 52 | 20 | 0.6 | 29 900 | 45 000 | 3 050 | 4 600 | 6 700 | 10 000 | _ | | | 52 | 27 | 0.6 | 40 500 | 66 000 | 4 100 | 6 750 | 6 700 | 10 000 | _ | | | 52 | 36 | 0.6 | 56 000 | 101 000 | 5 700 | 10 300 | 6 700 | 10 000 | _ | | 42 | 55
55
55 | 20
27
36 | 0.6
0.6
0.6 | 30 500
41 500
57 500 | 47 500
69 500
106 000 | 3 100
4 200
5 850 | 4 800
7 100
10 900 | 6 300
6 300
6 300 | 10 000
10 000
10 000 | = | | 45 | 55 | 20 | 0.6 | 31 000 | 53 500 | 3 150 | 5 500 | 4 800 | 8 000 | RLM 4520 | | | 55 | 30 | 0.6 | 43 500 | 83 500 | 4 450 | 8 500 | 4 800 | 8 000 | RLM 4530 | | 48 | 62
62
62 | 22
30
40 | 0.6
0.6
0.6 | 39 000
54 500
72 000 | 61 500
95 000
137 000 | 3 950
5 550
7 350 | 6 300
9 700
13 900 | 5 600
5 600
5 600 | 9 000
9 000
9 000 | | | 50 | 62 | 20 | 0.6 | 35 500 | 60 500 | 3 600 | 6 150 | 4 300 | 7 100 | RLM 506220 | | | 62 | 25 | 0.6 | 43 000 | 77 500 | 4 400 | 7 900 | 4 300 | 7 100 | RLM 506225 | | 52 | 68 | 22 | 0.6 | 41 000 | 67 500 | 4 150 | 6 900 | 5 000 | 8 000 | _ | | | 68 | 30 | 0.6 | 57 000 | 104 000 | 5 800 | 10 600 | 5 000 | 8 000 | _ | | | 68 | 40 | 0.6 | 76 000 | 149 000 | 7 750 | 15 200 | 5 000 | 8 000 | _ | | 55 | 65 | 30 | 0.6 | 49 000 | 104 000 | 5 000 | 10 600 | 4 000 | 6 300 | RLM 5530 | | | 67 | 20 | 0.6 | 38 000 | 68 000 | 3 850 | 6 900 | 4 000 | 6 300 | RLM 556720 | | 58 | 72
72
72 | 22
30
40 | 0.6
0.6
0.6 | 42 500
59 500
79 000 | 73 500
113 000
163 000 | 4 350
6 050
8 050 | 7 500
11 500
16 600 | 4 500
4 500
4 500 | 7 100
7 100
7 100 | Ξ | | | | | | | | | | | | | RNA 72 40 0.6 79 000 163 000 8 050 16 Remarks If a full complement roller bearing is required, please contact NSK. | Numbers | | | Dimensions
nm) | Abutment | and Fillet Di
(mm) | mensions | Ma
(kạ | | |--------------------|-----------------|----|-------------------|-----------------|-----------------------|-----------------|----------------------------|-----------------------| | Without Inner Ring | With Inner Ring | d | В | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | appr
Without Inner Ring | OX.
With Inner Rin | | = | LM 3720 | 32 | 20.3 | 36 | 43 | 0.6 | 0.072 | 0.115 | | | LM 3730 | 32 | 30.3 | 36 | 43 | 0.6 | 0.11 | 0.17 | | _ | LM 3820 | 32 | 20.3 | 36 | 44 | 0.6 | 0.074 | 0.125 | | | LM 3830 | 32 | 30.3 | 36 | 44 | 0.6 | 0.11 | 0.195 | | = | LM 4020 | 35 | 20.3 | 39 | 46 | 0.6 | 0.078 | 0.125 | | | LM 4030 | 35 | 30.3 | 39 | 46 | 0.6 | 0.12 | 0.19 | | RNA 49/32 | NA 49/32 | 32 | 20 | 36 | 48 | 0.6 | 0.092 | 0.16 | | RNA 59/32 | NA 59/32 | 32 | 27 | 36 | 48 | 0.6 | 0.15 | 0.24 | | RNA 69/32 | NA 69/32 | 32 | 36 | 36 | 48 | 0.6 | 0.17 | 0.29 | | RNA 4907 | NA 4907 | 35 | 20 | 39 | 51 | 0.6 | 0.11 | 0.17 | | RNA 5907 | NA 5907 | 35 | 27 | 39 | 51 | 0.6 | 0.175 | 0.25 | | RNA 6907 | NA 6907 | 35 | 36 | 39 | 51 | 0.6 | 0.20 | 0.315 | | _ | LM 4520 | 40 | 20.3 | 44 | 51 | 0.6 | 0.086 | 0.14 | | | LM 4530 | 40 | 30.3 | 44 | 51 | 0.6 | 0.13 | 0.21 | | RNA 4908 | NA 4908 | 40 | 22 | 44 | 58 | 0.6 | 0.15 | 0.24 | | RNA 5908 | NA 5908 | 40 | 30 | 44 | 58 | 0.6 | 0.23 | 0.355 | | RNA 6908 | NA 6908 | 40 | 40 | 44 | 58 | 0.6 | 0.265 | 0.435 | | = | LM 506220 | 42 | 20.3 | 46 | 58 | 0.6 | 0.12 | 0.21 | | | LM 506225 | 42 | 25.3 | 46 | 58 | 0.6 | 0.155 | 0.265 | | RNA 4909 | NA 4909 | 45 | 22 | 49 | 64 | 0.6 | 0.19 | 0.28 | | RNA 5909 | NA 5909 | 45 | 30 | 49 | 64 | 0.6 | 0.27 | 0.39 | | RNA 6909 | NA 6909 | 45 | 40 | 49 | 64 | 0.6 | 0.335 | 0.495 | | = | LM 5530 | 45 | 30.3 | 49 | 61 | 0.6 | 0.16 | 0.34 | | | LM 556720 | 45 | 20.3 | 49 | 63 | 0.6 | 0.13 | 0.25 | | RNA 4910 | NA 4910 | 50 | 22 | 54 | 68 | 0.6 | 0.18 | 0.295 | | RNA 5910 | NA 5910 | 50 | 30 | 54 | 68 | 0.6 | 0.25 | 0.405 | | RNA 6910 | NA 6910 | 50 | 40 | 54 | 68 | 0.6 | 0.32 | 0.53 | # RNA · NA Inscribed Circle Diameter 63 – 120 mm | Вс | oundary D | | ons | | Basic Loa | 0 | gf} | Limiting
(mir | • | Bearing | |------------|-------------------|----------------|-----------------|------------------------------|-------------------------------|----------------------------|----------------------------|-------------------------|-------------------------|----------------------------------| | $F_{ m W}$ | D | C | r
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Without Inner Ring | | 63 | 80 | 25 | 1 | 53 500 | 87 500 | 5 450 | 8 950 | 4 000 | 6 700 | RNA 4911 | | | 80 | 34 | 1 | 73 500 | 133 000 | 7 500 | 13 600 | 4 000 | 6 700 | RNA 5911 | | | 80 | 45 | 1 | 93 500 | 181 000 | 9 550 | 18 500 | 4 000 | 6 700 | RNA 6911 | | 68 | 85 | 25 | 1 | 56 000 | 95 500 | 5 700 | 9 750 | 3 800 | 6 300 | RNA 4912 | | | 85 | 34 | 1 | 77 500 | 145 000 | 7 900 | 14 800 | 3 800 | 6 300 | RNA 5912 | | | 85 | 45 | 1 | 98 000 | 197 000 | 10 000 | 20 100 | 3 800 | 6 300 | RNA 6912 | | 72 | 90 | 25 | 1 | 58 500 | 103 000 | 5 950 | 10 500 | 3 600 | 5 600 | RNA 4913 | | | 90 | 34 | 1 | 81 000 | 157 000 | 8 250 | 16 000 | 3 600 | 5 600 | RNA 5913 | | | 90 | 45 | 1 | 103 000 | 213 000 | 10 500 | 21 800 | 3 600 | 5 600 | RNA 6913 | | 80 | 100 | 30 | 1 | 80 500 | 143 000 | 8 200 | 14 600 | 3 200 | 5 300 | RNA 4914 | | | 100 | 40 | 1 | 107 000 | 206 000 | 10 900 | 21 000 | 3 200 | 5 300 | RNA 5914 | | | 100 | 54 | 1 | 143 000 | 298 000 | 14 500 | 30 500 | 3 200 | 5 300 | RNA 6914 | | 85 | 105 | 30 | 1 | 84 000 | 155 000 | 8 600 | 15 800 | 3 000 | 5 000 | RNA 4915 | | | 105 | 40 | 1 | 112 000 | 222 000 | 11 400 | 22 700 | 3 000 | 5 000 | RNA 5915 | | | 105 | 54 | 1 | 149 000 | 325 000 | 15 200 | 33 000 | 3 000 | 5 000 | RNA 6915 | | 90 | 110 | 30 | 1 | 87 500 | 166 000 | 8 950 | 17 000 | 2 800 | 4 500 | RNA 4916 | | | 110 | 40 | 1 | 116 000 | 239 000 | 11 900 | 24 400 | 2 800 | 4 500 | RNA 5916 | | | 110 | 54 | 1 | 157 000 | 350 000 | 16 000 | 36 000 | 2 800 | 4 500 | RNA 6916 | | 100 | 120 | 35 | 1.1 | 104 000 | 214 000 | 10 600 | 21 800 | 2 600 | 4 000 | RNA 4917 | | | 120 | 46 | 1.1 | 138 000 | 310 000 | 14 100 | 31 500 | 2 600 | 4 000 | RNA 5917 | | | 120 | 63 | 1.1 | 174 000 | 415 000 | 17 800 | 42 500 | 2 600 | 4 000 | RNA 6917 | | 105 | 125 | 35 | 1.1 | 108 000 | 228 000 | 11 000 | 23 300 | 2 400 | 4 000 | RNA 4918 | | | 125 | 46 | 1.1 | 143 000 | 330 000 | 14 600 | 33 500 | 2 400 | 4 000 | RNA 5918 | | | 125 | 63 | 1.1 | 181 000 | 445 000 | 18 400 | 45 000 | 2 400 | 4 000 | RNA 6918 | | 110 | 130 | 35 | 1.1 | 111 000 | 242 000 | 11 400 | 24 700 | 2 200 | 3 800 | RNA 4919 | | | 130 | 46 | 1.1 | 148 000 | 350 000 | 15 100 | 35 500 | 2 200 | 3 800 | RNA 5919 | | | 130 | 63 | 1.1 | 187 000 | 470 000 | 19 100 | 48 000 | 2 200 | 3 800 | RNA 6919 | | 115
120 | 140
140
140 | 40
54
30 | 1.1
1.1
1 | 144 000
193 000
99 500 | 295 000
430 000
214 000 | 14 700
19 700
10 100 | 30 000
43 500
21 900 | 2 200
2 200
2 000 | 3 600
3 600
3 400 | RNA 4920
RNA 5920
RNA 4822 | | Numbers | | Dimensions
nm) | Abutment | and Fillet Din
(mm) | nensions | Ma:
(kg | | |-----------------|-----|-------------------|-----------------|------------------------|-----------------|----------------------------|------------------------| | With Inner Ring | d | В | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | appr
Without Inner Ring | ox.
With Inner Ring | | NA 4911 | 55 | 25 | 60 | 75 | 1 | 0.26 | 0.40 | | NA 5911 | 55 | 34 | 60 | 75 | 1 | 0.37 | 0.56 | | NA 6911 | 55 | 45 | 60 | 75 | 1 | 0.475 | 0.73 | | NA 4912 | 60 | 25 | 65 | 80 | 1 | 0.28 | 0.435 | | NA 5912 | 60 | 34 | 65 | 80 | 1 | 0.415 | 0.625 | | NA 6912 | 60 | 45 | 65 | 80 | 1 | 0.485 | 0.76 | | NA 4913 | 65 | 25 | 70 | 85 | 1 | 0.32 | 0.465 | | NA 5913 | 65 | 34 | 70 | 85 | 1 | 0.48 | 0.675 | | NA 6913 | 65 | 45 | 70 | 85 | 1 | 0.53 | 0.79 | | NA 4914 | 70 | 30 | 75 | 95 | 1 | 0.47 | 0.74 | | NA 5914 | 70 | 40 | 75 | 95 | 1 | 0.69 | 1.05 | | NA 6914 | 70 | 54 | 75 | 95 | 1 | 0.89 | 1.4 | | NA 4915 | 75 | 30 | 80 | 100 | 1 | 0.5 | 0.79 | | NA 5915 | 75 | 40 | 80 | 100 | 1 | 0.735 | 1.1 | | NA 6915 | 75 | 54 | 80 | 100 | 1 | 0.96 | 1.5 | | NA 4916 | 80 | 30 | 85 | 105 | 1 | 0.53 | 0.835 | | NA 5916 | 80 | 40 | 85 | 105 | 1 | 0.75 | 1.15 | | NA 6916 | 80 | 54 | 85 | 105 | 1 | 0.99 | 1.55 | | NA 4917 | 85 | 35 | 91.5 | 113.5 | 1 | 0.68 | 1.25 | | NA 5917 | 85 | 46 | 91.5 | 113.5 | 1 | 0.99 | 1.75 | | NA 6917 | 85 | 63 | 91.5 | 113.5 | 1 | 1.2 | 2.25 | | NA 4918 | 90 | 35 | 96.5 | 118.5 | 1 | 0.72 | 1.35 | | NA 5918 | 90 | 46 | 96.5 | 118.5 | 1 | 1.05 | 1.85 | | NA 6918 | 90
| 63 | 96.5 | 118.5 | 1 | 1.35 | 2.45 | | NA 4919 | 95 | 35 | 101.5 | 123.5 | 1 | 0.74 | 1.4 | | NA 5919 | 95 | 46 | 101.5 | 123.5 | 1 | 1.15 | 2.0 | | NA 6919 | 95 | 63 | 101.5 | 123.5 | 1 | 1.5 | 2.65 | | NA 4920 | 100 | 40 | 106.5 | 133.5 | 1 | 1.15 | 1.95 | | NA 5920 | 100 | 54 | 106.5 | 133.5 | 1 | 1.8 | 2.85 | | NA 4822 | 110 | 30 | 115 | 135 | 1 | 0.67 | 1.1 | B 270 B 271 RNA · NA Inscribed Circle Diameter 125 – 390 mm | Вс | undary D
(mi | | ons | | Basic Load R
N) | 5 | kgf} | Limiting
(mir | • | Bearing | |------------|-----------------|----|-------------|------------|--------------------|------------|-------------------|------------------|-------|--------------------| | $F_{ m W}$ | D | C | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Without Inner Ring | | 125 | 150 | 40 | 1.1 | 149 000 | 315 000 | 15 200 | 32 500 | 2 000 | 3 200 | RNA 4922 | | | 150 | 54 | 1.1 | 200 000 | 460 000 | 20 300 | 47 000 | 2 000 | 3 200 | RNA 5922 | | 130 | 150 | 30 | 1 | 105 000 | 238 000 | 10 700 | 24 300 | 1 900 | 3 200 | RNA 4824 | | 135 | 165 | 45 | 1.1 | 192 000 | 395 000 | 19 600 | 40 500 | 1 900 | 3 000 | RNA 4924 | | | 165 | 60 | 1.1 | 253 000 | 565 000 | 25 800 | 58 000 | 1 900 | 3 000 | RNA 5924 | | 145 | 165 | 35 | 1.1 | 127 000 | 315 000 | 12 900 | 32 000 | 1 700 | 2 800 | RNA 4826 | | 150 | 180 | 50 | 1.5 | 228 000 | 515 000 | 23 200 | 52 500 | 1 700 | 2 800 | RNA 4926 | | | 180 | 67 | 1.5 | 299 000 | 725 000 | 30 500 | 74 000 | 1 700 | 2 800 | RNA 5926 | | 155 | 175 | 35 | 1.1 | 133 000 | 340 000 | 13 600 | 35 000 | 1 600 | 2 600 | RNA 4828 | | 160 | 190 | 50 | 1.5 | 235 000 | 545 000 | 24 000 | 55 500 | 1 600 | 2 600 | RNA 4928 | | | 190 | 67 | 1.5 | 310 000 | 775 000 | 31 500 | 79 000 | 1 600 | 2 600 | RNA 5928 | | 165 | 190 | 40 | 1.1 | 180 000 | 440 000 | 18 300 | 45 000 | 1 500 | 2 400 | RNA 4830 | | 175 | 200 | 40 | 1.1 | 184 000 | 465 000 | 18 700 | 47 000 | 1 400 | 2 200 | RNA 4832 | | 185 | 215 | 45 | 1.1 | 224 000 | 540 000 | 22 900 | 55 000 | 1 400 | 2 200 | RNA 4834 | | 195 | 225 | 45 | 1.1 | 230 000 | 570 000 | 23 500 | 58 000 | 1 300 | 2 000 | RNA 4836 | | 210 | 240 | 50 | 1.5 | 268 000 | 705 000 | 27 300 | 72 000 | 1 200 | 1 900 | RNA 4838 | | 220 | 250 | 50 | 1.5 | 274 000 | 740 000 | 27 900 | 75 500 | 1 100 | 1 800 | RNA 4840 | | 240 | 270 | 50 | 1.5 | 286 000 | 805 000 | 29 100 | 82 000 | 1 000 | 1 700 | RNA 4844 | | 265 | 300 | 60 | 2 | 375 000 | 1 070 000 | 38 500 | 109 000 | 950 | 1 500 | RNA 4848 | | 285 | 320 | 60 | 2 | 395 000 | 1 160 000 | 40 000 | 118 000 | 900 | 1 400 | RNA 4852 | | 305 | 350 | 69 | 2 | 510 000 | 1 390 000 | 52 000 | 142 000 | 800 | 1 300 | RNA 4856 | | 330 | 380 | 80 | 2.1 | 660 000 | 1 810 000 | 67 500 | 185 000 | 750 | 1 200 | RNA 4860 | | 350 | 400 | 80 | 2.1 | 675 000 | 1 900 000 | 69 000 | 194 000 | 710 | 1 100 | RNA 4864 | | 370 | 420 | 80 | 2.1 | 690 000 | 1 990 000 | 70 500 | 203 000 | 670 | 1 100 | RNA 4868 | | 390 | 440 | 80 | 2.1 | 705 000 | 2 080 000 | 72 000 | 212 000 | 630 | 1 000 | RNA 4872 | Remarks If a full complement roller bearing is required, please contact NSK. | Numbers | | Dimensions
nm) | Abutment | and Fillet Dir
(mm) | mensions | Ma
(kự | | |-----------------|-----|-------------------|-----------------|------------------------|-----------------|----------------------------|------| | With Inner Ring | d | В | $d_{ m a}$ min. | $D_{ m a}$ max. | $r_{ m a}$ max. | appr
Without Inner Ring | | | NA 4922 | 110 | 40 | 116.5 | 143.5 | 1 | 1.25 | 2.1 | | NA 5922 | 110 | 54 | 116.5 | 143.5 | 1 | 1.95 | 3.05 | | NA 4824 | 120 | 30 | 125 | 145 | 1 | 0.71 | 1.15 | | NA 4924 | 120 | 45 | 126.5 | 158.5 | 1 | 1.9 | 2.9 | | NA 5924 | 120 | 60 | 126.5 | 158.5 | 1 | 2.7 | 4.05 | | NA 4826 | 130 | 35 | 136.5 | 158.5 | 1 | 0.92 | 1.8 | | NA 4926 | 130 | 50 | 138 | 172 | 1.5 | 2.3 | 4.0 | | NA 5926 | 130 | 67 | 138 | 172 | 1.5 | 3.3 | 5.55 | | NA 4828 | 140 | 35 | 146.5 | 168.5 | 1 | 0.98 | 1.9 | | NA 4928 | 140 | 50 | 148 | 182 | 1.5 | 2.45 | 4.25 | | NA 5928 | 140 | 67 | 148 | 182 | 1.5 | 3.55 | 6.0 | | NA 4830 | 150 | 40 | 156.5 | 183.5 | 1 | 1.6 | 2.75 | | NA 4832 | 160 | 40 | 166.5 | 193.5 | 1 | 1.75 | 2.95 | | NA 4834 | 170 | 45 | 176.5 | 208.5 | 1 | 2.55 | 4.0 | | NA 4836 | 180 | 45 | 186.5 | 218.5 | 1 | 2.65 | 4.2 | | NA 4838 | 190 | 50 | 198 | 232 | 1.5 | 3.2 | 5.6 | | NA 4840 | 200 | 50 | 208 | 242 | 1.5 | 3.35 | 5.9 | | NA 4844 | 220 | 50 | 228 | 262 | 1.5 | 3.65 | 6.45 | | NA 4848 | 240 | 60 | 249 | 291 | 2 | 5.45 | 10 | | NA 4852 | 260 | 60 | 269 | 311 | 2 | 5.9 | 11 | | NA 4856 | 280 | 69 | 289 | 341 | 2 | 9.5 | 15.5 | | NA 4860 | 300 | 80 | 311 | 369 | 2 | 13 | 22 | | NA 4864 | 320 | 80 | 331 | 389 | 2 | 13.5 | 23.5 | | NA 4868 | 340 | 80 | 351 | 409 | 2 | 14 | 24.5 | | NA 4872 | 360 | 80 | 371 | 429 | 2 | 15 | 26 | FNTA (Thrust Cage & Needle Roller Assemblies) Thrust raceway washers FTRA (s=1.0) FTRB (s=1.5) FTRC (s=2.0) FTRD (s=2.5) FTRE (s=3.0) Bore Diameter 10 – 100 mm | | ry Dimensions
(mm) | | (| Basic Load | 3 | gf} | Limiting Speeds
(min ⁻¹) | | | |-----------------------|---------------------------|------------------|--------------------------------------|--|-----------------------------------|--------------------------------------|---|---|---| | D_{c1} , D_{p1} | $D_{\rm c}$, $D_{\rm p}$ | D_{W} | C_{a} | C_{0a} | $C_{\rm a}$ | C_{0a} | Oil | Bearing Numbers | $s=1.0^{\pm0.05}$ | | 10 | 24 | 2 | 7 750 | 23 000 | 790 | 2 350 | 17 000 | FNTA-1024 | *FTRA-1024 | | 12 | 26 | 2 | 8 350 | 26 300 | 855 | 2 680 | 16 000 | FNTA-1226 | FTRA-1226 | | 15 | 28 | 2 | 7 950 | 25 800 | 810 | 2 630 | 15 000 | FNTA-1528 | FTRA-1528 | | 16 | 29 | 2 | 8 200 | 27 100 | 835 | 2 770 | 14 000 | FNTA-1629 | FTRA-1629 | | 17 | 30 | 2 | 8 400 | 28 400 | 855 | 2 900 | 14 000 | FNTA-1730 | FTRA-1730 | | 18 | 31 | 2 | 8 600 | 29 700 | 875 | 3 050 | 13 000 | FNTA-1831 | FTRA-1831 | | 20 | 35 | 2 | 11 900 | 47 000 | 1 220 | 4 800 | 12 000 | FNTA-2035 | FTRA-2035 | | 25 | 42 | 2 | 14 800 | 66 000 | 1 510 | 6 750 | 9 500 | FNTA-2542 | FTRA-2542 | | 30 | 47 | 2 | 16 500 | 79 000 | 1 680 | 8 100 | 8 500 | FNTA-3047 | FTRA-3047 | | 35 | 52 | 2 | 17 300 | 88 000 | 1 770 | 8 950 | 8 000 | FNTA-3552 | FTRA-3552 | | 40 | 60 | 3 | 26 900 | 122 000 | 2 740 | 12 400 | 6 700 | FNTA-4060 | FTRA-4060 | | 45 | 65 | 3 | 28 700 | 137 000 | 2 930 | 14 000 | 6 300 | FNTA-4565 | FTRA-4565 | | 50 | 70 | 3 | 30 500 | 152 000 | 3 100 | 15 500 | 5 600 | FNTA-5070 | FTRA-5070 | | 55 | 78 | 3 | 37 000 | 201 000 | 3 750 | 20 500 | 5 300 | FNTA-5578 | FTRA-5578 | | 60 | 85 | 3 | 43 000 | 252 000 | 4 400 | 25 700 | 4 800 | FNTA-6085 | FTRA-6085 | | 65 | 90 | 3 | 45 500 | 274 000 | 4 600 | 28 000 | 4 500 | FNTA-6590 | FTRA-6590 | | 70 | 95 | 4 | 59 000 | 320 000 | 6 000 | 33 000 | 4 300 | FNTA-7095 | FTRA-7095 | | 75 | 100 | 4 | 60 000 | 335 000 | 6 150 | 34 500 | 4 000 | FNTA-75100 | FTRA-75100 | | 80
85
90
100 | 105
110
120
135 | 4
4
4 | 63 000
64 500
80 000
98 500 | 365 000
380 000
515 000
695 000 | 6 450
6 550
8 150
10 000 | 37 500
39 000
52 500
71 000 | 3 800
3 600
3 400
3 000 | FNTA-80105
FNTA-85110
FNTA-90120
FNTA-100135 | FTRA-80105
FTRA-85110
FTRA-90120
FTRA-100135 | ^(*) The tolerance of this bearing bore diameter is +0.025 to +0.175mm and outside diameter tolerance is | Bearing Numbers | of Matching Bearing F | Rings | | Roller Conta | | Ma
(g | | |-----------------------------|-----------------------|-----------------|-----------------|----------------------------------|-------|--------------|-----| | $S=1.5^{\ \ 0}_{\ \ -0.08}$ | $s=2.0^{-0.08}$ | $S=2.5^{+0.08}$ | $s=3.0^{-0.08}$ | Outside Diameter $D_{ m e}$ min. | | appr
FNTA | | | FTRB-1024 | FTRC-1024 | <u> </u> | — | 22.0 | 11.5 | 2.3 | 2.9 | | FTRB-1226 | FTRC-1226 | | — | 24.0 | 13.5 | 3.4 | 3.3 | | FTRB-1528 | FTRC-1528 | | FTRE-1528 | 26.0 | 16.5 | 3.5 | 3.5 | | FTRB-1629 | FTRC-1629 | FTRD-1629 | FTRE-1629 | 27.0 | 17.5 | 3.7 | 3.6 | | FTRB-1730 | FTRC-1730 | FTRD-1730 | FTRE-1730 | 28.0 | 18.5 | 3.8 | 3.8 | | FTRB-1831 | FTRC-1831 | FTRD-1831 | FTRE-1831 | 29.0 | 19.5 | 4 | 3.9 | | FTRB-2035 | FTRC-2035 | FTRD-2035 | FTRE-2035 | 33.0 | 21.5 | 5.4 | 5.1 | | FTRB-2542 | FTRC-2542 | FTRD-2542 | FTRE-2542 | 40.0 | 26.5 | 7.7 | 7 | | FTRB-3047 | FTRC-3047 | FTRD-3047 | FTRE-3047 | 45.0 | 31.5 | 8.9 | 7.9 | | FTRB-3552 | FTRC-3552 | FTRD-3552 | FTRE-3552 | 50.5 | 36.5 | 9.7 | 9.1 | | FTRB-4060 | FTRC-4060 | FTRD-4060 | FTRE-4060 | 57.0 | 42.0 | 18 | 12 | | FTRB-4565 | FTRC-4565 | FTRD-4565 | FTRE-4565 | 62.0 | 47.0 | 20 | 13 | | FTRB-5070 | FTRC-5070 | FTRD-5070 | FTRE-5070 | 67.0 | 51.5 | 22 | 15 | | FTRB-5578 | FTRC-5578 | FTRD-5578 | FTRE-5578 | 75.0 | 57.0 | 29 | 19 | | FTRB-6085 | FTRC-6085 | FTRD-6085 | FTRE-6085 | 82.0 | 61.5 | 35 | 22 | | FTRB-6590 | FTRC-6590 | FTRD-6590 | FTRE-6590 | 87.5 | 66.5 | 38 | 24 | | FTRB-7095 | FTRC-7095 | FTRD-7095 | FTRE-7095 | 92.5 | 71.5 | 52 | 25 | | FTRB-75100 | FTRC-75100 | FTRD-75100 | FTRE-75100 | 97.5 | 76.5 | 54 | 27 | | FTRB-80105 | FTRC-80105 | FTRD-80105 | FTRE-80105 | 102.5 | 81.5 | 58 | 28 | | FTRB-85110 | FTRC-85110 | FTRD-85110 | FTRE-85110 | 107.5 | 86.5 | 63 | 30 | | FTRB-90120 | FTRC-90120 | FTRD-90120 | FTRE-90120 | 117.5 | 91.5 | 80 | 38 | | FTRB-100135 | FTRC-100135 | FTRD-100135 | FTRE-100135 | 132.5 | 101.5 | 105 | 50 | B 275 B 274 ^{-0.040} to -0.370mm FCR (Full Complement) FCRS Full Complement, Sealed With Thrust Washer FCJ (With Cage) FCJS Sealed, with Cage and Thrust Washer Outside Diameter 16 – 90 mm **FCR** | Bound | ary Dime
(mm) | ensions | | | Di | mensions
(mm) | | | | | Bearing | Numbers | |-------|------------------|----------|----------------------|----------
------------|------------------|----------|--------|--------------|-------------|------------------|--------------------| | D | С | d | Screw
<i>G</i> | G_1 | B_1 | B_2 | B_3 | M_2 | M_1 | $m{r}$ min. | FCR
FCJ | FCRS
FCJS | | 16 | 11
11 | 6
6 | M 6×1
M 6×1 | 8
8 | 28
28 | 16
16 | _ | _ | 4(1)
4(1) | 0.3
0.3 | FCR-16
FCJ-16 | FCRS-16
FCJS-16 | | 19 | 11
11 | 8 | M 8×1.25
M 8×1.25 | 10
10 | 32
32 | 20
20 | = | _ | 4(1)
4(1) | 0.3
0.3 | FCR-19
FCJ-19 | FCRS-19
FCJS-19 | | 22 | 12
12 | 10
10 | M10×1.25
M10×1.25 | 12
12 | 36
36 | 23
23 | = | _ | 4(1)
4(1) | 0.3
0.3 | FCR-22
FCJ-22 | FCRS-22
FCJS-22 | | 26 | 12
12 | 10
10 | M10×1.25
M10×1.25 | 12
12 | 36
36 | 23
23 | = | = | 4(1)
4(1) | 0.3
0.3 | FCR-26
FCJ-26 | FCRS-26
FCJS-26 | | 30 | 14
14 | 12
12 | M12×1.5
M12×1.5 | 13
13 | 40
40 | 25
25 | 6
6 | 3 | 6
6 | 0.6
0.6 | FCR-30
FCJ-30 | FCRS-30
FCJS-30 | | 32 | 14
14 | 12
12 | M12×1.5
M12×1.5 | 13
13 | 40
40 | 25
25 | 6
6 | 3 | 6
6 | 0.6
0.6 | FCR-32
FCJ-32 | FCRS-32
FCJS-32 | | 35 | 18
18 | 16
16 | M16×1.5
M16×1.5 | 17
17 | 52
52 | 32.5
32.5 | 8 | 3 | 6
6 | 0.6
0.6 | FCR-35
FCJ-35 | FCRS-35
FCJS-35 | | 40 | 20
20 | 18
18 | M18×1.5
M18×1.5 | 19
19 | 58
58 | 36.5
36.5 | 8 | 3 | 6
6 | 1
1 | FCR-40
FCJ-40 | FCRS-40
FCJS-40 | | 47 | 24
24 | 20
20 | M20×1.5
M20×1.5 | 21
21 | 66
66 | 40.5
40.5 | 9
9 | 4
4 | 8 | 1
1 | FCR-47
FCJ-47 | FCRS-47
FCJS-47 | | 52 | 24
24 | 20
20 | M20×1.5
M20×1.5 | 21
21 | 66
66 | 40.5
40.5 | 9
9 | 4
4 | 8 | 1
1 | FCR-52
FCJ-52 | FCRS-52
FCJS-52 | | 62 | 29
29 | 24
24 | M24×1.5
M24×1.5 | 25
25 | 80
80 | 49.5
49.5 | 11
11 | 4
4 | 8 | 1
1 | FCR-62
FCJ-62 | FCRS-62
FCJS-62 | | 72 | 29
29 | 24
24 | M24×1.5
M24×1.5 | 25
25 | 80
80 | 49.5
49.5 | 11
11 | 4
4 | 8 | 1
1 | FCR-72
FCJ-72 | FCRS-72
FCJS-72 | | 80 | 35
35 | 30
30 | M30×1.5
M30×1.5 | 32
32 | 100
100 | 63
63 | 15
15 | 4
4 | 8 | 1
1 | FCR-80
FCJ-80 | FCRS-80
FCJS-80 | | 85 | 35
35 | 30
30 | M30×1.5
M30×1.5 | 32
32 | 100
100 | 63
63 | 15
15 | 4
4 | 8 | 1
1 | FCR-85
FCJ-85 | FCRS-85
FCJS-85 | | 90 | 35
35 | 30
30 | M30×1.5
M30×1.5 | 32
32 | 100
100 | 63
63 | 15
15 | 4
4 | 8 | 1
1 | FCR-90
FCJ-90 | FCRS-90
FCJS-90 | Notes (1) Only the head of the stud has on oil hole. (2) Applicable to FCRB only. Remarks Standard grease is packed in sealed cam followers, but not in cam followers without seals. | Basic Dynamic L | oad Ratings
{kgf} | Limiting I
(N) | {kgf} | Limiting Tra | ck Loads
{kgf} | Mass
(kg) | Dimensions of
Hexagonal Socket
(2) (width | Eccentric E | (mm) | ., | Shoulder
Dimensions
(mm) | Tightening
(N·cm) {I | | |-----------------|----------------------|-------------------|-------|--------------|-------------------|--------------|---|-------------|----------------------------|-----|--------------------------------|-------------------------|--------| | $C_{\rm r}$ | | $P_{ m max}$ | х | | | approx. | across flats)
(mm)
X | B_4 | $d_{\scriptscriptstyle 1}$ | Ε | F
(min.) | (max.) | (max.) | | 5 800 | 590 | 2 360 | 240 | 3 350 | 340 | 0.020 | 4 | 8 | 9 | 0.5 | 11 | 226 | 23 | | 2 830 | 288 | 2 360 | 240 | 3 350 | 340 | 0.018 | 4 | 8 | 9 | 0.5 | 11 | 226 | 23 | | 6 600 | 670 | 4 200 | 425 | 4 150 | 425 | 0.031 | 4 4 | 10 | 11 | 0.5 | 13 | 550 | 56 | | 3 450 | 355 | 4 200 | 425 | 4 150 | 425 | 0.030 | | 10 | 11 | 0.5 | 13 | 550 | 56 | | 8 550 | 875 | 6 550 | 665 | 5 300 | 540 | 0.047 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 4 350 | 445 | 6 550 | 665 | 5 300 | 540 | 0.045 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 8 550 | 875 | 6 550 | 665 | 6 000 | 610 | 0.060 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 4 350 | 445 | 6 550 | 665 | 6 000 | 610 | 0.058 | 5 | 11 | 13 | 0.5 | 15 | 1 060 | 108 | | 12 500 | 1 280 | 9 250 | 945 | 7 800 | 795 | 0.088 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 7 200 | 735 | 9 250 | 945 | 7 800 | 795 | 0.086 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 12 500 | 1 280 | 9 250 | 945 | 8 050 | 820 | 0.099 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 7 200 | 735 | 9 250 | 945 | 8 050 | 820 | 0.096 | 6 | 12 | 17 | 1 | 20 | 1 450 | 148 | | 18 600 | 1 900 | 17 000 | 1 740 | 11 800 | 1 200 | 0.17 | 10 | 15.5 | 22 | 1 | 24 | 4 000 | 410 | | 9 700 | 990 | 17 000 | 1 740 | 11 800 | 1 200 | 0.165 | 10 | 15.5 | 22 | 1 | 24 | 4 000 | 410 | | 20 500 | 2 090 | 21 700 | 2 220 | 14 300 | 1 460 | 0.25 | 10 | 17.5 | 24 | 1 | 26 | 5 950 | 605 | | 10 300 | 1 050 | 21 700 | 2 220 | 14 300 | 1 460 | 0.24 | 10 | 17.5 | 24 | 1 | 26 | 5 950 | 605 | | 28 200 | 2 880 | 26 400 | 2 690 | 20 800 | 2 120 | 0.39 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 19 200 | 1 950 | 26 400 | 2 690 | 20 800 | 2 120 | 0.38 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 28 200 | 2 880 | 26 400 | 2 690 | 22 900 | 2 340 | 0.47 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 19 200 | 1 950 | 26 400 | 2 690 | 22 900 | 2 340 | 0.455 | 12 | 19.5 | 27 | 1 | 31 | 8 450 | 860 | | 40 000 | 4 100 | 38 500 | 3 950 | 34 000 | 3 450 | 0.80 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 24 900 | 2 540 | 38 500 | 3 950 | 34 000 | 3 450 | 0.79 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 40 000 | 4 100 | 38 500 | 3 950 | 38 000 | 3 860 | 1.05 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 24 900 | 2 540 | 38 500 | 3 950 | 38 000 | 3 860 | 1.05 | 14 | 24.5 | 34 | 1 | 45 | 15 200 | 1 550 | | 60 500 | 6 200 | 61 000 | 6 200 | 52 000 | 5 300 | 1.55 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 39 000 | 4 000 | 61 000 | 6 200 | 52 000 | 5 300 | 1.55 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 60 500 | 6 200 | 61 000 | 6 200 | 55 500 | 5 650 | 1.75 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 39 000 | 4 000 | 61 000 | 6 200 | 55 500 | 5 650 | 1.75 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 60 500 | 6 200 | 61 000 | 6 200 | 59 000 | 6 000 | 1.95 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | | 39 000 | 4 000 | 61 000 | 6 200 | 59 000 | 6 000 | 1.95 | 17 | 31 | 40 | 1.5 | 52 | 30 500 | 3 120 | Notes (3) Applicable to FCRE only. (4) Should not be greater than r (min). **FYCR** (Full Complement) Full Complement, Sealed with Thrust Washer **FYCRS** **FYCJ** (With Cage) Sealed, with Cage and Thrust Washer **FYCJS** Bore Diameter 5 – 50 mm **FYCR** | | Boun | dary Dim
(mm) | ensions | | | Basic Load | 3 | gf} | Limiting Tra | nck Loads
{kgf} | |----|------|------------------|---------------------|------------------|------------|-------------------|------------|-------------------|--------------|--------------------| | d | D | C | $B^{0 \atop -0.38}$ | <i>r</i>
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | (14) | (kgi) | | 5 | 16 | 11 | 12 | 0.3 | 5 800 | 8 000 | 590 | 815 | 3 350 | 340 | | | 16 | 11 | 12 | 0.3 | 2 830 | 2 620 | 288 | 267 | 3 350 | 340 | | 6 | 19 | 11 | 12 | 0.3 | 6 550 | 9 900 | 665 | 1 010 | 4 150 | 425 | | | 19 | 11 | 12 | 0.3 | 3 450 | 3 600 | 355 | 365 | 4 150 | 425 | | 8 | 24 | 14 | 15 | 0.3 | 10 100 | 15 000 | 1 030 | 1 530 | 6 500 | 665 | | | 24 | 14 | 15 | 0.3 | 5 700 | 6 000 | 580 | 610 | 6 500 | 665 | | 10 | 30 | 14 | 15 | 0.6 | 11 700 | 18 500 | 1 190 | 1 890 | 7 800 | 795 | | | 30 | 14 | 15 | 0.6 | 6 950 | 8 200 | 705 | 835 | 7 800 | 795 | | 12 | 32 | 14 | 15 | 0.6 | 12 600 | 21 000 | 1 280 | 2 140 | 8 050 | 820 | | | 32 | 14 | 15 | 0.6 | 7 650 | 9 650 | 780 | 985 | 8 050 | 820 | | 15 | 35 | 18 | 19 | 0.6 | 18 700 | 29 300 | 1 910 | 2 990 | 11 800 | 1 200 | | | 35 | 18 | 19 | 0.6 | 12 200 | 14 100 | 1 250 | 1 440 | 11 800 | 1 200 | | 17 | 40 | 20 | 21 | 0.6 | 21 100 | 35 000 | 2 160 | 3 600 | 14 300 | 1 460 | | | 40 | 20 | 21 | 0.6 | 13 700 | 16 700 | 1 390 | 1 700 | 14 300 | 1 460 | | 20 | 47 | 24 | 25 | 1 | 28 900 | 50 000 | 2 940 | 5 100 | 20 800 | 2 120 | | | 47 | 24 | 25 | 1 | 18 200 | 22 600 | 1 850 | 2 310 | 20 800 | 2 120 | | 25 | 52 | 24 | 25 | 1 | 32 500 | 60 000 | 3 300 | 6 100 | 22 900 | 2 340 | | | 52 | 24 | 25 | 1 | 22 200 | 31 000 | 2 270 | 3 150 | 22 900 | 2 340 | | 30 | 62 | 28 | 29 | 1 | 47 500 | 96 000 | 4 800 | 9 800 | 33 000 | 3 350 | | | 62 | 28 | 29 | 1 | 31 500 | 47 000 | 3 200 | 4 800 | 33 000 | 3 350 | | 35 | 72 | 28 | 29 | 1 | 49 500 | 106 000 | 5 050 | 10 800 | 36 500 | 3 700 | | | 72 | 28 | 29 | 1 | 33 000 | 52 500 | 3 400 | 5 350 | 36 500 | 3 700 | | 40 | 80 | 30 | 32 | 1 | 54 500 | 126 000 | 5 600 | 12 800 | 43 500 | 4 450 | | | 80 | 30 | 32 | 1 | 38 500 | 67 500 | 3 950 | 6 900 | 43 500 | 4 450 | | 45 | 85 | 30 | 32 | 1 | 57 500 | 139 000 | 5 850 | 14 100 | 46 500 | 4 750 | | | 85 | 30 | 32 | 1 | 40 000 | 73 000 | 4 100 | 7 450 | 46 500 | 4 750 | | 50 | 90 | 30 | 32 | 1 | 60 500 | 152 000 | 6 150 | 15 500 | 49 500 | 5 050 | | | 90 | 30 | 32 | 1 | 41 500 | 78 000 | 4 200 | 7 950 | 49 500 | 5 050 | | pplement, Sealed hrust Washer | | φ
 | |-------------------------------|-----------------|-------| | Limiting Track Loads | Rearing Numbers | Ma | | 50 | 90 | 30 | 32 | 1 | 60 500 | 152 000 | 6 150 | 15 500 | 49 500 | 5 050 | |------|----------|------------|-------------|--------------|---------------|--------------------|-------------------|------------|--------|-------| | | 90 | 30 | 32 | 1 | 41 500 | 78 000 | 4 200 | 7 950 | 49 500 | 5 050 | | Rema | ırks Sta | ndard grea | ise is pack | ked in seale | d cam followe | ers, but not in ca | ım followers with | out seals. | | | | Bearing I | FYCRS | Mass
(kg) | Shoulder
Dimensions
(mm)
F | |-----------|----------|--------------|-------------------------------------| | FYCJ | FYCJS | approx. | min. | | FYCR-5 | FYCRS-5 | 0.016 | 10 | | FYCJ-5 | FYCJS-5 | 0.014 | 10 | | FYCR-6
| FYCRS-6 | 0.022 | 12 | | FYCJ-6 | FYCJS-6 | 0.020 | 12 | | FYCR-8 | FYCRS-8 | 0.044 | 14 | | FYCJ-8 | FYCJS-8 | 0.042 | 14 | | FYCR-10 | FYCRS-10 | 0.069 | 17 | | FYCJ-10 | FYCJS-10 | 0.067 | 17 | | FYCR-12 | FYCRS-12 | 0.076 | 19 | | FYCJ-12 | FYCJS-12 | 0.074 | 19 | | FYCR-15 | FYCRS-15 | 0.105 | 23 | | FYCJ-15 | FYCJS-15 | 0.097 | 23 | | FYCR-17 | FYCRS-17 | 0.145 | 25 | | FYCJ-17 | FYCJS-17 | 0.14 | 25 | | FYCR-20 | FYCRS-20 | 0.255 | 29 | | FYCJ-20 | FYCJS-20 | 0.245 | 29 | | FYCR-25 | FYCRS-25 | 0.285 | 34 | | FYCJ-25 | FYCJS-25 | 0.275 | 34 | | FYCR-30 | FYCRS-30 | 0.48 | 51 | | FYCJ-30 | FYCJS-30 | 0.47 | 51 | | FYCR-35 | FYCRS-35 | 0.64 | 58 | | FYCJ-35 | FYCJS-35 | 0.635 | 58 | | FYCR-40 | FYCRS-40 | 0.88 | 66 | | FYCJ-40 | FYCJS-40 | 0.865 | 66 | | FYCR-45 | FYCRS-45 | 0.93 | 72 | | FYCJ-45 | FYCJS-45 | 0.91 | 72 | | FYCR-50 | FYCRS-50 | 0.995 | 76 | | FYCJ-50 | FYCJS-50 | 0.965 | 76 | B 278 B 279 # **BALL BEARING UNITS** # SET SCREW TYPE PILLOW BLOCKS CAST HOUSING UCP2 Shaft Diameter 12 – 90mm B286 1/2 – 3 1/2 inch # SET SCREW TYPE FLANGED UNITS CAST HOUSING UCF2 Shaft Diameter 12 – 90mm B292 1/2 – 3 1/2 inch 1/2 – 3 1/2 inch B 280 B 281 # 1. CONSTRUCTION The NSK bearing unit is a combination of a radial ball bearing, seal, and a housing of high-grade cast iron or pressed steel, which comes in various shapes. The outer surface of the bearing and the internal surface of the housing are spherical, so that the unit is self-aligning. The inside construction of the ball bearing for the unit is such that steel balls and retainers of the same type as in series 62 and 63 of the deep groove ball bearing are used. A duplex seal consisting of a combination of an oil-proof synthetic rubber seal and a slinger is provided on both sides. Depending on the type, the following methods of fitting to the shaft are employed: - The inner ring is fastened onto the shaft in two places by set screws. - (2) The inner ring has a tapered bore and is fitted to the shaft by means of an adapter. - (3) In the eccentric locking collar system the inns ring is fastened to the shaft by means of eccentrics grooves provided at the side of the inner ring and on the collar. # 2. DESIGN FEATURES AND ADVANTAGES # 2.1 MAINTENANCE FREE TYPE The NSK Maintenance free bearing unit contains a high-grade lithium-based grease, good for use over a long period, which is ideally suited to sealed-type bearing. Also provided is an excellent sealing device, which prevents any leakage of grease or penetration of dust and water from outside. It is designed so that the rotation of the shaft causes the sealed-in grease to circulate through the inside space, effectively providing maximum lubrication. The lubrication effect is maintained over a long period with no need for replenishment of grease. To summarize the advantages of the NSK maintenance free bearing unit: - (1) As an adequate amount of good quality grease is sealed in at the time of manufacture, there is no need for replenishment. This means savings in terms of time and maintenance costs. - (2) Since there is no need for any regreasing facilities, such as piping, a more compact design is possible. - (3) The sealed-in design eliminates the possibility of grease leakage, which could lead to stained products. # 2.2 RELUBRICATABLE TYPE The NSK relubricatable type bearing unit has an advantage over other similar, units being so designed as to permit regreasing even in the case of misalignment of 2° to the right or left. The hole through which the grease fitting is mounted usually causes structural weakening of the housing. However, as a result of extensive testing, in the NSK bearing unit the hole is positioned so as to minimize this adverse effect. In addition, the regreasing groove has been designed to minimize weakening of the housing. While the NSK maintenance free type bearing unit is satisfactory for use under normal operating conditions in-doors, in the following circumstances it is necessary to use the relubricatable type bearing unit: - (1) Cases where the temperature of the bearing rises above 100°C, 212°F: - *-Normal temperature of up to 130°C, 266°F heat-resistant bearing units. - (2) Cases where there is excessive dust, but space does not permit using a bearing unit with a cover. - (3) Cases where the bearing unit is constantly exposed to splashes of water or any other liquid, but space does not permit using a bearing unit with a cover. - (4) Cases in which the humidity is very high, and the machine in which the bearing unit is used is run only intermittently. - (5) Cases involving a heavy load of which the Cr/Pr value is about 10 or below, and the speed is 10 min⁻¹ or below, or the movement is oscillatory. - (6) Cases where the number of revolutions is relatively high and the noise problem has to be considered; for example, when the bearing is used with the fan of an air conditioner. # 2.3 SPECIAL SEALING FEATURE ## 2.3.1 STANDARD BEARING UNITS The sealing device of the ball bearing for the NSK bearing unit is a combination of a heat-resistant and oil-proof synthetic rubber seal and a slinger of an exclusive design. The seal, which is fixed in the outer ring, is steel-reinforced, and its lip, in contact with the inner ring, is designed to minimize frictional torque. The slinger is fixed to the inner ring of the bearing with which it rotates. There is a small clearance between its periphery and the outer ring. There are triangular protrusions on the outside face of the slinger and, as the bearing rotates, these protrusions on the slinger create a flow of air outward from the bearing. In this way, the slinger acts as a fan which-keeps dust and water away from the bearing. These two types of seals on both sides of the bearing prevent grease leakage, and foreign matter is prevented from entering the bearing from outside. # 2.3.2 BEARING UNITS WITH COVERS The NSK bearing unit with a cover consists of a standard bearing unit and an outside covering for extra protection against dust. Special consideration has been given to its design with respect to dust- Sealing devices are provided in both the bearing and the housing, so that units of this type operate satisfactorily even in such adverse environments as flour mills, steel mills, foundries, galvanizing plants and chemical plants, where excessive dust is produced and/or liquids are used. They are also eminently suitable for outdoor environments where dust and rain are inevitable, and in heavy industrial machinery such as construction and transportation equipment. The rubber seal of the cover contacts with the shaft by its two lips, as shown in Fig. 2.2 and 2.3. By filling the groove between the two lips with grease, an excellent sealing effect is obtained and, at the same time, the contacting portions of the lips are lubricated. Furthermore, the groove is so designed that when the shaft is inclined the rubber seal can move in the radial direction. When bearing units are exposed to splashes of water rather than to dust, a drain hole (5 to 8 mm, 0.2 to 0.3 inches in diameter) is provided at the bottom of the cover, and grease should be applied to the side of the bearing itself instead of into the cover. # 2.4 SECURE FITTING Fastening the bearing to the shaft is effected by tightening the ball-end set screw, situated on the inner ring. This is a unique feature which prevents loosening, even if the bearing is subject to intense vibrations and shocks. # 2.5 SELF-ALIGNING With the NSK bearing unit, the outer surface of the ball bearing and the inner surface of the housing are spherical, thus this bearing unit has self-aligning characteristic. Any misalignment of axis that arise from poor workmanship on the shaft or errors in fitting will be properly adjusted. #### 2.6 HIGHER RATED LOAD CAPACITY The bearing used in the unit is of the same internal construction as those in bearing series 62 and 63, and is capable of accommodating axial load as well as radial load, or composite load. The rated load capacity or this bearing is considerably higher than that of the corresponding self-aligning ball bearings used for standard plummer blocks # 2.7 LIGHT WEIGHT YET STRONG HOUSING Housings for NSK bearing units come in various shapes. They consist of either high-grade cast iron, one-piece casting, or of precision finished pressed steel, the latter being lighter in weight. In either case, they are practically designed to combine lightness with maximum strength. # 2.8 EASY MOUNTING The NSK bearing unit is an integrated unit consisting of a bearing and a housing. As the bearing is prelubricated at manufacture with the correct amount of high-grade lithium base, it can be mounted on the shaft just as it is. It is sufficient to carry out a short test run after mounting. # 2.9 ACCURATE FITTING OF THE HOUSING In order to simplify the fitting of the pillow block and flange type bearing units, the housings are provided with a seat for a dowel pin, which may be utilized as needed. # 2.10 BEARING REPLACEABILITY The bearing used in the NSK bearing unit is replaceable. In the event of bearing failure, a new bearing can be fitted to the existing housing. # RECOMMENDED TOROUES FOR TIGTENING SET SCREWS # Table 3.1 Recommended torques for tightening set screws A) Metric series, applied to metric bore size. | | ion of the
pplicable υ | | Designation
of
set screws | Tightening
torques
N·m (max.) | |-------------------|---------------------------|-------------------|---------------------------------|-------------------------------------| | UC201 to
UC205 | _ | _ | M 5×0.8 × 7 | 3.9 | | UC206 | _ | UC305 to
UC306 | M 6×0.75× 8 | 4.9 | | UC207 | UCX05 | _ | M 6×0.75× 8 | 5.8 | | UC208 to
UC210 | _ | _ | M 8×1 ×10 | 7.8 | | UC211 | UCX06 to
UCX08 | UC307 | M 8×1 ×10 | 9.8 | | UC212 | UCX09 | _ | M10×1.25×12 | 16.6 | | UC213 to
UC215 | _ | UC308 to
UC309 | M10×1.25×12 | 19.6 | | UC216 | UCX10 | _ | M10×1.25×12 | 22.5 | | _ | UCX11
to
UCX12 | _ | M10×1.25×12 | 24.5 | | UC217 to UC218 | UCX13 to
UCX15 | UC310 to
UC314 | M12×1.5 ×13 | 29.4 | | _ | UCX16 to
UCX17 | _ | M12×1.5 ×13 | 34.3 | | - | UCX18 | UC315 to
UC316 | M14×1.5 ×15 | 34.3 | | | UCX20 | UC317 to
UC319 | M16×1.5 ×18 | 53.9 | | _ | _ | UC320 to
UC324 | M18×1.5 ×20 | 58.8 | | _ | _ | UC326 to
UC328 | M20×1.5 ×25 | 78.4 | | B) Inch series, applied to inch | bore size. | |---------------------------------|------------| | Designation of the bearings | Designati | | Designation of the bearings
for the unit to which
torques given are applicable | | | Designation
of
set screws | Tightening
torques
lbf-inch (max | |--|-------------------|-------------------|------------------------------------|--| | UC201 to
UC205 | _ | _ | No.10 -32UNF | 34 | | UC206 | _ | UC305 to
UC306 | ¹ /4 -28UNF | 43 | | UC207 | UCX05 | _ | 1/4 -28UNF | 52 | | UC208 to
UC210 | _ | _ | ⁵ /16 -24UNF | 69 | | UC211 | UCX06 to
UCX08 | UC307 | ⁵ /16 -24UNF | 86 | | UC212 | UCX09 | _ | ³ /8 -24UNF | 147 | | UC213 to
UC215 | _ | UC308 to
UC309 | ³ /8 -24UNF | 173 | | UC216 | UCX10 | _ | ³ /8 -24UNF | 199 | | _ | UCX11 to
UCX12 | _ | ³ /8 -24UNF | 216 | | UC217 to
UC218 | UCX13 to
UCX15 | UC310 to
UC314 | ¹ /2 -20UNF | 260 | | _ | UCX16 to
UCX17 | _ | ¹ / ₂ -20UNF | 303 | | _ | UCX18 | UC315 to
UC316 | 9/16 -18UNF | 303 | | _ | UCX20 | UC317 to
UC318 | ⁵ /8 -18UNF | 477 | | _ | _ | UC320 | ⁵ /8 -18UNF | 520 | | Designation of the bearings of applicable units | Designation of
set screws | Tightening
torques
N·m (max.) | |---|------------------------------|-------------------------------------| | AS201 to 205 | M5×0.8 × 7 | 3.4 | | AS206 | M6×0.75× 8 | 4.4 | | AS207 | M6×0.75× 8 | 4.9 | | AS208 | M8×1 ×10 | 6.8 | | Designation of the bearings
for the unit to which
torques given are applicable | Designation
of
set screws | Tightening
torques
lbf-inch (max.) | |--|---------------------------------|--| | AS201 to 205 | No 10-32UNF | 30 | | AS206 | ¹ /4 -28UNF | 39 | | AS207 | 1/4 -28UNF | 43 | | AS208 | 5/16-24UNF | 60 | B 284 B 285 # Pillow blocks units cast housing Set screw type Pressed steel dust cover type Open end Z-UCP...D1 Closed end ZM-UCP...D1 Cast dust cover type Open end C-UCP...D1 Closed end CM-UCP...D1 | Shaft
dia. | Unit number(1) | | | | | Nomin | al dime | ensions | | | | | Bolt
size | Bearing
number | |--|--|--|--------------------------------------|-------------------------------------|--------------------------------------|-----------|-----------|------------|--|--|--------------|---------------|--------------|--| | | | | | | | n | nm inc | :h | | | | | | | | mm
inch | | Н | L | J | Α | N | N_1 | H_1 | H_2 | L_1 | В | S | mm
inch | | | 12
1/2 | UCP201D1
UCP201-008D1 | 30.2
1 ³ / ₁₆ | 127
5 | 95
3 ³ / ₄ | 38
1 ¹ / ₂ | 13
1/2 | 16
5/8 | 14
9/16 | 62
2 ⁷ / ₁₆ | 42
1 ²¹ / ₃₂ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC201D1
UC201-008D1 | | 15 | UCP202D1 | 30.2 | 127 | 95 | 38 | 13 | 16 | 14 | 62 | 42 | 31 | 12.7 | M10 | UC202D1 | | 9/16
5/8 | UCP202-009D1
UCP202-010D1 | 1 3/16 | 5 | 33/4 | 11/2 | 1/2 | 5/8 | 9/16 | 27/16 | 121/32 | 1.2205 | 0.500 | 3/8 | UC202-009D1
UC202-010D1 | | 17 | UCP203D1 | 30.2 | 127 | 95 | 38 | 13 | 16 | 14 | 62 | 42 | 31 | 12.7 | M10 | UC203D1 | | 11/16 | UCP203-011D1 | 1 ³ /16 | 5 | 33/4 | 1 ¹ / ₂ | 1/2 | 5/8 | 9/16 | 2 ⁷ /16 | 121/32 | 1.2205 | 0.500 | 3/8 | UC203-011D1 | | 20
3/4 | UCP204D1
UCP204-012D1 | 33.3
1 ⁵ / ₁₆ | 127
5 | 95
3 ³ / ₄ | 38
1 ¹ / ₂ | 13
1/2 | 16
5/8 | 14
9/16 | 65
2 ⁹ /16 | 42
1 ²¹ / ₃₂ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC204D1
UC204-012D1 | | 25 | UCP205D1 | 36.5 | 140 | 105 | 38 | 13 | 16 | 15 | 71 | 42 | 34.1 | 14.3 | M10 | UC205D1 | | 7/8 | UCP205-013D1
UCP205-014D1
UCP205-015D1
UCP205-100D1 | 1 ⁷ /16 | 5 ¹ / ₂ | 4 ¹ /8 | 1 ¹ / ₂ | 1/2 | 5/8 | 19/32 | 2 ²⁵ /32 | 1 ²¹ / ₃₂ | 1.3425 | 0.563 | 3/8 | UC205-013D1
UC205-014D1
UC205-015D1
UC205-100D1 | | 30 | UCP206D1 | 42.9 | 165 | 121 | 48 | 17 | 20 | 17 | 83 | 54 | 38.1 | 15.9 | M14 | UC206D1 | | 1 ¹ / ₁₆
1 ¹ / ₈
1 ³ / ₁₆
1 ¹ / ₄ | UCP206-101D1
UCP206-102D1
UCP206-103D1
UCP206-104D1 | 1 ¹¹ /16 | 6 ¹ / ₂ | 43/4 | 1 ⁷ /8 | 21/32 | 25/32 | 21/32 | 3 9/32 | 21/8 | 1.5000 | 0.626 | 1/2 | UC206-101D1
UC206-102D1
UC206-103D1
UC206-104D1 | | 35 | UCP207D1 | 47.6 | 167 | 127 | 48 | 17 | 20 | 18 | 93 | 54 | 42.9 | 17.5 | M14 | UC207D1 | | 13/8 | UCP207-104D1
UCP207-105D1
UCP207-106D1
UCP207-107D1 | 1 ⁷ /8 | 6 9/16 | 5 | 1 ⁷ /8 | 21/32 | 25/32 | 23/32 | 3 ²¹ / ₃₂ | 2 ¹ /8 | 1.6890 | 0.689 | 1/2 | UC207-104D1
UC207-105D1
UC207-106D1
UC207-107D1 | | 40 | UCP208D1 | 49.2 | 184 | 137 | 54 | 17 | 20 | 18 | 98 | 52 | 49.2 | 19 | M14 | UC208D1 | | 1 ¹ / ₂
1 ⁹ / ₁₆ | UCP208-108D1
UCP208-109D1 | 1 15/16 | 71/4 | 513/32 | 21/8 | 21/32 | 25/32 | 23/32 | 3 27/32 | 21/16 | 1.9370 | 0.748 | 1/2 | UC208-108D1
UC208-109D1 | **Note** (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1)
pressed steel dust
cover type | Unit number (1)
cast dust cover type | | Nominal di | mensions | 3 | N | lass of un | it | |-------------------|---|--|-----------|---------------------------------------|-------------------------|--------------------------------------|------------|------------|------------| | | 31 | | 4 | mm
4 | | 4 | | kg lb | | | | | | t
max. | A_4 | H_3 | A_5 | UCP | Z(ZM) | C(CM) | | P203D1
P203D1 | Z(ZM)-UCP201D1
Z(ZM)-UCP201-008D1 | C(CM)-UCP201D1
C(CM)-UCP201-008D1 | 2
5/64 | 45
1 ²⁵ / ₃₂ | 67
2 ⁵ /8 | 62
2 ⁷ /16 | 0.7
1.5 | 0.7
1.5 | 1.0
2.2 | | P203D1 | Z(ZM)-UCP202D1 | C(CM)-UCP202D1 | 2 | 45 | 67 | 62 | 0.7 | 0.7 | 1.0 | | P203D1
P203D1 | Z(ZM)-UCP202-009D1
Z(ZM)-UCP202-010D1 | C(CM)-UCP202-009D1
C(CM)-UCP202-010D1 | 5/64 | 125/32 | 2 5/8 | 27/16 | 1.5 | 1.5 | 2.2 | | P203D1
P203D1 | Z(ZM)-UCP203D1
Z(ZM)-UCP203-011D1 | C(CM)-UCP203D1
C(CM)-UCP203-011D1 | 2
5/64 | 45
1 ²⁵ /32 | 67
2 5/8 | 62
2 ⁷ / ₁₆ | 0.7
1.5 | 0.7
1.5 | 1.0
2.2 | | P204D1 | Z(ZM)-UCP204D1 | C(CM)-UCP204D1 | 2 | 45 | 70 | 62 | 0.7 | 0.7 | 0.9 | | P204D1 | Z(ZM)-UCP204-012D1 | C(CM)-UCP204-012D1 | 5/64 | 1 ²⁵ / ₃₂ | 23/4 | 27/16 | 1.5 | 1.5 | 2.0 | | P205D1 | Z(ZM)-UCP205D1 | C(CM)-UCP205D1 | 2 | 48 | 76 | 70 | 0.8 | 0.9 | 1.1 | | P205D1
P205D1 | Z(ZM)-UCP205-013D1
Z(ZM)-UCP205-014D1 | C(CM)-UCP205-013D1
C(CM)-UCP205-014D1 | <u>.</u> | | | - 0 - | | | | | P205D1 | Z(ZM)-UCP205-015D1 | C(CM)-UCP205-015D1 | 5/64 | 1 ²⁹ /32 | 3 | 23/4 | 1.8 | 2.0 | 2.4 | | P205D1 | Z(ZM)-UCP205-100D1 | C(CM)-UCP205-100D1 | | | | | | | | | P206D1
P206D1 | Z(ZM)-UCP206D1
Z(ZM)-UCP206-101D1 | C(CM)-UCP206D1
C(CM)-UCP206-101D1 | 2 | 53 | 88 | 75 | 1.4 | 1.4 | 1.7 | | P206D1 | Z(ZM)-UCP206-101D1 | C(CM)-UCP206-101D1 | 5/64 | 2 3/32 | 3 15/32 | 215/16 | 3.1 | 3.1 | 3.7 | | P206D1
P206D1 | Z(ZM)-UCP206-103D1 | C(CM)-UCP206-103D1 | | | | | | | | | | | _ | | | 0.0 | | | 4.7 | | | P207D1
P207D1 | Z(ZM)-UCP207D1
Z(ZM)-UCP207-104D1 | C(CM)-UCP207D1
C(CM)-UCP207-104D1 | 3 | 60 | 99 | 80 | 1.6 | 1.7 | 2.0 | | P207D1 | Z(ZM)-UCP207-105D1 | C(CM)-UCP207-105D1 | 1/8 | 2 3/8 | 3 29/32 | 3 5/32 | 3.5 | 3.7 | 4.4 | | P207D1
P207D1 | Z(ZM)-UCP207-106D1 | C(CM)-UCP207-106D1 | | | | | | | | | | 7/714) 110000004 | 0(014) 110000004 | 2 | / 0 | 105 | 00 | 1.0 | 0.1 | 0.7 | | P208D1
P208D1 | Z(ZM)-UCP208D1
Z(ZM)-UCP208-108D1 | C(CM)-UCP208D1
C(CM)-UCP208-108D1 | 3 | 69 | 105 | 90 | 1.9 | 2.1 | 2.7 | | P208D1 | Z(ZM)-UCP208-109D1 | C(CM)-UCP208-109D1 | 1/8 | 2 23/32 | 4 1/8 | 3 17/32 | 4.2 | 4.6 | 6.0 | B 286 B 287 # Pillow blocks units cast housing Set screw type Pressed steel dust cover type Open end Z-UCP...D1 Closed end ZM-UCP...D1 Cast dust cover type Open end C-UCP...D1 Closed end CM-UCP...D1 | Shaft
dia. | Unit number(1) | | | | | Nomin | al dime | ensions | | | | | Bolt
size | Bearing
number | |---|--|--------------------------|----------------------------|----------------------------|--------------------------|-------|---------|---------------------------|--|---------------------------|--------|-------|--------------|--| | | | | | | | n | nm inc | h | | | | | | | | mm
inch | | Н | L | J | A | N | N_{1} | H_1 | H_2 | L_1 | В | S | mm
inch | | | 45 | UCP209D1 | 54 | 190 | 146 | 54 | 17 | 20 | 20 | 106 | 60 | 49.2 | 19 | M14 | UC209D1 | | 1 ⁵ /8
1 ¹¹ / ₁₆
1 ³ / ₄ | UCP209-110D1
UCP209-111D1
UCP209-112D1 | 21/8 | 7 15/32 | 53/4 | 21/8 | 21/32 | 25/32 |
25/32 | 43/16 | 2 3/8 | 1.9370 | 0.748 | 1/2 | UC209-110D1
UC209-111D1
UC209-112D1 | | 50 | UCP210D1 | 57.2 | 206 | 159 | 60 | 20 | 23 | 21 | 114 | 65 | 51.6 | 19 | M16 | UC210D1 | | 17/8 | UCP210-113D1
UCP210-114D1
UCP210-115D1
UCP210-200D1 | 21/4 | 81/8 | 61/4 | 2 ³ /8 | 25/32 | 29/32 | 13/16 | 41/2 | 2 ⁹ /16 | 2.0315 | 0.748 | 5/8 | UC210-113D1
UC210-114D1
UC210-115D1
UC210-200D1 | | 55 | UCP211D1 | 63.5 | 219 | 171 | 60 | 20 | 23 | 23 | 126 | 65 | 55.6 | 22.2 | M16 | UC211D1 | | 2
21/16
21/8
23/16 | UCP211-200D1
UCP211-201D1
UCP211-202D1
UCP211-203D1 | 2 ¹ /2 | 8 5/8 | 6 ²³ /32 | 2 ³ /8 | 25/32 | 29/32 | 29/32 | 4 ³¹ / ₃₂ | 2 9/16 | 2.1890 | 0.874 | 5/8 | UC211-200D1
UC211-201D1
UC211-202D1
UC211-203D1 | | 60 | UCP212D1 | 69.8 | 241 | 184 | 70 | 20 | 23 | 25 | 138 | 70 | 65.1 | 25.4 | M16 | UC212D1 | | 21/4
25/16
23/8
27/16 | UCP212-204D1
UCP212-205D1
UCP212-206D1
UCP212-207D1 | 23/4 | 9 1/2 | 7 1/4 | 23/4 | 25/32 | 29/32 | 31/32 | 5 ⁷ /16 | 23/4 | 2.5630 | 1.000 | 5/8 | UC212-204D1
UC212-205D1
UC212-206D1
UC212-207D1 | | 65 | UCP213D1 | 76.2 | 265 | 203 | 70 | 25 | 28 | 27 | 151 | 77 | 65.1 | 25.4 | M20 | UC213D1 | | 2 ¹ / ₂
2 ⁹ / ₁₆ | UCP213-208D1
UCP213-209D1 | 3 | 10 ⁷ /16 | 8 | 2 ³ /4 | 31/32 | 13/32 | 1 ¹ /16 | 5 ¹⁵ / ₁₆ | 31/32 | 2.5630 | 1.000 | 3/4 | UC213-208D1
UC213-209D1 | | 70 | UCP214D1 | 79.4 | 266 | 210 | 72 | 25 | 28 | 27 | 157 | 77 | 74.6 | 30.2 | M20 | UC214D1 | | 2 ⁵ /8
2 ¹¹ / ₁₆
2 ³ / ₄ | UCP214-210D1
UCP214-211D1
UCP214-212D1 | 31/8 | 1015/32 | 89/32 | 2 27/32 | 31/32 | 13/32 | 11/16 | 6 3/16 | 31/32 | 2.9370 | 1.189 | 3/4 | UC214-210D1
UC214-211D1
UC214-212D1 | **Note** (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | | Nominal di | imensions | 5 | N | lass of un | it | |-------------------|---|--|-----------|----------------|---------------------------------------|----------------|-----|------------|-------| | | | | , | mm
4 | | 4 | | kg lb | | | | | | t
max. | A_4 | H_3 | A_5 | UCP | Z(ZM) | C(CM) | | P209D1
P209D1 | Z(ZM)-UCP209D1
Z(ZM)-UCP209-110D1 | C(CM)-UCP209D1
C(CM)-UCP209-110D1 | 3 | 69 | 113 | 95 | 2.2 | 2.4 | 3.1 | | P209D1
P209D1 | Z(ZM)-UCP209-110D1
Z(ZM)-UCP209-111D1 | C(CM)-UCP209-111D1 | 1/8 | 2 23/32 | 4 7/16 | 33/4 | 4.9 | 5.3 | 6.8 | | P209D1 | Z(ZM)-UCP209-112D1 | C(CM)-UCP209-112D1 | | | | | | | | | P210D1 | Z(ZM)-UCP210D1 | C(CM)-UCP210D1 | 3 | 76 | 119 | 100 | 2.7 | 2.8 | 3.6 | | P210D1
P210D1 | Z(ZM)-UCP210-113D1
Z(ZM)-UCP210-114D1 | C(CM)-UCP210-113D1
C(CM)-UCP210-114D1 | 1/8 | 3 | 411/16 | 315/16 | 6.0 | 6.2 | 7.9 | | P210D1 | Z(ZM)-UCP210-115D1 | C(CM)-UCP210-115D1 | | | | | | | | | P210D1 | _ | C(CM)-UCP210-200D1 | | | | | | | | | P211D1 | Z(ZM)-UCP211D1 | C(CM)-UCP211D1 | 4 | 77 | 130 | 100 | 3.5 | 3.5 | 4.4 | | P211D1
P211D1 | Z(ZM)-UCP211-200D1
Z(ZM)-UCP211-201D1 | C(CM)-UCP211-200D1
C(CM)-UCP211-201D1 | E / | 01/ | E1/- | 315/16 | | 7.7 | 0.7 | | P211D1 | Z(ZM)-UCP211-202D1 | C(CM)-UCP211-202D1 | 5/32 | 3 1/32 | 5 ¹ / ₈ | 315/16 | 7.7 | 7.7 | 9.7 | | P211D1 | Z(ZM)-UCP211-203D1 | C(CM)-UCP211-203D1 | | | | | | | | | P212D1 | Z(ZM)-UCP212D1 | C(CM)-UCP212D1 | 4 | 89 | 143 | 115 | 4.7 | 5.0 | 6.0 | | P212D1
P212D1 | Z(ZM)-UCP212-204D1
Z(ZM)-UCP212-205D1 | C(CM)-UCP212-204D1
C(CM)-UCP212-205D1 | 5/32 | 31/2 | 5 5/8 | 4 17/32 | 10 | 11 | 13 | | P212D1 | Z(ZM)-UCP212-206D1 | C(CM)-UCP212-206D1 | 3/32 | 31/2 | 29/8 | 417/32 | 10 | | 13 | | P212D1 | _ | C(CM)-UCP212-207D1 | | | | | | | | | P213D1 | Z(ZM)-UCP213D1 | C(CM)-UCP213D1 | 4 | 91 | 155 | 120 | 5.6 | 5.8 | 7.2 | | P213D1
P213D1 | Z(ZM)-UCP213-208D1
Z(ZM)-UCP213-209D1 | C(CM)-UCP213-208D1
C(CM)-UCP213-209D1 | 5/32 | 319/32 | 6 ³ / ₃₂ | 423/32 | 12 | 13 | 16 | | P214D1 | | C(CM)-UCP214D1 | 4 | | 162 | 135 | 6.5 | | 8.3 | | P214D1
P214D1 | _ | C(CM)-UCP214-210D1 | 4 | _ | 102 | 133 | 0.5 | _ | 0.3 | | P214D1 | _ | C(CM)-UCP214-211D1 | 5/32 | _ | 63/8 | 5 5/16 | 14 | _ | 18 | | P214D1 | | C(CM)-UCP214-212D1 | | | | | | | | # Pillow blocks units cast housing Set screw type Pressed steel dust cover type Open end Z-UCP...D1 Closed end ZM-UCP...D1 | Shaft
dia. | Unit number(1) | | | | | Nomin | al dime | nsions | | | | | Bolt
size | Bearing
number | |---|--|------------|-----------------------------|----------------------------|---------------------------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------|--|--------------|---------------|--------------|---| | mm | | | | | | n | nm inc | h | | | | | mm | | | inch | | Н | L | J | A | N | N_1 | H_1 | H_2 | L_1 | В | S | inch | | | 75
2 ¹³ / ₁₆ | UCP215D1
UCP215-213D1 | 82.6 | 275 | 217 | 74 | 25 | 28 | 28 | 163 | 80 | 77.8 | 33.3 | M20 | UC215D1
UC215-213D1 | | 27/8 | UCP215-214D1
UCP215-215D1
UCP215-300D1 | 31/4 | 10 ¹³ /16 | 817/32 | 2 29/32 | 31/32 | 13/32 | 13/32 | 613/32 | 3 5/32 | 3.0630 | 1.311 | 3/4 | UC215-214D1
UC215-215D1
UC215-300D1 | | 80 | UCP216D1 | 88.9 | 292 | 232 | 78 | 25 | 28 | 30 | 175 | 85 | 82.6 | 33.3 | M20 | UC216D1 | | 3 ¹ / ₁₆
3 ¹ / ₈
3 ³ / ₁₆ | UCP216-301D1
UCP216-302D1
UCP216-303D1 | 31/2 | 11 ¹ /2 | 9 1/8 | 3 ¹ /16 | 31/32 | 1 ³ /32 | 1 ³ /16 | 6 ⁷ /8 | 3 ¹¹ / ₃₂ | 3.2520 | 1.311 | 3/4 | UC216-301D1
UC216-302D1
UC216-303D1 | | 85 | UCP217D1 | 95.2 | 310 | 247 | 83 | 25 | 28 | 32 | 187 | 85 | 85.7 | 34.1 | M20 | UC217D1 | | | UCP217-304D1
UCP217-305D1
UCP217-307D1 | 33/4 | 12 ⁷ /32 | 923/32 | 3 9/32 | 31/32 | 1 ³ /32 | 11/4 | 7 3/8 | 311/32 | 3.3740 | 1.343 | 3/4 | UC217-304D1
UC217-305D1
UC217-307D1 | | 90
3 ¹ / ₂ | UCP218D1
UCP218-308D1 | 101.6
4 | 327
12 ⁷ /8 | 262
10 ⁵ /16 | 88
3 ¹⁵ / ₃₂ | 27
1 ¹ /16 | 30
1 ³ / ₁₆ | 33
1 ⁵ / ₁₆ | 200
7 ⁷ /8 | 90
3 ¹⁷ / ₃₂ | 96
3.7795 | 39.7
1.563 | M22
7/8 | UC218D1
UC218-308D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCP...D1 Closed end CM-UCP...D1 | Housing
number | Unit number (1)
pressed steel dust
cover type | Unit number (1)
cast dust cover type | ١ | Nominal d | limensions | i | Ν | lass of un | it | |--------------------------------------|---|--|------------|-----------|---------------------------------------|--------------------------------------|----------|------------|----------| | | cover type | | t | | inch | 4 | | kg lb | | | | | | max. | A_4 | H_3 | A_5 | UCP | Z(ZM) | C(CM) | | P215D1 | _ | C(CM)-UCP215D1 | 4 | _ | 168 | 135 | 7.2 | _ | 9.3 | | P215D1
P215D1
P215D1
P215D1 | _ | C(CM)-UCP215-213D1
C(CM)-UCP215-214D1
C(CM)-UCP215-215D1
C(CM)-UCP215-300D1 | 5/32 | _ | 6 5/8 | 5 5/16 | 16 | _ | 21 | | P216D1 | _ | C(CM)-UCP216D1 | 4 | _ | 181 | 145 | 8.7 | _ | 11 | | P216D1
P216D1
P216D1 | _ | C(CM)-UCP216-301D1
C(CM)-UCP216-302D1
C(CM)-UCP216-303D1 | 5/32 | _ | 7 ¹ /8 | 5 ²³ / ₃₂ | 19 | _ | 24 | | P217D1 | _ | C(CM)-UCP217D1 | 5 | _ | 191 | 155 | 11 | _ | 13 | | P217D1
P217D1
P217D1 | _ | C(CM)-UCP217-304D1
C(CM)-UCP217-305D1
C(CM)-UCP217-307D1 | 13/64 | _ | 7 17/32 | 6 ³ /32 | 24 | _ | 29 | | P218D1
P218D1 | | C(CM)-UCP218D1
C(CM)-UCP218-308D1 | 5
13/64 | _ | 204
8 ¹ / ₃₂ | 165
6 ¹ / ₂ | 13
29 | | 16
35 | B 290 B 291 # Square flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCF...D1 Closed end ZM-UCF...D1 Cast dust cover type Open end C-UCF...D1 Closed end CM-UCF...D1 | Shaft
dia. | Unit number(1) | | | | No | minal dim | ensions | | | | Bolt
size | Bearing
number | | Housing number | |---|--|--|---------------------------------------|-------------------------------------|-------------------------|---------------------------------------|-------------------------|---|----------------|---------------|--------------|---|---|--| | mm
inch | | L | J | A_2 | A_1 | mm in A | ich N | A_0 | В | S | mm | | | | | 12
1/2 | UCF201D1
UCF201-008D1 | 86
3 ³ /8 | 64
2 ³³ / ₆₄ | 15
19/32 | 11
7/16 | 25.5
1 | 12
15/32 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC201D1
UC201-008D1 | • | F204D1
F204D1 | | 15
9/16
5/8 | UCF202D1
UCF202-009D1
UCF202-010D1 | 86
3 ³ /8 | 64
2 ³³ / ₆₄ | 15
19/ ₃₂ | 11
7/16 | 25.5
1 | 12
15/32 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC202D1
UC202-009D1
UC202-010D1 | | F204D1
F204D1
F204D1 | | 17
11/ ₁₆ | UCF203D1
UCF203-011D1 | 86
3 ³ /8 | 64
2 ³³ / ₆₄ | 15
19/ ₃₂ | 11
7/16 |
25.5
1 | 12
15/ ₃₂ | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC203D1
UC203-011D1 | | F204D1
F204D1 | | 20
3/4 | UCF204D1
UCF204-012D1 | 86
3 ³ /8 | 64
2 ³³ / ₆₄ | 15
19/32 | 11
7/ ₁₆ | 25.5
1 | 12
15/32 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC204D1
UC204-012D1 | | F204D1
F204D1 | | 7/8 | UCF205D1
UCF205-013D1
UCF205-014D1
UCF205-015D1
UCF205-100D1 | 95
3 ³ / ₄ | 70
2 ³ / ₄ | 16
5/8 | 13 | 27
1 ¹ / ₁₆ | 12
15/ ₃₂ | 35.8
1 ¹³ / ₃₂ | 34.1
1.3425 | 14.3
0.563 | M10 | UC205D1
UC205-013D1
UC205-014D1
UC205-015D1
UC205-100D1 | | F205D1
F205D1
F205D1
F205D1
F205D1 | | 30
11/16
11/8
13/16
11/4 | UCF206D1
UCF206-101D1
UCF206-102D1
UCF206-103D1
UCF206-104D1 | 108
4 ¹ / ₄ | 83
3 ¹⁷ / ₆₄ | 18
⁴⁵ / ₆₄ | 13 | 31
1 ⁷ / ₃₂ | 12
15/ ₃₂ | 40.2
1 ³⁷ / ₆₄ | 38.1
1.5000 | 15.9
0.626 | M10 | UC206D1
UC206-101D1
UC206-102D1
UC206-103D1
UC206-104D1 | | F206D1
F206D1
F206D1
F206D1
F206D1 | | 13/8 | UCF207D1
UCF207-104D1
UCF207-105D1
UCF207-106D1
UCF207-107D1 | 117
4 ¹⁹ / ₃₂ | 92
3 ⁵ /8 | 19
3/4 | 15
19/ ₃₂ | 34
1 ¹¹ / ₃₂ | 14
35/64 | 44.4
1 ³ / ₄ | 42.9
1.6890 | 17.5
0.689 | M12 | UC207D1
UC207-104D1
UC207-105D1
UC207-106D1
UC207-107D1 | | F207D1
F207D1
F207D1
F207D1
F207D1 | | 40
1 ¹ / ₂
1 ⁹ / ₁₆ | UCF208D1
UCF208-108D1
UCF208-109D1 | 130
5 ¹ /8 | 102
4 ¹ / ₆₄ | 21
53/64 | 15
19/ ₃₂ | 36
1 ¹³ / ₃₂ | 16
5/8 | 51.2
2 ¹ / ₆₄ | 49.2
1.9370 | 19
0.748 | M14 | UC208D1
UC208-108D1
UC208-109D1 | | F208D1
F208D1
F208D1 | | Mata | / ₁ \ | These numbers indicate reliablished by the office of the first time is needed along order without suffice "D1" | |------|------------------|---| | wote | (1) | These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | | | | | | Housing number | Unit number (1)
pressed steel dust
cover type | Unit number (¹)
cast dust cover type | Nom | inal dimen | sions | N | lass of un | it | |----------------------------|---|--|-----------|-------------------------------------|---------------------------------------|------------|------------|------------| | | cover type | | t | mm inch | | | kg lb | | | | | | max. | A_4 | A_5 | UCP | Z(ZM) | C(CM) | | F204D1
F204D1 | Z(ZM)-UCF201D1
Z(ZM)-UCF201-008D1 | C(CM)-UCF201D1
C(CM)-UCF201-008D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.8
1.8 | | F204D1
F204D1
F204D1 | Z(ZM)-UCF202D1
Z(ZM)-UCF202-009D1
Z(ZM)-UCF202-010D1 | C(CM)-UCF202D1
C(CM)-UCF202-009D1
C(CM)-UCF202-010D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6 | 0.8 | | F204D1
F204D1 | Z(ZM)-UCF203D1
Z(ZM)-UCF203-011D1 | C(CM)-UCF203D1
C(CM)-UCF203-011D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.8
1.8 | | F204D1
F204D1 | Z(ZM)-UCF204D1
Z(ZM)-UCF204-012D1 | C(CM)-UCF204D1
C(CM)-UCF204-012D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 0.6
1.3 | 0.6
1.3 | 0.7
1.5 | | F205D1
F205D1 | Z(ZM)-UCF205D1
Z(ZM)-UCF205-013D1 | C(CM)-UCF205D1
C(CM)-UCF205-013D1 | 2 | 40 | 51 | 0.8 | 0.8 | 0.9 | | F205D1
F205D1
F205D1 | Z(ZM)-UCF205-014D1
Z(ZM)-UCF205-015D1
Z(ZM)-UCF205-100D1 | C(CM)-UCF205-014D1
C(CM)-UCF205-015D1
C(CM)-UCF205-100D1 | 5/64 | 1 ¹⁹ /32 | 2 | 1.8 | 1.8 | 2.0 | | F206D1
F206D1 | Z(ZM)-UCF206D1
Z(ZM)-UCF206-101D1 | C(CM)-UCF206D1
C(CM)-UCF206-101D1 | 2 | 45 | 56 | 1.1 | 1.1 | 1.3 | | F206D1
F206D1
F206D1 | Z(ZM)-UCF206-102D1
Z(ZM)-UCF206-103D1
— | C(CM)-UCF206-102D1
C(CM)-UCF206-103D1
C(CM)-UCF206-104D1 | 5/64 | 13/4 | 2 ⁷ /32 | 2.4 | 2.4 | 2.9 | | F207D1
F207D1 | Z(ZM)-UCF207D1
Z(ZM)-UCF207-104D1 | C(CM)-UCF207D1
C(CM)-UCF207-104D1 | 3 | 49 | 59 | 1.5 | 1.5 | 1.8 | | F207D1
F207D1
F207D1 | Z(ZM)-UCF207-105D1
Z(ZM)-UCF207-106D1 | C(CM)-UCF207-105D1
C(CM)-UCF207-106D1
C(CM)-UCF207-107D1 | 1/8 | 1 ¹⁵ /16 | 2 ⁵ /16 | 3.3 | 3.3 | 4.0 | | F208D1 | Z(ZM)-UCF208D1 | C(CM)-UCF208D1 | 3 | 56 | 66 | 1.7 | 1.8 | 2.2 | | F208D1
F208D1 | Z(ZM)-UCF208-108D1
Z(ZM)-UCF208-109D1 | C(CM)-UCF208-108D1
C(CM)-UCF208-109D1 | 1/8 | 2 3/16 | 2 ¹⁹ /32 | 3.7 | 4.0 | 4.9 | B 292 B 293 # Square flanged units cast housing Set screw type **Note** (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCF...D1 Closed end CM-UCF...D1 | Housing
number | Unit number (¹)
pressed steel dust
cover type | Unit number (1)
cast dust cover type | Nomi | nal dimen | sions | N | lass of uni | t | |--------------------------------------|--|--|-----------|----------------------------|--|-----|-------------|-------| | | | | | mm inch | | | kg lb | | | | | | t
max. | A_4 | A_5 | UCF | Z(ZM) | C(CM) | | F209D1 | Z(ZM)-UCF209D1 | C(CM)-UCF209D1 | 3 | 57 | 70 | 2.1 | 2.2 | 2.6 | | F209D1
F209D1
F209D1 | Z(ZM)-UCF209-110D1
Z(ZM)-UCF209-111D1
Z(ZM)-UCF209-112D1 | C(CM)-UCF209-110D1
C(CM)-UCF209-111D1
C(CM)-UCF209-112D1 | 1/8 | 21/4 | 23/4 | 4.6 | 4.9 | 5.7 | | F210D1
F210D1 | Z(ZM)-UCF210D1
Z(ZM)-UCF210-113D1 | C(CM)-UCF210D1
C(CM)-UCF210-113D1 | 3 | 60 | 72 | 2.5 | 2.5 | 3.0 | | F210D1
F210D1
F210D1
F210D1 | Z(ZM)-UCF210-113D1
Z(ZM)-UCF210-115D1
— | C(CM)-UCF210-113D1
C(CM)-UCF210-114D1
C(CM)-UCF210-115D1
C(CM)-UCF210-200D1 | 1/8 | 2 ³ /8 | 2 ²⁷ / ₃₂ | 5.5 | 5.5 | 6.6 | | F211D1 | Z(ZM)-UCF211D1 | C(CM)-UCF211D1 | 4 | 64 | 75 | 3.3 | 3.4 | 4.0 | | F211D1
F211D1
F211D1
F211D1 | Z(ZM)-UCF211-200D1
Z(ZM)-UCF211-201D1
Z(ZM)-UCF211-202D1
Z(ZM)-UCF211-203D1 | C(CM)-UCF211-200D1
C(CM)-UCF211-201D1
C(CM)-UCF211-202D1
C(CM)-UCF211-203D1 | 5/32 | 2 1/2 | 215/16 | 7.3 | 7.5 | 8.8 | | F212D1 | Z(ZM)-UCF212D1 | C(CM)-UCF212D1 | 4 | 74 | 86 | 3.9 | 4.1 | 4.8 | | F212D1
F212D1
F212D1
F212D1 | Z(ZM)-UCF212-204D1
Z(ZM)-UCF212-205D1
Z(ZM)-UCF212-206D1
— | C(CM)-UCF212-204D1
C(CM)-UCF212-205D1
C(CM)-UCF212-206D1
C(CM)-UCF212-207D1 | 5/32 | 2 ²⁹ /32 | 33/8 | 8.6 | 9.0 | 11 | | F213D1 | Z(ZM)-UCF213D1 | C(CM)-UCF213D1 | 4 | 76 | 90 | 5.5 | 5.6 | 6.4 | | F213D1
F213D1 | Z(ZM)-UCF213-208D1
Z(ZM)-UCF213-209D1 | C(CM)-UCF213-208D1
C(CM)-UCF213-209D1 | 5/32 | 3 | 317/32 | 12 | 12 | 14 | | F214D1
F214D1 | _ | C(CM)-UCF214D1
C(CM)-UCF214-210D1 | 4 | _ | 98 | 6.3 | _ | 7.4 | | F214D1
F214D1
F214D1 | _ | C(CM)-UCF214-211D1
C(CM)-UCF214-212D1 | 5/32 | _ | 3 27/32 | 14 | _ | 16 | # Square flanged units cast housing Set screw type | Shaft
dia. | Unit number(1) | | | | Noi | minal dime | ensions | | | | Bolt
size | Bearing
number | |---|--|--------------------------------------|--|--|-------------------------|--|-------------|---|--------------|---------------|--------------|--| | | | | | | | mm inc | ch | | | | | | | inch | | L | J | A_2 | A_1 | A | N | A_0 | В | S | mm
inch | | | 75
2 ¹³ / ₁₆ | UCF215D1
UCF215-213D1 | 200 | 159 | 34 | 22 | 56 | 19 | 78.5 | 77.8 | 33.3 | M16 | UC215D1
UC215-213D1 | | 27/8 | UCF215-213D1
UCF215-214D1
UCF215-215D1
UCF215-300D1 | 7 ⁷ /8 | 6 ¹⁷ /64 | 1 ¹¹ /32 | 7/8 | 2 ⁷ /32 | 3/4 | 3 3/32 | 3.0630 | 1.311 | 5/8 | UC215-213D1
UC215-214D1
UC215-215D1
UC215-300D1 | | 80
31/16 | UCF216D1
UCF216-301D1 | 208 | 165 | 34 | 22 | 58 | 23 | 83.3 | 82.6 | 33.3 | M20 | UC216D1
UC216-301D1 | | 3 ¹ / ₈
3 ³ / ₁₆ | UCF216-302D1
UCF216-303D1 | 83/16 | 61/2 | 1 ¹¹ / ₃₂ | 7/8 | 2 9/32 | 29/32 | 3 9/32 | 3.2520 | 1.311 | 3/4 | UC216-303D1
UC216-303D1 | | 85 | UCF217D1 | 220 | 175 | 36 | 24 | 63 | 23 | 87.6 | 85.7 | 34.1 | M20 | UC217D1 | | 3 ¹ / ₄
3 ⁵ / ₁₆
3 ⁷ / ₁₆ | UCF217-304D1
UCF217-305D1
UCF217-307D1 | 821/32 | 6 ⁵⁷ /64 | 127/64 | 15/16 | 2 ¹⁵ / ₃₂ | 29/32 | 329/64 | 3.3740 | 1.343 | 3/4 | UC217-304D1
UC217-305D1
UC217-307D1 | | 90
3 ¹ / ₂ | UCF218D1
UCF218-308D1 | 235
9 ¹ / ₄ | 187
7 ²³ / ₆₄ | 40
1 ³⁷ /64 | 24
15/ ₁₆ | 68
2 ¹¹ / ₁₆ | 23
29/32 | 96.3
3 ⁵¹ / ₆₄ | 96
3.7795 | 39.7
1.563 | M20
3/4 | UC218D1
UC218-308D1 | **Note** (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1)
pressed steel dust
cover type | Unit number (¹)
cast dust cover type | Nomir | nal dimer | nsions | N | lass of uni | t | |--------------------------------------|---|--|------------|------------------------------------|--|----------|-------------|----------| | | cover type | | r
t | nm
inch $A_{\scriptscriptstyle 4}$ | A_5 | | kg lb | | | | | | max. | 214 | 2 15 | UCF | Z(ZM) | C(CM) | | F215D1 | _ | C(CM)-UCF215D1 | 4 | _ | 102 | 6.6 | _ | 7.9 | | F215D1
F215D1
F215D1
F215D1 | _ | C(CM)-UCF215-213D1
C(CM)-UCF215-214D1
C(CM)-UCF215-215D1
C(CM)-UCF215-300D1 | 5/32 | _ | 4 1/32 | 15 | _ | 17 | | F216D1 | _ | C(CM)-UCF216D1 | 4 | _ | 106 | 7.9 | _ | 9.3 | | F216D1
F216D1
F216D1 | _ | C(CM)-UCF216-301D1
C(CM)-UCF216-302D1
C(CM)-UCF216-303D1 | 5/32 | _ | 4 ³ /16 | 17 | _ | 21 | | F217D1 | _ | C(CM)-UCF217D1 | 5 | _ | 114 | 9.8 | _ | 12 | | F217D1
F217D1
F217D1 | _ | C(CM)-UCF217-304D1
C(CM)-UCF217-305D1
C(CM)-UCF217-307D1 | 13/64 | _ | 4 1/2 | 22 | _ | 26 | | F218D1
F218D1 | <u>-</u>
- | C(CM)-UCF218D1
C(CM)-UCF218-308D1 | 5
13/64 | <u>-</u> | 122
4 ¹³ / ₁₆ | 12
26 | _
_ | 13
29 | B 296 B 297 # Rhombus flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCFL...D1 Closed end ZM-UCFL...D1 Cast dust cover type Open end C-UCFL...D1 Closed end CM-UCFL...D1 | Shaft
dia. | Unit number(1) | Nominal dimensions | | | | | | | | | | | Bearing
number | |--|---|--|--|-------------------------|------------------------|---------------------------------------|-------------------------|--|---|------------------------|---------------|------------|---| | mm
inch | | Н | J | A_2 | A_1 | mm | inch N | L | A_0 | В | S | mm
inch | | | 12
1/2 | UCFL201D1
UCFL201-008D1 | 113
4 ⁷ / ₁₆ | 90
3 ³⁵ /64 | 15
19/32 | 11
7/16 | 25.5
1 | 12
15/32 | 60
2 ³ /8 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC201D1
UC201-008D1 | | 15
9/16
5/8 | UCFL202D1
UCFL202-009D1
UCFL202-010D1 | 113
4 ⁷ / ₁₆ | 90
3 ³⁵ / ₆₄ | 15
19/ ₃₂ | 11
7/ ₁₆ | 25.5
1 | 12
15/32 | 60
2 ³ /8 | 33.3
15/16 | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC202D1
UC202-009D1
UC202-010D1 | | 17
11/ ₁₆ | UCFL203D1
UCFL203-011D1 | 113
4 ⁷ / ₁₆ | 90
3 ³⁵ / ₆₄ | 15
19/32 | 11
7/16 | 25.5
1 | 12
15/ ₃₂ | 60
2 ³ /8 | 33.3
1 ⁵ / ₁₆ | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC203D1
UC203-011D1 | | 20
3/4 | UCFL204D1
UCFL204-012D1 | 113
4 ⁷ / ₁₆ | 90
3 ³⁵ / ₆₄ | 15
19/32 | 11
7/16 | 25.5
1 | 12
15/32 | 60
2 ³ /8 | 33.3
15/16 | 31
1.2205 | 12.7
0.500 | M10
3/8 | UC204D1
UC204-012D1 | | 25
13/16
7/8
15/16 | UCFL205D1
UCFL205-013D1
UCFL205-014D1
UCFL205-015D1
UCFL205-100D1 | 130
5 ¹ / ₈ | 99
3 ⁵⁷ / ₆₄ | 16
5/8 | 13 | 27
1 ¹ / ₁₆ | 16
5/8 | 68
2 ¹¹ / ₁₆ | 35.8
1 ¹³ / ₃₂ | 34.1
1.3425 | 14.3
0.563 | M14 | UC205D1
UC205-013D1
UC205-014D1
UC205-015D1
UC205-100D1 | | 30
1 ¹ / ₁₆
1 ¹ / ₈
1 ³ / ₁₆
1 ¹ / ₄ | UCFL206D1
UCFL206-101D1
UCFL206-102D1
UCFL206-103D1
UCFL206-104D1 | 148
5 ¹³ / ₁₆ | 117
4 ³⁹ /64 | 18
45/64 | 13 | 31
1 ⁷ / ₃₂ | 16
5/8 | 80
3 ⁵ / ₃₂ | 40.2
1 ³⁷ /64 | 38.1
1.5000 | 15.9
0.626 | M14 | UC206D1
UC206-101D1
UC206-102D1
UC206-103D1
UC206-104D1 | | 35
1 ¹ / ₄
1 ⁵ / ₁₆
1 ³ / ₈
1 ⁷ / ₁₆ | UCFL207D1
UCFL207-104D1
UCFL207-105D1
UCFL207-106D1
UCFL207-107D1 | 161
6 ¹¹ / ₃₂ | 130
5 ¹ /8 | 19
3/ ₄ | 15
19/32 | 34
1 ¹¹ / ₃₂ | 16
5/8 | 90
3 ¹⁷ / ₃₂ | 44.4
1 ³ / ₄ | 42.9
1.6890 | 17.5
0.689 | M14 | UC207D1
UC207-104D1
UC207-105D1
UC207-106D1
UC207-107D1 | | 40
1 ¹ / ₂
1 ⁹ / ₁₆ | UCFL208D1
UCFL208-108D1
UCFL208-109D1 | 175
6 ⁷ /8 | 144
5 ⁴³ / ₆₄ | 21
53/64 | 15
19/32 | 36
1 ¹³ / ₃₂ | 16
5/8 | 100
3 ¹⁵ / ₁₆ | 51.2
2 ¹ / ₆₄ | 49. <u>2</u>
1.9370 | 19
0.748 | M14 | UC208D1
UC208-108D1
UC208-109D1 | **Note** (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | | Nomir | nal dimer | nsions | | Mass of unit | | | | |--|--|---|-----------|-------------------------------------|---------------------------------------|--|--------------------------------------|--------------|------------|------------|--| | | cover type | | | | nm inch | | | | kg lb | | | | | | | t
max. | A_4 | A_5 | L_1 | L_2 | UCFL | Z(ZM) | C(CM) | | | FL204D1
FL204D1 | Z(ZM)-UCFL201D1
Z(ZM)-UCFL201-008D1 | C(CM)-UCFL201D1
C(CM)-UCFL201-008D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 67
2 ⁵ /8 | 30
1 ³ / ₁₆ | 0.5
1.1 | 0.5
1.1 | 0.6
1.3 | | | FL204D1
FL204D1
FL204D1 | Z(ZM)-UCFL202D1
Z(ZM)-UCFL202-009D1
Z(ZM)-UCFL202-010D1 | C(CM)-UCFL202D1
C(CM)-UCFL202-009D1
C(CM)-UCFL202-010D1 | 2
5/64 | 38
11/2 | 46
1 ¹³ / ₁₆ | 67
2 5/8 | 30
13/16 | 0.5
1.1 | 0.5
1.1 | 0.6 | | | FL204D1
FL204D1 | Z(ZM)-UCFL203D1
Z(ZM)-UCFL203-011D1 | C(CM)-UCFL203D1
C(CM)-UCFL203-011D1 | 2
5/64 | 38
1 ¹ / ₂ | 46
1 ¹³ / ₁₆ | 67
2 ⁵ /8 | 30
1 ³ / ₁₆ | 0.5
1.1 | 0.5
1.1 | 0.6
1.3 | | | FL204D1
FL204D1 | Z(ZM)-UCFL204D1
Z(ZM)-UCFL204-012D1 | C(CM)-UCFL204D1
C(CM)-UCFL204-012D1 | 2
5/64 | 38
11/2 | 46
1 ¹³ / ₁₆ | 67
2 5/8 | 30
1 ³ / ₁₆ | 0.4
0.9 | 0.4 | 0.6
1.3 | | | FL205D1
FL205D1 | Z(ZM)-UCFL205D1
Z(ZM)-UCFL205-013D1 | C(CM)-UCFL205D1
C(CM)-UCFL205-013D1 | 2 | 40 | 51 | 74 | 34 | 0.6 | 0.6 | 0.8 | | | FL205D1
FL205D1
FL205D1 | Z(ZM)-UCFL205-014D1
Z(ZM)-UCFL205-015D1
Z(ZM)-UCFL205-100D1 | C(CM)-UCFL205-014D1
C(CM)-UCFL205-015D1
C(CM)-UCFL205-100D1 | 5/64 | 1 ¹⁹ /32 | 2 | 2 ²⁹ /32 | 111/32 | 1.3 | 1.3 | 1.8 | | | FL206D1
FL206D1 | Z(ZM)-UCFL206D1 | C(CM)-UCFL206D1 | 2 | 45 | 56 | 85 | 40 | 0.9 | 0.9 | 1.2 | | | FL206D1
FL206D1
FL206D1
FL206D1 | Z(ZM)-UCFL206-101D1
Z(ZM)-UCFL206-102D1
Z(ZM)-UCFL206-103D1 | C(CM)-UCFL206-101D1
C(CM)-UCFL206-102D1
C(CM)-UCFL206-103D1 | 5/64 | 13/4 | 2 ⁷ /32 | 311/32 | 1 9/16 | 2.0 | 2.0 | 2.6 | | | FL207D1 | Z(ZM)-UCFL207D1 | C(CM)-UCFL207D1 | 3 | 49 | 59 | 97 | 45 | 1.2 | 1.2 | 1.4 | | | FL207D1
FL207D1
FL207D1
FL207D1 | Z(ZM)-UCFL207-104D1
Z(ZM)-UCFL207-105D1
Z(ZM)-UCFL207-106D1 | C(CM)-UCFL207-104D1
C(CM)-UCFL207-105D1
C(CM)-UCFL207-106D1 | 1/8 | 1 ¹⁵ /16 | 2 ⁵ /16 | 3 ¹³ / ₁₆ | 1 ²⁵ /32 | 2.6 | 2.6 | 3.1 | | | FL208D1 | Z(ZM)-UCFL208D1 | C(CM)-UCFL208D1 | 3 | 56 | 66 | 106 | 50 | 1.5 | 1.5 | 1.9 | | | FL208D1
FL208D1 | Z(ZM)-UCFL208-108D1
Z(ZM)-UCFL208-109D1 | C(CM)-UCFL208-108D1
C(CM)-UCFL208-109D1 | 1/8 | 2 ³ /16 | 2 ¹⁹ /32 | 43/16 | 131/32 | 3.3 | 3.3 | 4.2 | | # Rhombus flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCFL...D1 Closed end ZM-UCFL...D1 Cast dust cover type Open end C-UCFL...D1 Closed end CM-UCFL...D1 | Shaft
dia. | Unit number(1) | | | | N | ominal d | limensi | ons | | | | Bolt
size | Bearing
number | |--|--|----------------------------|---------------------------|---------------------------|-------|--------------------------------------|---------|---------------------------------------|--|--------|-------|--------------|--| | | | | | | | mm | inch | | | | | | | | mm
inch | | Н | J | A_2 | A_1 | A | N | L | A_0 | В | S | mm
inch | | | 45 | UCFL209D1 | 188 | 148 | 22 | 16 | 38 | 19 | 108 | 52.2 | 49.2 | 19 | M16 | UC209D1 | | 1 ⁵ /8
1 ¹¹ / ₁₆
1 ³ / ₄ | UCFL209-110D1
UCFL209-111D1
UCFL209-112D1 | 7 13/32 | 5 ⁵³ /64 | 55/64 | 5/8 | 1 ¹ / ₂ | 3/4 | 41/4 | 2 ¹ /16 | 1.9370 | 0.748 | 5/8 | UC209-110D1
UC209-111D1
UC209-112D1 | | 50
113/16 | UCFL210D1
UCFL210-113D1 | 197 | 157 | 22 | 16 | 40 | 19 | 115 | 54.6 | 51.6 | 19 | M16 | UC210D1
UC210-113D1 | | 17/8 | UCFL210-113D1
UCFL210-114D1
UCFL210-115D1
UCFL210-200D1 | 7 3/4 | 6 ³ /16 | 55/64 | 5/8 | 1 9/16 | 3/4 | 417/32 | 2 5/32 | 2.0315 | 0.748 | 5/8 | UC210-113D1
UC210-114D1
UC210-115D1
UC210-200D1 | | 55 | UCFL211D1 | 224 | 184 | 25 | 18 | 43 | 19 | 130 | 58.4 | 55.6 | 22.2 | M16 | UC211D1 | | 2
2 ¹ / ₁₆
2 ¹ / ₈
2 ³ / ₁₆ | UCFL211-200D1
UCFL211-201D1
UCFL211-202D1
UCFL211-203D1 | 813/16 | 71/4 | 63/64 | 23/32 | 1 11/16 | 3/4 | 51/8 | 2 19/64 | 2.1890 | 0.874 | 5/8 | UC211-200D1
UC211-201D1
UC211-202D1
UC211-203D1 | | 60 | UCFL212D1 | 250 | 202 | 29 | 18 | 48 | 23 | 140 | 68.7 | 65.1 | 25.4 | M20 | UC212D1 | | 2 ¹ / ₄
2 ⁵ / ₁₆
2 ³ / ₈
2 ⁷ / ₁₆ | UCFL212-204D1
UCFL212-205D1
UCFL212-206D1
UCFL212-207D1 | 9 27/32 | 7 61/64 | 1 ⁹ /64 | 23/32 | 1 7/8 | 29/32 | 51/2 | 2 ⁴⁵ /64 | 2.5630 | 1.000 | 3/4 | UC212-204D1
UC212-205D1
UC212-206D1
UC212-207D1 | | 65 | UCFL213D1 | 258 | 210 | 30 | 22 | 50 | 23 | 155 | 69.7 | 65.1 | 25.4 | M20 | UC213D1 | | 2 ¹ / ₂
2 ⁹ / ₁₆ |
UCFL213-208D1
UCFL213-209D1 | 10 ⁵ /32 | 817/64 | 1 ³ /16 | 7/8 | 131/32 | 29/32 | 6 ³ / ₃₂ | 2 ³ /4 | 2.5630 | 1.000 | 3/4 | UC213-208D1
UC213-209D1 | | 70 | UCFL214D1 | 265 | 216 | 31 | 22 | 54 | 23 | 160 | 75.4 | 74.6 | 30.2 | M20 | UC214D1 | | 2 ⁵ / ₈
2 ¹¹ / ₁₆
2 ³ / ₄ | UCFL214-210D1
UCFL214-211D1
UCFL214-212D1 | 10 ⁷ /16 | 81/2 | 17/32 | 7/8 | 21/8 | 29/32 | 6 ⁵ /16 | 2 ³¹ / ₃₂ | 2.9370 | 1.189 | 3/4 | UC214-210D1
UC214-211D1
UC214-212D1 | Note (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". | Housing
number | Unit number (1) pressed steel dust cover type | Unit number (1)
cast dust cover type | | Nomin | ıal dimer | nsions | | Mass of unit | | | |-------------------------------|---|---|-----------|----------------------------|--|--|---------------|--------------|-------|-------| | | 22.2.3/62 | | | | nm inch | | | | kg lb | | | | | | t
max. | A_4 | A_5 | L_1 | L_2 | UCFL | Z(ZM) | C(CM) | | FL209D1
FL209D1 | Z(ZM)-UCFL209D1
Z(ZM)-UCFL209-110D1 | C(CM)-UCFL209D1
C(CM)-UCFL209-110D1 | 3 | 57 | 70 | 113 | 54 | 1.8 | 1.9 | 2.3 | | FL209D1
FL209D1
FL209D1 | Z(ZM)-UCFL209-111D1
Z(ZM)-UCFL209-112D1 | C(CM)-UCFL209-111D1
C(CM)-UCFL209-112D1 | 1/8 | 21/4 | 23/4 | 47/16 | 21/8 | 4.0 | 4.2 | 5.1 | | FL210D1
FL210D1 | Z(ZM)-UCFL210D1
Z(ZM)-UCFL210-113D1 | C(CM)-UCFL210D1
C(CM)-UCFL210-113D1 | 3 | 60 | 72 | 120 | 58 | 2.0 | 2.1 | 2.7 | | FL210D1
FL210D1
FL210D1 | Z(ZM)-UCFL210-114D1
Z(ZM)-UCFL210-115D1
— | C(CM)-UCFL210-114D1
C(CM)-UCFL210-115D1
C(CM)-UCFL210-200D1 | 1/8 | 2 ³ /8 | 2 ²⁷ / ₃₂ | 4 ²³ / ₃₂ | 2 9/32 | 4.4 | 4.6 | 6.0 | | FL211D1
FL211D1 | Z(ZM)-UCFL211D1
Z(ZM)-UCFL211-200D1 | C(CM)-UCFL211D1
C(CM)-UCFL211-200D1 | 4 | 64 | 75 | 133 | 65 | 2.9 | 3.0 | 3.4 | | FL211D1
FL211D1
FL211D1 | Z(ZM)-UCFL211-201D1
Z(ZM)-UCFL211-202D1
Z(ZM)-UCFL211-203D1 | C(CM)-UCFL211-201D1
C(CM)-UCFL211-202D1
C(CM)-UCFL211-203D1 | 5/32 | 2 1/2 | 215/16 | 51/4 | 2 9/16 | 6.4 | 6.6 | 7.5 | | FL212D1
FL212D1 | Z(ZM)-UCFL212D1
Z(ZM)-UCFL212-204D1 | C(CM)-UCFL212D1
C(CM)-UCFL212-204D1 | 4 | 74 | 86 | 144 | 70 | 3.8 | 4.0 | 4.6 | | FL212D1
FL212D1
FL212D1 | Z(ZM)-UCFL212-205D1
Z(ZM)-UCFL212-206D1 | C(CM)-UCFL212-205D1
C(CM)-UCFL212-206D1
C(CM)-UCFL212-207D1 | 5/32 | 2 ²⁹ /32 | 33/8 | 521/32 | 23/4 | 8.4 | 8.9 | 10 | | FL213D1 | Z(ZM)-UCFL213D1 | C(CM)-UCFL213D1 | 4 | 76 | 90 | 157 | 78 | 4.8 | 4.9 | 5.8 | | FL213D1
FL213D1 | Z(ZM)-UCFL213-208D1
Z(ZM)-UCFL213-209D1 | C(CM)-UCFL213-208D1
C(CM)-UCFL213-209D1 | 5/32 | 3 | 317/32 | 6 ³ /16 | 31/16 | 11 | 11 | 15 | | FL214D1
FL214D1 | _ | C(CM)-UCFL214D1
C(CM)-UCFL214-210D1 | 4 | _ | 98 | 164 | 80 | 5.4 | _ | 7.7 | | FL214D1
FL214D1 | _ | C(CM)-UCFL214-211D1
C(CM)-UCFL214-212D1 | 5/32 | _ | 327/32 | 6 ¹⁵ /32 | 3 5/32 | 12 | _ | 17 | # Rhombus flanged units cast housing Set screw type Pressed steel dust cover type Open end Z-UCFL...D1 Closed end ZM-UCFL...D1 | Shaft
dia. | Unit number(1) | | | | | Bolt
size | Bearing
number | | | | | | | |--|---|---|----------------------------|----------------------------|-------------|--|-------------------------------------|---------------------------------------|---|--------------|---------------|------------|--| | m.m. | | | | | | mm | inch | | | | | ma ma | | | inch | | Н | J | A_2 | A_1 | A | N | L | A_0 | В | S | mm
inch | | | 75 | UCFL215D1 | 275 | 225 | 34 | 22 | 56 | 23 | 165 | 78.5 | 77.8 | 33.3 | M20 | UC215D1 | | 2 ¹³ / ₁₆
2 ⁷ / ₈
2 ¹⁵ / ₁₆
3 | UCFL215-214D1 | 10 ¹³ / ₁₆ | 855/64 | 1 ¹¹ /32 | 7/8 | 2 ⁷ / ₃₂ | 29/32 | 61/2 | 3 ³ / ₃₂ | 3.0630 | 1.311 | 3/4 | UC215-213D1
UC215-214D1
UC215-215D1
UC215-300D1 | | 80
3 ¹ / ₁₆ | UCFL216D1
UCFL216-301D1 | 290 | 233 | 34 | 22 | 58 | 25 | 180 | 83.3 | 82.6 | 33.3 | M22 | UC216D1
UC216-301D1 | | 3 ¹ / ₈
3 ³ / ₁₆ | UCFL216-303D1
UCFL216-303D1 | 11 ¹³ /32 | 911/64 | 111/32 | 7/8 | 2 9/32 | 63/64 | 7 3/32 | 3 9/32 | 3.2520 | 1.311 | 7/8 | UC216-303D1
UC216-303D1 | | 85
3 ¹ / ₄ | UCFL217D1 | 305 | 248 | 36 | 24 | 63 | 25 | 190 | 87.6 | 85.7 | 34.1 | M22 | UC217D1 | | 3 ⁵ /16
3 ⁷ /16 | UCFL217-304D1
UCFL217-305D1
UCFL217-307D1 | 12 | 949/64 | 127/64 | 15/16 | 2 ¹⁵ / ₃₂ | 63/64 | 7 15/32 | 3 ²⁹ /64 | 3.3740 | 1.343 | 7/8 | UC217-304D1
UC217-305D1
UC217-307D1 | | 90
3 ¹ / ₂ | UCFL218D1
UCFL218-308D1 | 320
12 ¹⁹ /32 | 265
10 ⁷ /16 | 40
1 ³⁷ /64 | 24
15/16 | 68
2 ¹¹ / ₁₆ | 25
⁶³ / ₆₄ | 205
8 ¹ / ₁₆ | 96.3
3 ⁵¹ / ₆₄ | 96
3.7795 | 39.7
1.563 | M22
7/8 | UC218D1
UC218-308D1 | **Note** (1) These numbers indicate relubricatable type. If maintenance free type is needed, please order without suffix "D1". Cast dust cover type Open end C-UCFL...D1 Closed end CM-UCFL...D1 | Housing number | Unit number (1) pressed steel dust | Unit number (¹)
cast dust cover type | | Nomi | nal dimer | nsions | | Mass of unit | | | | |--|------------------------------------|--|------------|----------------------------|--|---------------------------------------|---------------------------------------|--------------|----------|----------|--| | | cover type | | t | $A_{\scriptscriptstyle 4}$ | mm inch A_5 | L_1 | L_2 | | kg lb | | | | | | | max. | 4 | * *5 | 21 | | UCFL | Z(ZM) | C(CM) | | | FL215D1 | _ | C(CM)-UCFL215D1 | 4 | _ | 102 | 169 | 82 | 6.0 | _ | 7.1 | | | FL215D1
FL215D1
FL215D1
FL215D1 | _ | C(CM)-UCFL215-213D1
C(CM)-UCFL215-214D1
C(CM)-UCFL215-215D1
C(CM)-UCFL215-300D1 | 5/32 | _ | 4 ¹ / ₃₂ | 6 ²¹ /32 | 3 ⁷ / ₃₂ | 13 | _ | 16 | | | FL216D1 | _ | C(CM)-UCFL216D1 | 4 | _ | 106 | 183 | 90 | 7.4 | _ | 8.6 | | | FL216D1
FL216D1
FL216D1 | _ | C(CM)-UCFL216-301D1
C(CM)-UCFL216-302D1
C(CM)-UCFL216-303D1 | 5/32 | - | 4 ³ /16 | 7 7/32 | 3 17/32 | 16 | _ | 19 | | | FL217D1
FL217D1 | _ | C(CM)-UCFL217D1
C(CM)-UCFL217-304D1 | 5 | _ | 114 | 192 | 95 | 8.8 | _ | 10 | | | FL217D1
FL217D1
FL217D1 | _ | C(CM)-UCFL217-305D1
C(CM)-UCFL217-307D1 | 13/64 | _ | 41/2 | 7 9/16 | 33/4 | 19 | _ | 22 | | | FL218D1
FL218D1 | | C(CM)-UCFL218D1
C(CM)-UCFL218-308D1 | 5
13/64 | _ | 122
4 ¹³ / ₁₆ | 205
8 ¹ / ₁₆ | 102
4 ¹ / ₃₂ | 11
24 | <u>-</u> | 13
29 | | # PLUMMER BLOCKS | STANDARD TYPE PLUMMER BLOCKS | B306 | |------------------------------|------| | LARGE PLUMMER BLOCKS | B312 | | DUSTPROOF PLUMMER BLOCKS | B316 | | STEPPED-SHAFT TYPE PLUMMER | | | BLOCKS | B318 | #### **DESIGN, TYPES AND FEATURES** There are numerous types and sizes of plummer blocks. In this catalog, only the types marked by are shown. SN 5B SN 6B SN 30B SN 31B SN 2B SN 3B SN 2BC SN 3BC SD 30S SD 31S SD 5 SD 6 SD 2 SD 3 SD 2C SD 3C $V \cdot C$ These are the most common type. Models SN30 and SN31 are for medium For types SN2C and SN3C, the bore diameters on the two sides are different. Dustproof plummer blocks have a combination of oil seals, labyrinth seals, and oil groove seals, therefore, they are suitable for environments with much dust and other foreign matter. SD32TS SN 5 SN 6 SN 30 SN 31 SN 2 SN 3 SN₂C SG 5 SD31TS These are provided with labyrinth seals, so they are suitable for high speed applications. These have the same dimensions as those of types SN5 and SN6. To increase the bearing box strength, no material is removed from the top or bottom of the base, so mounting holes can be drilled anywhere. These are large and made for heavy loads. The standard ones have double seals and four mounting bolt holes. For types SD2C and SD3C, the bore diameters on the two sides are different. Single-piece plummer blocks (integrated type roller bearing unit)have higher rigidity and precision than split type plummer blocks. B 304 B 305 SN 5, SN 6 Types Shaft Diameter 20 – 55 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | Dimens
(mr | | | | | | | Mass
(kg) | |---------------------------|----------------------------|----------------|-----------------|-----|----|-------|------------------|---------------|-------|-------|-------|-----------------|---------------------|---------------------|--------------| | d_1 | Bearing Box
Numbers (1) | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | \boldsymbol{A} | L | A_1 | H_1 | H_2 | g
H13 | t
nominal | S
nominal | approx. | | 20 | SN 505 | 52 | 40 | 130 | 15 | 20 | 67 | 165 | 46 | 22 | 75 | 25 | M 8 | M 12 | 1.1 | | | SN 605 | 62 | 50 | 150 | 15 | 20 | 80 | 185 | 52 | 22 | 90 | 34 | M 8 | M 12 | 1.6 | | 25 | SN 506 | 62 | 50 | 150 | 15 | 20 | 77 | 185 | 52 | 22 | 90 | 30 | M 8 | M 12 | 1.7 | | | SN 606 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 37 | M 10 | M 12 | 1.8 | | 30 | SN 507 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 33 | M 10 | M 12 | 1.9 | | | SN 607 | 80 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 110 | 41 | M 10 | M 12 | 2.6 | | 35 | SN 508 | 80 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 110 | 33 | M 10 |
M 12 | 2.6 | | | SN 608 | 90 | 60 | 170 | 15 | 20 | 95 | 205 | 60 | 25 | 115 | 43 | M 10 | M 12 | 2.9 | | 40 | SN 509 | 85 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 112 | 31 | M 10 | M 12 | 2.8 | | | SN 609 | 100 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 28 | 130 | 46 | M 12 | M 16 | 4.1 | | 45 | SN 510 | 90 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 115 | 33 | M 10 | M 12 | 3.0 | | | SN 610 | 110 | 70 | 210 | 18 | 23 | 115 | 255 | 70 | 30 | 135 | 50 | M 12 | M 16 | 4.7 | | 50 | SN 511 | 100 | 70 | 210 | 18 | 23 | 95 | 255 | 70 | 28 | 130 | 33 | M 12 | M 16 | 4.5 | | | SN 611 | 120 | 80 | 230 | 18 | 23 | 120 | 275 | 80 | 30 | 150 | 53 | M 12 | M 16 | 5.8 | | 55 | SN 512 | 110 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 30 | 135 | 38 | M 12 | M 16 | 5.0 | | | SN 612 | 130 | 80 | 230 | 18 | 23 | 125 | 280 | 80 | 30 | 155 | 56 | M 12 | M 16 | 6.5 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". Remarks Threads for plugs are R 1/8. | | | Ар | plicable Parts | | | | Oil
Seals (3) | |--------------------------------------|---|---|---|---------------------------------------|--|------------------|------------------| | Self-Aligni
Numbers | ng Ball Bearing
Basic Dynamic Load
Ratings $C_{ m r}$ (N) | | r Bearing
sic Dynamic Load
Ratings $C_{ m r}$ (N) | Adapter
Numbers | Locating Rings Nominal (Outside XWidth) | Q'ty | Scuis () | | 1205 K
2205 K
1305 K
2305 K | 12 200
12 400
18 200
24 900 |
22205 CKE4
21305 CDKE4
 | 37 500
43 000
— | H 205X
H 305X
H 305X
H 2305X | SR 52× 5
SR 52× 7
SR 62× 8.5
SR 62×10 | 2
1
2
1 | GS 5
GS 5 | | 1206 K
2206 K
1306 K
2306 K | 15 800
15 300
21 400
32 000 |
22206 CKE4
21306 CDKE4
 |
50 000
55 000
 | H 206X
H 306X
H 306X
H 2306X | SR 62× 7
SR 62×10
SR 72× 9
SR 72×10 | 2
1
2
1 | GS 6
GS 6 | | 1207 K
2207 K
1307 K
2307 K | 15 900
21 700
25 300
40 000 | 22207 CKE4
21307 CDKE4
 |
69 000
71 500
 | H 207X
H 307X
H 307X
H 2307X | SR 72× 8
SR 72×10
SR 80×10
SR 80×10 | 2
1
2
1 | GS 7
GS 7 | | 1208 K
2208 K
1308 K
2308 K | 19 300
22 400
29 800
45 500 | 22208 EAKE4
21308 EAKE4
22308 EAKE4 | 90 500
94 500
136 000 | H 208X
H 308X
H 308X
H 2308X | SR 80× 7.5
SR 80×10
SR 90×10
SR 90×10 | 2
1
2
1 | GS 8
GS 8 | | 1209 K
2209 K
1309 K
2309 K | 22 000
23 300
38 500
55 000 | 22209 EAKE4
21309 EAKE4
22309 EAKE4 | 94 500
119 000
166 000 | H 209X
H 309X
H 309X
H 2309X | SR 85× 6
SR 85× 8
SR 100×10.5
SR 100×10 | 2
1
2
1 | GS 9
GS 9 | | 1210 K
2210 K
1310 K
2310 K | 22 800
23 400
43 500
65 000 | 22210 EAKE4
21310 EAKE4
22310 EAKE4 | 99 000
142 000
197 000 | H 210X
H 310X
H 310X
H 2310X | SR 90× 6.5
SR 90×10
SR 110×11.5
SR 110×10 | 2
1
2
1 | GS10
GS10 | | 1211 K
2211 K
1311 K
2311 K | 26 900
26 700
51 500
76 500 |
22211 EAKE4
21311 EAKE4
22311 EAKE4 | | H 211X
H 311X
H 311X
H 2311X | SR 100× 6
SR 100× 8
SR 120×12
SR 120×10 | 2
1
2
1 | GS11
GS11 | | 1212 K
2212 K
1312 K
2312 K | 30 500
34 000
57 500
88 500 |
22212 EAKE4
21312 EAKE4
22312 EAKE4 |
142 000
190 000
271 000 | H 212X
H 312X
H 312X
H 2312X | SR 110× 8
SR 110×10
SR 130×12.5
SR 130×10 | 2
1
2
1 | GS12
GS12 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. (3) Applicable to the ZF Type with the same number. SN 31, SN 5, SN 6 Types Shaft Diameter 60 – 100 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | Dimens
(mr | | | | | | | Mass
(kg) | |---------------------------|----------------------------|----------------|-----------------|------------|----------|----------|------------|---------------|------------|----------|------------|-----------------|---------------------|---------------------|--------------| | d_1 | Bearing Box
Numbers (1) | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | t
nominal | S
nominal | approx. | | 60 | SN 513 | 120 | 80 | 230 | 18 | 23 | 110 | 275 | 80 | 30 | 150 | 43 | M 12 | M 16 | 5.6 | | | SN 613 | 140 | 95 | 260 | 22 | 27 | 130 | 315 | 90 | 32 | 175 | 58 | M 16 | M 20 | 8.7 | | 65 | SN 515 | 130 | 80 | 230 | 18 | 23 | 115 | 280 | 80 | 30 | 155 | 41 | M 12 | M 16 | 7.0 | | | SN 615 | 160 | 100 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 195 | 65 | M 16 | M 20 | 11.3 | | 70 | SN 516 | 140 | 95 | 260 | 22 | 27 | 120 | 315 | 90 | 32 | 175 | 43 | M 16 | M 20 | 9.0 | | | SN 616 | 170 | 112 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 212 | 68 | M 16 | M 20 | 12.6 | | 75 | SN 517 | 150 | 95 | 260 | 22 | 27 | 125 | 320 | 90 | 32 | 185 | 46 | M 16 | M 20 | 10 | | | SN 617 | 180 | 112 | 320 | 26 | 32 | 155 | 380 | 110 | 40 | 218 | 70 | M 20 | M 24 | 15 | | 80 | SN 518 | 160 | 100 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 195 | 62.4 | M 16 | M 20 | 13 | | | SN 618 | 190 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 225 | 74 | M 20 | M 24 | 19 | | 85 | SN 519 | 170 | 112 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 210 | 53 | M 16 | M 20 | 15 | | | SN 619 | 200 | 125 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 245 | 77 | M 20 | M 24 | 22 | | 90 | SN 520 | 180 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 218 | 70.3 | M 20 | M 24 | 18.5 | | | SN 620 | 215 | 140 | 350 | 26 | 32 | 175 | 410 | 120 | 45 | 270 | 83 | M 20 | M 24 | 25 | | 100 | SN 3122
SN 522 | 180
200 | 112
125 | 320
350 | 26
26 | 32
32 | 155
175 | 380
410 | 110
120 | 40
45 | 218
240 | 66
80 | M 20
M 20 | M 24
M 24 | 18
20 | | | SN 622 | 240 | 150 | 390 | 28 | 36 | 190 | 450 | 130 | 50 | 300 | 90 | M 24 | M 24 | 32 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". | | Арр | olicable Parts | | | | Oil
Seals (3) | |--|--|--|--|---|-----------------------|------------------| | Self-Aligning Ball Bearing Numbers Basic Dynamic Loa Ratings C_{r} (N) | | Bearing ic Dynamic Load latings $C_{ m r}$ (N) | Adapter
Numbers | $\begin{array}{c} \text{Locating Rings} \\ \text{Nominal } \begin{pmatrix} \text{Outside} \\ \text{Dia.} \end{pmatrix} \times \text{Width} \end{pmatrix}$ | Q'ty | Seals (*) | | 1213 K 31 000
2213 K 43 500
1313 K 62 500
2313 K 97 000 |
22213 EAKE4
21313 EAKE4
22313 EAKE4 |
177 000
212 000
300 000 | H 213X
H 313X
H 313X
H 2313X | SR 120×10
SR 120×12
SR 140×12.5
SR 140×10 | 2
1
2
1 | GS13
GS13 | | 1215 K 39 000
2215 K 44 500
1315 K 80 000
2315 K 125 000 |
22215 EAKE4
21315 EAKE4
22315 EAKE4 | | H 215X
H 315X
H 315X
H 2315X | SR 130× 8
SR 130×10
SR 160×14
SR 160×10 | 2
1
2
1 | GS15
GS15 | | 1216 K 40 000
2216 K 49 000
1316 K 89 000
2316 K 130 000 |
22216 EAKE4
21316 EAKE4
22316 EAKE4 | 212 000
284 000
435 000 | H 216X
H 316X
H 316X
H 2316X | SR 140× 8.5
SR 140×10
SR 170×14.5
SR 170×10 | 2
1
2
1 | GS16
GS16 | | 1217 K 49 500
2217 K 58 500
1317 K 98 500
2317 K 142 000 |
22217 EAKE4
21317 EAKE4
22317 EAKE4 | 250 000
289 000
480 000 | H 217X
H 317X
H 317X
H 2317X | SR 150× 9
SR 150×10
SR 180×14.5
SR 180×10 | 2
1
2
1 | GS17
GS17 | | 1218 K 57 500
2218 K 70 500
— — — — — — — — — — — — — — — — — — — | 22218 EAKE4
23218 CKE4
21318 EAKE4
22318 EAKE4 | 289 000
340 000
330 000
535 000 | H 218X
H 318X
H 2318X
H 318X
H 2318X | SR 160×16.2
SR 160×11.2
SR 160×10
SR 190×15.5
SR 190×10 | 2
2
1
2
1 | GS18
GS18 | | 1219 K 64 000
2219 K 84 000
1319 K 129 000
2319 K 161 000 |
22219 EAKE4
21319 CKE4
22319 EAKE4 | 330 000
345 000
590 000 | H 219X
H 319X
H 319X
H 2319X | SR 170×10.5
SR 170×10
SR 200×16
SR 200×10 | 2
1
2
1 | GS19
GS19 | | 1220 K 69 500
2220 K 94 500
— — — — — — — — — — — — — — — — — — — |
22220 EAKE4
23220 CKE4
21320 CKE4
22320 EAKE4 | 365 000
420 000
395 000
690 000 | H 220X
H 320X
H 2320X
H 320X
H 2320X | SR 180×18.1
SR 180×12.1
SR 180×10
SR 215×18
SR 215×10 | 2
2
1
2 | GS 20
GS 20 | | 1222 K 87 000
2222 K 122 000 | 23122 CKE4

22222 EAKE4
23222 CKE4 | 385 000
 | H 3122X
H 222X
H 322X
H 2322X | SR 219×10
SR 180×10
SR 200×21
SR 200×13.5
SR 200×10 | 1
2
2
1
2 | GS22
GS22 | | 1322 K 161 000
2322 K 211 000 | 21322 CAKE4
22322 EAKE4 | 450 000
825 000 | H 322X
H 2322X | SR 240×20
SR 240×10 | 2
1 | GS22 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. Remarks 1. The threads for plugs are R 1/8 for SN 616 and SN 519 or
under and R 1/4 for SN 617, SN 520, SN 3122, and over. ^{2.} SN 620 and SN 622 are provided with eye bolts. ⁽³⁾ Applicable to the ZF Type with the same number. SN 30, SN 31, SN 5, SN 6 Types Shaft Diameter 110 – 140 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | Dimens
(mr | | | | | | | Mass
(kg) | |---------------------------|----------------------------|-------------|-----------------|------------|----------|----------|------------|---------------|-------|-------|-------|-----------------|---------------------|---------------------|--------------| | d_1 | Bearing Box
Numbers (1) | $D_{ m H8}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | t
nominal | S
nominal | approx. | | 110 | SN 3024 | 180 | 112 | 320 | 26 | 32 | 150 | 380 | 110 | 40 | 218 | 56 | M 20 | M 24 | 16 | | | SN 3124 | 200 | 125 | 350 | 26 | 32 | 165 | 410 | 120 | 45 | 245 | 72 | M 20 | M 24 | 20 | | | SN 524 | 215 | 140 | 350 | 26 | 32 | 185 | 410 | 120 | 45 | 270 | 86 | M 20 | M 24 | 24.5 | | | SN 624 | 260 | 160 | 450 | 33 | 42 | 200 | 530 | 160 | 60 | 320 | 96 | M 24 | M 30 | 48 | | 115 | SN 3026 | 200 | 125 | 350 | 26 | 32 | 160 | 410 | 120 | 45 | 240 | 62 | M 20 | M 24 | 19 | | | SN 3126 | 210 | 140 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 270 | 74 | M 20 | M 24 | 26 | | | SN 526 | 230 | 150 | 380 | 28 | 36 | 190 | 445 | 130 | 50 | 290 | 90 | M 24 | M 24 | 30 | | | SN 626 | 280 | 170 | 470 | 33 | 42 | 210 | 550 | 160 | 60 | 340 | 103 | M 24 | M 30 | 56 | | | | | | | | | | | | | | | | | | | 125 | SN 3028 | 210 | 140 | 350 | 26 | 32 | 170 | 410 | 120 | 45 | 270 | 63 | M 20 | M 24 | 25 | | | SN 3128
SN 528 | 225
250 | 150 | 380
420 | 28
33 | 36
42 | 180
205 | 445 | 130 | 50 | 290 | 78
98 | M 24
M 24 | M 24 | 32 | | | 3N 328 | 250 | 150 | 420 | 33 | 42 | 205 | 500 | 150 | 50 | 305 | 98 | IVI Z4 | M 30 | 38 | | | SN 628 | 300 | 180 | 520 | 35 | 45 | 235 | 610 | 170 | 65 | 365 | 112 | M 30 | M 30 | 72 | | 135 | SN 3030 | 225 | 150 | 380 | 28 | 36 | 175 | 445 | 130 | 50 | 290 | 66 | M 24 | M 24 | 29 | | | SN 3130 | 250 | 150 | 420 | 33 | 42 | 200 | 500 | 150 | 50 | 305 | 90 | M 24 | M 30 | 38 | | | SN 530 | 270 | 160 | 450 | 33 | 42 | 220 | 530 | 160 | 60 | 325 | 106 | M 24 | M 30 | 46 | | | 011 / 00 | 000 | 400 | F / O | 0.5 | | 0.45 | | 400 | | 0.05 | 440 | | | | | | SN 630 | 320 | 190 | 560 | 35 | 45 | 245 | 650 | 180 | 65 | 385 | 118 | M 30 | M 30 | 98 | | 140 | SN 3032 | 240 | 150 | 390 | 28 | 36 | 190 | 450 | 130 | 50 | 300 | 70 | M 24 | M 24 | 32 | | | SN 3132 | 270 | 160 | 450 | 33 | 42 | 215 | 530 | 160 | 60 | 325 | 96 | M 24 | M 30 | 48 | | | SN 532 | 290 | 170 | 470 | 33 | 42 | 235 | 550 | 160 | 60 | 345 | 114 | M 24 | M 30 | 50 | | | SN 632 | 340 | 200 | 580 | 42 | 50 | 255 | 680 | 190 | 70 | 405 | 124 | M 30 | M 36 | 115 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". Remarks 1. The threads for plugs are R 1/4. 2. The bearing boxes for SN 524, SN 624, SN 3126, SN 3028, and over are provided with eye bolts. | | | А | pplicable Parts | | | | Oil
Seals (3) | |---------|------------------------------------|-----------------------------|---------------------------------|--------------------|---|--------|------------------| | | ng Ball Bearing Basic Dynamic Load | Spherical Roll
Numbers B | er Bearing
asic Dynamic Load | Adapter
Numbers | $\begin{array}{c} \text{Locating Rings} \\ \text{Nominal } \begin{pmatrix} \text{Outside} \\ \text{Dia.} \end{pmatrix} \times \text{Width} \end{pmatrix}$ | Q'ty | Jedis () | | Numbers | Ratings $C_{\rm r}$ (N) | Numbers | Ratings $C_{\rm r}$ (N) | Numbers | Norminal (Dia. XWIGIN) | Q ty | | | _ | _ | 23024 CDKE4 | 315 000 | H 3024 | SR 180×10 | 1 | GS24 | | _ | _ | 23124 CKE4 | 465 000 | H 3124 | SR 200×10 | 1 | GS 24 | | _ | _ | 22224 EAKE4
23224 CKE4 | 550 000
630 000 | H 3124
H 2324 | SR 215×14
SR 215×10 | 2
1 | GS 24 | | _ | _ | 22324 EAKE4 | 955 000 | H 2324 | SR 260×10 | 1 | GS 24 | | _ | _ | 23026 CDKE4 | | H 3026 | SR 200×10 | 1 | GS 26 | | _ | _ | 23126 CKE4 | 505 000 | H 3126 | SR 210×10 | 1 | GS26 | | _ | _ | 22226 EAKE4
23226 CKE4 | 655 000
700 000 | H 3126
H 2326 | SR 230×13
SR 230×10 | 2
1 | GS26 | | _ | _ | 22326 CKE4 | 995 000 | H 2326 | SR 280×10 | 1 | GS 26 | | _ | _ | 23028 CDKE4 | | H 3028 | SR 210×10 | 1 | GS 28 | | _ | _ | 23128 CKE4 | 580 000 | H 3128 | SR 225×10 | 1 | GS 28 | | _ | _ | 22228 CDKE4
23228 CKE4 | 645 000
835 000 | H 3128
H 2328 | SR 250×15
SR 250×10 | 2
1 | GS 28 | | _ | _ | 22328 CKE4 | 1 160 000 | H 2328 | SR 300×10 | 1 | GS 28 | | _ | _ | 23030 CDKE4 | | H 3030 | SR 225×10 | 1 | GS 30 | | _ | _ | 23130 CKE4 | 725 000 | H 3130 | SR 250×10 | 1 | GS 30 | | _ | _ | 22230 CDKE4
23230 CKE4 | 765 000
975 000 | H 3130
H 2330 | SR 270×16.5
SR 270×10 | 2
1 | GS 30 | | _ | _ | 22330 CAKE4 | 1 220 000 | H 2330 | SR 320×10 | 1 | GS 30 | | _ | _ | 23032 CDKE4 | 540 000 | H 3032 | SR 240×10 | 1 | GS 32 | | _ | _ | 23132 CKE4 | 855 000 | H 3132 | SR 270×10 | 1 | GS 32 | | _ | _ | 22232 CDKE4
23232 CKE4 | 910 000
1 100 000 | H 3132
H 2332 | SR 290×17
SR 290×10 | 2
1 | GS 32 | | _ | _ | 22332 CAKE4 | 1 360 000 | H 2332 | SR 340×10 | 1 | GS 32 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. (3) Applicable to the ZF Type with the same number. SD 30 S, SD 31 S, SD 5, SD 6 Types Shaft Diameter 150 – 260 mm To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter". **Remarks** 1. The threads for oil replenishing hole plugs are R 1/4 and those for drain plugs are R 3/8. | | | | | Mass
(kg) | Applicable Parts | Oil
Seals (2) | |-----------------|-------------------|------------------|---------------------|--------------|---|------------------| | g
H13 | g 1
H13 | t nominal | S
nominal | approx. | Spherical Roller Bearing Adapter Numbers Basic Dynamic Load Ratings $C_{ m r}$ (N) | (, | | 77 | 67 | M 24 | M 30 | 70 | 23034 CDKE4 640 000 H 3034 | GS 34 | | 98 | 88 | M 24 | M 30 | 75 | 23134 CKE4 940 000 H 3134 | GS 34 | | 96 | 86 | M 24 | M 30 | 100 | 22234 CDKE4 990 000 H 3134 | GS 34 | | 130 | 120 | M 30 | M 30 | 160 | 22334 CAKE4 1 580 000 H 2334 | GS 34 | | 84 | 74 | M 24 | M 30 | 79 | 23036 CDKE4 750 000 H 3036 | GS 36 | | 106 | 96 | M 24 | M 30 | 94 | 23136 CKE4 1 050 000 H 3136 | GS 36 | | 96 | 86 | M 24 | M 30 | 110 | 22236 CDKE4 1 020 000 H 3136 | GS 36 | | 136 | 126 | M 30 | M 36 | 195 | 22336 CAKE4 1 740 000 H 2336 | GS 36 | | 85 | 75 | M 24 | M 30 | 87 | 23038 CAKE4 775 000 H 3038 | GS 38 | | 114 | 104 | M 24 | M 30 | 110 | 23138 CKE4 1 190 000 H 3138 | GS 38 | | 102 | 92 | M 30 | M 30 | 130 | 22238 CAKE4 1 140 000 H 3138 | GS 38 | | 142 | 132 | M 30 | M 36 | 210 | 22338 CAKE4 1 890 000 H 2338 | GS 38 | | 92 | 82 | M 24 | M 30 | 100 | 23040 CAKE4 940 000 H 3040 | GS 40 | | 122 | 112 | M 30 | M 30 | 130 | 23140 CKE4 1 360 000 H 3140 | GS 40 | | 108 | 98 | M 30 | M 30 | 155 | 22240 CAKE4 1 300 000 H 3140 | GS 40 | | 148 | 138 | M 36 | M 36 | 240 | 22340 CAKE4 2 000 000 H 2340 | GS 40 | | 100 | 90 | M 30 | M 30 | 130 | 23044 CAKE4 1 090 000 H 3044 | GS 44 | | 130 | 120 | M 30 | M 36 | 180 | 23144 CKE4 1 570 000 H 3144 | GS 44 | | 118 | 108 | M 30 | M 36 | 205 | 22244 CAKE4 1 570 000 H 3144 | GS 44 | | 155 | 145 | M 36 | M 36 | 315 | 22344 CAKE4 2 350 000 H 2344 | GS 44 | | 102 | 92 | M 30 | M 30 | 160 | 23048 CAKE4 1 160 000 H 3048 | GS 48 | | 138 | 128 | M 30 | M 36 | 210 | 23148 CKE4 1 790 000 H 3148 | GS 48 | | 130 | 120 | M 36 | M 36 | 240 | 22248 CAKE4 1 870 000 H 3148 | GS 48 | | 165 | 155 | M 36 | M 42 | 405 | 22348 CAKE4 2 600 000 H 2348 | GS 48 | | 114 | 104 | M 30 | M 36 | 210 | 23052 CAKE4 1 430 000 H 3052 | GS 52 | | 154 | 144 | M 36 | M 36 | 240 | 23152 CAKE4 2 160 000 H 3152 | GS 52 | | 140 | 130 | M 36 | M 36 | 315 | 22252 CAKE4 2 180 000 H 3152 | GS 52 | | 175 | 165 | M 36 | M 42 | 480 | 22352 CAKE4 3 100 000 H 2352 | GS 52 | | 116 | 106 | M 36 | M 36 | 240 | 23056 CAKE4 1 540 000 H 3056 | GS 56 | | 156 | 146 | M 36 | M 36 | 315 | 23156 CAKE4 2 230 000 H 3156 | GS 56 | | 140 | 130 | M 36 | M 42 | 390 | 22256 CAKE4 2 280 000 H 3156 | GS 56 | | 185 | 175 | M 42 | M 48 | 610 | 22356 CAKE4 3 500 000 H 2356 | GS 56 | **Note** (2) Applicable to the ZF Type with the same number. ^{2.} The plummer block bearing boxes listed above are provided with eye bolts. SD 30 S, SD 31 S, SD 5 Types Shaft Diameter 280 – 450 mm To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter". Remarks 1. The threads for oil replenishing hole plugs are R 1/4 and those for drain plugs are R 3/8. | | | | | Mass
(kg) | Applicable Parts Spherical Roller Bearing Adapter | Oil
Seals (²) | |-----------------|-----------|---------------------|---------------------|--------------|--|------------------| | g
H13 | g_1 H13 | t
nominal | S
nominal | approx. | Numbers $egin{array}{lll} {\sf Basic Dynamic Load} \\ {\sf Ratings } & {\it C_{\rm r}} \ ({\sf N}) \\ \end{array}$ Numbers | | | 128 | 118 | M 36 | M 36 | 300 | 23060 CAKE4 1 920 000 H 3060 | GS 60 | | 170 | 160 | M 36 | M 42 | 405 | 23160 CAKE4 2 670 000 H 3160 | GS 60 | | 150 | 140 | M 36 | M 42 | 465 | 22260 CAKE4 2 610 000 H 3160 | GS 60 | | 131 | 121 | M 36 | M 36 | 320 | 23064 CAKE4 1 960 000 H
3064 | GS 64 | | 186 | 176 | M 36 | M 42 | 480 | 23164 CAKE4 3 050 000 H 3164 | GS 64 | | 160 | 150 | M 42 | M 48 | 595 | 22264 CAKE4 2 990 000 H 3164 | GS 64 | | 143 | 133 | M 36 | M 42 | 410 | 23068 CAKE4 2 280 000 H 3068 | GS 68 | | 200 | 190 | M 42 | M 48 | 650 | 23168 CAKE4 3 600 000 H 3168 | GS 68 | | 144 | 134 | M 36 | M 42 | 465 | 23072 CAKE4 2 390 000 H 3072 | GS 72 | | 202 | 192 | M 42 | M 48 | 700 | 23172 CAKE4 3 800 000 H 3172 | GS 72 | | 145 | 135 | M 36 | M 42 | 480 | 23076 CAKE4 2 500 000 H 3076 | GS 76 | | 204 | 194 | M 42 | M 48 | 940 | 23176 CAKE4 4 000 000 H 3176 | GS 76 | | 158 | 148 | M 42 | M 48 | 690 | 23080 CAKE4 2 970 000 H 3080 | GS 80 | | 210 | 200 | M 42 | M 48 | 1 040 | 23180 CAKE4 4 150 000 H 3180 | GS 80 | | 160 | 150 | M 42 | M 48 | 770 | 23084 CAKE4 2 910 000 H 3084 | GS 84 | | 234 | 224 | M 48 | M 48 | 1 150 | 23184 CAKE4 5 000 000 H 3184 | GS 84 | | 167 | 157 | M 42 | M 48 | 870 | 23088 CAKE4 3 150 000 H 3088 | GS 88 | | 173 | 163 | M 48 | M 48 | 940 | 23092 CAKE4 3 450 000 H 3092 | GS 92 | | 175 | 165 | M 48 | M 48 | 1 040 | 23096 CAKE4 3 800 000 H 3096 | GS 96 | **Note** (2) Applicable to the ZF Type with the same number. ^{2.} The plummer block bearing boxes listed above are provided with eye bolts. SG 5, SG 5-0 Types Shaft Diameter 50 – 180 mm | Shaft
Diameter
(mm) | | ner Block
ing Box | | | | | | | nension
(mm) | S | | | | | | |---------------------------|---------------------|----------------------------|----------------|-----------------|-----|----|-------|-----|-----------------|-------|-------|-------|-------|-------|-----------------| | d_1 | Num
Through Type | bers (1)
End Cover Type | $_{ m H8}^{D}$ | H
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | J_1 | A_2 | g
H13 | | 50 | SG 511 | SG 511-0 | 100 | 70 | 210 | 18 | 23 | 125 | 255 | 70 | 23 | 137 | _ | 112.5 | 29 | | 55 | SG 512 | SG 512-0 | 110 | 80 | 230 | 18 | 23 | 145 | 290 | 80 | 25 | 160 | _ | 135 | 32 | | 60 | SG 513 | SG 513-0 | 120 | 83 | 230 | 18 | 23 | 130 | 290 | 70 | 25 | 155 | _ | 115 | 36 | | | | | | | | | | | | | | | | | | | 65 | SG 515 | SG 515-0 | 130 | 90 | 230 | 18 | 23 | 135 | 290 | 80 | 25 | 168 | _ | 120 | 36 | | 70 | SG 516 | SG 516-0 | 140 | 95 | 270 | 22 | 27 | 165 | 340 | 120 | 30 | 180 | 70 | 155 | 38 | | 75 | SG 517 | SG 517-0 | 150 | 100 | 280 | 22 | 27 | 170 | 350 | 120 | 30 | 190 | 70 | 160 | 41 | | | | | | | | | | | | | | | | | | | 80 | SG 518 | SG 518-0 | 160 | 100 | 290 | 22 | 27 | 180 | 360 | 120 | 35 | 200 | 70 | 170 | 45 | | 90 | SG 520 | SG 520-0 | 180 | 125 | 340 | 22 | 27 | 200 | 410 | 130 | 35 | 240 | 70 | 185 | 51 | | 100 | SG 522 | SG 522-0 | 200 | 140 | 380 | 22 | 27 | 210 | 460 | 130 | 40 | 265 | 70 | 190 | 58 | | | | | | | | | | | | | | | | | | | 110 | SG 524 | SG 524-0 | 215 | 140 | 380 | 22 | 27 | 230 | 460 | 130 | 45 | 275 | 80 | 200 | 63 | | 115 | SG 526 | SG 526-0 | 230 | 150 | 410 | 26 | 32 | 240 | 490 | 160 | 45 | 295 | 80 | 220 | 69 | | 125 | SG 528 | SG 528-0 | 250 | 160 | 435 | 26 | 32 | 245 | 520 | 160 | 50 | 310 | 80 | 220 | 73 | | | | | | | | | | | | | | | | | | | 135 | SG 530 | SG 530-0 | 270 | 160 | 465 | 26 | 32 | 265 | 550 | 170 | 50 | 330 | 100 | 240 | 78 | | 140 | SG 532 | SG 532-0 | 290 | 170 | 490 | 26 | 32 | 285 | 580 | 170 | 50 | 350 | 100 | 250 | 85 | | 150 | SG 534 | SG 534-0 | 310 | 180 | 550 | 33 | 42 | 300 | 640 | 180 | 55 | 380 | 100 | 265 | 91 | | | | | | | | | | | | | | | | | | | 160 | SG 536 | SG 536-0 | 320 | 190 | 600 | 33 | 42 | 325 | 690 | 190 | 55 | 400 | 110 | 285 | 91 | | 170 | SG 538 | SG 538-0 | 340 | 200 | 620 | 42 | 52 | 340 | 730 | 200 | 60 | 420 | 120 | 295 | 97 | | 180 | SG 540 | SG 540-0 | 360 | 210 | 635 | 42 | 52 | 350 | 750 | 210 | 60 | 445 | 130 | 310 | 103 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+adapter+locating ring". | | | | ass | | Applic | able | Parts | | | Oil | |---------------------|---------------------|-----------------|-------------------|-------------|--|------|--------|---------------------------------|------|-----------| | | | app | (g)
orox. | Spherical I | Roller Bearing | A | dapter | Locating Rir | ng | Seals (3) | | t
nominal | S
nominal | Through
Type | End Cover
Type | Numbers | Basic Dynamic Load
Ratings $C_{ m r}$ (N) | Nu | mbers | Nominal (Outside
Dia.×Width) | Q'ty | | | M 12 | M 16 | 8.5 | 7.5 | 22211 EAK | E4 119 000 | Н | 311 X | SR 100×4 | 1 | GS 11 | | M 16 | M 16 | 15 | 14 | 22212 EAK | E4 142 000 | Н | 312 X | SR 110×4 | 1 | GS 12 | | M 16 | M 16 | 9.5 | 8.5 | 22213 EAK | E4 177 000 | Н | 313 X | SR 120×5 | 1 | GS 13 | | | | | | | | | | | | | | M 16 | M 16 | 12.5 | 11 | 22215 EAK | E4 190 000 | Н | 315 X | SR 130×5 | 1 | GS 15 | | M 20 | M 20 | 18.5 | 17 | 22216 EAK | E4 212 000 | Н | 316 X | SR 140×5 | 1 | GS 16 | | M 20 | M 20 | 21 | 20 | 22217 EAK | E4 250 000 | Н | 317 X | SR 150×5 | 1 | GS 17 | | | | | | | | | | | | | | M 20 | M 20 | 25 | 23 | 22218 EAK | E4 289 000 | Н | 318 X | SR 160×5 | 1 | GS 18 | | M 20 | M 20 | 37 | 34 | 22220 EAK | E4 365 000 | Н | 320 X | SR 180×5 | 1 | GS 20 | | M 20 | M 20 | 50 | 45 | 22222 EAK | E4 485 000 | Н | 322 X | SR 200×5 | 1 | GS 22 | | | | | | | | | | | | | | M 20 | M 20 | 59 | 53 | 22224 EAK | E4 550 000 | Н: | 3124 | SR 215×5 | 1 | GS 24 | | M 24 | M 24 | 67 | 62 | 22226 EAK | E4 655 000 | Н | 3126 | SR 230×5 | 1 | GS 26 | | M 24 | M 24 | 73 | 68 | 22228 CDK | E4 645 000 | Н | 3128 | SR 250×5 | 1 | GS 28 | | | | | | | | | | | | | | M 24 | M 24 | 90 | 80 | 22230 CDK | E4 765 000 | Н | 3130 | SR 270×5 | 1 | GS 30 | | M 24 | M 24 | 105 | 92 | 22232 CDK | E4 910 000 | Н | 3132 | SR 290×5 | 1 | GS 32 | | M 30 | M 30 | 130 | 115 | 22234 CDK | E4 990 000 | Н | 3134 | SR 310×5 | 1 | GS 34 | | | | | | | | | | | | | | M 30 | M 30 | 155 | 135 | 22236 CDK | E4 1 020 000 | Н: | 3136 | SR 320×5 | 1 | GS 36 | | M 36 | M 36 | 175 | 155 | 22238 CAK | E4 1 140 000 | Н | 3138 | SR 340×5 | 1 | GS 38 | | M 36 | M 36 | 210 | 180 | 22240 CAK | E4 1 300 000 | Н | 3140 | SR 360×5 | 1 | GS 40 | | | | 1 | | | | | | | | | Notes (2) The X dimension indicates the offset of the bearing center from the center of plummer block bearing box, and it is 1/2 of the locating ring width. B 316 B 317 **Remarks** 1. The threads for grease nipples are R 1/8 for SG518 and under, and R 1/4 for SG520 and over. ^{2.} Bearing boxes larger than SG520 are provided with eye bolts. ⁽³⁾ Applicable to the ZF Type with the same number. SN 2 C, SN 3 C Types Shaft Diameter 25 – 55 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | | Dimens
(mm | | | | | | | | |---------------------------|----------------------------|-------|-------|----------------|-----------------|-----|----|-------|---------------|-----|-------|-------|-------|-----------------|---------------------|---------------------| | d | Bearing Box
Numbers (1) | d_1 | d_2 | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | t
nominal | S
nominal | | 25 | SN 205 C | 30 | 20 | 52 | 40 | 130 | 15 | 20 | 67 | 165 | 46 | 22 | 75 | 25 | M 8 | M 12 | | | SN 305 C | 30 | 20 | 62 | 50 | 150 | 15 | 20 | 80 | 185 | 52 | 22 | 90 | 34 | M 8 | M 12 | | 30 | SN 206 C | 35 | 25 | 62 | 50 | 150 | 15 | 20 | 77 | 185 | 52 | 22 | 90 | 30 | M 8 | M 12 | | | SN 306 C | 35 | 25 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 37 | M 10 | M 12 | | 35 | SN 207 C | 45 | 30 | 72 | 50 | 150 | 15 | 20 | 82 | 185 | 52 | 22 | 95 | 33 | M 10 | M 12 | | | SN 307 C | 45 | 30 | 80 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 110 | 41 | M 10 | M 12 | | 40 | SN 208 C | 50 | 35 | 80 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 110 | 33 | M 10 | M 12 | | | SN 308 C | 50 | 35 | 90 | 60 | 170 | 15 | 20 | 95 | 205 | 60 | 25 | 115 | 43 | M 10 | M 12 | | 45 | SN 209 C | 55 | 40 | 85 | 60 | 170 | 15 | 20 | 85 | 205 | 60 | 25 | 112 | 31 | M 10 | M 12 | | | SN 309 C | 55 | 40 | 100 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 28 | 130 | 46 | M 12 | M 16 | | 50 | SN 210 C | 60 | 45 | 90 | 60 | 170 | 15 | 20 | 90 | 205 | 60 | 25 | 115 | 33 | M 10 | M 12 | | | SN 310 C | 60 | 45 | 110 | 70 | 210 | 18 | 23 | 115 | 255 | 70 | 30 | 135 | 50 | M 12 | M 16 | | 55 | SN 211 C | 65 | 50 | 100 | 70 | 210 | 18 | 23 | 95 | 255 | 70 | 28 | 130 | 33 | M 12 | M 16 | | | SN 311 C | 65 | 50 | 120 | 80 | 230 | 18 | 23 | 120 | 275 | 80 | 30 | 150 | 53 | M 12 | M 16 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer+locating ring". Remarks The threads for plugs are R 1/8. | Mass | | | | Applicable | e Parts | | | | Oil Se | als (3) | |---------|--------------|--------------------------------|--------------------------|--|----------------|------------------|---------------------------------|--------|------------|------------| | (kg) | | ng Ball Bearing | Spherical Rolle | r Bearing | Nut | Lock-washer | Locating Ring | | | | | approx. | Numbers | B. D. L. R. (4) $C_{ m r}$ (N) | Numbers | B. D. L. R. (4)
<i>C</i> _r (N) | Numbers | Numbers | Nominal (Outside
Dia.×Width) | Q'ty | Side d_1 | Side d_2 | | 1.1 | 1205
2205 | 12 200
12 400 |
22205 CE4 |
37 500 | AN 05
AN 05 | AW 05X
AW 05X | SR 52 × 5
SR 52 × 7 | 2
1 | GS 7 | GS 5 | | 1.6 | 1305
2305 | 18 200
24 900 | 21305 CDE4
— | 43 000
— | AN 05
AN 05 | AW 05X
AW 05X | SR 62 × 8.5
SR 62 × 10 | 2
1 | GS 7 | GS 5 | | 1.7 | 1206
2206 | 15 800
15 300 |
22206 CE4 |
50 000 | AN 06
AN 06 | AW 06X
AW 06X | SR 62 × 7
SR 62 × 10 | 2 | GS 8 | GS 6 | | 1.8 | 1306
2306 | 21 400
32 000 | 21306 CDE4
— | 55 000
— | AN 06
AN 06 | AW 06X
AW 06X | SR 72 × 9
SR 72 × 10 | 2
1 | GS 8 | GS 6 | | 1.9 | 1207
2207 | 15 900
21 700 |
22207 CE4 |
69 000 | AN 07
AN 07 | AW 07X
AW 07X | SR
72 × 8
SR 72 × 10 | 2
1 | GS 10 | GS 7 | | 2.6 | 1307
2307 | 25 300
40 000 | 21307 CDE4
— | 71 500
— | AN 07
AN 07 | AW 07X
AW 07X | SR 80×10
SR 80×10 | 2
1 | GS 10 | GS 7 | | 2.6 | 1208
2208 | 19 300
22 400 |
22208 EAE4 | _
90 500 | AN 08
AN 08 | AW 08X
AW 08X | SR 80 × 7.5
SR 80 × 10 | 2 | GS 11 | GS 8 | | 2.9 | 1308
2308 | 29 800
45 500 | 21308 EAE4
22308 EAE4 | 94 500
136 000 | | AW 08X
AW 08X | SR 90×10
SR 90×10 | 2
1 | GS 11 | GS 8 | | 2.8 | 1209
2209 | 22 000
23 300 |
22209 EAE4 |
94 500 | AN 09
AN 09 | AW 09X
AW 09X | SR 85 × 6
SR 85 × 8 | 2 | GS 12 | GS 9 | | 4.1 | 1309
2309 | 38 500
55 000 | 21309 EAE4
22309 EAE4 | 119 000
166 000 | | AW 09X
AW 09X | SR 100 × 10.5
SR 100 × 10 | 2
1 | GS 12 | GS 9 | | 3.0 | 1210
2210 | 22 800
23 400 |
22210 EAE4 | _
99 000 | AN 10
AN 10 | AW 10X
AW 10X | SR 90 × 6.5
SR 90 × 10 | 2 | GS 13 | GS 10 | | 4.7 | 1310
2310 | 43 500
65 000 | 21310 EAE4
22310 EAE4 | 142 000
197 000 | | AW 10X
AW 10X | SR 110 × 11.5
SR 110 × 10 | 2
1 | GS 13 | GS 10 | | 4.5 | 1211
2211 | 26 900
26 700 |
22211 EAE4 | _
119 000 | AN 11
AN 11 | AW 11X
AW 11X | SR 100 × 6
SR 100 × 8 | 2 | GS 15 | GS 11 | | 5.8 | 1311
2311 | 51 500
76 500 | 21311 EAE4
22311 EAE4 | 142 000
234 000 | | AW 11X
AW 11X | SR 120 × 12
SR 120 × 10 | 2
1 | GS 15 | GS 11 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. ⁽³⁾ Applicable to the ZF Type with the same number. (4) B. D. L. R.: Basic Dynamic Load Ratings SN 2 C, SN 3 C Types Shaft Diameter 60 – 90 mm | Shaft
Diameter
(mm) | Plummer
Block | | | | | | | | Dimensi
(mm | | | | | | | | |---------------------------|----------------------------|----------------------------|-------|----------------|-----------------|-----|----|-------|----------------|-----|-------|-------|-------|-----------------|---------------------|---------------------| | d | Bearing Box
Numbers (1) | $d_{\scriptscriptstyle 1}$ | d_2 | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | g
H13 | t
nominal | S
nominal | | 60 | SN 212 C | 70 | 55 | 110 | 70 | 210 | 18 | 23 | 105 | 255 | 70 | 30 | 135 | 38 | M 12 | M 16 | | | SN 312 C | 70 | 55 | 130 | 80 | 230 | 18 | 23 | 125 | 280 | 80 | 30 | 155 | 56 | M 12 | M 16 | | 65 | SN 213 C | 75 | 60 | 120 | 80 | 230 | 18 | 23 | 110 | 275 | 80 | 30 | 150 | 43 | M 12 | M 16 | | | SN 313 C | 75 | 60 | 140 | 95 | 260 | 22 | 27 | 130 | 315 | 90 | 32 | 175 | 58 | M 16 | M 20 | | 70 | SN 214 C | 80 | 65 | 125 | 80 | 230 | 18 | 23 | 115 | 275 | 80 | 30 | 155 | 44 | M 12 | M 16 | | | SN 314 C | 80 | 65 | 150 | 95 | 260 | 22 | 27 | 130 | 320 | 90 | 32 | 185 | 61 | M 16 | M 20 | | 75 | SN 215 C | 85 | 70 | 130 | 80 | 230 | 18 | 23 | 115 | 280 | 80 | 30 | 155 | 41 | M 12 | M 16 | | | SN 315 C | 85 | 70 | 160 | 100 | 290 | 22 | 27 | 140 | 345 | 100 | 35 | 195 | 65 | M 16 | M 20 | | 80 | SN 216 C | 90 | 75 | 140 | 95 | 260 | 22 | 27 | 120 | 315 | 90 | 32 | 175 | 43 | M 16 | M 20 | | | SN 316 C | 90 | 75 | 170 | 112 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 212 | 68 | M 16 | M 20 | | 85 | SN 217 C | 95 | 80 | 150 | 95 | 260 | 22 | 27 | 125 | 320 | 90 | 32 | 185 | 46 | M 16 | M 20 | | | SN 317 C | 95 | 80 | 180 | 112 | 320 | 26 | 32 | 155 | 380 | 110 | 40 | 218 | 70 | M 20 | M 24 | | 90 | SN 218 C | 100 | 85 | 160 | 100 | 290 | 22 | 27 | 145 | 345 | 100 | 35 | 195 | 62.4 | M 16 | M 20 | | | SN 318 C | 105 | 85 | 190 | 112 | 320 | 26 | 32 | 160 | 380 | 110 | 40 | 225 | 74 | M 20 | M 24 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer+locating ring". Remarks The threads for plugs are R 1/8 for SN316C, SN218C, and under and R 1/4 for SN317C and over. | Locating | Ring | |----------|------| |----------|------| | Mass | | | | Applicable | e Parts | | | | Oil Se | als (³) | |--------------|------------------------|---|-----------------------------|---|-------------------------|----------------------------|--|-------------|---------------------------------|------------| | (kg) approx. | Self-Aligni
Numbers | ng Ball Bearing
B. D. L. R. (4)
$C_{ m r}$ (N) | Spherical Rolle
Numbers | r Bearing
B. D. L. R. (4)
$C_{ m r}$ (N) | Nut
Numbers | Lock-washer
Numbers | Locating Ring
Nominal (Outside
Dia.×Width) | Q'ty | Side $d_{\scriptscriptstyle 1}$ | Side d_2 | | 5.0 | 1212
2212 | 30 500
34 000 |
22212 EAE4 | _
142 000 | AN 12
AN 12 | AW 12X
AW 12X | SR 110 × 8
SR 110 × 10 | 2 | GS 16 | GS 12 | | 6.5 | 1312
2312 | 57 500
88 500 | 21312 EAE4
22312 EAE4 | 190 000
271 000 | AN 12
AN 12 | AW 12X
AW 12X | SR 130 × 12.5
SR 130 × 10 | 2
1 | GS 16 | GS 12 | | 5.6 | 1213
2213 | 31 000
43 500 |
22213 EAE4 |
177 000 | AN 13
AN 13 | AW 13X
AW 13X | SR 120 × 10
SR 120 × 12 | 2 | GS 17 | GS 13 | | 8.7 | 1313
2313 | 62 500
97 000 | 21313 EAE4
22313 EAE4 | 212 000
300 000 | | AW 13X
AW 13X | SR 140 × 12.5
SR 140 × 10 | 2
1 | GS 17 | GS 13 | | 6.2 | 1214
2214 | 35 000
44 000 |
22214 EAE4 | _
180 000 | AN 14
AN 14 | AW 14X
AW 14X | SR 125 × 10
SR 125 × 13 | 2 | GS 18 | GS 15 | | 10 | 1314
2314 | 65 000
111 000 | 21314 EAE4
22314 EAE4 | 250 000
340 000 | AN 14
AN 14 | AW 14X
AW 14X | SR 150 × 13
SR 150 × 10 | 2
1 | GS 18 | GS 15 | | 7.0 | 1215
2215 | 39 000
44 500 |
22215 EAE4 | _
190 000 | AN 15
AN 15 | AW 15X
AW 15X | SR 130 × 8
SR 130 × 10 | 2 | GS 19 | GS 16 | | 11.3 | 1315
2315 | 80 000
125 000 | 21315 EAE4
22315 EAE4 | 250 000
390 000 | AN 15
AN 15 | AW 15X
AW 15X | SR 160 × 14
SR 160 × 10 | 2
1 | GS 19 | GS 16 | | 9.0 | 1216
2216 | 40 000
49 000 |
22216 EAE4 |
212 000 | AN 16
AN 16 | AW 16X
AW 16X | SR 140 × 8.5
SR 140 × 10 | 2 | GS 20 | GS 17 | | 12.6 | 1316
2316 | 89 000
130 000 | 21316 EAE4
22316 EAE4 | 284 000
435 000 | | AW 16X
AW 16X | SR 170 × 14.5
SR 170 × 10 | 2
1 | GS 20 | GS 17 | | 10 | 1217
2217 | 49 500
58 500 |
22217 EAE4 |
250 000 | AN 17
AN 17 | AW 17X
AW 17X | SR 150 × 9
SR 150 × 10 | 2 | GS 21 | GS 18 | | 15 | 1317
2317 | 98 500
142 000 | 21317 EAE4
22317 EAE4 | 289 000
480 000 | AN 17
AN 17 | AW 17X
AW 17X | SR 180 × 14.5
SR 180 × 10 | 2
1 | GS 21 | GS 18 | | 13 | 1218
2218
— | 57 500
70 500
— |
22218 EAE4
23218 CE4 |
289 000
340 000 | AN 18
AN 18
AN 18 | AW 18X
AW 18X
AW 18X | SR 160 × 16.2
SR 160 × 11.2
SR 160 × 10 | 2
2
1 | GS 22 | GS 19 | | 19 | 1318
2318 | 117 000
154 000 | 21318 EAE4
22318 EAE4 | 330 000
535 000 | | AW 18X
AW 18X | SR 190 × 15.5
SR 190 × 10 | 2
1 | GS 23 | GS 19 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. (3) Applicable to the ZF Type with the same number. (4) B. D. L. R.: Basic Dynamic Load Ratings SN 2 C, SN 3 C Types Shaft Diameter 95 – 160 mm To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer+locating ring". \dot{H}_1 | Mass | | | | Applicable | e Parts | | | | Oil Se | als (³) | |---------|-------------------|--|-----------------------------|--------------------------------|----------------|----------------------------|---|-------------|------------|---------------------| | (kg) | Self-Aligni | ng Ball Bearing | g Spherical Rol | ler Bearing | Nut | Lock-washer | Locating Ring | | | | | approx. | Numbers | B. D. L. R. (4)
<i>C</i> _r (N) | Numbers | B. D. L. R. (4) $C_{ m r}$ (N) | Numbers | Numbers | Nominal (Outside
Dia.×Width) | Q'ty | Side d_1 | Side d ₂ | | 15 | 1219
2219 | 64 000
84 000 |
22219 EAE4 |
330 000 | AN 19
AN 19 | AW 19X
AW 19X | SR 170 × 10.5
SR 170 × 10 | 2
1 | GS 24 | GS 20 | | 22 | 1319
2319 | | 21319 CE4
22319 EAE4 | 345 000
590 000 | | AW 19X
AW 19X | SR 200 × 16
SR 200 × 10 | 2 | GS 24 | GS 20 | | 18.5 | 1220
2220
— | 69 500
94 500
— |
22220 EAE4
23220 CE4 |
365 000
420 000 | | AW 20X
AW 20X
AW 20X | SR 180 × 18.1
SR 180 × 12.1
SR 180 × 10 | 2
2
1 | GS 26 | GS 21 | | 25 | 1320
2320 | | 21320 CE4
22320 EAE4 | 395 000
690 000 | | AW 20X
AW 20X | SR 215 × 18
SR 215 × 10 | 2
1 | GS 26 | GS 21 | | 20 | 1222
2222
— | 87 000
122 000
— |
22222 EAE4
23222 CE4 | —
485 000
515 000 | | AW 22X
AW 22X
AW 22X | SR 200 × 21
SR 200 × 13.5
SR 200 × 10 | 2
2
1 | GS 28 | GS 23 | | 32 | 1322
2322 | | 21322 CAE4
22322 EAE4 | 395 000
825 000 | | AW 22X
AW 22X | SR 240 × 20
SR 240 × 10 | 2
1 | GS 28 | GS 23 | | 24.5 | _ | _ | 22224 EAE4
23224 CE4 | 550 000
630 000 | | AW 24
AW 24 | SR 215 × 14
SR 215 × 10 | 2 | GS 30 | GS 26 | | 48 | _ | _ | 22324 EAE4 | 955 000 | AN 24 | AW 24 | SR 260×10 | 1 | GS 30 | GS 26 | | 30 | _ | | 22226 EAE4
23226 CE4 | 655 000
700 000 | | AW 26
AW 26 | SR 230 × 13
SR 230 × 10 | 2 | GS 33 | GS 28 | | 56 | _ | _ | 22326 CE4 | 995 000 | AN 26 | AW 26 | SR 280×10 | 1 | GS 34 | GS 28 | | 38 | _ | | 22228 CDE4
23228 CE4 | 645 000
835 000 | | AW
28
AW 28 | SR 250 × 15
SR 250 × 10 | 2 | GS 35 | GS 30 | | 72 | _ | _ | 22328 CE4 | 1 160 000 | AN 28 | AW 28 | SR 300 × 10 | 1 | GS 36 | GS 30 | | 46 | _ | | 22230 CDE4
23230 CE4 | 765 000
975 000 | | AW 30
AW 30 | SR 270 × 16.5
SR 270 × 10 | 2 | GS 37 | GS 33 | | 98 | _ | _ | 22330 CAE4 | 1 220 000 | AN 30 | AW 30 | SR 320 × 10 | 1 | GS 38 | GS 33 | | 50 | _ | _ | 22232 CDE4
23232 CE4 | 910 000
1 100 000 | | AW 32
AW 32 | SR 290 × 17
SR 290 × 10 | 2 | GS 39 | GS 34 | | 115 | _ | _ | 22332 CAE4 | 1 360 000 | AN 32 | AW 32 | SR 340 × 10 | 1 | GS 40 | GS 34 | Notes (2) The X dimension indicates the offset of the bearing center from the center of the plummer block bearing box. When one locating ring is used, it is 1/2 of the locating ring width, and when two rings are used, it becomes 0. Remarks 1. The threads for plugs are R 1/8 for SN219C, and R 1/4 for SN319C and SN220C and over. ^{2.} Bearing boxes larger than SN320C and SN224C are provided with eye bolts. ⁽³⁾ Applicable to the ZF Type with the same number. (4) B. D. L. R.: Basic Dynamic Load Ratings SD 2 C, SD 3 C Types Shaft Diameter 170 – 320 mm | Shaft
Diameter
(mm) | | ner Block
ing Box | | | | | | D | imensi
(mm | | | | | | | |---------------------------|-----------------|-----------------------|-------|-------|----------------|-----------------|-----|------|---------------|-----|-------|-------|-------|-------|-------| | d | Num
Free-End | bers (¹)
Fixed-End | d_1 | d_2 | $_{ m H8}^{D}$ | <i>H</i>
h13 | J | N | N_1 | A | L | A_1 | H_1 | H_2 | J_1 | | 170 | SD 234 C | SD 234 CG | 190 | 160 | 310 | 180 | 510 | 36 | 46 | 270 | 620 | 250 | 60 | 360 | 140 | | | SD 334 C | SD 334 CG | 190 | 160 | 360 | 210 | 610 | 36 | 46 | 300 | 740 | 290 | 65 | 420 | 170 | | 180 | SD 236 C | SD 236 CG | 200 | 170 | 320 | 190 | 540 | 36 | 46 | 280 | 650 | 260 | 60 | 380 | 150 | | 100 | | SD 336 CG | 200 | 170 | 380 | 225 | 640 | 43 | 59 | 320 | 780 | 310 | 70 | 450 | 180 | | | | | | | | | | | | | | | | | | | 190 | SD 238 C | SD 238 CG | 210 | 180 | 340 | 200 | 570 | 36 | 46 | 290 | 700 | 280 | 65 | 400 | 160 | | | SD 338 C | SD 338 CG | 210 | 180 | 400 | 240 | 680 | 43 | 59 | 330 | 820 | 320 | 70 | 475 | 190 | | 200 | SD 240 C | SD 240 CG | 220 | 190 | 360 | 210 | 610 | 36 | 46 | 300 | 740 | 290 | 65 | 420 | 170 | | | SD 340 C | SD 340 CG | 220 | 190 | 420 | 250 | 710 | 43 | 59 | 350 | 860 | 340 | 85 | 500 | 200 | | 220 | SD 244 C | SD 244 CG | 240 | 210 | 400 | 240 | 680 | 43 | 59 | 330 | 820 | 320 | 70 | 475 | 190 | | 220 | SD 344 C | SD 344 CG | 240 | 210 | 460 | 280 | 770 | 43 | 59 | 360 | 920 | 350 | 85 | 550 | 210 | | | | | 2.10 | 210 | 100 | 200 | ,,, | 10 | 0, | 500 | | | 00 | | 210 | | 240 | SD 248 C | SD 248 CG | 260 | 230 | 440 | 260 | 740 | 43 | 59 | 340 | 880 | 330 | 85 | 515 | 200 | | | SD 348 C | SD 348 CG | 260 | 230 | 500 | 300 | 830 | 50 | 67 | 390 | 990 | 380 | 100 | 590 | 230 | | 260 | SD 252 C | SD 252 CG | 280 | 250 | 480 | 280 | 790 | 43 | 59 | 370 | 940 | 360 | 85 | 560 | 210 | | | SD 352 C | SD 352 CG | 280 | 250 | 540 | 325 | 890 | 50 | 67 | 410 | 1 060 | 400 | 100 | 640 | 250 | | 200 | CD 25/ C | CD 25/ 00 | 200 | 2/0 | F00 | 200 | 020 | F.O. | / 7 | 200 | 000 | 380 | 100 | F00 | 220 | | 280 | | SD 256 CG | 300 | 260 | 500 | 300 | 830 | 50 | 67 | 390 | 990 | | 100 | 590 | 230 | | | SD 356 C | SD 356 CG | 300 | 260 | 580 | 355 | 930 | 57 | 77 | 440 | 1 110 | 430 | 110 | 690 | 270 | | 300 | SD 260 C | SD 260 CG | 320 | 280 | 540 | 325 | 890 | 50 | 67 | 410 | 1 060 | 400 | 100 | 640 | 250 | | 320 | SD 264 C | SD 264 CG | 340 | 300 | 580 | 355 | 930 | 57 | 77 | 440 | 1 110 | 430 | 110 | 690 | 270 | To place an order for a complete unit, please specify, "Plummer block bearing box+bearing+nut+Lock-washer or stopper". | | | | | Mass | | Applicable P | | Oil Se | als (²) | | |-----------------|-------------------|---------------------|---------------------|---------|--------------|---|---------|---------------------------|---------------------|------------| | | | 4 | | (kg) | Spherical Ro | oller Bearing | Nut | Lock-washer
or Stopper | CLI. I | CLL I | | g
H13 | g 1
H13 | t
nominal | S
nominal | approx. | Numbers | Basic Dynamic Load Ratings $C_{ m r}$ (N) | Numbers | Numbers | Side d ₁ | Side d_2 | | 96 | 86 | M 24 | M 30 | 100 | 22234 CDE | 990 000 | AN 34 | AW 34 | GS 42 | GS 36 | | 130 | 120 | M 30 | M 30 | 160 | 22334 CAE | 1 580 000 | AN 34 | AW 34 | GS 42 | GS 36 | | 96 | 86 | M 24 | M 30 | 110 | 22236 CDE | 1 020 000 | AN 36 | AW 36 | GS 44 | GS 38 | | 136 | 126 | M 30 | M 36 | 195 | 22336 CAE | 1 740 000 | AN 36 | AW 36 | GS 44 | GS 38 | | 102 | 92 | M 30 | M 30 | 130 | 22238 CAE | 1 140 000 | AN 38 | AW 38 | GS 46 | GS 40 | | 142 | 132 | M 30 | M 36 | 210 | 22338 CAE | 1 1 890 000 | AN 38 | AW 38 | GS 46 | GS 40 | | 108 | 98 | M 30 | M 30 | 155 | 22240 CAE | 1 300 000 | AN 40 | AW 40 | GS 48 | GS 42 | | 148 | 138 | M 36 | M 36 | 240 | 22340 CAE | 2 000 000 | AN 40 | AW 40 | GS 48 | GS 42 | | 118 | 108 | M 30 | M 36 | 205 | 22244 CAE | 1 570 000 | AN 44 | AL 44 | GS 52 | GS 46 | | 155 | 145 | M 36 | M 36 | 315 | 22344 CAE | 1 2 350 000 | AN 44 | AL 44 | GS 52 | GS 46 | | 130 | 120 | M 36 | M 36 | 240 | 22248 CAE | 1 870 000 | AN 48 | AL 44 | GS 56 | GS 50 | | 165 | 155 | M 36 | M 42 | 405 | 22348 CAE | 1 2 600 000 | AN 48 | AL 44 | GS 56 | GS 50 | | 140 | 130 | M 36 | M 36 | 315 | 22252 CAE | 2 180 000 | AN 52 | AL 52 | GS 60 | GS 54 | | 175 | 165 | M 36 | M 42 | 480 | 22352 CAE | 3 100 000 | AN 52 | AL 52 | GS 60 | GS 54 | | 140 | 130 | M 36 | M 42 | 390 | 22256 CAE | 2 280 000 | AN 56 | AL 52 | GS 64 | GS 56 | | 185 | 175 | M 42 | M 48 | 610 | 22356 CAE | 3 500 000 | AN 56 | AL 52 | GS 64 | GS 56 | | 150 | 140 | M 36 | M 42 | 465 | 22260 CAE | 2 610 000 | AN 60 | AL 60 | GS 68 | GS 60 | | 160 | 150 | M 42 | M 48 | 595 | 22264 CAE | 1 2 990 000 | AN 64 | AL 64 | GS 72 | GS 64 | Note (2) Applicable to the ZF Type with the same number. **Remarks** 1. The threads for oil replenishing hole plugs are R 1/4 and those for drain plugs are R 3/8. ^{2.} The plummer block bearing boxes listed above are provided with eye bolts. # CYLINDRICAL ROLLER BEARINGS FOR SHEAVES ## CYLINDRICAL ROLLER BEARINGS FOR SHEAVES | Open Type | Bore Diameter 50 – 560mm ····· | B328 | |--------------------|--------------------------------|------| | Prelubricated Type | Bore Diameter 40 – 400mm ····· | B332 | ## DESIGN, TYPES, AND FEATURES Cylindrical Roller Bearings for sheaves are specially designed thin-walled, broad-width, full-complement type double-row cylindrical roller bearings, but they are widely used also for general industrial machines running at low speed and under heavy loads. There are several series as shown in Table 1. Table 1 Series of Cylindrical Roller Bearings for Sheaves | Bearin | g Type | Fixed-End | Free-End | |---------------|-------------------------------------|--------------------|----------------------| | Open Type | Without Snap Ring | RS-48E4
RS-49E4 | RSF-48E4
RSF-49E4 | | Shielded Type | Without Snap Ring
With Snap Ring | RS-50
RS-50NR | _ | Table 3 Units : μm | | minal | | Clear | ances | | |------|---------------|------|-------|-------|------| | | e Dia.
mm) | C | N | C | 3 | | over | incl. | min. | max. | min. | max. | | 30 | 40 | 15 | 50 | 35 | 70 | | 40 | 50 | 20 | 55 | 40 | 75 | | 50 | 65 | 20 | 65 | 45 | 90 | | 65 | 80 | 25 | 75 | 55 | 105 | | 80 | 100 | 30 | 80 | 65 | 115 | | 100 | 120 | 35 | 90 | 80 | 135 | | 120 | 140 | 40 | 105 | 90 | 155 | | 140 | 160 | 50 | 115 | 100 | 165 | | 160 | 180 | 60 | 125 | 110 | 175 | | 180 | 200 | 65 | 135 | 125 | 195 | | 200 | 225 | 75 | 150 | 140 | 215 | | 225 | 250 | 90 | 165 | 155 | 230 | | 250 | 280 | 100 | 180 | 175 | 255 | | 280 | 315 | 110 | 195 | 195 | 280 | | 315 | 355 | 125 | 215 | 215 | 305 | | 355 | 400 | 140 | 235 | 245 | 340 | | 400 | 450 | 155 | 275 | 270 | 390 | | 450 | 500 | 180 | 300 | 300 | 420 | | | | | | | _ | Since all are non-separable type bearings, the inner and outer rings cannot be separated, but the RSF type can be used as a free-end bearing. In this case, the permissible axial displacement is listed in the bearing tables. Since cylindrical roller bearings for sheaves are a double-row, full-complement type, they can withstand heavy shock loads and moments and have sufficient axial load capacity for use in sheaves. Since the shielded type is a kind of bearing unit, the number of parts surrounding the bearing can be reduced, so it allows for a simple compact design. The surface of these bearings is treated for rust prevention. TOLERANCES AND RUNNING ACCURACY...... Table 8.2 (Pages A60 to A63) #### RECOMMENDED FITS AND INTERNAL CLEARANGES When used with outer ring rotation for sheaves or wheels, the fit and radial internal clearance should conform to Table 2. Table 2 Fits and Internal Clearances for Cylindrical Roller Bearings for Sheaves | 0 | perating Conditions | Fitting between
Inner Ring and Shaft | Fitting between Outer
Ring and Housing Bore | Recommended
Internal Clearance | | |------------------------|--------------------------------------|---|--|-----------------------------------|--| | Outer Ring
Rotation | Thin walled housings and heavy loads | g6 or h6 | P7 | C3 | | | | Normal to heavy loads | g6 or h6 | N7 | C3 | | | | Light or fluctuating loads | g6 or h6 | M7 | CN | | The fits listed in Tables 9.2 (Page A84) and 9.4 (Page A85) apply when they are used with inner ring rotation in general applications, and the internal clearance should conform to Table 3. B 326 B 327 RS-48 · RS-49 Types RSF-48 · RSF-49 Types Bore Diameter 50 – 220 mm Free-End Bearing RSF | | Boundary [| Dimensions
m) | S | (| Basic Loa | | gf} | Limiting Speeds
(min ⁻¹) | | |-----|------------|------------------|-------------
------------|-------------------|------------|-------------------|---|-------| | d | D | В | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 50 | 72 | 22 | 0.6 | 48 000 | 75 500 | 4 900 | 7 700 | 2 000 | 4 000 | | 60 | 85 | 25 | 1 | 68 500 | 118 000 | 6 950 | 12 000 | 1 600 | 3 200 | | 65 | 90 | 25 | 1 | 70 500 | 125 000 | 7 150 | 12 700 | 1 600 | 3 200 | | 70 | 100 | 30 | 1 | 102 000 | 168 000 | 10 400 | 17 200 | 1 400 | 2 800 | | 80 | 110 | 30 | 1 | 109 000 | 191 000 | 11 100 | 19 500 | 1 300 | 2 600 | | 90 | 125 | 35 | 1.1 | 147 000 | 268 000 | 15 000 | 27 400 | 1 100 | 2 200 | | 100 | 125 | 25 | 1 | 87 500 | 189 000 | 8 900 | 19 300 | 1 100 | 2 200 | | | 140 | 40 | 1.1 | 194 000 | 400 000 | 19 800 | 41 000 | 1 000 | 2 000 | | 105 | 130 | 25 | 1 | 89 000 | 196 000 | 9 100 | 19 900 | 1 000 | 2 000 | | | 145 | 40 | 1.1 | 199 000 | 420 000 | 20 300 | 43 000 | 950 | 1 900 | | 110 | 140 | 30 | 1 | 114 000 | 260 000 | 11 700 | 26 500 | 950 | 1 900 | | | 150 | 40 | 1.1 | 202 000 | 430 000 | 20 600 | 44 000 | 900 | 1 800 | | 120 | 150 | 30 | 1 | 119 000 | 283 000 | 12 200 | 28 900 | 900 | 1 800 | | | 165 | 45 | 1.1 | 226 000 | 480 000 | 23 100 | 49 000 | 800 | 1 600 | | 130 | 165 | 35 | 1.1 | 162 000 | 390 000 | 16 500 | 39 500 | 800 | 1 600 | | | 180 | 50 | 1.5 | 262 000 | 555 000 | 26 700 | 56 500 | 750 | 1 500 | | 140 | 175 | 35 | 1.1 | 167 000 | 415 000 | 17 000 | 42 500 | 750 | 1 500 | | | 190 | 50 | 1.5 | 272 000 | 595 000 | 27 700 | 60 500 | 710 | 1 400 | | 150 | 190 | 40 | 1.1 | 235 000 | 575 000 | 23 900 | 58 500 | 670 | 1 400 | | | 210 | 60 | 2 | 390 000 | 865 000 | 40 000 | 88 500 | 670 | 1 300 | | 160 | 200 | 40 | 1.1 | 243 000 | 615 000 | 24 800 | 63 000 | 630 | 1 300 | | | 220 | 60 | 2 | 410 000 | 930 000 | 41 500 | 95 000 | 600 | 1 200 | | 170 | 215 | 45 | 1.1 | 265 000 | 650 000 | 27 000 | 66 500 | 600 | 1 200 | | | 230 | 60 | 2 | 415 000 | 975 000 | 42 500 | 99 500 | 600 | 1 200 | | 180 | 225 | 45 | 1.1 | 272 000 | 685 000 | 27 800 | 70 000 | 560 | 1 100 | | | 250 | 69 | 2 | 495 000 | 1 130 000 | 50 500 | 115 000 | 530 | 1 100 | | 190 | 240 | 50 | 1.5 | 315 000 | 785 000 | 32 000 | 80 000 | 530 | 1 100 | | | 260 | 69 | 2 | 510 000 | 1 180 000 | 52 000 | 120 000 | 500 | 1 000 | | 200 | 250 | 50 | 1.5 | 320 000 | 825 000 | 33 000 | 84 000 | 500 | 1 000 | | | 280 | 80 | 2.1 | 665 000 | 1 500 000 | 68 000 | 153 000 | 480 | 950 | | 220 | 270 | 50 | 1.5 | 340 000 | 905 000 | 34 500 | 92 500 | 450 | 900 | | | 300 | 80 | 2.1 | 695 000 | 1 620 000 | 70 500 | 165 000 | 430 | 850 | Remarks Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. | Bearing N | lumbers ⁽¹⁾ | | nsions
im) | | butment and
Dimensions (n | nm) | Mass
(kg) | |-------------------|------------------------|-------------------|-------------------|-----------------|------------------------------|-----------------------------------|--------------| | Fixed-End Bearing | Free-End Bearing | $d_{ m OH}^{(2)}$ | Axial
Disp.(3) | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{max}.$ | approx. | | RS-4910E4 | RSF-4910E4 | 2.5 | 1.5 | 54 | 68 | 0.6 | 0.30 | | RS-4912E4 | RSF-4912E4 | 2.5 | 1.5 | 65 | 80 | 1 | 0.46 | | RS-4913E4 | RSF-4913E4 | 2.5 | 2 | 70 | 85 | 1 | 0.50 | | RS-4914E4 | RSF-4914E4 | 3 | 2 | 75 | 95 | 1 | 0.79 | | RS-4916E4 | RSF-4916E4 | 3 | 2 | 85 | 105 | 1 | 0.89 | | RS-4918E4 | RSF-4918E4 | 3 | 2 | 96.5 | 118.5 | 1 | 1.35 | | RS-4820E4 | RSF-4820E4 | 2.5 | 1.5 | 105 | 120 | 1 | 0.74 | | RS-4920E4 | RSF-4920E4 | 3 | 2 | 106.5 | 133.5 | 1 | 1.97 | | RS-4821E4 | RSF-4821E4 | 2.5 | 1.5 | 110 | 125 | 1 | 0.77 | | RS-4921E4 | RSF-4921E4 | 3 | 2 | 111.5 | 138.5 | 1 | 2.05 | | RS-4822E4 | RSF-4822E4 | 3 | 2 | 115 | 135 | 1 | 1.09 | | RS-4922E4 | RSF-4922E4 | 3 | | 116.5 | 143.5 | 1 | 2.15 | | RS-4824E4 | RSF-4824E4 | 3 | 2 | 125 | 145 | 1 | 1.28 | | RS-4924E4 | RSF-4924E4 | 4 | | 126.5 | 158.5 | 1 | 2.95 | | RS-4826E4 | RSF-4826E4 | 3 | 2 | 136.5 | 158.5 | 1 | 1.9 | | RS-4926E4 | RSF-4926E4 | 5 | 3.5 | 138 | 172 | 1.5 | 3.95 | | RS-4828E4 | RSF-4828E4 | 3 | 2 | 146.5 | 168.5 | 1 | 2.03 | | RS-4928E4 | RSF-4928E4 | 5 | 3.5 | 148 | 182 | 1.5 | 4.25 | | RS-4830E4 | RSF-4830E4 | 3 | 2 | 156.5 | 183.5 | 1 | 2.85 | | RS-4930E4 | RSF-4930E4 | 5 | 3.5 | 159 | 201 | 2 | 6.65 | | RS-4832E4 | RSF-4832E4 | 3 | 2 | 166.5 | 193.5 | 1 | 3.05 | | RS-4932E4 | RSF-4932E4 | 5 | 3.5 | 169 | 211 | 2 | 7.0 | | RS-4834E4 | RSF-4834E4 | 4 | 3 | 176.5 | 208.5 | 1 | 4.1 | | RS-4934E4 | RSF-4934E4 | 4 | 3.5 | 179 | 221 | 2 | 7.35 | | RS-4836E4 | RSF-4836E4 | 4 | 3 | 186.5 | 218.5 | 1 | 4.3 | | RS-4936E4 | RSF-4936E4 | 6 | 4.5 | 189 | 241 | 2 | 10.7 | | RS-4838E4 | RSF-4838E4 | 5 | 3.5 | 198 | 232 | 1.5 | 5.65 | | RS-4938E4 | RSF-4938E4 | 6 | 4.5 | 199 | 251 | 2 | 11.1 | | RS-4840E4 | RSF-4840E4 | 5 | 3.5 | 208 | 242 | 1.5 | 5.95 | | RS-4940E4 | RSF-4940E4 | 7 | 5 | 211 | 269 | 2 | 15.7 | | RS-4844E4 | RSF-4844E4 | 5 | 3.5 | 228 | 262 | 1.5 | 6.45 | | RS-4944E4 | RSF-4944E4 | 7 | 5 | 231 | 289 | 2 | 17 | Notes (1) The suffix E4 indicates that the outer ring is provided with oil holes and oil groove. - (2) d_{OH} represents the oil hole diameter in the outer ring. - (3) Permissible axial displacement for free-end bearings. RS-48 · RS-49 Types RSF-48 · RSF-49 Types Bore Diameter 240 – 560 mm Free-End Bearing RSF | | Bound | lary Dimensi
(mm) | ons | | Basic Lo
N) | ad Ratings | (gf) | Limiting Speeds
(min ⁻¹) | | | |----|-----------------|----------------------|-------------|------------------------|-------------------------|--------------------|----------------------|---|------------|--| | | d I |) B | $m{r}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | 24 | 40 30 32 | | 2
2.1 | 495 000
725 000 | 1 340 000
1 770 000 | 50 500
74 000 | 137 000
181 000 | 430
400 | 850
800 | | | 20 | 60 32 36 | | 2
2.1 | 515 000
1 050 000 | 1 450 000
2 530 000 | 52 500
107 000 | 148 000
258 000 | 380
360 | 750
710 | | | 28 | 35 35 | | 2
2.1 | 610 000
1 090 000 | 1 690 000
2 720 000 | 62 500
111 000 | 173 000
277 000 | 340
340 | 710
670 | | | 30 | 38
42 | | 2.1
3 | 805 000
1 460 000 | 2 160 000
3 400 000 | 82 000
149 000 | 220 000
350 000 | 320
300 | 630
600 | | | 32 | 20 40 44 | | 2.1
3 | 835 000
1 500 000 | 2 310 000
3 600 000 | 85 000
153 000 | 236 000
365 000 | 300
280 | 600
560 | | | 34 | 40 42 46 | | 2.1
3 | 855 000
1 560 000 | 2 430 000
3 900 000 | 87 500
159 000 | 248 000
395 000 | 280
260 | 560
530 | | | 36 | 60 44 48 | | 2.1
3 | 885 000
1 600 000 | 2 580 000
4 050 000 | 90 000
163 000 | 264 000
415 000 | 260
260 | 530
500 | | | 38 | 30 48 52 | | 2.1
4 | 1 260 000
2 040 000 | 3 600 000
5 200 000 | 128 000
209 000 | 365 000
530 000 | 240
240 | 500
450 | | | 40 | 50 50 54 | | 2.1
4 | 1 290 000
2 100 000 | 3 750 000
5 450 000 | 132 000
214 000 | 385 000
555 000 | 240
220 | 480
450 | | | 42 | 20 52 56 | | 2.1
4 | 1 320 000
2 150 000 | 3 950 000
5 700 000 | 135 000
219 000 | 405 000
580 000 | 220
200 | 450
430 | | | 44 | 40 54 60 | | 2.1
4 | 1 350 000
2 840 000 | 4 150 000
7 350 000 | 138 000
289 000 | 420 000
750 000 | 200
190 | 430
380 | | | 46 | 50 58
62 | | 3
4 | 1 730 000
2 870 000 | 5 150 000
7 500 000 | 177 000
293 000 | 525 000
765 000 | 190
190 | 380
380 | | | 48 | 80 60 65 | | 3
5 | 1 760 000
3 200 000 | 5 300 000
8 500 000 | 180 000
325 000 | 545 000
865 000 | 190
180 | 380
360 | | | 50 | 00 62 67 | | 3
5 | 1 810 000
3 300 000 | 5 600 000
8 900 000 | 184 000
335 000 | 570 000
910 000 | 180
170 | 360
340 | | | | 30 71
60 75 | | 5
5 | 3 400 000
3 800 000 | 9 200 000
10 100 000 | 350 000
385 000 | 935 000
1 030 000 | 160
150 | 320
300 | | Remarks Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. | Bearing N | Numbers ⁽¹⁾ | | nsions
ım) | | Abutment and
Dimensions (r | nm) | Mass
(kg) | |-------------------|------------------------|-------------------|--------------------------------|--------------------------------------|-------------------------------|-----------------------------------|--------------| | Fixed-End Bearing | Free-End Bearing | $d_{ m OH}^{(2)}$ | Axial
Disp. ⁽³) | $oldsymbol{d_{\mathrm{a}}}{}_{min.}$ | $D_{ m a}$ max. | $oldsymbol{r_{\mathrm{a}}}{max}.$ | арргох. | | RS-4848E4 | RSF-4848E4 | 5 | 3.5 | 249 | 291 | 2 2 | 10.3 | | RS-4948E4 | RSF-4948E4 | 7 | 5 | 251 | 309 | | 18.4 | | RS-4852E4 | RSF-4852E4 | 5 | 3.5 | 269 | 311 | 2 | 11 | | RS-4952E4 | RSF-4952E4 | 8 | 6 | 271 | 349 | 2 | 32 | | RS-4856E4 | RSF-4856E4 | 6 | 4.5 | 289 | 341 | 2 | 16 | | RS-4956E4 | RSF-4956E4 | 8 | 6 | 291 | 369 | 2 | 34 | | RS-4860E4 | RSF-4860E4 | 6 | 5 | 311 | 369 | 2 | 23 | | RS-4960E4 | RSF-4960E4 | 9 | 7 | 313 | 407 | 2.5 | 52 | | RS-4864E4 | RSF-4864E4 | 6 | 5 | 331 | 389 | 2 | 24.3 | | RS-4964E4 | RSF-4964E4 | 9 | 7 | 333 | 427 | 2.5 | 55 | | RS-4868E4 | RSF-4868E4 | 6 | 5 | 351 | 409 | 2 | 25.6 | | RS-4968E4 | RSF-4968E4 | 9 | 7 | 353 | 447 | 2.5 | 58 | | RS-4872E4 | RSF-4872E4 | 6 | 5 | 371 | 429 | 2 | 27 | | RS-4972E4 | RSF-4972E4 | 9 | 7 | 373 | 467 | 2.5 | 61 | | RS-4876E4 | RSF-4876E4 | 8 | 6 | 391 | 469 | 2 | 45.5 | | RS-4976E4 | RSF-4976E4 | 11 | 8 | 396 | 504 | 3 | 90.5 | | RS-4880E4 | RSF-4880E4 | 8 | 6 | 411 | 489 | 2 | 47.5 | | RS-4980E4 | RSF-4980E4 | 11 | 8 | 416 | 524 | 3 | 94.5 | | RS-4884E4 | RSF-4884E4 | 8 | 6 | 431 | 509 | 2 3 | 49.5 | | RS-4984E4 | RSF-4984E4 | 11 | 8 | 436 | 544 | | 98.5 |
| RS-4888E4 | RSF-4888E4 | 8 | 6 | 451 | 529 | 2 3 | 51.5 | | RS-4988E4 | RSF-4988E4 | 11 | 8 | 456 | 584 | | 136 | | RS-4892E4 | RSF-4892E4 | 9 | 7 | 473 | 567 | 2.5 | 77.5 | | RS-4992E4 | RSF-4992E4 | 11 | 8 | 476 | 604 | 3 | 142 | | RS-4896E4 | RSF-4896E4 | 9 | 7 | 493 | 587 | 2.5 | 80.5 | | RS-4996E4 | RSF-4996E4 | 12 | 9 | 500 | 630 | 4 | 167 | | RS-48/500E4 | RSF-48/500E4 | 9 | 7 | 513 | 607 | 2.5 | 83.5 | | RS-49/500E4 | RSF-49/500E4 | 12 | 9 | 520 | 650 | 4 | 173 | | RS-49/530E4 | RSF-49/530E4 | 12 | 11 | 550 | 690 | 4 | 206 | | RS-49/560E4 | RSF-49/560E4 | 12 | 11 | 580 | 730 | 4 | 231 | Notes (1) The suffix E4 indicates that the outer ring is provided with oil holes and oil groove. - (2) d_{OH} represents the oil hole diameter in the outer ring. - (3) Permissible axial displacement for free-end bearings. RS-50 Type (Prelubricated) Bore Diameter 40 – 400 mm With Locating Ring | | E | Boundary [
(m | Dimensior
m) | ns | | (| Basic Load I | | (gf) | Limiting
Speeds | |-----|-----|------------------|-----------------|------------------------|--------|------------|-------------------|------------|-------------------|--------------------------------| | d | D | В | С | $C_{\rm x}^{(1)}$ min. | r min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | (min ⁻¹)
Grease | | 40 | 68 | 38 | 37 | 0.4 | 0.6 | 79 500 | 116 000 | 8 100 | 11 800 | 2 400 | | 45 | 75 | 40 | 39 | 0.4 | 0.6 | 95 500 | 144 000 | 9 750 | 14 700 | 2 200 | | 50 | 80 | 40 | 39 | 0.4 | 0.6 | 100 000 | 158 000 | 10 200 | 16 100 | 2 000 | | 55 | 90 | 46 | 45 | 0.6 | 0.6 | 118 000 | 193 000 | 12 100 | 19 700 | 1 800 | | 60 | 95 | 46 | 45 | 0.6 | 0.6 | 123 000 | 208 000 | 12 600 | 21 200 | 1 700 | | 65 | 100 | 46 | 45 | 0.6 | 0.6 | 128 000 | 224 000 | 13 100 | 22 800 | 1 600 | | 70 | 110 | 54 | 53 | 0.6 | 0.6 | 171 000 | 285 000 | 17 500 | 29 000 | 1 400 | | 75 | 115 | 54 | 53 | 0.6 | 0.6 | 179 000 | 305 000 | 18 200 | 31 500 | 1 400 | | 80 | 125 | 60 | 59 | 0.6 | 0.6 | 251 000 | 430 000 | 25 600 | 43 500 | 1 200 | | 85 | 130 | 60 | 59 | 0.6 | 0.6 | 256 000 | 445 000 | 26 200 | 45 500 | 1 200 | | 90 | 140 | 67 | 66 | 1 | 0.6 | 305 000 | 540 000 | 31 000 | 55 000 | 1 100 | | 95 | 145 | 67 | 66 | 1 | 0.6 | 310 000 | 565 000 | 32 000 | 57 500 | 1 100 | | 100 | 150 | 67 | 66 | 1 | 0.6 | 320 000 | 585 000 | 32 500 | 59 500 | 1 000 | | 110 | 170 | 80 | 79 | 1.1 | 1 | 385 000 | 695 000 | 39 000 | 71 000 | 900 | | 120 | 180 | 80 | 79 | 1.1 | 1 | 400 000 | 750 000 | 40 500 | 76 500 | 850 | | 130 | 200 | 95 | 94 | 1.1 | 1 | 535 000 | 1 000 000 | 54 500 | 102 000 | 750 | | 140 | 210 | 95 | 94 | 1.1 | 1 | 550 000 | 1 040 000 | 56 000 | 106 000 | 710 | | 150 | 225 | 100 | 99 | 1.3 | 1 | 620 000 | 1 210 000 | 63 500 | 124 000 | 670 | | 160 | 240 | 109 | 108 | 1.3 | 1.1 | 695 000 | 1 370 000 | 71 000 | 140 000 | 630 | | 170 | 260 | 122 | 121 | 1.3 | 1.1 | 860 000 | 1 680 000 | 88 000 | 171 000 | 600 | | 180 | 280 | 136 | 135 | 1.3 | 1.1 | 980 000 | 1 910 000 | 100 000 | 195 000 | 530 | | 190 | 290 | 136 | 135 | 1.3 | 1.1 | 1 120 000 | 2 230 000 | 114 000 | 227 000 | 500 | | 200 | 310 | 150 | 149 | 1.3 | 1.1 | 1 310 000 | 2 650 000 | 133 000 | 270 000 | 480 | | 220 | 340 | 160 | 159 | 1.5 | 1.1 | 1 510 000 | 3 100 000 | 154 000 | 320 000 | 430 | | 240 | 360 | 160 | 159 | 1.5 | 1.1 | 1 570 000 | 3 350 000 | 160 000 | 340 000 | 400 | | 260 | 400 | 190 | 189 | 2 | 1.5 | 2 130 000 | 4 500 000 | 217 000 | 460 000 | 360 | | 280 | 420 | 190 | 189 | 2 | 1.5 | 2 170 000 | 4 700 000 | 221 000 | 480 000 | 340 | | 300 | 460 | 218 | 216 | 2 | 1.5 | 2 670 000 | 5 850 000 | 272 000 | 600 000 | 300 | | 320 | 480 | 218 | 216 | 2 | 1.5 | 2 720 000 | 6 100 000 | 277 000 | 620 000 | 300 | | 340 | 520 | 243 | 241 | 2.1 | 2 | 3 350 000 | 7 550 000 | 345 000 | 770 000 | 260 | | 360 | 540 | 243 | 241 | 2.1 | 2 | 3 450 000 | 7 850 000 | 350 000 | 800 000 | 260 | | 380 | 560 | 243 | 241 | 2.1 | 2 | 3 550 000 | 8 400 000 | 365 000 | 855 000 | 240 | | 400 | 600 | 272 | 270 | 2.1 | 2 | 4 250 000 | 9 950 000 | 435 000 | 1 010 000 | 220 | Note (1) Chamfer dimension of inner ring in radial direction. **Remarks** 1. Good quality grease is prepacked in bearings. 2. Grease can be supplied through oil holes in the inner rings. | Bearing I | Numbers | | | ing Ring
ions (mm) | | Oil Holes
(mm) | Abutment and Fillet Dimensions (mm) | | Mass
(kg) | |-------------------------------|---------------------|---------------|--------------|-----------------------|-------|-------------------|-------------------------------------|-----------------|-------------------| | Without Locating Ring | With Locating Ring | C_1 | S | D_2 | f | $d_{ m OH}$ | $d_{ m a}$ min. | $D_{ m x}$ min. | approx. | | RS-5008 | RS-5008NR | 28 | 4.5 | 71.8 | 2 | 2.5 | 43.5 | 77.5 | 0.56 | | RS-5009 | RS-5009NR | 30 | 4.5 | 78.8 | 2 | 2.5 | 48.5 | 84.5 | 0.70 | | RS-5010 | RS-5010NR | 30 | 4.5 | 83.8 | 2 | 2.5 | 53.5 | 89.5 | 0.76 | | RS-5011 | RS-5011NR | 34 | 5.5 | 94.8 | 2.5 | 3 | 60 | 101 | 1.17 | | RS-5012 | RS-5012NR | 34 | 5.5 | 99.8 | 2.5 | 3 | 65 | 106 | 1.25 | | RS-5013 | RS-5013NR | 34 | 5.5 | 104.8 | 2.5 | 3 | 70 | 111 | 1.32 | | RS-5014 | RS-5014NR | 42 | 5.5 | 114.5 | 2.5 | 3 | 75 | 121 | 1.87 | | RS-5015 | RS-5015NR | 42 | 5.5 | 119.5 | 2.5 | 3 | 80 | 126 | 2.0 | | RS-5016 | RS-5016NR | 48 | 5.5 | 129.5 | 2.5 | 3 | 85 | 136 | 2.65 | | RS-5017 | RS-5017NR | 48 | 5.5 | 134.5 | 2.5 | 3 | 90 | 141 | 2.75 | | RS-5018 | RS-5018NR | 54 | 6 | 145.4 | 2.5 | 4 | 96 | 153.5 | 3.75 | | RS-5019 | RS-5019NR | 54 | 6 | 150.4 | 2.5 | 4 | 101 | 158.5 | 3.95 | | RS-5020 | RS-5020NR | 54 | 6 | 155.4 | 2.5 | 4 | 106 | 163.5 | 4.05 | | RS-5022 | RS-5022NR | 65 | 7 | 175.4 | 2.5 | 5 | 116.5 | 183.5 | 6.1 | | RS-5024 | RS-5024NR | 65 | 7 | 188 | 3 | 5 | 126.5 | 197 | 7.0 | | RS-5026 | RS-5026NR | 77 | 8.5 | 207 | 3 | 5 | 136.5 | 217 | 10.6 | | RS-5028 | RS-5028NR | 77 | 8.5 | 217 | 3 | 5 | 146.5 | 227 | 11.3 | | RS-5030 | RS-5030NR | 81 | 9 | 232 | 3 | 6 | 157 | 242 | 13.7 | | RS-5032 | RS-5032NR | 89 | 9.5 | 247 | 3 | 6 | 167 | 257 | 16.8 | | RS-5034 | RS-5034NR | 99 | 11 | 270 | 4 | 6 | 177 | 285 | 22.2 | | RS-5036 | RS-5036NR | 110 | 12.5 | 294 | 5 | 6 | 187 | 318 | 30 | | RS-5038 | RS-5038NR | 110 | 12.5 | 304 | 5 | 6 | 197 | 328 | 32 | | RS-5040 | RS-5040NR | 120 | 14.5 | 324 | 5 | 6 | 207 | 352 | 41 | | RS-5044 | RS-5044NR | 130 | 14.5 | 356 | 6 | 7 | 228.5 | 382 | 53 | | RS-5048 | RS-5048NR | 130 | 14.5 | 376 | 6 | 7 | 248.5 | 402 | 57 | | RS-5052 | RS-5052NR | 154 | 17.5 | 416 | 7 | 8 | 270 | 444 | 86 | | RS-5056 | RS-5056NR | 154 | 17.5 | 436 | 7 | 8 | 290 | 472 | 92 | | RS-5060
RS-5064
RS-5068 | RS-5060NR
—
— | 178
—
— | 19
—
— | 476
—
— | 7
 | 8
8
10 | 310
330
352 | 512
—
— | 130
135
185 | | RS-5072
RS-5076
RS-5080 | _
_
_ | = | _
_
_ | _
_
_ | = | 10
10
10 | 372
392
412 | _
_
_ | 192
196
280 | Remarks 3. Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. For shield with outside diameter larger than 180mm, the above figure is different actual shape. For detail drawing, please contact NSK. # **ROLL-NECK BEARINGS** FOUR-ROW **TAPERED ROLLER BEARINGS** FOUR-ROW CYLINDRICAL ROLLER BEARINGS Bore Diameter 100 – 939.800mm ····· B338 Bore Diameter 100 – 920mm ----- B340 # DESIGN, TYPES, AND FEATURES Four-row tapered roller bearings and four-row cylindrical roller bearings used for rolling-mill roll necks are easy to service and check, and are designed to have the highest load rating possible for the limited space around roll necks. Also, they are designed for high speed to satisfy the demand for fast rolling. In addition to the open type (KV) four-row tapered roller bearings listed in this catalog, sealed-clean type four-row tapered roller bearings are also available. Please refer to "Large-Size Rolling Bearings" catalog (CAT. No. E125) or "Extra-Capacity Sealed-CleanTM Roll Neck Bearings" catalog (CAT. No. E1225) for more detailed information. #### **TOLERANCES AND RUNNING ACCURACY** | METRIC DESIGN FOUR-ROW TAPERED ROLLER BEARINGSTable 8.3 (Pages A64 to A67) | | |---|--| | INCH DESIGN FOUR-ROW TAPERED ROLLER BEARINGSTable 8.4 (Pages A68 to A69) | | | FOUR-ROW CYLINDRICAL ROLLER BEARINGSTable 8.2 (Pages A60 to A63) (Not applicable to combined width) | | #### RECOMMENDED FITS #### FOUR-ROW TAPERED ROLLER BEARINGS (CYLINDRICAL BORES) Tables 1 and 2 apply to metric series bearings and Tables 3 and 4 to inch design. Table 1 Fits of Metric Design Four-Row Tapered Roller Bearings with Roll Necks Units: µm | Nomina
Diam
$oldsymbol{d}$ (n | eter | Single Plane Mean
Bore Dia. Deviation
Δd_{mp} | | Tolerance | | Clearance | | Wear
Limits | |-------------------------------------|-------|---|------|-----------|-------|-----------|------|----------------| | over | incl. | high | low | high | low | min. | max. | Ref. | | 80 | 120 | 0 | - 20 | - 120 | - 150 | 100 | 150 | 300 | | 120 | 180 | 0 | - 25 | - 150 | - 175 | 125 | 175 | 350 | | 180 | 250 | 0 | - 30 | - 175 | - 200 | 145 | 200 | 400 | | 250 | 315 | 0 | - 35 | - 210 | - 250 | 175 | 250 | 500 | | 315 | 400 | 0 | - 40 | - 240 | - 300 | 200 | 300 | 600 | | 400 | 500 | 0 | - 45 | - 245 | - 300 | 200 | 300 | 600 | | 500 | 630 | 0 | - 50 | - 250 | - 300 | 200 | 300 | 600 | | 630 | 800 | 0 | - 75 | - 325 | - 400 | 250 | 400 | 800 | B 334 B 335 Table 2 Fits of Metric Design Four-Row Tapered Roller Bearings with Chock Units: µm | Nominal Outside
Diameter
D (mm) | | Outside D | lane Mean
ia. Deviation
<i>D</i> mp | Tolerai
Chock
Dian | | Clea | rance | Wear Limits of
Chock | |--|--|------------------
--|--|--|----------------------------------|---------------------------------------|---| | over | incl. | high | low | high | low | min. | max. | Ref. | | 120
150
180
250
315
400 | 150
180
250
315
400
500 | 0
0
0
0 | - 18
- 25
- 30
- 35
- 40
- 45 | + 57
+100
+120
+115
+110
+105 | +25
+50
+50
+50
+50
+50 | 25
50
50
50
50
50 | 75
125
150
150
150
150 | 150
250
300
300
300
300
300 | | 500
630
800 | 630
800
1 000 | 0
0
0 | 5075100 | +100
+150
+150 | +50
+75
+75 | 50
75
75 | 150
225
250 | 300
450
500 | Table 3 Fits of Inch Design Four-Row Tapered Roller Bearings with Roll Necks Units: µm | Nominal Bore Diameter d | | | | | Bore Diameter
Deviation Δd_s | | Tolerance for Roll
Neck Diameter | | rance | Wear
Limits of | |---|---|--|---|--------------------------------------|---|---|---|-------------------|---------------------------------|-----------------------------------| | ove
(mm) | r
1/25.4 | incl
(mm) | . 1/25.4 | high | low | high | low | min. | max. | Roll Neck
Ref. | | 152.400
203.200
304.800
609.600
914.400 | 6.0000
8.0000
12.0000
24.0000
36.0000 | 203.200
304.800
609.600
914.400 | 8.0000
12.0000
24.0000
36.0000 | + 25
+ 25
+ 51
+ 76
+102 | 0
0
0
0 | - 150
- 175
- 200
- 250
- 300 | - 175
- 200
- 250
- 325
- 400 | 175
200
250 | 200
225
301
401
502 | 400
450
600
800
1 000 | Table 4 Fits of Inch Design Four-Row Tapered Roller Bearings with Chocks Units: µm | Nominal Outside Diameter D | | | | | Outside Dia.
Deviation ⊿Ds | | Tolerance for Chock
Bore Diameter | | rance | Wear
Limits of | |----------------------------|-------------------------|-------------------------------|-------------------------------|----------------------|-------------------------------|----------------------|--------------------------------------|------|------------------|-------------------| | over
(mm) | r
1/25.4 | incl.
(mm) | 1/25.4 | high | low | high | low | min. | max. | Chock
Ref. | | —
304.800
609.600 | —
12.0000
24.0000 | 304.800
609.600
914.400 | 12.0000
24.0000
36.0000 | + 25
+ 51
+ 76 | 0 | + 75
+150
+225 | + 50
+100
+150 | | 75
150
225 | 150
300
450 | | 914.400
1 219.200 | 36.0000
48.0000 | 1 219.200
1 524.000 | 48.0000
60.0000 | +102
+127 | 0 | +300
+375 | +200
+250 | | 300
375 | 600
750 | #### FOUR-ROW CYLINDRICAL ROLLER BEARINGS (CYLINDRICAL BORES) When they are used on backup rolls of four stage rolling mills, the tolerances for roll neck diameters are shown in Table 5. For the fitting between the bearing and chock bore, we recommend G7. For the fitting of four-row cylindrical roller bearings on the roll necks of other rolling mills, Table 9.2 (Page A84) and Table 9.4 (Page A85) usually apply. Table 5 Recommended Backup Roll Neck Tolerances Units: µm | | Nominal Bor | re Diameter
! | Tolerances for
Roll Neck Diameter | | | | |---|-------------|------------------|--------------------------------------|-------|--|--| | | over | incl. | high | low | | | | _ | 280 | 355 | +0.165 | +0.13 | | | | | 355 | 400 | +0.19 | +0.15 | | | | | 400 | 450 | +0.22 | +0.17 | | | | | 450 | 500 | +0.25 | +0.19 | | | | | 500 | 560 | +0.28 | +0.21 | | | | | 560 | 630 | +0.32 | +0.25 | | | | | 630 | 710 | +0.35 | +0.27 | | | | | 710 | 800 | +0.39 | +0.31 | | | | | 800 | 900 | +0.44 | +0.35 | | | | | 900 | 1 000 | +0.48 | +0.39 | | | #### INTERNAL CLEARANCES #### FOUR-ROW TAPERED ROLLER BEARINGS The radial internal clearances in four-row tapered roller bearings (cylindrical bores) used on rolling mill roll necks with a loose fit are C2 or often smaller than C2. The NSK standard clearances for four-row tapered roller bearings for roll necks are shown in Table 6. Depending on the operating conditions, special radial clearance selection may become necessary, please contact NSK in such a case. The internal clearance in four-row tapered roller bearings is peadjusted for individual bearing sets, therefore it is necessary to use each part of a given set by observing mating marks when assembling them. #### FOUR-ROW CYLINDRICAL ROLLER BEARINGS Please contact NSK regarding internal clearance. Table 6 Standard Radial Internal Clearances in Four-Row Tapered Roller Bearings (Cylindrical Bores) Units: µm | Nominal Bo | | Radial Internal Clearance | | | | |------------|------------|---------------------------|------|--|--| | over | over incl. | | max. | | | | 80 | 120 | 25 | 45 | | | | 120 | 180 | 30 | 50 | | | | 180 | 250 | 40 | 60 | | | | 250 | 315 | 50 | 70 | | | | 315 | 400 | 60 | 80 | | | | 400 | 500 | 70 | 90 | | | | 500 | 630 | 80 | 100 | | | | 630 | 800 | 100 | 120 | | | | 800 | 1 000 | 120 | 140 | | | B 336 B 337 #### Bore Diameter 100 - 939.800 mm | | Abutı | ment and Fill
(mn | | ons | Mass
(kg) | 5.6 | |--|-------------------------------|----------------------|-------------------|---------------------------------|---------------------|---| | Bearing Numbers | $d_{\scriptscriptstyle m a}$ | D_{a} | $r_{ m a}$ max. | $\emph{\textbf{r}}_{ m b}$ max. | арргох. | Reference Numbers | | 100 KV 895
120 KV 895
135 KV 1802 | 109
131
145 | 130
158
169 | 2
2
1.5 | 1.5
2
2 | 4.9
8.5
11.1 | _
 | | 150 KV 895 | 162 | 196 | 2 | 2 | 17 | — | | *165 KV 2252 | 178 | 209 | 3.3 | 0.8 | 20.2 | 46791D -720-721D | | *177 KV 2452 | 192 | 228 | 3.3 | 1.5 | 27.9 | 67791D -720-721D | | *190 KV 2651 | 204 | 246 | 3.3 | 1.5 | 32.8 | 67885D -820-820D | | *206 KV 2854 | 218 | 261 | 3.3 | 0.8 | 35.2 | 67986D -920-921D | | *228 KV 4051 | 264 | 367 | 3.3 | 3.3 | 152 | EE 529091D -157-158XD | | 240 KV 895 | 257 | 315 | 2.5 | 2.5 | 68.5 | | | *244 KV 3251 | 260 | 306 | 3.3 | 1.5 | 44.6 | LM 247748D -710-710D | | *254 KV 3551 | 272 | 335 | 3.3 | 1.5 | 85.6 | M 249748DW -710-710D | | *266 KV 3552 | 281 | 335 | 3.3 | 1.5 | 60.6 | LM 451349D -310-310D | | *279 KV 3951 | 302 | 363 | 6.4 | 1.5 | 100 | EE 135111D -155-156XD | | *304 KV 4353 | 329 | 407 | 4.8 | 3.3 | 133 | M 757448DW -410-410D | | *343 KV 4555 | 362 | 430 | 3.3 | 1.5 | 114 | LM 761649DW -610-610D | | *368 KV 5251 | 396 | 487 | 6.4 | 3.3 | 274 | HM 265049D -010-010D | | *384 KV 5452 | 417 | 510 | 6.4 | 3.3 | 309 | HM 266449D -410-410D | | *406 KV 5455 | 430 | 512 | 6.4 | 1.5 | 186 | LM 767749DW -710-710D | | *415 KV 5951 | 451 | 550 | 6.4 | 3.3 | 395 | M 268749D -710-710D | | *457 KV 5952 | 487 | 566 | 3.3 | 1.5 | 201 | L 770849DW -810-810D | | *479 KV 6751 | 520 | 635 | 6.4 | 3.3 | 595 | M 272749DW -710-710D | | *482 KV 6152 | 508 | 582 | 6.4 | 3.3 | 242 | LM 272249DW -210-210D | | 500 KV 895 | 544 | 657 | 5 | 5 | 654 | — | | *509 KV 6551
*558 KV 7352
*571 KV 8151 | 536
588
622 | 619
697
755 | 6.4
6.4
6.4 | 1.5
3.3
3.3 | 312
457
1 020 | LM 377449DW -410-410D
M 278749DW -710-710D | | *609 KV 7851 A | 644 | 745 | 6.4 | 3.3 | 454 | EE 649241DW -310-311D | | 635 KV 9001 | 695 | 840 | 5 | 4 | 1 380 | — | | *685 KV 8751 | 730 | 833 | 6.4 | 3.3 | 543 | EE 655271DW -345-346D | | *711 KV 9151 | 770 | 870 | 6.4 | 3.3 | 549 | EE 755281DW -360-361D | | *749 KV 9951 | 804 | 940 | 6.4 | 3.3 | 1 310 | LM 283649DW -610-610D | | *762 KV 1051 | 828 | 996 | 12.7 | 5 | 2 100 | — | | *840 KV 1151 | 910 | 1 095 | 7 | 7 | 2 900 | | | *939 KV 1351 | 1 035 | 1 245 | 12.7 | 4.8 | 4 380 | LM 287849DW -810-810D | (*) Bearings marked * are inch design. Remarks 1. For four-row tapered roller bearings not listed above, please contact NSK. 2. Four-row tapered roller bearings are designed for specific applications, when using them, please contact NSK. B 338 B 339 Figure 1 Figure 2 | | | Воц | undary D
(mr | imensions
n) | | | 1) | Basic Load Rat
N) | ings
{kg | gf} | |-----|------------|---------------------|-----------------|-----------------|------------------------|--------------|------------------------|------------------------|--------------------|--------------------| | d | D | B, B ₂ | C_2 | $F_{ m w}$ | $r_1 \atop ext{min.}$ | r_{2} min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | | 100 | 140 | 104 | 104 | 111 | 1.5 | 1.1 | 345 000 | 820 000 | 35 000 | 84 000 | | 145 | 225 | 156 | 156 | 169 | 2 | 2 | 835 000 | 1 820 000 | 85 000 | 185 000 | | 150 | 220
230 | 150
156 | 150
156 | 168
174 | 2 2 | 2
2 | 770 000
825 000 | 1 700 000
1 810 000 | 78 500
84 500 | 174 000
185 000 | | 160 | 230
230 | 130
168 | 130
168 | 178
180 | 2
2 | 2 2 | 665 000
895 000 | 1 340 000
2 200 000 | 68 000
91 500 | 136 000
225 000 | | 170 | 250 | 168 | 168 | 192 | 2.1 | 2.1 | 1 040 000 | 2 320 000 | 106 000 | 237 000 | | | 255 | 180 | 180 | 193 | 2.1 | 2.1 | 1 130 000 | 2 500 000 | 115 000 | 255 000 | | 180 | 250 | 156 | 156 | 200 | 2 | 2 | 880 000 | 2 230 000 | 89 500 | 227 000 | | | 260 | 168 | 168 | 202 | 2.1 | 2.1 | 990 000 | 2 300 000 | 101 000 | 235 000 | | 190 | 260 | 168 | 168 | 212 | 2 | 2 | 980 000 | 2 600 000 | 100 000 | 265 000 | | | 270 | 200 | 200 | 212 | 2.1 | 2.1 | 1 260 000 | 3 100 000 | 128 000 | 315 000 | | 200 | 280 | 200 | 200 | 224 | 2.1 | 2.1 | 1 210 000 | 3 200 000 |
123 000 | 325 000 | | | 290 | 192 | 192 | 226 | 2.1 | 2.1 | 1 220 000 | 3 000 000 | 124 000 | 305 000 | | 220 | 310 | 192 | 192 | 247 | 2.1 | 2.1 | 1 320 000 | 3 450 000 | 134 000 | 350 000 | | | 310 | 225 | 225 | 245 | 2.1 | 2.1 | 1 500 000 | 3 900 000 | 153 000 | 395 000 | | | 320 | 210 | 210 | 248 | 2.1 | 2.1 | 1 530 000 | 3 650 000 | 156 000 | 375 000 | | 230 | 330 | 206 | 206 | 260 | 2.1 | 2.1 | 1 510 000 | 3 900 000 | 154 000 | 395 000 | | | 340 | 260 | 260 | 261 | 3 | 3 | 2 050 000 | 5 100 000 | 209 000 | 520 000 | | 240 | 330 | 220 | 220 | 270 | 3 | 3 | 1 520 000 | 4 400 000 | 155 000 | 445 000 | | 250 | 350 | 220 | 220 | 278 | 3 | 3 | 1 660 000 | 4 200 000 | 169 000 | 430 000 | | 260 | 370 | 220 | 220 | 292 | 3 | 3 | 1 760 000 | 4 450 000 | 179 000 | 455 000 | | | 380 | 280 | 280 | 294 | 3 | 3 | 2 420 000 | 6 250 000 | 247 000 | 635 000 | | 270 | 380 | 230 | 230 | 298 | 2.1 | 2.1 | 2 000 000 | 5 050 000 | 204 000 | 515 000 | | 280 | 390 | 220 | 220 | 312 | 3 | 3 | 1 820 000 | 4 800 000 | 186 000 | 490 000 | | 300 | 400
420 | 300
240 | 300
240 | 328
332 | 2 3 | 2 3 | 2 330 000
2 280 000 | 6 900 000
5 750 000 | 238 000
233 000 | 700 000
585 000 | | 310 | 430 | 240 | 240 | 344.5 | 3 | 3 | 2 240 000 | 5 950 000 | 228 000 | 605 000 | | 320 | 450 | 240 | 240 | 355 | 3 | 3 | 2 320 000 | 5 750 000 | 237 000 | 585 000 | | 330 | 460 | 340 | 340 | 365 | 4 | 4 | 3 050 000 | 8 650 000 | 310 000 | 880 000 | | Bearing Numbers | Mass
(kg) | Figures | Reference
Bearing
Numbers | |-----------------|--------------|---------|---------------------------------| | 100 RV 1401 | 4 | 2 | _ | | 145 RV 2201 | 23 | | 313924A | | 150 RV 2201 | 20 | 1 | | | 150 RV 2302 | 23 | 1 | 313891A | | 160 RV 2301 | 16 | 1 | _ | | 160 RV 2302 | 22 | 1 | | | 170 RV 2501 | 27 | 1 | _ | | 170 RV 2503 | 31 | 1 | | | 180 RV 2501 | 23 | 1 | | | 180 RV 2601 | 29 | 1 | 313812 | | 190 RV 2601 | 26 | 1 | | | 190 RV 2701 | 36 | 1 | 314199В | | 200 RV 2801 | 38 | 1 | | | 200 RV 2901 | 42 | 1 | 313811 | | 220 RV 3101 | 46 | 1 | _ | | 220 RV 3102 | 52 | 1 | _ | | 220 RV 3201 | 56 | 1 | _ | | 230 RV 3301 | 58 | 1 | 313824 | | 230 RV 3401 | 81 | 1 | — | | 240 RV 3301 | 57 | 1 | 313921 | | 250 RV 3501 | 64 | 1 | — | | 260 RV 3701 | 76 | 1 | 313823 | | 260 RV 3801 | 107 | 1 | — | | 270 RV 3801 | 83 | 1 | | | 280 RV 3901 | 80 | 1 | 313822 | | 300 RV 4021 | 103 | 2 | _ | | 300 RV 4201 | 101 | 1 | _ | | 310 RV 4301 | 107 | 1 | _ | | 320 RV 4502 | 116 | 1 | _ | | 330 RV 4601 | 174 | 1 | _ | | | | | | Remarks 1. For four-row cylindrical roller bearings not listed above, please contact NSK. ^{2.} Four-row cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. Figure 1 Figure 2 Figure 3 Figure 4 | | | Во | | imensions | Basic Load Ratings | | | | | | |-------------------|-------------------------|---------------------|-------------------|---------------------|------------------------|-----------------|--|--|-------------------------------------|-------------------------------------| | | | | (mr | n) | | | (N) {kgf} | | | | | d | D | B, B ₂ | C_2 | $F_{ m w}$ | $r_1 \atop ext{min.}$ | $r_{ m 2}$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | | 370
380
390 | 540
540
550 | 400
400
400 | 400
400
400 | 415
424
434 | 4
5
5 | 4
5
5 | 4 500 000
4 300 000
4 400 000 | 12 000 000
12 000 000
12 400 000 | 440 000 | 1 230 000
1 220 000
1 260 000 | | 400
430
440 | 560
591
620 | 410
420
450 | 410
420
450 | 445
476
490 | 5
4
4 | 2
4
4 | 5 600 000
4 450 000
6 350 000 | 16 500 000
13 400 000
19 000 000 | 455 000 | 1 680 000
1 370 000
1 940 000 | | 450
460
480 | 630
670
680 | 450
500
500 | 450
500
500 | 500
522
534 | 4
6
5 | 4
6
5 | 5 950 000
7 650 000
7 700 000 | 17 500 000
22 700 000
23 100 000 | 780 000 | 1 780 000
2 320 000
2 360 000 | | 500 | 690
700
720 | 510
515
530 | 510
515
530 | 552
554
560 | 5
5
6 | 5
5
6 | 7 750 000
7 800 000
8 550 000 | 24 600 000
23 800 000
25 300 000 | 800 000 | 2 500 000
2 430 000
2 580 000 | | 520
530
570 | 735
780
815 | 535
570
594 | 535
570
594 | 574.5
601
628 | 5
6
6 | 5
6
6 | 8 900 000
10 100 000
11 700 000 | 26 300 000
29 200 000
33 500 000 | 910 000
1 030 000
1 190 000 | | | 610
650
690 | 870
920
980 | 660
690
715 | 660
690
715 | 680
723
767.5 | 6
7.5
7.5 | 6
7.5
7.5 | 13 200 000
14 200 000
15 300 000 | 41 500 000
45 000 000
48 000 000 | 1 340 000
1 450 000
1 560 000 | 4 600 000 | | 700 | 930
980 | 620
700 | 620
700 | 763
774 | 6 | 6
6 | 11 100 000
15 300 000 | 38 000 000
49 000 000 | 1 130 000
1 560 000 | | | 725
760
800 | 1 000
1 080
1 080 | 700
805
750 | 700
790
750 | 796
845
880 | 6
6
6 | 6
6
6 | 15 600 000
19 000 000
16 000 000 | 51 000 000
61 000 000
56 500 000 | 1 590 000
1 940 000
1 630 000 | 6 200 000 | | 820 | 1 160
1 100 | 840
745 | 840
720 | 911
892 | 7.5
6 | 7.5
3 | 21 900 000
16 900 000 | 71 500 000
58 500 000 | 2 230 000
1 720 000 | | | 850 | 1 180 | 850 | 850 | 940 | 7.5 | 7.5 | 21 100 000 | 72 000 000 | 2 150 000 | 7 350 000 | | 860 | 1 130
1 160 | 670
735 | 670
710 | 934
940 | 6
7.5 | 6
4 | 15 700 000
17 500 000 | 56 500 000
60 000 000 | 1 600 000
1 780 000 | | | 900
920 | 1 230
1 280 | 895
865 | 870
850 | 985
1 015 | 7.5
7.5 | 7.5
7.5 | 22 100 000
24 000 000 | 76 000 000
80 000 000 | 2 250 000
2 450 000 | | | Remarks | 1. | For four-row c | vlindrical roll | er bearings | not listed a | bove. | please contact NS | K. | |---------|----|----------------|------------------|-------------|--------------|--------|--------------------|-----| | Kemarks | | TOT TOUT TOW C | yiii laricar rom | ci bearings | not nateu t | ibovc, | picase contact 145 | ١٠. | ^{2.} Four-row cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. | Bearing Numbers | Mass
(kg) | Figures | Reference
Bearing
Numbers | |-----------------|--------------|---------|---------------------------------| | 370 RV 5401 | 311 | 1 | _ | | 380 RV 5401 | 280 | 1(¹) | | | 390 RV 5521 | 303 | 2(1) | _ | | 400 RV 5611 | 315 | 3 | 313015 | | 430 RV 5921 | 347 | 2 | — | | 440 RV 6221 | 430 | 2 | — | | 450 RV 6321 | 440 | 2 | _ | | 460 RV 6721 | 596 | 2(¹) | _ | | 480 RV 6811 | 610 | 3 | _ | | 500 RV 6921 | 580 | 2(1) | _ | | 500 RV 7021 | 622 | 2(1) | _ | | 500 RV 7211 | 782 | 3 | _ | | 520 RV 7331 | 750 | 4 | _ | | 530 RV 7811 | 960 | 3 | _ | | 570 RV 8111 | 960 | 3 | _ | | 610 RV 8711 | 1 330 | 3 | _ | | 650 RV 9211 | 1 520 | 3 | _ | | 690 RV 9831 | 1 790 | 4 | _ | | 700 RV 9311 | 1 200 | 3 | _ | | 700 RV 9821 | 1 720 | 2(¹) | _ | | 725 RV 1011 | 1 670 | 3 | _ | | 760 RV 1032 | 2 430 | 4 | _ | | 800 RV 1032 | 2 050 | 4 | _ | | 820 RV 1121 | 2 900 | 2(¹) | _ | | 820 RV 1132 | 2 000 | 4 | _ | | 850 RV 1111 | 2 850 | 3 | _ | | 860 RV 1132 | 1 780 | 4 | _ | | 860 RV 1133 | 2 200 | 4 | _ | | 900 RV 1211 | 3 200 | 3 | _ | | 920 RV 1211 | 3 510 | 3 | _ | Note (1) Oil holes and oil grooves are provided at the center of outer rings. # **Axle Bearings Traction Motor Bearings Gear Unit Bearings** # **Railway Rolling Stock Bearings** Railway rolling stock bearings are important components of rolling stocks that require high The main bearings consist of axle bearings that are mounted at both ends of axle and support the entire weight of the rolling stock. Additionally, there are railway traction motor bearings that are used for the motor that drives the axle; and gear unit bearings that transfer the power from the motor to the axle. NSK has designed and manufactured specific bearings for these very applications. ## **Types and Features** #### **Axle Bearings** - Axle bearings consist of the following types of bearings to meet operator demands for high-speed capability of rolling stock, weight reductions, and minimal maintenance and inspection requirements: - Cylindrical roller bearings with a thrust collar (oil bath lubrication, grease lubrication) Tapered roller bearings (oil bath lubrication) - > Sealed-clean rotating end cap cylindrical roller bearings(grease lubrication) - > Sealed-clean rotating end cap tapered roller bearings (grease lubrication) - NSK has been approved by AAR (Association of American Railroads). #### **Traction Motor Bearings** - · Bearings for inverter controlled AC motors are speciality designed to meet high-speed specifications and requirements for ensuring dimensional stability. NSK recommends longlife grease for these bearings. - NSK offers the following bearings as a measure against electric erosion, which occurs when electric current is allowed to flow through the motor bearings: Ceramic-insulated bearings (ceramic-coated bearings) and PPS-insulated bearings - High capacity bearings also available for locomotive-type large traction motors #### **Gear Unit Bearings** - These bearings are designed to meet high-speed specifications and offer excellent seizure - · A reinforced cage has been adopted for these bearings. # **Specified catalogs** - Bearings for Railway Rolling Stock CAT. No. E1156 - Axle Bearings for Railway Rolling Stock (Cylindrical Roller Bearings) CAT. No. E1239 Axle Bearings for Railway Rolling Stock (Spherical Roller Bearings) CAT. No. E1240 Bearings for Traction Motors CAT. No. E1241 **B** 344 B 345 # STEEL BALLS AND ROLLERS | STEEL BALLS
FOR BALL BEARINGS | Nominal Diameter 0.3 – 114.3mm B34 | |---|--------------------------------------| |
CYLINDRICAL ROLLERS
FOR ROLLER BEARINGS | Nominal Diameter 3 – 80mm····· B35 | | LONG CYLINDRICAL ROLLERS
FOR ROLLER BEARINGS | Nominal Diameter 5.5 – 15mm····· B35 | | NEEDLE ROLLERS
FOR ROLLER BEARINGS | Nominal Diameter 1 – 5mm B35 | #### Nominal Size, Basic Diameters, and Mass | Nominal Size | Basic
Diameter
$D_{ m w}$
(mm) | Mass (kg)
per
10000 pcs
approx. | Nominal Size | Basic
Diameter
$D_{ m w}$
(mm) | Mass (kg)
per
1000 pcs
approx. | Nominal Size | Basic
Diameter
$D_{\rm w}$
(mm) | Mass (kg)
per
10 pcs
approx. | |-------------------------|---|--|--------------------------|---|---|---------------------------------|--|---------------------------------------| | 0.3 mm | 0.30000 | 0.0011 | 3/8 | 9.52500 | 3.523 | 30 mm | 30.00000 | 1.101 | | 0.4 mm | 0.40000 | 0.0026 | 10 mm | 10.00000 | 4.076 | 1 ³ /16 | 30.16250 | 1.119 | | 0.5 mm | 0.50000 | 0.0051 | 13/32 | 10.31875 | 4.479 | 1 ¹ /4 | 31.75000 | 1.305 | | 0.6 mm | 0.60000 | 0.0088 | 11 mm | 11.00000 | 5.425 | 32 mm | 32.00000 | 1.336 | | 0.025 | 0.63500 | 0.0104 | 7/16 | 11.11250 | 5.594 | 1 ⁵ /16 | 33.33750 | 1.510 | | 0.7 mm | 0.70000 | 0.0140 | 11.5 mm | 11.50000 | 6.199 | 34 mm | 34.00000 | 1.602 | | 1/32 | 0.79375 | 0.0204 | 15/32 | 11.90625 | 6.880 | 1 ³ / ₈ | 34.92500 | 1.736 | | 0.8 mm | 0.80000 | 0.0209 | 12 mm | 12.00000 | 7.044 | 35 mm | 35.00000 | 1.748 | | 1 mm | 1.00000 | 0.0408 | 1/2 | 12.70000 | 8.350 | 36 mm | 36.00000 | 1.902 | | 3/64 | 1.19062 | 0.0688 | 13 mm | 13.00000 | 8.955 | 1 ⁷ / ₁₆ | 36.51250 | 1.984 | | 1.2 mm | 1.20000 | 0.0704 | 17/32 | 13.49375 | 10.02 | 38 mm | 38.00000 | 2.237 | | 1.5 mm | 1.50000 | 0.1376 | 14 mm | 14.00000 | 11.19 | 1 ¹ / ₂ | 38.10000 | 2.254 | | 1/16 | 1.58750 | 0.1631 | 9/16 | 14.28750 | 11.89 | 1 9/16 | 39.68750 | 2.548 | | 5/64 | 1.98438 | 0.3185 | 15 mm | 15.00000 | 13.76 | 40 mm | 40.00000 | 2.609 | | 2 mm | 2.00000 | 0.3261 | 19/32 | 15.08125 | 13.98 | 1 5/8 | 41.27500 | 2.866 | | 3/32 | 2.38125 | 0.5504 | 5/8 | 15.87500 | 16.31 | 1 ¹¹ / ₁₆ | 42.86250 | 3.210 | | 2.5 mm | 2.50000 | 0.6369 | 16 mm | 16.00000 | 16.70 | 1 ³ / ₄ | 44.45000 | 3.580 | | 7/64 | 2.77812 | 0.8740 | 21/32 | 16.66875 | 18.88 | 45 mm | 45.00000 | 3.714 | | 3 mm | 3.00000 | 1.101 | 17 mm | 17.00000 | 20.03 | 1 ¹³ /16 | 46.03750 | 3.977 | | 1/8 | 3.17500 | 1.305 | 11/16 | 17.46250 | 21.71 | 1 ⁷ /8 | 47.62500 | 4.403 | | 3.5 mm | 3.50000 | 1.748 | 18 mm | 18.00000 | 23.77 | 1 ¹⁵ /16 | 49.21250 | 4.858 | | 9/64 | 3.57188 | 1.858 | 23/32 | 18.25625 | 24.80 | 50 mm | 50.00000 | 5.095 | | 5/32 | 3.96875 | 2.548 | 19 mm | 19.00000 | 27.96 | 2 | 50.80000 | 5.344 | | 4 mm | 4.00000 | 2.609 | 3/4 | 19.05000 | 28.18 | 2 1/8 | 53.97500 | 6.410 | | 4.5 mm | 4.50000 | 3.714 | 25/32 | 19.84375 | 31.85 | 55 mm | 55.00000 | 6.782 | | 3/16 | 4.76250 | 4.403 | 20 mm | 20.00000 | 32.61 | 2 1/4 | 57.15000 | 7.609 | | 5 mm | 5.00000 | 5.095 | 13/16 | 20.63750 | 35.83 | 60 mm | 60.00000 | 8.805 | | 5.5 mm | 5.50000 | 6.782 | 21 mm | 21.00000 | 37.75 | 2 3/8 | 60.32500 | 8.948 | | 7/32 | 5.55625 | 7.016 | 27/32 | 21.43125 | 40.12 | 2 1/2 | 63.50000 | 10.44 | | 15/64 | 5.95312 | 8.600 | 22 mm | 22.00000 | 43.40 | 65 mm | 65.00000 | 11.19 | | 6 mm | 6.00000 | 8.805 | 7/8 | 22.22500 | 44.75 | 2 ⁵ / ₈ | 66.67500 | 12.08 | | 1/4 | 6.35000 | 10.44 | 23 mm | 23.00000 | 49.60 | 2 ³ / ₄ | 69.85000 | 13.89 | | 6.5 mm | 6.50000 | 11.19 | 29/32 | 23.01875 | 49.72 | 2 ⁷ / ₈ | 73.02500 | 15.87 | | 7 mm
9/32 | 6.74688
7.00000
7.14375 | 12.52
13.98
14.86 | 15/16
24 mm
31/32 | 23.81250
24.00000
24.60625 | 55.04
56.35
60.73 | 3
3 1/4
3 1/2 | 76.20000
82.55000
88.90000 | 18.04
22.93
28.64 | | 7.5 mm
5/16
8 mm | 7.50000
7.93750
8.00000 | 17.20
20.38
20.87 | 25 mm
1
26 mm | 25.00000
25.40000
26.00000 | 63.69
66.80
71.64 | 3 ³ / ₄ | 95.25000
101.60000 | 35.23
42.75 | | 8.5 mm
11/32
9 mm | 8.50000
8.73125
9.00000 | 25.03
27.13
29.72 | 1 1/16
28 mm
1 1/8 | 26.98750
28.00000
28.57500 | 80.12
89.48
95.11 | | | | ## Application, Nominal Size, Tolerances, Roughness, and Gauges Units : µm | | | | | | | • | | | |-------|------------------------------|-----------------|----------------------|---|-------------------|---|--|--| | | | Tolerances(1) | | | Gauges | | | | | Class | Variation
in Dia.
max. | Sphericity max. | Roughness R_a max. | Diameter
Difference
per Lot
max. | Gauge
Interval | Gauge | | | | G 3 | 0.08 | 0.08 | 0.010 | 0.13 | 0.5 | - 5, ·····, - 0.5, 0, + 0.5, ·····, + 5 | | | | G 5 | 0.13 | 0.13 | 0.014 | 0.25 | 1 | - 5,, - 1 , 0, + 1 ,, + 5 | | | | G 10 | 0.25 | 0.25 | 0.020 | 0.5 | 1 | - 9,, - 1 , 0, + 1 ,, + 9 | | | | G 16 | 0.4 | 0.4 | 0.025 | 0.8 | 2 | -10,, - 2 , 0, + 2 ,, +10 | | | | G 20 | 0.5 | 0.5 | 0.032 | 1 | 2 | -10,, - 2 , 0, + 2 ,, +10 | | | | G 24 | 0.6 | 0.6 | 0.040 | 1.2 | 2 | -12, ·····, - 2 , 0, + 2 , ·····, +12 | | | | G 28 | 0.7 | 0.7 | 0.050 | 1.4 | 2 | -12, ·····, - 2 , 0, + 2 , ·····, +12 | | | | G 40 | 1 | 1 | 0.060 | 2 | 4 | -16, ·····, - 4 , 0, + 4 , ·····, +16 | | | | G 60 | 1.5 | 1.5 | 0.080 | 3 | 6 | -18, ·····, - 6 , 0, + 6 , ·····, +18 | | | | G100 | 2.5 | 2.5 | 0.100 | 5 | 10 | -40, ·····, -10 , 0, +10 , ·····, +40 | | | | G200 | 5 | 5 | 0.150 | 10 | 15 | –60, ······, –15 , 0, +15 , ······, +60 | | | | | | | | | | | | | Note (1) The values do not take into account surface defects; hence measurement shall be taken outside such defects. #### Hardness | | Hardness | | | | | |---------------|----------|------------|--|--|--| | Nominal Size | HV | HRC | | | | | 0.3 mm ~ 3 mm | 772~900 | (63~67)(1) | | | | | 1/8 ~ 30 mm | _ | 62~67 | | | | | 1 3/16 ~ 4 | _ | 61~67 | | | | Note (1) Values in () are converted values for reference. Remarks A column blue letter of Nominal Size is inch dimensions. # **Tolerances for Cylindrical Roller Chamfers** Units: mm | | Units : mm | |---|---| | min. | max. | | 0.1
0.2
0.3
0.5
0.6
0.7
1
1.5
2 | 0.3
0.5
0.8
1.2
1.5
1.7
2.2(1)
3.5 | Note (1) If $D_{\rm W}$ exceeds 40 mm, r (max.) is 2.7 mm. | U | n | its | : | mn | |---|---|-----|---|-------| | _ | | 113 | | 11111 | | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r
min. | Mass (kg)
per 100 pcs
approx. | |--------------|------------|------------|-----------|-------------------------------------| | 3 × 3 | 3 | 3 | 0.1 | 0.016 | | 3 × 5 | | 5 | 0.1 | 0.027 | | 3.5× 5 | 3.5 | 5 | 0.2 | 0.037 | | 4 × 4 | 4 | 4 | 0.2 | 0.039 | | 4 × 6 | 4 | 6 | 0.2 | 0.058 | | 4 × 8 | 4 | 8 | 0.2 | 0.078 | | 4.5× 4.5 | 4.5 | 4.5 | 0.2 | 0.055 | | 4.5× 6 | 4.5 | 6 | 0.2 | 0.073 | | 5 × 5 | 5 | 5 | 0.2 | 0.075 | | 5 × 8 | 5 | 8 | 0.2 | 0.121 | | 5 ×10 | 5 | 10 | 0.2 | 0.152 | | 5.5× 5.5 | 5.5 | 5.5 | 0.2 | 0.10 | | 5.5× 8 | 5.5 | 8 | 0.2 | 0.146 | | 6 × 6 | 6 | 6 | 0.2 | 0.13 | | 6 × 8 | 6 | 8 | 0.2 | 0.178 | | 6 ×12 | 6 | 12 | 0.2 | 0.261 | | 6.5× 6.5 | 6.5 | 6.5 | 0.3 | 0.166 | | 6.5× 9 | 6.5 | 9 | 0.3 | 0.23 | | 7 × 7 | 7 | 7 | 0.3 | 0.206 | | 7 ×10 | 7 | 10 | 0.3 | 0.296 | | 7 ×14 | 7 | 14 | 0.3 | 0.415 | | 7.5× 7.5 | 7.5 | 7.5 | 0.3 | 0.254 | | 7.5×11 | 7.5 | 11 | 0.3 | 0.375 | | 8 × 8 | 8 | 8 | 0.3 | 0.31 | | 8 ×12 | 8 | 12 | 0.3 | 0.465 | | 9 × 9 | 9 | 9 | 0.3 | 0.44 | | 9 ×14 | 9 | 14 | 0.3 | 0.68 | | 10 ×10 | 10 | 10 | 0.3 | 0.60 | | 10 ×14 | 10 | 14 | 0.3 | 0.85 | | 11 ×11 | 11 | 11 | 0.3 | 0.81 | | 11 ×15 | 11 | 15 | 0.3 | 1.1 | | 12 ×12 | 12 | 12 | 0.3 | 1.04 | | 12 ×18 | 12 | 18 | 0.3 | 1.57 | 13 ×13 13 ×20 14 ×14 14 ×20 13 13 14 14 13 20 14 20 0.3 0.3 0.3 0.3 1.33 2.04 1.66 2.38 | Nominal Size | D_{W} | $L_{ m W}$ | r
min. | Mass (kg)
per 100 pcs
approx. | |---|--|--|--|--| | 15 × 15
15 × 22
16 × 16
16 × 24
17 × 17
17 × 24
18 × 18
18 × 26
19 × 19
19 × 28
20 × 20
20 × 30
21 × 21
21 × 30
22 × 22
22 × 34
23 × 23
23 × 34
24 × 24
24 × 26
25 × 25
26 × 40
28 × 28
28 × 28
28 × 24
24 × 36
25 × 25
26 × 36
26 × 36
30 × 30
30 × 48
32 × 32
32 × 32
33 × 34
40 × 65 |
15
15
16
16
17
17
18
18
19
20
20
21
21
22
23
23
24
24
25
26
26
28
28
30
30
32
32
34
34
36
36
38
38
40
40 | 15
22
16
24
17
24
18
26
19
28
20
30
21
30
22
34
23
34
24
36
25
36
40
28
44
30
48
32
55
36
55
36
55
36
56
40
40
48
57
57
57
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | 0.5
0.5
0.5
0.5
0.5
0.5
0.6
0.6
0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.7
0.7
0.7
1
1
1
1
1 | 2.04
3.0
2.48
3.75
2.97
4.2
3.55
5.1
4.16
6.1
4.85
7.3
5.6
8.0
6.4
10
7.4
11.2
8.4
11.2
8.4
10.7
10.7
10.7
16.4
13.3
21
16.3
22.9
32.5
23.9
32.5
23.9
33.5
33.5
33.5
33.5
33.5
33.5
33.5
3 | | - 1 0 / 03 | 70 | 0.5 | ' | 0.5 | | 1 | ī | ni | ts | m | m | |---|---|----|----|---|---| | | | | | | | | | | | | OTHES ! IIIII | |--------------|------------------|------------|-----------|-------------------------------------| | Nominal Size | D_{W} | $L_{ m W}$ | r
min. | Mass (kg)
per 100 pcs
approx. | | 42 × 42 | 42 | 42 | 1 | 45 | | 45 × 45 | 45 | 45 | 1 | 55.5 | | 48 × 48 | 48 | 48 | 1 | 67 | | 50 × 50 | 50 | 50 | 1 | 76 | | 52 × 52 | 52 | 52 | 1.5 | 85 | | 54 × 54 | 54 | 54 | 1.5 | 95.5 | | 56 × 56 | 56 | 56 | 1.5 | 107 | | 60 × 60 | 60 | 60 | 1.5 | 131 | | 64 × 64 | 64 | 64 | 1.5 | 159 | | 68 × 68 | 68 | 68 | 1.5 | 191 | | 75 × 75 | 75 | 75 | 2 | 256 | | 80 × 80 | 80 | 80 | 2 | 310 | ## **Accuracy of Cylindrical Rollers** Units : μm | Class | | w
m) | Out-of-
Roundness
(1) | Single Plane Mean
Roller Diameter
Variation(2) | Lot Diameter
Variation(1) | Length Deviation $^{(3)}$ $\Delta L_{ m Ws}$ | | Roller Gauge
Lot Length
Variation | End Face
Runout | |-------|------|---------|-----------------------------|--|------------------------------|--|--------------------|---|--------------------| | | over | incl. | ΔR max. | $V\!D_{ m Wmp}$ max. | $V\!D_{ m WL}$ max. | high | low ⁽⁴⁾ | $VL_{ m WL}$ max. | $S_{ m W}$ max. | | 1 | 3 | 18 | 0.5 | 0.8 | 1 | +10 | -[(IT9)-10] | 5 | 3 | | 1A | 3 | 30 | 0.7 | 1 | 1.5 | +10 | -[(IT9)-10] | 7 | 5 | | 2 | 3 | 50 | 1 | 1.5 | 2 | +10 | -[(IT9)-10] | 10 | 6 | | 2A | 10 | 80 | 1.3 | 2 | 2.5 | +10 | -[(IT9)-10] | 13 | 8 | | 3 | 18 | 80 | 1.5 | 3 | 3 | +10 | -[(IT9)-10] | 15 | 10 | | 5 | 30 | 80 | 2.5 | 4 | 5 | +10 | -[(IT9)-10] | 25 | 15 | - (¹) Applicable to roller center (length direction). (²) Applicable to cylindrical outside surface. (³) To find the IT9 standard tolerance according to the L_W size classification, refer to the IT9 column of the Appendix Table 11 - (4) The value for low of length deviation is subtracted 10 μm from the value of the standard tolerance for each roller length. B 350 B 351 Remarks The figure shows an example of a flat-end long cylindrical roller. | U | In | its | ÷ | mm | |---|----|-----|---|----| | | | | | | | | | | | Units : mm | |---|------------------|------------------------------|--|--------------------------------------| | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | r (¹) min. | Mass (kg)
per 100 pcs
approx. | | 5.5×18 | 5.5 | 18 | 0.2 | 0.333 | | 5.5×22.4 | 5.5 | 22.4 | 0.2 | 0.414 | | 5.5×28 | 5.5 | 28 | 0.2 | 0.518 | | 6 ×20
6 ×25
6 ×31.5
6 ×40
6 ×50 | 6
6
6
6 | 20
25
31.5
40
50 | 0.2
0.2
0.2
0.2
0.2
0.2 | 0.44
0.55
0.693
0.88
1.1 | | 6.5×20 | 6.5 | 20 | 0.3 | 0.516 | | 6.5×25 | 6.5 | 25 | 0.3 | 0.645 | | 6.5×31.5 | 6.5 | 31.5 | 0.3 | 0.813 | | 7 ×22.4 | 7 | 22.4 | 0.3 | 0.671 | | 7 ×28 | 7 | 28 | 0.3 | 0.838 | | 7 ×35.5 | 7 | 35.5 | 0.3 | 1.06 | | 7 ×45 | 7 | 45 | 0.3 | 1.35 | | 7 ×56 | 7 | 56 | 0.3 | 1.68 | | 7.5×31.5 | 7.5 | 31.5 | 0.3 | 1.08 | | 7.5×40 | 7.5 | 40 | 0.3 | 1.38 | | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | <i>r</i> (¹) min. | Mass (kg)
per 100 pcs
approx. | |---|----------------------|------------------------------|---------------------------------|---------------------------------------| | 8 ×25
8 ×31.5
8 ×40
8 ×50
8 ×63 | 0000000 | 25
31.5
40
50
63 | 0.3
0.3
0.3
0.3
0.3 | 0.978
1.23
1.56
1.96
2.46 | | 9 ×28
9 ×35.5
9 ×45
9 ×56 | 9
9
9 | 28
35.5
45
56 | 0.3
0.3
0.3
0.3 | 1.39
1.76
2.23
2.77 | | 10×31.5
10×40
10×50
10×63 | 10
10
10
10 | 31.5
40
50
63 | 0.3
0.3
0.3
0.3 | 1.93
2.44
3.06
3.85 | | 12×40
12×50
12×63 | 12
12
12 | 40
50
63 | 0.3
0.3
0.3 | 3.52
4.4
5.54 | | 15×45
15×56
15×71
15×90 | 15
15
15 | 45
56
71
90 | 0.5
0.5
0.5
0.5 | 6.16
7.68
9.74
12.4 | Units: mm (1) Only for flat-end rollers. # Tolerances for Long Cylindrical Roller Chamfers | | Units : mm | |-------------------|-------------------| | min. | max. | | 0.2
0.3
0.5 | 0.5
0.8
1.2 | ## Accuracy of Long Cylindrical Rollers Units: um | | | | | - · · · · · · · · · · · · · · | |-------|----------------------|--|--|--| | Class | Out-of-Roundness (1) | Single Plane Mean
Roller Diameter
Variation ⁽³⁾
<i>VD</i> _{Wmp}
max. | Roller Gauge
Lot Diameter
Variation $^{(1)}$
$VD_{ m WL}$
max. | Length Deviation(2) $ extstyle eta L_{ extstyle Ws}$ | | 3 | 1.5 | 3 | 3 | h12 | | 5 | 2 | 5 | 5 | h12 | - $\begin{array}{ll} \text{(1)} & \text{Applicable to roller center (length direction).} \\ \text{(2)} & \text{Classified by L_{W}}. \text{ Refer to Tolerauce for Length Doviation.} \\ \text{(3)} & \text{Applicable to cylindrical outside surface.} \end{array}$ #### Tolerance for Length Deviation Units: mm | Length | | h12 | | h13 | | |--------|-------|----------|--------|------|--------| | over | incl. | high low | | high | low | | 3 | 6 | _ | | 0 | - 0.18 | | 6 | 10 | _ | | 0 | - 0.22 | | 10 | 18 | _ | | 0 | - 0.27 | | 18 | 30 | 0 | - 0.21 | 0 | -0.33 | | 30 | 50 | 0 | - 0.25 | 0 | -0.39 | | 50 | 80 | 0 - 0.30 | | | _ | | 80 | 120 | 0 | - 0.35 | - | _ | B 352 B 353 Spherical-end Type Units: mm Units: mm | | | | | OTIKS . IIIII | | | | | OTHES . IIIII | |--|---|---|--
--|--|---|---|--|--| | Nominal Size | D_{W} | $L_{ m W}$ | <i>r</i> (¹)
min. | Mass (kg)
per 1000 pcs
approx. | Nominal Size | $D_{ m W}$ | $L_{ m W}$ | <i>r</i> (¹) min. | Mass (kg)
per 1000 pcs
approx. | | 1 × 5.8
1 × 6.8
1 × 9.8
1.5× 6.8
1.5× 6.8
1.5× 11.8
1.5× 11.8
2 × 11.8
3 11. | 1 1 1 1 1 1 1 1 1 222 222 22 222 222 22 | 5.888.888.888.888.888.888.888.888.888.8 | 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 |
0.035
0.0448
0.060
0.080
0.105
0.135
0.165
0.165
0.1690
0.240
0.2335
0.385
0.485
0.485
0.485
0.485
0.450
0.525
0.680
0.755
0.680
0.755
0.680
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.760
0.7 | 3.5×21.8
3.5×223.8
3.5×25.8
3.5×27.8
3.5×27.8
3.5×34.8
4 ×17.8
4 ×17.8
4 ×21.8
4 ×21.8
4 ×27.8
4 ×27.8
4 ×27.8
4 ×27.8
4 ×27.8
4 ×27.8
4 ×37.8
4 ×37.8
4 ×37.8
4 ×37.8
4 ×37.8
5 ×34.8
5 ×34.8
5 ×34.8
5 ×34.8
5 ×34.8
5 ×37.8
5 ×37.8 | 555 555 555
33 333 333 444 444 444 444 444 444 555 555 | 191.88
213.888
223.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888
225.888 | 0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1 | 1.50
1.65
1.80
1.95
2.10
2.40
2.63
1.55
1.75
2.35
1.75
2.35
2.70
2.90
3.40
3.70
2.45
2.95
3.40
3.70
2.45
3.70
3.30
4.70
3.33
4.70
3.33
4.70
4.70
3.33
4.70
4.70
4.70
4.70
4.70
4.70
4.70
4.70 | Note (1) Only for flat-end rollers. B 354 **Remarks** 1. The figure shows a spherical-end type and a flat-end type. 2. The radius R of the spherical-end type is bounded by the following range: Minimum: $D_{\rm w}/2$ Maximum: $L_{\rm W}/2$ Flat-end Type #### **Tolerances for Needle Roller Chamfers** | | | | Othico : min | |------|------------|------|--------------| | L | \ w | г | Г | | over | incl. | min. | max. | | _ | 1 | 0.1 | 0.4 | | 1 | 3 | 0.1 | 0.6 | | 3 | 5 | 0.1 | 0.9 | Remarks Only for flat-end needle rollers. ## **Accuracy of Needle Rollers** Units : μm | Class | Single Plane Mean
Roller Diameter
Variation ⁽¹⁾
<i>VD</i> _{WP}
max. | Out-of-Roundness (1) ΔR max. | Roller Gauge
Lot Diameter
Variation ⁽¹⁾
<i>VD</i> _{WL}
max. | Length Deviation(2) $ extstyle extstyle L_{ m Ws}$ | |-------|---|--|---|--| | 2 | 1 | 1 | 2 | h13 | | 3 | 1.5 | 1.5 | 3 | h13 | | 5 | 2 | 2.5 | 5 | h13 | - (¹) Applicable to roller center (length direction). (²) Classified by $L_{\rm W}$. Refer to Tolerance for Length Deviation in Page Remarks The actual diameter at any place along the entire length should not exceed the following figures compared to the actual maximum diameter at the roller center (length direction). Class2: 0.5µm Class3: 0.8µm Class5: 1.0µm # ACCESSORIES FOR ROLLING BEARINGS | ADAPTERS
FOR ROLLING BEARINGS | Shaft Diameter 17 – 470mm····· | B358 | |--|--------------------------------|------| | WITHDRAWAL SLEEVES
FOR ROLLING BEARINGS | Shaft Diameter 35 – 480mm····· | B36 | | NUTS FOR ROLLING BEARINGS | | B37: | | STOPPERS FOR ROLLING BEARI | NGS | B37 | | LOCK-WASHERS FOR ROLLING | BEARINGS | B378 | B 356 B 357 NSK Shaft Diameter 45 – 60 mm Shaft Diameter 17 – 40 mm | Shaft | Nominal
Bearing | | | Dimens
(mr | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |---------------------|----------------------|---|----------------------|----------------------|------------------|------------------|---------------------------------------|----------------------|----------------------|----------------------|---------------------------------|----------------------------------| | Diameter (mm) d_1 | (mm)
d | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | A
min. | <i>K</i> min. | $d_{ m e}$ min. | ${\color{red} b}_{\text{min.}}$ | approx. | | 17 | 20
20
20
20 | 1204K + H 204X
2204K + H 304X
1304K + H 304X
2304K + H2304X | 24
28
28
31 | 32
32
32
32 | 7
7
7
7 | _
_
_
_ | A 204X
A 304X
A 304X
A 2304X | 14
14
14
14 | 39
39
39
39 | 23
24
24
24 | 5 5 8 5 | 0.045
0.045
0.045
0.050 | | 20 | 25
25
25 | 1205K + H 205X
2205K + H 305X
1305K + H 305X | 26
29
29 | 38
38
38 | 8
8
8 | _
_
_ | A 205X
A 305X
A 305X | 15
15
15 | 45
45
45 |
28
29
29 | 5
5
6 | 0.065
0.075
0.075 | | | 25
25 | 21305C DKE4 + H 305X
2305K + H2305X | 29
35 | 38
38 | 8
8 | _ | A 305X
A 2305X | 15
15 | 45
45 | 29
29 | 6
5 | 0.075
0.090 | | 25 | 30
30
30 | 1206K + H 206X
2206K + H 306X
1306K + H 306X | 27
31
31 | 45
45
45 | 8
8
8 | _ | A 206X
A 306X
A 306X | 15
15
15 | 50
50
50 | 33
34
34 | 5
5
6 | 0.10
0.11
0.11 | | | 30
30 | 21306C DKE4 + H 306X
2306K + H2306X | 31
38 | 45
45 | 8
8 | _ | A 306X
A 2306X | 15
15 | 50
50 | 34
35 | 6
5 | 0.11
0.125 | | 30 | 35
35
35 | 1207K + H 207X
2207K + H 307X
1307K + H 307X | 29
35
35 | 52
52
52 | 9
9
9 | _ | A 207X
A 307X
A 307X | 17
17
17 | 58
58
58 | 38
39
39 | 5
5
7 | 0.125
0.145
0.145 | | | 35
35 | 21307C DKE4 + H 307X
2307K + H2307X | 35
43 | 52
52 | 9
9 | _ | A 307X
A 2307X | 17
17 | 58
58 | 39
40 | 7
5 | 0.145
0.16 | | 35 | 40
40
40 | 1208K + H 208X
2208K + H 308X
1308K + H 308X | 31
36
36 | 58
58
58 | 10
10
10 | _ | A 208X
A 308X
A 308X | 17
17
17 | 65
65
65 | 44
44
44 | 5
5
5 | 0.175
0.19
0.19 | | | 40
40
40 | 21308E AKE4 + H 308X
2308K + H2308X
22308E AKE4 + H2308X | 36
46
46 | 58
58
58 | 10
10
10 | _ | A 308X
A 2308X
A 2308X | 17
17
17 | 65
65
65 | 44
45
45 | 5
5
5 | 0.19
0.225
0.225 | | 40 | 45
45
45 | 1209K + H 209X
2209K + H 309X
1309K + H 309X | 33
39
39 | 65
65
65 | 11
11
11 | _
_
_ | A 209X
A 309X
A 309X | 17
17
17 | 72
72
72 | 49
49
49 | 5
8
5 | 0.225
0.26
0.26 | | | 45
45
45 | 21309E AKE4 + H 309X
2309K + H2309X
22309E AKE4 + H2309X | 39
50
50 | 65
65
65 | 11
11
11 | _
_ | A 309X
A 2309X
A 2309X | 17
17
17 | 72
72
72 | 49
50
50 | 5
5
5 | 0.26
0.30
0.30 | | Shaft | Nominal
Bearing | | | Dimens
(mn | | | Adapter | Abut | tment D
(mr | | ons | Mass
(kg) | |---------------------|-------------------------------|---|----------------------|----------------------|----------------------|-------------|--------------------------------------|----------------------|----------------------|---|---------------------|------------------------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $A \atop ext{min.}$ | <i>K</i>
min. | $d_{\!$ | $m{b}_{ ext{min.}}$ | approx. | | 45 | 50
50
50 | 1210K + H 210X
2210K + H 310X
1310K + H 310X | 35
42
42 | 70
70
70 | 12
12
12 | _
_
_ | A 210X
A 310X
A 310X | 19
19
19 | 76
76
76 | 53
54
54 | 5
10
5 | 0.275
0.30
0.30 | | | 50
50
50 | 21310E AKE4 + H 310X
2310K + H2310X
22310E AKE4 + H2310X | 42
55
55 | 70
70
70 | 12
12
12 | | A 310X
A 2310X
A 2310X | 19
19
19 | 76
76
76 | 54
56
56 | 5
5
5 | 0.30
0.35
0.35 | | 50 | 55
55
55 | 1211K + H 211X
2211K + H 311X
22211E AKE4 + H 311X | 37
45
45 | 75
75
75 | 12
12
12 | | A 211X
A 311X
A 311X | 19
19
19 | 85
85
85 | 60
60
60 | 6
11
11 | 0.305
0.35
0.35 | | | 55
55
55
55 | 1311K + H 311X
21311E AKE4 + H 311X
2311K + H2311X
22311E AKE4 + H2311X | 45
45
59
59 | 75
75
75
75 | 12
12
12
12 | _
_
_ | A 311X
A 311X
A2311X
A2311X | 19
19
19
19 | 85
85
85
85 | 60
60
61
61 | 6
6
6 | 0.35
0.35
0.40
0.40 | | 55 | 60
60
60 | 1212K + H 212X
2212K + H 312X
22212E AKE4 + H 312X | 38
47
47 | 80
80
80 | 13
13
13 | | A 212X
A 312X
A 312X | 20
20
20 | 90
90
90 | 64
65
65 | 5
9
9 | 0.365
0.40
0.40 | | | 60
60
60 | 1312K + H 312X
21312E AKE4 + H 312X
2312K + H2312X
22312E AKE4 + H2312X | 47
47
62
62 | 80
80
80
80 | 13
13
13
13 | _
_
_ | A 312X
A 312X
A2312X
A2312X | 20
20
20
20 | 90
90
90
90 | 65
65
66
66 | 5
5
5
5 | 0.40
0.40
0.45
0.45 | | 60 | 65
65
65 | 1213K + H 213X
2213K + H 313X
22213E AKE4 + H 313X | 40
50
50 | 85
85
85 | 14
14
14 | _
_
_ | A 213X
A 313X
A 313X | 21
21
21 | 96
96
96 | 70
70
70 | 5
8
8 | 0.40
0.45
0.45 | | | 65
65
65
65 | 1313K + H 313X
21313E AKE4 + H 313X
2313K + H2313X
22313E AKE4 + H2313X | 50
50
65
65 | 85
85
85
85 | 14
14
14
14 | _
_
_ | A 313X
A 313X
A2313X
A2313X | 21
21
21
21 | 96
96
96
96 | 70
70
72
72 | 5
5
5
5 | 0.45
0.45
0.55
0.55 | | | 70
70
70 | 22214E AKE4 + H 314X
21314E AKE4 + H 314X
22314E AKE4 + H2314X | 52
52
68 | 92
92
92 | 14
14
14 | _
_
_ | A 314X
A 314X
A2314X | 21
21
21 | 96
96
96 | 70
70
72 | 8
5
5 | 0.65
0.65
0.80 | Remarks The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. Remarks The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. Shaft Diameter 85 – 115 mm NSK Shaft Diameter 65 – 80 mm | Shaft | Nominal
Bearing | | | Dimen:
(mr | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |-----------------------|-------------------------------|--|----------------------|--------------------------|----------------------|-------------|--|----------------------|--------------------------|----------------------|---------------------|------------------------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | A min. | <i>K</i> min. | $d_{ m e}$ min. | $m{b}_{ ext{min.}}$ | approx. | | 65 | 75
75
75 | 1215K + H 215X
2215K + H 315X
22215E AKE4 + H 315X | 43
55
55 | 98
98
98 | 15
15
15 | _
_
_ | A 215X
A 315X
A 315X | 23
23
23 | 110
110
110 | 80
80
80 | 5
12
12 | 0.70
0.85
0.85 | | | 75
75
75
75 | 1315K + H 315X
21315E AKE4 + H 315X
2315K + H2315X
22315E AKE4 + H2315X | 55
55
73
73 | 98
98
98
98 | 15
15
15
15 | _
_
_ | A 315X
A 315X
A 2315X
A 2315X | 23
23
23
23 | 110
110
110
110 | 80
80
82
82 | 5
5
5
5 | 0.85
0.85
1.05
1.05 | | 70 | 80
80
80 | 1216K + H 216X
2216K + H 316X
22216E AKE4 + H 316X | 46
59
59 | 105
105
105 | 17
17
17 |

 | A 216X
A 316X
A 316X | 25
25
25 | 120
120
120 | 85
86
86 | 5
12
12 | 0.85
1.05
1.05 | | | 80
80
80
80 | 1316K + H 316X
21316E AKE4 + H 316X
2316K + H2316X
22316E AKE4 + H2316X | 59
59
78
78 | 105
105
105
105 | 17
17
17
17 | | A 316X
A 316X
A 2316X
A 2316X | 25
25
25
25 | 120
120
120
120 | 86
86
87
87 | 5
5
5
5 | 1.05
1.05
1.3
1.3 | | 75 | 85
85
85 | 1217K + H 217X
2217K + H 317X
22217E AKE4 + H 317X | 50
63
63 | 110
110
110 | 18
18
18 | | A 217X
A 317X
A 317X | 27
27
27 | 128
128
128 | 90
91
91 | 6
12
12 | 1.0
1.2
1.2 | | | 85
85
85
85 | 1317K + H 317X
21317E AKE4 + H 317X
2317K + H2317X
22317E AKE4 + H2317X | 63
63
82
82 | 110
110
110
110 | 18
18
18
18 | _
_
_ | A 317X
A 317X
A 2317X
A 2317X | 27
27
27
27 | 128
128
128
128 | 91
91
94
94 | 6
6
6 | 1.2
1.2
1.45
1.45 | | 80 | 90
90
90 | 1218K + H 218X
2218K + H 318X
22218E AKE4 + H 318X | 52
65
65 | 120
120
120 | 18
18
18 | _
_
_ | A 218X
A 318X
A 318X | 28
28
28 | 139
139
139 | 95
96
96 | 6
10
10 | 1.15
1.4
1.4 | | | 90
90
90 | 1318K + H 318X
21318E AKE4 + H 318X
2318K + H2318 X | 65
65
86 | 120
120
120 | 18
18
18 | | A 318X
A 318X
A2318X | 28
28
28 | 139
139
139 | 96
96
99 | 6
6
6 | 1.4
1.4
1.7 | | | 90
90 | 23218C KE4 + H2318X
22318E AKE4 + H2318X | 86
86 | 120
120 | 18
18 | _ | A 2318X
A 2318X | 28
28 | 139
139 | 99
99 | 6
6 | 1.7
1.7 | | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | | Dimen
(mr | | | Adapter
Sleeve | Abu | tment D
(mi | | ons | Mass
(kg) | |-------------------|---------------------------------|---|----------------------|--------------------------|----------------------|-------------
--|----------------------|--------------------------|--------------------------------------|------------------|----------------------------| | (mm) d_1 | (mm)
d | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | A
min. | <i>K</i>
min. | $d_{\!\scriptscriptstyle m e}$ min. | $m{b}$ min. | approx. | | 85 | 95
95
95 | 1219K + H 219X
2219K + H 319X
22219E AKE4 + H 319X | 55
68
68 | 125
125
125 | 19
19
19 | _ | A 219X
A 319X
A 319X | 29
29
29 | 145
145
145 | 101
102
102 | 7
9
9 | 1.35
1.55
1.55 | | | 95
95
95
95 | 1319K + H 319X
21319C KE4 + H 319X
2319K + H2319X
22319E AKE4 + H2319X | 68
68
90
90 | 125
125
125
125 | 19
19
19
19 | _
_
_ | A 319X
A 319X
A 2319X
A 2319X | 29
29
29
29 | 145
145
145
145 | 102
102
105
105 | 7
7
7
7 | 1.55
1.55
1.9
1.9 | | 90 | 100
100
100 | 1220K + H 220X
2220K + H 320X
22220E AKE4 + H 320X | 58
71
71 | 130
130
130 | 20
20
20 | _ | A 220X
A 320X
A 320X | 30
30
30 | 150
150
150 | 106
107
107 | 7
8
8 | 1.45
1.7
1.7 | | | 100
100
100 | 1320K + H 320X
21320C KE4 + H 320X
2320K + H2320X | 71
71
97 | 130
130
130 | 20
20
20 | _ | A 320X
A 320X
A 2320X | 30
30
30 | 150
150
150 | 107
107
110 | 7
7
7 | 1.7
1.7
2.15 | | | 100
100 | 23220C KE4 + H2320X
22320E AKE4 + H2320X | 97
97 | 130
130 | 20
20 | _ | A 2320X
A 2320X | 30
30 | 150
150 | 110
110 | 7
7 | 2.15
2.15 | | 100 | 110
110
110 | 23122C KE4 + H3122X
1222K + H 222X
2222K + H 322X | 81
63
77 | 145
145
145 | 21
21
21 | _ | A 3122X
A 222X
A 322X | 32
32
32 | 170
170
170 | 117
116
117 | 7
7
6 | 2.25
1.95
2.3 | | | 110
110
110 | 22222E AKE4 + H 322X
1322K + H 322X
2322K + H2322X | 77
77
105 | 145
145
145 | 21
21
21 | _ | A 322X
A 322X
A 2322X | 32
32
32 | 170
170
170 | 117
117
121 | 6
9
7 | 2.3
2.3
2.75 | | | 110
110 | 23222C KE4 + H2322X
22322E AKE4 + H2322X | 105
105 | 145
145 | 21
21 | _ | A 2322X
A 2322X | 32
32 | 170
170 | 121
121 | 17
7 | 2.75
2.75 | | 110 | 120
120
120 | 23024C DKE4 + H3024
23124C KE4 + H3124
22224E AKE4 + H3124 | 72
88
88 | 145
155
155 | 22
22
22 | _ | A 3024
A 3124
A 3124 | 33
33
33 | 180
180
180 | 127
128
128 | 7
7
11 | 1.95
2.65
2.65 | | | 120
120 | 23224C KE4 + H2324
22324E AKE4 + H2324 | 112
112 | 155
155 | 22
22 | _ | A 2324
A 2324 | 33
33 | 180
180 | 131
131 | 17
7 | 3.2
3.2 | | 115 | 130
130
130 | 23026C DKE4 + H3026
23126C KE4 + H3126
22226E AKE4 + H3126 | 80
92
92 | 155
165
165 | 23
23
23 | _ | A 3026
A 3126
A 3126 | 34
34
34 | 190
190
190 | 137
138
138 | 8
8
8 | 2.85
3.65
3.65 | | | 130
130 | 23226C KE4 + H2326
22326C KE4 + H2326 | 121
121 | 165
165 | 23
23 | = | A 2326
A 2326 | 34
34 | 190
190 | 142
142 | 21
8 | 4.6
4.6 | Remarks The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. Remarks The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. Shaft Diameter 180 – 260 mm NSK Shaft Diameter 125 – 170 mm | Shaft | Nominal
Bearing | | | Dimen
(mr | | | Adapter | Abu | tment D
(mi | | ons | Mass
(kg) | |---------------------|--------------------|--|-------------------|----------------------------|----------------|-------------|----------------------------|----------------|-------------------|-------------------|------------------|----------------------| | Diameter (mm) d_1 | (mm)
(d | Nominal Numbers Applicable Bearings | B_1 | $d_{\scriptscriptstyle 2}$ | B_2 | B_5 | Sleeve
Numbers | A
min. | <i>K</i>
min. | $d_{ m e}$ min. | b
min. | approx. | | 125 | 140
140
140 | 23028C DKE4 + H3028
23128C KE4 + H3128
22228C DKE4 + H3128 | 82
97
97 | 165
180
180 | 24
24
24 | _ | A 3028
A 3128
A 3128 | 36
36
36 | 205
205
205 | 147
149
149 | 8
8
8 | 3.15
4.35
4.35 | | | 140
140 | 23228C KE4 + H2328
22328C KE4 + H2328 | 131
131 | 180
180 | 24
24 | _ | A 2328
A 2328 | 36
36 | 205
205 | 152
152 | 22
8 | 5.55
5.55 | | 135 | 150
150
150 | 23030C DKE4 + H3030
23130C KE4 + H3130
22230C DKE4 + H3130 | 87
111
111 | 180
195
195 | 26
26
26 | _ | A 3030
A 3130
A 3130 | 37
37
37 | 220
220
220 | 158
160
160 | 8
8
15 | 3.9
5.5
5.5 | | | 150
150 | 23230C KE4 + H2330
22330C AKE4 + H2330 | 139
139 | 195
195 | 26
26 | _ | A 2330
A 2330 | 37
37 | 220
220 | 163
163 | 20
8 | 6.6
6.6 | | 140 | 160
160
160 | 23932C AKE4 + H3932
23032C DKE4 + H3032
23132C KE4 + H3132 | 78
93
119 | 190
190
210 | 28
28
28 | _ | A 3932
A 3032
A 3132 | 39
39
39 | 205
230
230 | 168
168
170 | 8
8
8 | 4.64
5.2
7.65 | | | 160
160
160 | 22232C DKE4 + H3132
23232C KE4 + H2332
22332C AKE4 + H2332 | 119
147
147 | 210
210
210 | 28
28
28 | _ | A 3132
A 2332
A 2332 | 39
39
39 | 230
230
230 | 170
174
174 | 14
18
8 | 7.65
9.15
9.15 | | 150 | 170
170
170 | 23934B CAKE4 + H3934
23034C DKE4 + H3034
23134C KE4 + H3134 | 79
101
122 | 200
200
220 | 29
29
29 | _ | A 3934
A 3034
A 3134 | 40
40
40 | 215
250
250 | 179
179
180 | 8
8
8 | 5.07
6.0
8.4 | | | 170
170
170 | 22234C DKE4 + H3134
23234C KE4 + H2334
22334C AKE4 + H2334 | 122
154
154 | 220
220
220 | 29
29
29 | _ | A 3134
A 2334
A 2334 | 40
40
40 | 250
250
250 | 180
185
185 | 10
18
8 | 8.4
10
10 | | 160 | 180
180
180 | 23936C AKE4 + H3936
23036C DKE4 + H3036
23136C KE4 + H3136 | 87
109
131 | 210
210
230 | 30
30
30 | _ | A 3936
A 3036
A 3136 | 41
41
41 | 230
260
260 | 189
189
191 | 8
8
8 | 5.87
6.85
9.5 | | | 180
180
180 | 22236C DKE4 + H3136
23236C KE4 + H2336
22336C AKE4 + H2336 | 131
161
161 | 230
230
230 | 30
30
30 | _ | A 3136
A 2336
A 2336 | 41
41
41 | 260
260
260 | 191
195
195 | 18
22
8 | 9.5
11.5
11.5 | | 170 | 190
190
190 | 23938C AKE4 + H3938
23038C AKE4 + H3038
23138C KE4 + H3138 | 89
112
141 | 220
220
240 | 31
31
31 | _ | A 3938
A 3038
A 3138 | 43
43
43 | 240
270
270 | 199
199
202 | 9
9
9 | 6.35
7.45
11 | | | 190
190
190 | 22238C AKE4 + H3138
23238C KE4 + H2338
22338C AKE4 + H2338 | 141
169
169 | 240
240
240 | 31
31
31 | _
_
_ | A 3138
A 2338
A 2338 | 43
43
43 | 270
270
270 | 202
206
206 | 21
21
9 | 11
12.5
12.5 | | Shaft | Nominal
Bearing
Bore Dia. | Nominal Numbers | | Dimen:
(mr | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |-------|---------------------------------|---|-------------------|-------------------|----------------|-------|----------------------------|----------------------|-------------------|-------------------|---------------------|----------------| | d_1 | (mm)
d | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $A \atop ext{min.}$ | ${\it K}$ min. | $d_{ m e}$ min. | $m{b}_{ ext{min.}}$ | approx. | | 180 | 200 | 23940C AKE4 + H3940 | 98 | 240 | 32 | _ | A 3940 | 46 | 260 | 210 | 10 | 8.0 | | | 200 | 23040C AKE4 + H3040 | 120 | 240 | 32 | _ | A 3040 | 46 | 280 | 210 | 10 | 9.2 | | | 200 | 23140C KE4 + H3140 | 150 | 250 | 32 | _ | A 3140 | 46 | 280 | 212 | 10 | 12 | | | 200
200
200 | 22240C AKE4 + H3140
23240C KE4 + H2340
22340C AKE4 + H2340 | 150
176
176 | 250
250
250 | 32
32
32 | | A 3140
A 2340
A 2340 | 46
46
46 | 280
280
280 | 212
216
216 | 24
20
10 | 12
14
14 | | 200 | 220 | 23944C AKE4 + H3944 | 96 | 260 | 30 | 41 | A 3944 | 55 | 280 | 231 | 10 | 8.32 | | | 220 | 23044C AKE4 + H3044 | 128 | 260 | 30 | 41 | A 3044 | 55 | 320 | 231 | 12 | 10.5 | | | 220 | 23144C KE4 + H3144 | 158 | 280 | 32 | 44 | A 3144 | 55 | 320 | 233 | 10 | 14.5 | | | 220 | 22244C AKE4 + H3144 | 158 | 280 | 32 | 44 | A 3144 | 55 | 320 | 233 | 22 | 14.5 | | | 220 | 23244C KE4 + H2344 | 183 | 280 | 32 | 44 | A 2344 | 55 | 320 | 236 | 11 | 16.5 | | | 220 | 22344C AKE4 + H2344 | 183 | 280 | 32 | 44 | A 2344 | 55 | 320 | 236 | 10 | 16.5 | | 220 | 240 | 23948C AKE4 + H3948 | 101 | 290 | 34 | 46 | A 3948 | 60 | 300 | 251 | 11 | 11.2 | | | 240 | 23048C AKE4 + H3048 | 133 | 290 | 34 | 46 | A 3048 | 60 | 340 | 251 | 11 | 13 | | | 240 | 23148C KE4 + H3148 | 169 | 300 | 34 | 46 |
A 3148 | 60 | 340 | 254 | 11 | 17.5 | | | 240 | 22248C AKE4 + H3148 | 169 | 300 | 34 | 46 | A 3148 | 60 | 340 | 254 | 19 | 17.5 | | | 240 | 23248C AKE4 + H2348 | 196 | 300 | 34 | 46 | A 2348 | 60 | 340 | 257 | 6 | 19.5 | | | 240 | 22348C AKE4 + H2348 | 196 | 300 | 34 | 46 | A 2348 | 60 | 340 | 257 | 11 | 19.5 | | 240 | 260 | 23952C AKE4 + H3952 | 116 | 310 | 34 | 46 | A 3952 | 60 | 330 | 272 | 11 | 13.4 | | | 260 | 23052C AKE4 + H3052 | 147 | 310 | 34 | 46 | A 3052 | 60 | 370 | 272 | 13 | 15.5 | | | 260 | 23152C AKE4 + H3152 | 187 | 330 | 36 | 49 | A 3152 | 60 | 370 | 276 | 11 | 22 | | | 260 | 22252C AKE4 + H3152 | 187 | 330 | 36 | 49 | A 3152 | 60 | 370 | 276 | 25 | 22 | | | 260 | 23252C AKE4 + H2352 | 208 | 330 | 36 | 49 | A 2352 | 60 | 370 | 278 | 2 | 24 | | | 260 | 22352C AKE4 + H2352 | 208 | 330 | 36 | 49 | A 2352 | 60 | 370 | 278 | 11 | 24 | | 260 | 280 | 23956C AKE4 + H3956 | 121 | 330 | 38 | 50 | A 3956 | 65 | 350 | 292 | 12 | 15.5 | | | 280 | 23056C AKE4 + H3056 | 152 | 330 | 38 | 50 | A 3056 | 65 | 390 | 292 | 12 | 17.5 | | | 280 | 23156C AKE4 + H3156 | 192 | 350 | 38 | 51 | A 3156 | 65 | 390 | 296 | 12 | 24.5 | | | 280 | 22256C AKE4 + H3156 | 192 | 350 | 38 | 51 | A 3156 | 65 | 390 | 296 | 28 | 24.5 | | | 280 | 23256C AKE4 + H2356 | 221 | 350 | 38 | 51 | A 2356 | 65 | 390 | 299 | 11 | 28 | | | 280 | 22356C AKE4 + H2356 | 221 | 350 | 38 | 51 | A 2356 | 65 | 390 | 299 | 12 | 28 | Shaft Diameter 430 – 470 mm NSK Shaft Diameter 280 – 410 mm | Shaft | Nominal
Bearing | | | Dimen:
(mr | | | Adapter | Abu | tment D
(mi | | ons | Mass
(kg) | |---------------------|--------------------|--------------------------------------|-------|---------------|-------|-------|-------------------|-----------|----------------|-----------------|---------------------|--------------| | Diameter (mm) d_1 | (mm)
d | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | A
min. | <i>K</i> min. | $d_{ m e}$ min. | $m{b}_{ ext{min.}}$ | approx. | | 280 | 300 | 23960C AKE4 + H3960 | 140 | 360 | 42 | 54 | A 3960 | 69 | 380 | 313 | 12 | 20.7 | | | 300 | 23060C AKE4 + H3060 | 168 | 360 | 42 | 54 | A 3060 | 69 | 430 | 313 | 12 | 23 | | | 300 | 23160C AKE4 + H3160 | 208 | 380 | 40 | 53 | A 3160 | 69 | 430 | 317 | 12 | 30 | | | 300 | 22260C AKE4 + H3160 | 208 | 380 | 40 | 53 | A 3160 | 69 | 430 | 317 | 32 | 30 | | | 300 | 23260C AKE4 + H3260 | 240 | 380 | 40 | 53 | A 3260 | 69 | 430 | 321 | 12 | 34 | | 300 | 320 | 23964C AKE4 + H3964 | 140 | 380 | 42 | 55 | A 3964 | 72 | 400 | 334 | 13 | 21.8 | | | 320 | 23064C AKE4 + H3064 | 171 | 380 | 42 | 55 | A 3064 | 72 | 450 | 334 | 13 | 24.5 | | | 320 | 23164C AKE4 + H3164 | 226 | 400 | 42 | 56 | A 3164 | 72 | 450 | 339 | 13 | 35 | | | 320 | 22264C AKE4 + H3164 | 226 | 400 | 42 | 56 | A 3164 | 72 | 450 | 339 | 39 | 35 | | | 320 | 23264C AKE4 + H3264 | 258 | 400 | 42 | 56 | A 3264 | 72 | 450 | 343 | 13 | 39.5 | | 320 | 340 | 23968C AKE4 + H3968 | 144 | 400 | 45 | 58 | A 3968 | 75 | 430 | 354 | 14 | 24.6 | | | 340 | 23068C AKE4 + H3068 | 187 | 400 | 45 | 58 | A 3068 | 75 | 490 | 355 | 14 | 28.5 | | | 340 | 23168C AKE4 + H3168 | 254 | 440 | 55 | 72 | A 3168 | 75 | 490 | 360 | 14 | 49.5 | | | 340 | 23268C AKE4 + H3268 | 288 | 440 | 55 | 72 | A 3268 | 75 | 490 | 364 | 14 | 54.5 | | 340 | 360 | 23972C AKE4 + H3972 | 144 | 420 | 45 | 58 | A 3972 | 75 | 450 | 374 | 14 | 25.7 | | | 360 | 23072C AKE4 + H3072 | 188 | 420 | 45 | 58 | A 3072 | 75 | 510 | 375 | 14 | 30.5 | | | 360 | 23172C AKE4 + H3172 | 259 | 460 | 58 | 75 | A 3172 | 75 | 510 | 380 | 14 | 54 | | | 360 | 23272C AKE4 + H3272 | 299 | 460 | 58 | 75 | A 3272 | 75 | 510 | 385 | 14 | 60.5 | | 360 | 380 | 23976C AKE4 + H3976 | 164 | 450 | 48 | 62 | A 3976 | 82 | 480 | 396 | 15 | 31.9 | | | 380 | 23076C AKE4 + H3076 | 193 | 450 | 48 | 62 | A 3076 | 82 | 540 | 396 | 15 | 36 | | | 380 | 23176C AKE4 + H3176 | 264 | 490 | 60 | 77 | A 3176 | 82 | 540 | 401 | 15 | 61.5 | | | 380 | 23276C AKE4 + H3276 | 310 | 490 | 60 | 77 | A 3276 | 82 | 540 | 405 | 15 | 69.5 | | 380 | 400 | 23980C AKE4 + H3980 | 168 | 470 | 52 | 66 | A 3980 | 86 | 500 | 417 | 15 | 35.2 | | | 400 | 23080C AKE4 + H3080 | 210 | 470 | 52 | 66 | A 3080 | 86 | 580 | 417 | 15 | 41.5 | | | 400 | 23180C AKE4 + H3180 | 272 | 520 | 62 | 82 | A 3180 | 86 | 580 | 421 | 15 | 70.5 | | | 400 | 23280C AKE4 + H3280 | 328 | 520 | 62 | 82 | A 3280 | 86 | 580 | 427 | 15 | 81 | | 400 | 420 | 23984C AKE4 + H3984 | 168 | 490 | 52 | 66 | A 3984 | 86 | 520 | 437 | 16 | 36.6 | | | 420 | 23084C AKE4 + H3084 | 212 | 490 | 52 | 66 | A 3084 | 86 | 600 | 437 | 16 | 43.5 | | | 420 | 23184C AKE4 + H3184 | 304 | 540 | 70 | 90 | A 3184 | 86 | 600 | 443 | 16 | 84 | | | 420 | 23284C AKE4 + H3284 | 352 | 540 | 70 | 90 | A 3284 | 86 | 600 | 448 | 16 | 94 | | 410 | 440 | 23988C AKE4 + H3988 | 189 | 520 | 60 | 77 | A 3988 | 99 | 550 | 458 | 17 | 58.6 | | | 440 | 23088C AKE4 + H3088 | 228 | 520 | 60 | 77 | A 3088 | 99 | 620 | 458 | 17 | 65 | | | 440 | 23188C AKE4 + H3188 | 307 | 560 | 70 | 90 | A 3188 | 99 | 620 | 464 | 17 | 104 | | | 440 | 23288C AKE4 + H3288 | 361 | 560 | 70 | 90 | A 3288 | 99 | 620 | 469 | 17 | 118 | | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | | Dimen:
(mr | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |-------------------|---------------------------------|----------------------------|-------|---------------|-------|-------|-------------------|-----------|------------------|-------------------|------------------|--------------| | d_1 | (mm)
d | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | A
min. | <i>K</i>
min. | $d_{\! m e}$ min. | b
min. | арргох. | | 430 | 460 | 23992C AKE4 + H3992 | 189 | 540 | 60 | 77 | A 3992 | 99 | 570 | 478 | 17 | 62 | | | 460 | 23092C AKE4 + H3092 | 234 | 540 | 60 | 77 | A 3092 | 99 | 650 | 478 | 17 | 69.5 | | | 460 | 23192C AKE4 + H3192 | 326 | 580 | 75 | 95 | A 3192 | 99 | 650 | 485 | 17 | 116 | | | 460 | 23292C AKE4 + H3292 | 382 | 580 | 75 | 95 | A 3292 | 99 | 650 | 491 | 17 | 132 | | 450 | 480 | 23996C AKE4 + H3996 | 200 | 560 | 60 | 77 | A 3996 | 99 | 600 | 499 | 18 | 67.5 | | | 480 | 23096C AKE4 + H3096 | 237 | 560 | 60 | 77 | A 3096 | 99 | 690 | 499 | 18 | 73.5 | | | 480 | 23196C AKE4 + H3196 | 335 | 620 | 75 | 95 | A 3196 | 99 | 690 | 505 | 18 | 133 | | | 480 | 23296C AKE4 + H3296 | 397 | 620 | 75 | 95 | A 3296 | 99 | 690 | 512 | 18 | 152 | | 470 | 500 | 239/500C AKE4 + H39/500 | 208 | 580 | 68 | 85 | A 39/500 | 109 | 620 | 519 | 18 | 74.6 | | | 500 | 230/500C AKE4 + H30/500 | 247 | 580 | 68 | 85 | A 30/500 | 109 | 700 | 519 | 18 | 82 | | | 500 | 231/500C AKE4 + H31/500 | 356 | 630 | 80 | 100 | A 31/500 | 109 | 700 | 527 | 18 | 143 | | | 500 | 232/500C AKE4 + H32/500 | 428 | 630 | 80 | 100 | A 32/500 | 109 | 700 | 534 | 18 | 166 | Shaft Diameter 35 – 85 mm Shaft Diameter 90 – 135 mm | Shaft | Nominal
Bearing | Naminal Number | Screw Thread | D | imensions
(mm) | i | Mass
(kg) | |---------------------|-------------------------------|--|--|----------------------|-------------------|----------------------|-------------------------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 35
40 | 40
40
45
45 | 21308EAKE4 + AH 308
22308EAKE4 + AH 2308
21309EAKE4 + AH 309
22309EAKE4 + AH 2309 | M 45 × 1.5
M 45 × 1.5
M 50 × 1.5
M 50 × 1.5 | 29
40
31
44 | 6
7
6
7 | 32
43
34
47 | 0.09
0.13
0.11
0.165 | | 45 | 50 | 21310EAKE4 + AHX 310 | M 55 × 2 | 35 | 7 | 38 | 0.16 | | | 50 | 22310EAKE4 + AHX 2310 | M 55 × 2 | 50 | 9 | 53 | 0.235 | | 50 | 55 | 22211EAKE4 + AHX 311 | M 60 × 2 | 37 | 7 | 40 | 0.19 | | | 55 | 21311EAKE4 + AHX 311 | M 60 × 2 | 37 | 7 | 40 | 0.19 | | | 55 | 22311EAKE4 + AHX 2311 | M 60 × 2 | 54 | 10 | 57 | 0.285 | | 55 | 60 | 22212EAKE4 + AHX 312 | M 65 × 2 | 40 | 8 | 43 | 0.215 | | | 60 | 21312EAKE4 + AHX 312 | M 65 × 2 | 40 | 8 | 43 | 0.215 | | | 60 | 22312EAKE4 + AHX 2312 | M 65 × 2 | 58 | 11 | 61 | 0.34 | | 60 | 65 | 22213EAKE4 + AH 313 | M 75 × 2 | 42 | 8 | 45 | 0.255 | | | 65 | 21313EAKE4 + AH 313 | M 75 × 2 | 42 | 8 | 45 | 0.255 | | | 65 | 22313EAKE4 + AH 2313 | M 75 × 2 | 61 | 12 | 64 | 0.395 | | 65 | 70 | 22214EAKE4 + AH 314 | M 80 × 2 | 43 | 8 | 47 | 0.28 | | | 70 | 21314EAKE4 + AH 314 | M 80 × 2 | 43 | 8 | 47 | 0.28 | | | 70 | 22314EAKE4 + AHX 2314 | M 80 × 2 | 64 | 12 | 68 | 0.53 | | 70 | 75 | 22215EAKE4 + AH 315 | M 85 × 2 | 45 | 8 | 49 | 0.315 | | | 75 | 21315EAKE4 + AH 315 | M 85 × 2 | 45 | 8 | 49 | 0.315 | | | 75 | 22315EAKE4 + AHX 2315 | M 85 × 2 | 68 | 12 | 72 | 0.605 | | 75 | 80 | 22216EAKE4 + AH 316 | M 90 × 2 | 48 | 8 | 52 | 0.365 | | | 80 | 21316EAKE4 + AH 316 | M 90 × 2 | 48 | 8 | 52 | 0.365 | | | 80 | 22316EAKE4 + AHX 2316 | M 90 × 2 | 71 | 12 | 75 | 0.665 | | 80 | 85 | 22217EAKE4 + AHX 317 | M 95 × 2 | 52 | 9 | 56 | 0.48 | | | 85 | 21317EAKE4 + AHX 317 | M 95 × 2 | 52 | 9 | 56 | 0.48 | | | 85 | 22317EAKE4 + AHX 2317 | M 95 × 2 | 74 | 13 | 78 | 0.745 | | 85 | 90 | 22218E AKE4 + AHX 318 | M 100 × 2 | 53 | 9 | 57 | 0.52 | | | 90 | 21318E AKE4 + AHX 318 | M 100 × 2 | 53 | 9 | 57 | 0.52 | | | 90 | 23218C KE4 + AHX 3218 | M 100 × 2 | 63 | 10 | 67 | 0.58 | | | 90 | 22318E AKE4 + AHX 2318 | M 100 × 2 | 79 | 14
| 83 | 0.845 | | Shaft | Nominal
Bearing
Bore Dia. | Nominal Numbers | Screw Thread | D | imensions
(mm) | i | Mass
(kg) | |---------------------|---------------------------------|--------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter (mm) d_1 | (mm)
d | Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 90 | 95 | 22219EAKE4 + AHX 319 | M 105 × 2 | 57 | 10 | 61 | 0.595 | | | 95 | 21319CKE4 + AHX 319 | M 105 × 2 | 57 | 10 | 61 | 0.595 | | | 95 | 22319EAKE4 + AHX 2319 | M 105 × 2 | 85 | 16 | 89 | 0.89 | | 95 | 100 | 21320CKE4 + AHX 3120 | M 110 × 2 | 64 | 11 | 68 | 0.70 | | | 100 | 22220EAKE4 + AHX 320 | M 110 × 2 | 59 | 10 | 63 | 0.66 | | | 100 | 21320CKE4 + AHX 320 | M 110 × 2 | 59 | 10 | 63 | 0.66 | | | 100 | 23220CKE4 + AHX 3220 | M 110 × 2 | 73 | 11 | 77 | 0.77 | | | 100 | 22320EAKE4 + AHX 2320 | M 110 × 2 | 90 | 16 | 94 | 1.0 | | 105 | 110 | 23122CKE4 + AHX 3122 | M 120 × 2 | 68 | 11 | 72 | 0.76 | | | 110 | 22222EAKE4 + AHX 3122 | M 120 × 2 | 68 | 11 | 72 | 0.76 | | | 110 | 24122CK30E4 + AH 24122 | M 115 × 2 | 82 | 13 | 91 | 0.73 | | | 110 | 23222CKE4 + AHX 3222 | M 125 × 2 | 82 | 11 | 86 | 1.04 | | | 110 | 22322EAKE4 + AHX 2322 | M 125 × 2 | 98 | 16 | 102 | 1.35 | | 115 | 120 | 23024C DKE4 + AHX 3024 | M 130 x 2 | 60 | 13 | 64 | 0.75 | | | 120 | 24024C K30E4 + AH 24024 | M 125 x 2 | 73 | 13 | 82 | 0.70 | | | 120 | 23124C KE4 + AHX 3124 | M 130 x 2 | 75 | 12 | 79 | 0.95 | | | 120 | 22224E AKE4 + AHX 3124 | M 130 × 2 | 75 | 12 | 79 | 0.95 | | | 120 | 24124C K30E4 + AH 24124 | M 130 × 2 | 93 | 13 | 102 | 1.02 | | | 120 | 23224C KE4 + AHX 3224 | M 135 × 2 | 90 | 13 | 94 | 1.3 | | | 120 | 22324E AKE4 + AHX 2324 | M 135 × 2 | 105 | 17 | 109 | 1.6 | | 125 | 130 | 23026C DKE4 + AHX 3026 | M 140 × 2 | 67 | 14 | 71 | 0.95 | | | 130 | 24026C K30E4 + AH 24026 | M 135 × 2 | 83 | 14 | 93 | 0.89 | | | 130 | 23126C KE4 + AHX 3126 | M 140 × 2 | 78 | 12 | 82 | 1.08 | | | 130 | 22226EAKE4 + AHX 3126 | M 140 × 2 | 78 | 12 | 82 | 1.08 | | | 130 | 24126CK30E4 + AH 24126 | M 140 × 2 | 94 | 14 | 104 | 1.14 | | | 130 | 23226CKE4 + AHX 3226 | M 145 × 2 | 98 | 15 | 102 | 1.58 | | | 130 | 22326CKE4 + AHX 2326 | M 145 × 2 | 115 | 19 | 119 | 1.97 | | 135 | 140 | 23028C DKE4 + AHX 3028 | M 150 × 2 | 68 | 14 | 73 | 1.01 | | | 140 | 24028C K30E4 + AH 24028 | M 145 × 2 | 83 | 14 | 93 | 0.96 | | | 140 | 23128C KE4 + AHX 3128 | M 150 × 2 | 83 | 14 | 88 | 1.28 | | | 140 | 22228C DKE4 + AHX 3128 | M 150 × 2 | 83 | 14 | 88 | 1.28 | | | 140 | 24128C K30E4 + AH 24128 | M 150 × 2 | 99 | 14 | 109 | 1.3 | | | 140 | 23228C KE4 + AHX 3228 | M 155 × 3 | 104 | 15 | 109 | 1.84 | | | 140 | 22328C KE4 + AHX 2328 | M 155 × 3 | 125 | 20 | 130 | 2.33 | NSK Shaft Diameter 145 – 180 mm | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | Screw Thread | D | imensions
(mm) | 5 | Mass
(kg) | |-------------------|---------------------------------|--------------------------------|--------------|-------|-------------------|-------|--------------| | (mm) d_1 | (mm)
d | Applicable Bearings | G | B_3 | G_1 | B_4 | арргох. | | 145 | 150 | 23030C DKE4 + AHX 3030 | M 160 × 3 | 72 | 15 | 77 | 1.15 | | | 150 | 24030C K30E4 + AH 24030 | M 155 × 3 | 90 | 15 | 101 | 1.11 | | | 150 | 23130C KE4 + AHX 3130 | M 165 × 3 | 96 | 15 | 101 | 1.79 | | | 150 | 22230C DKE4 + AHX 3130 | M 165 × 3 | 96 | 15 | 101 | 1.79 | | | 150 | 24130C K30E4 + AH 24130 | M 160 × 3 | 115 | 15 | 126 | 1.63 | | | 150 | 23230C KE4 + AHX 3230 | M 165 × 3 | 114 | 17 | 119 | 2.22 | | | 150 | 22330C AKE4 + AHX 2330 | M 165 × 3 | 135 | 24 | 140 | 2.82 | | 150 | 160 | 23032C DKE4 + AH 3032 | M 170 × 3 | 77 | 16 | 82 | 2.05 | | | 160 | 24032C K30E4 + AH 24032 | M 170 × 3 | 95 | 15 | 106 | 2.28 | | | 160 | 23132C KE4 + AH 3132 | M 180 × 3 | 103 | 16 | 108 | 3.2 | | | 160 | 22232C DKE4 + AH 3132 | M 180 × 3 | 103 | 16 | 108 | 3.2 | | | 160 | 24132C K30E4 + AH 24132 | M 170 × 3 | 124 | 15 | 135 | 3.03 | | | 160 | 23232C KE4 + AH 3232 | M 180 × 3 | 124 | 20 | 130 | 4.1 | | | 160 | 22332C AKE4 + AH 2332 | M 180 × 3 | 140 | 24 | 146 | 4.7 | | 160 | 170 | 23034C DKE4 + AH 3034 | M 180 × 3 | 85 | 17 | 90 | 2.45 | | | 170 | 24034C K30E4 + AH 24034 | M 180 × 3 | 106 | 16 | 117 | 2.74 | | | 170 | 23134C KE4 + AH 3134 | M 190 × 3 | 104 | 16 | 109 | 3.4 | | | 170 | 22234C DKE4 + AH 3134 | M 190 × 3 | 104 | 16 | 109 | 3.4 | | | 170 | 24134C K30E4 + AH 24134 | M 180 × 3 | 125 | 16 | 136 | 3.26 | | | 170 | 23234C KE4 + AH 3234 | M 190 × 3 | 134 | 24 | 140 | 4.8 | | | 170 | 22334C AKE4 + AH 2334 | M 190 × 3 | 146 | 24 | 152 | 5.25 | | 170 | 180 | 23036C DKE4 + AH 3036 | M 190 x 3 | 92 | 17 | 98 | 2.8 | | | 180 | 24036C K30E4 + AH 24036 | M 190 x 3 | 116 | 16 | 127 | 3.19 | | | 180 | 23136C KE4 + AH 3136 | M 200 x 3 | 116 | 19 | 122 | 4.2 | | | 180 | 24136CK30E4 + AH 24136 | M 190 × 3 | 134 | 16 | 145 | 3.74 | | | 180 | 22236CDKE4 + AH 2236 | M 200 × 3 | 105 | 17 | 110 | 3.75 | | | 180 | 23236CKE4 + AH 3236 | M 200 × 3 | 140 | 24 | 146 | 5.3 | | | 180 | 22336CAKE4 + AH 2336 | M 200 × 3 | 154 | 26 | 160 | 5.85 | | 180 | 190 | 23038C AKE4 + AH 3038 | Tr 205 × 4 | 96 | 18 | 102 | 3.35 | | | 190 | 24038C K30E4 + AH 24038 | M 200 × 3 | 118 | 18 | 131 | 3.47 | | | 190 | 23138C KE4 + AH 3138 | Tr 210 × 4 | 125 | 20 | 131 | 4.9 | | | 190 | 24138CK30E4 + AH 24138 | M 200 × 3 | 146 | 18 | 159 | 4.38 | | | 190 | 22238CAKE4 + AH 2238 | Tr 210 × 4 | 112 | 18 | 117 | 4.25 | | | 190 | 23238CKE4 + AH 3238 | Tr 210 × 4 | 145 | 25 | 152 | 5.9 | | | 190 | 22338CAKE4 + AH 2338 | Tr 210 × 4 | 160 | 26 | 167 | 6.65 | | Shaft
Diameter | Nominal
Bearing
Bore Dia. | Nominal Numbers | Screw Thread | D | imensions
(mm) | ; | Mass
(kg) | |-------------------|---------------------------------|---|--|--------------------------|----------------------|--------------------------|-----------------------------| | d_1 | (mm)
d | Applicable Bearings | G | B_3 | G_1 | B_4 | арргох. | | 190 | 200 | 23040CAKE4 + AH 3040 | Tr 215 × 4 | 102 | 19 | 108 | 3.8 | | | 200 | 24040CK30E4 + AH 24040 | Tr 210 × 4 | 127 | 18 | 140 | 3.92 | | | 200 | 23140CKE4 + AH 3140 | Tr 220 × 4 | 134 | 21 | 140 | 5.5 | | | 200 | 24140CK30E4 + AH 24140 | Tr 210 × 4 | 158 | 18 | 171 | 5.0 | | | 200 | 22240CAKE4 + AH 2240 | Tr 220 × 4 | 118 | 19 | 123 | 4.7 | | | 200 | 23240CKE4 + AH 3240 | Tr 220 × 4 | 153 | 25 | 160 | 6.7 | | | 200 | 22340CAKE4 + AH 2340 | Tr 220 × 4 | 170 | 30 | 177 | 7.55 | | 200 | 220 | 23044CAKE4 + AH 3044 | Tr 235 × 4 | 111 | 20 | 117 | 7.4 | | | 220 | 24044CK30E4 + AH 24044 | Tr 230 × 4 | 138 | 20 | 152 | 8.23 | | | 220 | 23144CKE4 + AH 3144 | Tr 240 × 4 | 145 | 23 | 151 | 10.5 | | | 220
220
220
220 | 24144CK30E4 + AH 24144 22244CAKE4 + AH 2244 23244CKE4 + AH 2344 22344CAKE4 + AH 2344 | Tr 230 × 4
Tr 240 × 4
Tr 240 × 4
Tr 240 × 4 | 170
130
181
181 | 20
20
30
30 | 184
136
189
189 | 10.3
9.1
13.5
13.5 | | 220 | 240 | 23048C AKE4 + AH 3048 | Tr 260 × 4 | 116 | 21 | 123 | 8.75 | | | 240 | 24048C K30E4 + AH 24048 | Tr 250 × 4 | 138 | 20 | 153 | 9.0 | | | 240 | 23148C KE4 + AH 3148 | Tr 260 × 4 | 154 | 25 | 161 | 12 | | | 240
240
240
240 | 24148CK30E4 + AH 24148 22248CAKE4 + AH 2248 23248CAKE4 + AH 2348 22348CAKE4 + AH 2348 | Tr 260 × 4
Tr 260 × 4
Tr 260 × 4
Tr 260 × 4 | 180
144
189
189 | 20
21
30
30 | 195
150
197
197 | 12.6
11
15.5
15.5 | | 240 | 260 | 23052CAKE4 + AH 3052 | Tr 280 × 4 | 128 | 23 | 135 | 10.5 | | | 260 | 24052CAK30E4 + AH 24052 | Tr 270 × 4 | 162 | 22 | 178 | 11.7 | | | 260 | 23152CAKE4 + AH 3152 | Tr 290 × 4 | 172 | 26 | 179 | 16 | | | 260 | 24152C AK30E4 + AH 24152 | Tr 280 × 4 | 202 | 22 | 218 | 15.5 | | | 260 | 22252C AKE4 + AH 2252 | Tr 290 × 4 | 155 | 23 | 161 | 14 | | | 260 | 23252C AKE4 + AH 2352 | Tr 290 × 4 | 205 | 30 | 213 | 19.5 | | | 260 | 22352C AKE4 + AH 2352 | Tr 290 × 4 | 205 | 30 | 213 | 19.5 | | 260 | 280 | 23056C AKE4 + AH 3056 | Tr 300 × 4 | 131 | 24 | 139 | 12 | | | 280 | 24056C AK30E4 + AH 24056 | Tr 290 × 4 | 162 | 22 | 179 | 12.6 | | | 280 | 23156C AKE4 + AH 3156 | Tr 310 × 5 | 175 | 28 | 183 | 17.5 | | | 280 | 24156C AK30E4 + AH 24156 | Tr 300 × 4 | 202 | 22 | 219 | 16.8 | | | 280 | 22256C AKE4 + AH 2256 | Tr 310 × 5 | 155 | 24 | 163 | 15 | | | 280 | 23256C AKE4 + AH 2356 | Tr 310 × 5 | 212 | 30 | 220 | 21.5 | | | 280 | 22356C AKE4 + AH 2356 | Tr 310 × 5 | 212 | 30 | 220 | 21.5 | Shaft Diameter 400 – 480 mm Shaft Diameter 280 – 380 mm | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | 5 | Mass
(kg) | |---------------------|-------------------------------|--------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | арргох. | | 280 | 300 | 23060CAKE4 + AH 3060 | Tr 320 × 5 | 145 | 26 | 153 | 14.5 | | | 300 | 24060CAK30E4 + AH 24060 | Tr 310 × 5 | 184 | 24 | 202 | 15.5 | | | 300 | 23160CAKE4 + AH 3160 | Tr 330 × 5 | 192 | 30 | 200 | 21 | | | 300 | 24160C AK30E4 + AH 24160 | Tr 320 × 5 | 224 | 24 | 242 | 20.3 | | | 300 | 22260C AKE4 + AH 2260 | Tr 330 × 5 | 170 | 26 | 178 | 18 | | | 300 | 23260C AKE4 + AH 3260 | Tr 330 × 5 | 228 | 34 | 236 | 20 | | 300 | 320 | 23064C AKE4 + AH 3064 | Tr 345 × 5 | 149 | 27 | 157 | 16 | | | 320 | 24064C
AK30E4 + AH 24064 | Tr 330 × 5 | 184 | 24 | 202 | 16.4 | | | 320 | 23164C AKE4 + AH 3164 | Tr 350 × 5 | 209 | 31 | 217 | 24.5 | | | 320 | 24164CAK30E4 + AH 24164 | Tr 340 × 5 | 242 | 24 | 260 | 23.5 | | | 320 | 23264CAKE4 + AH 3264 | Tr 350 × 5 | 246 | 36 | 254 | 25 | | 320 | 340 | 23068CAKE4 + AH 3068 | Tr 365 × 5 | 162 | 28 | 171 | 19.5 | | | 340 | 24068CAK30E4 + AH 24068 | Tr 360 × 5 | 206 | 26 | 225 | 21.2 | | | 340 | 23168CAKE4 + AH 3168 | Tr 370 × 5 | 225 | 33 | 234 | 29 | | | 340 | 24168CAK30E4 + AH 24168 | Tr 360 × 5 | 269 | 26 | 288 | 28.3 | | | 340 | 23268CAKE4 + AH 3268 | Tr 370 × 5 | 264 | 38 | 273 | 35.5 | | 340 | 360 | 23072CAKE4 + AH 3072 | Tr 385 × 5 | 167 | 30 | 176 | 21 | | | 360 | 24072CAK30E4 + AH 24072 | Tr 380 × 5 | 206 | 26 | 226 | 22.5 | | | 360 | 23172CAKE4 + AH 3172 | Tr 400 × 5 | 229 | 35 | 238 | 33 | | | 360 | 24172CAK30E4 + AH 24172 | Tr 380 × 5 | 269 | 26 | 289 | 30 | | | 360 | 23272CAKE4 + AH 3272 | Tr 400 × 5 | 274 | 40 | 283 | 41.5 | | 360 | 380 | 23076C AKE4 + AH 3076 | Tr 410 × 5 | 170 | 31 | 180 | 23.5 | | | 380 | 24076C AK30E4 + AH 24076 | Tr 400 × 5 | 208 | 28 | 228 | 24.1 | | | 380 | 23176C AKE4 + AH 3176 | Tr 420 × 5 | 232 | 36 | 242 | 35.5 | | | 380 | 24176CAK30E4 + AH 24176 | Tr 400 × 5 | 271 | 28 | 291 | 32.1 | | | 380 | 23276CAKE4 + AH 3276 | Tr 420 × 5 | 284 | 42 | 294 | 45.5 | | 380 | 400 | 23080CAKE4 + AH 3080 | Tr 430 × 5 | 183 | 33 | 193 | 27.5 | | | 400 | 24080CAK30E4 + AH 24080 | Tr 420 × 5 | 228 | 28 | 248 | 28 | | | 400 | 23180CAKE4 + AH 3180 | Tr 440 × 5 | 240 | 38 | 250 | 39.5 | | | 400 | 24180CAK30E4 + AH 24180 | Tr 420 × 5 | 278 | 28 | 298 | 34.8 | | | 400 | 23280CAKE4 + AH 3280 | Tr 440 × 5 | 302 | 44 | 312 | 51.5 | | Shaft | Nominal
Bearing | | Screw Thread | D | Dimensions
(mm) | | | |---------------------|-------------------------------|-------------------------------------|--------------|-------|--------------------|-------|---------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | арргох. | | 400 | 420 | 23084CAKE4 + AH 3084 | Tr 450 × 5 | 186 | 34 | 196 | 29 | | | 420 | 24084CAK30E4 + AH 24084 | Tr 440 × 5 | 230 | 30 | 252 | 29.8 | | | 420 | 23184CAKE4 + AH 3184 | Tr 460 × 5 | 266 | 40 | 276 | 46.5 | | | 420 | 24184CAK30E4 + AH 24184 | Tr 440 × 5 | 310 | 30 | 332 | 41.4 | | | 420 | 23284CAKE4 + AH 3284 | Tr 460 × 5 | 321 | 46 | 331 | 59 | | 420 | 440 | 23088CAKE4 + AHX 3088 | Tr 470 × 5 | 194 | 35 | 205 | 42 | | | 440 | 24088CAK30E4 + AH 24088 | Tr 460 × 5 | 242 | 30 | 264 | 33 | | | 440 | 23188CAKE4 + AHX 3188 | Tr 480 × 5 | 270 | 42 | 281 | 50 | | | 440 | 24188CAK30E4 + AH 24188 | Tr 460 × 5 | 310 | 30 | 332 | 43.5 | | | 440 | 23288CAKE4 + AHX 3288 | Tr 480 × 5 | 330 | 48 | 341 | 64 | | 440 | 460 | 23092C AKE4 + AHX 3092 | Tr 490 × 5 | 202 | 37 | 213 | 46 | | | 460 | 24092C AK30E4 + AH 24092 | Tr 480 × 5 | 250 | 32 | 273 | 35.9 | | | 460 | 23192C AKE4 + AHX 3192 | Tr 510 × 6 | 285 | 43 | 296 | 58 | | | 460 | 24192CAK30E4 + AH 24192 | Tr 480 × 5 | 332 | 32 | 355 | 49.7 | | | 460 | 23292CAKE4 + AHX 3292 | Tr 510 × 6 | 349 | 50 | 360 | 74.5 | | 460 | 480 | 23096CAKE4 + AHX 3096 | Tr 520 × 6 | 205 | 38 | 217 | 51 | | | 480 | 24096CAK30E4 + AH 24096 | Tr 500 × 5 | 250 | 32 | 273 | 37.5 | | | 480 | 23196CAKE4 + AHX 3196 | Tr 530 × 6 | 295 | 45 | 307 | 63 | | | 480 | 24196C AK30E4 + AH 24196 | Tr 500 × 5 | 340 | 32 | 363 | 53 | | | 480 | 23296C AKE4 + AHX 3296 | Tr 530 × 6 | 364 | 52 | 376 | 82 | | 480 | 500 | 230/500CAKE4 + AHX 30/500 | Tr 540 × 6 | 209 | 40 | 221 | 54.5 | | | 500 | 240/500CAK30E4 + AH 240/500 | Tr 530 × 6 | 253 | 35 | 276 | 41.9 | | | 500 | 231/500CAKE4 + AHX 31/500 | Tr 550 × 6 | 313 | 47 | 325 | 71 | | | 500 | 241/500C AK30E4 + AH 241/500 | Tr 530 × 6 | 360 | 35 | 383 | 61.2 | | | 500 | 232/500C AKE4 + AHX 32/500 | Tr 550 × 6 | 393 | 54 | 405 | 94.5 | Nut with Washer | III VVASIICI | | |--------------|------------| | | Units : mm | | | | | | Reference | | | | | | | | | | | | |---|-------------------------|----------------------------------|----------------|-------------------|-------------------|-------------------|----------------|--------------------|----------------------|----------------|-------------------|-------------------------|--|-------------------------------|-------------------| | | ominal
umbers | Screw Thread | | d_2 | d_1 | g
B | asic Di | mensio
<i>h</i> | ns d_3 | В | r
max. | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Washer
Numbers | Shaft
Dia. | | F | AN 02
AN 03
AN 04 | M 15×1
M 17×1
M 20×1 | 2 | !5
!8
!2 | 21
24
26 | 21
24
28 | 4
4
4 | 2
2
2 | 15.5
17.5
20.5 | 5
5
6 | 0.4
0.4
0.4 | 0.010
0.013
0.019 | _
_
04 | AW 02 X
AW 03 X
AW 04 X | 15
17
20 | | F | AN 05
AN 06
AN 07 | M 25×1.5
M 30×1.5
M 35×1.5 | 1 | 18
5
5
2 | 32
38
44 | 34
41
48 | 5
5
5 | 2
2
2 | 25.8
30.8
35.8 | 7
7
8 | 0.4
0.4
0.4 | 0.025
0.043
0.053 | 05
06
07 | AW 05 X
AW 06 X
AW 07 X | 25
30
35 | | F | AN 08
AN 09
AN 10 | M 40×1.5
M 45×1.5
M 50×1.5 | 1 6 | 18
15
10 | 50
56
61 | 53
60
65 | 6
6
6 | 2.5
2.5
2.5 | 40.8
45.8
50.8 | 9
10
11 | 0.5
0.5
0.5 | 0.085
0.119
0.148 | 08
09
10 | AW 08 X
AW 09 X
AW 10 X | 40
45
50 | | F | AN 11
AN 12
AN 13 | M 55×2
M 60×2
M 65×2 | 8 | 5
80
85 | 67
73
79 | 69
74
79 | 7
7
7 | 3
3
3 | 56
61
66 | 11
11
12 | 0.5
0.5
0.5 | 0.158
0.174
0.203 | 11
12
13 | AW 11 X
AW 12 X
AW 13 X | 55
60
65 | | F | AN 14
AN 15
AN 16 | M 70×2
M 75×2
M 80×2 | |)2
)8
)5 | 85
90
95 | 85
91
98 | 8
8
8 | 3.5
3.5
3.5 | 71
76
81 | 12
13
15 | 0.5
0.5
0.6 | 0.242
0.287
0.395 | 14
15
16 | AW 14 X
AW 15 X
AW 16 X | 70
75
80 | | F | AN 17
AN 18
AN 19 | M 85×2
M 90×2
M 95×2 | 11
12
12 | 0 | 102
108
113 | 103
112
117 | 8
10
10 | 3.5
4
4 | 86
91
96 | 16
16
17 | 0.6
0.6
0.6 | 0.45
0.555
0.66 | 17
18
19 | AW 17 X
AW 18 X
AW 19 X | 85
90
95 | | F | AN 20
AN 21
AN 22 | M 100×2
M 105×2
M 110×2 | 13
14
14 | 0 | 120
126
133 | 122
130
135 | 10
12
12 | 4
5
5 | 101
106
111 | 18
18
19 | 0.6
0.7
0.7 | 0.70
0.845
0.965 | 20
21
22 | AW 20 X
AW 21 X
AW 22 X | 100
105
110 | | F | AN 23
AN 24
AN 25 | M 115×2
M 120×2
M 125×2 | 15
15
16 | 5 | 137
138
148 | 140
145
150 | 12
12
12 | 5
5
5 | 116
121
126 | 19
20
21 | 0.7
0.7
0.7 | 1.01
1.08
1.19 |
24
 | AW 23
AW 24
AW 25 | 115
120
125 | Note (1) Applicable to adapter sleeve Series A31, A2, A3, and A23. Remarks The basic design and dimensions of screw threads are in accordance with JIS B 0205. Nut with Washer Units: mm | | | | | Reference | | | | | | | | | | |-------------------------|-------------------------------|----------------------------|----------------------------|-------------------|---------------------|--------------------|-------------------------|----------------|-------------------|-------------------------|--|-------------------|-----------------| | Nominal
Numbers | Screw Threads $\it G$ | $d_{\scriptscriptstyle 2}$ | $d_{\scriptscriptstyle 1}$ | в
д | asic Di
b | mensio
<i>h</i> | ns $oldsymbol{d}_3$ | В | r
max. | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Washer
Numbers | Shaft
Dia. | | AN 26 | M 130×2 | 165 | 149 | 155 | 12 | 5 | 131 | 21 | 0.7 | 1.25 | 26 | AW 26 | 130 | | AN 27 | M 135×2 | 175 | 160 | 163 | 14 | 6 | 136 | 22 | 0.7 | 1.55 | — | AW 27 | 135 | | AN 28 | M 140×2 | 180 | 160 | 168 | 14 | 6 | 141 | 22 | 0.7 | 1.56 | 28 | AW 28 | 140 | | AN 29
AN 30
AN 31 | M 145×2
M 150×2
M 155×3 | 190
195
200 | 172
171
182 | 178
183
186 | 14
14
16 | 6
6
7 | 146
151
156.5 | 24
24
25 | 0.7
0.7
0.7 | 2.0
2.03
2.21 | 30 | AW 29
AW 30 | 145
150
— | | AN 32
AN 33
AN 34 | M 160×3
M 165×3
M 170×3 | 210
210
220 | 182
193
193 | 196
196
206 | 16
16
16 | 7
7
7 | 161.5
166.5
171.5 | 25
26
26 | 0.7
0.7
0.7 | 2.59
2.43
2.8 | 32
—
34 | AW 32
AW 34 | 160
—
170 | | AN 36 | M 180×3 | 230 | 203 | 214 | 18 | 8 | 181.5 | 27 | 0.7 | 3.05 | 36 | AW 36 | 180 | | AN 38 | M 190×3 | 240 | 214 | 224 | 18 | 8 | 191.5 | 28 | 0.7 | 3.4 | 38 | AW 38 | 190 | | AN 40 | M 200×3 | 250 | 226 | 234 | 18 | 8 | 201.5 | 29 | 0.7 | 3.7 | 40 | AW 40 | 200 | | | | | | Nut S | Series <i>i</i> | ANL | | | | | | | | | ANL 24 | M 120×2 | 145 | 133 | 135 | 12 | 5 | 121 | 20 | 0.7 | 0.78 | 24 | AWL 24 | 120 | | ANL 26 | M 130×2 | 155 | 143 | 145 | 12 | 5 | 131 | 21 | 0.7 | 0.88 | 26 | AWL 26 | 130 | | ANL 28 | M 140×2 | 165 | 151 | 153 | 14 | 6 | 141 | 22 | 0.7 | 0.99 | 28 | AWL 28 | 140 | | ANL 30 | M 150×2 | 180 | 164 | 168 | 14 | 6 | 151 | 24 | 0.7 | 1.38 | 30 | AWL 30 | 150 | | ANL 32 | M 160×3 | 190 | 174 | 176 | 16 | 7 | 161.5 | 25 | 0.7 | 1.56 | 32 | AWL 32 | 160 | | ANL 34 | M 170×3 | 200 | 184 | 186 | 16 | 7 | 171.5 | 26 | 0.7 | 1.72 | 34 | AWL 34 | 170 | | ANL 36 | M 180×3 | 210 | 192 | 194 | 18 | 8 | 181.5 | 27 | 0.7 | 1.95 | 36 | AWL 36 |
180 | | ANL 38 | M 190×3 | 220 | 202 | 204 | 18 | 8 | 191.5 | 28 | 0.7 | 2.08 | 38 | AWL 38 | 190 | | ANL 40 | M 200×3 | 240 | 218 | 224 | 18 | 8 | 201.5 | 29 | 0.7 | 2.98 | 40 | AWL 40 | 200 | **Note** (1) Series AN is applicable to adapter sleeve Series A31 and A23. Series ANL is applicable to adapter sleeve Series A30. **Remarks** The basic design and dimensions of screw threads are in accordance with **JIS B 0205**. B 372 B 373 (For Adapters and Shafts) **ANL 76** Tr 380×5 **ANL 80** Tr 400×5 ANL 84 Tr 420×5 Nut with Stopper Nut Series AN Reference Nominal Screw Basic Dimensions Mass Adapter (1) Stopper Shaft Numbers Threads Tapped Holes Sleeve Bore (kg) b В d_2 d_1 h Numbers Dia. d_4 Dia. Numbers 1 Screw Threads (S) max. approx. 280 250 260 20 10 222 300 270 280 20 10 242 32 0.8 15 M 8×1.25 238 34 0.8 15 M 8×1.25 258 AL 44 220 **AL 44** 240 **AN 48** Tr 240×4 48 5.95 **AN 52** Tr 260×4 330 300 306 24 12 262 36 0.8 18 M 10×1.5 281 8.05 52 **AL 52** 260 **56** Tr 280×4 350 320 326 24 12 282 **60** Tr 300×4 380 340 356 24 12 302 18 M 10×1.5 **AN 56** Tr 280×4 38 0.8 **AL 52** 280 40 0.8 18 M 10×1.5 AL 60 300 60 64 Tr 320×5 | 400 360 376 24 12 322.5 42 0.8 | 18 M 10×1.5 345 | 13.1 **AL 64** 320 **AN 68** Tr 340×5 440 400 410 28 15 342.5 55 1 21 M 12×1.75 372 23.1 **AL 68** 340 **72** Tr 360×5 460 420 430 28 15 362.5 58 1 **76** Tr 380×5 490 450 454 32 18 382.5 60 1 21 M 12×1.75 392 25.1 72 **AL 68** 360 **AL 76** 380 21 M 12×1.75 414 31 520 470 484 32 18 402.5 62 1 540 490 504 32 18 422.5 70 1 560 510 520 36 20 442.5 70 1 **AN 80** Tr 400×5 27 M 16×2 439 37 80 **AL 80** 400 **84** Tr 420×5 27 M 16×2 459 43.5 AL 80 420 84 **88** Tr 440×5 1 27 M 16×2 477 | 45 88 **AL 88** 440 **AN 92** Tr 460×5 580 540 540 36 20 462.5 75 1 **AN 96** Tr 480×5 620 560 580 36 20 482.5 75 1 27 M 16×2 27 M 16×2 497 50.5 **AL 88** 460 527 62 **AL 96** 480 96 **AN 100** Tr 500×5 630 580 584 40 23 502.5 80 1 27 M 16×2 /500 539 63.5 **AL 100** 500 Nut Series ANL **ANL 44** Tr 220×4 260 242 242 20 222 0.8 12 M **ALL 44** 220 ANL 48 Tr 240×4 290 270 270 20 10 242 34 0.8 15 M 8×1.25 253 5 15 48 **ALL 48** 240 **ANL 52** Tr 260×4 310 290 290 20 10 262 34 0.8 15 M 8×1.25 273 5.65 52 **ALL 48** 260 ANL 56 Tr 280×4 330 310 310 24 10 282 38 0.8 15 M 8×1.25 293 **ALL 56** 280 **ANL 60** Tr 300×4 360 336 336 24 12 302 42 0.8 15 M 8×1.25 316 380 356 356 24 12 322.5 42 0.8 15 M 8×1.25 335 **ALL 60** 300 **ANL 64** Tr 320×5 9.95 64 ALL 64 320 400 376 376 24 12 342.5 45 1 **ANL 68** Tr 340×5 15 M 8×1.25 355 11.7 68 **ALL 64** 340 **ANL 72** Tr 360×5 420 394 394 28 13 362.5 45 450 422 422 28 14 382.5 48 15 M 8×1.25 374 **ALL 72** 360 (1) Series AN is applicable to adapter sleeve Series A31, A32 and A23. Series ANL is applicable to adapter sleeve Series A30. 18 M 10×1.5 398 14.9 18 M 10×1.5 438 17.4 21 M 12×1.75 462 26.2 21 M 12×1.75 482 28 21 M 12×1.75 522 33.5 21 M 12×1.75 502 18 M 10×1.5 76 80 84 88 92 **ALL 76** 380 **ALL 76** 400 **ALL 84** 420 **ALL 88** 440 **ALL 88** 460 **ALL 96** 480 **ALL 96** 500 Remarks 1. The basic design and dimensions of screw threads are in accordance with JIS B 0216. 470 442 442 28 14 402.5 52 1 490 462 462 32 14 422.5 52 1 **ANL 88** Tr 440×5 520 490 490 32 15 442.5 60 1 **ANL 92** Tr 460×5 540 510 510 32 15 462.5 60 1 ANL 96 Tr 480×5 560 530 530 36 15 482.5 60 1 ANL 100 Tr 500×5 580 550 550 36 15 502.5 68 1 2. The basic design and dimensions of threads in tapped holes are in accordance with JIS B 0205. #### (For Withdrawal Sleeves) NSK | | | | | | | | | | | | | | | l | Jnits : mm | |---|----------------------------|----------------------------------|-------------------|------------|-------------------|----------|----------------|-------------------------|----------------|-------------------|----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------| | | | | | | Nut | Serie | s HN | | | | | | Refer | ence | | | | Nominal
Numbers | Screw | | | Bas | ic Dir | nens | ions | | | Mass | w | ithdrawal Sle | eeve Numbers | | | | Number 5 | Threads $\it G$ | d_2 | d_1 | g | b | h | d_3 | В | r
max. | (kg)
approx. | AH 31 | AH 22 | AH 32 | AH 23 | | | HN 42
HN 44
HN 48 | Tr 210×4
Tr 220×4
Tr 240×4 | 270
280
300 | | 250
260
280 | | 10
10
10 | 212
222
242 | 30
32
34 | 0.8
0.8
0.8 | 4.75
5.35
6.2 | AH 3138
AH 3140
AH 3144 | AH 2238
AH 2240
AH 2244 | AH 3238
AH 3240 | AH 2338
AH 2340
AH 2344 | | | HN 52
HN 58
HN 62 | Tr 260×4
Tr 290×4
Tr 310×5 | 330
370
390 | 350 | 346
366 | 24
24 | 12 | 262
292
312.5 | 36
40
42 | 0.8
0.8
0.8 | 8.55
11.8
13.4 | AH 3148
AH 3152
AH 3156 | AH 2248
AH 2252
AH 2256 | _

_ | AH 2348
AH 2352
AH 2356 | | | HN 66
HN 70
HN 74 | Tr 330×5
Tr 350×5
Tr 370×5 | 420
450
470 | 410
430 | | 28
28 | 15
15
15 | 332.5
352.5
372.5 | 52
55
58 | 1
1
1 | 20.4
25.2
28.2 | AH 3160
AH 3164
AH 3168 | AH 2260
AH 2264 | AH 3260
AH 3264
AH 3268 | _
_
_ | | | HN 80
HN 84
HN 88 | Tr 400×5
Tr 420×5
Tr 440×5 | 520
540
560 | 490
510 | 484
504
520 | 32
36 | 18
18
20 | 402.5
422.5
442.5 | 62
70
70 | 1 1 1 | 40
46.9
48.5 | AH 3172
AH 3176
AH 3180 | | AH 3272
AH 3276
AH 3280 | _
_
_ | | | HN 92
HN 96
HN 102 | Tr 460×5
Tr 480×5
Tr 510×6 | 580
620
650 | 560
590 | | 36
40 | 20
20
23 | 462.5
482.5
513 | 75
75
80 | 1
1
1 | 55
67
75 | AH 3184
AHX 3188
AHX 3192 | | AH 3284
AHX 3288
AHX 3292 | _
_
_ | | | HN 106
HN 110 | Tr 530×6
Tr 550×6 | 670
700 | | 624
654 | | 23
23 | 533
553 | 80
80 | 1
1 | 78
92.5 | AHX 3196
AHX 31/500 | _ | AHX 3296
AHX 32/500 | _ | | Ī | | | | | Nut S | Series | s HNI | _ | | | | AH 30 | AH 2 | | | | | HNL 41
HNL 43
HNL 47 | | 250
260
280 | 242 | 234
242
262 | 20 | 8
9
9 | 207
217
237 | 30
30
34 | 0.8
0.8
0.8 | 3.45
3.7
4.6 | AH 3038
AH 3040
AH 3044 | AH 238
AH 240
AH 244 | | | | | HNL 52
HNL 56
HNL 60 | Tr 280×4
Tr 300×4 | 310
330
360 | 310
336 | 290
310
336 | 24
24 | 10
10
12 | 262
282
302 | 34
38
42 | 0.8
0.8
0.8 | 5.8
6.7
9.6 | AH 3048
AH 3052
AH 3056 | AH 248
AH 252
AH 256 | | | | | HNL 64
HNL 69
HNL 73 | | 380
410
430 | 384
404 | 356
384
404 | 28
28 | 12
13
13 | 322.5
347.5
367.5 | 42
45
48 | 1 1 1 | 10.3
11.5
14.2 | AH 3060
AH 3064
AH 3068 | _
_
_ | | | | | HNL 77
HNL 82
HNL 86 | Tr 430×5 | 450
480
500 | 452
472 | 422
452
472 | 32
32 | 14
14
14 | 387.5
412.5
432.5 | 48
52
52 | 1 1 1 | 15
19
19.8 | AH 3072
AH 3076
AH 3080 | _
_
_ | | | | | | Tr 470×5
Tr 490×5 | 520
540
580 | 510
550 | 490
510
550 | 32
36 | 15
15
15 | 452.5
472.5
492.5 | 60
60 | 1
1
1 | 23.8
25
34 | AH 3084
AHX 3088
AHX 3092 | | | | | | HNL 104
HNL 108 | Tr 520×6
Tr 540×6 | 600
630 | | 570
590 | 36
40 | 15
20 | 523
543 | 68
68 | 1
1 | 37
43.5 | AHX 3096
AHX 30/500 | _ | | | Remarks 1. The basic design and dimensions of screw threads are in accordance with JIS B 0216 2. The number of notches in the nut may be bigger than that shown in the above figure B 374 B 375 Units: mm (Combination of Withdrawal Sleeves and Nuts) | | | | | | | | | Units : mm | |-------------------------|------------------|----------------|----------------------|------------------|----------------------|----------------------|-------------------------------------|---------------------------------------| | | | | | Stopper S | eries AL | | | Reference | | Nominal
Numbers | t_1 | S | Basic L_2 | Dimensions S_1 | i | L3 | Mass (kg)
per 100 pcs
approx. | Nut Numbers | | AL 44
AL 52
AL 60 | 4
4
4
4 | 20
24
24 | 12
12
12
12 | 9
12
12 | 22.5
25.5
30.5 | 30.5
33.5
38.5 | 2.6
3.4
3.8 | AN 44, AN 48
AN 52, AN 56
AN 60 | | AL 64 | 5 | 24 | 15 | 12 | 31 | 41 | 5.35 | AN 64 | | AL 68 | 5 | 28 | 15 | 14 | 38 | 48 | 6.65 | AN 68, AN 72 | | AL 76 | 5 | 32 | 15 | 14 | 40 | 50 | 7.95 | AN 76 | | AL 80 | 5 | 32 | 15 | 18 | 45 | 55 | 8.2 | AN 80, AN 84 | | AL 88 | 5 | 36 | 15 | 18 | 43 | 53 | 9.0 | AN 88, AN 92 | | AL 96 | 5 | 36 | 15 | 18 | 53 | 63 | 10.4 | AN 96 | | AL 100 | 5 | 40 | 15 | 18 | 45 | 55 | 10.5 | AN 100 | | | | | | Stopper Se | ries ALL | | | | | ALL 44 | 4 | 20 | 12 | 7 | 13.5 | 21.5 | 2.12 | ANL 44 | | ALL 48 | 4 | 20 | 12 | 9 | 17.5 | 25.5 | 2.29 | ANL 48, ANL 52 | | ALL 56 | 4 | 24 | 12 | 9 | 17.5 | 25.5 | 2.92 | ANL 56 | | ALL 60 | 4 | 24 | 12 | 9 | 20.5 | 28.5 | 3.15 | ANL 60 | | ALL 64 | 5 | 24 | 15 | 9 | 21 | 31 | 4.55 | ANL 64, ANL 68 | | ALL 72 | 5 | 28 | 15 | 9 | 20 | 30 | 5.05 | ANL 72 | | ALL 76 | 5 | 28 | 15 | 12 | 24 | 34 | 5.3 | ANL 76, ANL 80 | | ALL 84 | 5 | 32 | 15 | 12 | 24 | 34 | 6.1 | ANL 84 | | ALL 88 | 5 | 32 | 15 | 14 | 28 | 38 | 6.45 | ANL 88, ANL 92 | | ALL 96 | 5 | 36 | 15 | 14 | 28 | 38 | 7.3 | ANL 96, ANL 100 | | | | | | Reference | | | | |-------------------------|---------------------------|--------------------------|----------------------------|------------------|---------------------------|-------------------------------|----------------------------------| | Nominal
Numbers | | | Witho | drawal Sleeve Nu | mbers | | | | | AH 30 | AH 31 | AH 2 | AH 22 | AH 32 | AH 3 | AH 23 | | AN 09
AN 10
AN 11 | _
_
_ | _
_
_ | AH 208
AH 209
AH 210 | _
_
_ | _
_
_ | AH 308
AH 309
AHX 310 | AH 2308
AH 2309
AHX 2310 | | AN 12
AN 13
AN 14 | _
_
_ | _
_
_ | AH 211
AH 212
— |
_
_
_ | _
_
_ | AHX 311
AHX 312 | AHX 2311
AHX 2312 | | AN 15
AN 16
AN 17 | _
_
_ | _
_
_ | AH 213
AH 214
AH 215 | _
_
_ | _
_
_ | AH 313
AH 314
AH 315 | AH 2313
AHX 2314
AHX 2315 | | AN 18
AN 19
AN 20 | _
_
_ | _
_
_ | AH 216
AH 217
AH 218 | _
_
_ | _ | AH 316
AHX 317
AHX 318 | AHX 2316
AHX 2317
AHX 2318 | | AN 21
AN 22
AN 23 | _
_
_ | _
_
_ | AH 219
AH 220
AH 221 | _
_
_ | AHX 3220 | AHX 319
AHX 320
AHX 321 | | | AN 24
AN 25
AN 26 |
AHX 3024 | _ | AH 222
—
AH 224 | _
_
_ | AHX 3222
— | AHX 322
AHX 324 | AHX 2322
— | | AN 27
AN 28
AN 29 | AHX 3026 | AHX 3126 | AH 226 | | AHX 3224
—
AHX 3226 | AHX 326 | AHX 2324
AHX 2326 | | AN 30
AN 31
AN 32 | AHX 3028
—
AHX 3030 | AHX 3128
—
— | AH 228
—
AH 230 | _
_
_ | AHX 3228 | AHX 328
 | AHX 2328 | | AN 33
AN 34
AN 36 | —
AH 3032
AH 3034 | AHX 3130
—
AH 3132 | —
AH 232
AH 234 | _
_
_ | AHX 3230
AH 3232 | AHX 330
AH 332 | AHX 2330
AH 2332 | | AN 38
AN 40 | AH 3036
— | AH 3134
AH 3136 | AH 236
— | —
AH 2236 | AH 3234
AH 3236 | AH 334
— | AH 2334
AH 2336 | Bent-Tab Straight-Tab ϕd_4 Units: mm Lock-washer Series AW Reference Nominal Numbers No. of Teeth Per 100 pcs Adapter (¹) Sleeve Bore **Basic Dimensions** Nut Shaft Dia. Numbers Bent-Tab Bent-Tab Straight-Tab M f_1 B_1 f d_4 Dia. Numbers approx. B_{2} 2.5 2.5 2.5 13.5 15.5 21 24 26 AW 02 X 28 32 13 0.253 AN 02 17 AW 03 X 13 13 AN 03 0.315 AW 04 X 20 04 0.35 AN 04 AW 05 X AW 06 X 25 30 23 27.5 5 5 1.2 1.2 5 5 32 38 2.5 2.5 13 13 0.64 AN 05 49 0.78 **AN 06** 06 Note (1) Applicable to adapter sleeve Series A31, A2, A3, and A23. Remarks Lock-washers with straight tabs shall be used with adapter sleeves having narrow slits, and for those having wide slits, either type of lock-washer may be used. Bent-Tab Straight-Tab Units: mm | Nomin | ninal Numbers Lock-washer Series AW | | | | | | | | | Reference | | | | | | |----------------------------|-------------------------------------|-------------------|----------------------------------|----------------|-------------------|----------------|-------------------|-------------------|-------------------|--------------|-----------------|-------------------------------------|--|----------------------------|-------------------| | Bent-Tab | Straight-Tab | d_3 | M | f_1 | Basic I | Dimen | sions d_4 | d_5 | Ben
r | it-Tab B_2 | No. of
Teeth | Mass (kg)
per 100 pcs
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Nut
Numbers | Shaft
Dia. | | AW 26 | AW 26 X | 130 | 125 | 14 | 2 | 12 | 149 | 175 | 1.5 | 6 | 19 | 11.3 | 26 | AN 26 | 130 | | AW 27 | AW 27 X | 135 | 130 | 14 | 2 | 14 | 160 | 185 | 1.5 | 6 | 19 | 14.4 | — | AN 27 | 135 | | AW 28 | AW 28 X | 140 | 135 | 16 | 2 | 14 | 160 | 192 | 1.5 | 8 | 19 | 14.2 | 28 | AN 28 | 140 | | AW 29 | AW 29 X | 145 | 140 | 16 | 2 | 14 | 172 | 202 | 1.5 | 8 | 19 | 16.8 | 30 | AN 29 | 145 | | AW 30 | AW 30 X | 150 | 145 | 16 | 2 | 14 | 171 | 205 | 1.5 | 8 | 19 | 15.9 | | AN 30 | 150 | | AW 31 | AW 31 X | 155 | 147.5 | 16 | 2.5 | 16 | 182 | 212 | 1.5 | 8 | 19 | 20.9 | | AN 31 | 155 | | AW 32 | AW 32 X | 160 | 154 | 18 | 2.5 | 16 | 182 | 217 | 1.5 | 8 | 19 | 22.2 | 32 | AN 32 | 160 | | AW 33 | AW 33 X | 165 | 157.5 | 18 | 2.5 | 16 | 193 | 222 | 1.5 | 8 | 19 | 24.1 | — | AN 33 | 165 | | AW 34 | AW 34 X | 170 | 164 | 18 | 2.5 | 16 | 193 | 232 | 1.5 | 8 | 19 | 24.7 | 34 | AN 34 | 170 | | AW 36 | AW 36 X | 180 | 174 | 20 | 2.5 | 18 | 203 | 242 | 1.5 | 8 | 19 | 26.8 | 36 | AN 36 | 180 | | AW 38 | AW 38 X | 190 | 184 | 20 | 2.5 | 18 | 214 | 252 | 1.5 | 8 | 19 | 27.8 | 38 | AN 38 | 190 | | AW 40 | AW 40 X | 200 | 194 | 20 | 2.5 | 18 | 226 | 262 | 1.5 | 8 | 19 | 29.3 | 40 | AN 40 | 200 | | | | | | | | Wash | ner Seri | es AWL | - | | | | | | | | AWL 24 | AWL 24 X | 120 | 115 | 14 | 2 | 12 | 133 | 155 | 1.5 | 6 | 19 | 7.7 | 24 | ANL 24 | 120 | | AWL 26 | AWL 26 X | 130 | 125 | 14 | 2 | 12 | 143 | 165 | 1.5 | 6 | 19 | 8.7 | 26 | ANL 26 | 130 | | AWL 28 | AWL 28 X | 140 | 135 | 16 | 2 | 14 | 151 | 175 | 1.5 | 8 | 19 | 10.9 | 28 | ANL 28 | 140 | | AWL 30 | AWL 30 X | 150 | 145 | 16 | 2 | 14 | 164 | 190 | 1.5 | 8 | 19 | 11.3 | 30 | ANL 30 | 150 | | AWL 32 | AWL 32 X | 160 | 154 | 18 | 2.5 | 16 | 174 | 200 | 1.5 | 8 | 19 | 16.2 | 32 | ANL 32 | 160 | | AWL 34 | AWL 34 X | 170 | 164 | 18 | 2.5 | 16 | 184 | 210 | 1.5 | 8 | 19 | 19 | 34 | ANL 34 | 170 | | AWL 36
AWL 38
AWL 40 | AWL 36 X
AWL 38 X
AWL 40 X | 180
190
200 | 174
184
194
blicable to | 20
20
20 | 2.5
2.5
2.5 | 18
18
18 | 192
202
218 | 220
230
250 | 1.5
1.5
1.5 | 8
8
8 | 19
19
19 | 18
20.5
21.4 | 36
38
40 | ANL 36
ANL 38
ANL 40 | 180
190
200 | Note (1) Series AW is applicable to adapter sleeve Series A31 and A23 Series AWL is applicable to adapter sleeve Series A30. Remarks Lock-washers with straight tabs shall be used with adapter sleeves having narrow slits, and for those having wide slits, either type of lock-washer may be used. Page ## INTRODUCTION OF **NSK** PRODUCTS · APPENDICES #### INTRODUCTION OF NSK PRODUCTS Photos of NSK Products AP | PENDICES | | |-------------------|---| | | | | Appendix Table 1 | Conversion from SI (International Units) System $\cdots \cdots \circ \mathbb{C}_{-}$ 8 | | Appendix Table 2 | N-kgf Force Conversion Table | | Appendix Table 3 | kg-lb Mass Conversion Table | | Appendix Table 4 | $^{\circ}\text{C}^{\circ}\text{F}$ Temperature Conversion Table $\cdots\cdots\cdots$ C12 | | Appendix Table 5 | Viscosity Conversion Table C13 | | Appendix Table 6 | inch-mm Dimension Conversion Table · · · · C14 | | Appendix Table 7 | Hardness Conversion Table | | Appendix Table 8 | Physical and Mechanical Properties of Materials ······ C17 | | Appendix Table 9 | Tolerances for Shaft Diameters | | Appendix Table 10 | Tolerances for Housing Bore Diameters | | Appendix Table 11 | Values of Standard Tolerance Grades ITC22 | | Appendix Table 12 | Speed Factor f_{n} | | Appendix Table 13 | Fatigue Life Factor $\mathit{f}_{\!h}$ and Fatigue Life $L \cdot \mathit{L}_{\!h}$ \cdots C25 | | Appendix Table 14 | Index of Inch Design Tapered Roller Bearings C26 | | | | #### NSK #### **AUTOMOTIVE PRODUCTS** Column Type Electric Power Steering (CAT.No. E4102) Pinion Type Electric Power Steering (CAT.No. E4102) Offeet Ball Screw Type Electric Power Steering (CAT.No. E4102) Long Life Water Pump Bearings (CAT.No. E396, E4102) **Hub Unit Bearings** (CAT.No. E4201) One-Way Clutch #### PRECISION MACHINE COMPONENTS #### **BALL SCREWS** NSK Standard Ball Screws Compact FA Series (CAT. No. E3239, E3162) Ball Screws for High-Speed Machine Tools HMD Series (CAT. No. E3162) Highly Dust-Resistant Ball Screws, **NSK Linear Guides** V1 Series (CAT. No. E3162) ## **MONOCARRIERS** Monocarriers (CAT. No. E3419, E3162) NSK Standard Ball Screws High Speed SS Series (CAT.No.E3241) Ball Screws for Twin-Drive Systems TW Series (CAT. No. E3162) High-Speed, Low-Noise Ball Screws BSS Series (CAT. No. E3162) Ball Screws for High-Load Drive HTF-SRC Series, HTF-SRD Series, HTF Series, A1 Series (CAT. No. E3238, E3162) Ball Screws, NSK Linear Guides with NSK K1™ Lubrication Unit (CAT. No. E3331, E3162) Ball Screws, NSK Linear Guides with E-DFO Thin-Film Lubrication for Vacuum Environments (CAT. No. E1258) Toughcarrier (CAT. No. E3421) #### NSK #### PRECISION MACHINE COMPONENTS #### **LINEAR BEARINGS** NSK Linear Guides Roller Guides RA Series (CAT. No. E3328, E3162) NSK Linear Guides High-Accuracy Series (CAT. No. E3329, E3162) NSK Linear Guides LH Series, LS Series (CAT. No. E3162) NSK Linear Guides Miniature PU Series, PE Series (CAT. No. E3327, E3162) NSK Low-Noise Linear Guides SH Series, SS Series (CAT. No. E3162) NSK Linear Guides TS Series (CAT. No. E3324, E3162) #### PRECISION MACHINE COMPONENTS #### MECHATRONIC ACTUATORS Megatorque Motor™ (CAT.No. E3511) XY Modules Megapositioner™ XY Tables #### **ASSORTED SPINDLES** High Speed Integrated Motor Spindles Precision Grinding Spindles (CAT.No. E2202) Live Centers (CAT.No. E2202) Oil/Air Lubricating Unit, Fine Lube (CAT.No. E1254/A1387) Standard Type Precision Boring Heads (CAT.No. E2202) Spindles for Electrical and Electric Equipment Positioning Actuator™ Air Bearing Slides #### **AIR SPINDLES** Air-spindle ### RELATED PRODUCT WITH BEARING Bearing Induction Heater (CAT.No. E398) Extra Small Bearing Monitor NB-4 (Bearing Abnormality Detector) (CAT.No. E410) ### **Large Size Proximity Stepper RZ Series** #### Appendix Table 1 Conversion Table from SI (International Units) System #### Comparison of SI, CGS, and Engineering Units | Units
Unit System | Length | ı Mass | Time | Temp. | Acceleration | Force | Stress | Pressure | Energy | Power | |----------------------------|--------|------------------|------|-------|------------------|-------|---------|----------|---------|---------| | SI | m | kg | s | K, °C | m/s ² | N | Pa | Pa | J | W | | CGS System | cm | g | s | °C | Gal | dyn | dyn/cm² | dyn/cm² | erg | erg/s | | Engineering
Unit System | m | $kgf\cdot s^2/m$ | s | °C | m/s² | kgf | kgf/m² | kgf/m² | kgf · m | kgf⋅m/s | #### Conversion Factors from SI Units | Parameter | SI Units | | Units other than S | I | Conversion Factors | | |-------------------|-----------------------------|----------------|--|-----------------------------|--|--| | rarameter | Names of Units | Symbols | Name of Units | Symbols | from SI Units | | | Angle | Radian | rad |
Degree
Minute
Second | | 180/π
10 800/π
648 000/π | | | Length | Meter | m | Micron
Angstrom | $\overset{\mu}{\text{\AA}}$ | 10 ⁶
10 ¹⁰ | | | Area | Square meter | m ² | Are
Hectare | a
ha | 10 ⁻²
10 ⁻⁴ | | | Volume | Cubic meter | m ³ | Liter
Deciliter | l, L
dl, dL | 10 ³
10 ⁴ | | | Time | Second | s | Minute
Hour
Day | min
h
d | 1/60
1/3 600
1/86 400 | | | Frequency | Hertz | Hz | Cycle | s^{-1} | 1 | | | Speed of Rotation | Revolution per second | s^{-1} | Revolution per miunte | rpm | 60 | | | Speed | Meter per second | m/s | Kilometer per hour
Knot | km/h
kn | 3 600/1 000
3 600/1 852 | | | Acceleration | Meter per second per second | m/s² | Gal
g | Gal
G | 10 ²
1/9.806 65 | | | Mass | Kilogram | kg | Ton | t | 10 ⁻³ | | | Force | Newton | N | Kilogram-force
Ton-force
Dyne | kgf
tf
dyn | 1/9.806 65
1/ (9.806 65×10³)
10⁵ | | | Torque or Moment | Newton · meter | N·m | Kilogram-force meter | kgf · m | 1/9.806 65 | | | Stress | Pascal | Pa
(N/m²) | Kilogram-force per square centimeter
Kilogram-force per square millimeter | | 1/ (9.806 65×10 ⁴)
1/ (9.806 65×10 ⁶) | | #### Prefixes Used In SI System | Multiples | Prefix | Symbols | Multiples | Prefix | Symbols | |------------------|--------|---------|-------------------|--------|---------| | 10 ¹⁸ | Exa | E | 10-1 | Deci | d | | 10 ¹⁵ | Peta | P | 10-2 | Centi | c | | 10 ¹² | Tera | T | 10-3 | Milli | m | | 109 | Giga | G | 10-6 | Micro | μ | | 106 | Mega | M | 10-9 | Nano | n | | 103 | Kilo | k | 10-12 | Pico | p | | 10² | Hecto | h | 10 ⁻¹⁵ | Femto | f | | 10 | Deca | da | 10 ⁻¹⁸ | Ato | a | #### Conversion Factors from SI Units (Continued) | Parameter | SI Units | | Units other than S | I | Conversion Factors | | |---|-------------------------------------|--------------|--|---|--|--| | rarameter | Names of Units | Symbols | Names of Units | Units | from SI Units | | | Pressure | Pascal
(Newton per square meter) | Pa
(N/m²) | Kilogram-force per square meter
Water Column
Mercury Column
Torr
Bar
Atmosphere | kgf/m²
mH ₂ O
mmHg
Torr
bar
atm | 1/9.806 65
1/(9.806 65×10³)
760/(1.013 25×10⁵)
760/(1.013 25×10⁵)
10-5
1/(1.013 25×10⁵) | | | Energy | Joule
(Newton · meter) | J
(N·m) | Erg
Calorie (International)
Kilogram-force meter
Kilowatt hour
French horse power hour | $\begin{array}{c} erg \\ cal_{IT} \\ kgf \cdot m \\ kW \cdot h \\ PS \cdot h \end{array}$ | 10 ⁷ 1/4.186 8 1/9.806 65 1/(3.6×10 ⁶) ≈ 3.776 72×10 ⁻⁷ | | | Work | Watt
(Joule per second) | W
(J/s) | Kilogram-force meter per second
Kilocalorie per hour
French horse power | kgf·m/s
kcal/h
PS | 1/9.806 65
1/1.163
≈ 1/735.498 8 | | | Viscosity, Viscosity Index | Pascal second | Pa · s | Poise | P | 10 | | | Kinematic Viscosity,
Kinematic Viscosity Index | Square meter per second | m²/s | Stokes
Centistokes | St
cSt | 10 ⁴
10 ⁶ | | | Temperature | Kelvin, Degree celsius | K, °C | Degree | °C | (See note (1)) | | | Electric Current,
Magnetomotive Force | Ampere | A | Ampere | A | 1 | | | Voltage, Electromotive Force | Volt | V | (Watts per ampere) | (W/A) | 1 | | | Magnetic Field Strength | Ampere per meter | A/m | Oersted | Oe | $4\pi/10^3$ | | | Magnetic Flux
Density | Tesla | Т | Gauss
Gamma | Gs
γ | 10 ⁴
10 ⁹ | | | Electrical Resistance | Ohm | Ω | (Volts per ampere) | (V/A) | 1 | | Note (1) The conversion from TK into θ °C is $\theta = T$ —273.15 but for a temperature difference, it is $\Delta T = \Delta \theta$. However, ΔT and $\Delta \theta$ represent temperature differences measured using the Kelvin and Celsius scales respectively. Remarks The names and symbols in () are equivalent to those directly above them or on their left. Example of conversion 1N=1/9.806 65kgf #### Appendix Table 2 N-kgf Conversion Table #### Appendix Table 3 kg-lb Conversion Table [Method of using this table] For example, to convert 10N into kgf, read the figure in the right kgf column adjacent to the 10 in the center column in the 1st block. This means that 10N is 1.0197kgf. To convert 10kgf into N, read the figure in the left N column of the same row, which indicates that the answer is 98.066N. 1 N=0.1019716 kgf 1 kgf=9.80665 N [Method of using this table] For example, to convert 10kg into lb, read the figure in the right lb column adjacent to the 10 in the center column in the 1st block. This means that 10kg is 22.046lb. To convert 10lb into kg, read the figure in the left kg column of the same row, which indicates that the answer is 4.536kg. 1 kg=2.2046226 lb 1 lb=0.45359237 kg | N | | kgf | N | | kgf | N | | kgf | | kg | | lb | kg | | lb | kg | | lb | |--|----------------------------|--|--|----------------------------|--|--|----------------------------|--|---|--|----------------------------|--|--|----------------------------|--|--|----------------------------|--| | 9.8066
19.613
29.420
39.227
49.033 | 1
2
3
4
5 | 0.1020
0.2039
0.3059
0.4079
0.5099 | 333.43
343.23
353.04
362.85
372.65 | 34
35
36
37
38 | 3.4670
3.5690
3.6710
3.7729
3.8749 | 657.05
666.85
676.66
686.47
696.27 | 67
68
69
70
71 | 6.8321
6.9341
7.0360
7.1380
7.2400 | • | 0.454
0.907
1.361
1.814
2.268 | 1
2
3
4
5 | 2.205
4.409
6.614
8.818
11.023 | 15.422
15.876
16.329
16.783
17.237 | 34
35
36
37
38 | 74.957
77.162
79.366
81.571
83.776 | 30.391
30.844
31.298
31.751
32.205 | 67
68
69
70
71 | 147.71
149.91
152.12
154.32
156.53 | | 58.840
68.647
78.453
88.260
98.066 | 6
7
8
9
10 | 0.6118
0.7138
0.8158
0.9177
1.0197 | 382.46
392.27
402.07
411.88
421.69 | 39
40
41
42
43 | 3.9769
4.0789
4.1808
4.2828
4.3848 | 706.08
715.89
725.69
735.50
745.31 | 72
73
74
75
76 | 7.3420
7.4439
7.5459
7.6479
7.7498 | | 2.722
3.175
3.629
4.082
4.536 | 6
7
8
9
10 | 13.228
15.432
17.637
19.842
22.046 | 17.690
18.144
18.597
19.051
19.504 | 39
40
41
42
43 | 85.980
88.185
90.390
92.594
94.799 | 32.659
33.112
33.566
34.019
34.473 | 72
73
74
75
76 | 158.73
160.94
163.14
165.35
167.55 | | 107.87
117.68
127.49
137.29
147.10 | 11
12
13
14
15 | 1.1217
1.2237
1.3256
1.4276
1.5296 | 431.49
441.30
451.11
460.91
470.72 | 44
45
46
47
48 | 4.4868
4.5887
4.6907
4.7927
4.8946 | 755.11
764.92
774.73
784.53
794.34 | 77
78
79
80
81 | 7.8518
7.9538
8.0558
8.1577
8.2597 | | 4.990
5.443
5.897
6.350
6.804 | 11
12
13
14
15 | 24.251
26.455
28.660
30.865
33.069 | 19.958
20.412
20.865
21.319
21.772 | 44
45
46
47
48 | 97.003
99.208
101.41
103.62
105.82 | 34.927
35.380
35.834
36.287
36.741 | 77
78
79
80
81 | 169.76
171.96
174.17
176.37
178.57 | | 156.91
166.71
176.52
186.33
196.13 | 16
17
18
19
20 | 1.6315
1.7335
1.8355
1.9375
2.0394 | 480.53
490.33
500.14
509.95
519.75 | 49
50
51
52
53 | 4.9966
5.0986
5.2006
5.3025
5.4045 | 804.15
813.95
823.76
833.57
843.37 | 82
83
84
85
86 | 8.3617
8.4636
8.5656
8.6676
8.7696 | | 7.257
7.711
8.165
8.618
9.072 | 16
17
18
19
20 | 35.274
37.479
39.683
41.888
44.092 | 22.226
22.680
23.133
23.587
24.040 | 49
50
51
52
53 | 108.03
110.23
112.44
114.64
116.84 | 37.195
37.648
38.102
38.555
39.009 | 82
83
84
85
86 | 180.78
182.98
185.19
187.39
189.60 | | 205.94
215.75
225.55
235.36
245.17 | 21
22
23
24
25 | 2.1414
2.2434
2.3453
2.4473
2.5493 | 529.56
539.37
549.17
558.98
568.79 | 54
55
56
57
58 | 5.5065
5.6084
5.7104
5.8124
5.9144 | 853.18
862.99
872.79
882.60
892.41 | 87
88
89
90
91 | 8.8715
8.9735
9.0755
9.1774
9.2794 | | 9.525
9.979
10.433
10.886
11.340 | 21
22
23
24
25 | 46.297
48.502
50.706
52.911
55.116 | 24.494
24.948
25.401
25.855
26.308 | 54
55
56
57
58 | 119.05
121.25
123.46
125.66
127.87 | 39.463
39.916
40.370
40.823
41.277 | 87
88
89
90
91 | 191.80
194.01
196.21
198.42
200.62 | | 254.97
264.78
274.59
284.39
294.20 | 26
27
28
29
30 | 2.6513
2.7532
2.8552
2.9572
3.0591 | 578.59
588.40
598.21
608.01
617.82 | 59
60
61
62
63 | 6.0163
6.1183
6.2203
6.3222
6.4242 | 902.21
912.02
921.83
931.63
941.44 | 92
93
94
95
96 |
9.3814
9.4834
9.5853
9.6873
9.7893 | | 11.793
12.247
12.701
13.154
13.608 | 26
27
28
29
30 | 57.320
59.525
61.729
63.934
66.139 | 26.762
27.216
27.669
28.123
28.576 | 59
60
61
62
63 | 130.07
132.28
134.48
136.69
138.89 | 41.730
42.184
42.638
43.091
43.545 | 92
93
94
95
96 | 202.83
205.03
207.23
209.44
211.64 | | 304.01
313.81
323.62 | 31
32
33 | 3.1611
3.2631
3.3651 | 627.63
637.43
647.24 | 64
65
66 | 6.5262
6.6282
6.7301 | 951.25
961.05
970.86 | 97
98
99 | 9.8912
9.9932
10.095 | | 14.061
14.515
14.969 | 31
32
33 | 68.343
70.548
72.753 | 29.030
29.484
29.937 | 64
65
66 | 141.10
143.30
145.51 | 43.998
44.452
44.906 | 97
98
99 | 213.85
216.05
218.26 | C 10 C 11 #### Appendix Table 4 $\,^{\circ}\text{C-}^{\circ}\text{F}$ Conversion Table [Method of using this table] For example, to convert 38°C into $^{\circ}F$, read the figure in the right $^{\circ}F$ column adjacent to the 38 in the center column in the 2nd block. This means that 38°C is 100.4°F. To convert 38°F into °C, read the figure in the left °C column of the same row, which indicates that the answer is 3.3°C. $$C = \frac{5}{9}(F - 32)$$ $$\mathbf{F} = 32 + \frac{9}{5}\mathbf{C}$$ | °C | | °F | |---|--------------------------------------|--|--------------------------------------|----------------------------|---|--------------------------------------|---------------------------------|---|---|------------------------------------|--------------------------------------| | -73.3
-62.2
-51.1
-40.0
-34.4 | -100
- 80
- 60
- 40
- 30 | -148.0
-112.0
- 76.0
- 40.0
- 22.0 | 0.0
0.6
1.1
1.7
2.2 | 32
33
34
35
36 | 89.6
91.4
93.2
95.0
96.8 | 21.7
22.2
22.8
23.3
23.9 | 71
72
73
74
75 | 159.8
161.6
163.4
165.2
167.0 | 43.3
46.1
48.9
51.7
54.4 | 110
115
120
125
130 | 230
239
248
257
266 | | -28.9
-23.3
-17.8
-17.2
-16.7 | - 20
- 10
0
1
2 | - 4.0
14.0
32.0
33.8
35.6 | 2.8
3.3
3.9
4.4
5.0 | 37
38
39
40
41 | 98.6
100.4
102.2
104.0
105.8 | 24.4
25.0
25.6
26.1
26.7 | 76
77
78
79
80 | 168.8
170.6
172.4
174.2
176.0 | 57.2
60.0
65.6
71.1
76.7 | 135
140
150
160
170 | 275
284
302
320
338 | | -16.1
-15.6
-15.0
-14.4
-13.9 | 3
4
5
6
7 | 37.4
39.2
41.0
42.8
44.6 | 5.6
6.1
6.7
7.2
7.8 | 42
43
44
45
46 | 107.6
109.4
111.2
113.0
114.8 | 27.2
27.8
28.3
28.9
29.4 | 81
82
83
84
85 | 177.8
179.6
181.4
183.2
185.0 | 82.2
87.8
93.3
98.9
104.4 | 180
190
200
210
220 | 356
374
392
410
428 | | -13.3
-12.8
-12.2
-11.7
-11.1 | 8
9
10
11
12 | 46.4
48.2
50.0
51.8
53.6 | 8.3
8.9
9.4
10.0
10.6 | 47
48
49
50
51 | 116.6
118.4
120.2
122.0
123.8 | 30.0
30.6
31.1
31.7
32.2 | 86
87
88
89
90 | 186.8
188.6
190.4
192.2
194.0 | 110.0
115.6
121.1
148.9
176.7 | 230
240
250
300
350 | 446
464
482
572
662 | | -10.6
-10.0
- 9.4
- 8.9
- 8.3 | 13
14
15
16
17 | 55.4
57.2
59.0
60.8
62.6 | 11.1
11.7
12.2
12.8
13.3 | 52
53
54
55
56 | 125.6
127.4
129.2
131.0
132.8 | 32.8
33.3
33.9
34.4
35.0 | 91
92
93
94
95 | 195.8
197.6
199.4
201.2
203.0 | 204
232
260
288
316 | 400
450
500
550
600 | 752
842
932
1022
1112 | | - 7.8
- 7.2
- 6.7
- 6.1
- 5.6 | 18
19
20
21
22 | 64.4
66.2
68.0
69.8
71.6 | 13.9
14.4
15.0
15.6
16.1 | 57
58
59
60
61 | 134.6
136.4
138.2
140.0
141.8 | 35.6
36.1
36.7
37.2
37.8 | 96
97
98
99
100 | 204.8
206.6
208.4
210.2
212.0 | 343
371
399
427
454 | 650
700
750
800
850 | 1202
1292
1382
1472
1562 | | - 5.0
- 4.4
- 3.9
- 3.3
- 2.8 | 23
24
25
26
27 | 73.4
75.2
77.0
78.8
80.6 | 16.7
17.2
17.8
18.3
18.9 | 62
63
64
65
66 | 143.6
145.4
147.2
149.0
150.8 | 38.3
38.9
39.4
40.0
40.6 | 101
102
103
104
105 | 213.8
215.6
217.4
219.2
221.0 | 482
510
538
593
649 | 900
950
1000
1100
1200 | 1652
1742
1832
2012
2192 | | - 2.2
- 1.7
- 1.1
- 0.6 | 28
29
30
31 | 82.4
84.2
86.0
87.8 | 19.4
20.0
20.6
21.1 | 67
68
69
70 | 152.6
154.4
156.2
158.0 | 41.1
41.7
42.2
42.8 | 106
107
108
109 | 222.8
224.6
226.4
228.2 | 704
760
816
871 | 1300
1400
1500
1600 | 2372
2552
2732
2912 | | Appendix Table | 5 Viscosity | Conversion Table | |----------------|-------------|------------------| | | | | | Kinematic
Viscosity
mm ² /s | | bolt
ersal
(sec) | | Type
wood
sec) | Engler
E (degree) | Kinematic
Viscosity
mm ² /s | Say
Univ
SUS | ersal | No.1
Redw
R (s | rood | Engler
E (degree) | |--|-------|------------------------|------|----------------------|----------------------|--|--------------------|-------|----------------------|-------|----------------------| | mm²/s | 100°F | 210°F | 50°C | 100°C | | mm²/s | 100°F | 210°F | 50°C | 100°C | | | 2 | 32.6 | 32.8 | 30.8 | 31.2 | 1.14 | 35 | 163 | 164 | 144 | 147 | 4.70 | | 3 | 36.0 | 36.3 | 33.3 | 33.7 | 1.22 | 36 | 168 | 170 | 148 | 151 | 4.83 | | 4 | 39.1 | 39.4 | 35.9 | 36.5 | 1.31 | 37 | 172 | 173 | 153 | 155 | 4.96 | | 5 | 42.3 | 42.6 | 38.5 | 39.1 | 1.40 | 38 | 177 | 178 | 156 | 159 | 5.08 | | 6 | 45.5 | 45.8 | 41.1 | 41.7 | 1.48 | 39 | 181 | 183 | 160 | 164 | 5.21 | | 7 | 48.7 | 49.0 | 43.7 | 44.3 | 1.56 | 40 | 186 | 187 | 164 | 168 | 5.34 | | 8 | 52.0 | 52.4 | 46.3 | 47.0 | 1.65 | 41 | 190 | 192 | 168 | 172 | 5.47 | | 9 | 55.4 | 55.8 | 49.1 | 50.0 | 1.75 | 42 | 195 | 196 | 172 | 176 | 5.59 | | 10 | 58.8 | 59.2 | 52.1 | 52.9 | 1.84 | 43 | 199 | 201 | 176 | 180 | 5.72 | | 11 | 62.3 | 62.7 | 55.1 | 56.0 | 1.93 | 44 | 204 | 205 | 180 | 185 | 5.85 | | 12 | 65.9 | 66.4 | 58.2 | 59.1 | 2.02 | 45 | 208 | 210 | 184 | 189 | 5.98 | | 13 | 69.6 | 70.1 | 61.4 | 62.3 | 2.12 | 46 | 213 | 215 | 188 | 193 | 6.11 | | 14 | 73.4 | 73.9 | 64.7 | 65.6 | 2.22 | 47 | 218 | 219 | 193 | 197 | 6.24 | | 15 | 77.2 | 77.7 | 68.0 | 69.1 | 2.32 | 48 | 222 | 224 | 197 | 202 | 6.37 | | 16 | 81.1 | 81.7 | 71.5 | 72.6 | 2.43 | 49 | 227 | 228 | 201 | 206 | 6.50 | | 17 | 85.1 | 85.7 | 75.0 | 76.1 | 2.54 | 50 | 231 | 233 | 205 | 210 | 6.63 | | 18 | 89.2 | 89.8 | 78.6 | 79.7 | 2.64 | 55 | 254 | 256 | 225 | 231 | 7.24 | | 19 | 93.3 | 94.0 | 82.1 | 83.6 | 2.76 | 60 | 277 | 279 | 245 | 252 | 7.90 | | 20 | 97.5 | 98.2 | 85.8 | 87.4 | 2.87 | 65 | 300 | 302 | 266 | 273 | 8.55 | | 21 | 102 | 102 | 89.5 | 91.3 | 2.98 | 70 | 323 | 326 | 286 | 294 | 9.21 | | 22 | 106 | 107 | 93.3 | 95.1 | 3.10 | 75 | 346 | 349 | 306 | 315 | 9.89 | | 23 | 110 | 111 | 97.1 | 98.9 | 3.22 | 80 | 371 | 373 | 326 | 336 | 10.5 | | 24 | 115 | 115 | 101 | 103 | 3.34 | 85 | 394 | 397 | 347 | 357 | 11.2 | | 25 | 119 | 120 | 105 | 107 | 3.46 | 90 | 417 | 420 | 367 | 378 | 11.8 | | 26 | 123 | 124 | 109 | 111 | 3.58 | 95 | 440 | 443 | 387 | 399 | 12.5 | | 27 | 128 | 129 | 112 | 115 | 3.70 | 100 | 464 | 467 | 408 | 420 | 13.2 | | 28 | 132 | 133 | 116 | 119 | 3.82 | 120 | 556 | 560 | 490 | 504 | 15.8 | | 29 | 137 | 138 | 120 | 123 | 3.95 | 140 | 649 | 653 | 571 | 588 | 18.4 | | 30 | 141 | 142 | 124 | 127 | 4.07 | 160 | 742 | 747 | 653 | 672 | 21.1 | | 31 | 145 | 146 | 128 | 131 | 4.20 | 180 | 834 | 840 | 734 | 757 | 23.7 | | 32 | 150 | 150 | 132 | 135 | 4.32 | 200 | 927 | 933 | 816 | 841 | 26.3 | | 33 | 154 | 155 | 136 | 139 | 4.45 | 250 | 1 159 | 1 167 | 1 020 | 1 051 | 32.9 | | 34 | 159 | 160 | 140 | 143 | 4.57 | 300 | 1 391 | 1 400 | 1 224 | 1 241 | 39.5 | Remarks 1mm²/s=1cSt | Appendix Table 6 | inch - mm | Conversion Table | |------------------|-----------|------------------| |------------------|-----------|------------------| 1'' = 25.4 mm | inch | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |---|---|---|--------------------------------------|---|---|---|---|--|--|--|---| | Fraction Decimal | | | | | | mm | | | | | | | 0 0.000000
1/64 0.015625
1/32 0.031250
3/64 0.046875 | 0.000
0.397
0.794
1.191 | 25.400
25.797
26.194
26.591 | 50.800 51.197 51.594 51.991 | 76.200
76.597
76.994
77.391 | 101.600
101.997
102.394
102.791 | 127.000
127.397
127.794
128.191 | 152.400
152.797
153.194
153.591 | 177.800
178.197
178.594
178.991 | 203.200
203.597
203.994
204.391 | 228.600
228.997
229.394
229.791 |
254.000
254.397
254.794
255.191 | | 1/16 0.062500 5/64 0.078125 3/32 0.093750 7/64 0.109375 | 1.588
1.984
2.381
2.778 | 26.988
27.384
27.781
28.178 | 52.388 52.784 53.181 53.578 | 77.788
78.184
78.581
78.978 | 103.188
103.584
103.981
104.378 | 128.588
128.984
129.381
129.778 | 153.988
154.384
154.781
155.178 | 179.388
179.784
180.181
180.578 | 204.788
205.184
205.581
205.978 | 230.188
230.584
230.981
231.378 | 255.588
255.984
256.381
256.778 | | 1/8 0.125000
9/64 0.140625
5/32 0.156250
11/64 0.171875 | 3.175
3.572
3.969
4.366 | 28.575
28.972
29.369
29.766 | 53.975 54.372 54.769 55.166 | 79.375
79.772
80.169
80.566 | 104.775
105.172
105.569
105.966 | 130.175
130.572
130.969
131.366 | 155.575
155.972
156.369
156.766 | 180.975
181.372
181.769
182.166 | 206.375
206.772
207.169
207.566 | 231.775
232.172
232.569
232.966 | 257.175
257.572
257.969
258.366 | | 3/16 0.187500 13/64 0.203125 7/32 0.218750 15/64 0.234375 | 4.762
5.159
5.556
5.953 | 30.162
30.559
30.956
31.353 | 55.562 55.959 56.356 56.753 | 80.962
81.359
81.756
82.153 | 106.362
106.759
107.156
107.553 | 131.762
132.159
132.556
132.953 | 157.162
157.559
157.956
158.353 | 182.562
182.959
183.356
183.753 | 207.962
208.359
208.756
209.153 | 233.362
233.759
234.156
234.553 | 258.762
259.159
259.556
259.953 | | 1/4 0.250000
17/64 0.265625
9/32 0.281250
19/64 0.296875 | 6.350
6.747
7.144
7.541 | 31.750
32.147
32.544
32.941 | 57.150 57.547 57.944 58.341 | 82.550
82.947
83.344
83.741 | 107.950
108.347
108.744
109.141 | 133.350
133.747
134.144
134.541 | 158.750
159.147
159.544
159.941 | 184.150
184.547
184.944
185.341 | 209.550
209.947
210.344
210.741 | 234.950
235.347
235.744
236.141 | 260.350
260.747
261.144
261.541 | | 5/16 0.312500 21/64 0.328125 11/32 0.343750 23/64 0.359375 | 7.938
8.334
8.731
9.128 | 33.338
33.734
34.131
34.528 | 58.738 59.134 59.531 59.928 | 84.138
84.534
84.931
85.328 | 109.538
109.934
110.331
110.728 | 134.938
135.334
135.731
136.128 | 160.338
160.734
161.131
161.528 | 185.738
186.134
186.531
186.928 | 211.138
211.534
211.931
212.328 | 236.538
236.934
237.331
237.728 | 261.938
262.334
262.731
263.128 | | 3/8 0.375000 25/64 0.390625 13/32 0.406250 27/64 0.421875 | 9.525
9.922
10.319
10.716 | 34.925
35.322
35.719
36.116 | 60.325 60.722 61.119 61.516 | 85.725
86.122
86.519
86.916 | 111.125
111.522
111.919
112.316 | 136.525
136.922
137.319
137.716 | 161.925
162.322
162.719
163.116 | 187.325
187.722
188.119
188.516 | 212.725
213.122
213.519
213.916 | 238.125
238.522
238.919
239.316 | 263.525
263.922
264.319
264.716 | | 7/16 0.437500 29/64 0.453125 15/32 0.468750 31/64 0.484375 | 11.112
11.509
11.906
12.303 | 36.512
36.909
37.306
37.703 | 61.912 62.309 62.706 63.103 | 87.312
87.709
88.106
88.503 | 112.712
113.109
113.506
113.903 | 138.112
138.509
138.906
139.303 | 163.512
163.909
164.306
164.703 | 188.912
189.309
189.706
190.103 | 214.312
214.709
215.106
215.503 | 239.712
240.109
240.506
240.903 | 265.112
265.509
265.906
266.303 | | 1/2 0.500000 33/64 0.515625 17/32 0.531250 35/64 0.546875 | 12.700
13.097
13.494
13.891 | 38.100
38.497
38.894
39.291 | 63.500 63.897 64.294 64.691 | 88.900
89.297
89.694
90.091 | 114.300
114.697
115.094
115.491 | 139.700
140.097
140.494
140.891 | 165.100
165.497
165.894
166.291 | 190.500
190.897
191.294
191.691 | 215.900
216.297
216.694
217.091 | 241.300
241.697
242.094
242.491 | 266.700
267.097
267.494
267.891 | | 9/16 0.562500 37/64 0.578125 19/32 0.593750 39/64 0.609375 | 14.288
14.684
15.081
15.478 | 39.688
40.084
40.481
40.878 | 65.088 65.484 65.881 66.278 | 90.488
90.884
91.281
91.678 | 115.888
116.284
116.681
117.078 | 141.288
141.684
142.081
142.478 | 166.688
167.084
167.481
167.878 | 192.088
192.484
192.881
193.278 | 217.488
217.884
218.281
218.678 | 242.888
243.284
243.681
244.078 | 268.288
268.684
269.081
269.478 | | 5/8 0.625000
41/64 0.640625
21/32 0.656250
43/64 0.671875 | 15.875
16.272
16.669
17.066 | 41.275
41.672
42.069
42.466 | 66.675 67.072 67.469 67.866 | 92.075
92.472
92.869
93.266 | 117.475
117.872
118.269
118.666 | 142.875
143.272
143.669
144.066 | 168.275
168.672
169.069
169.466 | 193.675
194.072
194.469
194.866 | 219.075
219.472
219.869
220.266 | 244.475
244.872
245.269
245.666 | 269.875
270.272
270.669
271.066 | | 11/16 0.687500 45/64 0.703125 23/32 0.718750 47/64 0.734375 | 17.462
17.859
18.256
18.653 | 42.862
43.259
43.656
44.053 | 68.262
68.659
69.056
69.453 | 93.662
94.059
94.456
94.853 | 119.062
119.459
119.856
120.253 | 144.462
144.859
145.256
145.653 | 169.862
170.259
170.656
171.053 | 195.262
195.659
196.056
196.453 | 220.662
221.059
221.456
221.853 | 246.062
246.459
246.856
247.253 | 271.462
271.859
272.256
272.653 | | 3/4 0.750000
49/64 0.765625
25/32 0.781250
51/64 0.796875 | 19.050
19.447
19.844
20.241 | 44.450
44.847
45.244
45.641 | 69.850 70.247 70.644 71.041 | 95.250
95.647
96.044
96.441 | 120.650
121.047
121.444
121.841 | 146.050
146.447
146.844
147.241 | 171.450
171.847
172.244
172.641 | 196.850
197.247
197.644
198.041 | 222.250
222.647
223.044
223.441 | 247.650
248.047
248.444
248.841 | 273.050
273.447
273.844
274.241 | | 13/160.81250053/640.82812527/320.84375055/640.859375 | 20.638
21.034
21.431
21.828 | 46.038
46.434
46.831
47.228 | 71.438 71.834 72.231 72.628 | 96.838
97.234
97.631
98.028 | 122.238
122.634
123.031
123.428 | 147.638
148.034
148.431
148.828 | 173.038
173.434
173.831
174.228 | 198.438
198.834
199.231
199.628 | 223.838
224.234
224.631
225.028 | 249.238
249.634
250.031
250.428 | 274.638
275.034
275.431
275.828 | | 7/8 0.875000 57/64 0.890625 29/32 0.906250 59/64 0.921875 | 22.225 22.622 23.019 23.416 | 47.625
48.022
48.419
48.816 | 73.025 73.422 73.819 74.216 | 98.425
98.822
99.219
99.616 | 123.825
124.222
124.619
125.016 | 149.225
149.622
150.019
150.416 | 174.625
175.022
175.419
175.816 | 200.025
200.422
200.819
201.216 | 225.425
225.822
226.219
226.616 | 250.825
251.222
251.619
252.016 | 276.225
276.622
277.019
277.416 | | 15/16 0.937500 61/64 0.953125 31/32 0.968750 63/64 0.984375 | 23.812
24.209
24.606
25.003 | 49.212
49.609
50.006
50.403 | 74.612 75.009 75.406 75.803 | 100.012
100.409
100.806
101.203 | 125.412
125.809
126.206
126.603 | 150.812
151.209
151.606
152.003 | 176.212
176.609
177.006
177.403 | 201.612
202.009
202.406
202.803 | 227.012
227.409
227.806
228.203 | 252.412
252.809
253.206
253.603 | 277.812
278.209
278.606
279.003 | | 1 | " | =25.4 | mn | |---|---|-------|----| |---|---|-------|----| | in | ıch | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | |-------------------------------------|---|---|---|---|---|---|---|---|---|---|--|--| | Fraction | n Decimal | | mm | | | | | | | | | | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 279.400
280.988
282.575
284.162 | 304.800
306.388
307.975
309.562 | 330.200
331.788
333.375
334.962 | 355.600
357.188
358.775
360.362 | 381.000
382.588
384.175
385.762 | 406.400
407.988
409.575
411.162 | 431.800
433.388
434.975
436.562 | 457.200
458.788
460.375
461.962 | 482.600
484.188
485.775
487.362 | 508.000 509.588 511.175 512.762 | | | 1/4
5/16
3/8
7/16 | 0.2500 0.3125 0.3750 0.4375 | 285.750
287.338
288.925
290.512 | 311.150
312.738
314.325
315.912 | 336.550
338.138
339.725
341.312 | 361.950
363.538
365.125
366.712 | 387.350
388.938
390.525
392.112 | 412.750
414.338
415.925
417.512 | 438.150
439.738
441.325
442.912 |
463.550
465.138
466.725
468.312 | 488.950
490.538
492.125
493.712 | 514.350 515.938 517.525 519.112 | | | 1/2
9/16
5/8
11/16 | 0.5000
0.5625
0.6250
0.6875 | 292.100 293.688 295.275 296.862 | 317.500
319.088
320.675
322.262 | 342.900
344.488
346.075
347.662 | 368.300
369.888
371.475
373.062 | 393.700
395.288
396.875
398.462 | 419.100 420.688 422.275 423.862 | 444.500
446.088
447.675
449.262 | 469.900
471.488
473.075
474.662 | 495.300
496.888
498.475
500.062 | 520.700 522.288 523.875 525.462 | | | 3/4
13/16
7/8
15/16 | 0.7500
0.8125
0.8750
0.9375 | 298.450
300.038
301.625
303.212 | 323.850
325.438
327.025
328.612 | 349.250
350.838
352.425
354.012 | 374.650
376.238
377.825
379.412 | 400.050
401.638
403.225
404.812 | 425.450
427.038
428.625
430.212 | 450.850
452.438
454.025
455.612 | 476.250
477.838
479.425
481.012 | 501.650
503.238
504.825
506.412 | 527.050 528.638 530.225 531.812 | | #### 1" = 25.4 **mm** | ir | ıch | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |-------------------------------------|------------------------------------|---|--|--|---|---|--|---|---|---|---| | Fraction | n Decimal | | | | | m | m | | | | | | 0
1/16
1/8
3/16 | 0.1250 | 533.400 534.988 536.575 538.162 | 558.800 560.388 561.975 563.562 | 584.200 585.788 587.375 588.962 | 609.600
611.188
612.775
614.362 | 635.000
636.588
638.175
639.762 | 660.400
661.988
663.575
665.162 | 685.800
687.388
688.975
690.562 | 711.200
712.788
714.375
715.962 | 736.600
738.188
739.775
741.362 | 762.000
763.588
765.175
766.762 | | 1/4
5/16
3/8
7/16 | 0.2500 0.3125 0.3750 0.4375 | 539.750 541.338 542.925 544.512 | 565.150 566.738 568.325 569.912 | 590.550 592.138 593.725 595.312 | 615.950 617.538 619.125 620.712 | 641.350
642.938
644.525
646.112 | 666.750
668.338
669.925
671.512 | 692.150
693.738
695.325
696.912 | 717.550
719.138
720.725
722.312 | 742.950 744.538 746.125 747.712 | 768.350 769.938 771.525 773.112 | | 1/2
9/16
5/8
11/16 | 0.5000 0.5625 0.6250 0.6875 | 546.100 547.688 549.275 550.862 | 571.500 573.088 574.675 576.262 | 596.900 598.488 600.075 601.662 | 622.300 623.888 625.475 627.062 | 647.700
649.288
650.875
652.462 | 673.100
674.688
676.275
677.862 | 698.500
700.088
701.675
703.262 | 723.900
725.488
727.075
728.662 | 749.300
750.888
752.475
754.062 | 774.700
776.288
777.875
779.462 | | 3/4
13/16
7/8
15/16 | 0.7500 0.8125 0.8750 0.9375 | 552.450
554.038
555.625
557.212 | 577.850 579.438 581.025 582.612 | 603.250
604.838
606.425
608.012 | 628.650 630.238 631.825 633.412 | 654.050
655.638
657.225
658.812 | 679.450
681.038
682.625
684.212 | 704.850
706.438
708.025
709.612 | 730.250
731.838
733.425
735.012 | 755.650
757.238
758.825
760.412 | 781.050
782.638
784.225
785.812 | | | | | | | | | | | | | | #### 1" = 25.4 **mm** | in | ch | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |------------|------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------| | Fraction | n Decimal | | | | | m | m | | | | | | 0 | 0.0000 | 787.400 | 812.800 | 838.200 | 863.600 | 889.000 | 914.400 | 939.800 | 965.200 | 990.600 | 1016.000 | | 1/16 | 0.0625 | 788.988 | 814.388 | 839.788 | 865.188 | 890.588 | 915.988 | 941.388 | 966.788 | 992.188 | 1017.588 | | 1/8 | 0.1250 | 790.575 | 815.975 | 841.375 | 866.775 | 892.175 | 917.575 | 942.975 | 968.375 | 993.775 | 1019.175 | | 3/16 | 0.1875 | 792.162 | 817.562 | 842.962 | 868.362 | 893.762 | 919.162 | 944.562 | 969.962 | 995.362 | 1020.762 | | 1/4 | 0.2500 0.3125 0.3750 0.4375 | 793.750 | 819.150 | 844.550 | 869.950 | 895.350 | 920.750 | 946.150 | 971.550 | 996.950 | 1022.350 | | 5/16 | | 795.338 | 820.738 | 846.138 | 871.538 | 896.938 | 922.338 | 947.738 | 973.138 | 998.538 | 1023.938 | | 3/8 | | 796.925 | 822.325 | 847.725 | 873.125 | 898.525 | 923.925 | 949.325 | 974.725 | 1000.125 | 1025.525 | | 7/16 | | 798.512 | 823.912 | 849.312 | 874.712 | 900.112 | 925.512 | 950.912 | 976.312 | 1001.712 | 1027.112 | | 1/2 | 0.5000 0.5625 0.6250 0.6875 | 800.100 | 825.500 | 850.900 | 876.300 | 901.700 | 927.100 | 952.500 | 977.900 | 1003.300 | 1028.700 | | 9/16 | | 801.688 | 827.088 | 852.488 | 877.888 | 903.288 | 928.688 | 954.088 | 979.488 | 1004.888 | 1030.288 | | 5/8 | | 803.275 | 828.675 | 854.075 | 879.475 | 904.875 | 930.275 | 955.675 | 981.075 | 1006.475 | 1031.875 | | 11/16 | | 804.862 | 830.262 | 855.662 | 881.062 | 906.462 | 931.862 | 957.262 | 982.662 | 1008.062 | 1033.462 | | 3/4 | 0.7500 0.8125 0.8750 0.9375 | 806.450 | 831.850 | 857.250 | 882.650 | 908.050 | 933.450 | 958.850 | 984.250 | 1009.650 | 1035.050 | | 13/16 | | 808.038 | 833.438 | 858.838 | 884.238 | 909.638 | 935.038 | 960.438 | 985.838 | 1011.238 | 1036.638 | | 7/8 | | 809.625 | 835.025 | 860.425 | 885.825 | 911.225 | 936.625 | 962.025 | 987.425 | 1012.825 | 1038.225 | | 15/16 | | 811.212 | 836.612 | 862.012 | 887.412 | 912.812 | 938.212 | 963.621 | 989.012 | 1014.412 | 1039.812 | #### Appendix Table 7 Hardness Conversion Table (Reference) | Rockwell
C Scale Hardness
(1 471N)
{150kgf} | Vickers
Hardness | Brinell F
Standard Ball | lardness
Tungsten
Carbide Ball | Rockwell
A Scale
Load ^{588.4} N
(60kgf)
Brale Indenter | Hardness B Scale Load 980.7N {100kgf} 1.588 mm (1/16in) Ball | Shore Hardness | |--|--|--|--|---|--|----------------------------------| | 68
67
66
65
64 | 940
900
865
832
800 | _
_
_
_ | —
—
—
739
722 | 85.6
85.0
84.5
83.9
83.4 | _
_
_
_ | 97
95
92
91
88 | | 63
62
61
60
59 | 772
746
720
697
674 | _
_
_
_ | 705
688
670
654
634 | 82.8
82.3
81.8
81.2
80.7 | | 87
85
83
81
80 | | 58
57
56
55
54 | 653
633
613
595
577 | | 615
595
577
560
543 | 80.1
79.6
79.0
78.5
78.0 | | 78
76
75
74
72 | | 53
52
51
50
49 | 560
544
528
513
498 | 500
487
475
464 | 525
512
496
481
469 | 77.4
76.8
76.3
75.9
75.2 | | 71
69
68
67
66 | | 48
47
46
45
44 | 484
471
458
446
434 | 451
442
432
421
409 | 455
443
432
421
409 | 74.7
74.1
73.6
73.1
72.5 | | 64
63
62
60
58 | | 43
42
41
40
39 | 423
412
402
392
382 | 400
390
381
371
362 | 400
390
381
371
362 | 72.0
71.5
70.9
70.4
69.9 | | 57
56
55
54
52 | | 38
37
36
35
34 | 372
363
354
345
336 | 353
344
336
327
319 | 353
344
336
327
319 | 69.4
68.9
68.4
67.9
67.4 | (109.0)
(108.5)
(108.0) | 51
50
49
48
47 | | 33
32
31
30
29 | 327
318
310
302
294 | 311
301
294
286
279 | 311
301
294
286
279 | 66.8
66.3
65.8
65.3
64.7 | (107.5)
(107.0)
(106.0)
(105.5)
(104.5) | 46
44
43
42
41 | | 28
27
26
25
24 | 286
279
272
266
260 | 271
264
258
253
247 | 271
264
258
253
247 | 64.3
63.8
63.3
62.8
62.4 | (104.0)
(103.0)
(102.5)
(101.5)
(101.0) | 41
40
38
38
37 | | 23
22
21
20 | 254
248
243
238 | 243
237
231
226 | 243
237
231
226 | 62.0
61.5
61.0
60.5 | 100.0
99.0
98.5
97.8 | 36
35
35
34 | | (18)
(16)
(14)
(12) | 230
222
213
204 | 219
212
203
194 | 219
212
203
194 | _
_
_
_ | 96.7
95.5
93.9
92.3 | 33
32
31
29 | | (10)
(8)
(6)
(4)
(2)
(0) | 196
188
180
173
166
160 | 187
179
171
165
158
152 | 187
179
171
165
158
152 | _
_
_
_
_ | 90.7
89.5
87.1
85.5
83.5
81.7 | 28
27
26
25
24
24 | #### Appendix Table 8 Physical and Mechanical Properties of Materials | Materials | Specific Gravity | Coefficient of
Linear Expansion
(0° to 100°C)
(K ⁻¹)
 Hardness
(Brinell) | Young's
modulus
(MPa)
{kgf/mm²} | Tensile Strength (MPa) {kgf/mm²} | Yield Point
(MPa)
{kgf/mm²} | Elongation
(%) | |---|------------------|---|-----------------------|--|----------------------------------|-----------------------------------|-------------------| | Bearing Steel (hardened) | 7.83 | 12.5×10 ⁻⁶ | 650 to 740 | 208 000
{21 200} | 1 570 to 1 960
{160 to 200} | _ | _ | | Martensitic Stainless Steel
SUS 440C | 7.68 | 10.1×10 ⁻⁶ | 580 | 200 000
{20 400} | 1 960
{200} | 1 860
{190} | _ | | Mild Steel (C=0.12~0.20%) | 7.86 | 11.6×10 ⁻⁶ | 100 to 130 | 206 000
{21 000} | 373 to 471
{38 to 48} | 216 to 294
{22 to 30} | 24 to 36 | | Hard Steel (C=0.3~0.5%) | 7.84 | 11.3×10 ⁻⁶ | 160 to 200 | 206 000
{21 000} | 539 to 686
{55 to 70} | 333 to 451
{34 to 46} | 14 to 26 | | Austenitic Stainless Steel
SUS 304 | 8.03 | 16.3×10 ⁻⁶ | 150 | 193 000
{19 700} | 588
{60} | 245
{25} | 60 | | Gray Iron
FC200 | 7.3 | 10.4×10 ⁻⁶ | 223 | 98 100 | More than 200 {20} | _ | _ | | Spheroidal graphite Iron FCD400 | 7.0 | 11.7×10 ⁻⁶ | Less than
201 | {10 000} | More than
400
{41} | _ | More than 12 | | Aluminum | 2.69 | 23.7×10 ⁻⁶ | 15 to 26 | 70 600
{7 200} | 78
{8} | 34
{3.5} | 35 | | Zinc | 7.14 | 31×10 ⁻⁶ | 30 to 60 | 92 200
{9 400} | 147
{15} | _ | 30 to 40 | | Copper | 8.93 | 16.2×10 ⁻⁶ | 50 | 123 000
{12 500} | 196
{20} | 69
{7} | 15 to 20 | | (Annealed)
Brass | 8.5 | 19.1×10 ⁻⁶ | 45 | 103 000 | 294 to 343
{30 to 35} | _ | 65 to 75 | | (Machined) | | | 85 to 130 | {10 500} | 363 to 539
{37 to 55} | | 15 to 50 | **Remarks** The hardness of hardened bearing steel and martensitic stainless steel is usually expressed using the Rockwell C Scale, but for comparison, it is converted into Brinell hardness. Appendix Table 9 Tolerances | for Shaft | Diameters | |-----------|-----------| |-----------|-----------| | | meter
ation (mm) | Single Plane
Mean B.D.
Deviation | d6 | e6 | f6 | g5 | g6 | h5 | h6 | h7 | h8 | h9 | h10 | js5 | js6 | |-------|---------------------|--|--------------|----------------|---------------|--------------|---------------|------------|-----------|----------------|-------------------|-------------|-----------|--------|--------| | over | incl. | (Normal)
Δ_{dmp} | do | CO | 10 | go | gu | 113 | 110 | 117 | 110 | 113 | 1110 | J30 | J30 | | 3 | 6 | - 8
- 8 | - 30
- 38 | - 20
- 28 | - 10
- 18 | | - 4
- 12 | 0
- 5 | 0
- 8 | - 12 | _ 0
_ 18 | _ 0
_ 30 | 0
- 48 | ± 2.5 | ± 4 | | 6 | 10 | - 8 | - 40
- 49 | - 25
- 34 | - 13
- 22 | - 5
- 11 | - 5
- 14 | - 6 | - 9 | 0
- 15 | 0
- 22 | 0
- 36 | 0
- 58 | ± 3 | ± 4.5 | | 10 | 18 | - 8 | - 50
- 61 | - 32
- 43 | - 16
- 27 | - 6
- 14 | - 6
- 17 | - 8 | 0
-11 | 0
- 18 | 0
- 27 | 0
- 43 | 0
- 70 | ± 4 | ± 5.5 | | 18 | 30 | 0
- 10 | - 65
- 78 | - 40
- 53 | - 20
- 33 | - 7
- 16 | - 7
- 20 | _ 0
_ 9 | 0
-13 | 0
- 21 | 0
- 33 | 0
- 52 | 0
- 84 | ± 4.5 | ± 6.5 | | 30 | 50 | 0
- 12 | - 80
- 96 | - 50
- 66 | - 25
- 41 | - 9
- 20 | - 9
- 25 | 0
-11 | 0
-16 | 0
- 25 | 0
39 | 0
- 62 | 0
-100 | ± 5.5 | ± 8 | | 50 | 80 | 0
- 15 | -100
-119 | - 60
- 79 | - 30
- 49 | - 10
- 23 | - 10
- 29 | 0
-13 | 0
- 19 | - 30 | - 46 | - 74 | 0
-120 | ± 6.5 | ± 9.5 | | 80 | 120 | - ⁰ | -120
-142 | - 72
- 94 | - 36
- 58 | - 12
- 27 | - 12
- 34 | 0
-15 | 0
- 22 | 0
- 35 | 0
- 54 | - 87 | 0
-140 | ± 7.5 | ± 11 | | 120 | 180 | 0
- 25 | -145
-170 | - 85
-110 | - 43
- 68 | - 14
- 32 | - 14
- 39 | 0
-18 | 0
-25 | - ⁰ | - 63 | 0
100 | 0
-160 | ± 9 | ± 12.5 | | 180 | 250 | - 30 | -170
-199 | - 100
- 129 | - 50
- 79 | - 15
- 35 | - 15
- 44 | 0
-20 | 0
-29 | - ⁰ | - ⁰ 72 | 0
-115 | 0
-185 | ±10 | ± 14.5 | | 250 | 315 | 0
- 35 | -190
-222 | -110
-142 | - 56
- 88 | - 17
- 40 | - 17
- 49 | 0
-23 | 0
-32 | 0
- 52 | 0
- 81 | 0
-130 | 0
-210 | ± 11.5 | ± 16 | | 315 | 400 | - 40 | -210
-246 | - 125
- 161 | - 62
- 98 | - 18
- 43 | - 18
- 54 | 0
-25 | 0
-36 | 0
- 57 | 0
- 89 | 0
-140 | 0
-230 | ± 12.5 | ± 18 | | 400 | 500 | 0
- 45 | -230
-270 | 135
175 | - 68
- 108 | - 20
- 47 | - 20
- 60 | 0
-27 | 0
- 40 | - 63 | - 97 | 0
155 | 0
-250 | ± 13.5 | ± 20 | | 500 | 630 | 0
- 50 | -260
-304 | - 145
- 189 | - 76
-120 | _ | - 22
- 66 | _ | 0
- 44 | - ⁰ | 0
-110 | 0
175 | 0
-280 | _ | ± 22 | | 630 | 800 | 0
- 75 | -290
-340 | -160
-210 | - 80
-130 | _ | - 24
- 74 | _ | 0
-50 | - 80 | 0
125 | 0
-200 | 0
-320 | _ | ± 25 | | 800 | 1 000 | 0
-100 | -320
-376 | -170
-226 | - 86
-142 | _ | - 26
- 82 | _ | 0
- 56 | - ⁰ | 0
-140 | 0
-230 | 0
-360 | _ | ± 28 | | 1 000 | 1 250 | 0
-125 | -350
-416 | - 195
- 261 | - 98
-164 | _ | - 28
- 94 | | 0
-66 | 0
-105 | 0
165 | 0
-260 | 0
-420 | _ | ± 33 | | 1 250 | 1 600 | 0
-160 | -390
-468 | -220
-298 | -110
-188 | _ | - 30
- 108 | _ | 0
- 78 | 0
-125 | 0
195 | -310 | 0
-500 | _ | ± 39 | | 1 600 | 2 000 | 0
-200 | -430
-522 | -240
-332 | 120
212 | _ | - 32
-124 | _ | 0
- 92 | 0
150 | 0
-230 | 0
-370 | 0
-600 | _ | ± 46 | | for Shai | it Diaiii | eter 3 | | | | | | | | | | U | nits : μ m | |------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|-------------------------|-------------------------|-------------------|-------------------| | j5 | j6 | j7 | k5 | k6 | k7 | m5 | m6 | n6 | р6 | r6 | r7 | Diameter Cl
(m | | | Jo | Jo | J' | KJ | KU | K/ | шэ | 1110 | 110 | рo | 10 | 17 | over | incl. | | + 3 - 2 | + 6
- 2 | + 8
- 4 | + 6 + 1 | + 9
+ 1 | + 13
+ 1 | + 9 + 4 | + 12
+ 4 | + 16
+ 8 | + 20
+ 12 | + 23
+ 15 | + 27
+ 15 | 3 | 6 | | + 4
- 2 | + 7
- 2 | + 10
- 5 | + 7
+ 1 | + 10
+ 1 | + 16
+ 1 | + 12
+ 6 | + 15
+ 6 | + 19
+ 10 | + 24
+ 15 | + 28
+ 19 | + 34
+ 19 | 6 | 10 | | + 5 - 3 | + 8 - 3 | + 12 | + 9 + 1 | + 12 + 1 | + 19 + 1 | + 15 + 7 | + 18 + 7 | + 23 + 12 | + 29 + 18 | + 34 + 23 | + 41 + 23 | 10 | 18 | | + 5
- 4 | + 9
- 4 | + 13
- 8 | + 11
+ 2 | + 15
+ 2 | + 23
+ 2 | + 17
+ 8 | + 21
+ 8 | + 28
+ 15 | + 35
+ 22 | + 41
+ 28 | + 49
+ 28 | 18 | 30 | | + 6
- 5 | + 11
- 5 | + 15
10 | + 13 + 2 | + 18
+ 2 | + 27
+ 2 | + 20
+ 9 | + 25
+ 9 | + 33
+ 17 | + 42
+ 26 | + 50
+ 34 | + 59
+ 34 | 30 | 50 | | + 6 | + 12
- 7 | + 18 | + 15 | + 21 | + 32 | + 24 | + 30 | + 39 | + 51 | + 60
+ 41 | + 71
+ 41 | 50 | 65 | | - 7 | - 7 | -12 | + 2 | + 2 | + 2 | + 11 | + 11 | + 20 | + 32 | + 62
+ 43 | + 73
+ 43 | 65 | 80 | | + 6 | + 13 | + 20 | + 18 | + 25 | + 38 | + 28 | + 35 | + 45 | + 59 | + 73
+ 51 | + 86
+ 51 | 80 | 100 | | - 9 | - 9 | – 15 | + 3 | + 3 | + 3 | + 13 | + 13 | + 23 | + 37 | + 76
+ 54 | + 89
+ 54 | 100 | 120 | | | | | | | | | | | | + 88
+ 63 | + 103
+ 63 | 120 | 140 | | + 7
—11 | + 14
— 11 | + 22
— 18 | + 21
+ 3 | + 28
+ 3 | + 43
+ 3 | + 33
+ 15 | + 40
+ 15 | + 52
+ 27 | + 68
+ 43 | + 90
+ 65 | + 105
+ 65 | 140 | 160 | | | | | | | | | | | | + 93
+ 68 | + 108
+ 68 | 160 | 180 | | | | | | | | | | | | + 106
+ 77 | + 123
+ 77 | 180 | 200 | | + 7
-13 | + 16
13 | + 25
21 | + 24 + 4 | + 33 + 4 | + 50
+ 4 | + 37
+ 17 | + 46
+ 17 | + 60
+ 31 | + 79
+ 50 | + 109
+ 80 | + 126
+ 80 | 200 | 225 | | | | | | | | | | | | + 113
+ 84 | + 130
+ 84 | 225 | 250 | | + 7 | ± 16 | ± 26 | + 27 | + 36 | + 56 | + 43 | + 52 | + 66 | + 88 | + 126
+ 94 | + 146
+ 94 | 250 | 280 | | -16 | | | + 4 | + 4 | + 4 | + 20 | + 20 | + 34 | + 56 | + 130
+ 98 | + 150
+ 98 | 280 | 315 | | + 7 | ± 18 | + 29 | + 29 | + 40 | + 61 | + 46 | + 57 | + 73 | + 98 | + 144
+ 108 | + 165
+ 108 | 315 | 355 | | -18 | ± 10 | - 28 | + 4 | + 4 | + 4 | + 21 | + 21 | + 37 | + 62 | + 150
+ 114 | + 171
+ 114 | 355 | 400 | | + 7 | 1.20 | + 31 | + 32 | + 45 | + 68 | + 50 | + 63 | + 80 | + 108 | + 166
+ 126 | + 189
+ 126 | 400 | 450 | | -20 | ± 20 | -32 | + 5 | + 5 | + 5 | + 23 | + 23 | + 40 | + 68 | + 172
+ 132 | + 195
+ 132 | 450 | 500 | | | | | | + 44 | + 70 | | + 70 | + 88 | + 122 | + 194
+ 150 | + 220
+ 150 | 500 | 560 | | _ | _ | _ | | 0 | 0 | _ | + 26 | + 44 | + 78 | + 199
+ 155 | + 225
+ 155 | 560 | 630 | | | | | | + 50 | + 80 | | + 80 | + 100 | + 138 | + 225
+ 175 | + 255
+ 175 | 630 | 710 | | | _ | _ | 1 | 0 | 0 | | + 30 | + 50 | + 88 | + 235
+ 185 | + 265
+ 185 | 710 | 800 | | | | _ | | + 56 | + 90 | | + 90 | + 112 | + 156 | + 266
+ 210
+ 276 | + 300
+ 210
+ 310 | 800 | 900 | | | | | | 0 | 0 | | + 34 | + 56 | + 100 | + 220 | + 220 | 900 | 1 000 | | _ | _ | _ | _ | + 66 | + 105 | _ | + 106 | + 132 | + 186 | + 316
+ 250
+ 326 | + 355
+ 250 | 1 000 | 1 120 | | | | | | 0 | 0 | | + 40 | + 66 | + 120 | + 260 | + 365 + 260 | 1 120 | 1 250 | | _ | _ | _ | _ | + 78 | + 125 | _ | + 126 | + 156 | + 218 | + 378 + 300 | + 425
+ 300 | 1 250 | 1 400 | | | | | | 0 | 0 | | + 48 | + 78 | + 140 | + 408
+ 330 | + 455 + 330 | 1 400 | 1 600 | | _ | _ | _ | _ | + 92 | + 150 | _ | + 150 | + 184 | + 262 | + 462
+ 370 | + 520
+ 370 | 1 600 | 1 800 | | | | | | 0 | 0 | | + 58 | + 92 | + 170 | + 492
+ 400 | + 550
+ 400 | 1 800 | 2 000 | C 18 C 19 #### Appendix Table 10 |
Classifica | neter
tion (mm) | Single Plane
Mean O.D.
Deviation
(Normal) | E6 | F6 | F7 | G6 | G7 | Н6 | Н7 | Н8 | Ј6 | J7 | JS6 | JS7 | |------------|--------------------|--|----------------|----------------|----------------|---------------|---------------|-----------|------------|------------|-------------|--------------|--------|--------| | over | incl. | (Normal) D _{mp} | . 42 | . 27 | . 24 | . 17 | + 24 | . 11 | . 10 | . 27 | . 4 | . 10 | | | | 10 | 18 | - 8 | + 43 + 32 | + 27 + 16 | + 34 + 16 | + 17 + 6 | + 24
+ 6 | + 11 | + 18 | + 27 | + 6
- 5 | + 10
- 8 | ± 5.5 | ± 9 | | 18 | 30 | - ⁰ | + 53
+ 40 | + 33
+ 20 | + 41
+ 20 | + 20
+ 7 | + 28
+ 7 | + 13 | + 21 | + 33 | + 8
- 5 | + 12
- 9 | ± 6.5 | ± 10.5 | | 30 | 50 | 0
- 11 | + 66
+ 50 | + 41
+ 25 | + 50
+ 25 | + 25
+ 9 | + 34 + 9 | + 16 | + 25 | + 39 | + 10
— 6 | + 14
— 11 | ± 8 | ± 12.5 | | 50 | 80 | 0
- 13 | + 79
+ 60 | + 49
+ 30 | + 60
+ 30 | + 29
+ 10 | + 40
+ 10 | + 19 | + 30 | + 46 | + 13
- 6 | + 18
— 12 | ± 9.5 | ± 15 | | 80 | 120 | 0
- 15 | + 94
+ 72 | + 58
+ 36 | + 71
+ 36 | + 34
+ 12 | + 47
+ 12 | + 22 | + 35 | + 54 | + 16
— 6 | + 22
— 13 | ± 11 | ± 17.5 | | 120
150 | 150
180 | 0
- 18
0
- 25 | + 110
+ 85 | + 68
+ 43 | + 83
+ 43 | + 39
+ 14 | + 54
+ 14 | + 25
0 | + 40 | + 63 | + 18
- 7 | + 26
14 | ± 12.5 | ± 20 | | 180 | 250 | 0
- 30 | + 129
+ 100 | + 79
+ 50 | + 96
+ 50 | + 44
+ 15 | + 61
+ 15 | + 29 | + 46 | + 72
0 | + 22
- 7 | + 30
— 16 | ± 14.5 | ± 23 | | 250 | 315 | 0
- 35 | + 142
+ 110 | + 88
+ 56 | + 108
+ 56 | + 49
+ 17 | + 69
+ 17 | + 32 | + 52 | + 81 | + 25
— 7 | + 36
— 16 | ± 16 | ± 26 | | 315 | 400 | 0
- 40 | + 161
+ 125 | + 98
+ 62 | + 119
+ 62 | + 54
+ 18 | + 75
+ 18 | + 36 | + 57
0 | + 89 | + 29
— 7 | + 39
— 18 | ± 18 | ± 28.5 | | 400 | 500 | 0
- 45 | + 175
+ 135 | + 108
+ 68 | + 131
+ 68 | + 60
+ 20 | + 83
+ 20 | + 40 | + 63 | + 97 | + 33
— 7 | + 43
- 20 | ± 20 | ± 31.5 | | 500 | 630 | 0
- 50 | + 189
+ 145 | + 120
+ 76 | + 146
+ 76 | + 66
+ 22 | + 92
+ 22 | + 44 | + 70 | + 110 | _ | _ | ± 22 | ± 35 | | 630 | 800 | 0
- 75 | + 210
+ 160 | + 130
+ 80 | + 160
+ 80 | + 74
+ 24 | + 104
+ 24 | + 50
0 | + 80 | + 125
0 | _ | _ | ± 25 | ± 40 | | 800 | 1 000 | 0
100 | + 226
+ 170 | + 142
+ 86 | + 176
+ 86 | + 82
+ 26 | + 116
+ 26 | + 56 | + 90 | + 140 | _ | _ | ± 28 | ± 45 | | 1 000 | 1 250 | 0
125 | + 261
+ 195 | + 164
+ 98 | + 203
+ 98 | + 94
+ 28 | + 133
+ 28 | + 66 | + 105
0 | + 165
0 | _ | _ | ± 33 | ± 52.5 | | 1 250 | 1 600 | 0
160 | + 298
+ 220 | + 188
+ 110 | + 235
+ 110 | + 108
+ 30 | + 155
+ 30 | + 78 | + 125
0 | + 195
0 | _ | _ | ± 39 | ± 62.5 | | 1 600 | 2 000 | 0
- 200 | + 332
+ 240 | + 212
+ 120 | + 270
+ 120 | + 124
+ 32 | + 182
+ 32 | + 92 | + 150
0 | + 230 | _ | _ | ± 46 | ± 75 | | 2 000 | 2 500 | 0
- 250 | + 370
+ 260 | + 240
+ 130 | + 305
+ 130 | + 144
+ 34 | + 209 + 34 | + 110 | + 175
0 | + 280 | _ | _ | ± 55 | ± 87.5 | #### **Tolerances for Housing Bore Diameters** | П | Inits | ٠ | пm | |---|-------|---|----| | K5 | K6 | K7 | M5 | M6 | M7 | N5 | N6 | N7 | P6 | P7 | Diameter CI
(m | | |------------|-------------|----------------|------------|---------------|--------------|--------------|--------------|--------------|----------------|----------------|-------------------|-------| | IK5 | 110 | IX/ | IVIS | IVIO | 1417 | 143 | 140 | 147 | 10 | 17 | over | incl. | | + 2 - 6 | + 2
- 9 | + 6
- 12 | - 4
-12 | - 4
- 15 | - 18 | - 9
-17 | - 9
- 20 | - 5
- 23 | - 15
- 26 | - 11
- 29 | 10 | 18 | | + 1 - 8 | + 2
- 11 | + 6
- 15 | - 5
-14 | - 4
- 17 | 0
- 21 | - 12
- 21 | - 11
- 24 | - 7
- 28 | - 18
- 31 | - 14
- 35 | 18 | 30 | | + 2
- 9 | + 3
- 13 | + 7
- 18 | - 5
-16 | - 4
- 20 | 0
- 25 | -13
-24 | - 12
- 28 | - 8
- 33 | - 21
- 37 | - 17
- 42 | 30 | 50 | | + 3
-10 | + 4
- 15 | + 9
- 21 | - 6
-19 | - 5
- 24 | - 30 | - 15
- 28 | - 14
- 33 | - 9
- 39 | - 26
- 45 | - 21
- 51 | 50 | 80 | | + 2
-13 | + 4
- 18 | + 10
- 25 | - 8
-23 | - 6
- 28 | 0
- 35 | - 18
- 33 | - 16
- 38 | - 10
- 45 | - 30
- 52 | - 24
- 59 | 80 | 120 | | + 3
-15 | + 4
- 21 | + 12
- 28 | - 9
-27 | - 8
- 33 | 0
- 40 | -21
-39 | - 20
- 45 | - 12
- 52 | - 36
- 61 | - 28
- 68 | 120 | 180 | | + 2
-18 | + 5
- 24 | + 13
- 33 | -11
-31 | - 8
- 37 | 0
- 46 | - 25
- 45 | - 22
- 51 | - 14
- 60 | - 41
- 70 | - 33
- 79 | 180 | 250 | | + 3
-20 | + 5
- 27 | + 16
- 36 | -13
-36 | - 9
- 41 | 0
- 52 | - 27
- 50 | - 25
- 57 | - 14
- 66 | - 47
- 79 | - 36
- 88 | 250 | 315 | | + 3
-22 | + 7
- 29 | + 17
- 40 | -14
-39 | - 10
- 46 | 0
- 57 | - 30
- 55 | - 26
- 62 | - 16
- 73 | - 51
- 87 | - 41
- 98 | 315 | 400 | | + 2
-25 | + 8
- 32 | + 18
- 45 | -16
-43 | - 10
- 50 | 0
- 63 | -33
-60 | - 27
- 67 | - 17
- 80 | - 55
- 95 | - 45
-108 | 400 | 500 | | _ | 0
- 44 | - ⁰ | _ | - 26
- 70 | - 26
- 96 | _ | - 44
- 88 | - 44
-114 | - 78
-122 | - 78
-148 | 500 | 630 | | _ | 0
- 50 | - 80 | _ | - 30
- 80 | - 30
-110 | _ | - 50
-100 | - 50
-130 | - 88
-138 | - 88
-168 | 630 | 800 | | | 0
- 56 | - 90 | _ | - 34
- 90 | - 34
-124 | _ | - 56
-112 | - 56
-146 | - 100
- 156 | -100
-190 | 800 | 1 000 | | _ | - 66 | 0
- 105 | _ | - 40
-106 | - 40
-145 | _ | - 66
-132 | - 66
-171 | - 120
- 186 | - 120
- 225 | 1 000 | 1 250 | | _ | 0
- 78 | 0
125 | _ | - 48
-126 | - 48
-173 | _ | - 78
-156 | - 78
-203 | -140
-218 | -140
-265 | 1 250 | 1 600 | | _ | 0
- 92 | 0
150 | _ | - 58
-150 | - 58
-208 | _ | - 92
-184 | - 92
-242 | - 170
- 262 | - 170
- 320 | 1 600 | 2 000 | | _ | 0
110 | 0
175 | _ | - 68
- 178 | - 68
-243 | _ | 110
220 | 110
285 | - 195
- 305 | 195
370 | 2 000 | 2 500 | C 20 C 21 Appendix Table 11 Values of | Basic | Size | | | | | | | | | | | Standard | |-------|-------|-----|-----|-----|-----|-----|------------|-----|-----|-----|------|----------| | (m | m) | IT1 | IT2 | IT3 | IT4 | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | | over | incl. | | | | | Tol | erances (μ | m) | | | | | | _ | 3 | 0.8 | 1.2 | 2 | 3 | 4 | 6 | 10 | 14 | 25 | 40 | 60 | | 3 | 6 | 1 | 1.5 | 2.5 | 4 | 5 | 8 | 12 | 18 | 30 | 48 | 75 | | 6 | 10 | 1 | 1.5 | 2.5 | 4 | 6 | 9 | 15 | 22 | 36 | 58 | 90 | | 10 | 18 | 1.2 | 2 | 3 | 5 | 8 | 11 | 18 | 27 | 43 | 70 | 110 | | 18 | 30 | 1.5 | 2.5 | 4 | 6 | 9 | 13 | 21 | 33 | 52 | 84 | 130 | | 30 | 50 | 1.5 | 2.5 | 4 | 7 | 11 | 16 | 25 | 39 | 62 | 100 | 160 | | 50 | 80 | 2 | 3 | 5 | 8 | 13 | 19 | 30 | 46 | 74 | 120 | 190 | | 80 | 120 | 2.5 | 4 | 6 | 10 | 15 | 22 | 35 | 54 | 87 | 140 | 220 | | 120 | 180 | 3.5 | 5 | 8 | 12 | 18 | 25 | 40 | 63 | 100 | 160 | 250 | | 180 | 250 | 4.5 | 7 | 10 | 14 | 20 | 29 | 46 | 72 | 115 | 185 | 290 | | 250 | 315 | 6 | 8 | 12 | 16 | 23 | 32 | 52 | 81 | 130 | 210 | 320 | | 315 | 400 | 7 | 9 | 13 | 18 | 25 | 36 | 57 | 89 | 140 | 230 | 360 | | 400 | 500 | 8 | 10 | 15 | 20 | 27 | 40 | 63 | 97 | 155 | 250 | 400 | | 500 | 630 | 9 | 11 | 16 | 22 | 32 | 44 | 70 | 110 | 175 | 280 | 440 | | 630 | 800 | 10 | 13 | 18 | 25 | 36 | 50 | 80 | 125 | 200 | 320 | 500 | | 800 | 1 000 | 11 | 15 | 21 | 28 | 40 | 56 | 90 | 140 | 230 | 360 | 560 | | 1 000 | 1 250 | 13 | 18 | 24 | 33 | 47 | 66 | 105 | 165 | 260 | 420 | 660 | | 1 250 | 1 600 | 15 | 21 | 29 | 39 | 55 | 78 | 125 | 195 | 310 | 500 | 780 | | 1 600 | 2 000 | 18 | 25 | 35 | 46 | 65 | 92 | 150 | 230 | 370 | 600 | 920 | | 2 000 | 2 500 | 22 | 30 | 41 | 55 | 78 | 110 | 175 | 280 | 440 | 700 | 1 100 | | 2 500 | 3 150 | 26 | 36 | 50 | 68 | 96 | 135 | 210 | 330 | 540 | 860 | 1 350 | #### Remarks 1. Standard tolerance grades IT14 to IT18 shall not be used for basic sizes less than or equal to 1 mm. #### Standard Tolerance Grades IT | Grades | | | Basic Size | | | | | | |--------|------|------|------------|-------|-------|-------|-------|-------| | IT12 | IT13 | IT14 | IT15 | IT16 | IT17 | IT18 | (n | nm) | | | | Tole | erances (m | nm) | | | over | incl. | | 0.10 | 0.14 | 0.25 | 0.40 | 0.60 | 1.00 | 1.40 | _ | 3 | | 0.12 | 0.18 | 0.30 | 0.48 | 0.75 | 1.20 | 1.80 | 3 | 6 | | 0.15 | 0.22 | 0.36 | 0.58 | 0.90 | 1.50 | 2.20 | 6 | 10 | | 0.18 | 0.27 | 0.43 | 0.70 | 1.10 | 1.80 | 2.70 | 10 | 18 | | 0.21 | 0.33 | 0.52 | 0.84 | 1.30 | 2.10 | 3.30 | 18 | 30 | | 0.25 | 0.39 | 0.62 | 1.00 | 1.60 | 2.50 | 3.90 | 30 | 50 | | 0.30 | 0.46 | 0.74 | 1.20 | 1.90 | 3.00 | 4.60 | 50 | 80 | | 0.35 | 0.54 | 0.87 | 1.40 | 2.20 | 3.50 | 5.40 | 80 | 120 | | 0.40 | 0.63 | 1.00 | 1.60 | 2.50 | 4.00 | 6.30 | 120 | 180 | | 0.46 | 0.72 | 1.15 | 1.85 | 2.90 | 4.60 | 7.20 | 180 | 250 | | 0.52 | 0.81 | 1.30 | 2.10 | 3.20 | 5.20 | 8.10 | 250 | 315 | | 0.57 | 0.89 | 1.40 | 2.30 | 3.60 | 5.70 | 8.90 | 315 | 400 | | 0.63 | 0.97 | 1.55 | 2.50 | 4.00 | 6.30 | 9.70 | 400 | 500 | | 0.70 | 1.10 | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 500 | 630 | | 0.80 | 1.25 | 2.00 | 3.20 | 5.00 | 8.00 | 12.50 | 630 | 800 | | 0.90 | 1.40 | 2.30 | 3.60 | 5.60 | 9.00 | 14.00 | 800 | 1 000 | | 1.05 | 1.65 | 2.60 | 4.20 | 6.60 | 10.50 | 16.50 | 1 000 | 1 250 | | 1.25 | 1.95 | 3.10 | 5.00 | 7.80 | 12.50 | 19.50 | 1 250 | 1 600 | | 1.50 | 2.30 | 3.70 | 6.00 | 9.20 | 15.00 | 23.00 | 1 600 | 2 000 | | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 17.50 | 28.00 | 2 000 | 2 500 | | 2.10 | 3.30 | 5.40 | 8.60 | 13.50 | 21.00 | 33.00 | 2 500 | 3 150 | ^{2.} Values for standard tolerance grades IT1 to IT5 for basic
sizes over 500 mm are included for experimental use. #### Appedix Table 12 Speed Factor $f_{\rm n}$ Appendix Table 13 Fatigue Life Factor $f_{\rm n}$ and Fatigue Life $L \cdot L_{\rm h}$ Ball Bearings $f_{\rm n}$ = (0.03 n) $^{-1/3}$ Roller Bearings $f_{ m n}$ = (0.03 n) $^{-3/10}$ Ball Bearings $L=(C/P)^3$ $L_{\rm h}=500~f_{\rm h}^3$ Roller Bearings $L = (C / P)^{10/3} L_h = 500 f_h^{10/3}$ | Speed | Speed F | actor $f_{ m n}$ | Speed | | actor $f_{ m n}$ | Speed | Speed F | actor $f_{ m n}$ | |-------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---|---|---|---|--| | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | | 10 | 1.49 | 1.44 | 180 | 0.570 | 0.603 | 3 000 | 0.223 | 0.259 | | 11 | 1.45 | 1.39 | 190 | 0.560 | 0.593 | 3 200 | 0.218 | 0.254 | | 12 | 1.41 | 1.36 | 200 | 0.550 | 0.584 | 3 400 | 0.214 | 0.250 | | 13 | 1.37 | 1.33 | 220 | 0.533 | 0.568 | 3 600 | 0.210 | 0.245 | | 14 | 1.34 | 1.30 | 240 | 0.518 | 0.553 | 3 800 | 0.206 | 0.242 | | 15 | 1.30 | 1.27 | 260 | 0.504 | 0.540 | 4 000 | 0.203 | 0.238 | | 16 | 1.28 | 1.25 | 280 | 0.492 | 0.528 | 4 200 | 0.199 | 0.234 | | 17 | 1.25 | 1.22 | 300 | 0.481 | 0.517 | 4 400 | 0.196 | 0.231 | | 18 | 1.23 | 1.20 | 320 | 0.471 | 0.507 | 4 600 | 0.194 | 0.228 | | 19 | 1.21 | 1.18 | 340 | 0.461 | 0.498 | 4 800 | 0.191 | 0.225 | | 20 | 1.19 | 1.17 | 360 | 0.452 | 0.490 | 5 000 | 0.188 | 0.222 | | 21 | 1.17 | 1.15 | 380 | 0.444 | 0.482 | 5 200 | 0.186 | 0.220 | | 22 | 1.15 | 1.13 | 400 | 0.437 | 0.475 | 5 400 | 0.183 | 0.217 | | 23 | 1.13 | 1.12 | 420 | 0.430 | 0.468 | 5 600 | 0.181 | 0.215 | | 24 | 1.12 | 1.10 | 440 | 0.423 | 0.461 | 5 800 | 0.179 | 0.213 | | 25
26
27
28
29 | 1.10
1.09
1.07
1.06
1.05 | 1.09
1.08
1.07
1.05
1.04 | 460
480
500
550
600 | 0.417
0.411
0.405
0.393
0.382 | 0.455
0.449
0.444
0.431
0.420 | 6 000
6 200
6 400
6 600
6 800 | 0.177
0.175
0.173
0.172
0.170 | 0.211
0.209
0.207
0.207
0.205
0.203 | | 30 | 1.04 | 1.03 | 650 | 0.372 | 0.410 | 7 000 | 0.168 | 0.201 | | 31 | 1.02 | 1.02 | 700 | 0.362 | 0.401 | 7 200 | 0.167 | 0.199 | | 32 | 1.01 | 1.01 | 750 | 0.354 | 0.393 | 7 400 | 0.165 | 0.198 | | 33.3 | 1.00 | 1.00 | 800 | 0.347 | 0.385 | 7 600 | 0.164 | 0.196 | | 34 | 0.993 | 0.994 | 850 | 0.340 | 0.378 | 7 800 | 0.162 | 0.195 | | 36 | 0.975 | 0.977 | 900 | 0.333 | 0.372 | 8 000 | 0.161 | 0.193 | | 38 | 0.957 | 0.961 | 950 | 0.327 | 0.366 | 8 500 | 0.158 | 0.190 | | 40 | 0.941 | 0.947 | 1 000 | 0.322 | 0.360 | 9 000 | 0.155 | 0.186 | | 42 | 0.926 | 0.933 | 1 050 | 0.317 | 0.355 | 9 500 | 0.152 | 0.183 | | 44 | 0.912 | 0.920 | 1 100 | 0.312 | 0.350 | 10 000 | 0.149 | 0.181 | | 46 | 0.898 | 0.908 | 1 150 | 0.307 | 0.346 | 11 000 | 0.145 | 0.176 | | 48 | 0.886 | 0.896 | 1 200 | 0.303 | 0.341 | 12 000 | 0.141 | 0.171 | | 50 | 0.874 | 0.885 | 1 250 | 0.299 | 0.337 | 13 000 | 0.137 | 0.167 | | 55 | 0.846 | 0.861 | 1 300 | 0.295 | 0.333 | 14 000 | 0.134 | 0.163 | | 60 | 0.822 | 0.838 | 1 400 | 0.288 | 0.326 | 15 000 | 0.130 | 0.160 | | 65 | 0.800 | 0.818 | 1 500 | 0.281 | 0.319 | 16 000 | 0.128 | 0.157 | | 70 | 0.781 | 0.800 | 1 600 | 0.275 | 0.313 | 17 000 | 0.125 | 0.154 | | 75 | 0.763 | 0.784 | 1 700 | 0.270 | 0.307 | 18 000 | 0.123 | 0.151 | | 80 | 0.747 | 0.769 | 1 800 | 0.265 | 0.302 | 19 000 | 0.121 | 0.149 | | 85 | 0.732 | 0.755 | 1 900 | 0.260 | 0.297 | 20 000 | 0.119 | 0.147 | | 90 | 0.718 | 0.742 | 2 000 | 0.255 | 0.293 | 22 000 | 0.115 | 0.143 | | 95 | 0.705 | 0.730 | 2 100 | 0.251 | 0.289 | 24 000 | 0.112 | 0.139 | | 100 | 0.693 | 0.719 | 2 200 | 0.247 | 0.285 | 26 000 | 0.109 | 0.136 | | 110 | 0.672 | 0.699 | 2 300 | 0.244 | 0.281 | 28 000 | 0.106 | 0.133 | | 120 | 0.652 | 0.681 | 2 400 | 0.240 | 0.277 | 30 000 | 0.104 | 0.130 | | 130 | 0.635 | 0.665 | 2 500 | 0.237 | 0.274 | 32 000 | 0.101 | 0.127 | | 140 | 0.620 | 0.650 | 2 600 | 0.234 | 0.271 | 34 000 | 0.099 | 0.125 | | 150 | 0.606 | 0.637 | 2 700 | 0.231 | 0.268 | 36 000 | 0.097 | 0.123 | | 160 | 0.593 | 0.625 | 2 800 | 0.228 | 0.265 | 38 000 | 0.096 | 0.121 | | 170 | 0.581 | 0.613 | 2 900 | 0.226 | 0.262 | 40 000 | 0.094 | 0.119 | | | | | Roller Bearings $L=(C/P)^{10/3} L_{\rm h}=500 f_{\rm h}^{-10/3}$ | | | | | | | |--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|---|--|---|--| | | Ball Bear | ing Life | Roller Bea | aring Life | | Ball Bear | ing Life | Roller Be | aring Life | | C/P or $f_{ m h}$ | <i>L</i> (10 ⁶ rev) | <i>L</i> _h (h) | L
(10 ⁶ rev) | <i>L</i> _h (h) | $\it C/P$ or $\it f_{\rm h}$ | <i>L</i> (10 ⁶ rev) | <i>L</i> _h (h) | <i>L</i>
(10 ⁶ rev) | L _h (h) | | 0.70 | 0.34 | 172 | 0.30 | 152 | 3.45 | 41.1 | 20 500 | 62.0 | 31 000 | | 0.75 | 0.42 | 211 | 0.38 | 192 | 3.50 | 42.9 | 21 400 | 65.1 | 32 500 | | 0.80 | 0.51 | 256 | 0.48 | 238 | 3.55 | 44.7 | 22 400 | 68.2 | 34 100 | | 0.85 | 0.61 | 307 | 0.58 | 291 | 3.60 | 46.7 | 23 300 | 71.5 | 35 800 | | 0.90 | 0.73 | 365 | 0.70 | 352 | 3.65 | 48.6 | 24 300 | 74.9 | 37 400 | | 0.95 | 0.86 | 429 | 0.84 | 421 | 3.70 | 50.7 | 25 300 | 78.3 | 39 200 | | 1.00 | 1.00 | 500 | 1.00 | 500 | 3.75 | 52.7 | 26 400 | 81.9 | 41 000 | | 1.05 | 1.16 | 579 | 1.18 | 588 | 3.80 | 54.9 | 27 400 | 85.6 | 42 800 | | 1.10 | 1.33 | 665 | 1.37 | 687 | 3.85 | 57.1 | 28 500 | 89.4 | 44 700 | | 1.15 | 1.52 | 760 | 1.59 | 797 | 3.90 | 59.3 | 29 700 | 93.4 | 46 700 | | 1.20 | 1.73 | 864 | 1.84 | 918 | 3.95 | 61.6 | 30 800 | 97.4 | 48 700 | | 1.25 | 1.95 | 977 | 2.10 | 1 050 | 4.00 | 64.0 | 32 000 | 102 | 50 800 | | 1.30 | 2.20 | 1 100 | 2.40 | 1 200 | 4.05 | 66.4 | 33 200 | 106 | 52 900 | | 1.35 | 2.46 | 1 230 | 2.72 | 1 360 | 4.10 | 68.9 | 34 500 | 110 | 55 200 | | 1.40 | 2.74 | 1 370 | 3.07 | 1 530 | 4.15 | 71.5 | 35 700 | 115 | 57 400 | | 1.45 | 3.05 | 1 520 | 3.45 | 1 730 | 4.20 | 74.1 | 37 000 | 120 | 59 800 | | 1.50 | 3.38 | 1 690 | 3.86 | 1 930 | 4.25 | 76.8 | 38 400 | 124 | 62 200 | | 1.55 | 3.72 | 1 860 | 4.31 | 2 150 | 4.30 | 79.5 | 39 800 | 129 | 64 600 | | 1.60 | 4.10 | 2 050 | 4.79 | 2 400 | 4.35 | 82.3 | 41 200 | 134 | 67 200 | | 1.65 | 4.49 | 2 250 | 5.31 | 2 650 | 4.40 | 85.2 | 42 600 | 140 | 69 800 | | 1.70 | 4.91 | 2 460 | 5.86 | 2 930 | 4.45 | 88.1 | 44 100 | 145 | 72 500 | | 1.75 | 5.36 | 2 680 | 6.46 | 3 230 | 4.50 | 91.1 | 45 600 | 150 | 75 200 | | 1.80 | 5.83 | 2 920 | 7.09 | 3 550 | 4.55 | 94.2 | 47 100 | 156 | 78 000 | | 1.85 | 6.33 | 3 170 | 7.77 | 3 890 | 4.60 | 97.3 | 48 700 | 162 | 80 900 | | 1.90 | 6.86 | 3 430 | 8.50 | 4 250 | 4.65 | 101 | 50 300 | 168 | 83 900 | | 1.95 | 7.41 | 3 710 | 9.26 | 4 630 | 4.70 | 104 | 51 900 | 174 | 87 000 | | 2.00 | 8.00 | 4 000 | 10.1 | 5 040 | 4.75 | 107 | 53 600 | 180 | 90 100 | | 2.05 | 8.62 | 4 310 | 10.9 | 5 470 | 4.80 | 111 | 55 300 | 187 | 93 300 | | 2.10 | 9.26 | 4 630 | 11.9 | 5 930 | 4.85 | 114 | 57 000 | 193 | 96 600 | | 2.15 | 9.94 | 4 970 | 12.8 | 6 410 | 4.90 | 118 | 58 800 | 200 | 99 900 | | 2.20 | 10.6 | 5 320 | 13.8 | 6 920 | 4.95 | 121 | 60 600 | 207 | 103 000 | | 2.25 | 11.4 | 5 700 | 14.9 | 7 460 | 5.00 | 125 | 62 500 | 214 | 107 000 | | 2.30 | 12.2 | 6 080 | 16.1 | 8 030 | 5.10 | 133 | 66 300 | 228 | 114 000 | | 2.35 | 13.0 | 6 490 | 17.3 | 8 630 | 5.20 | 141 | 70 300 | 244 | 122 000 | | 2.40 | 13.8 | 6 910 | 18.5 | 9 250 | 5.30 | 149 | 74 400 | 260 | 130 000 | | 2.45 | 14.7 | 7 350 | 19.8 | 9 910 | 5.40 | 157 | 78 700 | 276 | 138 000 | | 2.50 | 15.6 | 7 810 | 21.2 | 10 600 | 5.50 | 166 | 83 200 | 294 | 147 000 | | 2.55 | 16.6 | 8 290 | 22.7 | 11 300 | 5.60 | 176 | 87 800 | 312 | 156 000 | | 2.60 | 17.6 | 8 790 | 24.2 | 12 100 | 5.70 | 185 | 92 600 | 331 | 165 000 | | 2.65 | 18.6 | 9 300 | 25.8 | 12 900 | 5.80 | 195 | 97 600 | 351 | 175 000 | | 2.70 | 19.7 | 9 840 | 27.4 | 13 700 | 5.90 | 205 | 103 000 | 371 | 186 000 | | 2.75 | 20.8 | 10 400 | 29.1 | 14 600 | 6.00 | 216 | 108 000 | 392 | 196 000 | | 2.80 | 22.0 | 11 000 | 30.9 | 15 500 | 6.50 | 275 | 137 000 | 513 | 256 000 | | 2.85 | 23.1 | 11 600 | 32.8 | 16 400 | 7.00 | 343 | 172 000 | 656 | 328 000 | | 2.90 | 24.4 | 12 200 | 34.8 | 17 400 | 7.50 | 422 | 211 000 | 826 | 413 000 | | 2.95
3.00
3.05
3.10
3.15 | 25.7
27.0
28.4
29.8
31.3 | 12 800
13 500
14 200
14 900
15 600 | 36.8
38.9
41.1
43.4
45.8 | 18 400
19 500
20 600
21 700
22 900 | 8.00
8.50
9.00
9.50
10.0 | 512
614
729
857
1 000 | 256 000
307 000
365 000
429 000 | 1 020
1 250
1 520
1 820
2 150 | 512 000
627 000
758 000
908 000 | | 3.20
3.25
3.30
3.35
3.40 | 32.8
34.3
35.9
37.6
39.3 | 16 400
17 200
18 000
18 800
19 700 | 48.3
50.8
53.5
56.3
59.1 | 24 100
25 400
26 800
28 100
29 600 | 11.0
12.0
13.0
14.0
15.0 | 1 330
1 730
2 200
2 740
3 380 | _
_
_
_ | 2 960
3 960
5 170
6 610
8 320 | _
_
_
_
_ | C 25 C 24 Appendix Table14 Index of Inch Design Tapered Roller Bearings | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages |
Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | |--------------------------|--|----------------|--------------------------|---|---------------------|--------------------------|--|----------------|--------------------------|--|-----------| | 332 | D 80.000 | B140,B144,B146 | 497 | d 85.725 | B162 | 657 | d 73.025 | B158 | 1328 | D 52.388 | B136 | | 336 | d 41.275 | B146 | 498 | d 84.138 | B162 | 658 | d 74.612 | B158 | 1329 | D 53.975 | B136 | | 342 | d 41.275 | B146 | 522 | D 101.600 | B148,B150 | 659 | d 76.200 | B158 | 1380 | d 22.225 | B136 | | 342 S | d 42.875 | B146 | 528 | d 47.625 | B148 | 661 | d 79.375 | B160 | 1620 | D 66.675 | B142 | | 344 | d 40.000 | B144 | 529 | d 50.800 | B150 | 663 | d 82.550 | B160 | 1680 | d 33.338 | B142 | | 344 A | d 40.000 | B144 | 529 X | d 50.800 | B150 | 664 | d 84.138 | B162 | 1729 | D 56.896 | B136,B138 | | 346 | d 31.750 | B140 | 532 X | D 107.950 | B152 | 665 | d 85.725 | B162 | 1755 | d 22.225 | B136 | | 354 A | D 85.000 | B148 | 539 | d 53.975 | B152 | 665 A | d 85.725 | B162 | 1779 | d 23.812 | B138 | | 359 S | d 46.038 | B148 | 552 A | D 123.825 | B152,B154,B156 | 672 | D 168.275 | B162,B164,B166 | 1922 | D 57.150 | B138 | | 362 A | D 88.900 | B148,B150 | 553 X | <i>D</i> 122.238 | B154,B156 | 677 | d 85.725 | B162 | 1988 | d 28.575 | B138 | | 366 | d 50.000 | B150 | 555 S | <i>d</i> 57.150 | B152 | 681 | d 92.075 | B164 | 1997 X | d 26.988 | B138 | | 368 | d 50.800 | B150 | 557 S | <i>d</i> 53.975 | B152 | 683 | d 95.250 | B164 | A2047 | d 12.000 | B136 | | 368 A | d 50.800 | B150 | 558 | d 60.325 | B154 | 685 | d 98.425 | B164 | A2126 | D 31.991 | B136 | | 369 A | d 47.625 | B148 | 559 | d 63.500 | B154 | 687 | d 101.600 | B166 | 2523 | D 69.850 | B140,B142 | | 372 | D 100.000 | B150 | 560 | d 66.675 | B156 | 742 | D 150.089 | B156,B160,B162 | 2558 | d 30.162 | B140 | | 374 | D 93.264 | B148 | 560 S | d 68.262 | B156 | 743 | D 150.000 | B160 | 2559 | d 30.162 | B140 | | 376 | d 45.000 | B148 | 563 | D 127.000 | B154,B156,B158 | 745 A | d 69.850 | B156 | 2580 | d 31.750 | B140 | | 377 | d 52.388 | B150 | 563 X | D 127.000 | B156 | 749 | d 85.026 | B162 | 2582 | d 31.750 | B140 | | 382 | D 98.425 | B152 | 565 | d 63.500 | B154 | 749 A | d 82.550 | B160 | 2585 | d 33.338 | B142 | | 382 A | D 96.838 | B152 | 566 | d 69.850 | B156 | 749 S | d 85.026 | B162 | 2631 | D 66.421 | B140 | | 382 S | D 96.838 | B152 | 567 | d 73.025 | B158 | 750 | d 79.375 | B160 | 2690 | d 29.367 | B140 | | 385 | d 55.000 | B152 | 567 A | d 71.438 d 71.438 d 73.817 | B158 | 752 | D 161.925 | B160,B162 | 2720 | D 76.200 | B144 | | 387 | d 57.150 | B152 | 567 S | | B158 | 753 | D 168.275 | B160,B162 | 2729 | D 76.200 | B144 | | 387 A | d 57.150 | B152 | 568 | | B158 | 757 | d 82.550 | B160 | 2735 X | D 73.025 | B144 | | 388 A | d 57.531 | B152 | 569 | d 64.963 | B154 | 758 | d 85.725 | B162 | 2788 | d 38.100 | B144 | | 390 A | d 63.500 | B154 | 570 | d 68.262 | B156 | 759 | d 88.900 | B162 | 2789 | d 39.688 | B144 | | 394 A | D 110.000 | B154,B156 | 572 | D 139.992 | B158,B160 | 760 | d 90.488 | B162 | 2820 | D 73.025 | B142 | | 395 | d 63.500 | B154 | 572 X | <i>D</i> 139.700 | B160 | 766 | d 88.900 | B162 | 2877 | d 34.925 | B142 | | 395 A | d 66.675 | B156 | 575 | <i>d</i> 76.200 | B158 | 772 | D 180.975 | B164,B166 | 2924 | D 85.000 | B148 | | 395 S | d 66.675 | B156 | 580 | <i>d</i> 82.550 | B160 | 776 | d 95.250 | B164 | 2984 | d 46.038 | B148 | | 397 | d 60.000 | B154 | 581 | d 80.962 | B160 | 779 | d 98.425 d 101.600 d 104.775 | B164 | 3120 | D 72.626 | B140,B142 | | 399 A | d 68.262 | B156 | 582 | d 82.550 | B160 | 780 | | B166 | 3188 | d 31.750 | B140 | | 414 | D 88.501 | B144 | 590 A | d 76.200 | B158 | 782 | | B166 | 3197 | d 33.338 | B142 | | 418 | d 38.100 | B144 | 592 | <i>D</i> 152.400 | B164 | 787 | d 104.775 D 206.375 d 120.650 | B166 | 3320 | D 80.167 | B144 | | 432 | D 95.250 | B146 | 592 A | <i>D</i> 152.400 | B158,B162,B164 | 792 | | B168 | 3386 | d 39.688 | B144 | | 432 A | D 95.250 | B148 | 593 | <i>d</i> 88.900 | B162 | 795 | | B168 | 3420 | D 79.375 | B142,B144 | | 436 | d 46.038 | B148 | 594 | d 95.250 | B164 | 797 | d 130.000 d 128.588 d 130.175 | B168 | 3478 | d 34.925 | B142 | | 438 | d 44.450 | B146 | 596 | d 85.725 | B162 | 799 | | B168 | 3479 | d 36.512 | B144 | | 453 A | D 107.950 | B148 | 597 | d 93.662 | B164 | 799 A | | B168 | 3490 | d 38.100 | B144 | | 453 X | D 104.775 | B152 | 598 | d 92.075 d 92.075 D 115.000 | B164 | 832 | D 168.275 | B160,B162 | 3525 | D 87.312 | B146 | | 460 | d 44.450 | B148 | 598 A | | B164 | 837 | d 76.200 | B160 | 3576 | d 41.275 | B146 | | 462 | d 57.150 | B152 | 614 X | | B152 | 842 | d 82.550 | B160 | 3578 | d 44.450 | B146 | | 469 | d 57.150 | B152 | 622 X | d 55.000 | B152 | 843 | d 76.200 | B160 | 3720 | D 93.264 | B146 | | 472 | D 120.000 | B156,B158 | 632 | D 136.525 | B154,B158 | 850 | d 88.900 | B162 | 3730 | D 93.264 | B150 | | 472 A | D 120.000 | B156 | 633 | D 130.175 | B154,B156,B158 | 854 | D 190.500 | B162,B164,B166 | 3775 | d 50.800 | B150 | | 478 | d 65.000 | B156 | 637 | d 60.325 | B154 | 855 | d 88.900 | B162 | 3780 | d 50.800 | B150 | | 480 | d 68.262 | B156 | 639 | d 63.500 | B154 | 857 | d 92.075 | B164 | 3782 | d 44.450 | B146 | | 484 | d 70.000 | B158 | 643 | d 69.850 | B156 | 861 | d 101.600 | B166 | 3820 | D 85.725 | B146 | | 492 A | D 133.350 | B160,B162 | 644 | d 71.438 d 71.438 D 152.400 | B158 | 864 | d 95.250 | B164 | 3877 | d 41.275 | B146 | | 493 | D 136.525 | B158,B160,B162 | 645 | | B158 | 866 | d 98.425 | B164 | 3920 | D 112.712 | B154,B156 | | 495 | d 82.550 | B160 | 652 | | B158,B160 | 932 | D 212.725 | B166 | 3926 | D 112.712 | B152,B154 | | 495 A | d 76.200 | B158 | 653 | <i>D</i> 146.050 | B156,B158,B160,B162 | 938 | d 114.300 D 57.150 d 22.225 | B166 | 3981 | d 58.738 | B152 | | 495 AX | d 76.200 | B158 | 653 X | <i>D</i> 150.000 | B158 | 1220 | | B136 | 3982 | d 63.500 | B154 | | 496 | d 80.962 | B160 | 655 | <i>d</i> 69.850 | B156 | 1280 | | B136 | 3984 | d 66.675 | B156 | | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mn
d :CONE (Bore Dia.)
D :CUP (Outside Dia | Pages | Bearing No.
CONE, CUP | d :C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |-------------------------------|---|--------------------------------|-------------------------------|--|---------------------------|-----------------------------|---|---------------------------|---------------------------|--------------|--|--------------------------------| | 3994
A4050
A4059 | d 66.675
d 12.700
d 15.000 | B156
B136
B136 | 02820
02872
02878 | D 73.025
d 28.575
d 34.925 | B138,B142
B138
B142 | 13685
13687
13830 | d 38.100 d 38.100 D 63.500 | B144
B144
B144 | 19150
19268
21075 | d
D
d | 38.100
68.262
19.050 | B144
B142,B144
B136 | | A4138
4335
4388 | D 34.988
D 90.488
d 41.275 | B136
B146
B146 | 03062
03162
05062 | <i>d</i> 15.875
<i>D</i> 41.275
<i>d</i> 15.875 | B136
B136
B136 | 13889
14123 A
14125 A | d 38.100 d 31.750 d 31.750 | B140 | 21212
L21511
L21549 | D
D
d | 53.975
34.988
15.875 | B136
B136
B136 | | 4535
4595
A 5069 | D 104.775
d 53.975
d 17.455 | B152
B152
B136 | 05068
05075
05079 | <i>d</i> 17.462
<i>d</i> 19.050
<i>d</i> 19.990 | B136
B136
B136 | 14130
14131
14137 A | d 33.338 d 33.338 d 34.925 | B142 | 22168
22325
23100 | d
D
d | 42.862
82.550
25.400 | B146
B146
B138 | | A5144
5335
5356 | D 36.525
D 103.188
d 44.450 | B136
B148
B148 | 05175
05185
07079 | D 44.450
D 47.000
d 20.000 | B136
B136
B136 | 14138 A
14139
14274 | d 34.925 d 34.976 D 69.012 | B142 | 23256
23621
23691 | D
D
d | 65.088
73.025
35.000 | B138
B142
B142 | | 5535
5566
5582 | D 122.238
d 55.562
d 60.325 | B152,B154
B152
B154 | 07087
07097
07098 | d 22.225 d 25.000 d 24.981 | B136
B138
B138 | 14276
14283
15100 | <i>D</i> 69.012
<i>D</i> 72.085
<i>d</i> 25.400 | B140,B142
B142
B138 | 24720
24721
24780 | D
D
d | 76.200
76.200
41.275 | B146
B146
B146 | | 5584
5735
5760 | d 63.500
D 135.733
d 76.200 | B154
B158,B160
B158 | 07100
07100SA
07196 | d 25.400
d 25.400
D 50.005 | B138
B138
B136,B138 | 15101
15106
15112 | d 25.400
d 26.988
d 28.575 | B138 | 25520
25521
25523 | D
D
D | 82.931
83.058
82.931 | B146,B148
B146
B146,B148 | | 5795
A6062
A6067 | d
77.788 d 15.875 d 16.993 | B160
B136
B136 | 07204
07205
08118 | <i>D</i> 51.994
<i>D</i> 52.001
<i>d</i> 30.162 | B136,B138
B138
B140 | 15113
15116
15117 | d 28.575 d 30.112 d 30.000 | B140 | 25577
25578
25580 | d
d
d | 42.875
42.862
44.450 | B146
B146
B146 | | A6075
A6157
6220 | <i>d</i> 19.050
<i>D</i> 39.992
<i>D</i> 127.000 | B136
B136
B150,B152 | 08125
08231
09062 | d 31.750
D 58.738
d 15.875 | B140
B140
B136 | 15118
15119
15120 | d 30.213 d 30.213 d 30.213 | B140 | 25584
25590
25820 | d
d
D | 44.983
45.618
73.025 | B148
B148
B142 | | 6279
6280
6320 | d 50.800
d 53.975
D 135.755 | B150
B152
B154,B156 | 09067
09074
09078 | <i>d</i> 19.050
<i>d</i> 19.050
<i>d</i> 19.050 | B136
B136
B136 | 15123
15125
15126 | d 31.750 d 31.750 d 31.750 | B140 | 25821
25877
25878 | D
d
d | 73.025
34.925
34.925 | B142,B144
B142
B142 | | 6376
6379
6420 | d 60.325 d 65.088 D 149.225 | B154
B156
B152,B156,B158 | 09081
09194
09195 | d 20.625
D 49.225
D 49.225 | B136
B136
B136 | 15245
15250
15250 X | D 62.000
D 63.500
D 63.500 | B140 | 25880
26118
26131 | d
d
d | 36.487
30.000
33.338 | B144
B140
B142 | | 6454
6455
6460 | d 69.850
d 57.150
d 73.025 | B156
B152
B158 | 09196
11162
11300 | D 49.225
d 41.275
D 76.200 | B136
B146
B146 | 15520
15523
15578 | <i>D</i> 57.150
<i>D</i> 60.325
<i>d</i> 25.400 | B138 | 26283
26820
26822 | D
D
D | 72.000
80.167
79.375 | B140,B142
B146
B146 | | 6461
6535
6536 | d 76.200
D 161.925
D 161.925 | B158
B158,B160,B162
B158 | 11520
11590
LM11710 | D 42.862
d 15.875
D 39.878 | B136
B136
B136 | 15580
16150
16284 | d 26.988
d 38.100
D 72.238 | B144 | 26823
26882
26884 | D
d
d | 76.200
41.275
42.875 | B146
B146
B146 | | 6559
6575
6576 | d 82.550
d 76.200
d 76.200 | B160
B158
B158 | LM11749
LM11910
LM11949 | <i>d</i> 17.462
<i>D</i> 45.237
<i>d</i> 19.050 | B136
B136
B136 | 16929
16986
17098 | <i>D</i> 74.988
<i>d</i> 43.000
<i>d</i> 24.981 | B146 | 27620
27687
27689 | D
d
d | 125.412
82.550
83.345 | B160
B160
B160 | | 6580
9121
9180 | d 88.900
D 152.400
d 61.912 | B162
B154,B156
B154 | 12168
12303
12520 | d 42.862
D 76.992
D 49.225 | B146
B146
B136 | 17118
17244
17520 | d 30.000
D 62.000
D 42.862 | B138,B140 | 27690
27820
27880 | d
D
d | 83.345
80.035
38.100 | B160
B144
B144 | | 9185
9220
9285 | d 68.262
D 161.925
d 76.200 | B156
B158
B158 | 12580
M12610
M12648 | d 20.638
D 50.005
d 22.225 | B136
B136
B136 | 17580
17831
17887 | d 15.875 D 79.985 d 45.230 | B148 | 28138
28315
28521 | d
D
D | 34.976
80.000
92.075 | B142
B142
B150 | | 9320
9321
9378 | D 177.800
D 171.450
d 76.200 | B160
B160,B162
B160 | M12649
LM12710
LM12711 | d 21.430
D 45.237
D 45.975 | B136
B136
B136 | 18200
18337
18520 | d 50.800
D 85.725
D 73.025 | B150 | 28580
28584
28622 | d
d
D | 50.800
52.388
97.630 | B150
B150
B152 | | 9380
9385
02420 | d 76.200
d 84.138
D 68.262 | B160
B162
B138,B140 | LM12749
13175
13181 | d 22.000
d 44.450
d 46.038 | B136
B146
B148 | 18590
18620
18690 | d 41.275 D 79.375 d 46.038 | B148 | 28680
28920
28921 | d
D
D | 55.562
101.600
100.000 | B152
B154
B154 | | 02473
02474
02475 | d 25.400
d 28.575
d 31.750 | B138
B138
B140 | 13318
13620
13621 | D 80.962
D 69.012
D 69.012 | B146,B148
B144
B144 | 18720
18790
19138 | <i>D</i> 85.000 <i>d</i> 50.800 <i>d</i> 34.976 | B150 | 28985
29520
29586 | d
D
d | 60.325
107.950
63.500 | B154
B154
B154 | | Bearing No. | Nominal Dimension (mm) d:CONE (Bore Dia.) | Pages | Bearing No. | Nominal Dimension (mm) d:CONE (Bore Dia.) | Pages | |-----------------------------|---|---------------------------|--------------------------|---|---------------------------| | CONE, CUP | D:CUP (Outside Dia.) | | CONE, CUP | D:CUP (Outside Dia.) | . 3 | | 29620
29630
29675 | D 120.650 B | 8156,B158
8156
8156 | 42690
43118
43131 | d 77.788 d 30.162 d 33.338 | B160
B140
B142 | | 29685
LM29710
LM29711 | D 65.088 B | 8158
8144
8144 | 43300
43312
44143 | <i>D D T T T T T T T T T T</i> | B140
B142
B144 | | LM29748
LM29749
31520 | d 38.100 B | 8144
8144
8142 | 44150
44157
44162 | d 38.100 d 40.000 d 41.275 | B144
B144
B146 | | 31594 | d 66.675 B | 3142 | 44348 | <i>D</i> 88.501 | B144,B146 | | 33262 | | 3156 | L44610 | <i>D</i> 50.292 | B138 | | 33275 | | 3156 | L44640 | <i>d</i> 23.812 | B138 | | 33281 | d 73.025 B | 8158 | L44643 | d 25.400 | B138 | | 33287 | | 8158 | L44649 | d 26.988 | B138 | | JHM33410 | | 8138 | 45220 | D 104.775 | B152 | | JHM33449
33462
33821 | <i>D</i> 117.475 B | 3138
3156,B158
3150 | 45221
45289
L45410 | <i>D</i> 104.775 <i>d</i> 57.150 <i>D</i> 50.292 | B152
B152
B140 | | 33889 | d 76.200 B | 3150 | L45449 | d 29.000 | B140 | | 34300 | | 3158 | 46143 | d 36.512 | B144 | | 34306 | | 3160 | 46162 | d 41.275 | B146 | | 34478 | D 193.675 B | 3158,B160 | 46176 | d 44.450 | B146 | | 36620 | | 3168 | 46368 | D 93.662 | B144,B146 | | 36690 | | 3168 | 46720 | D 225.425 | B168 | | 36920
36990
37425 | d 177.800 B | 8170
8170
8166 | 46780
47420
47487 | d 158.750 D 120.000 d 69.850 | B168
B156,B158
B156 | | 37625
M38510
M38511 | D 66.675 B | 8166
8142
8142 | 47490
47620
47680 | d 71.438 D 133.350 d 76.200 | B158
B158,B160
B158 | | M38547 | d 34.925 B | 8142 | 47685 | d 82.550 | B160 | | M38549 | | 8142 | 47686 | d 82.550 | B160 | | 39236 | | 8154 | 47687 | d 82.550 | B160 | | 39250 | D 104.775 B | 8154 | 47820 | <i>D</i> 146.050 | B164 | | 39412 | | 8154 | 47890 | <i>d</i> 92.075 | B164 | | 39520 | | 8154,B156 | 47896 | <i>d</i> 95.250 | B164 | | 39521 | D 112.712 B d 63.500 B d 66.675 B | 8156 | 48120 | <i>D</i> 161.925 | B166 | | 39585 | | 8154 | 48190 | <i>d</i> 107.950 | B166 | | 39590 | | 8156 | 48220 | <i>D</i> 182.562 | B168 | | 41100
41125
41126 | d 28.575 B | 8138
8138
8138 | 48282
48286
48290 | d 120.650 d 123.825 d 127.000 | B168
B168
B168 | | 41286 | d 88.900 B | 3138 | 48320 | D 190.500 | B168 | | 42350 | | 3162 | 48385 | d 133.350 | B168 | | 42362 | | 3164 | 48393 | d 136.525 | B168 | | 42368 | d 95.250 B | 3164 | LM48510 | D 65.088 | B142 | | 42375 | | 3164 | LM48511 | D 65.088 | B142 | | 42376 | | 3164 | LM48548 | d 34.925 | B142 | | 42381 | D 148.430 B | 8164 | 48620 | D 200.025 | B168 | | 42584 | | 8164 | 48685 | d 142.875 | B168 | | 42587 | | 8162,B164 | 49175 | d 44.450 | B146 | | 42620 | d 76.200 B | 8158,B160 | 49176 | d 44.450 | B146 | | 42687 | | 8158 | 49368 | D 93.662 | B146 | | 42688 | | 8158 | 49520 | D 101.600 | B150 | | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d :CONE (Bore Dia.)
D :CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | |--------------------------|--|---------------------------|----------------------------|---|----------------------| | 49585 | d 50.800 d 98.425 d 100.012 | B150 | 67920 | D 282.575 | B170 | | 52387 | | B164 | 67983 | d 203.200 | B170 | | 52393 | | B164 | 67985 | d 206.375 | B170 | | 52400 | d 101.600D 157.162D 161.925 | B166 | L68110 | <i>D</i> 59.131 | B142 | | 52618 | | B164,B166 | L68111 | <i>D</i> 59.975 | B142 | | 52637 | | B164,B166 | L68149 | <i>d</i> 35.000 | B142 | | 53150 | d 38.100 | B144 | 68450 | d 114.300d 117.475D 180.000 | B166 | | 53162 | d 41.275 | B146 | 68462 | | B166 | | 53176 | d 44.450 | B148 | 68709 | | B166 | | 53177 | d 44.450 | B148 | 68712 | <i>D</i> 180.975 | B166 | | 53178 | d 44.450 | B148 | JL69310 | <i>D</i> 63.000 | B144 | | 53375 | D 95.250 | B144,B148 | JL69349 | <i>d</i> 38.000 | B144 | | 53387 | D 98.425 | B146,B148 | 71412 | d 104.775 d 107.950 d 111.125 | B166 | | 55175 | d 44.450 | B148 | 71425 | | B166 | | 55187 | d 47.625 | B148 | 71437 | | B166 | | 55200 | d 50.800 | B150 | 71450 | d 114.300d 115.087D 190.500 | B166 | | 55200 C | d 50.800 | B150 | 71453 | | B166 | | 55206 | d 52.388 | B150 | 71750 | | B166 | | 55437 | D 111.125 D 112.712 d 106.362 | B148,B150 | 72187 | d 47.625 | B148 | | 55443 | | B148 | 72200 | d 50.800 | B150 | | 56418 | | B166 | 72200 C | d 50.800 | B150 | | 56425 | <i>d</i> 107.950 | B166 | 72212 | d 53.975 | B152 | | 56650 | <i>D</i> 165.100 | B166 | 72212C | d 53.975 | B152 | | 59200 | <i>d</i>
50.800 | B150 | 72218 | d 55.562 | B152 | | 59429 | <i>D</i> 108.966 | B150 | 72218C | d 55.562 | B152 | | 64433 | <i>d</i> 109.992 | B166 | 72225C | d 57.150 | B152 | | 64450 | <i>d</i> 114.300 | B166 | 72487 | D 123.825 | B148,B150,B152 | | 64700 | <i>D</i> 177.800 | B166 | LM72810 | <i>D</i> 47.000 | B138 | | 65200 | <i>d</i> 50.800 | B150 | LM72849 | <i>d</i> 22.606 | B138 | | 65212 | <i>d</i> 53.975 | B152 | 74500 | <i>d</i> 127.000 | B168 | | 65237
65320
65385 | d 60.325 D 114.300 d 44.450 | B154
B148
B148 | 74525
74537
74550 | d 133.350 d 136.525 d 139.700 | B168
B168
B168 | | 65500 | <i>D</i> 127.000 | B150,B152,B154 | 74850 | <i>D</i> 215.900 | B168 | | 66187 | <i>d</i> 47.625 | B148 | 74856 | <i>D</i> 217.488 | B168 | | 66462 | <i>D</i> 117.475 | B148 | 77375 | <i>d</i> 95.250 | B164 | | 66520 | <i>D</i> 122.238 | B152,B154 | 77675 | <i>D</i> 171.450 | B164 | | 66584 | <i>d</i> 53.975 | B152 | 78225 | <i>d</i> 57.150 | B152 | | 66585 | <i>d</i> 60.000 | B154 | 78250 | <i>d</i> 63.500 | B154 | | 66587 | d 57.150 D 59.131 d 28.575 | B152 | LM78310 | <i>D</i> 62.000 | B142 | | LM67010 | | B138,B140 | LM78310 A | <i>D</i> 62.000 | B142 | | LM67043 | | B138 | LM78349 | <i>d</i> 35.000 | B142 | | LM67048 | d 31.750D 203.200D 196.850 | B140 | 78537 | D 136.525 | B154 | | 67320 | | B168 | 78551 | D 140.030 | B152,B154 | | 67322 | | B168 | 78571 | D 144.983 | B152 | | 67388 | d 127.000 d 130.175 d 133.350 | B168 | HM81610 | D 47.000 | B136 | | 67389 | | B168 | HM81649 | d 16.000 | B136 | | 67390 | | B168 | M84210 | D 59.530 | B138 | | 67720
67780
67787 | <i>D</i> 247.650 <i>d</i> 165.100 <i>d</i> 174.625 | B168,B170
B168
B170 | M84249
M84510
M84548 | d 25.400 D 57.150 d 25.400 | B138
B138
B138 | | 67790 | d 177.800 D 266.700 d 190.500 | B170 | M86610 | D 64.292 | B138,B140 | | 67820 | | B170 | M86643 | d 25.400 | B138 | | 67885 | | B170 | M86647 | d 28.575 | B138 | | Bearing No.
CONE, CUP | d :C | nal Dimension (mm)
ONE (Bore Dia.)
UP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d :C0 | al Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------|-------------|--|---------------------|--------------------------|--------------|---|-----------| | M86648 A | d | 30.955 | B140 | HH221432 | d | 87.312 | B162 | | M86649 | d | 30.162 | B140 | HH221434 | d | 88.900 | B162 | | M88010 | D | 68.262 | B140,B142 | HH221440 | d | 95.250 | B164 | | M88043 | d | 30.162 | B140 | HH221442 | d | 98.425 | B164 | | M88046 | d | 31.750 | B140 | HH221447 | d | 99.982 | B164 | | M88048 | d | 33.338 | B142 | HH221449 | d | 101.600 | B166 | | HM88510 | D | 73.025 | B140,B142 | HH224310 | D | 212.725 | B166 | | HM88542 | d | 31.750 | B140 | HH224335 | d | 101.600 | B166 | | HM88547 | d | 33.338 | B142 | HH224340 | d | 107.950 | B166 | | HM88610 | D | 72.233 | B138,B140,B142,B144 | HH224346 | d | 114.300 | B166 | | HM88630 | d | 25.400 | B138 | M224710 | D | 174.625 | B168 | | HM88638 | d | 32.000 | B140 | M224748 | d | 120.000 | B168 | | HM88648 | d | 35.717 | B144 | LL225710 | D | 165.895 | B168 | | HM88649 | d | 34.925 | B142 | LL225749 | d | 127.000 | B168 | | HM89410 | D | 76.200 | B142,B144 | HM231110 | D | 236.538 | B168 | | HM89411 | D | 76.200 | B142 | HM231140 | d | 146.050 | B168 | | HM89443 | d | 33.338 | B142 | M236810 | D | 260.350 | B170 | | HM89444 | d | 33.338 | B142 | M236849 | d | 177.800 | B170 | | HM89446 | d | 34.925 | B142 | LM300811 | D | 68.000 | B144 | | HM89446A | d | 34.925 | B142 | LM300849 | d | 41.000 | B144 | | HM89449 | d | 36.512 | B144 | L305610 | D | 80.962 | B150 | | 99100 | D | 254.000 | B168 | L305649 | d | 50.800 | B150 | | 99550 | d | 139.700 | B168 | JH307710 | D | 110.000 | B152 | | 99575 | d | 146.050 | B168 | JH307749 | d | 55.000 | B152 | | 99587 | d | 149.225 | B168 | JHM318410 | D | 155.000 | B162 | | 99600 | d | 152.400 | B168 | JHM318448 | d | 90.000 | B162 | | LM102910 | D | 73.431 | B148 | L327210 | D | 177.008 | B168 | | LM102949 | d | 45.242 | B148 | L327249 | d | 133.350 | B168 | | JLM104910 | D | 82.000 | B150 | LM328410 | D | 187.325 | B168 | | LM104911 | D | 82.550 | B150 | LM328448 | d | 139.700 | B168 | | LM104911A | D | 82.550 | B150 | H414210 | D | 136.525 | B156,B158 | | LM104912 | D | 82.931 | B150 | H414245 | d | 68.262 | B156 | | LM104947A | d | 50.000 | B150 | H414249 | d | 71.438 | B158 | | JLM104948 | d | 50.000 | B150 | JH415610 | D | 145.000 | B158 | | LM104949 | d | 50.800 | B150 | JH415647 | d | 75.000 | B158 | | M201011 | D | 73.025 | B144 | LM501310 | D | 73.431 | B144 | | M201047 | d | 39.688 | B144 | LM501314 | D | 73.431 | B144 | | JM205110 | D | 90.000 | B150 | LM501349 | d | 41.275 | B144 | | JM205149 | d | 50.000 | B150 | LM503310 | D | 75.000 | B148 | | JM207010 | D | 95.000 | B152 | LM503349 | d | 46.000 | B148 | | JM207049 | d | 55.000 | B152 | HH506310 | D | 114.300 | B150 | | JH211710 | D | 120.000 | B156 | HH506348 | d | 49.212 | B150 | | JH211749 | d | 65.000 | B156 | JLM506810 | D | 90.000 | B152 | | HM212010 | D | 122.238 | B154,B156 | JLM506849 | d | 55.000 | B152 | | HM212011 | D | 122.238 | B154,B156 | JLM508710 | D | 95.000 | B154 | | HM212044 | d | 60.325 | B154 | JLM508748 | d | 60.000 | B154 | | HM212046 | d | 63.500 | B154 | JM511910 | D | 110.000 | B156 | | HM212047 | d | 63.500 | B154 | JM511946 | d | 65.000 | B156 | | HM212049 | d | 66.675 | B156 | JM515610 | D | 130.000 | B160 | | JH217210 | D | 150.000 | B162 | JM515649 | d | 80.000 | B160 | | JH217249 | d | 85.000 | B162 | HM516410 | D | 133.350 | B160 | | HM218210 | D | 147.000 | B162 | HM516448 | d | 82.550 | B160 | | HM218248 | d | 90.000 | B162 | JHM516810 | D | 140.000 | B162 | | HH221410 | D | 190.500 | B162,B164,B166 | JHM516849 | d | 85.000 | B162 | | | None | I.D' | | |--------------------------|--------------|--|----------------| | Bearing No.
CONE, CUP | d :C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | | HM518410 | D | 152.400 | B162 | | HM518445 | d | 88.900 | B162 | | LM522510 | D | 159.987 | B166 | | LM522546 | d | 107.950 | B166 | | LM522548 | d | 109.987 | B166 | | LM522549 | d | 109.987 | B166 | | JHM522610 | D | 180.000 | B166 | | JHM522649 | d | 110.000 | B166 | | JHM534110 | D | 230.000 | B170 | | JHM534149 | d | 170.000 | B170 | | LM603011 | D | 77.788 | B148 | | LM603012 | D | 77.788 | B148 | | LM603049 | d | 45.242 | B148 | | L610510 | D | 94.458 | B154 | | L610549 | d | 63.500 | B154 | | JM612910 | D | 115.000 | B158 | | JM612949 | d | 70.000 | B158 | | LM613410 | D | 112.712 | B156 | | LM613449 | d | 69.850 | B156 | | HM617010 | D | 142.138 | B162 | | HM617049 | d | 85.725 | B162 | | L623110 | D | 152.400 | B166 | | L623149 | d | 114.300 | B166 | | JLM710910 | D | 105.000 | B156 | | JLM710949 | d | 65.000 | B156 | | JLM714110 | D | 115.000 | B158 | | JLM714149 | d | 75.000 | B158 | | JM714210 | D | 120.000 | B158 | | JM714249 | d | 75.000 | B158 | | H715311 | D | 136.525 | B154,B156,B158 | | H715334 | d | 61.912 | B154 | | H715340 | d | 65.088 | B156 | | H715341 | d | 66.675 | B156 | | H715343 | d | 68.262 | B156 | | H715345 | d | 71.438 | B158 | | JM716610 | D | 130.000 | B162 | | JM716648 | d | 85.000 | B162 | | JM716649 | d | 85.000 | B162 | | JM718110 | D | 145.000 | B162 | | JM718149 | d | 90.000 | B162 | | JM719113 | D | 150.000 | B164 | | JM719149 | d | 95.000 | B164 | | JM720210 | D | 155.000 | B164 | | JHM720210 | D | 160.000 | B164 | | JM720249 | d | 100.000 | B164 | | JHM720249 | d | 100.000 | B164 | | JL724314 | D | 170.000 | B168 | | JL724348 | d | 120.000 | B168 | | JL725316 | D | 175.000 | B168 | | JL725346 | d | 125.000 | B168 | | JM734410 | D | 240.000 | B170 | | JM734449 | d | 170.000 | B170 | | JM738210 | D | 260.000 | B170 | | JM738249 | d | 190.000 | B170 | | Bearing No.
CONE, CUP | d :C0 | al Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------|--------------|---|----------------| | HM801310 | D | 82.550 | B144 | | HM801346 | d | 38.100 | B144 | | M802011 | D | 82.550 | B146 | | M802048 | d | 41.275 | B146 | | HM803110 | D | 88.900 | B146 | | HM803145 | d | 41.275 | B146 | | HM803146 | d | 41.275 | B146 | | HM803149 | d | 44.450 | B146 | | M804010 | D | 88.900 | B148 | | M804049 | d | 47.625 | B148 | | HM804810 | D | 95.250 | B146,B148,B150 | | HM804840 | d | 41.275 | B146 | | HM804843 | d | 44.450 | B148 | | HM804846 | d | 47.625 | B148 | | HM804848 | d | 48.412 | B150 | | HM804849 | d | 48.412 | B150 | | HM807010 | D | 104.775 | B148,B150 | | HM807011 | D | 104.775 | B150 | | JHM807012 | D | 105.000 | B150 | | HM807040 | d | 44.450 | B148 | | HM807044 | d | 49.212 | B150 | | JHM807045 | d | 50.000 | B150 | | HM807046 | d | 50.800 | B150 | | JLM813010 | D | 110.000 | B158 | | JLM813049 | d | 70.000 | B158 | | JLM820012 | D | 150.000 | B164 | | JLM820048 | d | 100.000 | B164 | | JM822010 | D | 165.000 | B166 | | JM822049 | d | 110.000 | B166 | | JHM840410 | D | 300.000 | B170 | | JHM840449 | d | 200.000 | B170 | | HM903210 | D | 95.250 | B148 | | HM903247 | d | 44.450 | B148 | | HM903249 | d | 44.450 | B148 | | HM911210 | D | 130.175 | B152 | | HM911242 | d | 53.975 | B152 | | H913810 | D | 146.050 | B154,B156 | | H913842 | d | 61.912 | B154 | | H913849 | d | 69.850 | B156 | Worldwide Sales Offices P: Phone F: Fax : Head Office **NSK LTD.-HEADQUARTERS, TOKYO, JAPAN** Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan INDUSTRIAL MACHINERY
BUSINESS DIVISION-HEADQUARTERS P: +81-3-3779-7227 F: +81-3-3779-7644 AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS P: +81-3-3779-7189 F: +81-3-3779-7917 Africa South Africa: NSK SOUTH AFRICA (PTY) LTD. JOHANNESBURG 25 Galaxy Avenue, Linbro Business Park, Sandton, Gauteng, P.O. Box 1157, Kelvin, 2054, South Africa P: +27-11-458-3600 F: +27-11-458-3608 Asia and Oceania NSK AUSTRALIA PTY. LTD. MELBOURNE A 11 Dalmore Drive, Scoresby, Victoria 3179, Australia P: +61-3-9765-4400 F: +61-3-9764-8304 SYDNEY 24-28 River Road West, Parramatta, New South Wales 2150, Australia P: +61-2-8843-8100 F: +61-2-9893-8406 RRISBANE 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia P: +61-7-3347-2600 F: +61-7-3345-5376 PERTH Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia P: +61-8-9256-5000 F: +61-8-9256-1044 New Zealand: NSK NEW ZEALAND LTD. AUCKLAND 3 Te Apunga Place, Mt. Wellington, Auckland, New Zealand P: +64-9-276-4992 F: +64-9-276-4082 China: NSK HONG KONG LTD. HONG KONG & Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T. Kowloon, Hong Kong, China P: +852-2739-9933 F: +852-2739-9323 Boom 624-626 6/E Kerry Center Benminnan Board Shenzhen Guangdong China SHENZHEN P: +86-755-25904886 F: +86-755-25904883 NSK (SHANGHAI) TRADING CO. LTD. JIANGSU No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +86-512-5796-3000 F: +86-512-5796-3300 NSK (CHINA) INVESTMENT CO., LTD. JIANGSU \$ No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +86-512-5796-3000 F: +86-512-5796-3300 Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District, BEIJING Beijing, China (100004) P: +86-10-6590-8161 F: +86-10-6590-8166 Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District, TIAN JIN Tianiin, China (300050) P: +86-22-8319-5030 F: +86-22-8319-5033 CHANGCHUN Room 1001, Building A, Zhongyin Building, 727 Xi'an Road, Changchun, Jilin, China (130061) P: +86-431-8898-8682 F: +86-431-8898-8670 SHENYANG Room 1101, China Resources Building, No. 286 Qingnian Street, Heping District, Shenyang Liaoning, China (110004) P: +86-24-2334-2868 F: +86-24-2334-2058 DALIAN Room 1805 Xiwang Tower, No.136 Zhongshan Road, Zhongshan District, Dalian, Liaoning, China (116001) P: +86-411-8800-8168 F: +86-411-8800-8160 NANJING Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Naniing, Jiangsu, China (210029) P: +86-25-8472-6671 F: +86-25-8472-6687 Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road, FUZHOU Fuzhou, China (350009) P: +86-591-8380-1030 F: +86-591-8380-1225 Room 2108, New World International Trade Tower I, No.568 Jianshe Road, Wuhan, WUHAN Hubei, China (430000) P: ±86-27-8556-9630 F: ±86-27-8556-9615 OINGDAO Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District, Qingdao, Shandong, China (266071) P: +86-532-5568-3877 F: +86-532-5568-3876 GUANGZHOU Room 2302, TaiKoo Hui Tower 1, No.385 Tianhe Road, Tianhe District, Guangzhou, China (510620) P: +86-20-3817-7800 F: +86-20-3786-4501 CHANGSHA Room 1048, 10/F, Zhongtian Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005) P: ±86-731-8571-3100 F: ±86-731-8571-3255 LUOYANG Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003) P: +86-379-6069-6188 F: +86-379-6069-6180 MAIIX Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi, China (710068) P: +86-29-8765-1896 F: +86-29-8765-1895 CHONGOING Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonging China (400039) P: +86-23-6806-5310 F: +86-23-6806-5292 CHENGDU Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041) P: +86-28-8528-3680 F: +86-28-8528-3690 NSK CHINA SALES CO., LTD. JIANGSU No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: ±86-512-5796-3000 F: ±86-512-5796-3300 India: NSK INDIA SALES CO.PVT.LTD. 6th Floor, Bannari Amman Towers, No.29 Dr. Radhakrishnan Salai, Mylapore CHENNAI ☆ Chennai-600 004 Tamil Nadu India P: +91-44-2847-9600 F: +91-44-2847-9601 GURGAON Unit No-202, 2nd Floor, Block-A, Iris Tech Park, Sector-48, Sohna Road, Gurgaon-122018, Harvana, India P: +91-124-4104-530 F: +91-124-4104-532 321, 'A' Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (East), Mumbai MIIMBAI -400 093 India P: +91-22-2838-7787 F: +91-22-2838-5191 Indonesia: PT. NSK INDONESIA Summitmas II. 6th Floor . II. Jend Sudirman Kay. 61-62 Jakarta 12190. Indonesia JAKARTA P: +62-21-252-3458 F: +62-21-252-3223 Korea NSK KORFA CO. LTD. SEOUL Posco Center (West Wing) 9F. 892, Daechi-4Dong, Kangnam-Ku, Seoul, 135-777, Korea P: +82-2-3287-0300 F: +82-2-3287-0345 Malaysia: NSK BEARINGS (MALAYSIA) SDN. BHD. SHAH ALAM A No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park, 40150 Shah Alam, Selangor, Malaysia P: +60-3-7803-8859 F: +60-3-7806-5982 PRAI No.36, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia P: +60-4-3902275 F: +60-4-3991830 JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia P: +60-7-3546290 F: +60-7-3546291 IPOH Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia P: +60-5-2555000 F: +60-5-2553373 Philippines NSK REPRESENTATIVE OFFICE 8th Floor The Salcedo Towers 169 H.V. dela Costa St., MANII A Salcedo Village Makati City, Philippines 1227 P: +63-2-893-9543 F: +63-2-893-9173 Singapore: NSK INTERNATIONAL (SINGAPORE) PTE LTD. 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: +65-6496-8000 F: +65-6250-5845 NSK SINGAPORE (PRIVATE) LTD. 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 SINGAPORE P: +65-6496-8000 F: +65-6250-5845 TAIWAN NSK PRECISION CO., LTD. 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan R.O.C. TAIPEI ☆ P: +886-2-2509-3305 F: +886-2-2509-1393 TAICHUNG 107-7, Sec. 3, Wen Xing Rd., Taichung City 407, Taiwan R.O.C. P: +886-4-2311-7978 F: +886-4-2311-2627 TAINAN 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, Taiwan R.O.C. P: ±886-6-505-5861 F: ±886-6-505-5061 TAIWAN NSK TECHNOLOGY CO., LTD. TAIPEI 12 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan R.O.C. P: +886-2-2509-3305 F: +886-2-2509-1393 TAICHLING 10F-3, No.925, Sec.4, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan B O C P: +886-4-2358-2945 F: +886-4-2358-7682 TAINAN 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, Taiwan R.O.C. P: +886-6-505-5861 F: +886-6-505-5061 Thailand: NSK BEARINGS (THAILAND) CO., LTD. BANGKOK 26 Soi Onnuch 55/1 Prayet Subdistrict, Prayet District, Bangkok 10250, Thailand P: +66-2320-2555 F: +66-2320-2826 Vietnam NSK VIETNAM CO., LTD. Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District, Hanoi, Vietnam P: +84-4-3955-0159 F: +84-4-3955-0158 NSK REPRESENTATIVE OFFICE HANOI HO CHI MINH CITY Suite 307, Metropolitan Building, 235 Dong Khoi Street, District 1.HCMC, Vietnam P: +84-8-3822-7907 F: +84-8-3822-7910 Worldwide Sales Offices P: Phone F: Fax x: Head Office Brazil: NSK BRASIL LTDA. 30150-311 NSK RODAMIENTOS MEXICANA, S.A. DE C.V. Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020 P: +55-11-3269-4786 F: +55-11-3269-4720 P: +55-31-3274-2591 F: +55-31-3273-4408 P: +55-47-3422-5445 F: +55-47-3422-2817 P: +55-51-3222-1324 F: +55-51-3222-2599 P: +55-81-3326-3781 F: +55-81-3326-5047 P: +51-1-652-3372 F: +51-1-638-0555 MEXICO CITY & Av. Presidente Juarez No 2007 Lote 5. Col. San Jeronimo Tepetlacalco. Tlalnepantla, Estado de Mexico, Mexico, C.P.54090 Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267 P: +52-55-3682-2900 F: +52-55-3682-2937 P: +52-81-8000-7300 F: +52-81-8000-7095 BELO HORIZONTE Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG. Brazil PORTO ALEGRE Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001 Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250 Av. Caminos del Inca 670. Ofic : # 402. Santiago del Surco. Lima. Perú Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa SAO PAULO 🌣 JOINVILLE RECIFE Doru TIMA Mexico MONTERREY NSK PERU S.A.C. #### Europe United Kinadom NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) Belmont Place, Belmont Road, Majdenhead, Berkshire SL6 6TB, U.K. MAIDENHEAD P: +44-1628-509-800 F: +44-1628-509-808 NSK UK LTD. Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. NEWARK France NSK FRANCES AS Quartier de l'Europe, 2 Bue Georges Guynemer, 78283 Guyancourt, France PARIS P: +33-1-30-57-39-39 F: +33-1-30-57-00-01 Germany NSK DEUTSCHLAND GMBH DUSSELDORF A Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290 Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany STUTTGART P: +49-711-79082-0 F: +49-711-79082-289 WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany P: +49-5361-27647-10 F: +49-5361-27647-70 Italy: NSK ITALIA S.P.A. MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy F: +39-299-025778 Netherlands: NSK EUROPEAN DISTRIBUTION CENTRE B.V. TILBURG De Kroonstraat 38, 5048 AP Tilburg, Netherlands P: +31-13-4647647 F: +31-13-4647648 Poland: NSK REPRESENTATIVE OFFICE WARSAW Ul. Migdalowa 4/73, 02-796, Warsaw, Poland P: +48-22-645-1525 F: +48-22-645-1529 Russia: NSK POLSKA SP. Z O.O. SAINT-PETERSBURG Office I 703, Bldg 29, 18th Line of Vasilievskiy Ostrov, Saint-Petersburg, Russia, 199178 NSK SPAIN S.A. C/Tarragona 161, 2a Planta, 08014, Barcelona, Spain BARCELONA NSK RULMANLARI ORTA DOGU TIC. LTD. STI. P: +34-93-433-5775 F: +34-93-433-5776 ISTANBUL 19 Mayis Mah. Ataturk Cad. Ulya Engin Is Mrk. 68/3 Kat:6 34736, Kozyatagi/Istanbul, Turkey P: +90-216-477-7111 F: +90-216-477-7174 IIAF NSK BEARINGS GULF TRADING CO. JAFZA View 19, Floor 24 Office 2/3 Jebel Ali Downtown, PO Box 262163, Dubai, UAE DUBA P: ±971-4-804-8200 F:
±971-4-884-7227 North and South America United States of America: NSK AMERICAS, INC. (AMERICAN HEADQUARTERS) 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511 NSK CORPORATION 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511 NSK PRECISION AMERICA, INC. 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. P: +1-317-738-5000 F: +1-317-738-5050 SAN JOSE 780 Montague Expressway, Suite 508, San Jose, California 95131, U.S.A. P: +1-408-944-9400 F: +1-408-944-9405 NSK LATIN AMERICA, INC. MIAM 2500 NW 107th Avenue, Suite 300, Miami, Florida 33172, U.S.A. P: +1-305-477-0605 F: +1-305-477-0377 NSK CANADA INC. 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4 TORONTO ☆ P: +1-905-890-0740 F: +1-800-800-2788 MONTREAL 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 P: +1-514-633-1220 F: +1-800-800-2788 VANCOUVER 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4 P: +1-877-994-6675 F: +1-800-800-2788 Argentina: NSK ARGENTINA SRI RUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Ruenos Aires-Argentina P: +54-11-4704-5100 F: +54-11-4704-0033 < As of June 2013> For the latest information, please refer to the NSK website. NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections. | Part A | 1.TYPES AND FEATURES OF ROLLING BEARINGS | Part B | BEARING HANDLING | |--------|--|--------|--| | | 2.SELECTION OF BEARING TYPES | | BEARING DAMAGE AND MEASURES (Bearing Doctor) | | | 3.SELECTION OF BEARING ARRANGEMENT | Part C | DEEP GROOVE BALL BEARINGS | | | 4.SELECTION OF BEARING SIZE | | EXTRA SMALL BALL BEARINGS AND MINIATURE BALL BEARINGS | | | 5.SPEEDS | | ANGULAR CONTACT BALL BEARINGS | | | 6.BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS | | SELF-ALIGNING BALL BEARINGS | | | 7.BEARING TOLERANCES | | CYLINDRICAL ROLLER BEARINGS | | | 8.FITS AND INTERNAL CLEARANCES | | TAPERED ROLLER BEARINGS | | | 9.PRELOAD | | SPHERICAL ROLLER BEARINGS | | | 10.FRICTION | | THRUST BEARINGS | | | 11.LUBRICATION | | NEEDLE ROLLER BEARINGS BALL BEARING UNITS / PLUMMER BLOCKS | | | 12.BEARING MATERIALS | | ACCESSORIES FOR ROLLING BEARINGS | | | 13.DESIGN OF SHAFTS AND HOUSINGS | Part D | INDUSTRY SOLUTIONS | | | | Part E | APPENDICES | # ROLLING BEARINGS for INDUSTRIAL MACHINERY CAT. No. E1103 ## Introduction to the Revised NSK Rolling Bearings Catalog (CAT.No.E1103) Thank you for your interest in this edition of our Rolling Bearings Catalog. Rolling bearings are vital components in improving the efficiency and reliability of machines, and as technology advances, the requirements of bearings become ever more challenging. NSK will celebrate its 100th anniversary in 2016. As a leading bearing manufacturer, we have continued to make breakthroughs in the research and development of bearings, alongside our customers, and have actively contributed to the advancement of society and the preservation of the environment. This catalog is a culmination of all our technological expertise acquired over our 100-year history, and is intended to provide you with all the information necessary to make your bearing selection, no matter the application. The catalog is divided into four parts, labelled A through E. Part A contains general information for bearing selection. Part B provides information on bearing handling. Part C lists product information relating to bearing type and dimensions, where you can also find information on our new High Performance Standard Bearings series (NSKHPS™). Part D covers industry-related product information. Lastly, part E provides information on appendices. We hope this catalog provides you with all the information you need to select the optimum bearing for your application. However, please don't hesitate to contact us should you require any assistance. NSK #### NSK Pages ## **CONTENTS** # Part A TECHNICAL INFORMATION | • | | MIONE IN ORIMATION | Pages | | | | Pages | |---|------|--|--------|----|------|--|--------| | 1 | TYF | PES AND FEATURES OF ROLLING | 1 4905 | | 6.1 | Boundary Dimensions and Dimensions | i ugos | | | BE/ | ARINGS | A 005 | | | of Snap Ring Grooves | A 104 | | | 1.1 | Design and Classification | A 006 | | 6.2 | Formulation of Bearing Numbers | A 120 | | | 1.2 | Characteristics of Rolling Bearings | A 006 | | | | | | | 1.3 | Contact Angle and Bearing Types | A 016 | 7 | BE | ARING TOLERANCES | A 125 | | | 1.4 | Types of Load on Bearings | | | 7.1 | Bearing Tolerance Standards | A 126 | | | | | | | 7.2 | Selection of Accuracy Classes | A 151 | | 2 | SEI | LECTION OF BEARING TYPES | A 019 | | | | | | | 2.1 | Bearing selection Procedure | A 020 | 8 | FI | TS AND INTERNAL CLEARANCES | A 153 | | | 2.2 | Allowable Bearing Space | A 022 | | 8.1 | Fits | | | | 2.3 | Load Capacity and Bearing Types | A 022 | | 8.2 | Bearing Internal Clearances | | | | 2.4 | Permissible Speed and Bearing Types $\cdot\cdot$ | A 022 | | 8.3 | Technical Data | A 176 | | | 2.5 | Misalignment of Inner/Outer Rings and | | | | | | | | | Bearing Types ····· | | 9 | | RELOAD | | | | 2.6 | Rigidity and Bearing Types | A 023 | | 9.1 | Purpose of Preload | | | | 2.7 | Noise and Torque of Various Bearing | | | 9.2 | Preloading Methods | | | | | Types ····· | A 023 | | 9.3 | Preload and Rigidity | A 192 | | | 2.8 | Running Accuracy and Bearing Types $\cdot\cdot$ | A 023 | | 9.4 | Selection of Preloading Method and | | | | 2.9 | Mounting and Dismounting of Various | | | | Amount of Preload ····· | | | | | Bearing Types | A 023 | | 9.5 | Amount of Preload ····· | | | | | | | | 9.6 | Technical Data | A 200 | | 3 | | LECTION OF BEARING | | | | | | | | | RANGEMENT | | 10 | | ICTION | | | | 3.1 | Fixed-End and Free-End Bearings | | | 10.1 | • | A 216 | | | 3.2 | Example of Bearing Arrangements | A 027 | | 10.2 | | | | | | | | | | Torque | | | 4 | | LECTION OF BEARING SIZE | | | 10.3 | Technical Data | A 216 | | | 4.1 | Bearing Life | | | | | | | | 4.2 | Basic Load Rating and Fatigue Life | | 11 | | IBRICATION | | | | 4.3 | Calculation of Bearing Loads | | | 11.1 | · Process of the second | | | | 4.4 | Equivalent Load | A 050 | | 11.2 | 3 | | | | 4.5 | Static Load Ratings and Static | | | 11.3 | | | | | | Equivalent Loads | | | 11.4 | Technical Data | A 240 | | | 4.6 | Examples of Bearing Calculations | A 054 | 40 | | ADINO MATERIALO | 4 0 40 | | | 4.7 | Bearing Type and Allowable Axial | 4.050 | 12 | | ARING MATERIALS | | | | 4.0 | Load | | | 12.1 | 9 9 | | | | 4.8 | Technical Data ····· | A 066 | | 400 | Elements | | | _ | 0.01 | reno. | A 007 | | 12.2 | • | A 245 | | 5 | | EEDS | | | 12.3 | · · | A 0.4C | | | 5.1 | Limiting Speed (Grease/Oil) | | | 10 4 | Housing Materials | | | | 5.2 | Thermal Reference Speed | | | 12.4 | Technical Data | A 248 | | | 5.3 | Limiting Speed (Mechanical) | | 40 | D. | CLON OF CHAFTS AND HOUSINGS | ۸ ۵۵۵ | | | 5.4 | Technical Data | A TUU | 13 | | SIGN OF SHAFTS AND HOUSINGS | A 269 | | c | D.C. | HINDARY DIMENSIONS AND IDENTIFYING | n | | 13.1 | | ۸ ۵70 | | 6 | | UNDARY DIMENSIONS AND IDENTIFYING MBERS FOR BEARINGS | | | 13.2 | and HousingsShoulder and Fillet Dimensions | | | | NU | MIDERS FUR DEARINGS | H 103 | | 13.2 | | | | | | | | | 10.0 | Dearing Jeais | 7 414 | #### Part B BEARING HANDLING AND MAINTENANCE | 1 | BE/ | ARING HANDLING | B 005 | |---|------|------------------------------------|-------| | | 1.1 | Precautions for Proper Handling of | | | | | Bearings | B 006 | | | 1.2 | Bearing Storage | B 006 | | | 1.3 | Mounting | B 006 | | | 1.4 | Operation Inspection | B 008 | | | 1.5 | Dismounting | B 011 | | | 1.6 | Inspection of Bearings | B 013 | | | 1.7 | Checking of Shaft and Housing | B 014 | | | 1.8 | Maintenance and Inspection | B 017 | | 2 | | ARING DAMAGE AND MEASURES | | | | (Be | earing Doctor) | B 021 | | | 2.1 | Bearing Damage | B 022 | | | 2.2 | Running Traces and Applied Loads | B 022 | | | 2.3 | Bearing Damage and Measures | B 024 | | | Appe | ndix : Bearing Diagnostic Chart | B 052 | # Part D INDUSTRY SOLUTIONS Pages | 1 | AIR TURBINE BEARINGS FOR DENTAL | |---|---------------------------------| | | HANDPIECES D 004 | | 2 | PUMPS & COMPRESSORS D 010 | | 3 | AGRICULTURAL MACHINERY D 026 | | 4 | CONSTRUCTION MACHINERY D 034 | | 5 | MINING MACHINERY D 040 | | 6 | RAILWAY ROLLING STOCK D 048 | | 7 | PAPERMAKING MACHINES D 066 | | 8 | WIND POWER INDUSTRY D 086 | | 9 | STEEL INDUSTRY D 094 | | | nrt E
PPENDICES E 001 | ## Part C BEARINGS TABLE | 1 | DEEP GROOVE BALL BEARINGS | C 005 | |----|---|-------| | 2 | EXTRA SMALL BALL BEARINGS AND | | | | MINIATURE BALL BEARINGS | C 053 | | 3 | ANGULAR CONTACT BALL BEARINGS | C 071 | | 4 | SELF-ALIGNING BALL BEARINGS | C 113 | | 5 | CYLINDRICAL ROLLER BEARINGS | C 123 | | 6 | TAPERED ROLLER BEARINGS | C 181 | | 7 | SPHERICAL ROLLER BEARINGS | C 257 | | 8 | THRUST BALL BEARINGS | C 295 | | 9 | THRUST CYLINDRICAL ROLLER | | | | BEARINGS | C 313 | | 10 | THRUST TAPARED ROLLER BEARINGS $\cdots \cdot \cdot$ | C 321 | | 11 | THRUST SPHERICAL ROLLER BEARINGS $\cdot\cdot$ | C 331 | | 12 | NEEDLE ROLLER BEARINGS | C 341 | | 13 | BALL BEARING UNITS | C 343 | | 14 | PLUMMER BLOCKS | C 345 | | 15 | ACCESSORIES FOR ROLLING BEARINGS $\cdot\cdot$ | C 347 | | | | | # TECHNICAL INFORMATION # Part A | TEC |
HNICAL INFORMATION | |-----|--| | 1. | TYPES AND FEATURES OF ROLLING BEARINGS A 005 | | 2. | SELECTION OF BEARING TYPES A 019 | | 3. | SELECTION OF BEARING ARRANGEMENT A 025 | | 4. | SELECTION OF BEARING SIZE A 030 | | 5. | SPEEDS | | 6. | BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS | | | FOR BEARINGS A 103 | | 7. | BEARING TOLERANCES A 125 | | 8. | FITS AND INTERNAL CLEARANCES A 153 | | 9. | PRELOAD | | 10. | FRICTION A 215 | | 11. | LUBRICATION A 227 | | 12. | BEARING MATERIALS A 243 | | 13. | DESIGN OF SHAFTS AND HOUSINGS A 269 | | I. TY | PES AND FEATURES OF ROLLING BEARINGS | |-------|---| | 1.1 | Design and Classification A 006 | | 1.2 | Characteristics of Rolling Bearings A 006 | | 1.3 | Contact Angle and Bearing Types A 016 | | 1.4 | Types of Load on Bearings A 017 | ### 1.TYPES AND FEATURES OF ROLLING BEARINGS #### 1.1 Design and Classification Rolling bearings generally consist of two rings, rolling elements, and a cage, and they are classified into radial bearings or thrust bearings depending on the direction of the main load. In addition, depending on the type of rolling elements, they are classified into ball bearings or roller bearings, and they are further segregated by differences in their design or specific purpose. The most common bearing types and name of bearing parts are shown in Fig.1.1, and a general classification of rolling bearings is shown in Fig. 1.2. #### 1.2 Characteristics of Rolling Bearings Compared with plain bearings, rolling bearings have the following major advantages: - (1) Their starting torque or friction is low and the difference between the starting torque and running torque is small. - (2) With the advancement of worldwide standardization, rolling bearings are internationally available and interchangeable. - (3) Maintenance, replacement, and inspection are easy because the structure surrounding rolling bearings is simple. - (4) Many rolling bearings are capable of taking both radial and axial loads simultaneously or independently. - (5) Rolling bearings can be used under a wide range of temperatures. - (6) Rolling bearings can be preloaded to produce a negative clearance and achieve greater rigidity. Furthermore, different types of rolling bearings have their own individual advantages. The features of the most common rolling bearings are described on Pages A010 to A013 and in Table 1.1 (Pages A014 and A015). Single-Row Deep Groove Ball Bearing Single-Row Angular Contact Ball Bearing Cylindrical Roller Bearing Tapered Roller Bearing Spherical Roller Bearing Fig. 1.1 Name of Bearing Parts A 006 A 008 #### Single-Row Deep Groove **Ball Bearings** Single-row deep groove ball bearings are the most common type of rolling bearings. Their use is very widespread. The raceway grooves on both the inner and outer rings have circular arcs of slightly larger radius than that of the balls. In addition to radial loads, axial loads can be imposed in either direction. Because of their low torque, they are highly suitable for applications where high speeds and low power loss are required. In addition to open type bearings, these bearings often have steel shields or rubber seals installed on one or both sides and are prelubricated with grease. Also, snap rings are sometimes used on the periphery. As to cages, pressed steel ones are the most common. #### Magneto Bearings The inner groove of magneto bearings is a little shallower than that of deep groove bearings. Since the outer ring has a shoulder on only one side, the outer ring may be removed. This is often advantageous for mounting. In general, two such bearings are used in duplex pairs. Magneto bearings are small bearings with a bore diameter of 4 to 20 mm and are mainly used for small magnetos, gyroscopes, instruments, etc. Pressed brass cages are generally used. ### Single-Row **Ball Bearings** Individual bearings of this type are capable of taking radial loads and also axial loads in one Angular Contact direction. Four contact angles of 15°, 25°, 30°, and 40° are available. The larger the contact angle, the higher the axial load capacity. For high speed operation, however, the smaller contact angles are preferred. Usually, two bearings are used in duplex pairs, and the clearance between them must be adjusted properly. > Pressed-steel cages are commonly used, however, for high precision bearings with a contact angle less than 30°, polyamide resin cages are often used. Duplex Bearings A combination of two radial bearings is called a duplex pair. Usually, they are formed using angular contact ball bearings or tapered roller bearings. Possible combinations include face-to-face, which have the outer ring faces together (type DF), back-to-back (type DB), or both front faces in the same direction (type DT). DF and DB duplex bearings are capable of taking radial loads and axial loads in both direction. Type DT is used when there is a strong axial load in one direction and it is necessary to impose the load equally on each bearing. ### Double-Row **Ball Bearings** #### Four-Point Contact **Ball Bearings** The inner and outer rings of four-point contact ball bearings are separable because the inner ring is split in a radial plane. They can take axial loads from either direction. The balls have a contact angle of 35° with each ring. Just one bearing of this type can replace a combination of face-to-face or back-to-back angular contact bearings. Machined brass cages are generally used. #### Self-Alianina **Ball Bearings** The inner ring of this type of bearing has two raceways and the outer ring has a single spherical raceway with its center of curvature coincident with the bearing axis. Therefore, the axis of the inner ring, balls, and cage can deflect to some extent around the bearing center. Consequently, minor angular misalignment of the shaft and housing caused by machining or mounting error is automatically corrected. This type of bearing often has a tapered bore for mounting using an adapter sleeve. # Cylindrical In bearings of this type, the cylindrical rollers are in linear contact with the raceways. They have a **Roller Bearings** high radial load capacity and are suitable for high speeds. There are different types designated NU, NJ, NUP, N, NF for single-row bearings, and NNU, NN for double-row bearings depending on the design or absence of side ribs. The outer and inner rings of all types are separable. Pressed steel or machined brass cages are generally used, but sometimes molded polyamide cages are also used. A 010 A 011 #### Needle Roller Bearings Needle roller bearings contain many slender rollers with a length 3 to 10 times their diameter. As a result, the ratio of the bearing outside diameter to the inscribed circle diameter is small, and they have a rather high radial load capacity. There are numerous types available, and many have no inner rings. The drawn-cup type has a pressed steel outer ring and the solid type has a machined outer ring. There are also cage and roller assemblies without rings. Most bearings have pressed steel cages, but some are without cages. # **Tapered** Bearings of this type use conical rollers guided by a back-face rib on the cone. These bearings Roller Bearings are capable of taking high radial loads and also axial loads in one direction. In the HR series, the rollers are increased in both size and number giving it an even higher load capacity. They are generally mounted in pairs in a manner similar to single-row angular contact ball bearings. In this case, the proper internal clearance can be obtained by adjusting the axial distance between the cones or cups of the two opposed bearings. Since they are separable, the cone assemblies and cups can be mounted independently. Depending upon the contact angle, tapered roller bearings are divided into three types called the normal angle, medium angle, and steep angle. Double-row and four-row tapered roller bearings are also available. Pressed steel cages are generally used. #### Spherical Roller Bearings These bearings have barrel-shaped rollers between the inner ring, which has two raceways, and the outer ring which has one spherical raceway. Since the center of curvature of the outer ring raceway surface coincides with the bearing axis, they are self-aligning in a manner similar to that of self-aligning ball bearings. Therefore, if there is deflection of the shaft or housing or misalignment of their axes, it is automatically corrected so excessive force is not applied to the Spherical roller bearings can take, not only heavy radial loads, but also some axial loads in either direction. They have excellent radial load-carrying capacity and are suitable for use where there are heavy or impact loads. Some bearings have tapered bores and may be mounted directly on tapered shafts or cylindrical shafts using adapters or withdrawal sleeves. Pressed steel and machined brass cages are used. #### Single-Direction Thrust Ball Bearings Single-direction thrust ball bearings are composed of washer-like bearing rings with raceway grooves. The ring attached to the shaft is called the shaft washer (or inner ring) while that attached to the housing is called the housing washer(or outer ring). In double-direction thrust ball bearings, there are three rings with the middle one (center ring) Double-Direction being fixed to the shaft. ### Thrust Ball Bearings There are also thrust ball bearings with an aligning seat washer beneath the housing washer in order to compensate for shaft misalignment or mounting error. Pressed steel cages are usually used in the smaller bearings and machined cages in the larger Spherical Thrust These bearings have a spherical raceway in the housing washer and barrel-shaped rollers obliquely Roller Bearings arranged around it. Since the raceway in the housing washer in spherical, these bearings are selfaligning. They have a very high axial load
capacity and are capable of taking moderate radial loads when an axial load is applied. Pressed steel cages or machined brass cages are usually used. A 012 A 013 Table 1. 1 Types and Characteristics | | Bearing
Types | Deep
Groove
Ball
Bearings | Magneto
Bearings | Angular
Contact
Ball
Bearings | Double-Row
Angular
Contact
Ball
Bearings | Duplex
Angular
Contact
Ball
Bearings | Four-Point
Contact
Ball
Bearings | Self-
Aligning
Ball
Bearings | Cylindrical
Roller
Bearings | Double-Row
Cylindrical
Roller
Bearings | Cylindrical
Roller
Bearings
with
Single Rib | |---------------|-------------------------------|------------------------------------|---|---|--|--|---|---------------------------------------|-----------------------------------|---|---| | Fe | eatures | | | | | Ø Ø | 翔 | | | | | | oity | Radial Loads | | 0 | 0 | 0 | <u></u> | 0 | | <u></u> | 0 | <u></u> | | Load Capacity | Axial Loads | \bigcirc | 0 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | $\overset{\longleftarrow}{\circ}$ | × | × | \bigcirc | | 9 | Combined
Loads | \bigcirc | 0 | 0 | 0 | \odot | \bigcirc | 0 | × | × | | | ŀ | High Speeds | | 0 | (a) | \bigcirc | \odot | 0 | \odot | (| 0 | \bigcirc | | ŀ | High Accuracy | | | 0 | | 0 | \odot | | | 0 | | | | Low Noise and
Torque | | | | | | | | \odot | | | | i | Rigidity | | | | | \odot | | | \odot | 0 | \odot | | Ī | Angular
Misalignment | \odot | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | (| Self-Aligning
Capability | | | | | | | ☆ | | | | | ļ | Ring
Separability | | ☆ | | | | ☆ | | ☆ | ☆ | ☆ | | | Fixed-End
Bearing | ☆ | | | ☆ | ☆ | ☆ | ☆ | | | | | F | Free-End
Bearing | * | | | * | * | * | * | ☆ | ☆ | | | i | Tapered Bore
in Inner Ring | | | | | | | ☆ | | ☆ | | | I | Remarks | | Two bearings are usually mounted in opposition. | Contact angles of 15°, 25° 30°, and 40°. Two bearings are usually mounted in opposition. Clearance adjustment is necessary. | | Combination of DF and DT pairs is possible, but use on free-end is not possible. | Contact angle of 35° | | Including N type | Including NNU type | Including NF type | | ŀ | Page No. | C005
C053 | C005
C050 | C072 | C072
C106 | C072 | C072
C108 | C114 | C124 | C124
C158 | C124 | | Excellent | | ⊙ Go | ood | O Fair | 0 1 | Poor × | Impossible | 10 →
00 | ne direction
nly | ←→ Tw | o directions | #### of Rolling Bearings | Cylindrical
Roller
Bearings
with Thrust
Collars | Needle
Roller
Bearings | Tapered
Roller
Bearings | Double-and
Multiple-Row
Tapered
Roller
Bearings | Spherical
Roller
Bearings | Thrust
Ball
Bearings | Thrust Ball
Bearings
with
Aligning
Seat | Double-
Direction
Angular
Contact
Thrust
Ball | Thrust
Cylindrical
Roller
Bearings | Thrust
Tapered
Roller
Bearings | Thrust
Spherical
Roller
Bearings | Page No. | |---|------------------------------|--|---|---------------------------------|----------------------------|---|--|---|---|---|--| | | | A | | | FA | RA | Bearings | | H | | T ugo 110. | | \bigcirc | 0 | 0 | 0 | 0 | × | × | × | × | × | 0 | _ | | \bigcirc | × | \bigcirc | $\bigcirc \downarrow$ | | | \bigcirc | \bigcirc | (i) | (i) | (i) | _ | | | × | 0 | | \odot | × | × | × | × | × | 0 | _ | | \odot | 0 | | | \bigcirc | × | × | | 0 | 0 | 0 | A022
A098 | | | | 0 | | | \odot | | 0 | | | | A023
A126
A151 | | | | | | | | | | | | | A023 | | \odot | 0 | 0 | 0 | | | | \odot | 0 | 0 | | A023
A192 | | | 0 | \bigcirc | 0 | <u></u> | × | (a) | × | × | × | (| A022
Blue pages of
each brg.
type | | | | | | ☆ | | ☆ | | | | ☆ | A022 | | ☆ | ☆ | ☆ | ☆ | | ☆ | ☆ | ☆ | ☆ | ☆ | ☆ | A023
A024 | | ☆ | | | ☆ | ☆ | | | | | | | A026 to
A029 | | | ☆ | | * | * | | | | | | | A026 to
A029 | | | | | | ☆ | | | | | | | A150
B008
B012 | | Including NUP type | | Two bearings are usually mounted in opposition. Clearance adjustment is necessary. | KH, KV types are
also available but
use on free-end is
impossible. | | | | | Including needle
roller thrust bearings | | To be used with oil
lubrication | | | C124 | C341 | C182 | C182
C246 | C258 | C296 | C296 | _ | C314 | C322 | C332 | | [☆] Applicable ★ Applicable, but it is necessary to allow shaft contraction/elongation at fitting surfaces of bearings. ### 1.3 Contact Angle and Bearing Types The contact angle (α) refers to the angle between a vertical plane of the rotation axis of the bearing and a straight line between the points where the rolling element comes in contact with the inner ring raceway and outer ring raceway. Radial bearings and thrust bearings are classified depending on the size of the contact angle. Figure 1.3 shows the relation between contact angle and loading direction on the bearing. Radial bearing α : Less than 45° (A primarily radial load is applied.) Thrust bearing α : Over 45° (A primarily axial load is applied.) Fig. 1.3 Contact Angle α ### 1.4 Types of Load on Bearings An example deep groove ball bearing is shown. Figure 1.4 shows the types of the load applied to a rolling bearing. - (a) Radial load (b) Axial load - (c) Combined radial and axial load - (d) Moment load It is important to select the optimum bearing type according to the type and magnitude of the load. Fig. 1.4 Types of Load | 2. SE | LECTION OF BEARING TYPES | |-------|---| | 2.1 | Bearing Selection Procedure A 020 | | | | | 2.2 | Allowable Bearing SpaceA 022 | | | | | 2.3 | Load Capacity and Bearing TypesA 022 | | | | | 2.4 | Permissible Speed and Bearing TypesA 022 | | | | | 2.5 | Misalignment of Inner/Outer Rings and Bearing Types A 022 | | | | | 2.6 | Rigidity and Bearing Types A 023 | | 0.7 | Noise and Tayrus of Various Dearing Types | | 2.7 | Noise and Torque of Various Bearing Types A 023 | | 2.8 | Running Accuracy and Bearing Types A 023 | | 2.0 | Humming Accuracy and Dearing TypesA 023 | | 2.9 | Mounting and Dismounting of Various Bearing Types A 023 | | | | # 2. SELECTION OF BEARING TYPES #### 2.1 Bearing Selection Procedure The number of applications for rolling bearings is almost countless and the operating conditions and environments also vary greatly. In addition, the diversity of operating conditions and bearing requirements continue to grow with the rapid advancement of technology. Therefore, it is necessary to study bearings carefully from many angles to select the best one from the thousands of types and sizes available. Usually, a bearing type is provisionally chosen considering the operating conditions, mounting arrangement, ease of mounting in the machine, allowable space, cost, availability, and other factors. Then the size of the bearing is chosen to satisfy the desired life requirement. When doing this, in addition to fatigue life, it is necessary to consider grease life, noise and vibration, wear, and other factors. There is no fixed procedure for selecting bearings. It is good to investigate experience with similar applications and studies relevant to any special requirements for your specific application. When selecting bearings for new machines, unusual operating conditions, or harsh environments, please consult with NSK. The following diagram (Fig.2.1) shows an example of the bearing selection procedure. Fig. 2.1 Flow Chart for Selection of Rolling Bearings A 020 #### 2.2 Allowable Bearing Space The allowable space for a rolling bearing and its adjacent parts is generally limited so the type and size of the bearing must be selected within such limits. In most cases, the shaft diameter is fixed first by the machine design; therefore, the bearing is often selected based on its bore size. For rolling bearings, there are numerous standardized dimension series and types, and the selection of the optimum bearing from among them is necessary. Fig. 2.2 shows the dimension series of radial bearings and corresponding bearing types. #### 2.3 Load Capacity and Bearing Types The axial load carrying capacity of a bearing is closely related to the radial load capacity (see Page A032) in a manner that depends on the bearing design as shown in Fig. 2.3. This figure makes it clear that when bearings of the same dimension series are compared, roller bearings have a higher load capacity than ball bearings and are superior if shock loads exist. #### 2.4 Permissible Speed and Bearing Types The maximum speed of rolling bearings varies depending, not only the type of bearing, but also its size, type of cage, loads, lubricating method, heat dissipation, etc. Assuming the common oil bath lubrication method, the bearing types are roughly ranked from higher speed to lower as shown in Fig. 2.4. # 2.5 Misalignment of Inner/Outer Rings and Bearing Types Because of deflection of a shaft caused by applied loads, dimensional error of the shaft and housing, and mounting
errors, the inner and outer rings are slightly misaligned. The permissible misalignment varies depending on the bearing type and operating conditions, but usually it is a small angle less than 0.0012 radian (4'). When a large misalignment is expected, bearings having a self-aligning capability, such as self-aligning ball bearings, spherical roller bearings, and certain bearing units should be selected (Figs. 2.5 and 2.6). Fig. 2.2 Dimension Series of Radial Bearings Note(1) The bearings with ribs can take some axial loads. Fig. 2.3 Relative Load Capacities of Various Bearing Types Remarks → Oil bath lubrication ---> With special measures to increase speed limit Fig. 2.4 Relative Permissible Speeds of Various Bearing Types Permissible bearing misalignment is given at the beginning of the dimensional tables for each bearing type. Fig. 2.5 Permissible Misalignment of Spherical Roller Bearings Fig. 2.6 Permissible Misalignment of Ball Bearing Units | Bearing Types | Highest
accuracy
specified | Tolerance comparison of inner ring radial runout | |----------------------------------|----------------------------------|--| | | оростои | 1 2 3 4 5 | | Deep Groove Ball
Bearings | Class 2 | | | Angular Contact
Ball Bearings | Class 2 | | | Cylindrical Roller
Bearings | Class 2 | | | Tapered Roller
Bearings | Class 4 | | | Spherical Roller
Bearings | Normal | | Fig. 2.7 Relative Inner Ring Radial Runout of Highest Accuracy Class for Various Bearing Types #### 2.6 Rigidity and Bearing Types When loads are imposed on a rolling bearing, some elastic deformation occurs in the contact areas between the rolling elements and raceways. The rigidity of the bearing is determined by the ratio of bearing load to the amount of elastic deformation of the inner and outer rings and rolling elements. For the main spindles of machine tools, it is necessary to have high rigidity of the bearings together with the rest of the spindle. Consequently, since roller bearings are deformed less by load, they are more often selected than ball bearings. When extra high rigidity is required, bearings are given a preload, which means that they have a negative clearance. Angular contact ball bearings and tapered roller bearings are often preloaded. # 2.7 Noise and Torque of Various Bearing Types Since rolling bearings are manufactured with very high precision, noise and torque are minimal. For deep groove ball bearings and cylindrical roller bearings particularly, the noise level is sometimes specified depending on their purpose. For high precision miniature ball bearings, the starting torque is specified. Deep groove ball bearings are recommended for applications in which low noise and torque are required, such as motors and instruments. #### 2.8 Running Accuracy and Bearing Types For the main spindles of machine tools that require high running accuracy or high speed applications like superchargers, high precision bearings of Class 5, 4 or 2 are usually used. The running accuracy of rolling bearings is specified in various ways, and the specified accuracy classes vary depending on the bearing type. A comparison of the inner ring radial runout for the highest running accuracy specified for each bearing type is shown in Fig. 2.7. For applications requiring high running accuracy, deep groove ball bearings, angular contact ball bearings, and cylindrical roller bearings are most suitable. # 2.9 Mounting and Dismounting of Various Bearing Types Separable types of bearings like cylindrical roller bearings, needle roller bearings and tapered roller bearings are convenient for mounting and dismounting. For machines in which bearings are mounted and dismounted rather often for periodic inspection, these types of bearings are recommended. Also, self-aligning ball bearings and spherical roller bearings (small ones) with tapered bores can be mounted and dismounted relatively easily using sleeves. A 022 A 023 | 3. SE | LECTION OF BEARING ARRANGEMENT | |-------|---------------------------------------| | 3.1 | Fixed-End and Free-End Bearings A 026 | | 3.2 | Example of Bearing Arrangements A 022 | ### 3. SELECTION OF BEARING ARRANGEMENT In general, shafts are supported by only two bearings. When considering the bearing mounting arrangement, the following items must be investigated: - Expansion and contraction of the shaft caused by temperature variations. - (2) Ease of bearing mounting and dismounting. - (3) Misalignment of the inner and outer rings caused by deflection of the shaft or mounting error. - (4) Rigidity of the entire system including bearings and preloading method. - (5) Capability to sustain the loads at their proper positions and to transmit them. #### 3.1 Fixed-End and Free-End Bearings Among the bearings on a shaft, only one can be a "fixed-end" bearing that is used to fix the shaft axially. For this fixed-end bearing, a type which can carry both radial and axial loads must be selected. Bearings other than the fixed-end one must be "free-end" bearings that carry only radial loads to relieve the shaft's thermal elongation and contraction. If measures to relieve a shaft's thermal elongation and contraction are insufficient, abnormal axial loads are applied to the bearings, which can cause premature failure. For free-end bearings, cylindrical roller bearings or needle roller bearings with separable inner and outer rings that are free to move axially (NU, N types, etc.) are recommended. When these types are used, mounting and dismounting are also easier. When non-separable types are used as free-end bearings, usually the fit between the outer ring and housing is loose to allow axial movement of the running shaft together with the bearing. Sometimes, such elongation is relieved by a loose fitting between the inner ring and shaft. When the distance between the bearings is short and the influence of the shaft elongation and contraction is negligible, two opposed angular contact ball bearings or tapered roller bearings are used. The axial clearance (possible axial movement) after the mounting is adjusted using nuts or shims. #### **BEARING A** - Deep Groove Ball Bearing Matched Angular Contact Ball Bearing - Double-Row Angular Contact Ball Bearing - Self-Aligning Ball Bearing Cylindrical Roller Bearing with Ribs (NH, NUP types) - Double-Row Tapered Roller Bearing - ·Spherical Roller Bearing #### BEARING D,E(2) - · Angular Contact Ball Bearing · Tapered Roller Bearing - · Magneto Bearing - · Cylindrical Roller Bearing (NJ, NF types) #### BEARING B · Cylindrical Roller Bearing (NU, N types) · Needle Roller Bearing (NA type, etc.) #### BEARING C(1) - Deep Groove Ball Bearing Matched Angular Contact Ball Bearing (back-to-back) - Double-Row Angular Contact Ball Bearing - · Self-Aligning Ball Bearing · Double-Row Tapered - Roller Bearing (KBE type) Spherical Roller Bearing #### **BEARING F** Deep Groove Ball Bearing Self-Aligning Ball Bearing Spherical Roller Bearing Notes: (1) In the figure, shaft elongation and contraction are relieved at the outside surface of the outer ring, but sometimes it is done at the bore. (2) For each type, two bearings are used in opposition. The distinction between free-end and fixed-end bearings and some possible bearing mounting arrangements for various bearing types are shown in Fig. 3.1. #### 3.2 Example of Bearing Arrangements Some representative bearing mounting arrangements considering preload and rigidity of the entire assembly, shaft elongation and contraction, mounting error, etc. are shown in Table 3.1. Table 3. 1 Representative Bearing Mounting Arrangements and Application Examples | Bearing Arr | angements | | | |-------------|-----------|--|--| | Fixed-end | Free-end | Remarks | Application Examples | | | | This is a common arrangement in which abnormal loads are not applied to bearings even if the shaft expands or contracts. If the mounting error is small, this is suitable for high speeds. | Medium size electric motors, blowers | | | | OThis can withstand heavy loads and shock loads and can take some axial load. Every type of cylindrical roller bearing is separable. This is helpful when interference is necessary for both the inner and outer rings. | Traction motors for rolling stock | | | | This is used when loads are relatively heavy. For maximum rigidity of the fixed-end bearing, it is a back-to-back type. Both the shaft and housing must have high accuracy and the mounting error must be small. | Table rollers for steel mills, main spindles of lathes | | | | OThis is also suitable when interference is necessary for both the inner and outer rings. Heavy axial loads cannot be applied. | Calender rolls of paper making
machines, axles of diesel
locomotives | | | | This is suitable for high speeds and heavy radial loads. Moderate axial loads can also be applied. It is necessary to provide some clearance between the outer ring of the deep groove ball bearing and the housing bore in order to avoid subjecting it to radial loads. | Reduction gears in diesel locomotives | | | | | Continued on payt nego | Fig. 3.1 Bearing Mounting Arrangements and Bearing Types Continued on next page Table 3. 1 Representative Bearing Mounting Arrangements and Application Examples (cont'd) | Bearing Arrangements | | | |---
--|--| | Fixed-end Free-end | Remarks | Application Examples | | | This is the most common arrangement.It can sustain not only radial loads, but moderate axial loads also. | Double suction volute pumps, automotive transmissions | | | This is the most suitable arrangement when there is mounting error or shaft deflection. It is often used for general and industrial applications in which heavy loads are applied. | Speed reducers, table rollers
of steel mills, wheels for
overhead travelling cranes | | | This is suitable when there are rather heavy axial loads in both directions. Double row angular contact bearings may be used instead of a arrangement of two angular contact ball bearings. | Worm gear reducers | | When there is no distinction between fixed-end and free-end | Remarks | Application Examples | | Back-to-back mounting Face-to-face mounting | This arrangement is widely used since it can withstand heavy loads and shock loads. The back-to-back arrangement is especially good when the distance between bearings is short and moment loads are applied. Face-to-face mounting makes mounting easier when interference is necessary for the inner ring. In general, this arrangement is good when there is mounting error. To use this arrangement with a preload, attention must be paid to the amount of preload and clearance adjustment. | Pinion shafts of automotive
differential gears, automotive
front and rear axles, worm gear
reducers | | Back-to-back mounting | This is used at high speeds when radial loads are not so heavy and axial loads are relatively heavy. It provides good rigidity of the shaft by preloading. For moment loads, back-to-back mounting is better than face-to-face mounting. | Grinding wheel shafts | | When there is no distinction between fixed-end and free-end | Remarks | Application Examples | |---|--|---| | NJ + NJ mounting | ○This can withstand heavy loads and shock loads. ○It can be used if interference is necessary for both the inner and outer rings. ○Care must be taken so the axial clearance doesn't become too small during running. ○NF type + NF type mounting is also possible. | Final reduction gears of construction machines | | | OSometimes a spring is used at the side of the outer ring of one bearing. | Small electric motors, small
speed reducers, small pumps | | Vertical arrangements | Remarks | Application Examples | | | Matched angular contact ball bearings are on the fixed end. Cylindrical roller bearing is on the free end. | Vertical electric motors | | | The spherical center of the self-aligning seat must coincide with that of the self-aligning ball bearing. The upper bearing is on the free end. | Vertical openers (spinning and weaving machines) | Continued on next page A 028 # 4. SELECTION OF BEARING SIZE | 4.1 Bea | ring Life | A 032 | |---------|--|-------------| | 4.1.1 | Rolling Fatigue Life and Basic Rating Life | A 032 | | 4.2 Bas | sic Load Rating and Fatigue Life | A 032 | | 4.2.1 | Basic Load Rating | A 032 | | 4.2.2 | Machinery in which Bearings are Used and | | | | Projected Life | A 034 | | 4.2.3 | Selection of Bearing Size Based on | | | | Basic Load Rating | | | 4.2.4 | Temperature Adjustment for Basic Load Rating | | | 4.2.5 | Correction of Basic Rating Life | | | 4.2.6 | Life Calculation of Multiple Bearings as a Group | | | 407 | New Life Theory | | | 4.2.7 | New Life Theory | A 040 | | 4.3 Cal | culation of Bearing Loads | A 044 | | 4.3.1 | Load Factor | A 044 | | 4.3.2 | Bearing Loads in Belt or Chain Transmission | | | | Applications | | | 4.3.3 | Bearing Loads in Gear Transmission Application | | | 4.3.4 | Load Distribution on Bearings | | | _ | • | | | 4.3.5 | Average of Fluctuating Load | | | 4.3.6 | Combination of Rotating and Stationary Loads | A 048 | | 4.4 Equ | iivalent Load | A 050 | | 4.4.1 | Calculation of Equivalent Loads | A 050 | | 4.4.2 | Axial Load Components in Angular Contact Ball | | | | Bearings and Tapered Roller Bearings | A 051 | | 4.5 Sta | tic Load Ratings and Static Equivalent Loads | ····· A 052 | | 4.5.1 | Static Load Ratings | A 052 | | 4.5.2 | Static Equivalent Loads | A 052 | | 4.5.3 | Permissible Static Load Factor | A 052 | | 4.6 E | xamples of Bearing Calculations A 054 | |---------------|--| | 4.7 E
4.7. | Bearing Type and Allowable Axial LoadA 058 Change of Contact Angle of Radial Ball Bearings and Allowable Axial Load | | (1 |) Change of Contact Angle Due to Axial Load A 058 | | • | Allowable Axial Load for a Deep Groove Ball Bearing | | (- | , 7 million and 15 million at 25 day at milli | | 4.7. | 2 Allowable Axial Load (Break Down Strength of The | | | Ribs) for a Cylindrical Roller Bearings A 064 | | 4.8 1 | echnical Data A 066 | | 4.8. | 1 Fatigue Life and Reliability A 066 | | 4.8. | | | 4.8. | Misalignment of Inner/Outer Rings and Fatigue Life of Deep Groove Ball Bearing A 070 | | 4.8. | 4 Misalignment of Inner/Outer Rings and Fatigue Life of Cylindrical Roller Bearings A 072 | | 4.8. | 5 Oil Film Parameters and Rolling Fatigue Life A 074 | | 4.8. | 6 EHL Oil Film Parameter Calculation Diagram A 076 | | (1 |) Oil Film Parameter A 076 | | (2 |) Oil Film Parameter Calculation Diagram A 076 | | (3 |) Effect of Oil Shortage and Shearing Heat Generation | | | | | | 7 Load Calculation of Gears A 082 | | (1 |) Calculation of Loads on Spur, Helical, and Double-Helical Gears ———————————————————————————————————— | | (2 | C) Calculation of Load Acting on Straight Bevel Gears | | (3 | Calculation of Load on Spiral Bevel Gears A 088 | | (4 |) Calculation of Load Acting on Hypoid Gears A 090 | | (5 | Calculation of Load on Worm Gear A 094 | ### 4. SELECTION OF BEARING SIZE #### 4.1 Bearing Life The various functions required of rolling bearings vary according to the bearing application. These functions must be performed for a prolonged period. Even if bearings are properly mounted and correctly operated, they will eventually fail to perform satisfactorily due to an increase in noise and vibration, loss of running accuracy, deterioration of grease, or fatigue flaking of the rolling surfaces. Bearing life, in the broad sense of the term, is the period during which bearings continue to operate and to satisfy their required functions. This bearing life may be defined as noise life, abrasion life, grease life, or rolling fatigue life, depending on which one causes loss of bearing service. Aside from the failure of bearings to function due to natural deterioration, bearings may fail when conditions such as heat-seizure, fracture, scoring of the rings, damage of the seals or the
cage, or other damage occurs. Conditions such as these should not be interpreted as normal bearing failure since they often occur as a result of errors in bearing selection, improper design or manufacture of the bearing surroundings, incorrect mounting, or insufficient maintenance. #### 4.1.1 Rolling Fatigue Life and Basic Rating Life When rolling bearings are operated under load, the raceways of their inner and outer rings and rolling elements are subjected to repeated cyclic stress. Because of metal fatigue of the rolling contact surfaces of the raceways and rolling elements, scaly particles may separate from the bearing material (Fig. 4.1). This phenomenon is called "flaking". Rolling fatigue life is represented by the total number of revolutions at which time the bearing surface will start flaking due to stress. This is called fatigue life. As shown in Fig. 4.2, even for seemingly identical bearings, which are of the same type, size, and material and receive the same heat treatment and other processing, the rolling fatigue life varies greatly even under identical operating conditions. This is because the flaking of materials due to fatigue is subject to many other variables. Consequently, "basic rating life", in which rolling fatigue life is treated as a statistical phenomenon, is used in preference to actual rolling fatigue life. Suppose a number of bearings of the same type are operated individually under the same conditions. After a certain period of time, 10 % of them fail as a result of flaking caused by rolling fatigue. The total number of revolutions at this point is defined as the basic rating life or, if the speed is constant, the basic rating life is often expressed by the total number of operating hours completed when 10 % of the bearings become inoperable due to flaking. In determining bearing life, basic rating life is often the only factor considered. However, other factors must also be taken into account. For example, the grease life of grease-prelubricated bearings (refer to Section 11, Lubrication, Page A228) can be estimated. Since noise life and abrasion life are judged according to individual standards for different applications, specific values for noise or abrasion life must be determined empirically. #### 4.2 Basic Load Rating and Fatigue Life #### 4.2.1 Basic Load Rating The basic load rating is defined as the constant load applied on bearings with stationary outer rings that the inner rings can endure for a rating life of one million revolutions (10^6 rev). The basic load rating of radial bearings is defined as a central radial load of constant direction and magnitude, while the basic load rating of thrust bearings is defined as an axial load of constant magnitude in the same direction as the central axis. The load ratings are listed under C_r for radial bearings and C_a for thrust bearings in the dimension tables. Fig. 4.1 Example of Flaking A 032 # 4.2.2 Machinery in which Bearings are Used and Projected Life It is not advisable to select bearings with unnecessarily high load ratings, for such bearings may be too large and uneconomical. In addition, the bearing life alone should not be the deciding factor in the selection of bearings. The strength, rigidity, and design of the shaft on which the bearings are to be mounted should also be considered. Bearings are used in a wide range of applications and the design life varies with specific applications and operating conditions. Table 4.1 gives an empirical fatigue life factor derived from customary operating experience for various machines. Also refer to Table 4.2. Table 4.1 Fatique Life Factor f_b for Various Bearing Applications | Operating Periods | Fatigue Life Factor $f_{ m h}$ | | | | | | | |---|--|--|---|---|--|--|--| | Operating Periods | ~3 | 2~4 | 3~5 | 4~7 | 6~ | | | | Infrequently used or only for short periods | Small motors for
home appliances
like vacuum
cleaners and
washing machines
Hand power tools | · Agricultural
equipment | | | | | | | Used only occasionally but reliability is important | | Motors for home
heaters and air
conditioners Construction
equipment | · Conveyors
· Elevator cable
sheaves | | | | | | Used intermittently for relatively long periods | ·Rolling mill roll
necks | Small motors Deck cranes General cargo cranes Pinion stands Passenger cars | Factory motors Machine tools Transmissions Vibrating screens Crushers | Crane sheaves Compressors Specialized transmissions | | | | | Used intermittently for
more than eight hours
daily | | ·Escalators | Centrifugal separators Air conditioning equipment Blowers Woodworking machines Large motors Axle boxes on railway rolling stock | Mine hoists Press flywheels Railway traction motors Locomotive axle boxes | • Paper making
machines | | | | Used continuously and
high reliability is impor-
tant | | | | | Waterworks pumps Electric power stations Mine draining pumps | | | Table 4.2 Basic Rating Life, Fatigue Life Factor and Speed Factor | Life
Parameters | Ball Bearings | Roller Bearings | |---------------------------|---|---| | Basic
Rating
Life | $L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^3 = 500 f_{\rm h}^3$ | $L_{\rm h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^{\frac{10}{3}} = 500 f_{\rm h}^{\frac{10}{3}}$ | | Fatigue
Life
Factor | $f_{\rm h} = f_{\rm n} \frac{C}{P}$ | $f_{\rm h} = f_{\rm n} \frac{C}{P}$ | | Speed
Factor | $f_{n} = \left(\frac{10^{6}}{500 \times 60n}\right)^{\frac{1}{3}}$ $= (0.03n)^{-\frac{1}{3}}$ | $f_{n} = \left(\frac{10^{6}}{500 \times 60n}\right)^{\frac{3}{10}}$ $= (0.03n)^{-\frac{3}{10}}$ | n, f_nFig. 4.3 (See Page A036), Appendix Table 12 (See Page E018) # 4.2.3 Selection of Bearing Size Based on Basic Load Rating The following relation exists between bearing load and basic rating life: For ball bearings $$L = \left(\frac{C}{P}\right)^3$$ (4.1) For roller bearings $$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdots$$ (4.2) where L: Basic rating life (10⁶ rev) P: Bearing load (equivalent load) (N), {kgf}(Refer to Page A30) C: Basic load rating (N), {kgf} For radial bearings, C is written $C_{\rm r}$ For thrust bearings, C is written $C_{\rm a}$ In the case of bearings that run at a constant speed, it is convenient to express the fatigue life in terms of hours. In general, the fatigue life of bearings used in automobiles and other vehicles is given in terms of mileage. By designating the basic rating life as $L_{\rm h}$ (h), bearing speed as n (min⁻¹), fatigue life factor as $f_{\rm h}$, and speed factor as $f_{\rm h}$, the relations shown in Table 4.2 are obtained. If the bearing load P and speed n are known, determine a fatigue life factor f_h appropriate for the projected life of the machine and then calculate the basic load rating C by means of the following equation. $$C = \frac{f_{\rm h} \cdot P}{f_{\rm n}} \qquad (4.3)$$ A bearing which satisfies this value of ${\cal C}$ should then be selected from the bearing tables. #### 4.2.4 Temperature Adjustment for Basic Load Rating If rolling bearings are used at high temperature, the hardness of the bearing steel decreases. Consequently, the basic load rating, which depends on the physical properties of the material, also decreases. Therefore, the basic load rating should be adjusted for the higher temperature using the following equation: $$C_t = f_t \cdot C \cdot \cdots \cdot (4.4)$$ where C_t : Basic load rating after temperature correction (N), $\{kgf\}$ f_t: Temperature factor (See Table 4.3.) C: Basic load rating before temperature adjustment (N), {kgf} If large bearings are used at higher than 120°C, they must be given special dimensional stability heat treatment to prevent excessive dimensional changes. The basic load rating of bearings given such special dimensional stability heat treatment may become lower than the basic load rating listed in the bearing tables. Table 4.3 Temperature Factor $f_{\rm t}$ | Bearing
Temperature °C | 125 | 150 | 175 | 200 | 250 | |--------------------------------|------|------|------|------|------| | Temperature Factor $f_{\rm t}$ | 1.00 | 1.00 | 0.95 | 0.90 | 0.75 | $L_{\rm h}, f_{\rm h}$...Fig. 4.4 (See Page A036), Appendix Table 13 (See Page E019) 4.2.5 Correction of Basic Rating Life As described previously, the basic equations for calculating the basic rating life are as follows: For ball bearings $$L_{10} = \left(\frac{C}{P}\right)^3$$ (4.5) For roller bearings $$L_{10} = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdots$$ (4.6) The L_{10} life is defined as the basic rating life with a statistical reliability of 90%. Depending on the machines in which the bearings are used, sometimes a reliability higher than 90% may be required. However, recent improvements in bearing material have greatly extended the fatigue life. In addition, the developent of the Elasto-Hydrodynamic Theory of Lubrication proves that the thickness of the lubricating film in the contact zone between rings and rolling elements greatly influences bearing life. To reflect such improvements in the calculation of fatigue life, the basic rating life is adjusted using the following adjustment
factors: where $L_{\rm na}$: Adjusted rating life in which reliability, material improvements, lubricating conditions, etc. are considered L_{10} : Basic rating life with a reliability of 90% a_1 : Life adjustment factor for reliability a₂: Life adjustment factor for special bearing properties a₃: Life adjustment factor for operating conditions The life adjustment factor for reliability, a_1 , is listed in Table 4.4 for reliabilities higher than 90%. The life adjustment factor for special bearing properties, a_2 , is used to reflect improvements in bearing steel. NSK now uses vacuum degassed bearing steel, and the results of tests by NSK show that life is greatly improved when compared with earlier materials. The basic load ratings $C_{\rm r}$ and $C_{\rm a}$ listed in the bearing tables were calculated considering the extended life achieved by improvements in materials and manufacturing techniques. Consequently, when estimating life using Equation (4.7), it is sufficient to assume that is greater than one. Table 4.4 Reliability Factor a_1 | Reliability (%) | 90 | 95 | 96 | 97 | 98 | 99 | |-----------------|------|------|------|------|------|------| | a_1 | 1.00 | 0.64 | 0.55 | 0.47 | 0.37 | 0.25 | The life adjustment factor for operating conditions a_3 is used to adjust for various factors, particularly lubrication. If there is no misalignment between the inner and outer rings and the thickness of the lubricating film in the contact zones of the bearing is sufficient, it is possible for a_3 to be greater than one; however, a_3 is less than one in the following cases: - •When the viscosity of the lubricant in the contact zones between the raceways and rolling elements is low. - •When the circumferential speed of the rolling elements is very slow. - · When the bearing temperature is high. - When the lubricant is contaminated by water or foreign matter. - When misalignment of the inner and outer rings is excessive. It is difficult to determine the proper value for a_3 for specific operating conditions because there are still many unknowns. Since the special bearing property factor a_2 is also influenced by the operating conditions, there is a proposal to combine a_2 and a_3 into one quantity $(a_2 \times a_3)$, and not consider them independently. In this case, under normal lubricating and operating conditions, the product $(a_2 \times a_3)$ should be assumed equal to one. However, if the viscosity of the lubricant is too low, the value drops to as low as 0.2. If there is no misalignment and a lubricant with high viscosity is used so sufficient fluid-film thickness is secured, the product of $(a_2 \times a_3)$ may be about two. When selecting a bearing based on the basic load rating, it is best to choose an a_1 reliability factor appropriate for the projected use and an empirically determined C/P or f_h value derived from past results for lubrication, temperature, mounting conditions, etc. in similar machines. The basic rating life equations (4.1), (4.2), (4.5), and (4.6) give satisfactory results for a broad range of bearing loads. However, extra heavy loads may cause detrimental plastic deformation at ball/raceway contact points. When $P_{\rm r}$ exceeds $C_{\rm or}$ (Basic static load rating) or 0.5 $C_{\rm r}$, whichever is smaller, for radial bearings or $P_{\rm a}$ exceeds 0.5 $P_{\rm a}$ for thrust bearings, please consult NSK to establish the applicability of the rating fatigue life equations. # 4.2.6 Life Calculation of Multiple Bearings as a Group When multiple rolling bearings are used in one machine, the fatigue life of individual bearings can be determined if the load acting on individual bearings is known. Generally, however, the machine becomes inoperative if a bearing in any part fails. It may therefore be necessary in certain cases to know the fatigue life of a group of bearings used in one machine. The fatigue life of the bearings varies greatly and our fatigue life calculation equation $$L = \left(\frac{C}{P}\right)^{P}$$ applies to the 90% life (also called the rating fatigue life, which is either the gross number of revolution or hours to which 90% of multiple similar bearings operated under similar conditions can reach). In other words, the calculated fatigue life for one bearing has a probability of 90%. Since the endurance probability of a group of multiple bearings for a certain period is a product of the endurance probability of individual bearings for the same period, the rating fatigue life of a group of multiple bearings is not determined solely from the shortest rating fatigue life among the individual bearings. In fact, the group life is much shorter than the life of the bearing with the shortest fatigue life. Assuming the rating fatigue life of individual bearings as L_1 , L_2 , L_3 ... and the rating fatigue life of the entire group of bearings as L, the below equation is obtained: $$\frac{1}{L^{e}} = \frac{1}{L_{1}^{e}} + \frac{1}{L_{2}^{e}} + \frac{1}{L_{3}^{e}} + \cdots$$ (4.8) where, e=1.1 (both for ball and roller bearings) L of Equation (4.8) can be determined with ease by using Fig. 4.5. Take the value L_1 of Equation (4.8) on the L_1 scale and the value of L_2 on the L_2 scale, connect them with a straight line, and read the intersection with the L scale. In this way, the value $L_{\rm A}$ of $$\frac{1}{L_{\rm A}^{\rm e}} = \frac{1}{L_{\rm 1}^{\rm e}} + \frac{1}{L_{\rm 2}^{\rm e}}$$ is determined. Take this value $L_{\rm A}$ on the $L_{\rm 1}$ scale and the value $L_{\rm 3}$ on the $L_{\rm 2}$ scale, connect them with a straight line, and read an intersection with the L scale. In this way, the value $$L$$ of $$\frac{1}{L^{e}} = \frac{1}{L_{1}^{e}} + \frac{1}{L_{2}^{e}} + \frac{1}{L_{3}^{e}}$$ can be determined. #### Example Assume that the calculated fatigue life of bearings of automotive front wheels as follows: $280\ 000\ km$ for inner bearing 320 000 km for outer bearing Then, the fatigue life of bearings of the wheel can be determined at 160 000 km from Fig. 4.5. If the fatigue life of the bearing of the right-hand wheel takes this value, the fatigue life of the left-hand wheel will be the same. As a result, the fatigue life of the front wheels as a group will become $85\ 000\ km$. Fig. 4.5 Chart for Life Calculation #### 4.2.7 New Life Theory Bearing technology has advanced rapidly in recent years, particularly in the areas of dimensional accuracy and material cleanliness. As a result, bearings can now have a longer rolling fatigue life in a cleaner environment, than the life obtained by the traditional ISO life calculation formula. This extended life is partly due to the important advancements in bearing related technology such as lubrication cleanliness and filtration. The conventional life calculation formula, based on the theories of G. Lundberg and A. Palmgren (L-P theory, hereafter) addresses only sub-surface originated flaking. This is the phenomenon in which cracks initially occur due to dynamic shear stress immediately below the rolling surface then progressively reach the surface in the form of flaking. $$ln \frac{1}{S} \propto \frac{\tau_o^c \cdot N^c \cdot V}{Z_o^h}$$ (4.9) NSK's new life calculation formula theorizes that rolling fatigue life is the sum total of the combined effects of both sub-surface originated flaking and surface originated flaking occurring simultaneously. #### **NSK New Life Calculation Formula** #### (1) Sub-surface originated flaking A pre-condition of sub-surface originated flaking of rolling bearings is contact of the rolling elements with the raceway via a sufficient and continuous oil film under clean lubrication conditions. Fig. 4.6 plots the $L_{\rm 10}$ life for each test condition with maximum surface contact pressure $(P_{\rm max})$ and the number of repeated stresses applied on the ordinate and the abscissa, respectively. In the figure, line $L_{\rm 10}$ theoretical is the theoretical line obtained using the conventional life calculation formula. As maximum surface contact pressure decreases, the actual life line separates from the line created by using conventional theoretical calculation and moves towards longer life. This separation suggests the presence of fatigue load limit $P_{\rm u}$ below which no rolling fatigue occurs. This is better illustrated in Fig. 4.7. $$ln\frac{1}{S} \propto N^{\epsilon} \int_{V} \frac{(\tau - \tau_{\rm u})^{\rm c}}{Z_{\rm o}^{\rm h}} dV \cdots$$ (4.10) Fig. 4.6 Life Test Result under Clea Lubrication Condition (2) Surface originated flaking Under actual bearing operation, the lubricant is often contaminated with foreign objects such as metal chips, burrs, cast sand, etc. When the foreign particles are mixed in the lubricant, the particles are pressed onto the raceways by the rolling elements and dents occur on the surfaces of the raceways and rolling elements. Stress concentration occurs at the edges of the dents, generating fine cracks, which over time, propagate into flaking of the raceways and rolling elements. As shown in Fig. 4.8, the actual life is shorter than conventional calculated life, under conditions of contaminated lubrication at low max surface pressure. The actual life line separates from the line created by theoretical life calculations and moves towards a shorter life. This result shows that the actual life under contaminated lubrication is further shortened compared to the theoretical life because of the decrease in maximum surface contact pressure. Table 4.5 Value of Contamination Coefficient a | | Very clean | Clean | Normal | Contaminated | Heavily contaminated | |-------------------|------------------|--|--|---
---| | a_c factor | 1 | 0.8 | 0.5 | 0.4-0.1 | 0.05 | | Application guide | 10 μm filtration | 10–30 µm filtration | 30–100 µm
filtration | filtration or no filtration | No filtration,
presence of
many fine
particles | | Application | appliances and | Sealed grease lubricated bearing for
electric motors
Sealed grease bearing for railway
axle boxes and machine tools, etc. | Normal usage
Automotive hub unit
bearing, etc. | Bearing for automotive
transmission; Bearing for
industrial gearbox;
Bearing for construction
machine, etc. | _ | Fig. 4.8 Life Test Result under Contaminated Lubrication Condition Therefore, the NSK new life calculation formula considers the trend in the results of the life test under conditions of clean environment and at low load zone. Based on these results, the new life equation is a function of $(P-P_{\rm u})/C$, which is affected by specific lubrication conditions identified by the lubrication parameter. Also, it is assumed that effects of different types and shapes of foreign particles are strongly influenced by the bearing load and lubrication conditions present, and that such a relationship can be expressed as a function of the load parameter. This relationship of the new life calculation formula is defined by $(P-P_{\rm u})/C\cdot 1/a$. Calculation formula for surface originated flaking, based on the above concept, is as follows: $$ln\frac{1}{S} \propto N^{c} \int_{V} \frac{(\tau - \tau_{u})^{c}}{Z_{o}^{h}} dV \times \left[\frac{1}{f(a_{c}, a_{L})} - 1 \right] \cdot \cdot \cdot \cdot \cdot$$ (4.11) (3) Calculation of Contamination Coefficient a_c The contamination coefficient in terms of lubrication cleanliness is shown in Table 4.5. Test results on ball and roller bearings with grease lubrication and clean filtration show the life as being a number of times longer than that of the contaminated calculation. Yet when the foreign object is harder than Hv350, hardness becomes a factor and a dent appears on the raceway. Fatigue damage from these dents, can progress to flaking in a short time. Test results on ball and roller bearings under conditions of foreign object contamination show from 1/3 to 1/10 the life when compared with conventionally calculated life. Based on these test results, the contamination coefficient a_c is classified into five steps for NSK's new life theory. (4) New life calculation formula $L_{ m able}$ The following formula, which combines sub-surface originated flaking and surface originated flaking, is proposed as the new life calculation formula. $$ln\frac{1}{S} \propto N^c \int_V \frac{(\tau - \tau_u)^c}{Z_o^h} dV \times \left\{ \frac{1}{f(a_c, a_L)} \right\} \cdots$$ (4.12) $$L_{\text{able}} = a_1 \cdot a_{\text{NSK}} \cdot L_{10} \cdot \cdots \cdot (4.13)$$ #### Life Correction Factor $a_{ m NSK}$ The life correction factor $a_{\rm NSK}$ is the function of lubrication parameter $(P-P_{\rm u})/C \cdot 1/a_c$ as shown below: $$a_{\text{NSK}} \propto F \left\{ \frac{P - P_{\text{u}}}{C} \cdot \frac{1}{a_{\text{c}}}, a_{\text{L}} \right\} \cdots$$ (4.14) NSK's new life theory considers the life extending affect of improved material and heat treatment by correcting the contamination factor a_c . The theory also utilizes viscosity ratio K ($K = \nu/\nu_1$ where ν is the operational viscosity and ν_1 the required viscosity) because the lubrication parameter a_L changes with the degree of oil film formation, based on the lubricant and operating temperature. The theory indicates that the better the lubrication conditions (higher K) the longer the life. Figures 4.9 and 4.10 show the diagrams of the correction factor $a_{\rm NSK}$ as a function of the new life calculation formula. Also in this new life calculation formula, point contact and line contact are considered separately for ball and roller bearings respectively. To Access the NSK Calculation Tools Visit our website at http://www.nsk.com #### 4.3 Calculation of Bearing Loads The loads applied on bearings generally include the weight of the body to be supported by the bearings, the weight of the revolving elements themselves, the transmission power of gears and belting, the load produced by the operation of the machine in which the bearings are used, etc. These loads can be theoretically calculated, but some of them are difficult to estimate. Therefore, it becomes necessary to correct the estimated using empirically derived data. #### 4.3.1 Load Factor When a radial or axial load has been mathematically calculated, the actual load on the bearing may be greater than the calculated load because of vibration and shock present during operation of the machine. The actual load may be calculated using the following equation: $$\begin{cases} F_{\rm r} = f_{\rm w} \cdot F_{\rm rc} \\ F_{\rm a} = f_{\rm w} \cdot F_{\rm ac} \end{cases}$$ (4.15) where F_r , F_a : Loads applied on bearing (N), {kgf} $F_{\rm rc}, F_{\rm ac}$: Theoretically calculated load (N), {kgf} $f_{\rm w}$: Load factor The values given in Table 4.6 are usually used for the load factor $f_{\rm uv}$. # 4.3.2 Bearing Loads in Belt or Chain Transmission Applications The force acting on the pulley or sprocket wheel when power is transmitted by a belt or chain is calculated using the following equations. $$M = 9 550 000H / n(N \cdot mm)$$ = 974 000H / n(kgf·mm) \} \cdots (4.16) $$P_{\rm k} = M / r$$ ······ (4.17) where M: Torque acting on pulley or sprocket wheel $(N \cdot mm)$, $\{kgf \cdot mm\}$ $P_{\rm k}$: Effective force transmitted by belt or chain (N), {kgf} H: Power transmitted(kW) n: Speed (min⁻¹) r: Effective radius of pulley or sprocket wheel (mm) When calculating the load on a pulley shaft, the belt tension must be included. Thus, to calculate the actual load $K_{\rm b}$ in the case of a belt transmission, the effective transmitting power is multiplied by the belt factor $f_{\rm b}$, which represents the belt tension. The values of the belt factor $f_{\rm b}$ for different types of belts are shown in Table 4.7. $$K_{\rm b} = f_{\rm b} \cdot P_{\rm k} \cdot \cdots \cdot (4.18)$$ In the case of a chain transmission, the values corresponding to f_b should be 1.25 to 1.5. Table 4.6 Values of Load Factor $f_{ m w}$ | Operating Conditions | Typical Applications | $f_{ m w}$ | |--|--|------------| | Smooth operation free from shocks | Electric motors,
Machine tools,
Air conditioners | 1 to 1.2 | | Normal operation | Air blowers,
Compressors,
Elevators, Cranes,
Paper making
machines | 1.2 to 1.5 | | Operation
accompanied by
shock and vibration | Construction
equipment, Crushers,
Vibrating screens,
Rolling mills | 1.5 to 3 | Table 4.7 Belt Factor $f_{\rm b}$ | Type of Belt | $f_{ m b}$ | |--------------------------------|------------| | Toothed belts | 1.3 to 2 | | V belts | 2 to 2.5 | | Flat belts with tension pulley | 2.5 to 3 | | Flat belts | 4 to 5 | # 4.3.3 Bearing Loads in Gear Transmission Applications The loads imposed on gears in gear transmissions vary according to the type of gears used. In the simplest case of spur gears, the load is calculated as follows: $$M = 9550000H / n(N \cdot mm)$$ = 974 000H / n{kgf·mm}} ······ (4.19) $$P_{\rm k} = M / r$$ (4.20) where $$M: Torque$$ applied to gear $(N \cdot mm), \{kgf \cdot mm\}$ $P_{\rm k}$: Tangential force on gear (N), {kgf} S_{i} : Radial force on gear (N), {kgf} $K_{\rm c}$: Combined force imposed on gear (N), {kgf} H: Power transmitted (kW) n: Speed (min⁻¹) r: Pitch circle radius of drive gear (mm) θ : Pressure angle In addition to the theoretical load calculated above, vibration and shock (which depend on how accurately the gear is finished) should be included using the gear factor $f_{\rm g}$ by multiplying the theoretically calculated load by this factor. The values of $f_{\rm g}$ should generally be those in Table 4.8. When vibration from other sources accompanies gear operation, the actual load is obtained by multiplying the load factor by this gear factor. # ssion In the simple examples shown in Figs. 4.11 and 4.12. The radial loads on bearings I and II can be calculated using the following equations: $$F_{\rm CI} = \frac{b}{c}K \qquad (4.23)$$ $$F_{\text{CII}} = \frac{a}{C}K$$ (4.24) where F_{CI} : Radial load applied on bearing I (N), {kgf} 4.3.4 Load Distribution on Bearings F_{CII} : Radial load applied on bearing II (N), {kgf} K: Shaft load (N), {kgf} When these loads are applied simultaneously, first the radial load for each should be obtained, and then, the sum of the vectors may be calculated according to the load direction. Fig. 4.11 Radial Load Distribution (1) Fig. 4.12 Radial Load Distribution (2) ### Table 4.8 Values of Gear Factor f_g | Gear Finish Accuracy | $f_{ m g}$ | |-------------------------|------------| | Precision ground gears | 1 ~1.1 | | Ordinary machined gears | 1.1~1.3 | #### 4.3.5 Average of Fluctuating Load When the load applied on bearings fluctuates, an average load which will yield the same bearing life as the fluctuating load should be calculated. (1) When the relation between load and rotating speed is divided into the following steps (Fig. 4.13) Load F_1 : Speed n_1 ; Operating time t_1 Load F_2 : Speed n_2 ; Operating time t_2 Load F_n : Speed n_n ; Operating time t_n Then, the average load F_m may be calculated using the following equation: where $F_{\rm m}$: Average fluctuating load (N), {kgf} p = 3 for ball bearings p = 10/3 for roller bearings The average speed $n_{\rm m}$ may be calculated as follows: $$n_{\rm m} = \frac{n_1 t_1 + n_2 t_2 + \dots + n_{\rm n} t_{\rm n}}{t_1 + t_2 + \dots + t_{\rm n}}$$ (4.26) (2) When the load fluctuates almost linearly (Fig. 4.14), the average load may be
calculated as $$F_{\rm m} = \frac{1}{3} (F_{\rm min} + 2F_{\rm max}) \cdots (4.27)$$ where F_{\min} : Minimum value of fluctuating load (N), {kgf} > $F_{ > m max}$: Maximum value of fluctuating load (N), {kgf} (3) When the load fluctuation is similar to a sine wave (Fig. 4.15), an approximate value for the average load $F_{\rm m}$ may be calculated from the following equation: In the case of Fig. 4.15 (a) $$F_{\rm m} = 0.65 F_{\rm max}$$ (4.28) In the case of Fig. 4.15 (b) $$F_{\rm m} = 0.75 \, F_{\rm max} \, \cdots \, (4.29)$$ (4) When both a rotating load and a stationary load are applied (Fig. 4.16). $F_{\mathbb{R}}$: Rotating load (N), {kgf} F_s : Stationary load (N), {kgf} An approximate value for the average load F_m may be calculated as follows: a) Where $F_{\rm R} \ge F_{\rm S}$ where $$F_{R} = F_{S}$$ $F_{m} = F_{R} + 0.3F_{S} + 0.2 \frac{F_{S}^{2}}{F_{R}}$ (4.30) b) Where $$F_{\rm R} < F_{\rm S}$$ $$F_{\rm m} = F_{\rm S} + 0.3 F_{\rm R} + 0.2 \frac{F_{\rm R}^2}{F_{\rm S}} \cdots (4.31)$$ #### 4.3.6 Combination of Rotating and Stationary Loads Generally, rotating, static, and indeterminate loads act on a rolling bearing. In certain cases, both the rotating load, which is caused by an unbalanced or a vibration weight, and the stationary load, which is caused by gravity or power transmission, may act simultaneously. The combined mean effective load when the indeterminate load caused by rotating and static loads can be calculated as follows. There are two kinds of combined loads; rotating and stationary which are classified depending on the magnitude of these loads, as shown in Fig. 4.17. Namely, the combined load becomes a running load with its magnitude changing as shown in Fig. 4.17 (a) if the rotating load is larger than the static load. The combined load becomes an oscillating load with a magnitude changing as shown in Fig. 4.17 (b) if the rotating load is smaller than the stationary load. In either case, the combined load F is expressed by the following equation: $$F = \sqrt{F_R^2 + F_S^2 - 2F_R F_S \cos \theta} \qquad (4.32)$$ where, $F_{\rm R}$: Rotating load (N), {kgf} $F_{\rm S}$: Stationary load (N), {kgf} θ : Angle defined by rotating and stationary loads The value F can be approximated by Load Equations (4.33) and (4.34) which vary sinusoidally depending on the magnitude of $F_{\rm R}$ and $F_{\rm S}$, that is, in such a manner that $F_{\rm R}+F_{\rm S}$ becomes the maximum load $F_{\rm min}$ and $F_{\rm R}-F_{\rm S}$ becomes the minimum load $F_{\rm min}$ for $F_{\rm R}\gg F_{\rm S}$ or $F_{\rm R}\ll F_{\rm S}$. $$F_R \gg F_S$$, $F = F_R - F_S \cos \theta$(4.33) $F_R \ll F_S$, $F = F_S - F_R \cos \theta$(4.34) The value F can also be approximated by Equations (4.35) and (4.36) when $F_{\rm R} = F_{\rm S}$. $$F = F_R - F_S + 2F_S \sin \frac{\theta}{2} \qquad (4.35)$$ $F_{R} < F_{S}$, $$F=F_S-F_R+2F_R\sin\frac{\theta}{2}$$ (4.36) Curves of Equations (4.32), (4.33), (4.35), and (4.36) are as shown in Fig. 2. The mean value $F_{\rm m}$ of the load varying as expressed by Equations (4.33) and (4.34) or (4.35) and (4.36) can be expressed respectively by Equations (4.37) and (4.38) or (4.39) and (4.40). $$\begin{array}{lll} F_{\text{m}} = F_{\text{min}} + 0.65 & (F_{\text{max}} - F_{\text{min}}) \\ F_{\text{R}} \geq F_{\text{S}}, & F_{\text{m}} = F_{\text{R}} + 0.3F_{\text{S}} & \cdots & \cdots & \cdots \\ F_{\text{R}} \leq F_{\text{S}}, & F_{\text{m}} = F_{\text{S}} + 0.3F_{\text{R}} & \cdots & \cdots & \cdots \\ \end{array} \tag{4.37}$$ $$\begin{array}{ll} F_{\rm m} = F_{\rm min} + 0.75 \; (F_{\rm max} - F_{\rm min}) \\ F_{\rm R} \geqq F_{\rm S}, \; F_{\rm m} = F_{\rm R} + 0.5 F_{\rm S} & \cdots & \cdots & \cdots \\ F_{\rm R} \leqq F_{\rm S}, \; F_{\rm m} = F_{\rm S} + 0.5 F_{\rm R} & \cdots & \cdots & \cdots \\ \end{array} \tag{4.39}$$ Generally, as the value F exists somewhere among Equations (4.37), (4.38), (4.39), and (4.40), the factor 0.3 or 0.5 of the second terms of Equations (4.37) and (4.38) as well as (4.39) and (4.40) is assumed to change linearly along with $F_{\rm S}/F_{\rm R}$ or $F_{\rm R}/F_{\rm S}$. Then, these factors may be expressed as follows: $$0.3+0.2\frac{F_{\rm S}}{F_{\rm R}}, 0 \le \frac{F_{\rm S}}{F_{\rm R}} \le 1$$ or $$0.3+0.2\frac{F_{R}}{F_{S}}, 0 \le \frac{F_{R}}{F_{S}} \le 1$$ Accordingly, $F_{\rm m}$ can be expressed by the following equation: $F_{\rm R} \geq F_{\rm S}$. $$F_{\rm m} = F_{\rm R} + (0.3 + 0.2 \frac{F_{\rm S}}{F_{\rm R}}) F_{\rm S}$$ $$= F_{\rm R} + 0.3 F_{\rm S} + 0.2 \frac{F_{\rm S}^2}{F_{\rm R}}$$ (4.41) $F_{\rm R} \leq F_{\rm S}$ $$F_{m}=F_{S}+(0.3+0.2\frac{F_{R}}{F_{S}})F_{R}$$ $$=F_{S}+0.3F_{R}+0.2\frac{F_{R}^{2}}{F_{S}}\cdots (4.42)$$ Fig. 4.17 Combined Load of Rotating and Stationary Loads #### 4.4 Equivalent Load In some cases, the loads applied on bearings are purely radial or axial loads; however, in most cases, the loads are a combination of both. In addition, such loads usually fluctuate in both magnitude and direction. In such cases, the loads actually applied on bearings cannot be used for bearing life calculations; therefore, a hypothetical load that has a constant magnitude and passes through the center of the bearing, and will give the same bearing life that the bearing would attain under actual conditions of load and rotation should be estimated. Such a hypothetical load is called the equivalent load. #### 4.4.1 Calculation of Equivalent Loads The equivalent load on radial bearings may be calculated using the following equation: where P: P: Equivalent Load (N), {kgf} $F_{\rm r}$: Radial load (N), {kgf} F_a : Axial load (N), {kgf} X: Radial load factor Y: Axial load factor The values of X and Y are listed in the bearing tables. The equivalent radial load for radial roller bearings with $\alpha=0^\circ$ is $$P = F_{\rm r}$$ In general, thrust ball bearings cannot take radial loads, but spherical thrust roller bearings can take some radial loads. In this case, the equivalent load may be calculated using the following equation: # 4.4.2 Axial Load Components in Angular Contact Ball Bearings and Tapered Roller Bearings The effective load center of both angular contact ball bearings and tapered roller bearings is at the point of intersection of the shaft center line and a line representing the load applied on the rolling element by the outer ring as shown in Fig. 4.19. This effective load center for each bearing is listed in the bearing tables. When radial loads are applied to these types of bearings, a component of load is produced in the axial direction. In order to balance this component load, bearings of the same type are used in pairs, placed face to face or back to back. These axial loads can be calculated using the following equation: $$F_{ai} = \frac{0.6}{V} F_{r} \cdots (4.45)$$ where F_{ai} : Component load in the axial direction (N), $\{kgf\}$ F_r: Radial load (N), {kgf} Y: Axial load factor Assume that radial loads $F_{r_{\rm I}}$ and $F_{r_{\rm II}}$ are applied on bearings I and II (Fig. 4.20) respectively, and an external axial load $F_{\rm ac}$ is applied as shown. If the axial load factors are $Y_{\rm I}$, $Y_{\rm II}$ and the radial load factor is X, then the equivalent loads $P_{\rm I}$, $P_{\rm II}$ may be calculated as follows: Fig. 4.19 Effective Load Centers #### 4.5 Static Load Ratings and Static Equivalent Loads #### 4.5.1 Static Load Ratings When subjected to an excessive load or a strong shock load, rolling bearings may incur a local permanent deformation of the rolling elements and permanent deformation of the rolling elements and raceway surface if the elastic limit is exceeded. The nonelastic deformation increases in area and depth as the load increases, and when the load exceeds a certain limit. the smooth running of the bearing is impeded. The basic static load rating is defined as that static load which produces the following calculated contact stress at the center of the contact area between the rolling element subjected to the maximum stress and the raceway surface. For self-aligning ball bearings 4 600MPa {469kgf/mm²} 4 200MPa For other ball bearings {428kgf/mm²} For roller bearings 4 000MPa {408kgf/mm²} In this most heavily stressed contact area, the sum of the permanent deformation of the rolling element and that of the raceway is nearly 0.0001 times the rolling element's diameter. The basic static load rating C_0 is written C_{or} for radial bearings and C_{oa} for thrust bearings in the bearing tables. In addition, following the modification of the criteria for basic static load rating by ISO, the new C_0 values for NSK's ball bearings became about 0.8 to 1.3 times the past values and those for roller bearings about 1.5 to 1.9 times. Consequently, the values of permissible static load factor f_s have also changed, so please pay attention to this. #### 4.5.2 Static Equivalent Loads The static equivalent load is a hypothetical load that produces a contact stress equal to the above maximum stress under actual conditions, while the bearing is stationary (including very slow rotation or oscillation), in the area of contact between the most heavily stressed rolling element and bearing raceway. The static radial load passing through the bearing center is taken as the static equivalent load for radial bearings, while the static axial load in the direction coinciding with the central axis is taken as the static equivalent load for thrust bearings. #### (a) Static equivalent load on radial bearings The greater of the two values calculated from the following equations should be adopted as the static equivalent load on radial bearings. P_{o} : Static equivalent load (N), {kgf} $F_{\rm r}$: Radial load (N), {kgf} F_a : Axial load (N), {kgf} X_0 : Static radial load factor Y_0 : Static axial load factor (b)Static equivalent load on thrust bearings where P_0 : Static equivalent load (N), {kgf} α : Contact angle When $F_a <
X_o F_r$, this equation becomes less accurate. The values of X_0 and Y_0 for Equations (4.47) and (4.49) are listed in the bearing tables. The static equivalent load for thrust roller bearings with $$\alpha = 90^{\circ}$$ is $P_0 = F_2$ #### 4.5.3 Permissible Static Load Factor The permissible static equivalent load on bearings varies depending on the basic static load rating and also their application and operating conditions. The permissible static load factor f_s is a safety factor that is applied to the basic static load rating, and it is defined by the ratio in Equation (4.50). The generally recommended values of f_s are listed in Table 4.9. Conforming to the modification of the static load rating, the values of f_s were revised, especially for bearings for which the values of C_0 were increased, please keep this in mind when selecting bearings. $$f_{\rm S} = \frac{C_{\rm o}}{P_{\rm o}} \qquad (4.50)$$ where C_0 : Basic static load rating (N), {kgf} P_{\circ} : Static equivalent load (N). {kgf} For spherical thrust roller bearings, the values of f_s should be greater than 4. Table 4.9 Values of Permissible Static Load Factor f_s | Operating Conditions | Lower Limit of $f_{ m s}$ | | | |---|---------------------------|-----------------|--| | Operating Conditions | Ball Bearings | Roller Bearings | | | Low-noise applications | 2 | 3 | | | Bearings subjected to vibration and shock loads | 1.5 | 2 | | | Standard operating conditions | 1 | 1.5 | | A 052 A 053 #### 4.6 Examples of Bearing Calculations #### (Example1) Obtain the fatigue life factor $f_{\rm h}$ of single-row deep groove ball bearing **6208** when it is used under a radial load $F_{\rm r}$ =2 500 N, [255kgf] and speed n =900 min⁻¹. The basic load rating $C_{\rm r}$ of **6208** is 29 100N, $(2\ 970{\rm kgf})$ (Bearing Table, Page C024). Since only a radial load is applied, the equivalent load P may be obtained as follows: $$P = F_r = 2500$$ N, (255kgf) Since the speed is $n = 900 \text{ min}^{-1}$, the speed factor f_n can be obtained from the equation in Table 4.2 (Page A034) or Fig. 4.3(Page A036). $$f_{\rm n} = 0.333$$ The fatigue life factor $f_{\rm h}$, under these conditions, can be calculated as follows: $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29\ 100}{2\ 500} = 3.88$$ This value is suitable for industrial applications, air conditioners being regularly used, etc., and according to the equation in Table 4.2 or Fig. 4.4 (Page A036), it corresponds approximately to 29 000 hours of service life #### (Example 2) Select a single-row deep groove ball bearing with a bore diameter of $50~\mathrm{mm}$ and outside diameter under $100~\mathrm{mm}$ that satisfies the following conditions: Radial load $F_r = 3000$ N, (306kgf) Speed $n = 1900 \text{ min}^{-1}$ Basic rating life $L_h \ge 10~000h$ The fatigue life factor f_h of ball bearings with a rating fatigue life longer than 10 000 hours is $f_h \ge 2.72$. Because $f_n = 0.26$, $P = F_r = 3\,000$ N. (306kgf) $$f_h = f_n \frac{C_r}{P} = 0.26 \times \frac{C_r}{3.000} \ge 2.72$$ therefore, $$C_r \ge 2.72 \times \frac{3000}{0.26} = 31380 \text{N}$$, (3 200kgf) Among the data listed in the bearing table on Page C026, **6210** should be selected as one that satisfies the above conditions. #### (Example3) Obtain C_r/P or fatigue life factor $f_{\rm h}$ when an axial load $F_{\rm a}$ =1 000N, (102kgf) is added to the conditions of (Example 1) When the radial load F_r and axial load F_a are applied on single-row deep groove ball bearing **6208**, the dynamic equivalent load P should be calculated in accordance with the following procedure. Obtain the radial load factor X, axial load factor Y and constant e obtainable, depending on the magnitude of $f_{\rm o}F_{\rm a}/C_{\rm or}$, from the table above the single-row deep groove ball bearing table. The basic static load rating $C_{\rm or}$ of ball bearing **6208** is 17 900N, (1 820kgf) (Page C024) $$f_0 F_a / C_{or} = 14.0 \times 1\ 000/17\ 900 = 0.782$$ $e = 0.26$ and $F_a / F_r = 1000/2500 = 0.4 > e$ X = 0.56 Y = 1.67 (the value of Y is obtained by linear interpolation) Therefore, the dynamic equivalent load P is $$P = XF_{\rm r} + YF_{\rm a}$$ $= 0.56 \times 2500 + 1.67 \times 1000$ = 3 070N, (313kgf) $$\frac{C_{\rm r}}{P} = \frac{29\ 100}{3\ 070} = 9.48$$ $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P} = 0.333 \times \frac{29 \ 100}{3 \ 070} = 3.16$$ This value of $f_{\rm h}$ corresponds approximately to 15 800 hours for ball bearings. #### (Example 4) Select a spherical roller bearing of series 23⁻¹ satisfying the following conditions: Radial load $F_r = 45\,000$ N Axial load $F_a = 8000$ N Speed $n = 500 \text{min}^{-1}$ Basic rating life $L_h \ge 30~000h$ The value of the fatigue life factor $f_{\rm h}$ which makes $L_{\rm h}{\ge}30~000{\rm h}$ is bigger than 3.45 from Fig. 4.4 (Page A036) The dynamic equivalent load P of spherical roller bearings is given by: when $F_a / F_r \leq e$ $$P = XF_{r} + YX_{a} = F_{r} + Y_{3}F_{a}$$ when $F_a/F_r > e$ $$P = XF_{\rm r} + YF_{\rm a} = 0.67 F_{\rm r} + Y_2 F_{\rm a}$$ $$F_a / F_r = 8 000/45 000 = 0.18$$ We can see in the bearing table that the value of e is about 0.3 and that of Y_3 is about 2.2 for bearings of series 231: Therefore, $$P = XF_r + YF_a = F_r + Y_3F_a$$ = 45 000 + 2.2 × 8 000 = 62 600N From the fatigue life factor f_h , the basic load rating can be obtained as follows: $$f_h = f_n \frac{C_r}{P} = 0.444 \times \frac{C_r}{62\,600} \ge 3.45$$ consequently, $C_r \ge 490000N$ Among spherical roller bearings of series 231 satisfying this value of C_r , the smallest is **23126CE4** ($C_r = 505\ 000\ N$) Once the bearing is determined, substitude the value of Y_2 in the equation and obtain the value of P_2 . $$P = F_r + Y_3 F_a = 45\ 000 + 2.4 \times 8\ 000$$ = 64 200N $$L_{\rm h} = 500 \left(f_{\rm h} \frac{C_{\rm r}}{P} \right)^{\frac{10}{3}}$$ $$= 500 \left(0.444 \times \frac{505\ 000}{64\ 200} \right)^{\frac{10}{3}}$$ $$= 500 \times 3.49^{\frac{10}{3}} \stackrel{3}{=} 32\ 000\ \rm h$$ #### (Example 5) Assume that tapered roller bearings **HR30305DJ** and **HR30206J** are used in a back-to-back arrangement as shown in Fig. 4.21, and the distance between the cup back faces is 50 mm. Calculate the basic rating life of each bearing when beside the radial load $F_r = 5500N$, (561kgf), axial load $F_{\rm ae}$ =2 000N,(204kgf) are applied to **HR30305DJ** as shown in Fig. 4.21. The speed is 600 min⁻¹. To distribute the radial load $F_{\rm r}$ on bearings I and II, the effective load centers must be located for tapered roller bearings. Obtain the effective load center a for bearings I and II from the bearing table, then obtain the relative position of the radial load $F_{\rm r}$ and effective load centers. The result will be as shown in Fig. 4.21. Consequently, the radial load applied on bearings I (HR30305DJ) and II (HR30206J) can be obtained from the following equations: $$F_{rI} = 5\,500 \times \frac{23.9}{83.8} = 1\,569$$ N, {160kgf} $$F_{\text{rII}} = 5\,500 \times \frac{59.9}{83.8} = 3\,931\,\text{N}, \text{ (401kgf)}$$ From the data in the bearing table, the following values are obtained: | Bearings | Basic dynamic load rating $C_{ m r}$ (N) {kgf} | | Axial load factor Y_1 | Constant <i>e</i> | |-----------------------|--|---------|-------------------------|-------------------| | Bearing I (HR30305DJ) | 38 000 | {3 900} | 1 - | 0.83 | | Bearing II (HR30206J) | 43 000 | {4 400} | $Y_{\mathrm{II}} = 1.6$ | 0.38 | When radial loads are applied on tapered roller bearings, an axial load component is produced, which must be considered to obtain the dynamic equivalent radial load (Refer to Paragraph 4.4.2, Page A051). $$F_{\text{ae}} + \frac{0.6}{Y_{\text{II}}} F_{\text{rII}} = 2\,000 + \frac{0.6}{1.6} \times 3\,931$$ = 3 474N, (354kgf) $$\frac{0.6}{Y_{\text{I}}} F_{r_{\text{I}}} = \frac{0.6}{0.73} \times 1569 = 1290 \text{N}, \text{ (132kgf)}$$ Therefore, with this bearing arrangement, the axial load $F_{\rm ae}+\frac{0.6}{Y_{\rm II}}\,F_{\rm r\,II}$ is applied on bearing I but not on bearing II For bearing I $$F_{ri} = 1569N$$, (160kgf) $$F_{\rm a\,I} = 3\,474\,{ m N},~{ m (354kgf)}$$ since $$F_{aI}/F_{rI} = 2.2 > e = 0.83$$ the dynamic equivalent load $P_{\rm I} = XF_{\rm r\,I} + Y_{\rm I}F_{\rm a\,I}$ $$= 0.4 \times 1569 + 0.73 \times 3474$$ $$= 3 164N, (323kgf)$$ The fatigue life factor $f_h = f_n \frac{C_r}{P_r}$ $$=\frac{0.42\times38\ 000}{3\ 164}=5.04$$ and the rating fatigue life $L_{\rm h} = 500 \times 5.04^{\frac{10}{3}} = 109$ For bearing II since $F_{r\, \text{II}}=3~931\, \text{N}$, (401kgf), $F_{a\, \text{II}}=0$ the dynamic equivalent load $$P_{\Pi} = F_{r\Pi} = 3 \text{ 931N}, \text{ (401kgf)}$$ the fatigue life factor $$f_{\rm h} = f_{\rm n} \frac{C_{\rm r}}{P_{\rm II}} = \frac{0.42 \times 43\ 000}{3\ 931} = 4.59$$ and the rating fatigue life $L_{\rm h} = 500 \times 4.59^{\frac{10}{3}} = 80~400 h$ are obtained. Remarks For face-to-face arrangements (DF type), please contact NSK. #### (Example 6) Select a bearing for a speed reducer under the following conditions: Operating conditions Radial load $F_r = 245~000$ N Axial load $F_a = 49000$ N Speed $n = 500 \text{min}^{-1}$ Size limitation Shaft diameter: 300mm Bore of housing: Less than 500mm In this application, heavy loads, shocks, and shaft deflection are expected; therefore, spherical roller bearings are appropriate. The following spherical roller bearings satisfy the above size limitation (refer to Page C284) | d | D | В | Bearing No. | Basic dynamic load rating $C_{ m r}$ $({ m N})$ | Constant $oldsymbol{e}$ | Factor Y_3 | |-----|------------|-----|--------------------------|---|-------------------------|--------------| | 300 | 420 | 90 | 23960 CAE4 | 1 540 000 | 0.19 | 3.5 | | | 460 | 118 | 23060 CAE4 | 2 400 000 | 0.24 |
2.8 | | | 460 | 160 | 24060 CAE4 | 2 890 000 | 0.32 | 2.1 | | | 500
500 | | 23160 CAE4
24160 CAE4 | | 0.31
0.38 | 2.2
1.8 | since $F_a/F_r = 0.20 < e$ the dynamic equivalent load P is $$P = F_r + Y_3 F_a$$ Judging from the fatigue life factor f_h in Table 4.1 and examples of applications (refer to Page A034), a value of f_h , between 3 and 5 seems appropriate. $$f_h = f_n \frac{C_r}{P} = \frac{0.444 \ C_r}{F_r + Y_2 F_2} = 3 \text{ to } 5$$ Assuming that $Y_3 = 2.1$, then the necessary basic load rating C_r can be obtained $$C_{\rm r} = \frac{(F_{\rm r} + Y_3 F_{\rm a}) \times (3 \text{ to } 5)}{0.444}$$ $$= \frac{(245\ 000 + 2.1 \times 49\ 000) \times (3\ to\ 5)}{0.444}$$ = 2 350 000 to 3 900 000 N The bearings which satisfy this range are 23060CAE4, 24060CAE4, 23160CAE4, and 24160CAE4. #### 4.7 Bearing Type and Allowable Axial Load #### 4.7.1 Change of Contact Angle of Radial Ball Bearings and Allowable Axial Load #### (1) Change of Contact Angle Due to Axial Load When an axial load acts on a radial ball bearing, the rolling element and raceway develop elastic deformation, resulting in an increase in the contact angle and width. When heat generation or seizure has occurred, the bearing should be disassembled and checked for running trace to discover whether there has been a change in the contact angle during operation. In this way, it is possible to see whether an abnormal axial load has been sustained. The relation shown below can be established among the axial load $F_{\rm a}$ on a bearing, the load of rolling element Q, and the contact angle α when the load is applied. (See Equations (9.8), (9.9), and (9.10) in Section 9.6.2) $$F_a=Z Q \sin \alpha$$ = $$KZD_{\rm w}^2 \{\sqrt{(\sin\alpha_0+h)^2+\cos^2\alpha_0}-1\}^{3/2}\cdot\sin\alpha$$ (4.51 $$\alpha = \sin^{-1} \frac{\sin \alpha_0 + h}{\sqrt{(\sin \alpha_0 + h)^2 + \cos^2 \alpha_0}} \dots (4.52)$$ $$h = \frac{\delta_a}{m_0} = \frac{\delta_a}{r_c + r_i - D_w}$$ Namely, $\delta_{\rm a}$ is the change in Equation (4.52) to determine α corresponding to the contact angle known from observation of the raceway. Thus, $\delta_{\rm a}$ and α are introduced into Equation (4.51) to estimate the axial load $F_{\rm a}$ acting on the bearing. As specifications of a bearing are necessary in this case for calculation, the contact angle α was approximated from the axial load. The basic static load rating $C_{\rm or}$ is expressed by Equation (4.53) for the case of a single row radial ball bearing. $$C_{0r} = f_0 Z D_w^2 \cos \alpha_0 \cdots (4.53)$$ where, fo: Factor determined from the shape of bearing components and applicable stress level Equation (4.54) is determined from Equations (4.51) and (4.53): where, K: Constant determined from material and design of bearing In other words, "h" is assumed and α is determined from Equation (4.52). Then "h" and α are introduced into Equation (4.54) to determine A F_a . This relation is used to show the value A for each bore number of an angular contact ball bearing in Table 4.14. The relationship between A F_a and α is shown in Fig. 4.22. #### Example 1 Change in the contact angle is calculated when the pure axial load $F_{\rm a}$ = 35.0 kN (50% of basic static load rating) is applied to an angular contact ball bearing 7215C. A=0.212 is calculated from Table 4.10 and A F_a =0.212 \times 35.0=7.42 and α =26° are obtained from Fig. 4.22. An initial contact angle of 15° has changed to 26° under the axial load. $\textbf{Fig. 4.22 \ Change of the Contact Angle of Angular Contact Ball Bearing under Axial Load } \\$ Table 4.10 Constant A Value of Angular Contact Ball Bearing Units: kN- | Bearing | Ве | earing series | Bearing series 70 | | Bearing series 72 | | | Bearing series 73 | | | |----------|-------|---------------|-------------------|-------|-------------------|-------|--------|-------------------|--------|--| | bore No. | 15° | 30° | 40° | 15° | 30° | 40° | 15° | 30° | 40° | | | 05 | 1.97 | 2.05 | 2.31 | 1.26 | 1.41 | 1.59 | 0.838 | 0.850 | 0.961 | | | 06 | 1.45 | 1.51 | 1.83 | 0.878 | 0.979 | 1.11 | 0.642 | 0.651 | 0.736 | | | 07 | 1.10 | 1.15 | 1.38 | 0.699 | 0.719 | 0.813 | 0.517 | 0.528 | 0.597 | | | 08 | 0.966 | 1.02 | 1.22 | 0.562 | 0.582 | 0.658 | 0.414 | 0.423 | 0.478 | | | 09 | 0.799 | 0.842 | 1.01 | 0.494 | 0.511 | 0.578 | 0.309 | 0.316 | 0.357 | | | 10 | 0.715 | 0.757 | 0.901 | 0.458 | 0.477 | 0.540 | 0.259 | 0.265 | 0.300 | | | 11 | 0.540 | 0.571 | 0.681 | 0.362 | 0.377 | 0.426 | 0.221 | 0.226 | 0.255 | | | 12 | 0.512 | 0.542 | 0.645 | 0.293 | 0.305 | 0.345 | 0.191 | 0.195 | 0.220 | | | 13 | 0.463 | 0.493 | 0.584 | 0.248 | 0.260 | 0.294 | 0.166 | 0.170 | 0.192 | | | 14 | 0.365 | 0.388 | 0.460 | 0.226 | 0.237 | 0.268 | 0.146 | 0.149 | 0.169 | | | 15 | 0.348 | 0.370 | _ | 0.212 | 0.237 | 0.268 | 0.129 | 0.132 | 0.149 | | | 16 | 0.284 | 0.302 | 0.358 | 0.190 | 0.199 | 0.225 | 0.115 | 0.118 | 0.133 | | | 17 | 0.271 | 0.288 | 0.341 | 0.162 | 0.169 | 0.192 | 0.103 | 0.106 | 0.120 | | | 18 | 0.228 | 0.242 | 0.287 | 0.140 | 0.146 | 0.165 | 0.0934 | 0.0955 | 0.108 | | | 19 | 0.217 | 0.242 | 0.273 | 0.130 | 0.136 | 0.153 | 0.0847 | 0.0866 | 0.0979 | | | 20 | 0.207 | 0.231 | 0.261 | 0.115 | 0.119 | 0.134 | 0.0647 | 0.0722 | 0.0816 | | Values for a deep groove ball bearing are similarly shown in Table 4.11 and Fig. 4.23. #### Example 2 Change in the contact angle is calculated when the pure axial load F_a =24.75 kN (50% of the basic static load rating) is applied to the deep groove ball bearing 6215. Note here that the radial internal clearance is calculated as the median (0.020 mm) of the normal clearance. The initial contact angle 10° is obtained from Fig. 3, Page C014. A=0.303 is determined from Table 4.11 and A F_a=0.303×24.75 \pm 7.5 and α \pm 24 $^{\circ}$ from Fig. 4.23. Table 4.11 Contact A Value of Deep Groove Ball Bearing Units: kN⁻¹ | Bearing | Bearing series 62 | | | | | | |----------|-------------------|-------|-------|-------|-------|--| | bore No. | 0° | 5° | 10° | 15° | 20° | | | 05 | 1.76 | 1.77 | 1.79 | 1.83 | 1.88 | | | 06 | 1.22 | 1.23 | 1.24 | 1.27 | 1.30 | | | 07 | 0.900 | 0.903 | 0.914 | 0.932 | 0.958 | | | | | | | | | | | 08 | 0.784 | 0.787 | 0.796 | 0.811 | 0.834 | | | 09 | 0.705 | 0.708 | 0.716 | 0.730 | 0.751 | | | 10 | 0.620 | 0.622 | 0.630 | 0.642 | 0.660 | | | | | | | | | | | 11 | 0.490 | 0.492 | 0.497 | 0.507 | 0.521 | | | 12 | 0.397 | 0.398 | 0.403 | 0.411 | 0.422 | | | 13 | 0.360 | 0.361 | 0.365 | 0.373 | 0.383 | | | | | | | | | | | 14 | 0.328 | 0.329 | 0.333 | 0.340 | 0.349 | | | 15 | 0.298 | 0.299 | 0.303 | 0.309 | 0.317 | | | 16 | 0.276 | 0.277 | 0.280 | 0.285 | 0.293 | | | | | | | | | | | 17 | 0.235 | 0.236 | 0.238 | 0.243 | 0.250 | | | 18 | 0.202 | 0.203 | 0.206 | 0.210 | 0.215 | | | 19 | 0.176 | 0.177 | 0.179 | 0.183 | 0.188 | | | 20 | 0.155 | 0.156 | 0.157 | 0.160 | 0.165 | | A 060 A 061 (2) Allowable Axial Load for a Deep Groove Ball Bearing The allowable axial load here means the limit load at which a contact ellipse is generated between the ball and raceway due to a change in the contact angle when a radial bearing, which is under an axial load, rides over the shoulder of the raceway groove. This is different from the limit value of a static equivalent load P_0 which is determined from the basic static load rating C_{0r} using the static axial load factor Y_0 . Note also that the contact ellipse may ride over the shoulder even when the axial load on the bearing is below the The allowable axial load $F_{\rm a\ max}$ of a radial ball bearing is determined as follows. The contact angle α for $F_{\rm a}$ is determined from the right term of Equation (4.51) and Equation (4.52) while Q is calculated as follows: $$Q = \frac{F_{a}}{Z \sin \alpha}$$ limit value of P_0 . θ of Fig. 4.24 is also determined as follows: $$2a=A_2 \mu \left(\frac{Q}{\Sigma \rho} \right)^{1/2}$$ $$\therefore \theta = \frac{a}{r}$$ Accordingly, the allowable axial load may be determined as the maximum axial load at which the following relation is established. $$\gamma \ge \alpha + \theta$$ As the allowable axial load cannot be determined unless internal specifications of a bearing are known, Fig. 4.25 shows the result of a calculation to determine the allowable axial load for a deep groove radial ball bearing. Fig. 4.24 # 4.7.2 Allowable Axial Load (Break Down Strength of The Ribs) for a Cylindrical Roller Bearings Both the inner and outer rings may be exposed to an axial load to a certain extent during rotation in a cylindrical roller bearing with ribs. The axial load capacity is limited by heat generation, seizure, etc. at the slip surface between the roller end surface and rib, or the rib strength. The allowable axial load (the load considered the heat generation between the end face of rollers and the rib face) for the cylindrical roller bearing of the diameter series 3, which is applied continuously under grease or oil lubrication, is shown in Fig. 4.26. Grease lubrication (Empirical equation) $$C_{A}=9.8f\left\{\frac{900 (k \cdot d)^{2}}{n+1 500} - 0.023 \times (k \cdot d)^{2.5}\right\} (N)$$ $$= f\left\{\frac{900 (k \cdot d)^{2}}{n+1 500} - 0.023 \times (k \cdot d)^{2.5}\right\} \{kgf\}$$(4.55) Oil lubrication (Empirical equation) $$C_{A}=9.8f\left\{\frac{490 (k \cdot d)^{2}}{n+1 000}-0.000135 \times (k \cdot d)^{3.4}\right\} (N)$$ $$= f\left\{\frac{490 (k \cdot d)^{2}}{n+1 000}-0.000135 \times (k \cdot d)^{3.4}\right\} \{kgf\}$$(4.56) where, C_A : Allowable axial load (N), {kgf} d: Bearing bore diameter (mm) n: Bearing speed (min⁻¹) f: Load factor k : Dimensional factor In the equations (4.55) and (4.56), the examination for the rib strength is excluded. Concerning the rib strength, please consult with NSK. To enable the cylindrical roller bearing to sustain the axial load capacity stably, it is necessary to take into account the following points concerning the bearing and its
surroundings. - Radial load must be applied and the magnitude of radial load should be larger than that of axial load by 2.5 times or more. - There should be sufficient lubricant between the roller end face and rib. - Use a lubricant with an additive for extreme pressures. - Running-in-time should be sufficient. - Bearing mounting accuracy should be good. - Don't use a bearing with an unnecessarily large internal clearance. Moreover, if the bearing speed is very slow or exceeds 50% of the allowable speed in the bearing catalog, or if the bearing bore diameter exceeds 200 mm, it is required for each bearing to be precisely checked for lubrication, cooling method, etc. Please contact NSK in such cases. f: Load factor | | <i>f</i> value | |----------------------|----------------| | Continuous loading | 1 | | Intermittent loading | 2 | | Short time loading | 3 | k: Dimensional factor | | k value | |---------------------------|---------| | Bearing diameter series 2 | 0.75 | | Bearing diameter series 3 | 1 | | Bearing diameter series 4 | 1.2 | #### 4.8 Technical Data #### 4.8.1 Fatigue Life and Reliability Where any part failure may result in damage to the entire machine and repair of damage is impossible, as in applications such as aircraft, satellites, or rockets, greatly increased reliability is demanded of each component. This concept is being applied generally to durable consumer goods and may also be utilized to achieve effective preventive maintenance of machines and equipment. The rating fatigue life of a rolling bearing is the gross number of revolutions or the gross rotating period when the rotating speed is constant for which 90% of a group of similar bearings running individually under similar conditions can rotate without suffering material damage due to rolling fatigue. In other words, fatigue life is normally defined at 90% reliability. There are other ways to describe the life. For example, the average value is employed frequently to describe the life span of human beings. However, if the average value were used for bearings, then too many bearings would fail before the average life value is reached. On the other hand, if a low or minimum value is used as a criterion, then too many bearings would have a life much longer than the set value. In this view, the value 90% was chosen for common practice. The value 95% could have been taken as the statistical reliability, but nevertheless, the slightly looser reliability of 90% was taken for bearings empirically from the practical and economical viewpoint. A 90% reliability however is not acceptable for parts of aircraft or electronic computers or communication systems these days, and a 99% or 99.9% reliability is demanded in some of these cases. The fatigue life distribution when a group of similar bearings are operated individually under similar conditions is shown in Fig. 4.27. The Weibull equation can be used to describe the fatigue life distribution within a damage ratio of 10 to 60% (residual probability of 90 to 40%). Below the damage ratio of 10% (residual probability of 90% or more), however, the rolling fatigue life becomes longer than the theoretical curve of the Weibull distribution, as shown in Fig. 4.28. This is a conclusion drawn from the life test of numerous, widely-varying bearings and an analysis of the data. When bearing life with a failure ratio of 10% or less (for example, the 95% life or 98% life) is to be considered on the basis of the above concept, the reliability factor a_1 as shown in the table below is used to check the life. Assume here that the 98% life L_2 is to be calculated for a bearing whose rating fatigue life L_{10} was calculated at 10 000 hours. The life can be calculated at L_2 =0.33× L_{10} =3 300 hours. In this manner, the reliability of the bearing life can be matched to the degree of reliability required of the equipment and difficulty of overhaul and inspection. Table 4.12 Reliability factor | Reliability, % | 90 | 95 | 96 | 97 | 98 | 99 | |---------------------------|---|-------|-------|-------|-------|-------| | Life, L | $L_{\scriptscriptstyle 10}$ rating life | L_5 | L_4 | L_3 | L_2 | L_1 | | Reliability factor, a_1 | 1 | 0.64 | 0.55 | 0.47 | 0.37 | 0.25 | Apart from rolling fatigue, factors such as lubrication, wear, sound, and accuracy govern the durability of a bearing. These factors must be taken into account, but the endurance limit of these factors varies depending on application and conditions. A 066 A 067 #### 4.8.2 Radial Clearance and Fatigue Life As shown in the catalog, etc., the fatigue life calculation equation of rolling bearings is Equation (4.57): $$L = \left(\frac{C}{P}\right)^{p} \qquad (4.57)$$ where, L: Rating fatigue life (10 6 rev) C: Basic dynamic load rating (N), {kgf} P: Dynamic equivalent load (N), {kgf} p: Index Ball bearing p=3, Roller bearing $$p = \frac{10}{3}$$ The rating fatigue life L for a radial bearing in this case is based on a prerequisite that the load distribution in the bearing corresponds to the state with the load factor $\varepsilon = 0.5$ (Fig. 4.29). The load distribution with ε =0.5 is obtained when the bearing internal clearance is zero. In this sense, the normal fatigue life calculation is intended to obtain the value when the clearance is zero. When the effect of the radial clearance is taken into account, the bearing fatique life can be calculated as follows. Equations (4.58) and (4.59) can be established between the bearing radial clearance Δ_r and a function $f(\varepsilon)$ of load factor ε : For deep groove ball bearing $$f(\varepsilon) = \frac{\Delta_{r} \cdot D_{w}^{1/3}}{0.00044 \left(\frac{F_{r}}{Z}\right)^{2/3}} \dots (N)$$ $$f(\varepsilon) = \frac{\Delta_{r} \cdot D_{w}^{1/3}}{0.002 \left(\frac{F_{r}}{Z}\right)^{2/3}} \dots \{kgf\}$$ For cylindrical roller bearing $$f(\varepsilon) = \frac{\Delta_{r} \cdot L_{we}^{0.8}}{0.000077 \left(\frac{F_{r}}{Z \cdot i}\right)^{0.9}} \dots (N)$$ $$f(\varepsilon) = \frac{\Delta_{r} \cdot L_{we}^{0.8}}{0.0006 \left(\frac{F_{r}}{Z \cdot i}\right)^{0.9}} \dots \{kgf\}$$ where, Δ_r : Radial clearance (mm) F_r : Radial load (N), {kgf} Z: Number of rolling elements i: No. of rows of rolling elements $D_{\rm w}$: Ball diameter (mm) $L_{\rm we}$: Effective roller length (mm) L_{ε} : Life with clearance of Δ_{r} \vec{L} : Life with zero clearance, obtained from Equation (4.57) The relationship between load factor ε and $f(\varepsilon)$, and the life ratio L_{ε}/L , when the radial internal clearance is $\Delta_{\rm r}$ can also be obtained as shown in Table 4.13. Fig. 4.30 shows the relationship between the radial clearance and bearing fatigue life while taking 6208 and NU208 as examples. Fig. 4.29 Load Distribution with ε =0.5 Table 4.13 ε and $f(\varepsilon)$, L_{ε}/L | | Deep groove ball bearing | | Cylindrical roller bearing | | | |------|--------------------------|---------------------------|----------------------------|---------------------------|--| | ε | $f(\varepsilon)$ | $\frac{L_{arepsilon}}{L}$ | $f(\varepsilon)$ | $\frac{L_{arepsilon}}{L}$ | | | 0.1 | 33.713 | 0.294 | 51.315 | 0.220 | | | 0.2 | 10.221 | 0.546 | 14.500 | 0.469 | | | 0.3 | 4.045 | 0.737 | 5.539 | 0.691 | | | 0.4 | 1.408 | 0.889 | 1.887 | 0.870 | | | 0.5 | 0 | 1.0 | 0 | 1.0 | | | 0.6 | - 0.859 | 1.069 | - 1.133 | 1.075 | | | 0.7 | - 1.438 | 1.098 | - 1.897 | 1.096 | | | 0.8 | - 1.862 | 1.094 | - 2.455 | 1.065 | | | 0.9 | - 2.195 | 1.041 | - 2.929 | 0.968 | | | 1.0 | - 2.489 | 0.948 | - 3.453 | 0.805 | | | 1.25 | - 3.207 | 0.605 | - 4.934 | 0.378 | | | 1.5 | - 3.877 | 0.371 | - 6.387 | 0.196 | | | 1.67 | - 4.283 | 0.276 | - 7.335 | 0.133 | | | 1.8 | - 4.596 | 0.221 | - 8.082 | 0.100 | | | 2.0 | - 5.052 | 0.159 | - 9.187 | 0.067 | | | 2.5 | - 6.114 | 0.078 | -11.904 | 0.029 | | | 3 | - 7.092 | 0.043 | -14.570 | 0.015 | | | 4 | - 8.874 | 0.017 | -19.721 | 0.005 | | | 5 | -10.489 | 0.008 | -24.903 | 0.002 | | | 10 | -17.148 | 0.001 | -48.395 | 0.0002 | | # 4.8.3 Misalignment of Inner/Outer Rings and Fatigue Life of Deep-Groove Ball Bearings A rolling bearing is manufactured with high accuracy, and it is essential to take utmost care with machining and assembly accuracies of surrounding shafts and housing if this accuracy is to be maintained. In practice, however, the machining accuracy of parts around the bearing is limited, and bearings are subject to misalignment of inner/outer rings caused by the shaft deflection under external load. The allowable misalignment is generally 0.0006 \sim 0.003 rad (2' to 10') but this varies depending on the size of the deep-groove ball bearing, internal clearance during operation, and load. This section introduces the relationship between the misalignment of inner/outer rings and fatigue life. Four different sizes of bearings are selected as examples from the 62 and 63 series deep-groove ball bearings. Assume the fatigue life without misalignment as $L_{\theta^{-0}}$ and the fatigue life with misalignment as L_{θ} . The effect of the misalignment on the fatigue life may be found by calculating $L_{\theta}/L_{\theta^{-0}}$. The result is shown in Figs. 4.31 to 4.34. As an example of ordinary running conditions, the radial load F_r (N) {kgf} and axial load F_a (N) {kgf} were assumed respectively to be approximately 10% (normal load) and 1% (light preload) of the dynamic load rating C_r (N) {kgf} of a bearing and were used as load conditions for the calculation. Normal radial clearance was used and the shaft fit was set to around j5. Also taken into account was the decrease of the internal clearance due to expansion of the inner ring. Moreover, assuming that the temperature difference between the inner and outer rings was 5°C during operation, inner/outer ring misalignment, $L_{\theta}/L_{\theta-0}$ was calculated
for the maximum, minimum, and mean effective clearances. As shown in Figs. 4.31 to 4.34, degradation of the fatigue life is limited to 5 to 10% or less when the misalignment ranges from 0.0006 to 0.003 rad (2' to 10'), thus not presenting much problem. When the misalignment exceeds a certain limit, however, the fatigue life degrades rapidly as shown in the figure. Attention is therefore necessary in this respect. When the clearance is small, not much effect is observed as long as the misalignment is small, as shown in the figure. But the life decreases substantially when the misalignment increases. As previously mentioned, it is essential to minimize the mounting error as much as possible when a bearing is to be used. A 070 A 071 # 4.8.4 Misalignment of Inner/Outer Rings and Fatigue Life of Cylindrical Roller Bearings When a shaft supported by rolling bearings is deflected or there is some inaccuracy in a shoulder, there arises misalignment between the inner and outer rings of the bearings, thereby lowering their fatigue life. The degree of life degradation depends on the bearing type and interior design but also varies depending on the radial internal clearance and the magnitude of load during operation. The relationship between the misalignment of inner/outer rings and fatigue life was determined, as shown in Figs. 4.35 to 4.38, while using cylindrical roller bearings NU215 and NU315 of standard design. In these figures, the horizontal axis shows the misalignment of inner/outer rings (rad) while the vertical axis shows the fatigue life ratio $L_{\theta}/L_{\theta-0}$. The fatigue life without misalignment is $L_{\theta-0}$ and that with misalignment is L_{θ} . Figs. 4.35 and 4.36 show the case with constant load (10% of basic dynamic load rating $C_{\rm r}$ of a bearing) for each case when the internal clearance is a normal, C3 clearance, or C4 clearance. Figs. 4.37 and 4.38 show the case with constant clearance (normal clearance) when the load is 5%, 10%, and 20% of the basic dynamic load rating $C_{\rm r}$. Note that the median effective clearance in these examples was determined using m5/H7 fits and a temperature difference of 5°C between the inner and outer rings. The fatigue life ratio for the clearance and load shows the same trend as in the case of other cylindrical roller bearings. But the life ratio itself differs among bearing series and dimensions, with life degradation rapid in 22 and 23 series bearings (wide type). It is advisable to use a bearing of special design when considerable misalignment is expected during application. #### 4.8.5 Oil Film Parameters and Rolling Fatigue Life Based on numerous experiments and experiences, the rolling fatigue life of rolling bearings can be shown to be closely related to the lubrication. The rolling fatigue life is expressed by the maximum number of rotations, which a bearing can endure, until the raceway or rolling surface of a bearing develops fatigue in the material, resulting in flaking of the surface, under action of cyclic stress by the bearing. Such flaking begins with either microscopic non-uniform portions (such as non-metallic inclusions, cavities) in the material or with microscopic defect in the material's surface (such as extremely small cracks or surface damage or dents caused by contact between extremely small projections in the raceway or rolling surface). The former flaking is called sub-surface originating flaking while the latter is surface-originating flaking. The oil film parameter (\varLambda), which is the ratio between the resultant oil film thickness and surface roughness, expresses whether or not the lubrication state of the rolling contact surface is satisfactory. The effect of the oil film grows with increasing \varLambda . Namely, when \varLambda is large (around 3 in general), surface-originating flaking due to contact between extremely small projections in the surface is less likely to occur. If the surface is free from defects (flaw, dent, etc.), the life is determined mainly by sub-surface originating flaking. On the other hand, a decrease in \varLambda tends to develop surface-originating flaking, resulting in degradation of the bearing's life. This state is shown in Fig. 4.39. NSK has performed life experiments with about 370 bearings within the range of ${\scriptstyle \varLambda}$ =0.3 ${\scriptstyle \sim}$ 3 using different lubricants and bearing materials (${\Large lacktled{ \bullet}}$ and ${\Large lacktled{ \land}}$ in Fig. 4.40). Fig. 4.40 shows a summary of the principal experiments selected from among those reported up to now. As is evident, the life decreases rapidly at around ${\scriptstyle \varLambda}$ =1 when compared with the life values at around ${\scriptstyle \varLambda}$ =3 ${\scriptstyle \sim}$ 4 where life changes at a slower rate. The life becomes about 1/10 or less at ${\scriptstyle \varLambda}$ = ${\Large lacktled{ \circ}}$ 0.5. This is a result of severe surface-originating flaking. Accordingly, it is advisable for extension of the fatigue life of rolling bearings to increase the oil film parameter (ideally to a value above 3) by improving lubrication conditions. #### 4.8.6 EHL Oil Film Parameter Calculation Diagram Lubrication of rolling bearings can be expressed by the theory of elastohydrodynamic lubrication (EHL). Introduced below is a method to determine the oil film parameter (oil film — surface roughness ratio), the most critical among the EHL qualities. #### (1) Oil Film Parameter The raceway surfaces and rolling surfaces of a bearing are extremely smooth, but have fine irregularities when viewed through a microscope. As the EHL oil film thickness is in the same order as the surface roughness, lubricating conditions cannot be discussed without considering this surface roughness. For example, given a particular mean oil film thickness, there are two conditions which may occur depending on the surface roughness. One consists of complete separation of the two surfaces by means of the oil film (Fig. 4.41 (a)). The other consists of metal contact between surface projections (Fig. 4.41 (b)). The degradation of lubrication and surface damage is attributed to case (b). The symbol lambda (1) represents the ratio between the oil film thickness and roughness. It is widely employed as an oil film parameter in the study and application of EHL. $$\Lambda = h/\sigma$$ (4.60) where h: EHL oil film thickness σ : Combined roughness $(\sqrt{\sigma_1^2 + \sigma_2^2})$ σ_1 , σ_2 : Root mean square (rms) roughness of each contacting surface The oil film parameter may be correlated to the formation of the oil film as shown in Figs. 4.42 and the degree of lubrication can be divided into three zones as shown in the figure. #### (2) Oil Film Parameter Calculation Diagram The **Dowson-Higginson** minimum oil film thickness equation shown below is used for the diagram: The oil film thickness to be used is that of the inner ring under the maximum rolling element load (at which the thickness becomes minimum). Equation (4.61) can be expressed as follows by grouping into terms (R) for speed, (A) for viscosity, (F) for load, and (J) for bearing technical specifications. t is a constant. $$\Lambda = t \cdot R \cdot A \cdot F \cdot J \cdot \cdots \cdot (4.62)$$ R and A may be quantities not dependent on a bearing. When the load P is assumed to be between 98 N {10 kgf} and 98 kN {10 tf}, F changes by 2.54 times as F_{∞} $P^{-0.13}$. Since the actual load is determined roughly from the bearing size, however, such change may be limited to 20 to 30%. As a result, F is handled as a lump with the term J of bearing specifications [F=F (J)]. Traditional Equation (4.62) can therefore be grouped as shown below: $$\Lambda = T \cdot R \cdot A \cdot D$$ (4.63) where, T: Factor determined by the bearing **T**ype R: Factor related to Rotation speed A: Factor related to viscosity (viscosity grade α . Alpha D: Factor related to bearing Dimensions Fig. 4.41 Oil Film and Surface Roughness Fig. 4.42 Effect of Oil Film on Bearing Performance | NSK The oil film parameter \varLambda , which is most vital among quantities related to EHL, is expressed by a simplified equation shown below. The fatigue life of rolling bearings becomes shorter when \varLambda is smaller. In the equation $A = T \cdot R \cdot A \cdot D$ terms include A for oil viscosity η_0 (mPa·s, {cp}), R for the speed n (min⁻¹), and D for bearing bore diameter d (mm). The calculation procedure is described below. - (i) Determine the value T from the bearing type (Table 4.14). - (ii) Determine the R value for n (min⁻¹) from Fig. 4.43. - (iii) Determine A from the absolute viscosity (mPa·s, {cp}) and oil kind in Fig. 4.44. Generally, the kinematic viscosity ν_0 (mm²/s, {cSt}) is used and conversion is made as follows: ρ is the density (g/cm³) and uses the approximate value as shown below: $\begin{array}{ll} \text{Mineral oil} & \rho {=} 0.85 \\ \text{Silicon oil} & \rho {=} 1.0 \\ \text{Diester oil} & \rho {=} 0.9 \end{array}$ When it is not known whether the mineral oil is naphthene or paraffin, use the paraffin curve shown in Fig. 4.44. (iv) Determine the D value from the diameter series and bore diameter d (mm) in Fig. 4.45. (v) The product of the above values is used as an oil film parameter. Table 4.14 Value T | Bearing type | Value T | |----------------------------|---------| | Ball bearing | 1.5 | | Cylindrical roller bearing | 1.0 | | Tapered roller bearing | 1.1 | | Spherical roller bearing | 0.8 | Fig. 4.43 Speed Term, R Fig. 4.44 Term Related to Lubricant Viscosity, ${\cal A}$ Fig. 4.45 Term Related to Bearing Specifications, D Examples of EHL oil film parameter calculation are described below. #### (Example 1) The oil film parameter is determined when a deep groove ball bearing 6312 is operated with paraffin mineral oil (η_0 =30 mPa·s, {cp}) at the speed n =1 000 min⁻¹. ####
(Solution) d=60 mm and D=130 mm from the bearing catalog. T=1.5 from Table 4.18 R=3.0 from Fig. 4.43 A=0.31 from Fig. 4.44 D=1.76 from Fig. 4.45 Accordingly. Δ =2.5 #### (Example 2) The oil film parameter is determined when a cylindrical roller bearing NU240 is operated with paraffin mineral oil (η_0 =10 mPa·s, {cp}) at the speed n=2 500 min⁻¹. #### (Solution) d=200 mm and D=360 mm from the bearing catalog. T=1.0 from Table 4.18 R=5.7 from Fig. 4.43 A=0.13 from Fig. 4.44 D=4.8 from Fig. 4.45 Accordingly, A=3.6 #### (3) Effect of Oil Shortage and Shearing Heat Generation The oil film parameter obtained above is the value when the requirements, that is, the contact inlet fully flooded with oil and isothermal inlet are satisfied. However, these conditions may not be satisfied depending on lubrication and operating conditions. One such condition is called starvation, and the actual oil film parameter value may become smaller than determined by Equation (4.64). Starvation might occur if lubrication becomes limited. In this condition, a guideline for adjusting the oil film parameter is 50 to 70% of the value obtained from Equation (4.64). Another effect is the localized temperature rise of oil in the contact inlet due to heavy shearing during high-speed operation, resulting in a decrease of the oil viscosity. In this case, the oil film parameter becomes smaller than the isothermal theoretical value. The effect of shearing heat generation was analyzed by Murch and Wilson, who established the decrease factor of the oil film parameter. An approximation using the viscosity and speed (pitch diameter of rolling element set $D_{\rm pw} \times$ rotating speed per minute n as parameters is shown in Fig. 4.46. By multiplying the oil film parameter determined in the previous section by this decrease factor Hi the oil film parameter considering the shearing heat generation is obtained. Nameny; $$\Lambda = Hi \cdot T \cdot R \cdot A \cdot D \cdot \dots \cdot (4.65)$$ Note that the average of the bore and outside diameters of the bearings may be used as the pitch diameter $D_{\mathrm{nw}}\left(d_{\mathrm{m}}\right)$ of rolling element set. Conditions for the calculation (Example 1) include $d_{\rm m}n$ =9.5 \times 10⁴ and $\eta_{\rm 0}$ =30 mPa·s, {cp}, and Hi is nearly equivalent to 1 as is evident from Fig. 4.46. There is therefore almost no effect of shearing heat generation. Conditions for (Example 2) are $d_{\rm m}n=7\times10^5$ and $\eta_{\rm 0}=10$ mPa·s, {cp} while Hi=0.76, which means that the oil film parameter is smaller by about 25%. Accordingly, Δ is actually 2.7, not 3.6. #### 4.8.7 Load Calculation of Gears #### (1) Calculation of Loads on Spur, Helical, and Double-Helical Gears There is an extremely close relationship among the two mechanical elements, gears and rolling bearings. Gear units, which are widely used in machines, are almost always used with bearings. Rating life calculation and selection of bearings to be used in gear units are based on the load at the gear meshing point. The load at the gear meshing point is calculated as follows: #### Spur Gear: $$P_{1}=P_{2}=\frac{9\ 550\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)}=\frac{9\ 550\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)} \tag{N}$$ $$=\frac{974\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)}=\frac{974\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)} \tag{kgf}$$ $S_1=S_2=P_1\tan\alpha$ The magnitudes of the forces P_2 and S_2 applied to the driven gear are the same as P_1 and S_1 respectively, but the direction is opposite. #### **Helical Gear:** $$P_{1}=P_{2}=\frac{9\ 550\ 000H}{n_{1}\left(\frac{d_{p1}}{2}\right)}=\frac{9\ 550\ 000H}{n_{2}\left(\frac{d_{p2}}{2}\right)} \tag{N}$$ $$=\frac{974\ 000H}{n_{1}\left(\frac{d_{p1}}{2}\right)}=\frac{974\ 000H}{n_{2}\left(\frac{d_{p2}}{2}\right)} \tag{sgf}$$ $$S_{1}=S_{2}=\frac{P_{1}\tan\alpha_{n}}{n_{2}}$$ $T_1=T_2=P_1\tan\beta$ The magnitudes of the forces P_2 , S_2 , and T_2 applied to the driven gear are the same as P_1 , S_1 , and T_1 respectively, but the direction is opposite. #### **Double-Helical Gear:** $$P_{1}=P_{2}=\frac{9\ 550\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)}=\frac{9\ 550\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)}$$(N) $$=\frac{974\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)}=\frac{974\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)}$$(kgf} $$S_1 = S_2 = \frac{P_1 \tan \alpha_n}{\cos \beta}$$ where, P: Tangential force (N), {kgf} S: Separating force (N), {kgf} T: Thrust (N), {kgf} H: Transmitted power (kW) n: Speed (min⁻¹) d_p : Pitch diameter (mm) α : Gear pressure angle α_n : Gear normal pressure angle $\ddot{\beta}$: Twist angle Subscript 1: Driving gear Subscript 2: Driven gear In the case of double-helical gears, thrust of the helical gears offsets each other and thus only tangential and separating forces act. For the directions of tangential, separating, and thrust forces, please refer to Figs. 4.47 and 4.48. Vertical upward on paper Vertical downward on paper Fig. 4.47 Spur Gear Vertical upward on paper Vertical downward on paper Fig. 4.48 Helical Gear The thrust direction of the helical gear varies depending on the gear running direction, gear twist direction, and whether the gear is driving or driven. The directions are as follows: The force on the bearing is determined as follows: Tangential force: $$P_{1}=P_{2}=\frac{9\ 550\ 000H}{n_{1}\left(\frac{d_{p_{1}}}{2}\right)}=\frac{9\ 550\ 000H}{n_{2}\left(\frac{d_{p_{2}}}{2}\right)}$$(N) $$=\frac{974\ 000H}{d_{2}}=\frac{974\ 000H}{d_{2}}$$ {kgf} Separating force: $S_1 = S_2 = P_1 \frac{\tan \alpha_n}{\cos \beta}$ Thrust: $T_1 = T_2 = P_1 \cdot \tan\beta$ The same method can be applied to bearings C and D. **Table 4.15** | | Load
sification | Bearing A | Bearing B | |-------------|---------------------|---|--| | p. | From P_1 | $P_{\mathbf{A}} = \frac{\mathbf{b}}{\mathbf{a} + \mathbf{b}} P_{1} \otimes$ | $P_{\rm B} = \frac{{\sf a}}{{\sf a} + {\sf b}} P_1 \otimes$ | | Radial load | From S_1 | $S_{A} = \frac{b}{a+b} S_{1}$ | $S_{\rm B} = \frac{\rm a}{\rm a+b} S_{\rm 1}$ | | <u> </u> | From T_1 | $U_{A} = \frac{d_{p1}/2}{a+b} T_{1} \qquad \uparrow $ | $U_{\rm B} = \frac{d_{\rm pl}/2}{{\rm a} + {\rm b}} T_{\rm 1} \blacksquare$ | | | mbined
lial load | $F_{\rm rA} = \sqrt{P_{\rm A}^2 + (S_{\rm A} + U_{\rm A})^2}$ | $F_{\rm rB} = \sqrt{P_{\rm B}^2 + (S_{\rm B} - U_{\rm B})^2}$ | | Ax | ial load | F_{a} | $=T_1$ | Load direction is shown referring to left side of Fig. 4.49. Fig. 4.49 Fig. 4.50 Thrust Direction (2) Calculation of Load Acting on Straight Bevel Gears The load at the meshing point of straight bevel gears is calculated as follows: $$P_{1}=P_{2}=\frac{9\ 550\ 000H}{n_{1}\left(\frac{D_{m1}}{2}\right)}=\frac{9\ 550\ 000H}{n_{2}\left(\frac{D_{m2}}{2}\right)}$$(N) $$= \frac{974\ 000H}{n_1 \left(\frac{D_{\rm m1}}{2}\right)} = \frac{974\ 000H}{n_2 \left(\frac{D_{\rm m2}}{2}\right)} \cdots \cdots \{kgf\}$$ D_{m1} = d_{p1} - $w \sin \delta_1$ D_{m2} = d_{p2} - $w \sin \delta_2$ $S_1 = P_1 \tan \alpha_n \cos \delta_1$ $S_2=P_2\tan\alpha_n\cos\delta_2$ $T_1 = P_1 \tan \alpha_n \cos \delta_1$ $T_2 = P_2 \tan \alpha_n \cos \delta_2$ where, $D_{\rm m}$: Average pitch diameter (mm) d_p : Noted diameter (mm) d_p : Gear width (pitch line length) (mm) α_n : Gear normal pressure angle α_n to the normal pressure angle δ : Pitch cone angle Generally, $\delta_1 + \delta_2 = 90^\circ$. In this case, S_1 and T_2 (or S_2 and T_1) are the same in magnitude but opposite in direction. S/P and T/P for δ are shown in Fig. 4.53. The load on the bearing can be calculated as shown below. **Table 4.16** Vertical upward on paper ⊗ Vertical downward on paper | cla | Load
assification | Bearing A | Bearing B | Bearing C | Bearing D | |-------------|------------------------|--|--|--|---| | pı | From P | $P_{\mathbf{A}} = \frac{\mathbf{b}}{\mathbf{a}} P_{1}$ | $P_{\rm B} = \frac{{\sf a} + {\sf b}}{{\sf a}} P_{1} \otimes$ | $P_{\rm C} = \frac{\rm d}{\rm c + \rm d} P_2 \bullet$ | $P_{\mathrm{D}} = \frac{C}{c + d} P_{2} \bullet$ | | Radial Ioad | From S | $S_{A} = \frac{b}{a} S_{1}$ | $S_{\rm B} = \frac{a+b}{a} S_{\rm i}$ | $S_{c} = \frac{d}{c+d}S_{2} \rightarrow$ | $S_{\rm D} = \frac{{\rm c}}{{\rm c} + {\rm d}} S_2 \Rightarrow $ | | čč | From T | $U_{\rm A} = \frac{D_{\rm m1}}{2 \cdot {\rm a}} T_{\rm 1} \qquad \uparrow \qquad \uparrow$ | $U_{\rm B} = \frac{D_{\rm m1}}{2 \cdot {\rm a}} T_{\rm 1} \blacksquare$ | $U_{\rm C} = \frac{D_{\rm m2}}{2({\rm c} + {\rm d})} T_2 \leftarrow$ | $U_{\rm D} = \frac{D_{\rm m2}}{2({\rm c} + {\rm d})} T_2 \Longrightarrow$ | | _ | Combined
adial load | $F_{\rm rA} = \sqrt{P_{\rm A}^2 + (S_{\rm A} - U_{\rm A})^2}$ | $F_{\rm rB} = \sqrt{P_{\rm B}^2 + (S_{\rm B} - U_{\rm B})^2}$ | $F_{\rm rC} = \sqrt{P_{\rm C}^2 + (S_{\rm C} - U_{\rm C})^2}$ | $F_{\rm rD} = \sqrt{P_{\rm D}^2 + (S_{\rm D} + U_{\rm D})^2}$ | | F | Axial load | F_{a} = | = T ₁ | F_{a} = | = T ₂ ↓ | Load direction is shown referring to Fig. 4.52. Fig. 4.51 Fig. 4.52 Fig. 4.53 #### (3) Calculation of Load on Spiral Bevel Gears In the case of spiral bevel gears, the magnitude and direction of loads at the meshing point vary depending on the running direction and gear twist direction. The running is either clockwise or counterclockwise as viewed from the side opposite of the gears (Fig. 4.54). The gear twist direction is
classified as shown in Fig. 4.55. The force at the meshing point is calculated as follows: $$P_1 = P_2 = \frac{9550000H}{n_1 \left(\frac{D_{\text{m1}}}{2}\right)} = \frac{9550000H}{n_2 \left(\frac{D_{\text{m2}}}{2}\right)}$$ $$= \frac{974000H}{n_1 \left(\frac{D_{\text{m1}}}{2}\right)} = \frac{974000H}{n_2 \left(\frac{D_{\text{m2}}}{2}\right)}$$ (N) where, $\alpha_{\rm n}$: Gear normal pressure angle β : Twisting angle δ : Pitch cone angle w: Gear width (mm) $D_{ m m}$: Average pitch diameter (mm) $d_{\scriptscriptstyle m p}$: Pitch diameter (mm) Note that the following applies: $$D_{ ext{m1}}$$ = $d_{ ext{p1}}$ - w sin δ_1 $D_{ ext{m2}}$ = $d_{ ext{p2}}$ - w sin δ_2 The separating force S and T are as follows depending on the running direction and gear twist direction: (i) Clockwise with Right Twisting or Counterclockwise with Left Twisting Driving Gear Separating Force $$S_1 = \frac{P}{\cos\beta} (\tan\alpha_n \cos\delta_1 + \sin\beta \sin\delta_1)$$ Thrust $$T_1 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_1 - \sin\beta \cos\delta_1)$$ Driven Gear Separating Force $$S_2 = \frac{P}{\cos\beta} (\tan\alpha_n \cos\delta_2 - \sin\beta \sin\delta_2)$$ Thrust $$T_2 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_2 + \sin\beta \cos\delta_2)$$ (ii) Counterclockwise with Right Twist or Clockwise with Left Twist Driving Gear Separating Force $$S_1 = \frac{P}{\cos\beta} (\tan\alpha_n \cos\delta_1 - \sin\beta \sin\delta_1)$$ Thrust $$T_1 = \frac{P}{\cos\beta} \left(\tan\alpha_n \sin\delta_1 + \sin\beta \cos\delta_1 \right)$$ Driven Gear Separating Force $$S_2 = \frac{P}{\cos\beta} (\tan\alpha_n \cos\delta_2 + \sin\beta \sin\delta_2)$$ Thrust $$T_2 = \frac{P}{\cos\beta} (\tan\alpha_n \sin\delta_2 - \sin\beta \cos\delta_2)$$ The positive (plus) calculation result means that the load is acting in a direction to separate the gears while a negative (minus) one means that the load is acting in a direction to bring the gears nearer. Generally, $\delta_1+\delta_2=90^\circ$. In this case, T_1 and S_2 (S_1 and T_2) are the same in magnitude but opposite in direction. The load on the bearing can be calculated by the same method as described in Section 4.8.7 (2), "Calculation of Load Acting on Straight Bevel Gears." Fig. 4.54 Fig. 4.55 Right twist Vertical upward on paper Vertical downward on paper Fig. 4.56 #### (4) Calculation of Load Acting on Hypoid Gears The force acting at the meshing point of Hypoid Gears is calculated as follows: $$P_{1} = \frac{9550000H}{n_{1} \left(\frac{D_{m1}}{2}\right)} = \frac{\cos\beta_{1}}{\cos\beta_{2}} P_{2} \dots (N)$$ $$= \frac{974\ 000H}{n_1 \left(\frac{D_{\text{ml}}}{2}\right)} = \frac{\cos\beta_1}{\cos\beta_2} P_2 \cdot \dots \cdot \{\text{kgf}\}$$ $$P_{2} = \frac{9\ 550\ 000H}{n_{2} \left(\frac{D_{m2}}{2}\right)}$$ (N) $$= \frac{974\ 000H}{n_2 \left(\frac{D_{m2}}{2}\right)}$$ (kg $$D_{\text{m1}} = D_{\text{m2}} - \frac{z_1}{z_2} \cdot \frac{\cos\beta_1}{\cos\beta_2}$$ $$D_{m2}=d_{p2}-w_2\sin\delta_2$$ where, α_n : Gear normal pressure angle - $\ddot{\beta}$: Twisting angle - δ : Pitch cone angle - w : Gear width (mm) - $D_{\rm m}$: Average pitch diameter (mm) - $d_{\rm p}$: Pitch diameter (mm) - z: Number of teeth The separating force S and T are as follows depending on the running direction and gear twist direction: (i) Clockwise with Right Twisting or Counterclockwise with Left Twisting ### Driving Gear Separating Force $$S_1 = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \cos \delta_1 + \sin \beta_1 \sin \delta_1)$$ Thrust $$T_1 = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \sin \delta_1 - \sin \beta_1 \cos \delta_1)$$ #### Driven Gear Separating Force $$S_2 = \frac{P_2}{\cos \beta_2} (\tan \alpha_n \cos \delta_2 - \sin \beta_2 \sin \delta_2)$$ Thrust $$T_2 = \frac{P_2}{\cos \beta_2} (\tan \alpha_n \sin \delta_2 + \sin \beta_2 \cos \delta_2)$$ (ii) Counterclockwise with Right Twist or Clockwise with Left Twist ### Driving Gear Separating Force $$S_1 = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \cos \delta_1 - \sin \beta_1 \sin \delta_1)$$ Thrust $$T_1 = \frac{P_1}{\cos \beta_1} (\tan \alpha_n \sin \delta_1 + \sin \beta_1 \cos \delta_1)$$ #### Driven Gear Separating Force $$S_2 = \frac{P_2}{\cos \beta_2} (\tan \alpha_n \cos \delta_2 + \sin \beta_2 \sin \delta_2)$$ Thrust $$T_2 = \frac{P_2}{\cos \beta_2} (\tan \alpha_n \sin \delta_2 - \sin \beta_2 \cos \delta_2)$$ The positive (plus) calculation result means that the load is acting in a direction to separate the gears while a negative (minus) one means that the load is acting in a direction to bring the gears nearer. For the running direction and gear twist direction, refer to Section 4.8.7 (3), "Calculation of Load on Spiral Bevel Gears." The load on the bearing can be calculated by the same method as described in Section 4.8.7 (2), "Calculation of Load Acting on Straight Bevel Gears." The next calculation diagram is used to determine the approximate value and direction of separating force S and thrust T. #### [How To Use] The method of determining the separating force S is shown. The thrust T can also be determined in a similar manner. - 1. Take the gear normal pressure angle $\alpha_{\rm n}$ from the vertical scale on the left side of the diagram. - 2. Determine the intersection between the pitch cone angle δ and the twist angle β . Determine one point which is either above or below the β =0 line according to the rotating direction and gear twist direction. - 3. Draw a line connecting the two points and read the point at which the line cuts through the right vertical scale. This reading gives the ratio (S/P, %) of the separating force S to the tangential force P in percentage. Calculation Diagram of Thrust T #### (5) Calculation of Load on Worm Gear A worm gear is a kind of spigot gear, which can produce a high reduction ratio with small volume. The load at a meshing point of worm gears is calculated as shown in Table 4.17. Symbols of Table 4.17 are as follows: *i*: Gear ratio $$\left(i = \frac{Z_2}{Z_w}\right)$$ $$\eta$$: Worm gear efficiency $\left[\eta = \frac{\tan \gamma}{\tan(\gamma + \psi)} \right]$ $$\gamma$$: Advance angle $\left(\gamma = an^{-1} rac{d_{ m p2}}{i d_{ m p1}} ight)$ ψ : For the frictional angle, the value obtained from $$V_{\mathbb{R}} = \frac{\pi d_{\text{pl}} n_1}{\cos \gamma} \times \frac{10^{-3}}{60}$$ as shown in Fig. 4.57 is used. When V_R is 0.2 m/s or less, then use ψ =8°. When V_R exceeds 6 m/s, use ψ =1°4′. $\alpha_{\rm n}$: Gear normal pressure angle $\alpha_{\rm a}$: Shaft plane pressure angle $Z_{\rm w}$: No. of threads (No. of teeth of worm gear) $Z_{\scriptscriptstyle 2}$: No. of teeth of worm wheel Subscript 1: For driving worm gear Subscript 2: For driven worm gear In a worm gear, there are four combinations of interaction at the meshing point as shown below depending on the twist directions and rotating directions of the worm gear. The load on the bearing is obtained from the magnitude and direction of each component at the meshing point of the worm gears according to the method shown in Table 4.15 of Section 4.8.7 (1), Calculation of loads on spur, helical, and double-helical gears. **Table 4.17** | Force | Worm | Worm wheel | | | | |--------------|---|---|--|--|--| | Tangential | $\frac{9550000H}{n_1\left(\frac{d_{p1}}{2}\right)} \qquad \cdots \cdots (N)$ | $\frac{9550000Hi\eta}{n_1\left(\frac{d_{n^2}}{2}\right)} = \frac{P_1\eta}{\tan\gamma} = \frac{P_1}{\tan(\gamma+\psi)}$ (N) | | | | | P | $\frac{974\ 000H}{n_1\left(\frac{d_{\rm pl}}{2}\right)} \qquad \cdots \qquad {\rm \{kgf\}}$ | $\frac{974\ 000Hi\eta}{n_1\left(\frac{d_{p^2}}{2}\right)} = \frac{P_1\ \eta}{\tan\gamma} = \frac{P_1}{\tan(\gamma + \psi)}$ $\cdots\cdots\cdot\{\text{kgf}\}$ | | | | | Thrust | $\frac{9550000H\eta}{n_1\left(\frac{d_{n^2}}{2}\right)} = \frac{P_1 \eta}{\tan \gamma} = \frac{P_1}{\tan(\gamma + \psi)}$ (N) | $\frac{9\ 550\ 000H}{n_1\left(\frac{d_{p1}}{2}\right)} \qquad \cdots \cdots (N)$ | | | | | T | $\frac{974\ 000H\eta}{n_1\left(\frac{d_{\mathbb{P}^2}}{2}\right)} = \frac{P_1\ \eta}{\tan\gamma} = \frac{P_1}{\tan(\gamma+\psi)}$ $\cdots\cdots\cdot\{\text{kgf}\}$ | $\frac{974\ 000H}{n_1\left(\frac{d_{\rm pl}}{2}\right)} \qquad \qquad$ | | | | | Separating S | $\frac{P_1 \tan \alpha_n}{\sin (\gamma + \psi)} = \frac{P_1 \tan \alpha_n}{\tan (\gamma + \psi)}$ (N), {kgf} | $\frac{P_1 \tan \alpha_n}{\sin (\gamma + \psi)} = \frac{P_1 \tan \alpha_a}{\tan (\gamma + \psi)}$ (N), {kgf} | | | | Fig. 4.57 Fig. 4.58 Right Twist Worm Gear Vertical upward on paperVertical downward on paper Fig. 4.59 Right Twist Worm Gear (Worm Rotation is Opposite that of Fig. 4.58) Fig. 4.60 Left Twist Worm Gear Fig. 4.61 Left Twist Worm Gear (Worm Rotation is Opposite that of Fig. 4.60) | 5. SPEEDS | |--| | 5.1 Limiting Speed (Grease/Oil) A 098 | | 5.1.1 Correction of Limiting Speed (Grease/Oil) A 098 | | 5.1.2 Limiting Speed (Grease/Oil) for Rubber Contact Seals for Ball Bearings A 099 | | 5.2 Thermal Reference Speed A 099 | | 5.3 Limiting Speed (Mechanical) A 099 | | 5.4 Technical Data A 100 | | 5.4.1 Rotation and Revolution Speed of Rolling Element | ### 5. SPEEDS In this catalog, NSK uses four definitions of speed shown in Table 5.1. Table 5.1 Overview of Speeds | Speeds | Overview | Applicable
lubrication methods | |--------------------------------
---|--| | Limiting Speed (Grease) | Empirically obtained and comprehensive bearing limiting speed in grease lubrication. | Grease lubrication | | Limiting Speed (Oil) | Empirically obtained and comprehensive bearing limiting speed in oil bath lubrication. | Oil bath lubrication | | Thermal Reference Speed(1) | Rotational speed at which equilibrium is reached between the heat generated by the bearing and the heat flow emitted through the shaft and housing under the reference conditions defined by ISO 15312. One among various criteria showing the suitability for operation at high speed. | Oil bath lubrication
when subject to reference
conditions outlined in
ISO 15312 | | Limiting Speed (Mechanical)(1) | Mechanical and kinematic limiting speed achievable under ideal conditions for lubrication, heat dissipation and temperature. | e.g.
Properly designed and
controlled forced-
circulation oil lubrication | Note (1) Thermal reference speeds and limiting speed (mechanical) are listed only in the tables of single row cylindrical roller bearings and spherical roller bearings. #### 5.1 Limiting Speed (Grease/Oil) When bearings are operating, the higher the speed, the higher the bearing temperature due to friction. The limiting speed is the empirically obtained value for the maximum speed at which bearings can be continuously operated without generating excessive heat or failing due to seizure. Consequently, the limiting speed of bearings varies depending on such factors as bearing type and size, cage form and material, load, lubricating method, and heat dissipating method including the design of the bearing's surroundings. The limiting speed (grease) and limiting speed (oil) in the bearing tables are applicable to bearings of standard design and subjected to normal loads, i.e. $C/P \ge 12$ and $F_a/F_r \le 0.2$ approximately. The limiting speed (oil) listed in the bearing tables is for conventional oil bath lubrication. Some types of lubricants are not suitable for high speed, even though they may be markedly superior in other respects. When speeds are more than 70 percent of the listed limiting speed (grease) or limiting speed (oil), it is necessary to select a grease or oil which has good high speed characteristics. (Refer to) Table 11.2 Grease Properties (Pages A236 and 237) Table 11.5 Example of Selection of Lubricant for Bearing Operating Conditions (Page A239) Table 11.6 Bands and Properties of Lubricating Grease (Pages A240 and A241) #### 5.1.1 Correction of Limiting Speed (Grease/Oil) When the bearing load P exceeds 8 % of the basic load rating C, or when the axial load $F_{\rm a}$ exceeds 20 % of the radial load $F_{\rm r}$, the limiting speed (grease) and limiting speed (oil) must be corrected by multiplying the limiting speed value found in the bearing tables by the correction factor shown in Figs.5.1 and 5.2. When the required speed exceeds the limiting speed (oil) of the desired bearing, then the accuracy grade. internal clearance, cage type and material, lubrication, etc. must be carefully studied in order to select a bearing capable of the required speed. In such a case, forced-circulation oil lubrication, jet lubrication, oil mist lubrication, or oil-air lubrication must be used. If all these conditions are considered, a corrected maximum permissible speed may be obtained by multiplying the limiting speed (oil) found in the bearing tables by the correction factor shown in table 5.2. It is recommended that NSK be consulted regarding high speed applications. Fig. 5.1 Limiting Speed Correction Factor Variation with Load Ratio Radial and Axial Loads Table 5.2 Limiting Speed Correction Factor for High-Speed Applications | Bearing Types | Correction
Factor | |---|----------------------| | Needle Roller Brgs.(except broad width) | 2 | | Tapered Roller Brgs. | 2 | | Deep Grooove Ball Brgs. | 2.5 | | Angular Contact Ball Brgs.(except matched bearings) | 1.5 | | | | # 5.1.2 Limiting Speed (Grease/Oil) for Rubber Contact Seals for Ball Bearings The maximum permissible speed for contact rubber sealed bearings (DDU type) is determined mainly by the sliding surface speed of the inner circumference of the seal. Values for the limiting speed are listed in the bearing tables. #### 5.2 Thermal Reference Speed The thermal reference speed is the rotational speed at which equilibrium is reached between the heat generated by the bearing and the heat flow emitted through the shaft and housing under the reference conditions defined by ISO 15312. It is one among various criteria showing the suitability for operation at high speed. The below reference conditions are defined by ISO 15312. - -Outer-ring fixed, Inner-ring rotating - -Mean ambient temperature 20 degrees C - -Mean bearing temperature at the outer ring 70 degrees C - -Load on radial bearings 0.05 Cor - -Oil bath lubrication - -Lubricant ISO VG32 (radial bearings) - -Normal bearing internal clearance The heat dissipation through the housing and shaft can be obtained from Fig.5.3. In Fig.5.3, $A_{\rm r}~({\rm mm^2})$ is the heat emitting reference surface area. ISO defines $A_{\rm r}$ as the total area of the bearing's inner ring bore surface and outer ring outside surface (radial bearings), and $q_{\rm r}~({\rm W/mm^2})$ as the heat flow density. The heat dissipation is calculated by multiplying the bearing seating surface area $(A_{\rm r})$ by the heat flow density $(q_{\rm r})$. #### 5.3 Limiting Speed (Mechanical) Limiting speed (mechanical) is the mechanical and kinematic limiting speed of bearings achievable under ideal conditions for lubrication, heat dissipation and temperature, such as with properly designed and controlled forced circulation oil lubrication for high speed conditions. The limiting speed (mechanical) considers the sliding speed and contact forces between the various bearing elements, the centrifugal and gyratory forces, etc. The values in the tables are applicable to bearings of standard design and subjected to normal loads (C/P = 12 approximately). In the bearing tables of single row cylindrical roller bearings and spherical roller bearings, the thermal reference speeds, limiting speeds (mechanical) and limiting speeds(grease) are listed. In the bearing tables of the other bearing types, the limiting speeds (grease) and limiting speeds (oil) are listed. #### 5.4 Technical Data #### 5.4.1 Rotation and Revolution Speed of Rolling Element When the rolling element rotates without slip between bearing rings, the distance which the rolling element rolls on the inner ring raceway is equal to that on the outer ring raceway. This fact allows establishment of a relationship among rolling speed n_i and n_e of the inner and outer rings and the number of rotation n_a of rolling elements. The revolution speed of the rolling element can be determined as the arithmetic mean of the circumferential speed on the inner ring raceway and that on the outer ring raceway (generally with either the inner or outer ring being stationary). The rotation and revolution of the rolling element can be related as expressed by Equations (5.1) through (5.4). No. of rotation $$n_{\rm a} = \left(\frac{D_{\rm pw}}{D_{\rm w}} - \frac{D_{\rm w} \cos^2 \alpha}{D_{\rm pw}}\right) - \frac{n_{\rm c} - n_i}{2}$$ $$(\min^{-1}) \cdots (5.1)$$ Rotational circumferential speed $$v_{a} = \frac{\pi D_{w}}{60 \times 10^{3}} \left(\frac{D_{pw}}{D_{w}} - \frac{D_{w} \cos^{2} \alpha}{D_{pw}} \right) \frac{n_{e} - n_{i}}{2}$$ (m/s) (5.2) No. of revolutions (No. of cage rotation) Revolutional circumferential speed (cage speed at rolling element pitch diameter) $$v_{c} = \frac{\pi D_{pw}}{60 \times 10^{3}} \left[\left(1 - \frac{D_{w} \cos \alpha}{D_{pw}} \right) \frac{n_{i}}{2} + \left(1 + \frac{D_{w} \cos \alpha}{D_{pw}} \right) \frac{n_{c}}{2} \right] (m/s) \cdots (5.4)$$ where, $D_{\scriptscriptstyle \mathrm{pw}}$: Pitch diameter of rolling elements (mm) $D_{\rm w}$: Diameter of rolling element (mm) α : Contact angle (°) n_e : Outer ring speed (min⁻¹) n_i : Inner ring speed (min⁻¹) The rotation and revolution of the rolling element is shown in Table 5.3 for inner ring rotating $(n_e=0)$ and outer ring rotating $(n_i=0)$ respectively at $0^{\circ} \le \alpha < 90^{\circ}$ and at $\alpha = 90^{\circ}$. As an example, Table 5.4 shows the rotation speed n_a and revolution speed n_c of the rolling element during rotating of the inner ring of ball bearings 6210 and 6310 Table 5.4 n_a and n_c for Ball Bearings 6210 and 6310 | Ball bearing | γ | $n_{\rm a}$ | $n_{\rm c}$ | |--------------|-------|-------------|-------------| | 6210 | 0.181 | $-2.67n_i$ | $0.41n_i$ | | 6310 | 0.232 | $-2.04n_i$ | $0.38n_i$ | Remarks $$\gamma = \frac{D_{\rm w} \cos \alpha}{D_{\rm pw}}$$ Table 5.3 Rolling Element's Rotation Speed $n_{\rm a}$, Rotational Circumferential Speed $v_{\rm a}$, Revolution Speed $n_{\rm c}$, and Revolutional Circumferential Speed $v_{\rm c}$ | Contact angle | Rotation/revolution speed | Inner ring rolling $(n_{ m e}$ =0 $)$ | Outer ring rolling $(n_i=0)$ | | | | | | |--------------------------------------|--|---|--|--|--|--|--|--| | | $n_{ m a}$ (min ⁻¹) | $-\left(\frac{1}{\gamma}-\gamma\right)\frac{n_i}{2}\cdot\cos\alpha$ | $\left(\frac{1}{\gamma} - \gamma\right) \frac{n_{\rm e}}{2} \cdot \cos \alpha$ | | | | | | | $0^{\circ} \leq \alpha < 90^{\circ}$
| $v_{ m a}$ (m/s) | $ rac{\pi D_{ m w}}{60 imes 10^3}$ – $n_{ m a}$ | | | | | | | | 0 = 4 < 30 | $n_{ m c}$ (min ⁻¹) | $(1-\gamma)\frac{n_i}{2}$ | $(1+\gamma)\frac{n_c}{2}$ | | | | | | | | v _c
(m/s) | $-\frac{\pi D_{\rm pw}}{60 imes 10^3} \; n_{ m c}$ | | | | | | | | | n _a
(min ⁻¹) | $-\frac{1}{\gamma}\cdot\frac{n_i}{2}$ | $\frac{1}{\gamma}\cdot \frac{n_{\rm e}}{2}$ | | | | | | | $lpha\!=\!90^\circ$ | $v_{ m a}$ (m/s) | $\frac{\pi D}{60\times 1}$ | | | | | | | | a — 90 | n _c (min ⁻¹) | $\frac{n_i}{2}$ | <u>n_e</u> 2 | | | | | | | | v₀
(m/s) | $\frac{\pi D_{\rm p}}{60\times 1}$ | | | | | | | $\begin{tabular}{lll} \bf Reference & 1. \pm : The "+" symbol indicates clockwise rotation while the "-" symbol indicates counterclockwise rotation. \end{tabular}$ 2. $$\gamma = \frac{D_{\text{w}} \cos \alpha}{D_{\text{pw}}} (0^{\circ} \le \alpha < 90^{\circ}), \gamma = \frac{D_{\text{w}}}{D_{\text{pw}}} (\alpha = 90^{\circ})$$ # 6. BOUNDARY DIMENSIONS AND IDENTIFYING **NUMBERS FOR BEARINGS** | | Boundary Dimensions and Dimensions of Snap Ring GroovesA 10 | |-------|--| | 6.1.1 | Boundary Dimensions A 10 | | 6.1.2 | 2 Dimensions of Snap Ring Grooves and Locating Snap Rings A 10 | | 6 2 | Formulation of Rearing Numbers | ### 6. BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS #### 6.1 Boundary Dimensions and Dimensions of Snap Ring Grooves #### 6.1.1 Boundary Dimensions The boundary dimensions of rolling bearings, which are shown in Figs.6.1 through 6.5, are the dimensions that define their external geometry. They include bore diameter d, outside diameter D, width B, bearing width(or height) T, chamfer dimension r, etc. It is necessary to know all of these dimensions when mounting a bearing on a shaft and in a housing. These boundary dimensions have been internationally standardized (ISO15) and adopted by JIS B 1512 (Boundary Dimensions of Rolling Bearings). The boundary dimensions and dimension series of radial bearings, tapered roller bearings, and thrust bearings are listed in Table 6.1 to 6.3 (Pages A106 to A115) In these boundary dimension tables, for each bore number, which prescribes the bore diameter, other boundary dimensions are listed for each diameter series and dimension series. A very large number of series are possible; however, not all of them are commercially available so more can be added in the future. Across the top of each bearing table (6.1 to 6.3), representative bearing types and series symbols are shown (refer to Table 6.5, Bearing Series Symbols, Page A121). The relative cross-sectional dimensions of radial bearings (except tapered roller bearings) and thrust bearings for the various series classifications are shown in Figs. 6.6 and 6.7 respectively. # 6.1.2 Dimensions of Snap Ring Grooves and Locating Snap Rings The dimensions of Snap ring grooves in the outer surfaces of bearings are specified by ISO 464. Also, the dimensions and accuracy of the locating snap rings themselves are specified by ISO 464. The dimensions of snap ring grooves and locating snap ring for bearings of diameter series 8, 9, 0, 2, 3, and 4, are shown in Table 6.4 (Pages A116 to A119). Fig. 6.1 Boundary Dimensions of Radial Ball and Roller Bearings Fig. 6.6 Comparison of Cross Sections of Radial Bearings (except Tapered Roller Bearings) for various Dimensional Series Fig. 6.2 Tapered Roller Bearings Fig. 6.3 Single-Direction Thrust Ball Bearings Fig. 6.4 Double-Direction Thrust Ball Bearings Fig. 6.5 Spherical Thrust Roller Bearings Fig. 6.7 Comparison of Cross Sections of Thrust Bearings (except Diameter Series 5) for Various Dimension Series A 104 A 105 Boundary Dimensions of Radial Bearings (except Tapered Roller Bearings) Table 6. 1 F | ı | | | | | l | ion | 10~60 | <u> </u> | 0.15 | 0.15
0.15
0.15 | 0.22 | 8.8.8.
8.8.8.8. | 6.6.6. | 0.0
0.0
0.0 | 0.6 | | | 555 | 555 | تن تن تن | | |--------------------------|--------------------------|-----------------|---------------|---------------------------|-------------------|---------------------|---------------|----------|--------------|-------------------------|----------------------|--------------------------|--|-------------------|----------------------|-------------------|----------------|----------------------|---------------------|----------------------|----------------------| | Н | | | | | | Dimension
Series | 90 | r (min.) | 111 | 111 | 111 | 111 | 1 8.0 | 0.00 | 00.3 | E E E E | 9:0 | 9.0 | 9:00 | | | | | | | | | | | 09 | | 111 | 111 | 111 | 27 | 888 | 844 | 888 | 5488 | 8 22 22 | 882 | £88 | 888 | | | Г | | | | | 0 | | 20 | | 111 | 1 1 1 | 111 | 19 20 | 23 | 3828 | 3433 | 888 | 444 | 24
54
54 | 268 | 67 | | | | | NN40 | | 240 | Series | Series | 40 | | 111 | 1.1.1 | 1.1.1 | 1 4 5 | 917 | 18
22
22 | 22
24
25 | 26
27
28 | 3233 | 4933 | 44 49 | 222 | | | | | NN30 | | 230 | Diameter Series | sion S | 30 | В | m | 5.4 c | 9 / 6 | 211 | 225 | 4 9 9 9 | 5 8 6 | 20 21 | 23 | 30 26 | 34.83 | 337 | | | Г | | N20 | | | Diar | Dimension | 20 | | 111 | 111 | 111 | 8 6 C | 555 | 544 | 4 5 9 | 9 1 2 | 19 | 22
22
24 | 24
27
27 | 888 | | | 82 | | N10 | | | | | 10 | | 7.5 | 2.8 | 4 5 9 | 9 / / | ∞ ∞ o | 12 2 2 | 13 2 2 2 | 5 4 5 | 91 6 | 18
20 | 20
22
22 | 24
24
24 | | | 160 | | | | | | | 90 | | 111 | 1.1.1 | 1.1.1 | 1.1.1 | 1 ~ 8 | ∞ ∞ ∞ | ∞ ∞ o | 000 | 555 | === | € 4 4 | 91 9 | | | | | | | | | | D | | | 7 8 8 | 14 7 | 19
22
24 | 26
32
32 | 35
44
44 | 47
52
55 | 58
62
68 | 75
80
90 | 95
110 | 115
125
130 | 140
145
150 | | | | | | | | | Series | 49~69 | | 111 | 111 | 0.15
0.15 | 0.15
0.2
0.3 | 0.3 | 0.3 | 0000 | 0.0
0.0
0.0 | 0.6 | | | | | | | | | | | | Dimension Series | 19~39 49~69 | r (min.) | 0.1
0.15 | 0.15
0.15
0.15 | 0.15
0.2
0.2 | 0000 | 0000 | 0000 | 0000 | 0.0
0.6
0.6 | 0.6 | | | === | | | | | | | | | Dimer | 60 | - | 111 | 111 | 1.1.1 | 1.1.1 | 111 | 0.3 | 0.00 | 0000 | 0000 | 0.3 | 0.6
0.6
0.6 | 9.0 | | | | | | NA69 | | | Series | | 69 | | 111 | 111 | 1.1.1 | 1.1.1 | 22 23 23 | 3833 | 888 | 38 94 | 40
42
45 | 45
54
54 | 63 4 4 | 63 | | L | | | NA59 | | eries 9 | | | 29 | | 111 | 111 | 1.1.1 | 1.1.1 | 9 1 9 8 | 18
23 | 23 23 | 27
30
30 | 3888 | 48 34 | 444 | 46
54
54
54 | | L | | NN49 | NA49 | | Diameter Series | | 49 | | 111 | 111 | 166 | 222 | 0000 | 1113 | 777 | 2202 | 22
22
25 | 25
30
30 | 888 | 332 | | | | | NN39 | | 239 | Diam | Dimension | 88 | В | 2.3 | ა ც 4
გ | 7 6 2 | ~ 66 | 999 | 555 | 50 50 50 | 15 15 | 10 10 | 19 13 | 23
26
26 | 26
30 | | | | | N29 | | | | Dime | 73 | | 111 | 1 1 1 | 111 | 1.1.1 | 8 8 8
5 | 11385 | ==== | 554 | 4 4 6 | 9 1 6 | 19
22 | 22
22
24 | | | 82 | | N19 | | | | | 19 | | 1.6 | 2.3 | 440 | 0 0 21 | 9 9 ~ | r\ | 000 | 1201 | 13 12 13 | 2 2 3 3 | 9 1 9 8 | 818 | | | L | | | | | | | 60 | | 111 | 1 1 1 | 111 | 111 | 1 1 1 | 1 ~ ~ | | ~ ~ 8 | 000 | 886 | 199 | === | | | L | | | | | | _ | D
8 | | 1 4 | 9 2 8 | 122 | 19 20 20 | 22 24 28 | 37 39 | 45 47 | 52 29 29 29 | 828 | 886 | 105 | 130 | | | L | | | | | | imension
Series | 18~68 | r (min.) | 0.05 | 0.08 | 0.15 | 0.15
0.2
0.2 | 000 | 000 | 000 | 000 | 000 | 0.0 | 0.6 | | | | L | | | | | | Dim | 8 | 7 (| 111 | 111 | 111 | 1.1.1 | 111 | 0.3 | 0000 | 0000 | 00.00 | 0000 | 0000 | 0.00 | | | L | | | | | | | 89 | | 111 | 111 | 1.1.1 | 1.1.1 | 111 | 188 | 222 | 888 | 828 | 888 | 884 | 8 8 8 | | | L | | | | | es 8 | s | 28 | | 111 | 111 | 1.1.1 | 1 1 1 | | 1 6 6 | 666 | 666 | 222 | 222 | 822 | 888 | | | | | NN48 | NA48 | | Diameter Series | Dimension Series | 48 | | 111 | 111 | 111 | 1 ∞ ∞ | 000 | 12 | 12 12 | 122 | 151 | 20 20 20 | 20 20 22 | 25
25
25
25 | | | L | | NN38 | | | iamet | ension | 88 | В | 1.5 | 2.3 | 4 10 0 | 000 | ~~~ | V 0 0 | 555 | 555 | 1322 | 455 | 555 | 000 | | | | | N28 | | | | Dim | 78 | | 2 | | 5 3.5 | വവവ | 999 | 9 00 | ∞ ∞ | ∞ ∞ | 801 | 225 | 55 50 | 919 | | | 88 | | | | | | | 18 | | | 2 - 1.5 | 2000 | <u>6</u> 44 | വവവ | 7 7 2 | ~~~ | ~~~ | 7 / 6 | 555 | 000 | 5 5 5 | | | L | | | | | | | 8 | | 0 & 4
 | | 0 - 5 | 14 | 19 — 21 — 24 — | 4 4 | 444 | 444 | 4 5 7 | 78 7
85 7
90 8 | 0000 | 000 | | | L | | | | | | | 37 D | 2 | 0.0.0 | ₩ ∞ ∞ | m m | | | 32 34 34 | 37 | 52 | 58 65 72 | | 1005 | 115 | | | ⊢ | | | | | 2.5 | eries | 7 17~37 | 7,m) | 0.05 | 0000 | 0.00 | 222 | 0.2 | 0.2 | | | | 111 | 111 | | | | \vdash | | | | | Diameter Series 7 | Dimension Series | 7 37 | | 1 1 8. | 3.23 | | 6.8.84 | | 1 2 2 | ى ا _ك | 111 | 111 | 111 | 1 1 1 | 111 | | | \vdash | | | | | meter | Dimen | 7 27 | В | | 5 2.5 | | ص
ا ا | | | 111 | 111 | 111 | 111 | 111 | 111 | | | \vdash | = | ia ia | | _ | Dia | | D 17 | | 2.5
2.5 1 | 5 1.5 6 2 | 7 2
8 2
10 2.5 | 11 2.5
12 2.5
14 3 | 21 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 23 4 27 4 | 32 4
-
37 4 | 111 | 111 | 111 | 111 | | | | a-Row
Brgs. | Double-Row Ball
Brgs. | al Rolle
Js. | Roller
Js. | Spherical Roller
Brgs. | | | $\frac{1}{p}$ | | 0.6
1 2. | 2.5 | 6 5 4 | 289 | 122 | | 25
28
30
30 | 32 | 50 | 65
 | 75
80

85 | 0.89 | | | Single-Row
Ball Brgs. | ouble-}
Brg | ylindric
Brg | Needle
Brg | pherics
Brg | | | | | 2 - | 3 2 | 4 5 9 | V 8 6 | | | | | | | 15
16
8
17 | | | | I | P | 6 | | S | 1 | vywi | re Nu | νВ | l' | ı | | | -55 | C 2 N | C 140 | | | | | | | **BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS** | 25
30
40
40
40 | 35 46
35 46
40 54 | 45 68 54 69 68 | 50 67
50 67
50 67 | 8888 | 80 109 1,11 | 000 | 100 136
100 136
118 160 2 | 118 160 218
118 160 218
118 160 218 | 118 160 218
128 175 236
150 200 272 | 150 200 272
160 218 290
170 230 308 | 180 243 325
180 243 325
190 258 345 | 200 272
355
218 300 400
218 300 400 | 243 325 438
243 325 438
250 335 450 | 280 375 500
300 400 545
315 — — | 345 375 | 400 — — — — — — — — — — — — — — — — — — | |--------------------------------|---|---|----------------------------------|---|---|--|--|---|---|---|---|--|---|---------------------------------------|-------------------------------|---| | | | | 2. 3, 0, | = = = = = | | | | | 289 | 288 | 433 | 888 | 8886 | 15 | 1.1.1 | 111 | | 54 0.3 1
54 0.6 1
10.6 1 | 63 0.6 1.1
71 0.6 1.1
1.1 0.6 1.1 | 71 0.6 1.1
80 0.6 1.1
1.1 0.6 1.1 | 1.5 | 109 1 2 109 1.1 2 1.1 2 | 145 1.5 2.1
145 1.5 2.1
145 1.5 2.1 | 145 1.5 2.1
180 2 2.1
180 2 2.1 | 180 2 2.1
180 2 2.1
218 2.1 3 | 2.11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 333.7 | ω44
44π | 4 4 4 | 222 | 000 | 6 6 7.5 | 7.5 | 9.5 | | 145
150
165
14 | 180 16
190 16
210 19 | 220 19
230 19
250 22 | 260 22
280 25
300 25 | 320 25
360 31
380 31 | 420 37
440 37
460 37 | 480 37
520 44
540 44 | 560 600 50 620 50 | 650 54
670 54
710 57 | 750 60
800 63
850 71 | 900 73
950 78
1000 80 | 1060 82
1120 85
1180 88 | 1250 95
1320 103
1400 109 | 1460 109
1540 115
1630 122 | 1720 128
1820 —
1950 — | 2060 —
2180 —
2300 — | 2430 — | | 288 | 248
888
888 | 42 % 8
3 3 8 8 | 888 | 8 | 22 22 22 22 22 22 22 22 22 22 22 22 22 | 88 52 88 52 88 88 88 88 88 88 88 88 88 88 88 88 88 | 74 74 88 88 88 88 88 88 88 88 88 88 88 88 88 | 28 100
100
100
100
100 | 85
112
100
128 | 103
106
112
145 | 115 150
118 155
122 165 | 132 175
140 185
150 195 | 150 195
160 206
170 218 | 175 230
185 243
195 258 | 200 265
212 280
218 290 | 230 308 | | 30 40 40 45 | 37
37
50
45
60 | 45
60
52
69 | 80
80
80
80
80
80 | 60
75
100
75 | 90 118 90 118 | 90
106
140
140 | 106
118
118
160 | 128 170
128 170
136 180 | 140 190
150 200
165 218 | 170 230
180 243
185 250 | 195 258
200 272
206 280 | 224 300
236 315
250 335 | 250 335
272 355
280 375 | 300 400
315 425
335 450 | 345 462
355 475
375 500 | 400 530 | | - 24 29 | 67 | 8886 | 109 | 136 | 160
160
160 | 961 | 190
218
218 | 230 243 | 258
272
300 | 308
325
335 | 355
365
375 | 400
438
462 | 462
488
515 | 242 | 111 | 1.1 | | 71 0.6
71 0.6
80 0.6 | 688 | 111111111111111111111111111111111111111 | 125
145
145
1.5
1.5 | 145 1.5
180 2
180 2 | 218 2.1
218 2.1
218 2.1 | 218 2.1
250 3
250 3 | 250 3
290 4
290 4 | 308
308
4 4
325 | 345
355
5
400
5 | 412 5
438 5
450 6 | 462 6
488 6
500 6 | 545 6
580 6
615 7.5 | 615 7.5
650 7.5
690 7.5 | 710 7.5 | | | | <u> </u> | 1.5 1.5
2 2 | 222 | 2
2.1
2.1
2.1
2.1 | 2.1 2.1 2.1 2.1 2.1 2.1 2.1 | , , , , , , , , , , , , , , , , , , , | ω44
ω44 | 444 | വവവ | @ 22 22
@ 22 22 | 999 | 999 | 7.5 7.5
7.5 7.5
7.5 7.5 | 7.5 7.5
7.5 7.5
7.5 7.5 | 7.5 7.5
9.5 9.5
9.5 9.5 | 9.5
9.5
2
12 | 12 12 — | | 160 18
170 19
180 19 | 200 22
210 22
225 24 | 240 25
260 28
280 31 | 290 31
310 34
340 37 | 360
400
44
44
44 | 460 50
480 50
520 57 | 540 57
560 57
600 63 | 620 63
650 67
680 71 | 700
720
720
780
80 | 820 82
870 85
920 92 | 980 100
1030 103
1090 109 | 1150 112
1220 118
1280 122 | 1360 132
1420 136
1500 140 | 1580 145
1660 155
1750 — | 1850 —
1950 —
2120 — | 2240 —
2360 —
2500 — | 11 | | 888 | 888 | 8249 | 52 24 | 8888 | 4 4 4 | 885 | 06 60 | 1,100 | 178 | 136 | 155 | 1982 | 200 212 218 | 243 | 8808 | 11 | | 8883 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 848 | 090 | 882 | 106 | 118 | 118 122 128 1 | 128 | 150
155
170
2 | 185 | 200
212
218
218 | 236
243
33
250 | 265
272
290
3 | 300
315
4
355 | 365
375
50
400
50 | 11 | | 41 56
45 60
46 60 | 52 69
53 69
56 75 | 60 80
67 90
74 100 | 75 100
82 109
90 118 | 92 118
104 140
106 140 | 118
121
133
180 | 134
135
148
200 | 150 200
157 212
163 218 | 165 218
167 218
185 250 | 195 258
200 272
212 290 | 230 308
236 315
250 335 | 258 345
272 365
280 375 | 300 412
308 412
325 438 | 345 462
355 475
375 500 | 400 530
412 545
462 615 | 475 630
500 650
530 690 | 11 | | 98 80 | 100 | 109 138 | 136
150
160 | 966 | 218
218
243 | 243
243
272 | 272
280
300 | 33500 | 3865 | 425
438
462 | 475
500
515 | 9290 | 615 | | | 11 | | 969 | 125
125
1.1
136
1.1 | 145 1.5
160 1.5
180 2 | 180 2
200 2
218 2.1 | 218 2.1
250 3
250 3 | 290 4
290 4
325 4 | 325 4
325 4
355 5 | 355 5
375 5
400 5 | 400
400
5
450
6 | 462 6
488 6
515 6 | 560 6
580 6
615 7.5 | 630 7.5
670 7.5
690 7.5 | 730 7.5
750 7.5
800 9.5 | 825 9.5
875 9.5
— | 111 | 111 | 11 | | | | 222 | 228 | w 4 4 | 440 | വവവ | 0 0 0 | 999 | 6 7.5 | 7.5 | 7.5 | 7.5 | 9 9 9 5 | 222 | 12 12 | 1 1 | The chamfer dimensions listed in this table do not necessarily apply to the following chamfers: (a) Chamfers of the grooves in outer rings that have snap ring grooves. (b) For thin section cylindrical roller bearings, the chamfers on side without rib and bearing bore (in case of an inner ring) or outer surface (in case of an outer ring). (c) For angular contact ball bearings, the chamfers between the front face and bore (in case of an inner ring) or outer surface (in case of an outer ring). (d) Chamfers on inner rings of bearings with tapered bores. Remarks ### **BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS** | z | |---| | | | earings) | | Roller B | | Tapered | | (except | | 3earings | | Radial | | Boundary Dimensions of Radial Bearings (except Tapered Roller Bearings) - | | Boundary I | | Table 6. 1 | | Sing
Ball | Doub | Solle | Needle Roller
Brgs. | Spheric | 1 | əqwr | | Bo | - | 3 8 | 4 6 9 | ∠ 86 | 0000 | 03
25
27 | 02
08
09 | /32
07
08 | 11 | 13 12 | 15 | 8 5 8 | |--------------------------|--------------------------|--------------------|------------------------|-----------------|-------------------|---------------------|----------|----------|-------|------|---------------------|-------------------|----------------|----------------------|--------------------|---|-------------------|---------------------------------------|-------------------|-------------------| | Single-Row
Ball Brgs. | Double-Row
Ball Brgs. | ndrical
r Brgs. | e Roller
gs. | al Rolle
gs. | | , | <u>а</u> | | 0.6 | | | V 8 6 | | 202 | | | | | | | | | | | | _ | | | D | | 111 | 111 | 111 | | 111 | | 111 | 111 | | 111 | 111 | 001 | | | | | | | | | 10 | | | | 111 | | | | | | | | | | | | | | | | Dian | Dimension | 11 | | | | 111 | | | | | | | | | | | | | N | | 231 | Diameter Series | on Series | 21 31 | В | | 111 | | 600 | 222 | 555 | 972 | | | 24
27
27 | | | | | | 31 | | 31 241 | ies 1 | s | 1 4 1 | | | 111 | 1,76 | | | | | | | | | | | | | | | 11 | | Di | | | | 111 | 111 | 456 | 888 | 25 28 | 2522 | 888 | | 888 |
 | 988 | | | | | | | | Dimension
Series | 01 11~41 | r (min.) | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | | | | | | | | | _ | 41 D | | 111 | | | 24 22 26 | 32 35 | 40
47
50 | | 65
72
80 | 886 | 120
125
125 | 130 | 2 160
2 170 | | | | | | | | | 85 | | 111 | | 8.3.5 | 0 2 2 2 | ~ ~ ~ 8 | ۵۵۵
۵۵۵ | 555 | 222 | | 566 | | | | 62 | 12 | N 2 | | | | | 02 | | 111 | 4 | | ~ ∞ ∞ | 901 | 244 | 16 15 | 12 17 1 | 19
20
21 | 23 23 24 | 25
26
28 | 32 30 | | | | | | | Diam | Dimensi | 12 | | 111 | 111 | 111 | 1 1 1 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 11 | | 622 | 25 | N 22 | | 222 | Diameter Series | Dimension Series | 22 | В | 111 | 111 | 111 | 111 | <u>444</u> | € 6 6 6 | 8198 | 23 23 | 23 | 31 38 | 33 | 43 | | 632 | 2322 | N 32 | | 232 | ies 2 | s | 32 | | 111 | 1 | 7 8 OI | 122 | 15.9
0.31 | 17.5
20.6
20.6 | 20.6
23
23.8 | 25
27
30.2 | 30.2 | 36.5
38.1
39.7 | 444.4
49.2 | 52.4 | | | | | | | | | 42 | | 111 | 111 | 111 | 1 1 1 | 8 | 22 72 | 30 | 888 | 888 | 22.22 | 888 | 828 | | | | | | | | Dimension
Series | 82 03 | r (min.) | 111 | 1 10 | 0.15
0.15
0.2 | 0000 | 0000 | 0000 | 0.0 | 9:0 | 9:0 | | | === | | | | | | | | ion | 02~42 | 2 | 111 | 0.15 | 0.3 | 000
000
000 | 9:0 | 1 1.6 | | -55 | | # # # # # # # # # # # # # # # # # # # | 2 2 2 2 | 2.1 | | | | | | | | | D | | 111 | E | 91 th 22 | 888 | 4233 | 52
56
56 | 788 | £88 | 2110 | 129 | 921
180
180 | 190
200
215 | | - | | _ | | 2 | | | 88 | | | 111 | 111 | 111 | 000 | 199 | 1325 | | | 22
24
25 | | | | 7383 | 13 | N 3 | | 213 | Diam | Jimensic | 03 | В | 111 | | 7 6 5 | 660 | | 4 £ £ 6
 | 181 | 828 | 275 | 888
 | 41833 | | | 623 | 343 | N 23 | | 223 | Diameter Series 3 | Dimension Series | 13 23 | | 111 | | 11= | | | | | | | | | | | 633 | 33 | _ | | | 3s 3 | | 33 | |
111 | | e 6 E | | | 22.2 | | 3,34.9 | 39.7 | ¥888 | 7888 | | | | | | | | | Dim | 83 | 7 | 111 | 111 | 111 | 1 1 1 | 0000 | 9:0 | 9.0 | 0.0 | | <u></u> | 2 1.5 | 225 | | | | | | | | imension
Series | 03~33 | r (min.) | 111 | 0.2 | 0000 | 0.03 | 1 0.6 | -55 | 222 | <u>_ 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 </u> | 2 2 .5 | 2:1 | 3.2.1 | ოოი | | | | | | | О | | D | | 1.1.1 | 111 | 111 | 30
32 | 37
42
52 | 62 72 — | 08
 06 | 100 | 120
130
140 | 150
160
180 | 190
200
210 | 240 | | 64 | 104 | A 2 | | | Diameter Series | Dimension
Series | 40 | В | 111 | 111 | 111 | 197 | 12 12 12 | 19 | 21 | 25
27 | 33 33 | 35
37
42 | 45
48
52 | 55 | | | | | | | Series 4 | | | | 111 | 111 | 111 | 1 4 5 | 16 13 24 | 33 73 | 98 94 | 1 4 4 4 4 | 22320 | 944 | 77
88
86 | 0000 | | | | | | | _ | Dimension
Series | 04~24 | min.) | 111 | 111 | 111 | 0.0 | 1.1 | <u> </u> | 1.5 | 1.5 | 2.1 | 3.1 | ωω 4 | 444 | | 4 4 0 | വവവ | 0 2 2 | 999 | 6
7.5
7.5 | 7.5
9.5
6.5 | 9.5
9.5 | 222 | 5 5 5 | 15 15 | 1 12 | 111 | 111 | 111 | 1.1.1 | |---|-------------------|-------------------|-------------------|--|-------------------|-------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | 000000000000000000000000000000000000000 | 128
132
138 | 142
145
150 | 155
160
180 | 190
206
224 | 236
250
265 | 280
300
315 | 325
335
345 | 365
375
400 | 412
438
450 | 475 | 111 | 111 | 111 | 111 | | 288 | 82 88 | 928 | 98
102
115 | 122
132
140 | 150
165
165 | 200
200
200 | 206
212
218 | 230 | 258
272
280 | 790 | 111 | 1.1.1 | 111 | 111 | | 260
280
310 | 340
360
380 | 400
420
440 | 460
480
540 | 580
620
670 | 710
750
800 | 850
900
950 | 980
1030
1060 | 1120
1150
1220 | 1280
1360
1420 | 1500 | 111 | 1.1.1 | 111 | 1.1.1 | | ოოო | 444 | 444 | വവവ | 992 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 9 9 9
5 5 5 5 | 9.5
12
12 | 515 | रुरु | 555 | <u>66</u> | 111 | 111 | | 23 8 8 | ω4 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 1.1.1 | | 87.3
92.1
106 | 112
118
128 | 136
140
150 | 155
165
180 | 195
206
224 | 236
258
272 | 300 | 315
345
365 | 375
388
412 | 438
488
488 | 515
530
560 | 920
920
920 | 670
710 | 111 | 1.1.1 | | 77
80
86 | 93
102
108 | 114
120
126 | 132
138
145 | 155
165
175 | 185
200
212 | 224
230
243 | 250
265
280 | 290
300
325 | 335
355
375 | 400
412
438 | 462
488
500 | 515
545
— | 111 | 1.1.1 | | 53 | 96
70
75 | 79
88
88 | 92
97
106 | 114
123
132 | 140
155
165 | 170
175
185 | 190
200
212 | 218
230
243 | 258
272
280 | 300
308
325 | 355
375
388 | 400 | 111 | 1.1.1 | | 50 22 | 58
62
65 | 68
72
75 | 78
88
88 | 95
102
108 | 109 | 125
128
136 | 136
145
155 | 150 | 190
200
206 | 218
224
236 | 258
272
280 | 300 | 111 | 1.1.1 | | £ 44
4 | 148 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | | 225
240
260 | 280
300
320 | 340
360
380 | 400
420
460 | 500
540
580 | 620
670
710 | 750
780
820 | 850
900
950 | 980
1030
1090 | 1150
1220
1280 | 1360
1420
1500 | 1600
1700
1780 | 1850
1950
— | 111 | 1.1.1 | | 2.17 | ოოო | 644 | 444 | 400 | 0 20 20 | 999 | 7.5
7.5
7.5 | 7.5
7.5
9.5 | 9.5
9.5 | 122 | 555 | 1 12 | 111 | 111 | | - - | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | | 8082 | 100 | 128
140
140 | 150
160
180 | 200
218
218 | 243
258
280 | 290
300
315 | 335
345
365 | 388
412
450 | 475
488
515 | 545
560
615 | 615
650
670 | 710 | 111 | 1.1.1 | | 65.1
69.8
76 | 888 | 104
110
112 | 120
128
144 | 160
174
176 | 192
208
224 | 232
240
256 | 272
280
296 | 310
336
355 | 365
388
412 | 438
450
475 | 488
515
515 | 530
560 | 111 | 111 | | 2222 | 64
68
73 | 888 | 98
108 | 21
20
13
20
13
20
13 | 140
150
165 | 170
175
185 | 195
200
212 | 224
243
258 | 272
280
300 | 315
325
345 | 355
375
388 | 412 425 | 111 | 111 | | 1 42 | 20
24
24 | 58
62
62 | 65
70
78 | 9008 | 98
118 | 2224 | 888 | 200
200
200 | 206
212
230 | 243
250
265 | 272
280
300 | 330 | 111 | 111 | | 888 | 844 | 8223 | 왕왕윘 | 882 | 8888 | 882 | 118 | 138 | 855 | 175
180
195 | 200
206
218 | 243 | 111 | 111 | | 27 28 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | | 190
200
215 | 230
250
270 | 290
310
320 | 340
360
400 | 440
480
500 | 540
580
620 | 650
680
720 | 760
790
830 | 870
920
980 | 1030
1090
1150 | 1220
1280
1360 | 1420
1500
1580 | 1660
1750
— | 111 | 1.1.1 | | 222 | 2
2.1
2.1 | 2.1 | ωω 4 | 440 | വവവ | 0 2 2 | 6
6
7.5 | 7.5
7.5 | 7.5
7.5
7.5 | 7.5
9.5
9.5 | 9.5
12
12 | 12 15 | 5 1 2 2 | 0 0 D | | | 1.5 | 2 2.1 | ოოო | 444 | വവവ | യവവ | 999 | 6
7.5
7.5 | 7.5
7.5
7.5 | 7.5
9.5
9.5 | 9.5
12
12 | 122 | 111 | 1 1 1 | | 888 | 886 | 109 | 178 | 988 | 200
218
243 | 243
243
250 | 388 | 308
325
335 | 355
375
400 | 412
438
475 | 475
500
515 | 545
580
600 | 630
670
710 | 750
775
800 | | 62 82 82 | 888 | 888 | 104
112
120 | 144
146 | 091
176
190 | 192
200 | 224
226
240 | 248
264
272 | 300
315 | 336
345
365 | 375
400
412 | 438
462
475 | 475
500
530 | 280 | | 444 | 8209 | 96
66
72 | 888 | 36
100
100 | 118
128
140 | 041
145 | 165
175 | 868 | 206
218
230 | 243
250
272 | 272
280
300 | 345 | 385 | 422
450
462 | | 888 | 38
40
46 | 51 | 888 | 88 4 | 855 | 108 | 222 | 845 | 822 | 185
206
206 | 212
224
230 | 243
258
265 | 308 | 325
345
355 | | 222 | 37 33 | 888 | 448 | 212120 | 87.8 | 8833 | 888 | 555 | 1128 | 848 | 888 | 586 | 111 | 111 | | 175
180
200 | 210
225
250 | 270
280
300 | 320
340
370 | 400
440
460 | 500
540
580 | 620
650
650 | 700
720
760 | 790
830
870 | 920
980
1030 | 1090
1150
1220 | 1280
1360
1420 | 1500
1580
1660 | 1750
1850
1950 | 2060
2180
2300 | | | 222 | 928 | 200 | 900 | 320
340 | 989 | 640 | 8008 | 9998 | 102 | 0000 | 900 | 20 80 | 320
1400
1500 | | | 30 84 14 15 | | | | | | | | | | | | | 5 4 5 | The chamfer dimensions listed in this table do not necessarily apply to the following chamfers: (a) Chamfers of the grooves in outer rings that have snap ring grooves. (b) For thin section cylindrical roller bearings, the chamfers on side without rib and bearing bore (in case of an inner ring) or outer surface (in case of an outer ring). (c) For angular contact ball bearings, the chamfers between the front face and bore (in case of an inner ring) or outer surface (in case of an outer ring). (d) Chamfers on inner rings of bearings with tapered bores. #### Table 6. 2 Boundary Dimensions of | Tap
Ro
Br | ller | | | | | 329 | | | | | | 32 | 0 X | | | | 330 | | | | | 33 | 31 | | | |----------------------|--------------------------|--------------------------|----------------|-------------|-------------------|----------------------|----------------------|----------------------|-------------------|-------------------|-------------------|-----------------|----------------------|-----------------|------------------|----------------------|----------------|-------------------|-------------------|-------------------|----------------|------------------|----------------|-------------------|-------------------| | | | | | | Diam | eter Se | ries 9 | | | | | | | Diam | eter Se | eries 0 | | | | | Di | ameter | Series | s 1 | | | mber | | | | Din | nensior | n Serie | s 29 | | Cha
Dime | mfer
nsion | | Dime | nsion S | Series | Dime | nsion S | Series | Cha
Dime | mfer
nsion | | Dime | nsion S | Series | Chai
Dime | mfer
nsion | | Bore Number | d | n | | I | | | П | | Cone | Cup | | | 20 | | | 30 | | Cone | Cup | , n | | 31 | | Cone | Cup | | ĕ | | D | В | С | T | В | С | Т | % (1 | min.) | D | В | С | T | В | С | T | % (1 | min.) | D | В | С | T | γ (r | min.) | | 00
01
02 | 10
12
15 | | = | _ | | | | _ | _ | = | 28
32 |
11
12 | |
11
12 | 13
14 | _ | 13
14 | 0.3
0.3 | 0.3
0.3 | | = | | _ | | | | 03
04
/22 | 17
20
22 | -
37
40 | 11
- | = | _
11.6
_ | 12
12 | 9
9 | 12
12 | -
0.3
0.3 | 0.3
0.3 | 35
42
44 | 13
15
15 | —
12
11.5 | 13
15
15 | 15
17
— | _ | 15
17
— | 0.3
0.6
0.6 | 0.3
0.6
0.6 | _
_
_ | _
_
_ | _ | = | _
_
_ | _
_
_ | | 05
/28
06 | 25
28
30 | 42
45
47 | 11
-
11 | _
_
_ | 11.6
—
11.6 | 12
12
12 | 9
9
9 | 12
12
12 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 47
52
55 | 15
16
17 | 11.5
12
13 | 15
16
17 | 17
—
20 | 14
—
16 | 17
—
20 | 0.6
1
1 | 0.6
1
1 | _
_
_ | _
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | | /32
07
08 | 32
35
40 | 52
55
62 | 13
14 | _
_
_ | —
14
15 |
15
14
15 | 10
11.5
12 | 14
14
15 | 0.6
0.6
0.6 | 0.6
0.6
0.6 | 58
62
68 | 17
18
19 | 13
14
14.5 | 17
18
19 | 21
22 | —
17
18 | —
21
22 | 1
1
1 | 1
1
1 | —
—
75 | _
_
26 | —
—
20.5 | —
—
26 | —
—
1.5 | —
—
1.5 | | 09
10
11 | 45
50
55 | 68
72
80 | 14
14
16 | _
_
_ | 15
15
17 | 15
15
17 | 12
12
14 | 15
15
17 | 0.6
0.6
1 | 0.6
0.6
1 | 75
80
90 | 20
20
23 | 15.5
15.5
17.5 | 20
20
23 | 24
24
27 | 19
19
21 | 24
24
27 | 1
1
1.5 | 1
1
1.5 | 80
85
95 | 26
26
30 | 20.5
20
23 | 26
26
30 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | | 12
13
14 | 60
65
70 | 85
90
100 | 16
16
19 | _
_
_ | 17
17
20 | 17
17
20 | 14
14
16 | 17
17
20 | 1
1
1 | 1
1
1 | 95
100
110 | 23
23
25 | 17.5
17.5
19 | 23
23
25 | 27
27
31 | 21
21
25.5 | 27
27
31 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 100
110
120 | 30
34
37 | 23
26.5
29 | 30
34
37 | 1.5
1.5
2 | 1.5
1.5
1.5 | | 15
16
17 | 75
80
85 | 105
110
120 | 19
19
22 | _
_
_ | 20
20
23 | 20
20
23 | 16
16
18 | 20
20
23 | 1
1
1.5 | 1
1
1.5 | 115
125
130 | 25
29
29 | 19
22
22 | 25
29
29 | 31
36
36 | 25.5
29.5
29.5 | 31
36
36 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 125
130
140 | 37
37
41 | 29
29
32 | 37
37
41 | 2
2
2.5 | 1.5
1.5
2 | | 18
19
20 | 90
95
100 | 125
130
140 | 22
22
24 | _
_
_ | 23
23
25 | 23
23
25 | 18
18
20 | 23
23
25 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 140
145
150 | 32
32
32 | 24
24
24 | 32
32
32 | 39
39
39 | 32.5
32.5
32.5 | 39
39
39 | 2
2
2 | 1.5
1.5
1.5 | 150
160
165 | 45
49
52 | 35
38
40 | 45
49
52 | 2.5
2.5
2.5 | 2
2
2 | | 21
22
24 | 105
110
120 | 145
150
165 | 24
24
27 | = | 25
25
29 | 25
25
29 | 20
20
23 | 25
25
29 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 160
170
180 | 35
38
38 | 26
29
29 | 35
38
38 | 43
47
48 | 34
37
38 | 43
47
48 | 2.5
2.5
2.5 | 2
2
2 | 175
180
200 | 56
56
62 | 44
43
48 | 56
56
62 | 2.5
2.5
2.5 | 2
2
2 | | 26
28
30 | 130
140
150 | 180
190
210 | 30
30
36 | = | 32
32
38 | 32
32
38 | 25
25
30 | 32
32
38 | 2
2
2.5 | 1.5
1.5
2 | 200
210
225 | 45
45
48 | 34
34
36 | 45
45
48 | 55
56
59 | 43
44
46 | 55
56
59 | 2.5
2.5
3 | 2
2
2.5 | = | = | _ | _ | _
_
_ | _
_
_ | | 32
34
36 | 160
170
180 | 220
230
250 | 36
36
42 | _
_
_ | 38
38
45 | 38
38
45 | 30
30
34 | 38
38
45 | 2.5
2.5
2.5 | 2
2
2 | 240
260
280 | 51
57
64 | 38
43
48 | 51
57
64 | _
_
_ | _
_
_ | _
_
_ | 3 3 3 | 2.5
2.5
2.5 | _
_
_ | _
_
_ | _
_
_ | _ | _ | _
_
_ | | 38
40
44 | 190
200
220 | 260
280
300 | 42
48
48 | _
_
_ | 45
51
51 | 45
51
51 | 34
39
39 | 45
51
51 | 2.5
3
3 | 2
2.5
2.5 | 290
310
340 | 64
70
76 | 48
53
57 | 64
70
76 | _
_
_ | | _
_
_ | 3
3
4 | 2.5
2.5
3 | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | | 48
52
56 | 240
260
280 | 320
360
380 | 48
—
— | = | 51
—
— | 51
63.5
63.5 | 39
48
48 | 51
63.5
63.5 | 3 3 3 | 2.5
2.5
2.5 | 360
400
420 | 76
87
87 | 57
65
65 | 76
87
87 | = | _ | = | 4
5
5 | 3
4
4 | = | = | _
_
_ | _
_
_ | | _
_
_ | | 60
64
68
72 | 300
320
340
360 | 420
440
460
480 | = | _
_
_ | _
_
_ | 76
76
76
76 | 57
57
57
57 | 76
76
76
76 | 4
4
4
4 | 3
3
3
3 | 460
480
— | 100
100
— | 74
74
— | 100
100
— | _
_
_
_ | _
_
_ | _
_
_ | 5
5
— | 4
4
— | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_
_ | **Remarks** 1. Other series not conforming to this table are also specified by ISO. 2. In the Dimension Series of Diameter Series 9, Classification I is those specified by the old standard, Classification II is those specified by the ISO. Dimension Series not classified conform to dimensions (D, B, C, T) specified by ISO. 3. The chamfer dimensions listed are the minimum permissible dimensions specified by ISO. They do not apply to chamfers on the front face. #### **Tapered Roller Bearings** | Units: | mm | | |-------------------|----------------|----------------|-------------------------|-------------------|-------------------|-------------------------|----------------|------------------|----------------|-------------------|-------------------|-------------------|------------------|----------------|----------------|-------------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------------|-------------|-------------------|--------------------------|----------------------| | | 3 | 02 | | | 322 | | | | 332 | | | | 303 | 3 or 3 | 03D | | | 313 | | | | 323 | | | Ro | ered
Iller
gs. | | | | | | Di | amete | r Serie | s 2 | | | | | | | | | | Diam | eter S | eries 3 | | | | | | | | | | Di | imensi | ion | Di | mensi | on | D | imensi | on | Cha
Dime | mfer | | Di | mensi | on Ser | ies | Di | mensi | ion | D | imens | on | Cha | mfer | | per | | | S | eries (| 02 | S | eries 2 | 22 | S | eries 3 | 2 | | Cup | | | (| 3 | | S | eries ' | 13 | S | eries : | 23 | | Cup | d | Bore Number | | D | В | С | T | В | С | Т | В | С | T | r (1 | min.) | D | В | C | C (1) | Т | В | С | T | В | С | T | r (| min.) | | Bore | | 30
32
35 | 9
10
11 | 9
10 | 9.7
10.75
11.75 | 14
14
14 | = | 14.7
14.75
14.75 | = | _ | = | 0.6
0.6
0.6 | 0.6
0.6
0.6 | 35
37
42 | 11
12
13 | _
_
11 | | 11.9
12.9
14.25 | _ | = | = | 17
17
17 | _
14 | 17.9
17.9
18.25 | 0.6
1 | 0.6
1
1 | 10
12
15 | 00
01
02 | | 40
47
50 | 12
14
14 | 11
12
12 | 13.25
15.25
15.25 | 16
18
18 | 14
15
15 | 17.25
19.25
19.25 | _
_
_ | _
_
_ | _
_
_ | 1
1
1 | 1
1
1 | 47
52
56 | 14
15
16 | 12
13
14 | _
_
_ | 15.25
16.25
17.25 | _
_
_ |
 -
 - |
 -
 - | 19
21
21 | 16
18
18 | 20.25
22.25
22.25 | 1.5 | 1
1.5
1.5 | 17
20
22 | 03
04
/22 | | 52
58
62 | 15
16
16 | 13
14
14 | 16.25
17.25
17.25 | 18
19
20 | 15
16
17 | 19.25
20.25
21.25 | 22
24
25 | 18
19
19.5 | 22
24
25 | 1
1
1 | 1
1
1 | 62
68
72 | 17
18
19 | 15
15
16 | 13
14
14 | 18.25
19.75
20.75 | _
_
_ |
 -
 |
 -
 - | 24
24
27 | 20
20
23 | 25.25
25.75
28.75 | 1.5 | 1.5
1.5
1.5 | 25
28
30 | 05
/28
06 | | 65
72
80 | 17
17
18 | 15
15
16 | 18.25
18.25
19.75 | 21
23
23 | 18
19
19 | 22.25
24.25
24.75 | | 20.5
22
25 | 26
28
32 | 1
1.5
1.5 | 1
1.5
1.5 | 75
80
90 | 20
21
23 | 17
18
20 | 15
15
17 | 21.75
22.75
25.25 | _
_
_ |
 -
 |
 -
 - | 28
31
33 | 24
25
27 | 29.75
32.75
35.25 | 2 | 1.5
1.5
1.5 | 32
35
40 | /32
07
08 | | 85
90
100 | 19
20
21 | 16
17
18 | 20.75
21.75
22.75 | 23
23
25 | 19
19
21 | 24.75
24.75
26.75 | 32
32
35 | 25
24.5
27 | 32
32
35 | 1.5
1.5
2 | 1.5
1.5
1.5 | 100
110
120 | 25
27
29 | 22
23
25 | 18
19
21 | 27.25
29.25
31.5 | = | = | _
_
_ | 36
40
43 | 30
33
35 | 38.25
42.25
45.5 | | 1.5
2
2 | 45
50
55 | 09
10
11 | | 110
120
125 | 22
23
24 | 19
20
21 | 23.75
24.75
26.25 | 28
31
31 | 24
27
27 | 29.75
32.75
33.25 | 41 | 29
32
32 | 38
41
41 | 2
2
2 | 1.5
1.5
1.5 | 130
140
150 | 31
33
35 | 26
28
30 | 22
23
25 | 33.5
36
38 | = | = | _
_
_ | 46
48
51 | 37
39
42 | 48.5
51
54 | 3 3 3 | 2.5
2.5
2.5 | 60
65
70 | 12
13
14 | | 130
140
150 | 25
26
28 | 22
22
24 | 27.25
28.25
30.5 | 31
33
36 | 27
28
30 | 33.25
35.25
38.5 | 41
46
49 | 31
35
37 | 41
46
49 | 2
2.5
2.5 | 1.5
2
2 | 160
170
180 | 37
39
41 | 31
33
34 | 26
27
28 | 40
42.5
44.5 | _
_
_ | _
_
_ |
 -
 - | 55
58
60 | 45
48
49 | 58
61.5
63.5 | 3
3
4 | 2.5
2.5
3 | 75
80
85 | 15
16
17 | | 160
170
180 | 30
32
34 | 26
27
29 | 32.5
34.5
37 | 40
43
46 | 34
37
39 | 42.5
45.5
49 | 55
58
63 | 42
44
48 | 55
58
63 | 2.5
3
3 | 2
2.5
2.5 | 190
200
215 | 43
45
47 | 36
38
39 | 30
32
— | 46.5
49.5
51.5 | —
—
51 | —
—
35 | —
—
56.5 | 64
67
73 | 53
55
60 | 67.5
71.5
77.5 | 4
4
4 | 3 3 3 | 90
95
100 | 18
19
20 | |
190
200
215 | 36
38
40 | 30
32
34 | 39
41
43.5 | 50
53
58 | 43
46
50 | 53
56
61.5 | 68
—
— | 52
—
— | 68
— | 3 3 3 | 2.5
2.5
2.5 | 225
240
260 | 49
50
55 | 41
42
46 | | 53.5
54.5
59.5 | 53
57
62 | 36
38
42 | 58
63
68 | 77
80
86 | 63
65
69 | 81.5
84.5
90.5 | 4
4
4 | 3 3 3 | 105
110
120 | 21
22
24 | | 230
250
270 | 40
42
45 | 34
36
38 | 43.75
45.75
49 | 64
68
73 | 54
58
60 | 67.75
71.75
77 | _ | _
_
_ | = | 4
4
4 | 3 3 3 | 280
300
320 | 58
62
65 | 49
53
55 | | 63.75
67.75
72 | 66
70
75 | 44
47
50 | 72
77
82 | 93
102
108 | 78
85
90 | 98.75
107.75
114 | | 4
4
4 | 130
140
150 | 26
28
30 | | 290
310
320 | 48
52
52 | 40
43
43 | 52
57
57 | 80
86
86 | 67
71
71 | 84
91
91 | _ | _ | = | 4
5
5 | 3
4
4 | 340
360
380 | 68
72
75 | 58
62
64 | | 75
80
83 | 79
84
88 | = | 87
92
97 | 114
120
126 | 95
100
106 | 121
127
134 | 5
5
5 | 4
4
4 | 160
170
180 | 32
34
36 | | 340
360
400 | 55
58
65 | 46
48
54 | 60
64
72 | 92
98
108 | 75
82
90 | 97
104
114 | _ | _
_
_ | = | 5
5
5 | 4
4
4 | 400
420
460 | 78
80
88 | 65
67
73 | _ | 86
89
97 | 92
97
106 | _ | 101
107
117 | 132
138
145 | 109
115
122 | 140
146
154 | 6
6
6 | 5
5
5 | 190
200
220 | 38
40
44 | | 440
480
500 | 72
80
80 | 60
67
67 | 79
89
89 | 120
130
130 | 100
106
106 | 127
137
137 | _ | _
_
_ | = | 5
6
6 | 4
5
5 | 500
540
580 | 95
102
108 | 80
85
90 | _ | 105
113
119 | 114
123
132 | = | 125
135
145 | 155
165
175 | 132
136
145 | 165
176
187 | 6
6
6 | 5
6
6 | 240
260
280 | 48
52
56 | | 540
580
— | 85
92
— | 71
75
— | 96
104
— | 140
150
— | 115
125
— | 149
159
— | _
_
_ | _
_
_ | _
_
_ | 6
6
— | 5
5
— | _
_
_
_ | = | _
_
_ | _
_
_ | _
_
_
_ | _
_
_ | _
_
_ | _
_
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_
_ | 300
320
340
360 | 60
64
68
72 | Note (1) Regarding steep-slope bearing 303D, in DIN, the one corresponding to 303D of JIS is numbered 313. For bearings with bore diameters larger than 100 mm, those of dimension series 13 are numbered 313. A 110 A 111 Table 6. 3 Boundary Dimensions of | Thrust E | all Brgs. | | | | | | | | | 511 | | | | | 512 | | 522 | | | | |--------------------|--------------------|-------------------|----------------|---------------|----------------|-------------------|-------------------|----------------|----------------|----------------|-------------------|-------------------|----------------|----------------|----------------|------------------|-------------------|----------------|-------------------|-------------------| | Spherica
Roller | al Thrust
Brgs. | | | | | | | | | | | | | 292 | | | | | | | | | | | Dian | neter Sei | ries 0 | | | Dian | neter Se | ries 1 | | | | | Diam | neter Se | ries 2 | | | | | per | | | Dime | ension S | eries | | | Dime | ension S | Series | | | | | Dimensi | on Serie | S | | | | | Bore Number | d | D | 70 | 90 | 10 | Nr (min) | D | 71 | 91 | 11 | Nr (main) | D | 72 | 92 | 12 | 22 | 2 | 2 | N/min \ | W (min) | | Bor | | D | | T | | 1 (min.) | D | | T | | ∤ (min.) | D | | , | Г | | Central | Washer | (111111.) | r_1 (min.) | | | | | | | | | | | | | | | | | | | d_2 | В | | | | 4
6
8 | 4
6
8 | 12
16
18 | 4
5
5 | _
_
_ | 6
7
7 | 0.3
0.3
0.3 | _
_
_ | = | _
_
_ | = | = | 16
20
22 | 6
6
6 | = | 8
9
9 | _
_
_ | = | | 0.3
0.3
0.3 | _
_
_ | | 00
01
02 | 10
12
15 | 20
22
26 | 5
5
5 | = | 7
7
7 | 0.3
0.3
0.3 | 24
26
28 | 6
6
6 | _
_
_ | 9
9
9 | 0.3
0.3
0.3 | 26
28
32 | 7
7
8 | = | 11
11
12 | _
_
22 | _
10 | _
_
5 | 0.6
0.6
0.6 | _

0.3 | | 03
04
05 | 17
20
25 | 28
32
37 | 5
6
6 | = | 7
8
8 | 0.3
0.3
0.3 | 30
35
42 | 6
7
8 | = | 9
10
11 | 0.3
0.3
0.6 | 35
40
47 | 8
9
10 | = | 12
14
15 | 26
28 | —
15
20 | -
6
7 | 0.6
0.6
0.6 | 0.3
0.3 | | 06
07
08 | 30
35
40 | 42
47
52 | 6
6
6 | _
_
_ | 8
8
9 | 0.3
0.3
0.3 | 47
52
60 | 8
8
9 | _
_
_ | 11
12
13 | 0.6
0.6
0.6 | 52
62
68 | 10
12
13 | _
_
_ | 16
18
19 | 29
34
36 | 25
30
30 | 7
8
9 | 0.6
1
1 | 0.3
0.3
0.6 | | 09
10
11 | 45
50
55 | 60
65
70 | 7
7
7 | _
 | 10
10
10 | 0.3
0.3
0.3 | 65
70
78 | 9
9
10 | _
_
_ | 14
14
16 | 0.6
0.6
0.6 | 73
78
90 | 13
13
16 | _
_
21 | 20
22
25 | 37
39
45 | 35
40
45 | 9
9
10 | 1
1
1 | 0.6
0.6
0.6 | | 12
13
14 | 60
65
70 | 75
80
85 | 7
7
7 | _
_
_ | 10
10
10 | 0.3
0.3
0.3 | 85
90
95 | 11
11
11 | _
_
_ | 17
18
18 | 1
1
1 | 95
100
105 | 16
16
16 | 21
21
21 | 26
27
27 | 46
47
47 | 50
55
55 | 10
10
10 | 1
1
1 | 0.6
0.6
1 | | 15
16
17 | 75
80
85 | 90
95
100 | 7
7
7 | = | 10
10
10 | 0.3
0.3
0.3 | 100
105
110 | 11
11
11 | _
_
_ | 19
19
19 | 1
1
1 | 110
115
125 | 16
16
18 | 21
21
24 | 27
28
31 | 47
48
55 | 60
65
70 | 10
10
12 | 1
1
1 | 1
1
1 | | 18
20
22 | 90
100
110 | 105
120
130 | 7
9
9 |

 | 10
14
14 | 0.3
0.6
0.6 | 120
135
145 | 14
16
16 | 21
21 | 22
25
25 | 1 1 1 | 135
150
160 | 20
23
23 | 27
30
30 | 35
38
38 | 62
67
67 | 75
85
95 | 14
15
15 | 1.1
1.1
1.1 | 1
1
1 | | 24
26
28 | 120
130
140 | 140
150
160 | 9
9
9 | _
_
_ | 14
14
14 | 0.6
0.6
0.6 | 155
170
180 | 16
18
18 | 21
24
24 | 25
30
31 | 1
1
1 | 170
190
200 | 23
27
27 | 30
36
36 | 39
45
46 | 68
80
81 | 100
110
120 | 15
18
18 | 1.1
1.5
1.5 | 1.1
1.1
1.1 | | 30
32
34 | 150
160
170 | 170
180
190 | 9
9
9 | | 14
14
14 | 0.6
0.6
0.6 | 190
200
215 | 18
18
20 | 24
24
27 | 31
31
34 | 1
1
1.1 | 215
225
240 | 29
29
32 | 39
39
42 | 50
51
55 | 89
90
97 | 130
140
150 | 20
20
21 | 1.5
1.5
1.5 | 1.1
1.1
1.1 | | 36
38
40 | 180
190
200 | 200
215
225 | 9
11
11 | _
_
_ | 14
17
17 | 0.6
1
1 | 225
240
250 | 20
23
23 | 27
30
30 | 34
37
37 | 1.1
1.1
1.1 | 250
270
280 | 32
36
36 | 42
48
48 | 56
62
62 | 98
109
109 | 150
160
170 | 21
24
24 | 1.5
2
2 | 2
2
2 | | 44
48
52 | 220
240
260 | 250
270
290 | 14
14
14 | _
_
_ | 22
22
22 | 1
1
1 | 270
300
320 | 23
27
27 | 30
36
36 | 37
45
45 | 1.1
1.5
1.5 | 300
340
360 | 36
45
45 | 48
60
60 | 63
78
79 | 110
—
— | 190
— | 24
— | 2
2.1
2.1 | 2
 | | 56
60
64 | 280
300
320 | 310
340
360 | 14
18
18 | —
24
24 | 22
30
30 | 1
1
1 | 350
380
400 | 32
36
36 | 42
48
48 | 53
62
63 | 1.5
2
2 | 380
420
440 | 45
54
54 | 60
73
73 | 80
95
95 | _
_
_ | _
_
_ | | 2.1
3
3 | _
_
_ | #### Thrust Bearings (Flat Seats) — 1 — | Un | its: mm | | |-------------------|----------------|------------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------| | | | | 513 | | 523 | | | | | | | 514 | | 524 | | | | | | | Thrus
Bro | t Ball | | | | 293 | | | | | | | | | 294 | | | | | | | | | | | al Thrust | | | | | Diam | eter Se | ries 3 | | | | | | | Diam | eter Se | ries 4 | | | | Diam | neter Se | ries 5 | | | | | | D | imensi | on Serie | es | | | | | | D | imensio | on Serie | es | | | | | Dimension | 1 | | ъ | | | 73 | 93 | 13 | 23 | | 3 | | | | 74 | 94 | 14 | 24 | 2 | 1 | 1 | | | Series
95 | 1 | | qun | | D | 75 | 55 | 10 | 25 | Central | | γ (min.) | r_1 (min.) | D | 74 | J-4 | 14 | 24 | Central | | * (min.) | γ_1 (min.) | D | - 55 | | d | Bore Number | | | | 1 | r | | | | - | | | | 1 | Γ | | Central | · · · | | | | T | | | | | | | 1 | | | d_2 | В | | | | | | | | d_2 | В | | | | _ | | | | | 20
24
26 | 7
8
8 | = | 11
12
12 | _
_
_ | _
_
_ | _
_
_ | 0.6
0.6
0.6 | | = | _
_
_ | _
_
_ | _
_ | _ | _
_ | = | -
 -
 - | _
_
_ | _
_
_ | = | | 4
6
8 | 4
6
8 | | 30
32
37 | 9
9
10 | = | 14
14
15 | _
_ | _
_ | _ | 0.6
0.6
0.6 | = | _ | = | _
_ | _ | = | _
_ | = |

-
 | _
 | _
_ | = | _
_ | 10
12
15 | 00
01
02 | | 40 | 4.0 | | 40 | 40
47
52 | 10
12
12 | _ | 16
18
18 | 34 | _
_
20 | _
_
8 | 0.6
1
1 | —
0.3 |
60 | _
16 | _
_
21 |

24 | —
45 | _
_
15 | _
_
11 | _
_
1 |

0.6 | 52
60
73 | 21
24
29 | 1
1
1.1 | 17
20
25 | 03
04
05 | | | | | | | | | ' | | | | | | | | | ' | | | | | | | | 60
68
78 | 14
15
17 | _

22 | 21
24
26 | 38
44
49 | 25
30
30 | 9
10
12 | 1
1
1 | 0.3
0.3
0.6 | 70
80
90 | 18
20
23 | 24
27
30 | 28
32
36 | 52
59
65 | 20
25
30 | 12
14
15 | 1
1.1
1.1 | 0.6
0.6
0.6 | 85
100
110 | 34
39
42 | 1.1
1.1
1.5 | 30
35
40 | 06
07
08 | | 85 | 18 | 24 | 28 | 52 | 35 | 12 | 1 | 0.6 | 100 | 25 | 34 | 39 | 72 | 35 | 17 | 1.1 | 0.6 | 120 | 45 | 2 | 45 | 09 | | 95
105 | 20
23 | 27
30 | 31
35 | 58
64 | 40
45 | 14
15 | 1.1 | 0.6
0.6 | 110
120 | 27
29 | 36
39 | 43
48 | 78
87 | 40
45 | 18
20 | 1.5
1.5 | 0.6 | 135
150 | 51
58 | 2 2.1 | 50
55 | 10
11 | | 110
115
125 | 23
23
25 | 30
30
34 | 35
36
40 | 64
65
72 | 50
55
55 | 15
15
16 | 1.1
1.1
1.1 | 0.6
0.6
1 | 130
140
150 | 32
34
36 | 42
45
48 | 51
56
60 | 93
101
107 | 50
50
55 | 21
23
24 | 1.5
2
2 | 0.6
1
1 | 160
170
180 | 60
63
67 | 2.1
2.1
3 | 60
65
70 | 12
13
14 | | 135
140
150 | 27
27
29 | 36
36
39 | 44
44
49 | 79
79
87 | 60
65
70 | 18
18
19 | 1.5
1.5
1.5 | 1
1
1 | 160
170
180 | 38
41
42 | 51
54
58 | 65
68
72 | 115
120
128 | 60
65
65 | 26
27
29 | 2
2.1
2.1 | 1
1
1.1 | 190
200
215 | 69
73
78 | 3
3
4 | 75
80
85 | 15
16
17 | | 155 | 29 | 39 | 50 | 88 | 75 | 19 | 1.5 | 1 | 190 | 45 | 60 | 77 | 135 | 70 | 30 | 2.1 | 1.1 | 225 | 82 | 4 | 90 | 18 | | 170
190 | 32
36 | 42
48 | 55
63 | 97
110 | 85
95 | 21
24 | 1.5 | 1 1 | 210
230 | 50
54 | 67
73 | 85
95 | 150
166 | 80
90 | 33
37 | 3 | 1.1 | 250
270 | 90
95 | 4
5 | 100
110 | 20
22 | | 210
225
240 | 41
42
45 | 54
58
60 | 70
75
80 | 123
130
140 | 100
110
120 | 27
30
31 | 2.1
2.1
2.1 | 1.1
1.1
1.1 | 250
270
280 | 58
63
63 | 78
85
85 | 102
110
112 | 177
192
196 | 95
100
110 | 40
42
44 | 4
4
4 | 1.5
2
2 | 300
320
340 | 109
115
122 | 5
5
5 | 120
130
140 | 24
26
28 | | 250
270
280 | 45
50
50 | 60
67
67 | 80
87
87 | 140
153
153 | 130
140
150 | 31
33
33 | 2.1
3
3 | 1.1
1.1
1.1 | 300
320
340 | 67
73
78 | 90
95
103 | 120
130
135 | 209
226
236 | 120
130
135 | 46
50
50 | 4
5
5 | 2
2
2.1 | 360
380
400 | 125
132
140 | 6
6
6 | 150
160
170 | 30
32
34 | | 300
320
340 | 54
58
63 | 73
78
85 | 95
105
110 | 165
183
192 | 150
160
170 | 37
40
42 | 3
4
4 | 2
2
2 | 360
380
400 | 82
85
90 | 109
115
122 | 140
150
155 | 245
— | 140
— | 52
— | 5
5
5 | 3 — | 420
440
460 | 145
150
155 | 6
6
7.5 | 180
190
200 | 36
38
40 | | 360
380
420 | 63
63
73 | 85
85
95 | 112
112
130 | _
_
_ | _
_
_ | _
_
_ | 4
4
5 | | 420
440
480 | 90
90
100 | 122
122
132 | 160
160
175 | _ | _
_
_ | _
_
_ | 6
6
6 | _
_
_ | 500
540
580 | 170
180
190 | 7.5
7.5
9.5 | 220
240
260 | 44
48
52 | | 440
480
500 | 73
82
82 | 95
109
109 | 130
140
140 | _
_
_ | _
_
_ | _
_
_ | 5
5
5 | _ | 520
540
580 | 109
109
118 | 145
145
155 | 190
190
205 | | _
_
_ | _
_
_ | 6
6
7.5 | _
_
_ | 620
670
710 | 206
224
236 | 9.5
9.5
9.5 | 280
300
320 | 56
60
64 | A 112 A 113 Remarks 1. Dimension Series 22, 23, and 24 are double direction bearings. 2. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearing tables for Thrust Bearings). Table 6. 3 Boundary Dimensions of | Thrust B | all Brgs. | | | | | | | | | 511 | | | | | 512 | | 522 | | | | |----------------------------------|------------------------------|------------------------------|------------------|------------------|--------------------------|-------------------|------------------------------|------------------|-------------------|--------------------------|--------------------------|----------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------|-------------------|-------------------| | Spherica
Roller | al Thrust
Bras. | | | | | | | | | | | | | 292 | | | | | | | | | | | Dian | neter Se | ries 0 | | | Dian | neter Se | ries 1 | | | | | Diam | neter Sei | ries 2 | | | | | ber | | | Dime | ension S | Series | | | Dime | ension S | Series | | | | [| Dimensi | on Serie | S | | | | | Bore Number | d | _ | 70 | 90 | 10 |] | | 71 | 91 | 11 |] | | 72 | 92 | 12 | 22 | 2 | 2 | <u> </u> | | | Bore | | D | | T | | ∤ ′(min.) | D | | T | | ∤ (min.) | D | | , | Г | | Central | Washer | r(min.) | γ_1 (min.) | | | | | | | | | | | | | | | | | | | d_2 | В | | | | 68
72
76 | 340
360
380 | 380
400
420 | 18
18
18 | 24
24
24 | 30
30
30 | 1
1
1 | 420
440
460 | 36
36
36 | 48
48
48 | 64
65
65 | 2
2
2 | 460
500
520 | 54
63
63 | 73
85
85 | 96
110
112 | _
_
_ | = | _
_
_ | 3
4
4 | = | | 80
84
88 | 400
420
440 | 440
460
480 | 18
18
18 | 24
24
24 | 30
30
30 | 1
1
1 | 480
500
540 | 36
36
45 | 48
48
60 | 65
65
80 | 2
2
2.1 | 540
580
600 | 63
73
73 | 85
95
95 | 112
130
130 | _ | = | _
_
_ | 4
5
5 | _
_
_ | | 92
96
/500 | 460
480
500 | 500
520
540 | 18
18
18 | 24
24
24 | 30
30
30 | 1
1
1 | 560
580
600 | 45
45
45 | 60
60
60 | 80
80
80 | 2.1
2.1
2.1 | 620
650
670 | 73
78
78 | 95
103
103 | 130
135
135 | _ | = | _
_
_ | 5
5
5 | _
_
_ | | /530
/560
/600 | 530
560
600 | 580
610
650 | 23
23
23 | 30
30
30 | 38
38
38 | 1.1
1.1
1.1 | 640
670
710 | 50
50
50 | 67
67
67 | 85
85
85 | 3 3 3 | 710
750
800 | 82
85
90 | 109
115
122 | 140
150
160 | _
_
_ | = | _
_
_ | 5
5
5 | _
_
_ | | /630
/670
/710 | 630
670
710 | 680
730
780 | 23
27
32 | 30
36
42 | 38
45
53 | 1.1
1.5
1.5 | 750
800
850 | 54
58
63 | 73
78
85 | 95
105
112 | 3
4
4 | 850
900
950 | 100
103
109 | 132
140
145 | 175
180
190 | _
_
_ | = | _
_
_ | 6
6
6 | _
_
_ | | /750
/800
/850 | 750
800
850 | 820
870
920 | 32
32
32 | 42
42
42 | 53
53
53 | 1.5
1.5
1.5 | 900
950
1000 | 67
67
67 | 90
90
90 | 120
120
120 | 4
4
4 | 1000
1060
1120 | 112
118
122 | 150
155
160 | 195
205
212 | _
_
_ | = | | 6
7.5
7.5 | = | | /900
/950
/1000 | 900
950
1000 | 980
1030
1090 | 36
36
41 | 48
48
54 | 63
63
70 | 2
2
2.1 | 1060
1120
1180 | 73
78
82 | 95
103
109 | 130
135
140 | 5
5
5 | 1180
1250
1320 | 125
136
145 | 170
180
190 | 220
236
250 | _
_
_ | = | | 7.5
7.5
9.5 | = | | /1060
/1120
/1180 | 1060
1120
1180 | 1150
1220
1280 | 41
45
45 | 54
60
60 | 70
80
80 | 2.1
2.1
2.1 | 1250
1320
1400 | 85
90
100 | 115
122
132 | 150
160
175 | 5
5
6 | 1400
1460
1520 | 155
—
— | 206
206
206 | 265
—
— | _
_
_ | = | | 9.5
9.5
9.5 | = | | /1250
/1320
/1400 | 1250
1320
1400 | 1360
1440
1520 | 50
—
— | 67
—
— | 85
95
95 | 3
3
3 | 1460
1540
1630 | = | _
_
_ | 175
175
180 | 6
6
6 | 1610
1700
1790 | = | 216
228
234 | _
_
_ | _
_
_ | = | | 9.5
9.5
12 | = | | /1500
/1600
/1700 | 1500
1600
1700 | 1630
1730
1840 | _
_
_ | = | 105
105
112 | 4
4
4 | 1750
1850
1970 | = | _
_
_ | 195
195
212 | 6
6
7.5 | 1920
2040
2160 | _
 | 252
264
276 | _
_
_ | _
_
_ | = | _
_
_ | 12
15
15 | = | | /1800
/1900
/2000 | 1800
1900
2000 | 1950
2060
2160 | = | _
_
_ | 120
130
130 | 4
5
5 | 2080
2180
2300 | = | _
_
_ | 220
220
236 | 7.5
7.5
7.5 | 2280
—
— | = | 288
—
— | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 15
—
— | _
_
_ | | /2120
/2240
/2360
/2500 | 2120
2240
2360
2500 | 2300
2430
2550
2700 | _
_
_
_ | _
_
_
_ | 140
150
150
160 | 5
5
5
5 | 2430
2570
2700
2850 | _
_
_
_ | _
_
_
_ | 243
258
265
272 | 7.5
9.5
9.5
9.5 | _
_
_
_ | _
_
_
_ | _
_
_
_
| _
_
_
_ | _
_
_
_ | _
_
_
_ | | _
_
_
_ | _
_
_
_ | #### Thrust Bearings (Flat Seats) — 2 — | Un | its: mm | l | |----------------------|-------------------|-------------------|-------------------|-------------|------------------|------------------|-------------------|--------------|----------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|------------------|----------------------|---------------------|------------------|------------------------------|----------------------------------| | | | | 513 | | 523 | | | | | | | 514 | | 524 | | | | | | | Thrus
Br | st Ball
gs. | | | | 293 | | | | | | | | | 294 | | | | | | | | | | Spherica
Roller | al Thrust
Brgs. | | | | | Diam | eter Se | ries 3 | | | | | | | Diam | eter Se | ries 4 | | | | Dian | neter Se | ries 5 | | | | | | |)imensi | on Serie | es | | | | | | D | imensi | on Seri | es | | | | | Dimension
Series | | | nber | | D | 73 | 93 | 13 | 23 | 2 | !3 | 1 (min) | r_1 (min.) | D | 74 | 94 | 14 | 24 | 2 | 4 | 1 (min) | γ_1 (min. | D | 95 | 1 (min.) | d | Bore Number | | D | | | Т | | Central | Washe | ("""", | 1 (111111.) | , D | | 2 | Г | | Central | Washe | ļ (| 1 (111111. | | T | (11111.) | | B | | | | | | | d_2 | В | | | | | | | | d_2 | В | | | | | | | | | 540
560
600 | 90
90
100 | 122
122
132 | 160
160
175 | = | _ | _
_
_ | 5
5
6 | _
_
_ | 620
640
670 | 125
125
132 | 170
170
175 | 220
220
224 | | = | _ | 7.5
7.5
7.5 | _
_
_ | 750
780
820 | 243
250
265 | 12
12
12 | 340
360
380 | 68
72
76 | | 620
650
680 | 100
103
109 | 132
140
145 | 175
180
190 | _
_
_ | = | _
_
_ | 6
6
6 | | 710
730
780 | 140
140
155 | 185
185
206 | 243
243
265 | | _
 | _
_
_ | 7.5
7.5
9.5 | _
_
_ | 850
900
950 | 272
290
308 | 12
15
15 | 400
420
440 | 80
84
88 | | 710
730
750 | 112
112
112 | 150
150
150 | 195
195
195 | = | _
 | _
_
_ | 6
6
6 | | 800
850
870 | 155
165
165 | 206
224
224 | 265
290
290 | | _
_
_ | _
 | 9.5
9.5
9.5 | _
_
_ | 980
1000
1060 | 315
315
335 | 15
15
15 | 460
480
500 | 92
96
/500 | | 800
850
900 | 122
132
136 | 160
175
180 | 212
224
236 | = | _
 | _
_
_ | 7.5
7.5
7.5 | | 920
980
1030 | 175
190
195 | 236
250
258 | 308
335
335 | | _
_
_ | _
 | 9.5
12
12 | _
_
_ | 1090
1150
1220 | 335
355
375 | 15
15
15 | 530
560
600 | /530
/560
/600 | | 950
1000
1060 | 145
150
160 | 190
200
212 | 250
258
272 | _
 | _
_
_ | _
_
_ | 9.5
9.5
9.5 | _ | 1090
1150
1220 | 206
218
230 | 280
290
308 | 365
375
400 | | _
_
_ | _
_
_ | 12
15
15 | _
_
_ | 1280
1320
1400 | 388
388
412 | 15
15
15 | 630
670
710 | /630
/670
/710 | | 1120
1180
1250 | 165
170
180 | 224
230
243 | 290
300
315 | _
 | _
_
_ | _
_
_ | 9.5
9.5
12 | _ | 1280
1360
1440 | 236
250
— | 315
335
354 | 412
438
— | | _
_
_ | _
_
_ | 15
15
15 | _
 | _
_
_ | = | _
_
_ | 750
800
850 | /750
/800
/850 | | 1320
1400
1460 | 190
200
— | 250
272
276 | 335
355
— | = | _ | _
_
_ | 12
12
12 | | 1520
1600
1670 | = | 372
390
402 | = | _ | _
_
_ | _
_
_ | 15
15
15 | _
_
_ | = | = | _
_
_ | 900
950
1000 | /900
/950
/1000 | | 1540
1630
1710 | = | 288
306
318 | = | = | _ | _
_
_ | 15
15
15 | | 1770
1860
1950 | = | 426
444
462 | = | _ | _
_
_ | _
_
_ | 15
15
19 | _
_
_ | = | = | _
_
_ | 1060
1120
1180 | /1060
/1120
/1180 | | 1800
1900
2000 | = | 330
348
360 | = | _
 | _
_
_ | _
_
_ | 19
19
19 | _ | 2050
2160
2280 | = | 480
505
530 | _
_
_ | | _
_
_ | _
_
_ | 19
19
19 | _
_
_ | = | = | _
_
_ | 1250
1320
1400 | /1250
/1320
/1400 | | 2140
2270
— | Ξ | 384
402
— | _
_
_ | _
_
_ | _
_
_ | _
_
_ | 19
19
— | | | = | _
_
_ | _ | | _
_
_ | _
_
_ |
 -
 - | _
_
_ | = | = | _
_
_ | 1500
1600
1700 | /1500
/1600
/1700 | | = | = | _
 | _
 | _
_
_ | _
_
_ | _
_
_ | _ | _
_
_ | | = | _
_
_ | _
 | _
_
_ | _
_
_ | _
_
_ |
 -
 - | -
 - | _
 | = | _
_
_ | 1800
1900
2000 | /1800
/1900
/2000 | | _
_
_ | = | _
_
_
_ | _
_
_
_ | _
_
_ | _
_
_
_ | _
_
_
_ | _
_
_
_ | _
_
_ | _
_
_
_ | _
_
_ | _
_
_
_ _
_
_ | Ē | _
_
_
_ | 2120
2240
2360
2500 | /2120
/2240
/2360
/2500 | A 115 A 114 Remarks 1. Dimension Series 22, 23, and 24 are double direction bearings. 2. The maximum permissible outside diameter of shaft and central washers and minimum permissible bore diameter of housing washers are omitted here. (Refer to the bearings tables for Thrust Bearings). Table 6. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (1) Bearings of Dimension Series 18 and 19 | Арр | licable Bear | ings | | | | Snap F | Ring Groove | | | | | |------------------------|-------------------|--------------------------|----------------------------------|----------------------------------|------------------------|------------------------|---------------------|----------------------|--------------------------|--------------------------|--------------------------| | - | d | | Snap Rin
Dian | g Groove
neter | | | э | | Snap Rin
Wi | g Groove
dth | Radius of
Bottom | | Dimonoi | on Series | D | I | O_1 | | Bearing Dime | | 9 | | b | Corners r_0 | | 18 | 19 | | max. | min. | max. | min. | max. | min. | max. | min. | max. | | | 10 | 22 | 20.8 | 20.5 | - IIIax. | | 1.05 | 0.9 | 1.05 | 0.8 | 0.2 | | = | 12
15 | 24
28 | 22.8
26.7 | 22.5
26.4 | | = | 1.05
1.05
1.3 | 0.9
1.15 | 1.05 | 0.8
0.95 | 0.2
0.2
0.25 | |
20 | 17
— | 30
32 | 28.7
30.7 | 28.4
30.4 | 1.3 | —
1.15 | 1.3
— | 1.15
— | 1.2
1.2 | 0.95
0.95 | 0.25
0.25 | | 22 | _ | 34 | 32.7 | 32.4 | 1.3 | 1.15 | _ | _ | 1.2 | 0.95 | 0.25 | | 25
—
28 | 20
22
— | 37
39
40 | 35.7
37.7
38.7 | 35.4
37.4
38.4 | 1.3
—
1.3 | 1.15
—
1.15 | 1.7
1.7
— | 1.55
1.55
— | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 30
32
— | 25
—
28 | 42
44
45 | 40.7
42.7
43.7 | 40.4
42.4
43.4 | 1.3
1.3 | 1.15
1.15
— | 1.7
—
1.7 | 1.55
—
1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 35
40
— | 30
32
35 | 47
52
55 | 45.7
50.7
53.7 | 45.4
50.4
53.4 | 1.3
1.3 | 1.15
1.15
— | 1.7
1.7
1.7 | 1.55
1.55
1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | 45
—
50 | 40 | 58
62
65 | 56.7
60.7
63.7 | 56.4
60.3
63.3 | 1.3
—
1.3 | 1.15
—
1.15 | 1.7 | 1.55 | 1.2
1.2
1.2 | 0.95
0.95
0.95 | 0.25
0.25
0.25 | | —
55
60 | 45
50
— | 68
72
78 | 66.7
70.7
76.2 | 66.3
70.3
75.8 | 1.7
1.7 |
1.55
1.55 | 1.7
1.7
— | 1.55
1.55
— | 1.2
1.2
1.6 | 0.95
0.95
1.3 | 0.25
0.25
0.4 | | —
65
70 | 55
60
65 | 80
85
90 | 77.9
82.9
87.9 | 77.5
82.5
87.5 | 1.7
1.7 | —
1.55
1.55 | 2.1
2.1
2.1 | 1.9
1.9
1.9 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 75
80
— | 70
75 | 95
100
105 | 92.9
97.9
102.6 | 92.5
97.5
102.1 | 1.7
1.7
— | 1.55
1.55
— | 2.5
2.5 | | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 85
90
95 | 80
—
85 | 110
115
120 | 107.6
112.6
117.6 | 107.1
112.1
117.1 | 2.1
2.1
2.1 | 1.9
1.9
1.9 | 2.5
—
3.3 | 2.3
—
3.1 | 1.6
1.6
1.6 | 1.3
1.3
1.3 | 0.4
0.4
0.4 | | 100
105
110 | 90
95
100 | 125
130
140 | 122.6
127.6
137.6 | 122.1
127.1
137.1 | 2.1
2.1
2.5 | 1.9
1.9
2.3 | 3.3
3.3
3.3 | 3.1
3.1
3.1 | 1.6
1.6
2.2 | 1.3
1.3
1.9 | 0.4
0.4
0.6 | | 120
130 | 105
110
120 | 145
150
165 | 142.6
147.6
161.8 | 142.1
147.1
161.3 | 2.5
3.3 |
2.3
3.1 | 3.3
3.3
3.7 | 3.1
3.1
3.5 | 2.2
2.2
2.2 | 1.9
1.9
1.9 | 0.6
0.6
0.6 | | 140
—
150
160 | 130
140
— | 175
180
190
200 | 171.8
176.8
186.8
196.8 | 171.3
176.3
186.3
196.3 | 3.3
—
3.3
3.3 | 3.1
—
3.1
3.1 | 3.7
3.7
— | 3.5
3.5
— | 2.2
2.2
2.2
2.2 | 1.9
1.9
1.9
1.9 | 0.6
0.6
0.6
0.6 | Remarks The minimum permissible chamfer dimensions $r_{\rm N}$ on the snap-ring-groove side of the outer rings are as follows: Dimension series 18: For outside diameters of 78mm and less, use 0.3mm chamfer. For all others exceeding 78mm, use 0.5mm chamfer. Dimension series 19: For outside diameters of 24mm and less, use 0.2mm chamfer. For 47mm and less, use 0.3mm chamfer. For all others exceeding 47mm, use 0.5mm chamfer (However, for an outside diameter of 68 mm, use a 0.3 mm chamfer, which is not compliant with ISO 15).
Units: mm | | | Locati | ng Snap Rin | ıg | | | Side Cover | |------------------------------|------|-------------------|-------------|-------|---------|---|---| | Locating Snap
Ring Number | He | Sectional
ight | | kness | fitted | y of snap ring I in groove eference) Snap Ring Outside Diameter D_2 | Stepped Bore Diameter (Reference) $D_{\rm X}$ | | | max. | min. | max. | min. | approx. | max. | min. | | NR 1022 | 2.0 | 1.85 | 0.7 | 0.6 | 2 | 24.8 | 25.5 | | NR 1024 | 2.0 | 1.85 | 0.7 | 0.6 | 2 | 26.8 | 27.5 | | NR 1028 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 30.8 | 31.5 | | NR 1030 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 32.8 | 33.5 | | NR 1032 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 34.8 | 35.5 | | NR 1034 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 36.8 | 37.5 | | NR 1037 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 39.8 | 40.5 | | NR 1039 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 41.8 | 42.5 | | NR 1040 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 42.8 | 43.5 | | NR 1042 | 2.05 | 1.9 | 0.85 | 0.75 | 3 | 44.8 | 45.5 | | NR 1044 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 46.8 | 47.5 | | NR 1045 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 47.8 | 48.5 | | NR 1047 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 49.8 | 50.5 | | NR 1052 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 54.8 | 55.5 | | NR 1055 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 57.8 | 58.5 | | NR 1058 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 60.8 | 61.5 | | NR 1062 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 64.8 | 65.5 | | NR 1065 | 2.05 | 1.9 | 0.85 | 0.75 | 4 | 67.8 | 68.5 | | NR 1068 | 2.05 | 1.9 | 0.85 | 0.75 | 5 | 70.8 | 72 | | NR 1072 | 2.05 | 1.9 | 0.85 | 0.75 | 5 | 74.8 | 76 | | NR 1078 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 82.7 | 84 | | NR 1080 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 84.4 | 86 | | NR 1085 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 89.4 | 91 | | NR 1090 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 94.4 | 96 | | NR 1095 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 99.4 | 101 | | NR 1100 | 3.25 | 3.1 | 1.12 | 1.02 | 5 | 104.4 | 106 | | NR 1105 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 110.7 | 112 | | NR 1110 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 115.7 | 117 | | NR 1115 | 4.04 | 3.89 | 1.12 | 1.02 | 5 | 120.7 | 122 | | NR 1120 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 125.7 | 127 | | NR 1125 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 130.7 | 132 | | NR 1130 | 4.04 | 3.89 | 1.12 | 1.02 | 7 | 135.7 | 137 | | NR 1140 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 145.7 | 147 | | NR 1145 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 150.7 | 152 | | NR 1150 | 4.04 | 3.89 | 1.7 | 1.6 | 7 | 155.7 | 157 | | NR 1165 | 4.85 | 4.7 | 1.7 | 1.6 | 7 | 171.5 | 173 | | NR 1175 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 181.5 | 183 | | NR 1180 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 186.5 | 188 | | NR 1190 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 196.5 | 198 | | NR 1200 | 4.85 | 4.7 | 1.7 | 1.6 | 10 | 206.5 | 208 | A 117 A 116 ### **BOUNDARY DIMENSIONS AND IDENTIFYING NUMBERS FOR BEARINGS** Table 6. 4 Dimensions of Snap Ring Grooves and Locating Snap Rings — (2) Bearing of Diameter Series 0, 2, 3, and 4 | | Δnnli | cable Bea | ringe | | | | | Snan Ri | ng Groove | | | | | |-------------------|-------------------|----------------|----------------|-------------------|----------------------------|----------------------------|----------------------|----------------------|---------------------------------|----------------------|----------------------|----------------------|-----------------------------------| | | | d | illiga | | Dia | ng Groove
meter | | ap Ring Gr | oove Positi
a
meter Serie | | . Wi | g Groove
dth | Radius
of
Bottom
Corners | | | Diamete | er Series | | D | İ | D_1 | |) | 2, 3 | 3, 4 | | b | r_0 | | 0 | 2 | 3 | 4 | | max. | min. | max. | min. | max. | min. | max. | min. | max. | | 10
12 | _ | _ | _ | 26
28 | 24.5
26.5 | 24.25
26.25 | 1.35
1.35 | 1.19
1.19 | | _ | 1.17
1.17 | 0.87
0.87 | 0.2
0.2 | | —
15
17 | 10
12
15 | 9
10 | 8
9
— | 30
32
35 | 28.17
30.15
33.17 | 27.91
29.9
32.92 | 2.06
2.06 | 1.9
1.9 | 2.06
2.06
2.06 | 1.9
1.9
1.9 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | |
20 | 17
— | 12
—
15 | 10
—
12 | 37
40
42 | 34.77
38.1
39.75 | 34.52
37.85
39.5 |

2.06 |
1.9 | 2.06
2.06
2.06 | 1.9
1.9
1.9 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 22
25
— | 20
22 | 17
— | _ | 44
47
50 | 41.75
44.6
47.6 | 41.5
44.35
47.35 | 2.06
2.06
— | 1.9
1.9
— | 2.46
2.46 |
2.31
2.31 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 28
30
— | 25
— | 20
—
22 | 15
— | 52
55
56 | 49.73
52.6
53.6 | 49.48
52.35
53.35 | 2.06
2.08
— | 1.9
1.88
— | 2.46
—
2.46 | 2.31
—
2.31 | 1.65
1.65
1.65 | 1.35
1.35
1.35 | 0.4
0.4
0.4 | | 32
35
— | 28
30
32 |
25
 | 17
— | 58
62
65 | 55.6
59.61
62.6 | 55.35
59.11
62.1 | 2.08
2.08
— | 1.88
1.88
— | 2.46
3.28
3.28 | 2.31
3.07
3.07 | 1.65
2.2
2.2 | 1.35
1.9
1.9 | 0.4
0.6
0.6 | | 40
—
45 | 35
— | 28
30
32 | 20
— | 68
72
75 | 64.82
68.81
71.83 | 64.31
68.3
71.32 | 2.49
—
2.49 | 2.29
—
2.29 | 3.28
3.28
3.28 | 3.07
3.07
3.07 | 2.2
2.2
2.2 | 1.9
1.9
1.9 | 0.6
0.6
0.6 | | 50
—
55 | 40
45
50 | 35
—
40 | 25
—
30 | 80
85
90 | 76.81
81.81
86.79 | 76.3
81.31
86.28 | 2.49
—
2.87 | 2.29
—
2.67 | 3.28
3.28
3.28 | 3.07
3.07
3.07 | 2.2
2.2
3 | 1.9
1.9
2.7 | 0.6
0.6
0.6 | | 60
65
70 | 55
60 | 45
50 | —
35
40 | 95
100
110 | 91.82
96.8
106.81 | 91.31
96.29
106.3 | 2.87
2.87
2.87 | 2.67
2.67
2.67 | 3.28
3.28 | 3.07
3.07 | 3
3
3 | 2.7
2.7
2.7 | 0.6
0.6
0.6 | | 75
—
80 | 65
70 | 55
— | 45
— | 115
120
125 | 111.81
115.21
120.22 | 111.3
114.71
119.71 | 2.87
—
2.87 | 2.67
—
2.67 | 4.06
4.06 | 3.86
3.86 | 3
3.4
3.4 | 2.7
3.1
3.1 | 0.6
0.6
0.6 | | 85
90
95 | 75
80
— | 60
65
— | 50
55
— | 130
140
145 | 125.22
135.23
140.23 | 124.71
134.72
139.73 | 2.87
3.71
3.71 | 2.67
3.45
3.45 | 4.06
4.9
— | 3.86
4.65
— | 3.4
3.4
3.4 | 3.1
3.1
3.1 | 0.6
0.6
0.6 | | 100
105
110 | 85
90
95 | 70
75
80 | 60
65
— | 150
160
170 | 145.24
155.22
163.65 | 144.73
154.71
163.14 | 3.71
3.71
3.71 | 3.45
3.45
3.45 | 4.9
4.9
5.69 | 4.65
4.65
5.44 | 3.4
3.4
3.8 | 3.1
3.1
3.5 | 0.6
0.6
0.6 | | 120
—
130 | 100
105
110 | 85
90
95 | 70
75
80 | 180
190
200 | 173.66
183.64
193.65 | 173.15
183.13
193.14 | 3.71
—
5.69 | 3.45
—
5.44 | 5.69
5.69
5.69 | 5.44
5.44
5.44 | 3.8
3.8
3.8 | 3.5
3.5
3.5 | 0.6
0.6
0.6 | Units: mm | | | Side Cover | | | | | | |------------------------------|------|--------------------|------|-------|---------|---|---| | Locating Snap
Ring Number | He | Sectional
eight | | kness | fitted | ry of snap ring
d in groove
eference)
Snap Ring
Outside
Diameter D_2 | Stepped Bore
Diameter
(Reference) | | | max. | min. | max. | min. | approx. | max. | min. | | NR 26 (1) | 2.06 | 1.91 | 0.84 | 0.74 | 3 | 28.7 | 29.4 | | NR 28 (1) | 2.06 | 1.91 | 0.84 | 0.74 | | 30.7 | 31.4 | | NR 30 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 34.7 | 35.5 | | NR 32 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 36.7 | 37.5 | | NR 35 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 39.7 | 40.5 | | NR 37 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 41.3 | 42 | | NR 40 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 44.6 | 45.5 | | NR 42 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 46.3 | 47 | | NR 44 | 3.25 | 3.1 | 1.12 | 1.02 | 3 | 48.3 | 49 | | NR 47 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 52.7 | 53.5 | | NR 50 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 55.7 | 56.5 | | NR 52 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 57.9 | 58.5 | | NR 55 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 60.7 | 61.5 | | NR 56 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 61.7 | 62.5 | | NR 58 | 4.04 | 3.89 | 1.12 | 1.02 | 4 | 63.7 | 64.5 | | NR 62 | 4.04 | 3.89 | 1.7 | 1.6 | 4 | 67.7 | 68.5 | | NR 65 | 4.04 | 3.89 | 1.7 | 1.6 | 4 | 70.7 | 71.5 | | NR 68 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 74.6 | 76 | | NR 72 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 78.6 | 80 | | NR 75 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 81.6 | 83 | | NR 80 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 86.6 | 88 | | NR 85 | 4.85 | 4.7 | 1.7 | 1.6 | 5 | 91.6 | 93 | | NR 90 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 96.5 | 98 | | NR 95 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 101.6 | 103 | | NR 100 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 106.5 | 108 | | NR 110 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 116.6 | 118 | | NR 115 | 4.85 | 4.7 | 2.46 | 2.36 | 5 | 121.6 | 123 | | NR 120 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 129.7 | 131.5 | | NR 125 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 134.7 | 136.5 | | NR 130 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 139.7 | 141.5 | | NR 140 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 149.7 | 152 | | NR 145 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 154.7 | 157 | | NR 150 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 159.7 | 162 | | NR 160 | 7.21 | 7.06 | 2.82 | 2.72 | 7 | 169.7 | 172 | | NR 170 | 9.6 | 9.45 | 3.1 | 3 | 10 | 182.9 | 185 | | NR 180 | 9.6 | 9.45 | 3.1 | 3 | 10 | 192.9 | 195 | | NR 190 | 9.6 | 9.45 | 3.1 | 3 | 10 | 202.9 | 205 | | NR 200 | 9.6 | 9.45 | 3.1 | 3 | 10 | 212.9 | 215 | A 119 A 118 Note (1) The locating snap rings and snap ring grooves of these bearings are not specified by ISO. 1. The dimensions of these snap ring grooves are not applicable to bearings of dimension series 00, 82, and 83. 2. The minimum permissible chamfer dimension r_N on the
snap-ring side of outer rings is 0.5mm. However, for bearings of diameter series 0 having outside diameters 35mm and below, it is 0.3mm. (Example 4) NU 3 18 M CM (Example 5) NN 3 0 17 K CC1 P4 Radial Clearance for -Machined Brass Cage Bearing Bore 90mm -Diameter Series 3 Roller Bearing NU Type Cylindrical Accuracy of ISO Class 4 -Radial Clearance in Non- Interchangeable Cylindrical Roller Bearings **CC1** Tapered Bore (Taper 1:12) Bearing Bore 85mm Diameter Series 0 -Width Series 3 Electric-Motor Bearings CM ### NSK #### 6.2 Formulation of Bearing Numbers Bearing numbers are alphanumeric combinations that indicate the bearing type, boundary dimensions, dimensional and running accuracies, internal clearance, and other related specifications. They consist of basic numbers and supplementary symbols. The boundary dimensions of commonly used bearings mostly conform to the organizational concept of ISO, and the bearing numbers of these standard bearings are specified by JIS B 1513 (Bearing Numbers for Rolling Bearings). Due to a need for more detailed classification, NSK uses auxiliary symbols other than those specified by JIS. Bearing numbers consist of a basic number and supplementary symbols. The basic number indicates the bearing series(type) and the width and diameter series as shown in Table 6.5. Basic numbers, supplementary symbols, and the meanings of common numbers and symbols are listed in Table 6.6 (Pages A122 and A123). The contact angle symbols and other supplementary designations are shown in successive columns from left to right in Table 6.6. For reference, some examples of bearing designations are shown here: Table 6. 5 Bearing Series Symbols | | | | Dimension | n Symbols | | | | Dimension | n Symbols | |-----------------------|------------------------------|-----------------|------------------|---------------------|---------------------|------------------------------|-----------------|---|---------------------| | Bearing Type | Bearing
Series
Symbols | Type
Symbols | Width
Symbols | Diameter
Symbols | Bearing Type | Bearing
Series
Symbols | Type
Symbols | Width
Symbols
or
Height
Symbols | Diameter
Symbols | | | 68 | 6 | (1) | 8 | Double-Row | NNU49 | NNU | 4 | 9 | | Single-Row | 69 | 6 | (1) | 9 | Cylindrical | NN30 | NN | 3 | 0 | | Deep Groove | 60 | 6 | (1) | 0 | Roller Bearings | | | | - | | Ball Bearings | 62 | 6 | (0) | 2 | | NA48 | NA | 4 | 8 | | | 63 | 6 | (0) | 3 | Needle Roller | NA49 | NA | 4 | 9 | | | 70 | 7 | (1) | 0 | Bearings | NA59 | NA
NA | 5 | 9 | | Single-Row | 79
70 | 7 | (1) | 9 | Dearings | NA69 | NA | 6 | 9 | | Angular Contact | | 7 | (1) | 2 | | IVAUS | INA | 0 | 3 | | Ball Bearings | 72
73 | 7 | (0)
(0) | 3 | | 329 | 3 | 2 | 9 | | | | / | (0) | 3 | | | | | | | | 12 | 1 | (0) | 2 | | 320 | 3 | 2 | 0 | | Self-Aligning | 13 | 1 | (0) | 3 | | 330 | 3 | 3 | 0 | | Ball Bearings | 22 | (1) | 2 | 2 | Tapered Roller | 331 | 3 | 3 | 1 | | | 23 | (1) | 2 | 3 | Bearings | 302 | 3 | 0 | 2 | | | NU10 | NU | 1 | 0 | Dearings | 322 | 3 | 2 | 2 | | | NU2 | NU | (0) | 2 | | 332 | 3 | 3 | 2 | | | NU22 | NU | 2 | 2 | | 303 | 3 | 0 | 3 | | | NU3 | NU | (0) | 3 | | 323 | 3 | 2 | 3 | | | NU23 | NU | 2 | 3 | | | | | | | | NU4 | NU | (0) | 4 | | 230 | 2 | 3 | 0 | | | NJ2 | NJ | (0) | 2 | | 231 | 2 | 3 | 1 | | | NJ22 | NJ | 2 | 2 | Spherical
Roller | 222 | 2 | 2 | 2 | | | NJ3 | NJ | (0) | 3 | Bearings | 232 | 2 | 3 | 2 | | | NJ23 | NJ | 2 | 3 | 20a.n.go | 213 (1) | 2 | 0 | 3 | | Single-Row | NJ4 | NJ | (0) | 4 | | 223 | 2 | 2 | 3 | | Cylindrical
Roller | NUP2 | NUP | (0) | 2 | | = | | | | | Bearings | NUP22 | NUP | 2 | 2 | | 511 | 5 | 1 | 1 | | Dearniys | NUP3 | NUP | (0) | 3 | | 512 | 5 | 1 | 2 | | | NUP23 | NUP | 2 | 3 | Thrust Ball | 513 | 5 | 1 | 3 | | | NUP4 | NUP | (0) | 4 | Bearings with | 514 | 5 | 1 | 4 | | | N10 | N | 1 | 0 | Flat Seats | 522 | 5 | 2 | 2 | | | N2 | N | (0) | 2 | | 523 | 5 | 2 | 3 | | | N3 | N | (0) | 3 | | 524 | 5 | 2 | 4 | | | N4 | N | (0) | 4 | | | | | | | | NF2 | NF | (0) | 2 | Spherical | 292 | 2 | 9 | 2 | | | NF3 | NF | (0) | 3 | Thrust Roller | 293 | 2 | 9 | 3 | | | NF4 | NF | (0) | 4 | Bearings | 294 | 2 | 9 | 4 | Note (1) Bearing Series Symbol 213 should logically be 203, but customarily it is numbered 213. Remark Numbers in () in the column of width symbols are usually omitted from the bearing number. A 120 A 121 Table 6. 6 Formulation of | | | Basi | ic Numbers | 3 | | | | | | | | | | | |--------------------------|---|----------------------|-------------------|------------|---|------------|---|--------|--|--------|-------------------------|------------|---|--| | | ing Series | Bore | e Number | | ntact Angle | Intern | al Design Symbol | Mat | terial Symbol | Cag | e Symbol | | nal Features | | | | nbols (1) | | | | Symbol | | | | | | | | ls, Shields
Symbol | | | Symbol | Meaning | | 68
69
60 | Single-
Row Deep
Groove Ball
Bearings | 1 2 3 | Bearing 1mm
2 | (C | ngular
ontact Ball
earings
Standard
Contact Angle | A | Internal Design
Differs from
Standard One
Smaller Diameter | g | Case-Hardened
Steel Used in
Rings, Rolling
Elements | М | Machined
Brass Cage | Z
ZS | Shield
on One
Side
Only | | | :
70
72
73 | Single-Row
Angular
Contact Ball
Bearings | 9 | 9 | A 5 | of 30° Standard Contact Angle of 25° | J | of Outer Ring Raceway, Contact Angle, and Outer Ring Width of Tapered Roller Bearings Conform | h | Stainless Steel | W | Pressed
Steel Cage | ZZ
ZZS | Shields
on Both
Sides | | | :
12
13
22 | Self-
Aligning Ball
Bearings | 00
01
02 | 10
12
15 | В | Standard
Contact Angle
of 40° | | to ISO 355 | | Used in Rings,
Rolling Elements | | | DU | Contact
Rubber Seal | | | :
NU10
NJ 2
N 3 | Cylindrical
Roller
Bearings | /22 | 17
22 | С | Standard
Contact Angle
of 15° | (F | or High Capacity)
earings | | | Т | Synthetic
Resin Cage | DDU | on One Side
Only
Contact | | | NN 30
: | Needle | /28 | 28
32 | | 0115 | С | | | | V | Without
Cage | | Rubber
Seals on
Both Sides | | | NA49
NA69
: | Roller
Bearings | 04(3)
05 | 20
25 | | Tapered
Roller
Bearings /
Contact Angle | CA | Spherical Roller
Bearings | | | | | V | Non-
Contact
Rubber Seal
on One Side | | | 320
322
323 | Tapered
Roller
Bearings
(2) | 06 | 30 | С | Less than 17° Contact Angle | EA |) | | | | | VV | Only
Non- | | | :
230
222
223 | Spherical
Roller
Bearings | 92
96 | 440
460
480 | D | about 20° Contact Angle | E | Cylindrical Roller
Bearings
Spherical Thrust | | | | | | Contact
Rubber
Seals on
Both Sides | | | 511
512 | Thrust Ball
Bearing with
Flat Seats | /500
/530
/560 | 500
530
560 | J | about 28° | EA | Roller Bearings Angular Contact | | | | | | | | | 513
:
292 | Thrust | /2 360 | 2 360 | | | | Ball Bearings | | | | | | | | | 293
294
: | Spherical
Roller
Bearings | /2 500 | 2 500 | | | | | | | | | | | | | HR(4) | High Capacity
Tapered Rolle
Bearings, and | r | | | | | | | | | | | | | | | Symbols | and Nu | mbers Confe | orm to | JIS(5) | NSK Symbol | | | | | | NSK Symbol | | | | | | | | | Marked on Bea | rings | | | | | t Marked
Bearings | Notes (1) Bearing Series Symbols conform to Table 6.5. (2) For basic numbers of tapered roller bearings in ISO's new series, refer to Page C182. (3) For Bearing Bore Numbers 04 through 96, five times the bore number gives the bore size (mm) (except doubledirection thrust ball bearings). (4) HR is prefix to bearing series symbols and it is NSK's original prefix. #### **Bearing Numbers** | Αι | uxiliary Syn | nbols | | | | | | | | | | | | | |--------|--|--------|---------------------------------|---------------|---|--|-----------|--------------------------------|------------------------|--|------------|---|------------|-------------------------------| | Sym | | | ngement
/mbol | | | Clearance Symbol | | ance Class
Symbol | Sp | Special
ecification | | er or Sleeve
Symbol | Grea | se Symbol | | | ol for Design
f Rings | 0, | 7111001 | | 110 | | , | Jyllibol . | | Symbol | | Jylliboi | | | | Symbol | Meaning | Symbol | Meaning | Symbol | Mea | aning (radial clearance) | Symbol | Meaning | Symbol | Meaning | Symbol | Meaning | Symbol | Meaning | | K | Tapered
Bore of
Inner Ring
(Taper 1:12) | DB | Back-to-Back
Arrangement | C1
C2 | Brgs. | Clearance Less
than C2
Clearance Less
than CN | | ISO Normal | tre | arings
ated for
nensional
abilization | + K | Bearings
with Outer
Ring
Spacers | AS2 | SHELL
ALVANIA
GREASE S2 | | K30 | Tapered | DF | Face-to-
Face
Arrangement | Omitted
C3 | IE CN Clearance Clearance Greater than CN Clearance Greater than C3 | | P6
P6X | ISO Class 6 | X26 | Working
Temperature | +L | Bearings
with Inner
Ring
Spacers | ENS
NS7 | ENS GREASE | | | Bore of
Inner Ring
(Taper 1:30) | DT | Tandem
Arrangement | C4
C5 | For | than C3 Clearance Greater than C4 | | | | Lower than
150 °C | +KL | Bearings
with Both | | | | E | Notebook and | | | CC1 | able
gs. | Clearance Less
than CC2
Clearance Less | . P5 | ISO
Class 5 | X28 | Working
Temperature
Lower than
200 °C | | Inner and
Outer Ring
Spacers | PS2 | MULTEMP PS
No. 2 | | E | Notch or
Lubricating
Groove in
Ring | | | CC2
CC | erchangeable
Roller Brgs. | than CC
Normal Clearance | P4 | ISO Class 4 | X29 | Working
Temperature
Lower than | н | Adapter
Designation | | | | | | | | | ᇢ | Clearance Greater
than CC | P2 | ISO Class 2 | | 250 °C | АН | Withdrawal | | | | E4 | Lubricating
Groove in
Outside | | | | For Non-
Cylindri | Clearance Greater
than CC3
Clearance Greater
than CC4 | Tap | ABMA(7) Tapered roller bearing | 1 | Spherical \ | HJ | Sleeve
Designation
Thrust | | | | | Surface and
Holes in
Outer Ring | | | MC1 | gs. | Clearance Less than MC2 | | Class 4 | (| Roller
Bearings / | 110 | Collar
Designation | | | | N | Snap Ring
Groove in | | | | -Small
Ball Brgs. | Clearance Less than
MC3
Normal Clearance | PN2 | Class 2 | S11 | Dimensional
Stabilizing
Treatment
Working | | | | | | | Outer Ring | | | MC4 | For Extra-
Miniature | Clearance Greater
than MC3
Clearance Greater | | | | Temperature
Lower than
200° C | | | | | | NR | Snap Ring
Groove with
Snap Ring | | | MC5
MC6 | and N | than MC4 Clearance Greater than MC5 | PN3 | Class 3 | | | | | | | | | in Outer
Ring | | | | Clea
Ball
Mot | rance in Deep Groove
Bearings for Electric
ors | PN0 | Class 0 | | | | | | | | | | | | | | rance in Cylindrical
er Bearings for Electric
ors | - PN00 | Class 00 | | | | | | | | | | | | | reloa
Iall Be | d of Angular Contact) | : | | | | | | | | | | | | | EL
L
M | Ligl | ra light Preload
nt Preload
dium Preload | | | | | | | | | | | H Heavy Preload | | | | | | | | | | | | | | | S | rtially the
ame as
JIS(5) | | ame as
IIS(5) | NSK S | ymb | Partially the same as JIS(5)/
BAS(6) | San | ne as JIS(5) | | NSK Syn | nbol, Pa | rtially the same | as JIS(| 5) | | | | | | In P | rinci | ple, Marked on Bearing | ıs | | Not Marked on Bearings | | | | rings | | (5) JIS: Japanese Industrial Standards. (6) BAS: The Japan Bearing Industrial Association Standard. (7) ABMA: The American Bearing Manufacturers Association. A 122 A 123 | 7. BE | EARING TOLERANCES | | |-------|-------------------------------|-------| | 7.1 | Bearing Tolerance Standards | A 126 | | 7.2 | Selection of Accuracy Classes | A 15 | ### 7. BEARING TOLERANCES #### 7.1 Bearing Tolerance Standards The tolerances for the boundary dimensions and running accuracy of rolling bearings are specified by ISO 492/199/582 (Accuracies of Rolling Bearings). Tolerances are specified for the following items: Regarding bearing accuracy classes, besides ISO normal accuracy, as the accuracy improves there are Class 6X (for tapered roller bearings), Class 6, Class 5, Class 4, and Class 2, with Class 2 being the highest in ISO. The applicable accuracy classes for each bearing type and the correspondence of these classes are shown in Table 7.1. Table 7. 1 Bearing Types and Tolerance Classes | | Ве | aring ⁷ | Гуреѕ | | Applica | able Tolerance (| Classes | | Applicable
Tables | Reference
Pages | |----------------------|--------------------------------|--|----------------------------|----------------------|--------------------------------|-----------------------|-----------------------|----------------------|----------------------|--------------------| | | Deep Groo | ve Bal | l Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | | | | | Angular C | ontact | Ball Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | | | | | Self-Aligning Ball Bearings | | l Bearings | Normal | Class 6
equivalent | Class 5
equivalent | _ | _ | Table | A128 | | | Cylindrical Roller Bearings | | r Bearings | Normal | Class 6 | Class 5 | Class 4 | Class 2 | 7.2 | to A131 | | | | Needle Roller Bearings
(solid type) | | Normal | Tormal Class 6 Class 5 Class 4 | | _ | | | | | | | Spherical Roller Bearings | | Normal | Normal Class 6 Class 5 — | | _ | | | | | | Tapered | | Metric
Design | Normal
Class 6X | _ | Class 5 | Class 4 | _ | Table
7.3 | A132
to A135 | | | Roller
Bearings Inch Design | | ANSI/ABMA
CLASS 4 | ANSI/ABMA
CLASS 2 | ANSI/ABMA
CLASS 3 | ANSI/ABMA
CLASS 0 | ANSI/ABMA
CLASS 00 | Table
7.4 | A136
and A137 | | | | Magneto E | Bearing | ıs | Normal | Class 6 | Class 5 | _ | _ | Table
7.5 | A138
and A139 | | | Thrust Bal | I Beari | ngs | Normal | Class 6 | Class 5 | Class 4 | _ | Table
7.6 | A140
to A142 | | | Tapered R | oller T | hrust Bearings | Normal | _ | _ | _ | _ | Table
7.7 | A143
and A144 | | | Thrust Sp | herical | Roller Bearings | Normal | _ | _ | _ | _ | Table
7.8 | A145 | | | | JIS(1 |) | Class 0 | Class 6 | Class 5 | Class 4 | Class 2 | _ | | | ndard | DIN(²) | | (2) | P0 | P6 | P5 | P4 | P2 | _ | _ | | ent sta | | | Ball
Bearings | ABEC 1 | ABEC 3 | ABEC 5
(CLASS 5P) | ABEC 7
(CLASS 7P) | ABEC 9
(CLASS 9P) | Table
7.2 | A128
to A131 | | Equivalent standards | ANSI
ABM | | Roller
Bearings | RBEC 1 | RBEC 3 | RBEC 5 | _ | _ | Table 7.9 | (A146
and A147) | | ш | ABMA(3) | | Tapered Roller
Bearings | CLASS 4 | CLASS 2 | CLASS 3 | CLASS 0 | CLASS 00 | Table 7.4 | (A136
and A137) | Notes (1) JIS: Japanese Industrial Standards (2) DIN: Deutsch Industrie Norm (3) ANSI/ABMA: The American Bearing Manufacturers Association The permissible limit of chamfer dimensions shall conform to Table 7.10 (Pages A148 and A149), and the tolerances and permissible tapered bore diameters shall conform to Table 7.11 (Pages A150 and A151). (Reference) Rough definitions of the items listed for Running Accuracy and their measuring methods are shown in Fig. 7.1, and they are described in detail in ISO 5593 (Rolling Bearings-Vocabulary) and JIS B 1515 (Rolling Bearings-Tolerances) and elsewhere. Stops (at two points) Supplementary Table | Running
Accuracy | Inner
Ring | Outer
Ring | Dial
Gauge | |---------------------|---|---------------|----------------| | K_{ia} | Rotating | Stationary | А | | K_{ea} | Stationary | Rotating | A | | S_{ia} | Rotating | Stationary | B ₁ | | $S_{ m ea}$ | Stationary | Rotating | B_2 | | S_d | Rotating | Stationary | С | | S_D | _ | Rotating | D | | S_i , $S_{ m e}$ | Only the shaft or central wash rotated. | | E | Fig. 7.1 Measuring Methods for Running Accuracy (summarized) ### Symbols for Boundary Dimensions and Running Accuracy Brg bore dia., nominal Measuring Weight Deviation of a single bore dia. Single plane mean bore dia. deviation Bore dia. Variation in a single radial plane Mean bore dia. Variation BInner ring width, nominal Deviation of a single inner ring width Inner ring width variation Radial runout of assembles brg inner ring inner ring reference face (backface, where applicable) runout with bore Assembled brg inner ring face (back face) runout with raceway S_i , S_e Raceway to backface thickness variation of thrust brg Brg width, nominal Deviation of the actual brg width Brg outside dia.. nominal Deviation of a single outside dia. Δ_{Dmp} Single plane mean outside dia. Deviation Outside dia. Variation in a single radial plane Mean outside dia. Variation Outer ring width, nominal Deviation of a single outer ring width Outer ring width variation Radial runout of assembled brg outer ring Variation of brg outside surface generatrix inclination with outer ring reference face (backface) Assembled brg outer ring face (backface) runout with raceway Table 7. 2 Tolerances for Radial Bearings Table 7. 2. 1 Tolerances for Inner Rings and | Nominal | Bore Diameter | | | | | Δ | dmp (2) | | | | | | Δ | ds (2) | | |-------------------------|--------------------------|------------------|------------------------------|------------------|--------------------------|-------------|--------------------------|-------------|--------------------------|------------------|----------------------|------------------|------------------------------------|------------------|----------------------| | | d
(mm) | N | Iormal | CI | ass 6 | C | lass 5 | C | lass 4 | C | Class 2 | Dia
S | ass 4
meter
eries
2, 3, 4 | С | lass 2 | | over | incl. | high low | | high | low | | 0.6(¹)
2.5
10 | 2.5
10
18 | 0
0
0 | - 8
- 8
- 8 | 0
0
0 | - 7
- 7
- 7 | 0
0
0 | - 5
- 5
- 5 | 0
0
0 | - 4
- 4
- 4 | 0
0
0 | -2.5
-2.5
-2.5 | 0
0
0 | - 4
- 4
- 4 | 0
0
0 | -2.5
-2.5
-2.5 | | 18
30
50 | 30
50
80 | 0
0
0 | - 10
- 12
- 15 | 0
0
0 | - 8
-10
-12 | 0
0
0 | - 6
- 8
- 9 | 0
0
0 | - 5
- 6
- 7 | 0 0 0 | -2.5
-2.5
-4 | 0
0
0 | - 5
- 6
- 7 | 0
0
0 | -2.5
-2.5
-4 | | 80
120
150
180 | 120
150
180
250 | 0
0
0
0 | - 20
- 25
- 25
- 30 | 0
0
0
0 | -15
-18
-18
-22 | 0
0
0 | -10
-13
-13
-15 | 0
0
0 | - 8
-10
-10
-12 | 0
0
0
0 | -5
-7
-7
-8 | 0
0
0
0 | - 8
-10
-10
-12 | 0
0
0
0 | -5
-7
-7
-8 | | 250
315
400 | 315
400
500 | 0
0
0 | - 35
- 40
- 45 | 0
0
0 | -25
-30
-35 | 0 0 - | -18
-23
- | _ | = | -
 -
 - | | = | _
_
_ | -
 - | | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 0 - | -40
-
- | _
_ | | _ | = | -
 -
 - | | = | _
_
_ | -
 - | | | 1 000
1 250
1 600 | 1 250
1 600
2 000 | 0
0
0 | -125
-160
-200 | _
_
_ | | _
_
_ | | | = |
 -
 - | _
_
_ | _
_
_ | _
_
_ | -
 - | = | | | | | | Δ_{E} | $_{ m Ss}$ (or $\it \Delta$ | Cs)(3) | | | | | | | V_{\perp} | Bs (or V | _{Cs})
| | |------------------|----------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|------------------|------------------------------|-------------|------------------------------|----------------------|----------------------|-------------------|-------------------|--------------------| | | | Single | Bearing | | | | Co | mbined | d Bearing | S (4) | | Inner Ri
Outer Ri | ng (or
ng) (3) | | Inner Rin | ıg | | | ormal
lass 6 | | lass 5
lass 4 | CI | lass 2 | | ormal
lass 6 | C | lass 5
lass 4 | C | lass 2 | Normal | Class
6 | Class
5 | Class
4 | Clas | | high | low | max. | max. | max. | max. | max | | 0
0
0 | - 40
- 120
- 120 | 0
0
0 | - 40
- 40
- 80 | 0
0
0 | - 40
- 40
- 80 | _
0
0 | -250
-250 | 0
0
0 | -250
-250
-250 | 0
0
0 | -250
-250
-250 | 12
15
20 | 12
15
20 | 5
5
5 | 2.5
2.5
2.5 | 1.5
1.5
1.5 | | 0
0
0 | - 120
- 120
- 150 | 0
0
0 | -120
-120
-150 | 0 0 0 | -120
-120
-150 | 0 0 0 | -250
-250
-380 | 0 0 0 | -250
-250
-250 | 0
0
0 | -250
-250
-250 | 20
20
25 | 20
20
25 | 5
5
6 | 2.5
3
4 | 1.5
1.5
1.5 | | 0
0
0
0 | - 200
- 250
- 250
- 300 | 0
0
0
0 | -200
-250
-250
-300 | 0
0
0
0 | -200
-250
-250
-300 | 0
0
0
0 | -380
-500
-500
-500 | 0
0
0
0 | -380
-380
-380
-500 | 0
0
0 | -380
-380
-380
-500 | 25
30
30
30 | 25
30
30
30 | 7
8
8
10 | 4
5
5
6 | 2.
2.
4
5 | | 0
0
0 | - 350
- 400
- 450 | 0 0 | -350
-400
- | <u>-</u> | | 0 0 | -500
-630
- | 0 0 | -500
-630
- | | | 35
40
50 | 35
40
45 | 13
15
— | _
_
_ | - | | 0
0
0 | - 500
- 750
-1 000 | _ | | _ | | -
 -
 - | _
_
_ | = | _
_
_ | = | _
_
_ | 60
70
80 | 50
-
- | _
_
_ | _
_
_ | - | | 0 | -1 250
-1 600
-2 000 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 100
120
140 | = | _ | _ | = | - Notes (1) 0.6mm is included in the group. (2) Applicable to bearings with cylindrical bores. - (3) Tolerance for width deviation and tolerance limits for the width variation of the outer ring should be the same bearing. Tolerances for the width variation of the outer ring of Class 5, 4, and 2 are shown in Table 7.2.2. - (4) Applicable to individual rings manufactured for combined bearings. (5) Applicable to ball bearings such as deep groove ball bearings, angular contact ball bearings, etc. #### (excluding Tapered Roller Bearings) Widths of Outer Rings | | | | | | $V_{d\mathrm{p}}$ (2) | | | | | | | | V_{dr} | _{mp} (2) | | | |----------------------|----------------------|---|----------------------|----------------------|-----------------------|----------------------|---------------------|---------------------|------------------|--------------------|----------------------|----------------------|------------------|-------------------|------------------------|--| | | Norma | l | | Class 6 | i | | ss 5 | | ss 4 | Class 2 | | C1 | Class | Class | Class | | | | neter Se | | | meter Se | | Se | neter
ries | Se | neter
ries | Diameter
Series | Normal | Class
6 | Class
5 | Class
4 | Class
2 | | | 9 | 0, 1 | 7 | | | | | | 9 | 0,1,2,3,4 | 0,1,2,3,4 | | | | | | | | | max. | | max. max. | | | | ax. | m | ax. | max. | max. | max. | max. | max. | max. | | | 10
10
10 | 8 8 8 | 6
6
6 | 9 9 9 | 7
7
7 | 5
5
5 | 5
5
5 | 4
4
4 | 4
4
4 | 3
3
3 | 2.5
2.5
2.5 | 6 6 6 | 5
5
5 | 3
3
3 | 2
2
2 | 1.5
1.5
1.5 | | | 13
15
19 | 10
12
19 | 8
9
11 | 10
13
15 | 8
10
15 | 6
8
9 | 6
8
9 | 5
6
7 | 5
6
7 | 4
5
5 | 2.5
2.5
4 | 8
9
11 | 6
8
9 | 3
4
5 | 2.5
3
3.5 | 1.5
1.5
2 | | | 25
31
31
38 | 25
31
31
38 | 15
19
19
23 | 19
23
23
28 | 19
23
23
28 | 11
14
14
17 | 10
13
13
15 | 8
10
10
12 | 8
10
10
12 | 6
8
8
9 | 5
7
7
8 | 15
19
19
23 | 11
14
14
17 | 5
7
7
8 | 4
5
5
6 | 2.5
3.5
3.5
4 | | | 44
50
56 | 44
50
56 | 26
30
34 | 31
38
44 | 31
38
44 | 19
23
26 | 18
23
— | 14
18
- | _
_
_ | _
_
_ | _
_
_ | 26
30
34 | 19
23
26 | 9
12
- | _
_
_ | _
_
_ | | | 63 | 63 | 38 | 50 | 50 | 30 | _ | - | _ | - | - | 38 | 30 | - | _ | _ | | | | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | _ | _ | - | _ | _ | - | _ | - | _ | - | _ | _ | _ | - | _ | _ | | | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Units: µm | | | | | | | | | | | | | πιο . μπ | | |----------------------|----------------------|-------------------|------------------|-----------------|---------------------|------------------|----------------------|---------------------|------------------|-----------------|-------------------------|--------------------------|--| | | | K_{ia} | | | | S_d | | | S ia (5) | | Nominal Bore Diameter | | | | Normal | Class 6 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | d (mm) | | | | max. over | incl. | | | 10 | 5 | 4 | 2.5 | 1.5 | 7 | 3 | 1.5 | 7 | 3 | 1.5 | 0.6(¹) | 2.5 | | | 10 | 6 | 4 | 2.5 | 1.5 | 7 | 3 | 1.5 | 7 | 3 | 1.5 | 2.5 | 10 | | | 10 | 7 | 4 | 2.5 | 1.5 | 7 | 3 | 1.5 | 7 | 3 | 1.5 | 10 | 18 | | | 13 | 8 | 4 | 3 | 2.5 | 8 | 4 | 1.5 | 8 | 4 | 2.5 | 18 | 30 | | | 15 | 10 | 5 | 4 | 2.5 | 8 | 4 | 1.5 | 8 | 4 | 2.5 | 30 | 50 | | | 20 | 10 | 5 | 4 | 2.5 | 8 | 5 | 1.5 | 8 | 5 | 2.5 | 50 | 80 | | | 25
30
30
40 | 13
18
18
20 | 6
8
8
10 | 5
6
6
8 | 2.5
2.5
5 | 9
10
10
11 | 5
6
6
7 | 2.5
2.5
4
5 | 9
10
10
13 | 5
7
7
8 | 2.5
2.5
5 | 80
120
150
180 | 120
150
180
250 | | | 50 | 25 | 13 | _ | _ | 13 | _ | _ | 15 | _ | _ | 250 | 315 | | | 60 | 30 | 15 | _ | _ | 15 | _ | _ | 20 | _ | _ | 315 | 400 | | | 65 | 35 | — | _ | _ | — | _ | _ | — | _ | _ | 400 | 500 | | | 70 | 40 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 500 | 630 | | | 80 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 630 | 800 | | | 90 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 800 | 1 000 | | | 100 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 000 | 1 250 | | | 120 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 250 | 1 600 | | | 140 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 1 600 | 2 000 | | Remarks 1. The cylindrical bore diameter "no-go side" tolerance limit (high) specified in this table does not necessarily apply within a distance of 1.2 times the chamfer dimension *τ* (max.) from the ring face. 2. ABMA Std 20-1996: ABEC1-RBEC1, ABEC3-RBEC3, ABEC5-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are equivalent to Classes Normal, 6, 5, 4, and 2 respectively. A 128 A 129 Table 7. 2 Tolerances for Radial Bearings Table 7. 2. 2 Tolerances | Nominal O | ıtside | | | | | Δ | <i>D</i> mp | | | | | | | I_{Ds} | | |----------------------------------|----------------------------------|-------------------|------------------------------|-------------|-------------------|-------------|-------------------|------------------|-------------------|-------------|-----------------------|-------------|----------------------------|-------------|-----------------------| | Diamete
D
(mm) | er | N | ormal | Class 6 | | CI | ass 5 | Cl | ass 4 | С | lass 2 | Dia
S | ass 4 ameter eries 2, 3, 4 | C | lass 2 | | over | incl. | high low high low | | high | low | | | | 2.5(1)
6
18 | 6
18
30 | 0
0
0 | - 8
- 8
- 9 | 0
0
0 | - 7
- 7
- 8 | 0
0
0 | - 5
- 5
- 6 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 2.5
- 2.5
- 4 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 2.5
- 2.5
- 4 | | 30
50
80 | 50
80
120 | 0
0
0 | - 11
- 13
- 15 | 0
0
0 | - 9
-11
-13 | 0
0
0 | - 7
- 9
-10 | 0
0
0 | - 6
- 7
- 8 | 0
0
0 | - 4
- 4
- 5 | 0
0
0 | - 6
- 7
- 8 | 0
0
0 | - 4
- 4
- 5 | | 120
150
180 | 150
180
250 | 0
0
0 | - 18
- 25
- 30 | 0
0
0 | -15
-18
-20 | 0
0
0 | -11
-13
-15 | 0
0
0 | - 9
-10
-11 | 0
0
0 | - 5
- 7
- 8 | 0
0
0 | - 9
-10
-11 | 0
0
0 | - 5
- 7
- 8 | | 250
315
400 | 315
400
500 | 0
0
0 | - 35
- 40
- 45 | 0
0
0 | -25
-28
-33 | 0
0
0 | -18
-20
-23 | 0
0
— | -13
-15
- | 0 0 | - 8
-10
- | 0 0 - | -13
-15
- | 0
0
— | - 8
-10
- | | 500
630
800 | 630
800
1 000 | 0
0
0 | - 50
- 75
-100 | 0
0
0 | -38
-45
-60 | 0
0
— | -28
-35
- | = | _
_
_ | _
_
_ | _
_
_ | = | _
_
_ | = | _
_
_ | | 1 000
1 250
1 600
2 000 | 1 250
1 600
2 000
2 500 | 0
0
0
0 | -125
-160
-200
-250 | _
_
_ | _
_
_ | -
-
- | _
_
_ | _
_
_
_ | _
_
_ | _
_
_ | _
_
_ | -
-
- | _
_
_ | _
_
_ | -
-
- | Notes (1) 2.5mm is included in the group. (2) Applicable only when a locating snap ring is not used. (3) Applicable to ball bearings such as deep groove ball bearings and angular contact ball bearings. (4) The tolerances for outer ring width variation of bearings of Classes Normal and 6 are shown in Table 7.2.1. Remarks 1. The outside diameter "no-go side" tolerances (low)
specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. 2. ABMA Std 20-1996; ABEC1-RBEC1, ABEC3-RBEC3-RBEC5, ABEC7-RBEC7, and ABEC9-RBEC9 are requirelest to Classes Normal and 2 respectively. are equivalent to Classes Normal, 6, 5, 4, and 2 respectively. ### (excluding Tapered Roller Bearings) for Outer Rings | | | | | | V_{Dp} (| (2) | | | | | | | | V | _{Dmp} (2) |) | | | |------------------|-----------------|----------------|--------------------|----------------|----------------|----------------|--------------------|----------------|----------------|---------------|---------------|--------------------|----------------|----------------|--------------------|------------------|------------------|--| | | Nor | mal | | | Cla | ss 6 | | Cla | ss 5 | Cla | ss 4 | Class 2 | | | | | | | | | Open Type | 9 | Shielded
Sealed | 0 | pen Typ | ре | Shielded
Sealed | Open | Туре | Open | Туре | Open Type | Normal | Class | Class | Class | Class | | | | Diamete | Series | | ı | Diamete | er Serie | S | Dian
Se | neter
ries | Dian
Se | neter
ries | Diameter
Series | Normai | 6 | 5 | 4 | 2 | | | 9 | 0, 1 | 2, 3, 4 | 2, 3, 4 | 9 | 0, 1 | 2, 3, 4 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 9 | 0,1,2,3,4 | 0,1,2,3,4 | | | | | | | | | ma | X. | | | m | ax. | | m | ax. | m | ax. | max. | max. | max. | max. | max. | max. | | | 10
10
12 | 8
8
9 | 6
6
7 | 10
10
12 | 9
9
10 | 7
7
8 | 5
5
6 | 9
9
10 | 5
5
6 | 4
4
5 | 4
4
5 | 3
3
4 | 2.5
2.5
4 | 6
6
7 | 5
5
6 | 3
3
3 | 2
2
2.5 | 1.5
1.5
2 | | | 14
16
19 | 11
13
19 | 8
10
11 | 16
20
26 | 11
14
16 | 9
11
16 | 7
8
10 | 13
16
20 | 7
9
10 | 5
7
8 | 6
7
8 | 5
5
6 | 4
4
5 | 8
10
11 | 7
8
10 | 4
5
5 | 3
3.5
4 | 2
2
2.5 | | | 23
31
38 | 23
31
38 | 14
19
23 | 30
38
- | 19
23
25 | 19
23
25 | 11
14
15 | 25
30
— | 11
13
15 | 8
10
11 | 9
10
11 | 7
8
8 | 5
7
8 | 14
19
23 | 11
14
15 | 6
7
8 | 5
5
6 | 2.5
3.5
4 | | | 44
50
56 | 44
50
56 | 26
30
34 | _
_
_ | 31
35
41 | 31
35
41 | 19
21
25 | = | 18
20
23 | 14
15
17 | 13
15
— | 10
11
— | 8
10
— | 26
30
34 | 19
21
25 | 9
10
12 | 7
8
— | 4
5
- | | | 63
94
125 | 63
94
125 | 38
55
75 | _
_
_ | 48
56
75 | 48
56
75 | 29
34
45 | = | 28
35
— | 21
26
— | _
_
_ | _
_
_ | _
_
_ | 38
55
75 | 29
34
45 | 14
18
— | _
_
_ | _
_
_ | | | _
_
_
_ | -
 -
 - | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | _
_
_ | -
-
- | -
-
- | _
_
_ | _
_
_ | _
_
_
_ | -
-
- | _
_
_ | _
_
_ | _
_
_
_ | _
_
_
_ | | | - 1 | Inits | ٠ | 11 | r | |-----|-------|---|----|---| | Ullis: μm | | | | | | | | | | | | | | | |---|-------------|--------------|-------------|-------------|-------------|------------------|-------------|------------------|------------------|------------------|-------------|-------------------|-------------|--------------------------| | Nominal Outside | | V_{Cs} (4) | | | S ea (3) | | | S_D | | | | K_{ea} | | | | Diameter D (mm) | Class
2 | Class
4 | Class
5 | Class
6 | Normal | | over incl. | max. | 2.5 (¹) 6 | 1.5 | 2.5 | 5 | 1.5 | 5 | 8 | 1.5 | 4 | 8 | 1.5 | 3 | 5 5 6 | 8 | 15 | | 6 18 | 1.5 | 2.5 | 5 | 1.5 | 5 | 8 | 1.5 | 4 | 8 | 1.5 | 3 | | 8 | 15 | | 18 30 | 1.5 | 2.5 | 5 | 2.5 | 5 | 8 | 1.5 | 4 | 8 | 2.5 | 4 | | 9 | 15 | | 30 50 | 1.5 | 2.5 | 5 | 2.5 | 5 | 8 | 1.5 | 4 | 8 | 2.5 | 5 | 7 | 10 | 20 | | 50 80 | 1.5 | 3 | 6 | 4 | 5 | 10 | 1.5 | 4 | 8 | 4 | 5 | 8 | 13 | 25 | | 80 120 | 2.5 | 4 | 8 | 5 | 6 | 11 | 2.5 | 5 | 9 | 5 | 6 | 10 | 18 | 35 | | 120 150 | 2.5 | 5 | 8 | 5 | 7 | 13 | 2.5 | 5 | 10 | 5 | 7 | 11 | 20 | 40 | | 150 180 | 2.5 | 5 | 8 | 5 | 8 | 14 | 2.5 | 5 | 10 | 5 | 8 | 13 | 23 | 45 | | 180 250 | 4 | 7 | 10 | 7 | 10 | 15 | 4 | 7 | 11 | 7 | 10 | 15 | 25 | 50 | | 250 315 | 5 | 7 | 11 | 7 | 10 | 18 | 5 | 8 | 13 | 7 | 11 | 18 | 30 | 60 | | 315 400 | 7 | 8 | 13 | 8 | 13 | 20 | 7 | 10 | 13 | 8 | 13 | 20 | 35 | 70 | | 400 500 | — | — | 15 | — | — | 23 | — | — | 15 | — | — | 23 | 40 | 80 | | 500 630 | _ | _ | 18 | _ | _ | 25 | _ | _ | 18 | _ | _ | 25 | 50 | 100 | | 630 800 | _ | _ | 20 | _ | _ | 30 | _ | _ | 20 | _ | _ | 30 | 60 | 120 | | 800 1 000 | _ | _ | — | _ | _ | — | _ | _ | — | _ | _ | — | 75 | 140 | | 1 000 1 250 1 250 1 600 1 600 2 000 2 000 2 500 | -
-
- | -
-
- | -
-
- | -
-
- | -
-
- | _
_
_
_ | -
-
- | _
_
_
_ | _
_
_
_ | -
-
-
- | _
_
_ | _
_
_ | -
-
- | 160
190
220
250 | A 130 A 131 Table 7. 3 Tolerances for Metric Design Tapered Roller Bearings Table 7. 3. 1 Tolerances for Inner Ring Bore Diameter and Running Accuracy | Nomina
Diam | | | | Δ | dmp | | | | 1 _{ds} | | V | <i>d</i> p | | | V_{a} | <i>l</i> mp | | |-------------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|--------------------|----------------|---------------|--------------|--------------------|---------------|--------------|-------------| | (m | | | ormal
ss 6X | | ass 6
ass 5 | Cl | Class 4 | | ass 4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | | over | incl. | high | low | high | low | high | high low | | low | max. | 10
18
30 | 18
30
50 | 0
0
0 | - 8
-10
-12 | 0
0
0 | - 7
- 8
-10 | 0
0
0 | - 5
- 6
- 8 | 0
0
0 | - 5
- 6
- 8 | 8
10
12 | 7
8
10 | 5
6
8 | 4
5
6 | 6
8
9 | 5
6
8 | 5
5
5 | 4
4
5 | | 50
80
120 | 80
120
180 | 0
0
0 | -15
-20
-25 | 0
0
0 | -12
-15
-18 | 0
0
0 | - 9
-10
-13 | 0
0
0 | - 9
-10
-13 | 15
20
25 | 12
15
18 | 9
11
14 | 7
8
10 | 11
15
19 | 9
11
14 | 6
8
9 | 5
5
7 | | 180
250
315 | 250
315
400 | 0
0
0 | -30
-35
-40 | 0
0
0 | -22
-25
-30 | 0
0
0 | -15
-18
-23 | 0
0
0 | -15
-18
-23 | 30
35
40 | 22
-
- | 17
—
— | 11
-
- | 23
26
30 | 16
-
- | 11
-
- | 8
-
- | | 400
500
630 | 500
630
800 | 0
0
0 | -45
-50
-75 | 0
0
0 | -35
-40
-60 | 0
_
_ | -27
-
- | 0
_
_ | -27
-
- | _
_
_ | _
_
_ | _
_
_ | -
-
- | _
_
_ | 1 1 1 | _
_
_ | _
_
_ | | _ | | | | | | |---|---|---|----|---|--| | D | m | 2 | rk | 0 | | | | | | | | | The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Some of these tolerances conform to the NSK Standard. Table 7. 3. 2 Tolerances for Outer Ring Outside Diameter and Running Accuracy | | nal Outside
iameter | | | Δ | Dmp | | | | $1_{D\mathrm{s}}$ | | V | Dр | | | V_I | Omp | | |-------------------|------------------------|-------------|----------------------|-------------|-------------------|-------------|-------------------|-------------|-------------------|--------------------|----------------|----------------|----------------|--------------------|----------------|----------------|--------------| | | D
(mm) | | ormal
ass 6X | | ass 6
ass 5 | Cl | Class 4 | | ass 4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | Normal
Class 6X | Class
6 | Class
5 | Class
4 | | over | incl. | high | low | high | low | high | high low | | low | max. | 18
30
50 | 50 | 0
0
0 | - 9
- 11
- 13 | 0
0
0 | - 8
- 9
-11 | 0
0
0 | - 6
- 7
- 9 | 0
0
0 | - 6
- 7
- 9 | 9
11
13 | 8
9
11 | 6
7
8 | 5
5
7 | 7
8
10 | 6
7
8 | 5
5
6 | 4
5
5 | | 120
150 | 150 | 0
0
0 | - 15
- 18
- 25 | 0
0
0 | -13
-15
-18 | 0
0
0 | -10
-11
-13 | 0
0
0 | -10
-11
-13 | 15
18
25 | 13
15
18 | 10
11
14 | 8
8
10 | 11
14
19 | 10
11
14 | 7
8
9 | 5
6
7 | | 180
250
315 | 315 | 0
0
0 | - 30
- 35
- 40 | 0
0
0 | -20
-25
-28 | 0
0
0 | -15
-18
-20 | 0
0
0 | -15
-18
-20 | 30
35
40 | 20
25
28 | 15
19
22 | 11
14
15 | 23
26
30 | 15
19
21 | 10
13
14 | 8
9
10 | | 400
500
630 | 630 | 0
0
0 | - 45
- 50
- 75 | 0
0
0 | -33
-38
-45 | 0
0
— | -23
-28
- | 0
0
— | -23
-28
- | 45
50
— | _
_
_ | | _
_
_ | 34
38
- | _
_
_ | _
_
_ | _
_
_ | | 800 | 1 000 | 0 | -100 | 0 | -60 | _ | | | - | _ | _ | _ | _ | _ | _ | _ | | | Kema | irks | |------|------| |------|------| ^{1.} The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. | | | | | | Units : µ | ım | |----------|-------|-------|-------|-------|-----------|-------| | | K | ia | | S | d | S ia | | Normal | Class | Class | Class | Class | Class | Class | | Class 6X | 6 | 5 | 4 | 5 | 4 | 4 | | max. | 15 | 7 | 3.5 | 2.5 | 7 | 3 | 3 | | 18 | 8 | 4 | 3 | 8 | 4 | 4 | | 20 | 10 | 5 | 4 | 8 | 4
 4 | | 25 | 10 | 5 | 4 | 8 | 5 | 4 | | 30 | 13 | 6 | 5 | 9 | 5 | 5 | | 35 | 18 | 8 | 6 | 10 | 6 | 7 | | 50 | 20 | 10 | 8 | 11 | 7 | 8 | | 60 | 25 | 13 | 10 | 13 | 8 | 10 | | 70 | 30 | 15 | 12 | 15 | 10 | 14 | | 70 | 35 | 18 | 14 | 19 | 13 | 17 | | 85 | 40 | 20 | - | 22 | - | - | | 100 | 45 | 22 | - | 27 | - | - | | ì | Inits | | | | |---|--------|---|---|--| | ı | IIIIIS | ш | m | | | Oillis . μm | | | | | | | | | | | | | | |-------------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--|--| | | K | ea | | S | D | S ea | | | | | | | | | Normal | Class | Class | Class | Class | Class | Class | | | | | | | | | Class 6X | 6 | 5 | 4 | 5 | 4 | 4 | | | | | | | | | max. | | | | | | | | 18 | 9 | 6 | 4 | 8 | 4 | 5 | | | | | | | | | 20 | 10 | 7 | 5 | 8 | 4 | 5 | | | | | | | | | 25 | 13 | 8 | 5 | 8 | 4 | 5 | | | | | | | | | 35 | 18 | 10 | 6 | 9 | 5 | 6 | | | | | | | | | 40 | 20 | 11 | 7 | 10 | 5 | 7 | | | | | | | | | 45 | 23 | 13 | 8 | 10 | 5 | 8 | | | | | | | | | 50 | 25 | 15 | 10 | 11 | 7 | 10 | | | | | | | | | 60 | 30 | 18 | 11 | 13 | 8 | 10 | | | | | | | | | 70 | 35 | 20 | 13 | 13 | 10 | 13 | | | | | | | | | 80 40 | | 23 | 15 | 15 | 11 | 15 | | | | | | | | | 100 50 | | 25 | 18 | 18 | 13 | 18 | | | | | | | | | 120 60 | | 30 | — | 20 | — | — | | | | | | | | | 120 | 75 | 35 | _ | 23 | _ | | | | | | | | | ^{2.} Some of these tolerances conform to the NSK Standard. Table 7. 3 Tolerances for Metric Design Table 7. 3. 3 Tolerances for Width, Overall Bearing Width, | Nomina
Diam | | | | 4 | 1 _{Bs} | | | | | 4 | ∆ _{C s} | | | | | Δ_T | s | | | |-------------------|-------------------|-------------|----------------------|-------------|-------------------|-------------|----------------------|-------------|----------------------|-------------|----------------------|-------------|----------------------|----------------------|----------------------|----------------------|-------------|----------------------|----------------------| | (m | | | ormal
ass 6 | Cla | ıss 6X | | ass 5
ass 4 | | ormal
ass 6 | Cl | ass 6X | | lass 5
lass 4 | | rmal
ass 6 | Class | 6X | | ss 5
ss 4 | | over | incl. | high | low | 10
18
30 | 18
30
50 | 0
0
0 | -120
-120
-120 | 0
0
0 | -50
-50
-50 | 0
0
0 | -200
-200
-240 | 0
0
0 | -120
-120
-120 | 0
0
0 | -100
-100
-100 | 0
0
0 | -200
-200
-240 | +200
+200
+200 | 0
0
0 | +100
+100
+100 | 0
0
0 | +200
+200
+200 | -200
-200
-200 | | 50
80
120 | 80
120
180 | 0
0
0 | -150
-200
-250 | 0
0
0 | -50
-50
-50 | 0
0
0 | -300
-400
-500 | 0
0
0 | -150
-200
-250 | 0
0
0 | -100
-100
-100 | 0
0
0 | -300
-400
-500 | +200
+200
+350 | 0
-200
-250 | +100
+100
+150 | 0
0
0 | +200
+200
+350 | -200
-200
-250 | | 180
250
315 | 250
315
400 | 0
0
0 | -300
-350
-400 | 0 0 0 | -50
-50
-50 | 0 0 0 | -600
-700
-800 | 0 0 0 | -300
-350
-400 | 0 0 0 | -100
-100
-100 | 0
0
0 | -600
-700
-800 | +350
+350
+400 | -250
-250
-400 | +150
+200
+200 | 0
0
0 | +350
+350
+400 | -250
-250
-400 | | 400
500
630 | 500
630
800 | 0
0
0 | -450
-500
-750 | -
-
- | _
_
_ | 0
0
0 | -800
-800
-800 | 0
0
0 | -450
-500
-750 | _
_
_ | _
_
_ | 0
0
0 | -800
-800
-800 | +400
+500
+600 | -400
-500
-600 | | _
_
_ | +400
+500
+600 | -400
-500
-600 | **Remarks** The effective width of an inner ring with rollers T_1 is defined as the overall bearing width of an inner ring with rollers combined with a master outer ring. The effective width of an outer ring T_2 is defined as the overall bearing width of an outer ring combined with a master inner ring with rollers. **Tapered Roller Bearings** and Combined Bearing Width Units : $\mu\,m$ | | R | | with Roller | S | Outer Ri | | ve Width D | eviation | $\Delta_{B2\mathrm{s}}$ $\Delta_{B4\mathrm{s}}$, $\Delta_{C4\mathrm{s}}$ | | | | | nal Bore
meter | |---|----------------------|----------------------|----------------------|-------------|----------------------|----------------------|----------------------|-------------|---|--------------------------|---------------------------|---------------------------|-------------------|-------------------| | | Nor | mal | Class | s 6X | Nor | mal | Class | s 6X | All classes
row be | of double-
earings | All classes
bear | of four-row
ings | | d
nm) | | | high | low | over | incl. | | _ | +100
+100
+100 | 0
0
0 | + 50
+ 50
+ 50 | 0
0
0 | +100
+100
+100 | 0
0
0 | + 50
+ 50
+ 50 | 0
0
0 | + 200
+ 200
+ 200 | - 200
- 200
- 200 | _
_
_ | -
-
- | 10
18
30 | 18
30
50 | | | +100
+100
+150 | 0
-100
-150 | + 50
+ 50
+ 50 | 0
0
0 | +100
+100
+200 | 0
-100
-100 | + 50
+ 50
+100 | 0
0
0 | + 300
+ 300
+ 400 | - 300
- 300
- 400 | + 300
+ 400
+ 500 | - 300
- 400
- 500 | 50
80
120 | 80
120
180 | | | +150
+150
+200 | -150
-150
-200 | + 50
+100
+100 | 0
0
0 | +200
+200
+200 | -100
-100
-200 | +100
+100
+100 | 0
0
0 | + 450
+ 550
+ 600 | - 450
- 550
- 600 | + 600
+ 700
+ 800 | - 600
- 700
- 800 | 180
250
315 | 250
315
400 | | _ | -
-
- | _
_
_ | -
-
- | = | -
-
- | -
-
- | -
-
- | = | + 700
+ 800
+1 200 | - 700
- 800
-1 200 | + 900
+1 000
+1 500 | - 900
-1 000
-1 500 | 400
500
630 | 500
630
800 | #### Table 7. 4 Tolerances for Inch Design Tapered Roller Bearings (Refer to page A126 Table 7. 1 for the tolerance class "CLASS ** " that is the tolerance classes of ANSI/ABMA.) Table 7. 4. 1 Tolerances for Inner Ring Bore Diameter Units: µm | | Nominal Bo | 1 | | | | Δ | ds | | | |--|--|--------------------------------------|-------------------------------|------------------------------|-------------|--------------------------|------------------|------------------|------------------| | over | | incl. | | CLAS | S 4, 2 | CLAS | S 3, 0 | CLASS 00 | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | high | low | | | 3.0000
10.5000 | 76.200
266.700
304.800 | 3.0000
10.5000
12.0000 | + 13
+ 25
+ 25 | 0
0
0 | +13
+13
+13 | 0
0
0 | +8
+8
- | 0
0
— | | 304.800
609.600
914.400
1 219.200 | 12.0000
24.0000
36.0000
48.0000 | 609.600
914.400
1 219.200
— | 24.0000
36.0000
48.0000 | + 51
+ 76
+102
+127 | 0
0
0 | +25
+38
+51
+76 | 0
0
0
0 | _
_
_
_ | _
_
_
_ | Table 7. 4. 2 Tolerances for Outer Ring Outside Diameter | | Nominal Outs I | side Diameter | | | | Δ | Ds | | | |---------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|-------------|-------------------|-------------|---------------|-------------| | over | | incl. | | CLAS | S 4, 2 | CLAS | S 3, 0 | CLASS 00 | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | high | low | | _
266.700
304.800 | _
10.5000
12.0000 | 266.700
304.800
609.600 | 10.5000
12.0000
24.0000 | + 25
+ 25
+ 51 | 0
0
0 | +13
+13
+25 | 0
0
0 | +8
+8
- | 0
0
— | | 609.600
914.400
1 219.200 | 24.0000
36.0000
48.0000 | 914.400
1 219.200
— | 36.0000
48.0000 | + 76
+102
+127 | 0
0
0 | +38
+51
+76 | 0
0
0 | _
_
_ | _
_
_ | and Radial Runout of Inner and Outer Rings Units: µm | _ | | | K_{ia} , K_{ea} | | | |---|----------------|----------------|---------------------|-------------|-------------| | | CLASS 4 | CLASS 2 | CLASS 3 | CLASS 0 | CLASS 00 | | Ξ | max. | max. | max. | max. | max. | | | 51
51
51 | 38
38
38 | 8
8
18 | 4
4
— | 2
2
— | | | 76
76
76 | 51
-
- | 51
76
76 | _
_
_ | -
-
- | #### Table 7. 4. 3 Tolerances for | | | re Diameter d | | | | | | Δ | Ts | | | | | |--------------------|--------------------|--------------------|-------------------|--------------|--------------|--------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------| | OV | er | ir | cl. | CL | ASS 4 | CLA | SS 2 | D≦508.0 | | SS 3 | .000 (mm) | CLAS | S 0, 00 | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | | 101.600 | _
4.0000 | 101.600
304.800 | 4.0000
12.0000 | +203
+356 | 0
-254 | +203
+203 | 0 | +203
+203 | -203
-203 | +203
+203 | -203
-203 | +203
+203 | -203
-203 | | 304.800
609.600 | 12.0000
24.0000 | 609.600 | 24.0000
— | +381
+381 | -381
-381 | +381 | -381
- | +203
+381 | -203
-381 | +381
+381 | -381
-381 | _ | = | #### **Overall Width and Combined Width** Units: µm | _ | | | | | | | | | | | UIII | ιs . μm | |---|--------------|--------------|--------------|---|--------------|---------------|--------------|--------------|--------------|--------------|------------------|---| | | | | | Dou | | arings (KBE T | ype) | | | | (KV | v Bearings
Type)
, Δ_{C4s} | | _ | CLA | SS 4 | CLAS | CLASS 2 $\frac{\text{CLASS 3}}{D \le 508.000 \text{ (mm)}} \frac{D > 508.000 \text{ (mm)}}{D > 508.000 \text{ (mm)}}$ | | | | | | | | SS 4, 3 | | | high |
low | high | low | high low | | high | low | high | low | high | low | | | +406
+711 | 0
-508 | +406
+406 | 0
-203 | +406
+406 | -406
-406 | +406
+406 | -406
-406 | +406
+406 | -406
-406 | +1 524
+1 524 | -1 524
-1 524 | | | +762
+762 | -762
-762 | +762
- | -762
- | +406
+762 | -406
-762 | +762
+762 | -762
-762 | | _ | +1 524
+1 524 | -1 524
-1 524 | A 136 A 137 Table 7. 5 Tolerances Table 7. 5. 1 Tolerances for Inner Rings | | al Bore
neter | | | Δ | dmp | | | | V_{dp} | | | $V_{d\mathrm{mp}}$ | | | $\it \Delta_{\it Bs}$ (or | △ _{Cs}) (| 1) | |------|------------------|------|-------------|------|------------|------|------------|--------|------------|------------|--------|--------------------|------------|------|---------------------------|---------------------|--------------| | | m) | No | rmal | Cla | ass 6 | Cla | ıss 5 | Normal | Class
6 | Class
5 | Normal | Class
6 | Class
5 | | rmal
iss 6 | Cla | ass 5 | | over | incl. | high | low | high | low | high | low | max. | max. | max. | max. | max. | max. | high | low | high | low | | 2.5 | 10 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 6 | 5 | 4 | 6 | 5 | 3 | 0 | -120 | 0 | - 40 | | 10 | 18 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 6 | 5 | 4 | 6 | 5 | 3 | 0 | - 120 | 0 | - 80 | | 18 | 30 | 0 | - 10 | 0 | -8 | 0 | -6 | 8 | 6 | 5 | 8 | 6 | 3 | 0 | - 120 | 0 | - 120 | Note (1) The width deviation and width variation of an outer ring is determined according to the inner ring of the same bearing. The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 7. 5. 2 Tolerances | Nominal
Diam | | | | | | | Δ_{I} | Omp | | | | | | | $V_{D\mathrm{p}}$ | | |-----------------|-------|------|-----|-----------|----------|------|--------------|------|--------|------------|------------|------|------------|------|-------------------|------| | | | | | Bearing S | Series E | | | | I | Bearing Se | eries EN | I | | | | | | (mi | | Norr | | | | | | | Normal | Class
6 | Class
5 | | | | | | | over | incl. | high | low | max. | max. | max. | | 6 | 18 | + 8 | 0 | +7 | 0 | +5 | 0 | 0 | - 8 | 0 | - 7 | 0 | - 5 | 6 | 5 | 4 | | 18 | 30 | + 9 | 0 | +8 | 0 | +6 | 0 | 0 | - 9 | 0 | -8 | 0 | - 6 | 7 | 6 | 5 | | 30 | 50 | +11 | 0 | +9 | 0 | +7 | 0 | 0 | -11 | 0 | - 9 | 0 | - 7 | 8 | 7 | 5 | **Remark** The outside diameter "no-go side" tolerances (low) do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. # for Magneto Bearings and Width of Outer Rings | | | | | | | | Un | its:μm | |-------------------|-----------------------|---------------------------|------|--------|----------|---------|---------|-----------------| | $V_{B{ m s}}$ (or | V _{Cs}) (¹) | Δ | Ts | | K_{ia} | | S_d | S _{ia} | | Normal
Class 6 | Class 5 | Normal Class 6
Class 5 | | Normal | Class 6 | Class 5 | Class 5 | Class 5 | | max. | max. | high low | | max. | max. | max. | max. | max. | | 15 | 5 | +120 | -120 | 10 | 6 | 4 | 7 | 7 | | 20 | 5 | +120 -120 | | 10 7 | | 4 | 7 | 7 | | 20 | 5 | +120 | -120 | 13 | 8 | 4 | 8 | 8 | #### for Outer Rings | | 90 | | | | | Units : μ | ιm | |--------|----------------|------|------|-------------------|------------|------------|------------| | | $V_{D{ m mp}}$ | | | K_{ea} | | S ea | S_D | | Normal | Class
6 | 6 5 | | Class
6 | Class
5 | Class
5 | Class
5 | | max. | 6 | 5 | 3 | 15 | 8 | 5 | 8 | 8 | | 7 | 6 | 3 | 15 | 9 | 6 | 8 | 8 | | 8 | 7 | 4 | 20 | 10 | 7 | 8 | 8 | A 138 A 139 Table 7. 6 Tolerances for Thrust Ball Bearings Table 7. 6. 1 Tolerances for Shaft Washer Bore Diameter and Running Accuracy Units: µm | Nomina
Diam
$oldsymbol{d}$ or
(mr | eter d_2 | | Δ_{dmp} 0 | | | Normal | r $V_{d2\mathrm{p}}$ | N. 1 | S_i or | S _e (¹) | Class | |--|----------------|--------|------------------|------|------|--------------------|----------------------|----------|----------|--------------------|-------| | , | | | ss 6
ss 5 | Cla | ss 4 | Class 6
Class 5 | 4 | Normal | 6 | 5 | 4 | | over | incl. | high | low | high | low | max. | max. | max. | max. | max. | max. | | - | 18 | 0 | - 8 | 0 | - 7 | 6 | 5 | 10 | 5 | 3 | 2 | | 18 | 30 | 0 | - 10 | 0 | - 8 | 8 | 6 | 10 | 5 | 3 | 2 | | 30 | 50 | 0 | - 12 | 0 | -10 | 9 | 8 | 10 | 6 | 3 | 2 | | 50 | 80 | 0 | - 15 | 0 | -12 | 11 | 9 | 10 | 7 | 4 | 3 | | 80 | 120 | 0 | - 20 | 0 | -15 | 15 | 11 | 15 | 8 | 4 | 3 | | 120 | 180 | 0 | - 25 | 0 | -18 | 19 | 14 | 15 | 9 | 5 | 4 | | 180 | 250 | 0 | - 30 | 0 | -22 | 23 | 17 | 20 | 10 | 5 | 4 | | 250 | 315 | 0 | - 35 | 0 | -25 | 26 | 19 | 25 | 13 | 7 | 5 | | 315 | 400 | 0 | - 40 | 0 | -30 | 30 | 23 | 30 | 15 | 7 | 5 | | 400 | 500 | 0 | - 45 | 0 | -35 | 34 | 26 | 30 | 18 | 9 | 6 | | 500 | 630 | 0 | - 50 | 0 | -40 | 38 | 30 | 35 | 21 | 11 | 7 | | 630 | 800 | 0 | - 75 | 0 | -50 | — | — | 40 | 25 | 13 | 8 | | 800
1 000 | 1 000
1 250 | 0
0 | -100
-125 | _ | _ | _ | _ | 45
50 | 30
35 | 15
18 | | Note (1) For double-direction bearings, the thickness variation doesn't depend on the bore diameter d_2 , but on d for single-direction bearings with the same D in the same diameter series. The thickness variation of housing washers, $S_{\rm e}$, applies only to flat-seat thrust bearings. Table 7. 6. 2 Tolerances for Outside Diameter of Housing Washers and Aligning Seat Washers | | ts | | | |--|----|--|--| | | | | | | Nominal Outside D
Bearing or Ali
Seat Wash | igning
her | | | ⊿
at Type | <i>D</i> mp | Aligni
Wash | ng Seat
er Type | | Dp | Aligning S
Outside
Dev | Seat Washer Diameter iation D 3s | |--|-------------------------|-------------|----------------------|--------------|-------------|----------------|--------------------|------------------------------|-------------|------------------------------|----------------------------------| | D or D
(mm) | 3 | Cla | rmal
ss 6
ss 5 | Cla | iss 4 | | rmal
ss 6 | Normal
Class 6
Class 5 | Class 4 | | rmal
ss 6 | | over | incl. | high | low | high | low | high | low | max. | max. | high | low | | 10 | 18 | 0 | - 11 | 0 | - 7 | 0 | - 17 | 8 | 5 | 0 | - 25 | | 18 | 30 | 0 | - 13 | 0 | - 8 | 0 | - 20 | 10 | 6 | 0 | - 30 | | 30 | 50 | 0 | - 16 | 0 | - 9 | 0 | - 24 | 12 | 7 | 0 | - 35 | | 50 | 80 | 0 | - 19 | 0 | -11 | 0 | - 29 | 14 | 8 | 0 | - 45 | | 80 | 120 | 0 | - 22 | 0 | -13 | 0 | - 33 | 17 | 10 | 0 | - 60 | | 120 | 180 | 0 | - 25 | 0 | -15 | 0 | - 38 | 19 | 11 | 0 | - 75 | | 180 | 250 | 0 | - 30 | 0 | -20 | 0 | - 45 | 23 | 15 | 0 | - 90 | | 250 | 315 | 0 | - 35 | 0 | -25 | 0 | - 53 | 26 | 19 | 0 | -105 | | 315 | 400 | 0 | - 40 | 0 | -28 | 0 | - 60 | 30 | 21 | 0 | -120 | | 400 | 500 | 0 | - 45 | 0 | -33 | 0 | - 68 | 34 | 25 | 0 | -135 | | 500 | 630 | 0 | - 50 | 0 | -38 | 0 | - 75 | 38 | 29 | 0 | -180 | | 630 | 800 | 0 | - 75 | 0 | -45 | 0 | -113 | 55 | 34 | 0 | -225 | | 800
1 000
1 250 | 1 000
1 250
1 600 | 0
0
0 | -100
-125
-160 | _
_
_ | _
_
_ | _
_
_ | = | 75
—
— | _
_
_ | _
_
_ | = | Table 7. 6. 3 Tolerances for Thrust Ball Bearing Height and Central Washer Height Inits: µm | | | | | | | | | | | | | | | UIIIIS : | μш | |----------------------------------|-------------------|---|------------------------|----------------------|----------------------|--|----------------------|----------------------|----------------------|--|----------------------|----------------------|----------------------|---------------------------------|--------------------------| | Nominal Bore Diameter d (¹) (mm) | | Flat Seat Type | | | | Aligning Seat Washer Type | | | | With Aligning Seat Washer | | | Height Deviation | | | | | | Δ $T_{ m S}$ or Δ $T_{ m 2S}$ | | Δ_{Tis} | | $\Delta_{T3 ext{S}}$ or $\Delta_{T6 ext{S}}$ | | Δ_{T5s} | | $\Delta_{T_{48}}$ or $\Delta_{T_{88}}$ | | △ _{T7s} | | of Central Washer Δ_{Bs} | | | | | | , Class 6
, Class 4 | | , | | rmal
ass 6 | | rmal
ss 6 | | rmal
ss 6 | Noi
Clas | mal
ss 6 | | l, Class 6
b, Class 4 | | over | incl. | high | low | -
30
50 | 30
50
80 | 0
0
0 | - 75
-100
-125 | + 50
+ 75
+100 | -150
-200
-250 | 0
0
0 | - 75
-100
-125 | + 50
+ 75
+100 | -150
-200
-250 | + 50
+ 50
+ 75 | - 75
-100
-125 | +150
+175
+250 | -150
-200
-250 | 0
0
0 | - 50
- 75
-100 | | 80
120
180 | 120
180
250 | 0
0
0 | -150
-175
-200 | +125
+150
+175 | -300
-350
-400 | 0
0
0 | -150
-175
-200 | +125
+150
+175 | -300
-350
-400 | + 75
+100
+100 | -150
-175
-200 | +275
+350
+375 | -300
-350
-400 | 0
0
0 | -125
-150
-175 | | 250
315 | 315
400 | 0
0 | -225
-300 | +200
+250 | -450
-600 | 0
0 | -225
-300 | +200
+250 | -450
-600 | +125
+150 | -225
-275 | +450
+550 | -450
-550 | 0 | -200
-250 | **Note** (1) For double-direction bearings, its classification depends on d for single-direction bearings with the same D in the same diameter series. **Remark** ΔT_{rs} in the table is the deviation in the respective heights T in figures below. Table 7. 7 Tolerances for Tapered Roller Thrust Bearings Table 7. 7. 1 Tolerances for Bore Diameters of Shaft Washers and Height (Metric, Class Normal) $$_{\rm Units\,:\,\mu\,m}$$ | Nominal Bor
d
(mr | ! | Δ, | dmp | Δ_{Ts} | | | |-------------------------|-------|------|------|---------------|--------|--| | over
| incl | high | low | high | low | | | 80 | 120 | 0 | -20 | 0 | -150 | | | 120 | 180 | 0 | -25 | 0 | -175 | | | 180 | 250 | 0 | -30 | 0 | -200 | | | 250 | 315 | 0 | -35 | 0 | -225 | | | 315 | 400 | 0 | -40 | 0 | -300 | | | 400 | 500 | 0 | -45 | 0 | -350 | | | 500 | 630 | 0 | -50 | 0 | -450 | | | 630 | 800 | 0 | -75 | 0 | -550 | | | 800 | 1 000 | 0 | -100 | 0 | -700 | | | 1 000 | 1 250 | 0 | -125 | 0 | -900 | | | 1 250 | 1 600 | | -160 | 0 | -1 200 | | Table 7. 7. 2 Tolerances for Housing washer Outside Diameters (Metric, Class | Normal) | | Units : µm | | | | |--------------------------|-------|-------------------------|------|--|--| | Nominal Outs <i>I</i> (m |) | $\it \Delta \it D_{mp}$ | | | | | over | incl | high | low | | | | 180 | 250 | 0 | -30 | | | | 250 | 315 | 0 | -35 | | | | 315 | 400 | 0 | -40 | | | | 400 | 500 | 0 | -45 | | | | 500 | 630 | 0 | -50 | | | | 630 | 800 | 0 | -75 | | | | 800 | 1 000 | 0 | -100 | | | | 1 000 | 1 250 | 0 | -125 | | | | 1 250 | 1 600 | 0 | -160 | | | | 1 600 | 2 000 | 0 | -200 | | | #### Table 7. 7 Tolerances for Tapered Roller Thrust Bearings Table 7. 7. 3 Tolerances for Bore Diameters of Shaft Washers and Height (Inch) | | - 3 | · · / | | | | Units : L | ım | |--------------------|--------------------|----------------------|--------------------|---------------|-----|--------------|--------------| | | Nominal Bo | Δ_{d} | mp | Δ_{Ts} | | | | | 0 | ver | in | cl | | | | | | (mm) | (inch) | (mm) | (inch) | high | low | high | low | | 304.800 | 12.0000 | 304.800
609.600 | 12.0000
24.0000 | +25
+51 | 0 | +381
+381 | -381
-381 | | 609.600
914.400 | 24.0000
36.0000 | 914.400
1 219.200 | 36.0000
48.0000 | +76
+102 | 0 | +381
+381 | -381
-381 | Table 7. 7. 4 Tolerances for Housing Washer Outside Diameters (Inch) | | <u> </u> | | | | | | | | | | | |----------------------|--|-------------------------------|-------------------------------|-------------------|-------------|--|--|--|--|--|--| | OV | Nominal Outside Diameter D over incl | | | | | | | | | | | | (mm) | (inch) | (mm) | (inch) | high | low | | | | | | | | 304.800
609.600 |
12.0000
24.0000 | 304.800
609.600
914.400 | 12.0000
24.0000
36.0000 | +25
+51
+76 | 0
0
0 | | | | | | | | 914.400
1 219.200 | 36.0000
48.0000 | 1 219.200 | 48.0000
— | +102
+127 | 0 | | | | | | | Table 7. 8 Tolerances for Thrust Spherical Roller Bearings Table 7. 8. 1 Tolerances for Bore Diameters of Shaft Rings and Height (Class Normal) Units: µm | Nominal Bore | | | | | Reference | | |-------------------------------|--------|-------------------|----------------|----------------|----------------------|----------------------| | Diameter $d \ (ext{mm})$ | | Δ_{dmp} | V_{dp} | S_d | Δ | Ts | | over incl | . high | low | max. | max. | high | low | | 50 80
80 120
120 180 | 0 | -15
-20
-25 | 11
15
19 | 25
25
30 | +150
+200
+250 | -150
-200
-250 | | 180 250
250 319
315 400 | 0 | -30
-35
-40 | 23
26
30 | 30
35
40 | +300
+350
+400 | -300
-350
-400 | | 400 500 | 0 | - 45 | 34 | 45 | +450 | -450 | **Remark** The bore diameter "no-go side" tolerances (high) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 7. 8. 2 Tolerances for Housing Ring Diameter (Class Normal) Units : μ | | | UI | πο. μπ | | | | | |------|--------------------------|--------------------|--------|--|--|--|--| | 1 | side Diameter
)
m) | $\it \Delta_{Dmp}$ | | | | | | | over | incl. | high | low | | | | | | 120 | 180 | 0 | - 25 | | | | | | 180 | 250 | 0 | - 30 | | | | | | 250 | 315 | 0 | - 35 | | | | | | 315 | 400 | 0 | - 40 | | | | | | 400 | 500 | 0 | - 45 | | | | | | 500 | 630 | 0 | - 50 | | | | | | 630 | 800 | 0 | - 75 | | | | | | 800 | 1 000 | | -100 | | | | | Remark The outside diameter "no-go side" tolerances (low) specified in this table do not necessarily apply within a distance of 1.2 times the chamfer dimension r (max.) from the ring face. Table 7. 9 Tolerances of #### CLASS 5P, CLASS 7P, and CLASS 9P #### (1) Tolerances for Inner Rings | Ī | Nominal
Bore
Diameter
d
(mm) | | Δ_{dmp} | | | $\it \Delta_{ds}$ | | | | V_{dp} | | $V_{d\mathrm{mp}}$ | | _ | 1_{Bs} | | |---|--|-------|----------------|----------------|----------|-------------------|----------------------|--------------|----------|----------|----------------------|--------------------|----------------------|----------|------------|------------------------------------| | | | | CLAS
CLAS | SS 5P
SS 7P | CLASS 9P | | CLASS 5P
CLASS 7P | | CLASS 9P | | CLASS 5P
CLASS 7P | CLASS 9P | CLASS 5P
CLASS 7P | CLASS 9P | CLA
CLA | le Brgs
SS 5P
SS 7P
SS 9P | | | over | incl. | high | low | high | low | high | low | high | low | max. | max. | max. | max. | high | low | | | _ | 10 | 0 | - 5.1 | 0 | -2.5 | 0 | - 5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | | | 10 | 18 | 0 | - 5.1 | 0 | -2.5 | 0 | -5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | | | 18 | 30 | 0 | - 5.1 | 0 | -2.5 | 0 | -5.1 | 0 | -2.5 | 2.5 | 1.3 | 2.5 | 1.3 | 0 | -25.4 | Note (1) Applicable to bearings for which the axial clearance (preload) is to be adjusted by combining two selected bearings. Remark For the CLASS 3P and the tolerances of Metric design Instrument Ball Bearings, it is advisable to consult NSK. ### (2) Tolerances for | | Nominal
Outside
Diameter | | Δ_{Dmp} | | | $\it \Delta_{\it Ds}$ | | | | V_{Dp} | | | $V_{D\mathrm{mp}}$ | | | | | |------|--------------------------------|----------|----------------|----------|--------------|-------------------------|--------------|------|--------------|----------|----------------------|------|--------------------|--------------------|----------------|-------------|------| | Diam | | | CLASS 5P | | | CLASS 5P
CLASS 7P | | | CLA | SS 9P | CLASS 5P
CLASS 7P | | CLASS
9P | | SS 5P
SS 7P | CLASS
9P | | | (mm) | | CLASS 7P | | CLASS 9P | | Open Shielded
Sealed | | Open | | Open | Shielded
Sealed | Open | Open | Shielded
Sealed | Open | | | | over | incl. | high | low | max. | max. | max. | max. | max. | max. | | _ | 18 | 0 | - 5.1 | 0 | - 2.5 | 0 | - 5.1 | +1 | - 6.1 | 0 | - 2.5 | 2.5 | 5.1 | 1.3 | 2.5 | 5.1 | 1.3 | | 18 | 30 | 0 | - 5.1 | 0 | -3.8 | 0 | - 5.1 | +1 | -6.1 | 0 | -3.8 | 2.5 | 5.1 | 2 | 2.5 | 5.1 | 2 | | 30 | 50 | 0 | - 5.1 | 0 | -3.8 | 0 | - 5.1 | +1 | -6.1 | 0 | -3.8 | 2.5 | 5.1 | 2 | 2.5 | 5.1 | 2 | Notes (1) Applicable to flange width variation for flanged bearings. (2) Applicable to flange back face. #### Instrument Ball Bearings (Inch design) #### (ANSI/ABMA Equivalent) #### and Width of Outer Rings Units: μm | (0) | (or $\Delta_{C_{\rm S}}$) $V_{B_{\rm S}}$ | | $K_{i\mathrm{a}}$ | | | | S_{ia} | | S_d | | | | | |------|--|-------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | CI | ASS 5P
ASS 7P
ASS 9P | CLASS
5P | CLASS
7P | CLASS
9P | | high | n low | max. | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | 7.6 | 2.5 | 1.3 | | 0 | -400 | 5.1 | 2.5 | 1.3 | 3.8 | 3.8 | 2.5 | 7.6 | 3.8 | 1.3 | 7.6 | 3.8 | 1.3 | #### Outer Rings Units: um | _ | | | | | | | | | | | | | | | | | πιο . μπ | |---|---------------------|-------|-------|-------|-------|-------|-------|-------|--------------|------|-------|-------|----------------------|------------------------|---------------------------|----------------|----------------------------------| | | V _{Cs} (1) | | | S_D | | | K ea | | | | S ea | | _ | iation of
e Outside | Deviation of Flange Width | | Flange
Backface
Runout | | | CLASS LASS CLASS C | | CLASS | CLASS | | | | C 1s | with
Raceway
(²) S_{ea1} | | | 5P | 7P | 9P | 5P | 7P | 9P | 5P | 7P | 9P | 5P | 7P | | CLASS 5P
CLASS 7P | | | SS 5P
SS 7P | CLASS 5P
CLASS 7P | | | max. high low | | high | low | max. | | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 3.8 | 1.3 | 7.6 | 5.1 | 1.3 | 0 | -25.4 | 0 | -50.8 | 7.6 | | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 3.8 | 2.5 | 7.6 | 5.1 | 2.5 | 0 | -25.4 | 0 | -50.8 | 7.6 | | | 5.1 | 2.5 | 1.3 | 7.6 | 3.8 | 1.3 | 5.1 | 5.1 | 2.5 | 7.6 | 5.1 | 2.5 | 0 | -25.4 | 0 | - 50.8 | 7.6 | r: Chamfer Dimension of Inner/Outer Ring Remark The precise shape of chamfer surfaces has not been specified but its profile in the axial plane shall not intersect an arc of radius r (min.) or r_1 (min.) touching the side face of an inner ring or central washer and bore surface, or the side face of an outer ring and outside surface. Table 7. 10 Chamfer Dimension Limits (for Metric Design Bearings) Table 7. 10. 1 Chamfer Dimension Limits for Radial Bearings (excluding Tapered Roller Bearings) Units: mm | Permissible | | | Parmiccih | le Chamfer | Reference | | |--|-----------------|-----------------------|----------------------------------|--|---|--| | Chamfer Dimension for Inner/ Outer Rings **(min.) or | Dian | al Bore
neter
d | Dimens
Inner/Ou
r (max.) o | sion for
ter Rings
r γ_1 (max.) | Corner Radius of Shaft or Housing r_a | | | \mathcal{V}_1 (min.) | over | incl. | Radial
Direction | Axial
Direction | max. | | | 0.05
0.08
0.1 | -
-
- | -
-
- | 0.1
0.16
0.2 | 0.2
0.3
0.4 | 0.05
0.08
0.1 | | | 0.15
0.2 | _
_ | _
_ |
0.3
0.5 | 0.6
0.8 | 0.15
0.2 | | | 0.3 | 0.3 - 40 | | 0.6
0.8 | 1
1 | 0.3 | | | 0.6 | -
40 | 40
— | 1
1.3 | 2
2 | 0.6 | | | 1 | -
50 | 50
— | 1.5
1.9 | 3
3 | 1 | | | 1.1 | -
120 | 120
— | 2
2.5 | 3.5
4 | 1 | | | 1.5 | _
120 | 120
— | 2.3
3 | 4
5 | 1.5 | | | 2 | -
80
220 | 80
220
— | 3
3.5
3.8 | 4.5
5
6 | 2 | | | 2.1 | _
280 | 280
— | 4
4.5 | 6.5
7 | 2 | | | 2.5 | -
100
280 | 100
280
— | 3.8
4.5
5 | 6
6
7 | 2 | | | 3 | _
280 | 280
— | 5
5.5 | 8
8 | 2.5 | | | 4
5 | _ | _ | 6.5
8 | 9
10 | 3
4 | | | 6
7.5
9.5 | -
-
- | -
-
- | 10
12.5
15 | 13
17
19 | 5
6
8 | | | 12
15
19 | -
-
- | -
-
- | 18
21
25 | 24
30
38 | 10
12
15 | | **Remark** For bearings with nominal widths less than 2mm, the value of r (max.) in the axial direction is the same as that in the radial direction. Table 7, 10, 2 Chamfer Dimension Limits for Tapered Roller Bearings Units: mm Reference Permissible Permissible Chamfer Nominal Bore or Chamfer Corner Nominal Outside Dimension for Inner/ Dimension Radius of Diameter (1) Outer Rings for Inner/ Shaft or d or DOuter (max.) Housing r_a Rings Axial Directio Radial over incl. max. 0.15 0.3 0.6 0.15 40 0.7 1.4 0.3 0.3 40 0.9 1.6 40 1.1 1.7 0.6 0.6 40 1.3 2 50 1.6 2.5 1 50 1.9 3 120 2.3 3 1.5 250 120 2.8 3.5 1.5 250 3.5 4 120 2.8 2 120 250 3.5 4.5 2 250 4 5 120 3.5 2.5 120 250 4 5.5 2 250 4.5 6 _ 120 4 5.5 120 250 4.5 6.5 3 2.5 250 400 5 7.5 400 5.5 120 5 120 250 5.5 7.5 4 3 250 400 6 8 400 8.5 6.5 180 6.5 5 180 7.5 9 9 (1) Inner Rings are classified by d and Outer Rings by D. 7.5 10 11 5 180 180 6 Table 7. 10. 3 Chamfer Dimension Limits for Thrust Bearings Units: mm | | | - | | | | | |---|--|--|--|--|--|--| | D : 111 01 (| Permissible Chamfer | Reference | | | | | | Permissible Chamfer Dimension for Shaft (or Central)/Housing Washers γ (min.) or γ (min.) | Dimension for Shaft
(or Central)/Housing
Washers
\mathcal{T} (max.) or \mathcal{T}_1 (max.) | Corner Radius of Shaft or Housing γ_a | | | | | | / (IIIII.) OI / 1 (IIIII.) | Radial and Axial Direction | max. | | | | | | 0.05 | 0.1 | 0.05 | | | | | | 0.08 | 0.16 | 0.08 | | | | | | 0.1 | 0.2 | 0.1 | | | | | | 0.15 | 0.3 | 0.15 | | | | | | 0.2 | 0.5 | 0.2 | | | | | | 0.3 | 0.8 | 0.3 | | | | | | 0.6 | 1.5 | 0.6 | | | | | | 1 | 2.2 | 1 | | | | | | 1.1 | 2.7 | 1 | | | | | | 1.5 | 3.5 | 1.5 | | | | | | 2 | 4 | 2 | | | | | | 2.1 | 4.5 | 2 | | | | | | 3 | 5.5 | 2.5 | | | | | | 4 | 6.5 | 3 | | | | | | 5 | 8 | 4 | | | | | | 6 | 10 | 5 | | | | | | 7.5 | 12.5 | 6 | | | | | | 9.5 | 15 | 8 | | | | | | 12 | 18 | 10 | | | | | | 15 | 21 | 12 | | | | | | 19 | 25 | 15 | | | | | | | | | | | | | A 148 A 149 r_1 : Chamfer Dimension of Inner/Outer Ring (Front Side) or of Central Washer of Thrust Ball Bearings Unite : um Table 7.11 Tolerances for Tapered Bores (Class Normal) d: Nominal Bore Diameter d_1 : Theoretical Diameter of Larger End of Tapered Bore Taper 1:12 $d_1 = d + 1/12B$ Δ_{dmp} : Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Smaller End of Bore $\Delta_{d^{ ext{imp}}}$: Single Plane Mean Bore Diameter Deviation in Theoretical Diameter of Larger End of Bore V_{dp} : Bore diameter variation in a single radial plane \hat{B} : Nominal Inner Ring width α: Half of Taper Angle of Tapered Bore Taper 1:12 Taper 1:30 $\alpha = 2^{\circ}23'9.4$ $\alpha = 57'17.4$ =2.38594° =0.95484° =0.041643 rad =0.016665 rad Taper 1:12 Units: µm Taper 1:30 $d_1 = d + /30 B$ | Nominal Bo | l | Δ_d | /mp | Δ_{d1mp} - | V _{dp} (1) (2) | | |----------------|----------------|--------------|-----|-------------------|-------------------------|------| | over | incl. | high | low | high | low | max. | | 18 | 30 | +33 | 0 | +21 | 0 | 13 | | 30 | 50 | +39 | 0 | +25 | 0 | 16 | | 50 | 80 | +46 | 0 | +30 | 0 | 19 | | 80 | 120 | +54 | 0 | +35 | 0 | 22 | | 120 | 180 | +63 | 0 | +40 | 0 | 40 | | 180 | 250 | +72 | 0 | +46 | 0 | 46 | | 250 | 315 | +81 | 0 | +52 | 0 | 52 | | 315 | 400 | +89 | 0 | +57 | 0 | 57 | | 400 | 500 | +97 | 0 | +63 | 0 | 63 | | 500 | 630 | +110 | 0 | +70 | 0 | 70 | | 630 | 800 | +125 | 0 | +80 | 0 | — | | 800 | 1 000 | +140 | 0 | +90 | 0 | — | | 1 000
1 250 | 1 250
1 600 | +165
+195 | 0 | +105
+125 | 0 | | Notes (1) Applicable to all radial planes of tapered bores. (2) Not applicable to diameter series 7 and 8. Taper 1:30 | | | | | | UI | πιδ. μπ | |-------------------|-------------------|-------------------|-------------|-------------------|-------------------------|----------------| | Nominal Boo | ! | Δ_{a} | lmp | Δ_{d1mp} - | V _{dp} (¹) (²) | | | over | incl. | high | low | high | low | max. | | 80
120
180 | 120
180
250 | +20
+25
+30 | 0
0
0 | +35
+40
+46 | 0
0
0 | 22
40
46 | | 250
315
400 | 315
400
500 | +35
+40
+45 | 0
0
0 | +52
+57
+63 | 0
0
0 | 52
57
63 | | 500 | 630 | +50 | 0 | +70 | 0 | 70 | (1) Applicable to all radial planes of tapered bores. (2) Not applicable to diameter series 7 and 8. Remark For a value exceeding 630 mm, please contact NSK. ### 7.2 Selection of Accuracy Classes For general applications, Class Normal tolerances are adequate in nearly all cases for satisfactory performance, but for the following applications, bearings having an accuracy class of 5,4 or higher are more suitable. For reference, in Table 7.12, examples of applications and appropriate tolerance classes are listed for various bearing requirements and operating conditions. Table 7. 12 Typical Tolerance Classes for Specific Applications (Reference) | Bearing Requirement,
Operating Conditions | Examples of Applications | Tolerance Classes | | | | |--|--|--------------------|--|--|--| | | VTR Drum Spindles | P5 | | | | | | Magnetic Disk Spindles for Computers | P5, P4, P2 | | | | | | Machine-Tool Main Spindles | P5, P4, P2 | | | | | High running accuracy | Rotary Printing Presses | P5 | | | | | is required | Rotary Tables of Vertical Presses, etc. | P5, P4 | | | | | | Roll Necks of Cold Rolling \\Mill Backup Rolls | Higher than P4 | | | | | | Slewing Bearings for Parabolic
Antennas | Higher than P4 | | | | | | Dental Drills | CLASS 7P, CLASS 5P | | | | | | Gyroscopes | CLASS 7P, P4 | | | | | Extra high speed is | High Frequency Spindles | CLASS 7P, P4 | | | | | required | Superchargers | P5, P4 | | | | | | Centrifugal Separators | P5, P4 | | | | | | Main Shafts of Jet Engines | Higher than P4 | | | | | Low torque and low | Gyroscope Gimbals | CLASS 7P, P4 | | | | | torque variation are | Servomechanisms | CLASS 7P, CLASS 5P | | | | | required | Potentiometric Controllers | CLASS 7P | | | | A 150 A 151 ## 8. FITS AND INTERNAL CLEARANCES | 8.1 | Fit | s | A 154 | |-----|------|--|--------| | 8 | .1.1 | Importance of Proper Fits | A 154 | | 8 | .1.2 | Selection of Fit | A 154 | | | (1) | Load Conditions and Fit | A 154 | | | (2) | Magnitude of Load and Interference | A 154 | | | (3) | Interference Variation Caused by Temperature Difference | | | | | Between Bearing and Shaft or Housing | A 156 | | | (4) | Effective Interference and Finish of Shaft and Housing | A 156 | | | (5) | Fitting Stress and Ring Expansion and Contraction | A 156 | | | (6) | Surface Pressure and Maximum Stress on Fitting Surface | A 158 | | | (7) | Mounting and Withdrawal Loads | A 160 | | 8 | .1.3 | Recommended Fits | A 162 | | | | | | | 8.2 | Ве | aring Internal Clearances | A 168 | | 8 | .2.1 | Internal Clearances and Their Standards | A 168 | | 8 | .2.2 | Selection of Bearing Internal Clearances | A 174 | | | (1) | Decrease in Radial Clearance Caused by Fitting | | | | | and Residual Clearance | A 174 | | | (2) | Decrease in Radial Internal Clearance Caused by Temperature Diffe | rences | | | | between Inner and Outer Rings and Effective Clearance | A 175 | | | | | | | 8.3 | Te | chnical Data | A 176 | | 8 | .3.1 | Temperature Rise and Dimensional Change | A 176 | | 8 | .3.2 | Interference Deviation Due to Temperature Rise | | | | | (Aluminum Housing, Plastic Housing) | A 178 | | 8 | .3.3 | Calculating Residual Internal Clearance after Mounting | A 180 | | 8 | .3.4 | Effect of Interference Fit on Bearing Raceways (Fit of Inner Ring) | A 182 | | 8 | .3.5 | Effect of Interference Fit on Bearing Raceways (Fit of Outer Ring) | A 184 | | 8 | .3.6 | Measuring Method of Internal Clearance of Combined | | | | | Tapered Roller Bearings (Offset Measuring Method) | A 186 | | 8 | .3.7 | Internal Clearance Adjustment Method | | | | | when Mounting a Tapered Roller Bearing | A 188 | ### 8. FITS AND INTERNAL CLEARANCES #### 8.1 Fits #### 8.1.1 Importance of Proper Fits In the case of a rolling bearing with the inner ring fitted to the shaft with only slight interference, a harmful circumferential slipping may occur between the inner ring and shaft. This slipping of the inner ring, which is called "creep", results in a circumferential displacement of the ring relative to the shaft if the interference fit is not sufficiently tight. When creep occurs, the fitted surfaces become abraded, causing wear and considerable damage to the shaft. Abnormal heating and vibration may also occur due to abrasive metallic particles entering the interior of the bearing. It is important to prevent creep by having sufficient interference to firmly secure that ring which rotates to either the shaft or housing. Creep cannot always be
eliminated using only axial tightening through the bearing ring faces. Generally, it is not necessary, however, to provide interference for rings subjected only to stationary loads. Fits are sometimes made without any interference for either the inner or outer ring, to accommodate certain operating conditions, or to facilitate mounting and dismounting. In this case, to prevent damage to the fitting surfaces due to creep. lubrication of other applicable methods should be considered. #### 8.1.2 Selection of Fit #### (1) Load Conditions and Fit The proper fit may be selected from Table 8.1 based on the load and operating conditions. #### (2) Magnitude of Load and Interference The interference of the inner ring is slightly reduced by the bearing load; therefore, the loss of interference should be estimated using the following equations: $$\Delta d_{\rm F} = 0.08 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots (N)$$ $$\Delta d_{\rm F} = 0.25 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots {\rm \{kgf\}}$$ where $\Delta d_{\rm F}$: Interference decrease of inner ring (mm) d: Bearing bore diameter (mm) B: Nominal inner ring width (mm) $F_{\rm r}$: Radial load applied on bearing (N), {kgf} Therefore, the effective interference $\varDelta d$ should be larger than the interference given by Equation (8.1). However, in the case of heavy loads where the radial load exceeds 20% of the basic static load rating $C_{\rm or}$, under the operating condition, interference often becomes shortage. Therefore, interference should be estimated using Equation (8.2): $$\Delta d \ge 0.02 \frac{F_{\rm r}}{B} \times 10^{-3} \dots (N)$$ $\Delta d \ge 0.2 \frac{F_{\rm r}}{B} \times 10^{-3} \dots {\rm \{kgf\}}$ (8.2) where Δd : Effective interference (mm) F_r : Radial load applied on bearing (N), {kgf} B: Nominal inner ring width (mm) Creep experiments conducted by NSK with NU219 bearings showed a linear relation between radial load (load at creep occurrence limit) and required effective interference. It was confirmed that this line agrees well with the straight line of Equation (8.2). For NU219, with the interference given by Equation (8.1) for loads heavier than 0.25 C_{0r} , the interference becomes insufficient and creep occurs. Generally speaking, the necessary interference for loads heavier than 0.25 $C_{\rm or}$ should be calculated using Equation (8.2). When doing this, sufficient care should be taken to prevent excessive circumferential stress. #### Calculation example For NU219, B=32 (mm) and assume F_r =98 100 N {10 000 kgf} C_{0r} =183 000 N {18 600 kgf} $$\frac{F_{\rm r}}{C_{\rm 0r}} = \frac{98\ 100}{183\ 000} = 0.536 > 0.2$$ Therefore, the required effective interference is calculated using Equation (8.2). $$\Delta d = 0.02 \times \frac{98\ 100}{32} \times 10^{-3} = 0.061 \ (\text{mm})$$ This result agrees well with Fig. 8.1. | Load Application | Bearing (| Operation | Load | Fitting | | | |--|---------------------------|---------------------------|------------------------------------|------------|------------|--| | | Inner Ring | Outer Ring | Conditions | Inner Ring | Outer Ring | | | Load Stationary | Rotating | Stationary | Rotating
Inner Ring
Load | | | | | Load Rotating O O O O O O O O O O O O O | Stationary | Rotating | Stationary
Outer Ring
Load | Tight Fit | Loose Fit | | | Load Stationary | Stationary | Rotating | Rotating
Outer Ring
Load | Loose Fit | Tight Fit | | | Cod Rotating | Rotating | Stationary | - Stationary
Inner Ring
Load | | | | | Direction of load indeterminate due to variation of direction or unbalanced load | Rotating or
Stationary | Rotating or
Stationary | Direction of Load
Indeterminate | Tight Fit | Tight Fit | | Fig. 8.1 Load and Required Effective Interference for Fit #### (3) Interference Variation Caused by Temperature Difference between Bearing and Shaft or Housing The effective interference decreases due to the increasing bearing temperature during operation. If the temperature difference between the bearing and housing is ΔT (°C), then the temperature difference between the fitted surfaces of the shaft and inner ring is estimated to be about (0.1~0.15) ΔT in case that the shaft is cooled. The decrease in the interference of the inner ring due to this temperature difference $\Delta d_{\rm T}$ may be calculated using Equation (8.3): $$\Delta d_{\rm T} = (0.10 \text{ to } 0.15) \times \Delta T \cdot \alpha \cdot d$$ $= 0.0015 \Delta T \cdot d \times 10^{-3} \dots (8.3)$ where $\Delta d_{\rm T}$: Decrease in interference of inner ring due to temperature difference (mm) ΔT : Temperature difference between bearing interior and surrounding parts (°C) α : Coefficient of linear expansion of bearing steel=12.5×10⁻⁶ (1/°C) d: Bearing nominal bore diameter (mm) In addition, depending on the temperature difference between the outer ring and housing, or difference in their coefficients of linear expansion, the interference may increase. ## (4) Effective Interference and Finish of Shaft and Housing Since the roughness of fitted surfaces is reduced during fitting, the effective interference becomes less than the apparent interference. The amount of this interference decrease varies depending on the roughness of the surfaces and may be estimated using the following equations: For ground shafts $$\Delta d = \frac{d}{d+2} \Delta d_a \dots (8.4)$$ For machined shafts $$\Delta d = \frac{d}{d+3} \Delta d_a \dots (8.5)$$ where Δd : Effective interference (mm) Δd_a : Apparent interference (mm) d: Bearing nominal bore diameter (mm) According to Equations (8.4) and (8.5), the effective interference of bearings with a bore diameter of 30 to 150 mm is about 95% of the apparent interference. ## (5) Fitting Stress and Ring Expansion and Contraction When bearings are mounted with interference on a shaft or in a housing, the rings either expand or contract and stress is produced. Excessive interference may damage the bearings; therefore, as a general guide, the maximum interference should be kept under approximately 7/10 000 of the shaft diameter. The pressure between fitted surfaces, expansion or contraction of the rings, and circumferential stress may be calculated using the equations in Table 8.2. Table 8.2 Fit Conditions | | Inner ring and shaft | Outer ring and housing | |---|---|---| | (MPa) {kgf/mm²} | $\begin{split} & \text{Hollow shaft} \\ & p_{\text{m}} = \frac{2d}{d} \frac{1}{\left[\frac{m_{\text{s}}-1}{m_{\text{s}}E_{\text{s}}} - \frac{m_{i}-1}{m_{i}E_{i}}\right]} + 2\left[\frac{k_{0}^{2}}{E_{\text{s}}(1-k_{0}^{2})} + \frac{1}{E_{i}(1-k^{2})}\right] \\ & \text{Solid shaft} \\ & p_{\text{m}} = \frac{2d}{d} \frac{1}{\left[\frac{m_{\text{s}}-1}{m_{\text{s}}E_{\text{s}}} - \frac{m_{i}-1}{m_{i}E_{i}}\right]} + \frac{2}{E_{i}(1-k^{2})} \end{split}$ | Housing outside diameter $p_{\text{m}} = \frac{4D}{D} \frac{1}{\left[\frac{m_{\text{e}}-1}{m_{\text{e}}E_{\text{e}}} - \frac{m_{\text{h}}-1}{m_{\text{b}}E_{\text{h}}}\right]} + 2\left[\frac{h^2}{E_{\text{e}}(1-h^2)} + \frac{1}{E_{\text{h}}(1-h_{\text{e}}^2)}\right]$ | | Expansion of inner ring raceway ΔD_i (mm) Contraction of outer ring raceway ΔD_e (mm) | $\Delta D_i = 2d \frac{p_m}{E_i} \frac{k}{1 - k^2}$ $= \Delta d \cdot k \frac{1 - k_0^2}{1 - k^2 k_0^2} \text{ (hollow shaft)}$ $= \Delta d \cdot k \text{ (solid shaft)}$ | $\Delta D_{\epsilon} = 2D \frac{p_{\text{m}}}{E_{\epsilon}} \frac{h}{1 - h^{2}}$ $= \Delta D \cdot h \frac{1 - h_{0}^{2}}{1 - h^{2}h_{0}^{2}}$ | | Maximum stress $\sigma_{\rm tmax}$ (MPa) {kgf/mm²} | Circumferential stress at inner ring bore fitting surface is maximum. $\sigma_{\rm tmax} = p_{\rm m} \frac{1+k^2}{1-k^2}$ | Circumferential stress at outer ring bore surface is maximum. $\sigma_{\rm tmax} = p_{\rm m} \frac{2}{1-h^2}$ | | Symbols | d: Shaft diameter, inner ring bore do: Hollow shaft bore Di: Inner ring raceway diameter k = d/Di, ko = do/d Ei: Inner ring Young's modulus, 208 000 MPa {21 200 kgf/mm²} Es: Shaft Young's modulus mi: Inner ring poisson's number, 3.33 ms: Shaft poisson's number | D: Housing bore diameter, outer ring outside diameter Do: Housing outside diameter Do: Outer ring raceway diameter h = Do/D, ho = D/Do Eo: Outer ring Young's modulus, 208 000 MPa {21 200 kgf/mm²} Eh: Housing Young's modulus moe: Outer ring poisson's number, 3.33 mh: Housing poisson's number | #### (6) Surface Pressure and Maximum Stress on Fitting Surfaces In order for rolling bearings to achieve their full life expectancy, their fitting must be appropriate. Usually for an inner ring, which is the rotating ring, an interference fit is chosen, and for a fixed outer ring, a loose fit is used. To select the fit, the magnitude of the load, the temperature differences among the bearing and shaft and housing, the material characteristics of the shaft and housing, the level of finish, the material thickness, and the bearing mounting/dismounting method must all be considered. If the interference is insufficient for the
operating conditions, ring loosening, creep, fretting, heat generation, etc. may occur. If the interference is excessive, the ring may crack. The magnitude of the interference is usually satisfactory if it is set for the size of the shaft or housing listed in the bearing manufacturer's catalog. To determine the surface pressure and stress on the fitting surfaces, calculations can be made assuming a thick-walled cylinder with uniform internal and external pressures. To do this, the necessary equations are summarized in Table 8.2. For convenience in the fitting of bearing inner rings on solid steel shafts, which are the most common, the surface pressure and maximum stress are shown in Figs. 8.3 and 8.4. Fig. 8.3 shows the surface pressure $p_{\rm m}$ and maximum stress $\sigma_{\rm t~max}$ variations with shaft diameter when interference results from the mean values of the tolerance grade shaft and bearing bore tolerances. Fig. 8.4 shows the maximum surface pressure $p_{\rm m}$ and maximum stress $\sigma_{\rm t~max}$ when maximum interference occurs. Fig. 8.4 is convenient for checking whether $\sigma_{\rm t\ max}$ exceeds the tolerances. The tensile strength of hardened bearing steel is about 1 570 to 1 960 MPa {160 to 200 kgf/mm²}. However, for safety, plan for a maximum fitting stress of 127 MPa {13 kgf/mm²}. For reference, the distributions of circumferential stress $\sigma_{\rm t}$ and radial stress $\sigma_{\rm r}$ in an inner ring are shown in Fig. 8.2. Fig. 8.2 Distribution of Circumferential Stress $\sigma_{\rm t}$ and Radial Stress $\sigma_{\rm r}$ Fig. 8.3 Surface Pressure $p_{\rm m}$ and Maximum Stress $\sigma_{\rm t~max}$ for Mean Interference in Various Tolerance Grades Fig. 8.4 Surface Pressure $p_{\rm m}$ and Maximum Stress $\sigma_{\rm t~max}$ for Maximum Interference in Various Tolerance Grades A 158 A 159 #### (7) Mounting and Withdrawal Loads The push-up load needed to mount bearings on shafts or in a housing hole with interference can be obtained using the thick-walled cylinder theory. The mounting load (or withdrawal load) depends upon the contact area, surface pressure, and coefficient of friction between the fitting surfaces. The mounting load (or withdrawal load) K needed to mount inner rings on shafts is given by Equation (8.6). $$K=\mu p_m \pi d B (N), \{kgf\} \dots (8.6)$$ where μ : Coefficient of friction between fitting surfaces μ =0.12 (for mounting) μ =0.18 (for withdrawal) p_m: Surface pressure (MPa), {kgf/mm²} For example, inner ring surface pressure can be obtained using Table 8.2. $$p_{\rm m} = \frac{E}{2} \frac{\Delta d}{d} \frac{(1-k^2)(1-k_0^2)}{1-k^2 k_0^2}$$ - d: Shaft diameter (mm) - B: Bearing width (mm) - △d: Effective interference (mm) - E: Young's modulus of steel (MPa), $\{kgf/mm^2\}$ E=208 000 MPa $\{21\ 200\ kgf/mm^2\}$ - k: Inner ring thickness ratio k=d/D: - D_i : Inner ring raceway diameter (mm) - k_0 : Hollow shaft thickness ratio $k_0 = d_0/d$ - d_0 : Bore diameter of hollow shaft (mm) For solid shafts, d_0 =0, consequently k_0 =0. The value of k varies depending on the bearing type and size, but it usually ranges between k=0.7 and 0.9. Assuming that k=0.8 and the shaft is solid, Equation (8.6) is: $$K = 118\ 000\mu\ \Delta d\ B\ (N)$$ = 12\ 000\mu\ \Delta d\ B\ \{kgf\} Equation (8.7) is shown graphically in Fig. 8.5. The mounting and withdrawal loads for outer rings and housings have been calculated and the results are shown in Fig. 8.6. The actual mounting and withdrawal loads can become much higher than the calculated values if the bearing ring and shaft (or housing) are slightly misaligned or the load is applied unevenly to the circumference of the bearing ring hole. Consequently, the loads obtained from Figs. 8.5 and 8.6 should be considered only as guides when designing withdrawal tools, their strength should be five to six times higher than that indicated by the figures. Fig. 8.5 Mounting and Withdrawal Loads for Inner Rings Fig. 8.6 Mounting and Withdrawal Loads for Outer Rings #### 8.1.3 Recommended Fits As described previously, many factors, such as the characteristics and magnitude of bearing load, temperature differences, means of bearing mounting and dismounting, must be considered when selecting the proper fit. If the housing is thin or the bearing is mounted on a hollow shaft, a tighter than usual fit is necessary. A split housing often deforms the bearing into an oval shape; therefore, a split housing should be avoided when a tight fit with the outer ring is required. The fits of both the inner and outer rings should be tight in applications where the shaft is subjected to considerable vibration. The recommended fits for some common applications are shown in Table 8.3 to 8.8. In the case of unusual operating conditions, it is advisable to consult NSK. For the accuracy and surface finish of shafts and housings, please refer to Section 13.1 (Page A270). A 162 A 163 Table 8.3 Fits of Radial Bearings with Shafts | | | | S | Shaft Diameter (mn | 1) | | | | |------------------------------|---|--|------------------------|--|--------------------------|-----------------------|--|--| | Load | Conditions | Examples | Ball Brgs | Cylindrical Roller
Brgs, Tapered
Roller Brgs | Spherical Roller
Brgs | Tolerance
of Shaft | Remarks | | | | | | Radial Bearings | with Cylindrical Bo | ores | | | | | Rotating
Outer | Easy axial displacement of inner ring on shaft desirable. | Wheels on
Stationary
Axles | | All Shaft Diameters | | g6 | Use g5 and h5 where accuracy is required. In case of large | | | Ring Load | Easy axial
displacement of
inner ring on shaft
unnecessary | Tension Pulleys
Rope Sheaves | | All Shart Diameters | | h6 | bearings, f6 can be used to allow easy axial movement. | | | | Liabtlanda | Electrical Home | <18 | _ | _ | js5 | | | | | Light Loads or Variable Loads $(<0.06C_{\rm r}(^1))$ | Appliances Pumps,
Blowers, Transport
Vehicles, Precision
Machinery, | 18 to 100 | <40 | _ | js6(j6) | | | | | | | 100 to 200 | 40 to 140 | _ | k6 | | | | | | Machine Tools | _ | 140 to 200 | _ | m6 | | | | | | | <18 | _ | _ | js5 or js6 (j5 or j6) | | | | | | Bearings,
Gears, | 18 to 100 | <40 | <40 | k5 or k6 | k6 and m6 can be | | | Rotating Inner | Normal Loads (0.06 to $0.13C_{\mathrm{r}}(^{1})$) | | 100 to 140 | 40 to 100 | 40 to 65 | m5 or m6 | used for single-row | | | Ring Load or
Direction of | | | 140 to 200 | 100 to 140 | 65 to 100 | m6 | tapered roller
bearings and single-
row angular contact
ball bearings
instead of k5 and
m5. | | | Load | | | 200 to 280 | 140 to 200 | 100 to 140 | n6 | | | | Indeterminate | | | _ | 200 to 400 | 140 to 280 | p6 | | | | | | Woodworking
Machines | _ | _ | 280 to 500 | r6 | | | | | | aooo | 1 | _ | over 500 | r7 | | | | | | Railway Axleboxes, | | 50 to 140 | 50 to 100 | n6 | Manathan ON | | | | Heavy Loads
or Shock Loads | Industrial Vehicles,
Traction Motors, | _ | 140 to 200 | 100 to 140 | p6 | More than CN
bearing internal | | | | $(>0.13C_{\rm r}(^1))$ | Construction
Equipment, | _ | over 200 | 140 to 200 | r6 | clearance is necessary. | | | | | Crushers | 1 | _ | 200 to 500 | r7 | niccessary. | | | Axial | Loads Only | | | All Shaft Diameters | 3 | js6 (j6) | _ | | | | | Rad | ial Bearings with | Tapered Bores and | Sleeves | | | | | ΔII Type | es of Loading | General bearing
Applications,
Railway Axleboxes | | All Shaft Diameters | | h9/IT5(²) | IT5 and IT7 mean that the deviation of the shaft from its true geometric form, e. g. roundness and cylindricity should be within the tolerances of IT5 and IT7 respectively. | | | ліі Турі | 55 of Loauling | Transmission Shafts,
Woodworking
Spindles | | All Ollait Dialifeters | , | h10/IT7(2) | | | Notes (¹) C_r represents the basic load rating of the bearing. (²) Refer to Appendix Table 11 on page E016 for the values of standard tolerance grades IT. (³) Refer to Tables 8.14.1 and 8.14.2 for the recommended fits of shafts used in electric motors for deep groove ball bearings with bore diameters ranging from 10 mm to 160 mm, and for cylindrical roller bearings with bore diameters ranging from 24 mm to 200 mm. **Remark** This table is applicable only to solid steel shafts. Table 8.4 Fits of Thrust Bearings with Shafts | Load Conditions | | Examples | Shaft Diameter (mm) | Tolerance of Shaft | Remarks | |-----------------------------|-------------------------------|-----------------------|---------------------|--------------------|---------| | Central A | Axial Load Only | Main Shafts of Lathes | All Shaft Diameters | h6 or
js6 (j6) | | | Combined | Stationary Inner
Ring Load | Cone Crushers | All Shaft Diameters | js6 (j6) | | | Radial and
Axial Loads | Rotating Inner Ring | Paper Pulp | <200 | k6 | _ | | (Spherical
Thrust Roller | Load or Direction of Load | Refiners,
Plastic | 200 to 400 | m6 | | | Bearings) | Indeterminate | Extruders | over 400 | n6 | | Table 8.5 Fits of Radial Bearings with Housings | | Load Co | | Examples | Tolerances for
Housing Bores | Axial Displacement of Outer Ring | Remarks | | |-------------------|---------------------------------------|--|---|---------------------------------|----------------------------------|--|--| | | | Heavy
Loads on Bearing in
Thin-Walled Housing or
Heavy Shock Loads | Automotive Wheel Hubs
(Roller Bearings)
Crane Travelling Wheels | P7 | | | | | | Rotating
Outer Ring | Normal or Heavy
Loads | Automotive Wheel Hubs
(Ball Bearings)
Vibrating Screens | N7 | - Impossible | _ | | | Solid
Housings | Load | Light or Variable
Loads | Conveyor Rollers
Rope Sheaves
Tension Pulleys | M7 | ППроззіліс | _ | | | | | Heavy Shock Loads | Traction Motors | | | | | | | Direction of
Load
Indeterminate | Normal or Heavy
Loads | Pumps
Crankshaft Main
Bearings | K7 | Generally
Impossible | If axial displacement of
the outer ring is not
required. | | | | muctommato | Normal or Light
Loads | Medium and Large
Motors(1) | JS7 (J7) | Possible | Axial displacement of
outer ring is
necessary. | | | Solid or
Split | | Loads of All kinds | General Bearing
Applications,
Railway Axleboxes | Н7 | | | | | Housings | | Normal or Light
Loads | Plummer Blocks | Н8 | Easily
possible | _ | | | | Rotating
Inner Ring
Load | High Temperature Rise
of Inner Ring Through
Shaft | Paper Dryers | G7 | | | | | | Loau | Accurate Running
Desirable under | Grinding Spindle Rear
Ball Bearings
High Speed Centrifugal
Compessor Free
Bearings | JS6 (J6) | Possible | _ | | | Solid Housing | Direction of
Load
Indeterminate | Normal or Light
Loads | Grinding Spindle Front
Ball Bearings
High Speed Centrifugal
Compressor Fixed
Bearings | K6 | Generally
Impossible | For heavy loads,
interference fit tighter
than K is used.
When high accuracy is
required, very strict
tolerances should be
used for fitting. | | | | Rotating | Accurate Running and
High Rigidity Desirable
under Variable Loads | Cylindrical Roller
Bearings for Machine
Tool Main Spindle | M6 or N6 | Impossible | | | | | Inner Ring
Load | Minimum noise is required. | Electrical Home
Appliances | Electrical Home H6 Easily | | _ | | Note (1) Refer to Tables 8.14.1 and 8.14.2 for the recommended fits of housing bores of deep groove ball bearings and cylindrical roller bearings for electric motors. Remarks 1. This table is applicable to cast iron and steel housings. For housings made of light alloys, the interference should be tighter than those in this table. 2. Refer to the introductory section of the bearing dimension tables (blue pages) for special fits such as drawn cup needle roller bearings. Table 8.6 Fits of Thrust Bearings with Housings | | Load Conditions | Bearing Types | Tolerances for
Housing Bores | Remarks | |--------------------|---------------------------------|--|----------------------------------|--| | | | Thrust Ball | Clearance over 0.25mm | For General Applications | | | | Bearings | H8 | When precision is required | | | Axial Loads Only | Spherical Thrust
Roller Bearings
Steep Angle
Tapered Roller
Bearings | Outer ring has radial clearance. | When radial loads are sustained by other bearings. | | Combined
Radial | Stationary Outer Ring Loads | Spherical Thrust | H7 or JS7 (J7) | _ | | and Axial | Rotating Outer Ring Loads or | Roller Bearings | K7 | Normal Loads | | Loads | Direction of Load Indeterminate | | M7 | Relatively Heavy Radial Loads | A 165 A 164 #### Table 8.7 Fits of Inch Design Tapered Roller Bearings with Shafts #### (1) Bearings of Precision Classes 4 and 2 Inits: um | _ ' | 200go 0 | | | | | | | | | Units : µm | |------------------------------|-------------------|---------|--------------|-----------------|--|------|------------------------------|------|-----------|--| | One | rating Conditions | | Nominal Bore | e Diameters d | Bore Diameter Tolerances Δ_{ds} | | Shaft Diameter
Tolerances | | - Remarks | | | Ope | ating conditions | OV | er | inc | ol. | | | | | Hemans | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | _ | = | 76.200 | 3.0000 | +13 | 0 | + 38 | + 25 | | | _ | Normal Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | + 64 | + 38 | For bearings with $d \le 152.4$ mm, | | s
s | NOTHIAI LUAUS | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | +127 | + 76 | clearance is usually larger than CN. | | glad | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +190 | +114 | | | Rotating Inner
Ring Loads | Heavy Loads | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 64 | + 38 | In general, bearings with a clear- | | 를 | Shock Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | * | | ance larger than CN are used. | | | High Speeds | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | * | | * means that the average | | | mg. opecas | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +381 | +305 | interference is about 0.0005 d . | | | | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 13 | 0 | The inner ring cannot be displaced axially | | - | | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | + 25 | 0 | When heavy or shock loads exist, the | | S | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | + 51 | 0 | figures in the above (Rotating inner ring | | oad
oad | Normal Loads | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | + 76 | 0 | loads, heavy or shock loads) apply. | | atir
g L | without Shocks | _ | | 76.200 | 3.0000 | +13 | 0 | 0 | - 13 | | | Rotating Outer
Ring Loads | | 76.200 | 3.0000 | 304.800 | 12.0000 | +25 | 0 | 0 | - 25 | The inner ring can be displaced | | | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | 0 | - 51 | axially. | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | 0 | - 76 | | #### (2) Bearings of Precision Classes 3 and 0 (1) Units: µm | | | | | | | | | | | οιπιο . μπ | | |------------------------------|----------------------------|---------------------------------------|---------|---------|---------|------|---|------|-----|---------------------------------|--| | One | rating Conditions | Nominal Bore Diameters $oldsymbol{d}$ | | | | | $\begin{array}{c} \text{Bore Diameter} \\ \text{Tolerances} \\ \Delta_{d\text{s}} \end{array} \hspace{-0.5cm} \text{Shaft Diameter} \\ \text{Tolerances} \end{array}$ | | | Remarks | | | Ope | rating conditions | OV | er | ind | ol. | | | | | Hemans | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | Drasisian | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 30 | +18 | | | | _ | Precision
Machine-Tool | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | + 30 | +18 | | | | s ne | Main Spindles | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | + 64 | +38 | _ | | | glr | Ividiii Opiiidioo | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +102 | +64 | | | | Rotating Inner
Ring Loads | Hansul anda | _ | | 76.200 | 3.0000 | +13 | 0 | _ | | | | | 3ot | Heavy Loads
Shock Loads | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | _ | _ | A minimum interference of about | | | | High Speeds | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | _ | _ | 0.00025 d is used. | | | | riigii opoodo | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | _ | | | | | nter | Drasisian | _ | _ | 76.200 | 3.0000 | +13 | 0 | + 30 | +18 | | | | g Or | Precision
Machine-Tool | 76.200 | 3.0000 | 304.800 | 12.0000 | +13 | 0 | + 30 | +18 | | | | Rotating Outer
Ring Loads | Main Spindles | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | + 64 | +38 | _ | | | 쨢둞 | iviani opinalos | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +102 | +64 | | | **Note** (1) For bearings with d greater than 304.8 mm, Class 0 does not exist. #### Table 8.8 Fits of Inch Design Tapered Roller Bearings with Housings #### (1) Bearings of Precision Classes 4 and 2 Units: µm | One | rating Conditions | Nominal Outside Diameters D | | | | | Outside Diameter Tolerances $\varDelta_{D\mathrm{s}}$ | | ig Bore
neter
ances | - Remarks | | |------------------------------|--|-------------------------------|---------|---------|---------|------|---|------|---------------------------|------------------------------------|--| | Орс | rating conditions | 01 | ver | ind | l. | | | | | Hemarks | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | - | | 76.200 | 3.0000 | +25 | 0 | + 76 | + 51 | | | | | Used either | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | + 76 | + 51 | The outer ring can be easily | | | | on free-end or | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | + 76 | + 51 | displaced axially. | | | g | fixed-end | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | +152 | +102 | displaced axially. | | | Loads | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +229 | +152 | | | | ω | | - | _ | 76.200 | 3.0000 | +25 | 0 | + 25 | 0 | | | | Ring | The outer ring position can be adjusted axially. | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | + 25 | 0 | The outer ring can be displaced | | | ner | | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | + 51 | 0 | axially. | | | n n | | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | + 76 | + 25 | ariany. | | | Rotating Inner | | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | +127 | + 51 | | | | ota | The autor sine | = | _ | 76.200 | 3.0000 | +25 | 0 | - 13 | - 38 | | | | <u>~</u> | The outer ring position cannot | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | - 25 | - 51 | Generally, the outer ring is fixed | | | | be adjusted | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | - 25 | - 51 | axially. | | | | axially. | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | - 25 | - 76 | ariany. | | | | , | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | - 25 |
-102 | | | | ıter | Normal Loads | - | _ | 76.200 | 3.0000 | +25 | 0 | - 13 | - 38 | | | | 5
S
S | The outer ring | 76.200 | 3.0000 | 127.000 | 5.0000 | +25 | 0 | - 25 | - 51 | | | | Rotating Outer
Ring Loads | position cannot | 127.000 | 5.0000 | 304.800 | 12.0000 | +25 | 0 | - 25 | - 51 | The outer ring is fixed axially. | | | otat
ng | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +51 | 0 | - 25 | - 76 | | | | <u> </u> | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +76 | 0 | - 25 | -102 | | | #### (2) Bearings of Precision Classes 3 and 0 (1) Units : μm | One | rating Conditions | ominal Outsid | de Diameters L | e Diameters D | | | Housing Bore
Diameter
Tolerances | | - Remarks | | | |------------------------------|--------------------------------|---------------|------------------|-----------------|---------|------|--|------|-----------|------------------------------------|--| | Ope | rating conditions | OV | er | incl. | | | | | | Hemaiks | | | | | (mm) | 1/25.4 | (mm) | 1/25.4 | high | low | high | low | | | | | | _ | _ | 152.400 | 6.0000 | +13 | 0 | +38 | +25 | | | | | Used on free- | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +38 | +25 | The outer ring can be easily | | | | end | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +64 | +38 | displaced axially. | | | | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +89 | +51 | | | | ads | | _ | _ | 152.400 | 6.0000 | +13 | 0 | +25 | +13 | | | | 2 | Used on fixed- | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +25 | +13 | The outer ring can be displaced | | | ing | end | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +51 | +25 | axially. | | | r. | | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +76 | +38 | | | | Rotating Inner Ring Loads | The autor sine | _ | | 152.400 | 6.0000 | +13 | 0 | +13 | 0 | | | | l gr | The outer ring position can be | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | +25 | 0 | Generally, the outer ring is fixed | | | ati | adjusted axially. | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | +25 | 0 | axially. | | | Rot | adjusted analy. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | +38 | 0 | | | | | The outer ring | _ | _ | 152.400 | 6.0000 | +13 | 0 | 0 | -13 | | | | | position cannot | 152.400 | 6.0000 | 304.800 | 12.0000 | +13 | 0 | 0 | -25 | The outer ring is fixed axially. | | | | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | 0 | -25 | The outer fing is fixed axially. | | | | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | 0 | -38 | | | | ter | Normal Loads | _ | - | 76.200 | 3.0000 | +13 | 0 | -13 | -25 | | | | Rotating Outer
Ring Loads | The outer ring | 76.200 | 3.0000 | 152.400 | 6.0000 | +13 | 0 | -13 | -25 | | | | ing | position cannot | | 6.0000 | 304.800 | 12.0000 | +13 | 0 | -13 | -38 | The outer ring is fixed axially. | | | otat | be adjusted | 304.800 | 12.0000 | 609.600 | 24.0000 | +25 | 0 | -13 | -38 | | | | <u> </u> | axially. | 609.600 | 24.0000 | 914.400 | 36.0000 | +38 | 0 | -13 | -51 | | | **Note** (1) For bearings with D greater than 304.8 mm, Class 0 does not exist. A 166 A 167 #### 8.2 Bearing Internal Clearances #### 8.2.1 Internal Clearances and Their Standards The internal clearance in rolling bearings in operation greatly influences bearing performance including fatigue life, vibration, noise, heat-generation, etc. Consequently, the selection of the proper internal clearance is one of the most important tasks when choosing a bearing after the type and size have been determined. This bearing internal clearance is the combined clearances between the inner/outer rings and rolling elements. The radial and axial clearances are defined as the total amount that one ring can be displaced relative to the other in the radial and axial directions respectively (Fig. 8.7). To obtain accurate measurements, the clearance is generally measured by applying a specified measuring load on the bearing; therefore, the measured clearance (sometimes called "measured clearance" to make a distinction) is always slightly larger than the theoretical internal clearance (called "geometrical clearance" for radial bearings) by the amount of elastic deformation caused by the measuring load. Therefore, the theoretical internal clearance may be obtained by correcting the measured clearance by the amount of elastic deformation. However, in the case of roller bearings this elastic deformation is negligibly Usually the clearance before mounting is the one specified as the theoretical internal clearance. In Table 8.9, reference table and page numbers are listed by bearing types. Table 8.9 Index for Radial Internal Clearances by Bearing Types | Be | earing Types | Table
Number | Page
Number | |----------------------------------|--|-----------------|----------------| | Deep Groove Ba | all Bearings | 8.10 | A169 | | Extra Small and | Miniature Ball Bearings | 8.11 | A169 | | Magneto Bearin | gs | 8.12 | A169 | | Self-Aligning Ba | ıll Bearings | 8.13 | A170 | | Deep Groove
Ball Bearings | Fan Mataur | 8.14.1 | A170 | | Cylindrical
Roller Bearings | For Motors | 8.14.2 | A170 | | Cylindrical
Roller Bearings | With Cylindrical Bores
With Cylindrical Bores
(Matched)
With Tapered Bores
(Matched) | 8.15 | A171 | | Spherical
Roller Bearings | With Cylindrical Bores
With Tapered Bores | 8.16 | A172 | | Double-Row an
Roller Bearings | d Combined Tapered | 8.17 | A173 | | Combined Angu
Bearings (1) | ılar Contact Ball | 8.18 | A174 | | Four-Point Cont | act Ball Bearings (1) | 8.19 | A174 | Note (1) Values given are axial clearances. Table 8.10 Radial Internal Clearances in Deep Groove Ball Bearings Units: um | Nominal Bo
Diameter | | | | | | Clear | ance | | | | | |------------------------|----------|-------------|--------------|-------------|----------------|---------------|----------------|----------------|----------------|----------------|----------------| | d (mm) | | C | 2 | С | N | С | 3 | C | 4 | С | 25 | | over | incl. | min. | max. | | 10 only
10
18 | 18
24 | 0
0
0 | 7
9
10 | 2
3
5 | 13
18
20 | 8
11
13 | 23
25
28 | 14
18
20 | 29
33
36 | 20
25
28 | 37
45
48 | | 24 | 30 | 1 | 11 | 5 | 20 | 13 | 28 | 23 | 41 | 30 | 53 | | 30 | 40 | 1 | 11 | 6 | 20 | 15 | 33 | 28 | 46 | 40 | 64 | | 40 | 50 | 1 | 11 | 6 | 23 | 18 | 36 | 30 | 51 | 45 | 73 | | 50 | 65 | 1 | 15 | 8 | 28 | 23 | 43 | 38 | 61 | 55 | 90 | | 65 | 80 | 1 | 15 | 10 | 30 | 25 | 51 | 46 | 71 | 65 | 105 | | 80 | 100 | 1 | 18 | 12 | 36 | 30 | 58 | 53 | 84 | 75 | 120 | | 120 | 120 | 2 | 20 | 15 | 41 | 36 | 66 | 61 | 97 | 90 | 140 | | | 140 | 2 | 23 | 18 | 48 | 41 | 81 | 71 | 114 | 105 | 160 | | | 160 | 2 | 23 | 18 | 53 | 46 | 91 | 81 | 130 | 120 | 180 | | 180 | 180 | 2 | 25 | 20 | 61 | 53 | 102 | 91 | 147 | 135 | 200 | | | 200 | 2 | 30 | 25 | 71 | 63 | 117 | 107 | 163 | 150 | 230 | | | 225 | 2 | 35 | 25 | 85 | 75 | 140 | 125 | 195 | 175 | 265 | | 250 | 250 | 2 | 40 | 30 | 95 | 85 | 160 | 145 | 225 | 205 | 300 | | | 280 | 2 | 45 | 35 | 105 | 90 | 170 | 155 | 245 | 225 | 340 | | | 315 | 2 | 55 | 40 | 115 | 100 | 190 | 175 | 270 | 245 | 370 | | 355 | 355 | 3 | 60 | 45 | 125 | 110 | 210 | 195 | 300 | 275 | 410 | | | 400 | 3 | 70 | 55 | 145 | 130 | 240 | 225 | 340 | 315 | 460 | | | 450 | 3 | 80 | 60 | 170 | 150 | 270 | 250 | 380 | 350 | 510 | | 500 | 500 | 3 | 90 | 70 | 190 | 170 | 300 | 280 | 420 | 390 | 570 | | | 560 | 10 | 100 | 80 | 210 | 190 | 330 | 310 | 470 | 440 | 630 | | | 630 | 10 | 110 | 90 | 230 | 210 | 360 | 340 | 520 | 490 | 690 | | | 710 | 20 | 130 | 110 | 260 | 240 | 400 | 380 | 570 | 540 | 760 | | | 800 | 20 | 140 | 120 | 290 | 270 | 450 | 430 | 630 | 600 | 840 | **Remarks** To obtain the measured values, use the clearance correction for radial clearance increase caused by the measuring load in the table below. > For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for bearings near the maximum clearance range. > > Units: μm | Nominal Dia. d (r | | Meas
Lo | | | lial Cle
ount | arance | Correc | tion | |---------------------|-------|------------|-------------|--------|------------------|--------|--------|------| | over | incl. | (N) | au
{kgf} | C2 | CN | СЗ | C4 | C5 | | 10 (incl) | 18 | 24.5 | {2.5} | 3 to 4 | 4 | 4 | 4 | 4 | | 18 | 50 | 49 | {5} | 4 to 5 | 5 | 6 | 6 | 6 | | 50 | 280 | 147 | {15} | 6 to 8 | 8 | 9 | 9 | 9 | Remark For values exceeding 280 mm, please contact NSK. Table 8.11 Radial Internal Clearances in Extra **Small and Miniature Ball Bearings** Units: µm | Clear-
ance
Symbol | М | C1 | M | C2 | M | СЗ | М | C4 | M | C5 | M | C6 | |--------------------------|------|------|------|------|------|------|------|------|------|------|------|------| | | min. | max. | | Clear-
ance | 0 | 5 | 3 | 8 | 5 | 10 | 8 | 13 | 13 | 20 | 20 | 28 | **Remarks** 1. The standard clearance is MC3. 2. To obtain the measured value, add correction amount in the table below. Units: um | Clearance
Symbol | MC1 | MC2 | мс3 | MC4 | MC5 | MC6 | |----------------------------------|-----|-----|-----|-----|-----|-----| | Clearance
Correction
Value | 1 | 1 | 1 | 1 | 2 | 2 | The measuring loads are as follows: For miniature ball bearings* 2.5N {0.25kgf} For extra small ball bearings* 4.4N {0.45kgf} *For their classification, refer to Table 1 on Page C054. #### Table 8.12 Radial Internal Clearances in **Magneto Bearings** | | | | Offica . | μ 1111 | |--------------------|-------|-------------------|----------|--------| | Nomina Diam d (n | eter | Bearing
Series | Clea | rance | | over | incl. | | min. | max. | | 2.5 | 20 | EN | 10 | 50 | | 2.5 | 30 | Е | 30 | 60 | A 168 Table 8.13 Radial Internal Clearances in Self-Aligning Ball Bearings Units: µm |
Nominal | | | Cl | earanc | e in Be | arings | with C | ylindri | cal Bo | res | | | (| Clearan | ce in B | earing | s with | Tapere | d Bore | IS. | | |-----------------|------------------|--------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-------------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|------------------|------------------|-------------------| | Dia. d (| mm) | C | 2 | C | N | (| 3 | C | 4 | C | 5 | (| 22 | C | N | C | 3 | C | 4 | C | 25 | | over | incl. | min. | max. | 2.5
6
10 | 6
10
14 | 1
2
2 | 8
9
10 | 5
6
6 | 15
17
19 | 10
12
13 | 20
25
26 | 15
19
21 | 25
33
35 | 21
27
30 | 33
42
48 | = | Ξ | = | = | | Ξ | | Ξ | = | = | | 14
18
24 | 18
24
30 | 3
4
5 | 12
14
16 | 8
10
11 | 21
23
24 | 15
17
19 | 28
30
35 | 23
25
29 | 37
39
46 | 32
34
40 | 50
52
58 | 7
9 |
17
20 | 13
15 | 26
28 | 20
23 | 33
39 | 28
33 | 42
50 | 37
44 |
55
62 | | 30
40
50 | 40
50
65 | 6
6
7 | 18
19
21 | 13
14
16 | 29
31
36 | 23
25
30 | 40
44
50 | 34
37
45 | 53
57
69 | 46
50
62 | 66
71
88 | 12
14
18 | 24
27
32 | 19
22
27 | 35
39
47 | 29
33
41 | 46
52
61 | 40
45
56 | 59
65
80 | 52
58
73 | 72
79
99 | | 65
80
100 | 80
100
120 | 8
9
10 | 24
27
31 | 18
22
25 | 40
48
56 | 35
42
50 | 60
70
83 | 54
64
75 | 83
96
114 | 76
89
105 | 108
124
145 | 23
29
35 | 39
47
56 | 35
42
50 | 57
68
81 | 50
62
75 | 75
90
108 | 69
84
100 | 98
116
139 | 91
109
130 | 123
144
170 | | 120
140 | 140
160 | 10
15 | 38
44 | 30
35 | 68
80 | 60
70 | 100
120 | 90
110 | 135
161 | 125
150 | 175
210 | 40
45 | 68
74 | 60
65 | 98
110 | 90
100 | 130
150 | 120
140 | 165
191 | 155
180 | 205
240 | #### Table 8.14 Radial Internal Clearances in Bearings for Electric Motors Table 8.14. 1 Deep Groove Ball Bearings for Electric Motors | | | | | Units | 3:μm | |-------------|-------|------|-------|----------|--------------------------| | Nominal E | Bore | Clea | rance | Ren | narks | | Dia. d (m | ım) | С | M | Recomn | nended fit | | over | incl. | min. | max. | Shaft | Housing Bore | | 10 (incl) | 18 | 4 | 11 | js5 (j5) | | | 18 | 30 | 5 | 12 | | | | 30 | 50 | 9 | 17 | | H6, H7(1) | | 50 | 80 | 12 | 22 | k5 | or | | 50 | 00 | 12 | 22 | | JS6, JS7 | | 80 | 100 | 18 | 30 | | (J6, J7)(²) | | 100 | 120 | 18 | 30 | | | | 100 | 120 | 10 | 30 | m5 | | | 120 | 160 | 24 | 38 | | | **Notes** (1) Applicable to outer rings that require movement in the axial direction. (2) Applicable to outer rings that do not require movement in the axial direction. Remark The radial clearance increase caused by the measuring load is equal to the correction amount for CN clearance in the remarks under Table 8.10. Table 8.14.2 Cylindrical Roller Bearings for Electric Motors $\text{Units:} \, \mu m$ | Nomina | | | Clear | rance | | F | Remarks | |----------|-------|-----------|-----------|--------------|-------------|-------|-------------------------| | Dia. d | (mm) | Interchan | geable CT | Non-Intercha | angeable CM | Reco | mmended Fit | | over | incl. | min. | max. | min. | max. | Shaft | Housing Bore | | 24 | 40 | 15 | 35 | 15 | 30 | k5 | | | 40 | 50 | 20 | 40 | 20 | 35 | | | | 50 | 65 | 25 | 45 | 25 | 40 | | | | 65 | 80 | 30 | 50 | 30 | 45 | | | | 80 | 100 | 35 | 60 | 35 | 55 | m5 | JS6, JS7
(J6, J7)(1) | | 100 | 120 | 35 | 65 | 35 | 60 | | or | | 120 | 140 | 40 | 70 | 40 | 65 | | K6, K7(2) | | 140 | 160 | 50 | 85 | 50 | 80 | | | | 160 | 180 | 60 | 95 | 60 | 90 | n6 | | | 180 | 200 | 65 | 105 | 65 | 100 | | | **Notes** (1) Applicable to outer rings that require movement in the axial direction. (2) Applicable to outer rings that do not require movement in the axial direction. Table 8.15 Radial Internal Clearances in Cylindrical Roller Bearings and Solid-Type Needle Roller Bearings Units : μm | | ninal
e Dia. | | | | | ances
Cylind | | | | | | | | | Cleara | nces ir
w | | | angeal
I Bores | | rings | | | |----------|-----------------|-------------|----------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------|----------|------------|----------|----------|--------------|--------------|----------|----------|-------------------|----------|----------|----------|----------| | d (| mm) | C | 2 | С | N | C | 3 | C | 4 | C | 5 | C | C1 | C | CC2 | CC | (1) | C | C3 | C | C4 | C | C5 | | over | incl. | min. | max. | 10
24 | 10
24
30 | 0
0
0 | 25
25
25 | 20
20
20 | 45
45
45 | 35
35
35 | 60
60
60 | 50
50
50 | 75
75
75 | 65
70 | 90
95 |
5
5 | 15
15 | 10
10 |
20
25 | | 30
35 | 35
40 | 45
50 | 45
50 | 55
60 | 65
70 | 75
80 | | 30 | 40 | 5 | 30 | 25 | 50 | 45 | 70 | 60 | 85 | 80 | 105 | 5 | 15 | 12 | 25 | 25 | 40 | 45 | 55 | 55 | 70 | 80 | 95 | | 40 | 50 | 5 | 35 | 30 | 60 | 50 | 80 | 70 | 100 | 95 | 125 | 5 | 18 | 15 | 30 | 30 | 45 | 50 | 65 | 65 | 80 | 95 | 110 | | 50 | 65 | 10 | 40 | 40 | 70 | 60 | 90 | 80 | 110 | 110 | 140 | 5 | 20 | 15 | 35 | 35 | 50 | 55 | 75 | 75 | 90 | 110 | 130 | | 65 | 80 | 10 | 45 | 40 | 75 | 65 | 100 | 90 | 125 | 130 | 165 | 10 | 25 | 20 | 40 | 40 | 60 | 70 | 90 | 90 | 110 | 130 | 150 | | 80 | 100 | 15 | 50 | 50 | 85 | 75 | 110 | 105 | 140 | 155 | 190 | 10 | 30 | 25 | 45 | 45 | 70 | 80 | 105 | 105 | 125 | 155 | 180 | | 100 | 120 | 15 | 55 | 50 | 90 | 85 | 125 | 125 | 165 | 180 | 220 | 10 | 30 | 25 | 50 | 50 | 80 | 95 | 120 | 120 | 145 | 180 | 205 | | 120 | 140 | 15 | 60 | 60 | 105 | 100 | 145 | 145 | 190 | 200 | 245 | 10 | 35 | 30 | 60 | 60 | 90 | 105 | 135 | 135 | 160 | 200 | 230 | | 140 | 160 | 20 | 70 | 70 | 120 | 115 | 165 | 165 | 215 | 225 | 275 | 10 | 35 | 35 | 65 | 65 | 100 | 115 | 150 | 150 | 180 | 225 | 260 | | 160 | 180 | 25 | 75 | 75 | 125 | 120 | 170 | 170 | 220 | 250 | 300 | 10 | 40 | 35 | 75 | 75 | 110 | 125 | 165 | 165 | 200 | 250 | 285 | | 200 | 200 | 35 | 90 | 90 | 145 | 140 | 195 | 195 | 250 | 275 | 330 | 15 | 45 | 40 | 80 | 80 | 120 | 140 | 180 | 180 | 220 | 275 | 315 | | | 225 | 45 | 105 | 105 | 165 | 160 | 220 | 220 | 280 | 305 | 365 | 15 | 50 | 45 | 90 | 90 | 135 | 155 | 200 | 200 | 240 | 305 | 350 | | | 250 | 45 | 110 | 110 | 175 | 170 | 235 | 235 | 300 | 330 | 395 | 15 | 50 | 50 | 100 | 100 | 150 | 170 | 215 | 215 | 265 | 330 | 380 | | 280 | 280 | 55 | 125 | 125 | 195 | 190 | 260 | 260 | 330 | 370 | 440 | 20 | 55 | 55 | 110 | 110 | 165 | 185 | 240 | 240 | 295 | 370 | 420 | | | 315 | 55 | 130 | 130 | 205 | 200 | 275 | 275 | 350 | 410 | 485 | 20 | 60 | 60 | 120 | 120 | 180 | 205 | 265 | 265 | 325 | 410 | 470 | | | 355 | 65 | 145 | 145 | 225 | 225 | 305 | 305 | 385 | 455 | 535 | 20 | 65 | 65 | 135 | 135 | 200 | 225 | 295 | 295 | 360 | 455 | 520 | | 355 | | 100 | 190 | 190 | 280 | 280 | 370 | 370 | 460 | 510 | 600 | 25 | 75 | 75 | 150 | 150 | 225 | 255 | 330 | 330 | 405 | 510 | 585 | | 400 | | 110 | 210 | 210 | 310 | 310 | 410 | 410 | 510 | 565 | 665 | 25 | 85 | 85 | 170 | 170 | 255 | 285 | 370 | 370 | 455 | 565 | 650 | | 450 | | 110 | 220 | 220 | 330 | 330 | 440 | 440 | 550 | 625 | 735 | 25 | 95 | 95 | 190 | 190 | 285 | 315 | 410 | 410 | 505 | 625 | 720 | Note (1) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings. Units: µm | 1 | Man | election and | | | | | | | | | | | | | | | σιπισ . μ | | |---|-------------------|-------------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | Bore | ninal | | | | | Clearar | ices in N | on-Inter | changea | ble Bear | ings wit | h Tapere | d Bores | | | | | | | <i>d</i> (r | | CC | 9 (1) | C | C0 | С | C1 | C | C2 | CC | C (2) | C | C3 | C | C4 | С | C5 | | | over | incl. | min. | max. | | 10
24
30 | 24
30
40 | 5
5
5 | 10
10
12 | _
8
8 | —
15
15 | 10
10
12 | 20
25
25 | 20
25
25 | 30
35
40 | 35
40
45 | 45
50
55 | 45
50
55 | 55
60
70 | 55
60
70 | 65
70
80 | 75
80
95 | 85
95
110 | | | 40
50
65 | 50
65
80 | 5
5
10 | 15
15
20 | 10
10
15 | 20
20
30 | 15
15
20 | 30
35
40 | 30
35
40 | 45
50
60 | 50
55
70 | 65
75
90 | 65
75
90 | 80
90
110 | 80
90
110 | 95
110
130 | 110
130
150 | 125
150
170 | | | 80
100
120 | 100
120
140 | 10
10
15 | 25
25
30 | 20
20
25 | 35
35
40 | 25
25
30 | 45
50
60 | 45
50
60 | 70
80
90 | 80
95
105 | 105
120
135 | 105
120
135 | 125
145
160 | 125
145
160 | 150
170
190 | 180
205
230 | 205
230
260 | | | 140
160
180 | 160
180
200 | 15
15
20 | 35
35
40 | 30
30
30 | 50
50
50 | 35
35
40 | 65
75
80 | 65
75
80 | 100
110
120 | 115
125
140 | 150
165
180 | 150
165
180 | 180
200
220 | 180
200
220 | 215
240
260 | 260
285
315 | 295
320
355 | | | 200
225
250 | 225
250
280 | 20
25
25 | 45
50
55 | 35
40
40 | 60
65
70 | 45
50
55 | 90
100
110 |
90
100
110 | 135
150
165 | 155
170
185 | 200
215
240 | 200
215
240 | 240
265
295 | 240
265
295 | 285
315
350 | 350
380
420 | 395
430
475 | | | 280
315
355 | 315
355
400 | 30
30
35 | 60
65
75 | | _ | 60
65
75 | 120
135
150 | 120
135
150 | 180
200
225 | 205
225
255 | 265
295
330 | 265
295
330 | 325
360
405 | 325
360
405 | 385
430
480 | 470
520
585 | 530
585
660 | | | 400
450 | 450
500 | 40
45 | 85
95 | _ | = | 85
95 | 170
190 | 170
190 | 255
285 | 285
315 | 370
410 | 370
410 | 455
505 | 455
505 | 540
600 | 650
720 | 735
815 | Notes (1) Clearance CC9 is applicable to cylindrical roller bearings with tapered bores in ISO Tolerance Classes 5 and 4. (2) CC denotes normal clearance for non-Interchangeable cylindrical roller bearings and solid-type needle roller bearings. A 170 Table 8.16 Radial Internal Clearances in Spherical Roller Bearings Units : μm | | ninal
Dia. | | (| Cleara | nce in | Bear | ngs wit | th Cylin | drical B | ores | | | | Cle | arance | in Beari | ngs wit | h Taper | ed Bore | S | | |-------|---------------|-----|-------|--------|--------|------|---------|----------|----------|-------|-------|------|-------|------|--------|----------|---------|---------|---------|-------|-------| | | mm) | (| 22 | С | N | (| 23 | C | 4 | C | 5 | C | 22 | (| CN | C | 23 | С | 4 | (| 25 | | over | incl. | min | .max. | min. | .max. | min. | max. | min. | max. | min. | max. | min. | .max. | min. | max. | min. | max. | min. | max. | min. | max. | | 24 | 30 | 15 | 25 | 25 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | 20 | 30 | 30 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | | 30 | 40 | 15 | 30 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 25 | 35 | 35 | 50 | 50 | 65 | 65 | 85 | 85 | 105 | | 40 | 50 | 20 | 35 | 35 | 55 | 55 | 75 | 75 | 100 | 100 | 125 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 100 | 130 | | 50 | 65 | 20 | 40 | 40 | 65 | 65 | 90 | 90 | 120 | 120 | 150 | 40 | 55 | 55 | 75 | 75 | 95 | 95 | 120 | 120 | 160 | | 65 | 80 | 30 | 50 | 50 | 80 | 80 | 110 | 110 | 145 | 145 | 180 | 50 | 70 | 70 | 95 | 95 | 120 | 120 | 150 | 150 | 200 | | 80 | 100 | 35 | 60 | 60 | 100 | 100 | 135 | 135 | 180 | 180 | 225 | 55 | 80 | 80 | 110 | 110 | 140 | 140 | 180 | 180 | 230 | | 100 | 120 | 40 | 75 | 75 | 120 | 120 | 160 | 160 | 210 | 210 | 260 | 65 | 100 | 100 | 135 | 135 | 170 | 170 | 220 | 220 | 280 | | 120 | 140 | 50 | 95 | 95 | 145 | 145 | 190 | 190 | 240 | 240 | 300 | 80 | 120 | 120 | 160 | 160 | 200 | 200 | 260 | 260 | 330 | | 140 | 160 | 60 | 110 | 110 | 170 | 170 | 220 | 220 | 280 | 280 | 350 | 90 | 130 | 130 | 180 | 180 | 230 | 230 | 300 | 300 | 380 | | 160 | 180 | 65 | 120 | 120 | 180 | 180 | 240 | 240 | 310 | 310 | 390 | 100 | 140 | 140 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | | 180 | 200 | 70 | 130 | 130 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | 110 | 160 | 160 | 220 | 220 | 290 | 290 | 370 | 370 | 470 | | 200 | 225 | 80 | 140 | 140 | 220 | 220 | 290 | 290 | 380 | 380 | 470 | 120 | 180 | 180 | 250 | 250 | 320 | 320 | 410 | 410 | 520 | | 225 | 250 | 90 | 150 | 150 | 240 | 240 | 320 | 320 | 420 | 420 | 520 | 140 | 200 | 200 | 270 | 270 | 350 | 350 | 450 | 450 | 570 | | 250 | 280 | 100 | 170 | 170 | 260 | 260 | 350 | 350 | 460 | 460 | 570 | 150 | 220 | 220 | 300 | 300 | 390 | 390 | 490 | 490 | 620 | | 280 | 315 | 110 | 190 | 190 | 280 | 280 | 370 | 370 | 500 | 500 | 630 | 170 | 240 | 240 | 330 | 330 | 430 | 430 | 540 | 540 | 680 | | 315 | 355 | 120 | 200 | 200 | 310 | 310 | 410 | 410 | 550 | 550 | 690 | 190 | 270 | 270 | 360 | 360 | 470 | 470 | 590 | 590 | 740 | | 355 | 400 | 130 | 220 | 220 | 340 | 340 | 450 | 450 | 600 | 600 | 750 | 210 | 300 | 300 | 400 | 400 | 520 | 520 | 650 | 650 | 820 | | 400 | 450 | 140 | 240 | 240 | 370 | 370 | 500 | 500 | 660 | 660 | 820 | 230 | 330 | 330 | 440 | 440 | 570 | 570 | 720 | 720 | 910 | | 450 | 500 | 140 | 260 | 260 | 410 | 410 | 550 | 550 | 720 | 720 | 900 | 260 | 370 | 370 | 490 | 490 | 630 | 630 | 790 | 790 | 1 000 | | 500 | 560 | 150 | 280 | 280 | 440 | 440 | 600 | 600 | 780 | 780 | 1 000 | 290 | 410 | 410 | 540 | 540 | 680 | 680 | 870 | 870 | 1 100 | | 560 | 630 | 170 | 310 | 310 | 480 | 480 | 650 | 650 | 850 | 850 | 1 100 | 320 | 460 | 460 | 600 | 600 | 760 | 760 | 980 | 980 | 1 230 | | 630 | 710 | 190 | 350 | 350 | 530 | 530 | 700 | 700 | 920 | 920 | 1 190 | 350 | 510 | 510 | 670 | 670 | 850 | 850 | 1 090 | 1 090 | 1 360 | | 710 | 800 | 210 | 390 | 390 | 580 | 580 | 770 | 770 | 1 010 | 1 010 | 1 300 | 390 | 570 | 570 | 750 | 750 | 960 | 960 | 1 220 | 1 220 | 1 500 | | 800 | 900 | 230 | 430 | 430 | 650 | 650 | 860 | 860 | 1 120 | 1 120 | 1 440 | 440 | 640 | 640 | 840 | 840 | 1 070 | 1 070 | 1 370 | 1 370 | 1 690 | | 900 | 1 000 | 260 | 480 | 480 | 710 | 710 | 930 | 930 | 1 220 | 1 220 | 1 570 | 490 | 710 | 710 | 930 | 930 | 1 190 | 1 300 | 1 520 | 1 520 | 1 860 | | 1 000 | 1 120 | 290 | 530 | 530 | 780 | 780 | 1 020 | 1 020 | 1 330 | — | — | 530 | 770 | 770 | 1 030 | 1 030 | 1 300 | | 1 670 | — | — | | 1 120 | 1 250 | 320 | 580 | 580 | 860 | 860 | 1 120 | 1 120 | 1 460 | — | — | 570 | 830 | 830 | 1 120 | 1 120 | 1 420 | | 1 830 | — | — | | 1 250 | 1 400 | 350 | 640 | 640 | 950 | 950 | 1 240 | 1 240 | 1 620 | — | — | 620 | 910 | 910 | 1 230 | 1 230 | 1 560 | | 2 000 | — | — | Table 8.17 Radial Internal Clearances in Double-Row and Combined Tapered Roller Bearings Units : μm | | ndrical | | Clearance | | | | | | | | | | | |----------------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------|----------------|----------------|----------------| | Bore
Tape | red Bore | C | 21 | C | 2 | С | N | C | 3 | C | 24 | C | 5 | | Nominal Bo
Dia. d (mn | | - | _ | C | 1 | C | 2 | С | N | C | 23 | C | 4 | | over | incl. | min. | max. | | 18
24 | 18
24
30 | 0
0
0 | 10
10
10 | 10
10
10 | 20
20
20 | 20
20
20 | 30
30
30 | 35
35
40 | 45
45
50 | 50
50
50 | 60
60
60 | 65
65
70 | 75
75
80 | | 30 | 40 | 0 | 12 | 12 | 25 | 25 | 40 | 45 | 60 | 60 | 75 | 80 | 95 | | 40 | 50 | 0 | 15 | 15 | 30 | 30 | 45 | 50 | 65 | 65 | 80 | 95 | 110 | | 50 | 65 | 0 | 15 | 15 | 35 | 35 | 55 | 60 | 80 | 80 | 100 | 110 | 130 | | 65 | 80 | 0 | 20 | 20 | 40 | 40 | 60 | 70 | 90 | 90 | 110 | 130 | 150 | | 80 | 100 | 0 | 25 | 25 | 50 | 50 | 75 | 80 | 105 | 105 | 130 | 155 | 180 | | 100 | 120 | 5 | 30 | 30 | 55 | 55 | 80 | 90 | 115 | 120 | 145 | 180 | 210 | | 120 | 140 | 5 | 35 | 35 | 65 | 65 | 95 | 100 | 130 | 135 | 165 | 200 | 230 | | 140 | 160 | 10 | 40 | 40 | 70 | 70 | 100 | 110 | 140 | 150 | 180 | 220 | 260 | | 160 | 180 | 10 | 45 | 45 | 80 | 80 | 115 | 125 | 160 | 165 | 200 | 250 | 290 | | 180 | 200 | 10 | 50 | 50 | 90 | 90 | 130 | 140 | 180 | 180 | 220 | 280 | 320 | | 200 | 225 | 20 | 60 | 60 | 100 | 100 | 140 | 150 | 190 | 200 | 240 | 300 | 340 | | 225 | 250 | 20 | 65 | 65 | 110 | 110 | 155 | 165 | 210 | 220 | 270 | 330 | 380 | | 250 | 280 | 20 | 70 | 70 | 120 | 120 | 170 | 180 | 230 | 240 | 290 | 370 | 420 | | 280 | 315 | 30 | 80 | 80 | 130 | 130 | 180 | 190 | 240 | 260 | 310 | 410 | 460 | | 315 | 355 | 30 | 80 | 80 | 130 | 140 | 190 | 210 | 260 | 290 | 350 | 450 | 510 | | 355 | 400 | 40 | 90 | 90 | 140 | 150 | 200 | 220 | 280 | 330 | 390 | 510 | 570 | | 400 | 450 | 45 | 95 | 95 | 145 | 170 | 220 | 250 | 310 | 370 | 430 | 560 | 620 | | 450 | 500 | 50 | 100 | 100 | 150 | 190 | 240 | 280 | 340 | 410 | 470 | 620 | 680 | | 500 | 560 | 60 | 110 | 110 | 160 | 210 | 260 | 310 | 380 | 450 | 520 | 700 | 770 | | 560 | 630 | 70 | 120 | 120 | 170 | 230 | 290 | 350 | 420 | 500 | 570 | 780 | 850 | | 630 | 710 | 80 | 130 | 130 | 180 | 260 | 310 | 390 | 470 | 560 | 640 | 870 | 950 | | 710 | 800 | 90 | 140 | 150 | 200 | 290 | 340 | 430 | 510 | 630 | 710 | 980 | 1 060 | | 800 | 900 | 100 | 150 | 160 | 210 | 320 | 370 | 480 | 570 | 700 | 790 | 1 100 | 1 200 | | 900 | 1 000 | 120 | 170 | 180 | 230 | 360 | 410 | 540 | 630 | 780 | 870 | 1 200 | 1 300 | | 1 000
1 120
1 250 | 1 120
1 250
1 400 | 130
150
170 | 190
210
240 | 200
220
250 | 260
280
320 | 400
450
500 | 460
510
570 | 600
670
750 | 700
770
870 | | = | _
_
_ | | **Remark** Axial internal clearance $\Delta_a = \Delta_r \cot \alpha = \frac{1.5}{e} \Delta_r$ where Δ_r : Radial internal clearance α : Contact angle e: Constant (Listed in bearing tables) A 172 A 173 Table 8.18 Axial Internal Clearances in Combined Angular Contact Ball Bearings (Measured Clearance) Units: µm | Nomin | Nominal Bore | | Axial Internal Clearance | | | | | | | | | | | |--------|--------------|------|--------------------------|---------|-----------|------|------|------|------|-----------|-----------|------|------| | Dian | neter. | | | Contact | Angle 30° | | | | | Contact A | Angle 40° | | | | d (mm) | | C | N | | 3 | C | 24 | C | N | C | 3 | C | 24 | | over | incl. | min. | max. | | — | 10 | 9 | 29 | 29 | 49 | 49 | 69 | 6 | 26 | 26 | 46 | 46 | 66 | | 10 | 18 | 10 | 30 | 30 | 50 | 50 | 70 | 7 | 27 | 27 | 47 | 47 | 67 | | 18 | 24 | 19 | 39 | 39 | 59 | 59 | 79 | 13 | 33 | 33 | 53 | 53 | 73 | | 24 | 30 | 20 | 40 | 40 | 60 | 60 | 80 | 14 | 34 | 34 | 54 | 54 | 74 | | 30 | 40 | 26 | 46 | 46 | 66 | 66 | 86 | 19 | 39 | 39 | 59 | 59 | 79 | | 40 | 50 | 29 | 49 | 49 | 69 | 69 | 89 | 21 | 41 | 41 | 61 | 61 | 81 | | 50 | 65 | 35 | 60 | 60 | 85 | 85 | 110 | 25 | 50 | 50 | 75 | 75 | 100 | | 65 | 80 | 38 | 63 | 63 | 88 | 88 | 115 | 27 | 52 | 52 | 77 | 77 | 100 | | 80 | 100 | 49 | 74 | 74 | 99 | 99 | 125 | 35 | 60 | 60 | 85 | 85 | 110 | | 100 | 120 | 72 | 97 | 97 | 120 | 120 | 145 | 52 | 77 | 77 | 100 | 100 | 125 | | 120 | 140 | 85 | 115 | 115 | 145 | 145 | 175 | 63 | 93 | 93 | 125 | 125 | 155 | |
140 | 160 | 90 | 120 | 120 | 150 | 150 | 180 | 66 | 96 | 96 | 125 | 125 | 155 | | 160 | 180 | 95 | 125 | 125 | 155 | 155 | 185 | 68 | 98 | 98 | 130 | 130 | 160 | | 180 | 200 | 110 | 140 | 140 | 170 | 170 | 200 | 80 | 110 | 110 | 140 | 140 | 170 | **Remark** This table is applicable to bearings in Tolerance Classes Normal and 6. For internal axial clearances in bearings in tolerance classes better than 5 and contact angles of 15° and 25°, it is advisable to consult NSK. Table 8.19 Axial Internal Clearance in Four-Point Contact Ball Bearings (Measured Clearances) Units: µm | | | | Units : µm | | | | | | | | | |--------|---------------|------|------------|------|----------|----------|------|------|------|--|--| | | al Bore | | | Axia | I Intern | al Clear | ance | | | | | | Dia. d | Dia. d (mm) | | 2 | С | N | C | 3 | C | 24 | | | | over | incl. | min. | max. | min. | max. | min. | max. | min. | max. | | | | 10 | 18 | 15 | 55 | 45 | 85 | 75 | 125 | 115 | 165 | | | | 18 | 40 | 26 | 66 | 56 | 106 | 96 | 146 | 136 | 186 | | | | 40 | 60 | 36 | 86 | 76 | 126 | 116 | 166 | 156 | 206 | | | | 60 | 80 | 46 | 96 | 86 | 136 | 126 | 176 | 166 | 226 | | | | 80 | 100 | 56 | 106 | 96 | 156 | 136 | 196 | 186 | 246 | | | | 100 | 140 | 66 | 126 | 116 | 176 | 156 | 216 | 206 | 266 | | | | 140 | 180 | 76 | 156 | 136 | 196 | 176 | 246 | 226 | 296 | | | | 180 | 220 | 96 | 176 | 156 | 226 | 206 | 276 | 256 | 326 | | | | 220 | 260 | 115 | 196 | 175 | 245 | 225 | 305 | 285 | 365 | | | | 260 | 300 | 135 | 215 | 195 | 275 | 255 | 335 | 315 | 395 | | | | 300 | 350 | 155 | 235 | 215 | 305 | 275 | 365 | 345 | 425 | | | | 350 | 400 | 175 | 265 | 245 | 335 | 315 | 405 | 385 | 475 | | | | 400 | 500 | 205 | 305 | 285 | 385 | 355 | 455 | 435 | 525 | | | #### 8.2.2 Selection of Bearing Internal Clearances Among the bearing internal clearances listed in the tables, the CN Clearance is adequate for standard operating conditions. The clearance becomes progressively smaller from C2 to C1 and larger from C3 to C5. Standard operating conditions are defined as those where the inner ring speed is less than approximately 50% of the limiting speed listed in the bearing tables, the load is less than normal ($P = 0.1C_r$), and the bearing is tight-fitted on the shaft. As a measure to reduce bearing noise for electric motors, the radial clearance range is narrower than the normal class and the values are somewhat smaller for deep groove ball bearings and cylindrical roller bearings for electric motors. (Refer to Table 8.14.1 and 8.14.2) Internal clearance varies with the fit and temperature differences in operation. The changes in radial clearance in a roller bearing are shown in Fig. 8.8. ## (1) Decrease in Radial Clearance Caused by Fitting and Residual Clearance When the inner ring or the outer ring is tight-fitted on a shaft or in a housing, a decrease in the radial internal clearance is caused by the expansion or contraction of the bearing rings. The decrease varies according to the bearing type and size and design of the shaft and housing. The amount of this decrease is approximately 70 to 90% of the interference (refer to Section 8.1.2, Fits (5), Pages A156 and A157). The internal clearance after subtracting this decrease from the theoretical internal clearance \varDelta_0 is called the residual clearance, $\varDelta_{\rm f}$. #### (2) Decrease in Radial Internal Clearance Caused by Temperature Differences between Inner and Outer Rings and Effective Clearance The frictional heat generated during operation is conducted away through the shaft and housing. Since housings generally conduct heat better than shafts, the temperature of the inner ring and the rolling elements is usually higher than that of the outer ring by 5 to 10°C. If the shaft is heated or the housing is cooled, the difference in temperature between the inner and outer rings is greater. The radial clearance decreases due to the thermal expansion caused by the temperature difference between the inner and outer rings. The amount of this decrease can be calculated using the following equations: $$\delta_t = \alpha \Delta_t D_e$$(8.8) where δ_t: Decrease in radial clearance due to temperature difference between inner and outer rings (mm) α : Coefficient of linear expansion of bearing steel \rightleftharpoons 12.5 \times 10⁻⁶ (1/°C) Δ_t : Temperature difference between inner and outer rings (°C) $D_{\rm e}$: Outer ring raceway diameter (mm) For ball bearings $$D_{\rm e} = \frac{1}{5} (4D + d) \dots (8.9)$$ For roller bearings $$D_{\rm e} = \frac{1}{4} (3D + d) \dots (8.10)$$ The clearance after substracting this δ_+ from the residual clearance. Δ_f is called the effective clearance. Δ . Theoretically, the longest life of a bearing can be expected when the effective clearance is slightly negative. However, it is difficult to achieve such an ideal condition, and an excessive negative clearance will greatly shorten the bearing life. Therefore, a clearance of zero or a slightly positive amount, instead of a negative one, should be selected. When single-row angular contact ball bearings or tapered roller bearings are used facing each other, there should be a small effective clearance, unless a preload is required. When two cylindrical roller bearings with a rib on one side are used facing each other, it is necessary to provide adequate axial clearance to allow for shaft elongation during operation. The radial clearances used in some specific applications are given in Table 8.20. Under special operating conditions, it is advisable to consult NSK. Fig. 8.8 Changes in Radial Internal Clearance of Bearings Table 8. 20 Examples of Clearances for Specific Applications | Operating Conditions | Examples | Internal
Clearance | | | |---|--|-----------------------|--|--| | When shaft deflection is large. | Semi-floating rear wheels of automobiles | C5 or equivalent | | | | When steam passes through hollow shafts or | Dryers in paper making machines | C3, C4 | | | | roller shafts are heated. | Table rollers for rolling mills | C3 | | | | When impact loads and | Traction motors for railways | C4 | | | | When impact loads and vibration are severe or | Vibrating screens | C3, C4 | | | | when both the inner and outer rings are tight- | Fluid couplings | C4 | | | | fitted. | Final reduction gears for tractors | C4 | | | | When both the inner and outer rings are loose-fitted | Rolling mill roll necks | C2 or equivalent | | | | When noise and vibration restrictions are severe | Small motors with special specifications | C1, C2, CM | | | | When clearance is adjusted after mounting to prevent shaft deflection, etc. | Main shafts of lathes | CC9, CC1 | | | A 174 #### 8.3 Technical Data #### 8.3.1 Temperature Rise and Dimensional Change Rolling bearings are extremely precise mechanical elements. Any change in dimensional accuracy due to temperature cannot be ignored. Accordingly, it is specified as a rule that measurement of a bearing must be made at 20°C and that the dimensions to be set forth in the standards must be expressed by values at 20°C. Dimensional change due to temperature change not only affects the dimensional accuracy, but also causes change in the internal clearance of a bearing during operation. Dimensional change may cause interference between the inner ring and shaft or between the outer ring and housing bore. It is also possible to achieve shrink fitting with large interference by utilizing dimensional change induced by temperature difference. The dimensional change Δl due to temperature rise can be expressed as in Equation (8.11) below: $$\Delta l = \Delta T \alpha l \text{ (mm)} \cdots (8.11)$$ where, Δl : Dimentional change (mm) ΔT : temperature rise (°C) α : Coefficient of linear expansion for bearing steel α =12.5×10⁻⁶ (1/°C) l: Original dimension (mm) Equation (8.11) may be illustrated as shown in Fig. 8.9. In the following cases, Fig. 8.9 can be utilized to easily obtain an approximate numerical values for dimensional change: - (1) To correct dimensional measurements according to the ambient air temperature - (2) To find the change in bearing internal clearance due to temperature difference between inner and outer rings during operation - (3) To find the relationship between the interference and heating temperature during shrink fitting - (4) To find the change in the interference when a temperature difference exists on the fit surface #### Example To what temperature should the inner ring be heated if an inner ring of 110 mm in bore is to be shrink fitted to a shaft belonging to the n6 tolerance range class? The maximum interference between the n6 shaft of 110 in diameter and the inner ring is 0.065. To enable insertion of the inner ring with ease on the shaft, there must be a clearance of 0.03 to 0.04. Accordingly, the amount to expand the inner ring must be 0.095 to 0.105. Intersection of a vertical axis Δl =0.105 and a horizontal axis l=110 is determined on a diagram. ΔT is located in the temperature range between 70°C and 80°C (ΔT =77°C). Therefore, it is enough to set the inner ring heating temperature to the room temperature +80°C. Fig. 8.9 Temperature Rise and Dimensional Change of Bearing Steel A 176 #### 8.3.2 Interference Deviation Due to Temperature Rise (Aluminum Housing, Plastic Housing) For reducing weight and cost or improving the performance of equipment, bearing housing materials such as aluminum, light alloys, or plastics (polyacetal resin, etc.) are often used. When non-ferrous materials are used in housings, any temperature rise occurring during operation affects the interference or clearance of the outer ring due to the difference in the coefficients of linear expansion. This change is large for plastics which have high coefficients of linear
expansion. The deviation $\varDelta D_{\mathrm{T}}$ of clearance or interference of a fitting surface of a bearing's outer ring due to temperature rise is expressed by the following equation: $$\Delta D_{\mathrm{T}} = (\alpha_1 \cdot \Delta T_1 - \alpha_2 \cdot \Delta T_2)D \text{ (mm) } \cdots (8.12)$$ where $\Delta D_{\rm T}$: Change of clearance or interference at fitting surface due to temperature rise Coefficient of linear expansion of housing $(1/^{\circ}C)$ ΔT_1 : Housing temperature rise near fitting surface ($^{\circ}C$) Coefficient of linear expansion of bearing outer ring Bearing steel $\alpha_2 = 12.5 \times 10^{-6} (1/^{\circ}C)$ ΔT_2 : Outer ring temperature rise near fitting surface ($^{\circ}C$) Bearing outside diameter (mm) In general, the housing temperature rise and that of the outer ring are somewhat different, but if we assume they are approximately equal near the fitting surfaces, $(\Delta T_1 = \Delta T_2 = \Delta T)$, Equation (8.13) becomes, $$\Delta D_{\rm T} = (\alpha_1 - \alpha_2) \Delta T \cdot D \text{ (mm)} \cdots (8.13)$$ where ΔT : Temperature rise of outer ring and housing near fitting surfaces (${}^{\circ}C$) In the case of an aluminum housing ($\alpha_1 = 23.7 \times 10^{-6}$). Equation (8.13) can be shown graphically as in Fig. 8.10. Among the various plastics, polyacetal resin is one that is often used for bearing housings. The coefficients of linear expansion of plastics may vary or show directional characteristics. In the case of polyacetal resin, for molded products, it is approximately 9×10^{-5} . Equation (8.13) can be shown as in Fig. 8.11. Fig. 8.10 Aluminum Housing Deviation of clearance or interference $\Delta D_{\rm T}$ of outer ring fitting surface, um (Relative expansion of polyacetal resin housing to outer ring) Fig. 8.11 Polyacetal Resin Housing ## 8.3.3 Calculating Residual Internal Clearance After Mounting The various types of internal bearing clearance were discussed in Section 8.2.2. This section will explain the step by step procedures for calculating residual internal clearance. When the inner ring of a bearing is press fit onto a shaft, or when the outer ring is press fit into a housing, it stands to reason that radial internal clearance will decrease due to the resulting expansion or contraction of the bearing raceways. Generally, most bearing applications have a rotating shaft which requires a tight fit between the inner ring and shaft and a loose fit between the outer ring and housing. Generally, therefore, only the effect of the interference on the inner ring needs to be taken into account. Below we have selected a 6310 single row deep groove ball bearing for our representative calculations. The shaft is set at k5, with the housing set at H7. An interference fit is applied only to the inner ring. Shaft diameter, bore size and radial clearance are the standard bearing measurements. Assuming that 99.7% of the parts are within tolerance, the mean value (m_{st}) and standard deviation (σ_{st}) of the internal clearance after mounting (residual clearance) can be calculated. Measurements are given in units of millimeters (mm). $$\sigma_{\rm s} = \frac{R_{\rm s}/2}{3} = 0.0018$$ $$\sigma_i = \frac{R_i/2}{3} = 0.0020$$ $$\sigma_{\Delta_0} = \frac{R_{\Delta_0}/2}{3} = 0.0028$$ $$\sigma_{\rm f}^{2} = \sigma_{\rm s}^{2} + \sigma_{i}^{2}$$ $m_{\Delta f} = m_{\Delta 0} - \lambda_i \ (m_s - m_i) = 0.0035$ $$\sigma_{\Delta f} = \sqrt{\sigma_{\Delta 0}^2 + \lambda_i^2 \sigma_f^2} = 0.0035$$ where, σ_s : Standard deviation of shaft diameter σ_i : Standard deviation of bore diameter σ_{i} : Standard deviation of interference σ_{a_0} : Standard deviation of radial clearance (before mounting) σ_{a_i} : Standard deviation of residual clearance (after mounting) m_s : Mean value of shaft diameter $(\phi 50+0.008)$ m_i : Mean value of bore diameter $(\phi 50-0.006)$ m_{a_0} : Mean value of radial clearance (before mounting) (0.014) $m_{\Delta_{\rm f}}$: Mean value of residual clearance (after mounting) $R_{\rm s}$: Shaft tolerance (0.011) R_i : Bearing bore tolèrance (0.012) $\vec{R}_{\perp 0}$: Range in radial clearance (before mounting) (0.017) λ_i: Rate of raceway expansion from apparent interference (0.75 from Fig. 8.12) The average amount of raceway expansion and contraction from apparent interference is calculated from λ_i ($m_{\rm m}$ - m_i). To determine, wihtin a 99.7% probability, the variation in internal clearance after mounting (R_{Af}) , we use the following equation. $$R_{\Delta f} = m_{\Delta f} \pm 3\sigma_{\Delta f} = +0.014 \text{ to } -0.007$$ In other words, the mean value of residual clearance $(m_{\it sf})$ is +0.0035, and the range is from -0.007 to +0.014 for a 6310 bearing. | Hr | าเา | S | • | m | ır | |----|-----|---|---|---|----| | Shaft diameter | ϕ 50 $^{+0.013}_{+0.002}$ | |----------------------------|--| | Bearing bore diameter, (d) | ϕ 50 $\begin{array}{c} 0 \\ -0.012 \end{array}$ | | Radial internal clearance | 0.006 to 0.023(1) | Note (1) Standard internal clearance, unmounted Fig. 8.12 Rate of Inner Ring Raceway Expansion (λ_i) from Apparent Interference Fig. 8.13 Distribution of Residual Internal Clearance ## 8.3.4 Effect of Interference Fit on Bearing Raceways (Fit of Inner Ring) One of the important factors that relates to radial clearance is the reduction in radial clearance resulting from the mounting fit. When inner ring is mounted on a shaft with an interference fit and the outer ring is secured in a housing with an interference fit, the inner ring will expand and the outer ring will contract. The means of calculating the amount of ring expansion or contraction were previously noted in Section 8.1.2 (5), however, the equation for establishing the amount of inner raceway expansion (ΔD_i) is given in Equation (8.14). $$\Delta D_i = \Delta d \ k \frac{1 - k_0^2}{1 - k^2 k_0^2} \cdots (8.14)$$ where, Δd : Effective interference (mm) k: Ratio of bore to inner raceway diameter; k=d/D: k_0 : Ratio of inside to outside diameter of hollow shaft: $k_0 = d_0/D$: d: Bore or shaft diameter (mm) D_i : Inner raceway diameter (mm) d_0 : Inside diameter of hollow shaft (mm) Equation (8.14) has been translated into a clearer graphical form in Fig. 8.14. The vertical axis of Fig. 8.14 represents the inner raceway diameter expansion in relation to the amount of interference. The horizontal axis is the ratio of inside and outside diameter of the hollow shaft (k_0) and uses as its parameter the ratio of bore diameter and raceway diameter of the inner ring (k). Generally, the decrease in radial clearance is calculated to be approximately 80% of the interference. However, this is for solid shaft mountings only. For hollow shaft mountings the decrease in radial clearance varies with the ratio of inside to outside diameter of the shaft. Since the general 80% rule is based on average bearing bore size to inner raceway diameter ratios, the change will vary with different bearing types, sizes, and series. Typical plots for Single Row Deep Groove Ball Bearings and for Cylindrical Roller Bearings are shown in Figs. 8.15 and 8.16. Values in Fig. 8.14 apply only for steel shafts. Let's take as an example a 6220 ball bearing mounted on a hollow shaft (diameter d=100 mm, inside diameter d_0 =65 mm) with a fit class of m5 and determine the decrease in radial clearance. The ratio between bore diameter and raceway diameter, k is 0.87 as shown in Fig. 8.15. The ratio of inside to outside diameter for shaft, k_0 , is $k_0 = d_0/d = 0.65$. Thus, reading from Fig. 8.14, the rate of raceway expansion is 73%. Given that an interference of m5 has a mean value of $30~\mu m$, the amount of raceway expansion, or, the amount of decrease in the radial clearance from the fit is $0.73{\times}30{=}22~\mu m$. Fig. 8.14 Raceway Expansion in Relation to Bearing Fit (Inner Ring Fit upon Steel Shaft) Fig. 8.15 Ratio of Bore Size to Raceway Diameter for Single Row Deep Groove Ball Bearings Fig. 8.16 Ratio of Bore Size to Raceway Diameter for Cylindrical Roller Bearings ## 8.3.5 Effect of Interference Fit on Bearing Raceways (Fit of Outer Ring) We continue with the calculation of the raceway contraction of the outer ring after fitting. When a bearing load is applied on a rotating inner ring (outer ring carrying a static load), an interference fit is adopted for the inner ring and the outer ring is mounted either with a transition fit or a clearance fit. However, when the bearing load is applied on a rotating outer ring (inner ring carrying a static load) or when there is an indeterminate load and the outer ring must be mounted with an interference fit, a decrease in radial internal clearance caused by the fit begins to contribute in the same way as when the inner ring is mounted with an interference fit. Actually, because the amount of interference that can be applied to the outer ring is limited by stress, and because the constraints of most bearing applications make it difficult to apply a large amount of interference to the outer ring, and instances where there is an indeterminate load are quite rare compared to those where a rotating inner ring carries the load, there are few occasions where it is necessary to be cautious about the decrease in radial clearance caused by outer-ring interference. The decrease in outer raceway diameter $\Delta D_{\rm e}$ is calculated using Equation (8.15). $$\Delta D_{\rm e} = \Delta D \cdot h \cdot \frac{1 - h_0^2}{1 - h^2 h_0^2} \cdots (8.15)$$ where, ΔD : Effective interference (mm) h: Ratio between raceway dia. and outside dia. of outer ring, $h=D_o/D$ h_0 : Housing thickness ratio, h_0 = D/D_0 D: Bearing outside diameter (housing bore diameter) (mm) D_a: Raceway diameter of outer ring (mm) D_0 : Outside
diameter of housing (mm) Fig. 8.17 represents the above equation in graphic form. The vertical axis show the outer-ring raceway contraction as a percentage of interference, and the horizontal axis is the housing thickness ratio h_0 . The data are plotted for constant values of the outer-ring thickness ratio from 0.7 through 1.0 in increments of 0.05. The value of thickness ratio h will differ with bearing type, size, and diameter series. Representative values for single-row deep groove ball bearings and for cylindrical roller bearings are given in Figs. 8.18 and 8.19 respectively. Loads applied on rotating outer rings occur in such applications as automotive front axles, tension pulleys, conveyor systems, and other pulley systems. As an example, we estimate the amount of decrease in radial clearance assuming a 6207 ball bearing is mounted in a steel housing with an N7 fit. The outside diameter of the housing is assumed to be $D_0\!=\!95$, and the bearing outside diameter is $D\!=\!72$. From Fig. 8.18, the outer-ring thickness ratio, h, is 0.9. Because $h_0\!=\!D/D_0\!=\!0.76$, from Fig. 8.17, the amount of raceway contraction is 71%. Taking the mean value for N7 interference as 18 μm , the amount of contraction of the outer raceway, or the amount of decrease in radial clearance is $0.71\!\times\!18\!=\!13\,\mu m$. Fig. 8.17 Raceway Contraction in Relation to Bearing Fit (Outer Ring Fit in Steel Housing) Fig. 8.18 Ratio of Outside Diameter to Raceway Diameter for Single Row Deep Groove Ball Bearings Fig. 8.19 Ratio of Outside Diameter to Raceway Diameter for Cylindrical Roller Bearings #### 8.3.6 Measuring Method of Internal Clearance of Combined Tapered Roller Bearings (Offset Measuring Method) Combined tapered roller bearings are available in two types: a back-to-back combination (DB type) and a face-to-face combination (DF type) (see Fig. 8.20 and Fig. 8.21). The advantages of these combinations can be obtained by assembly as one set or combined with other bearings to be a fixed- or free-side bearing. For the DB type of combined tapered roller bearing, as its cage protrudes from the back side of the outer ring, the outer ring spacer (K spacer in Fig. 8.20) is mounted to prevent mutual contact of cages. For the inner ring, the inner ring spacer (L spacer in Fig. 8.20), having an appropriate width, is provided to secure the clearance. For the DF type, as shown in Fig. 8.21, bearings are used with a K spacer. In general, to use such a bearing arrangement either an appropriate clearance is required that takes into account the heat generated during operation or an applied preload is required that increases the rigidity of the bearings. The spacer width should be adjusted so as to provide an appropriate clearance or preload (minus clearance) after mounting. Hereunder, we introduce you to a clearance measurement method for a DB arrangement. - (1) As shown in Fig. 8.22, put the bearing A on the surface plate and after stabilization of rollers by rotating the outer ring (more than 10 turns), measure the offset $f_{\rm A} = T_{\rm A} B_{\rm A}$. - (2) Next, as shown in Fig. 8.23, use the same procedure to measure the other bearing B for its offset $f_0 = T_0 B_0$. - (3) Next, measure the width of the K and L spacers as shown in Fig. 8.24. From the results of the above measurements, the axial clearance Δ_n of the combined tapered roller bearing can be obtained, with the use of symbols shown in Figs. 8.22 through 8.24 by Equation (8.16): $$\Delta_{a} = (L-K)-(f_{A}+f_{B})$$(8.16) As an example, for the combined tapered roller bearing HR32232JDB+KLR10AC3, confirm the clearance of the actual product conforms to the specifications. First, refer to Table 8.17 and notice that the C3 clearance range is Δ_r =110 to 140 μ m. To compare this specification with the offset measurement results, convert it into an axial clearance Δ , by using Equation (8.17): $$\Delta_{\mathbf{a}} = \Delta_{\mathbf{r}} \cot \alpha = \Delta_{\mathbf{r}} \frac{1.5}{e}$$(8.17) where, e: Constant determined for each bearing No. (Listed in the Bearing Tables of NSK Rolling Bearings Catalog) referring to the said catalog (Page C205), with use of e=0.44, the following is obtained: $$\Delta_{a}$$ =(110 to 140)× $\frac{1.5}{e}$ = 380 to 480 μ m It is possible to confirm that the bearing clearance is C3, by verifying that the axial clearance Δ_a of Equation (8.16) (obtained by the bearing offset measurement) is within the above mentioned range. Fig. 8.20 DB Arrangement Fig. 8.21 DF Arrangement Fig. 8.22 Fig. 8.23 Fig. 8.24 ## 8.3.7 Internal Clearance Adjustment Method when Mounting a Tapered Roller Bearing The two single row tapered roller bearings are usually arranged in a configuration opposite each other and the clearance is adjusted in the axial direction. There are two types of opposite placement methods: back-to-back arrangement (DB arrangement) and face-to-face arrangement (DF arrangement). The clearance adjustment of the back-to-back arrangement is performed by tightening the inner ring by a shaft nut or a shaft end bolt. In Fig. 8.25, an example using a shaft end bolt is shown. In this case, it is necessary that the fit of the tightening side inner ring with the shaft be a loose fit to allow displacement of the inner ring in the axial direction. For the face-to-face arrangement, a shim is inserted between the cover, which retains the outer ring in the axial direction, and the housing in order to allow adjustment to the specified axial clearance (Fig. 8.26). In this case, it is necessary to use a loose fit between the tightening side of the outer ring and the housing in order to allow appropriate displacement of the outer ring in the axial direction. When the structure is designed to install the outer ring into the retaining cover (Fig. 8.27), the above measure becomes unnecessary and both mounting and dismounting become easy. Theoretically when the bearing clearance is slightly negative during operation, the fatigue life becomes the longest, but if the negative clearance becomes much bigger, then the fatigue life becomes very short and heat generation quickly increases. Thus, it is generally arranged that the clearance be slightly positive (a little bigger than zero) while operating. In consideration of the clearance reduction caused by temperature difference of inner and outer rings during operation and difference of thermal expansion of the shaft and housing in the axial direction, the bearing clearance after mounting should be decided. In practice, the clearance C1 or C2 is frequently adopted which is listed in Table 8.17. In addition, the relationship between the radial clearance Δ , and axial clearance Δ , is as follows: $$\Delta_{a} = \Delta_{r} \cot \alpha = \Delta_{r} \frac{1.5}{e}$$ where, α : Contact angle e: Constant determined for each bearing No. (Listed in the Bearing Tables of NSK Rolling Bearing Catalog) Tapered roller bearings, which are used for head spindles of machine tools, automotive final reduction gears, etc., are set to a negative clearance for the purpose of obtaining bearing rigidity. Such a method is called a preload method. There are two different modes of preloading: position preload and constant pressure preload. The position preload is used most often. For the position preload, there are two methods: one method is to use an already adjusted arrangement of bearings and the other method is to apply the specified preload by tightening an adjustment nut or using an adjustment shim. The constant pressure preload is a method to apply an appropriate preload to the bearing by means of spring or hydraulic pressure, etc. Next we introduce several examples that use these methods: Fig. 8.28 shows the automotive final reduction gear. For pinion gears, the preload is adjusted by use of an inner ring spacer and shim. For large gears on the other hand, the preload is controlled by tightening the torque of the outer ring retaining screw. Fig. 8.29 shows the rear wheel of a truck. This is an example of a preload application by tightening the inner ring in the axial direction with a shaft nut. In this case, the preload is controlled by measuring the starting friction moment of the bearing. Fig. 8.30 shows an example of the head spindle of the lathe, the preload is adjusted by tightening the shaft nut. Fig. 8.31 shows an example of a constant pressure preload for which the preload is adjusted by the displacement of the spring. In this case, first find a relationship between the spring's preload and displacement, then use this information to establish a constant pressure preload. Fig. 8.25 DB Arrangement whose Clearance is Adjusted by Inner Rings. Fig. 8.26 DF Arrangement whose Clearance is Adjusted by Outer Rings. Fig. 8.27 Examples of Clearance Adjusted by Shim Thickness of Outer Ring Cover Fig. 8.28 Automotive Final Reduction Gear Fig. 8.29 Rear Wheel of Truck Fig. 8.30 Head Spindle of Lathe Fig. 8.31 Constant Pressure Preload Applied by Spring | 9. PRELO | DAD | |----------|---| | 9.1 Pur | rpose of Preload A 192 | | 9.2 Pre | loading Methods A 192 | | 9.2.1 | Position PreloadA 192 | | 9.2.2 | Constant-Pressure Preload A 192 | | 9.3 Pre | load and Rigidity A 192 | | 9.3.1 | Position Preload and Rigidity A 192 | | 9.3.2 | Constant-Pressure Preload and Rigidity A 193 | | | ection of Preloading Method and ount of Preload A 193 | | 9.4.1 | Comparison of Preloading Methods A 193 | | 9.5 Am | ount of Preload A 194 | | 9.5.1 | Average Preload for Duplex Angular Contact Ball BearingsA 194 | | 9.5.2 | Preload of Thrust Ball Bearings A 198 | | 9.5.3 | Preload of Spherical Thrust Roller Bearings A 198 | | 9.6 Tec | hnical Data A 200 | | 9.6.1 | Load and Displacement of Position-Preloaded BearingsA 200 | | 9.6.2 | Axial Displacement of Deep Groove Ball Bearings A 208 | | 9.6.3 | Axial Displacement of
Tapered Roller Bearings A 212 | ### 9. PRELOAD Rolling bearings usually retain some internal clearance while in operation. In some cases, however, it is desirable to provide a negative clearance to keep them internally stressed. This is called "preloading". A preload is usually applied to bearings in which the clearance can be adjusted during mounting, such as angular contact ball bearings or tapered roller bearings. Usually, two bearings are mounted faceto-face or back-to-back to form a duplex set with a preload. #### 9.1 Purpose of Preload The main purposes and some typical applications of preloaded bearings are as follows: - (1) To maintain the bearings in exact position both radially and axially and to maintain the running accuracy of the shaft. - ...Main shafts of machine tools, precision instruments, etc. - (2) To increase bearing rigidity - ...Main shafts of machine tools, pinion shafts of final drive gears of automobiles, etc. - (3) To minimize noise due to axial vibration and resonance - ...Small electric motors, etc. - (4) To prevent sliding between the rolling elements and raceways due to gyroscopic moments - ...High speed or high acceleration applications of angular contact ball bearings, and thrust ball bearings - (5) To maintain the rolling elements in their proper position with the bearing rings - ...Thrust ball bearings and spherical thrust roller bearings mounted on a horizontal shaft #### 9.2 Preloading Methods #### 9.2.1 Position Preload A position preload is achieved by fixing two axially opposed bearings in such a way that a preload is imposed on them. Their position, once fixed, remain unchanged while in operation. In practice, the following three methods are generally used to obtain a position preload. - (1) By installing a duplex bearing set with previously adjusted stand-out dimensions (see Page A007, Fig. 1.1) and axial clearance. - (2) By using a spacer or shim of proper size to obtain the required spacing and preload. (Refer to Fig. 9.1) - (3) By utilizing bolts or nuts to allow adjustment of the axial preload. In this case, the starting torque should be measured to verify the proper preload. #### 9.2.2 Constant-Pressure Preload A constant pressure preload is achieved using a coil or leaf spring to impose a constant preload. Even if the relative position of the bearings changes during operation, the magnitude of the preload remains relatively constant (refer to Fig. 9.2) #### 9.3 Preload and Rigidity #### 9.3.1 Position Preload and Rigidity When the inner rings of the duplex bearings shown in Fig.9.3 are fixed axially, bearings A and B are displaced δ_{a0} and axial space $2\delta_{a0}$ between the inner rings is eliminated. With this condition, a preload F_{a0} is imposed on each bearing. A preload diagram showing bearing rigidity, that is the relation between load and displacement with a given axial load F_a imposed on a duplex set, is shown in Fig. 9.4. #### 9.3.2 Constant-Pressure Preload and Rigidity A preload diagram for duplex bearings under a constant-pressure preload is shown in Fig. 9.5. The deflection curve of the spring is nearly parallel to the horizontal axis because the rigidity of springs is lower than that of the bearing. As a result, the rigidity under a constant-pressure preload is approximately equal to that for a single bearing with a preload $F_{\rm a0}$ applied to it. Fig. 9.6 presents a comparison of the rigidity of a bearing with a position preload and one with a constant-pressure preload. #### 9.4 Selection of Preloading Method and Amount of Preload #### 9.4.1 Comparison of Preloading Methods A comparison of the rigidity using both preloading methods is shown in Fig. 9.6. The position preload and constant-pressure preload may be compared as follows: - (1) When both of the preloads are equal, the position preload provides greater bearing rigidity, in other words, the deflection due to external loads is less for bearings with a position preload. - (2) In the case of a position preload, the preload varies depending on such factors as a difference in axial expansion due to a temperature difference between the shaft and housing, a difference in radial expansion due to a temperature difference between the inner and outer rings, deflection due to load, etc. Fig. 9.4 Axial Displacement with Position Preload In the case of a constant-pressure preload, it is possible to minimize any change in the preload because the variation of the spring load with shaft expansion and contraction is negligible. From the foregoing explanation, it is seen that position preloads are generally preferred for increasing rigidity and constant-pressure preloads are more suitable for high speed applications, for prevention of axial vibration, for use with thrust bearings on horizontal shafts, etc. Fig. 9.5 Axial Displacement with Constant-Pressure Preload Fig. 9.6 Comparison of Rigidities and Preloading Methods ### 9.5 Amount of Preload If the preload is larger than necessary, abnormal heart generation, increased frictional torque, reduced fatigue life, etc. may occur. The amount of the preload should be carefully determined considering the operating conditions and the purpose of the preload. ## 9.5.1 Average Preload for Duplex Angular Contact Ball Bearings Angular contact ball bearings are widely used in spindles for grinding, milling, high-speed turning, etc. At NSK, preloads are divided into four graduated classifications — Extra light (EL), Light (L), Medium (M), and Heavy (H) — to allow the customer to freely choose the appropriate preload for the specific application. These four preload classes are expressed in symbols, EL, L, M, and H, respectively, when applied to DB and DF bearing sets. The average preload and axial clearance (measured) for duplex angular contact ball bearing sets with contact angles 15° and 30° (widely used on machine tool spindles) are given in Tables 9.3 to 9.5. The measuring load when measuring axial clearance is shown in Table 9.1. The recommended axial clearance to achieve the proper preload was determined for machine-tool spindles and other applications requiring ISO Class 5 and above high-precision bearing sets. The standard values given in Table 9.2 are used for the shaft — inner ring and housing — outer ring fits. The housing fits should be selected in the lower part of the standard clearance for bearings in fixed-end applications and the higher part of the standard clearance for bearings in free-end applications. As general rules when selecting preloads, grinding machine spindles or machining center spindles require extra light to light preloads, whereas lathe spindles, which need rigidity, require medium preloads. The bearing preloads, if the bearing set is mounted with tight fit, are larger than those shown in Tables 9.3 to 9.5. Since excessive preloads cause bearing temperature rise and seizure, etc., it is necessary to pay attention to fitting. When speeds result in a value of $D_{\mathrm{pw}} \times n$ ($d_{\mathrm{m}} n$ value) higher than 500000, the preload should be very carefully studied and selected. In such a case, please consult with NSK beforehand. Table 9.1 Measuring Load of Axial Clearance | Nominal b | | Measuring load | | | |-----------|------|----------------|--|--| | over | incl | (N) | | | | 10* | 50 | 24.5 | | | | 50 | 120 | 49 | | | | 120 | 200 | 98 | | | | 200 | _ | 196 | | | ^{*10} mm is included in this range. Table 9.2 Target of Fitting Units: µm | Bore or outs | side diameter | Shaft and | Housing and | | | |------------------|---------------|---------------------|------------------|--|--| | | | | • | | | | $d ext{ or } I$ |) (mm) | inner ring | outer ring | | | | over | incl | Target interference | Target clearance | | | | _ | 18 | 0 to 2 | _ | | | | 18 | 30 | 0 to 2.5 | 2 to 6 | | | | 30 | 50 | 0 to 2.5 | 2 to 6 | | | | 50 | 80 | 0 to 3 | 3 to 8 | | | | 80 | 120 | 0 to 4 | 3 to 9 | | | | 120 | 150 | _ | 4 to 12 | | | | 150 | 180 | _ | 4 to 12 | | | | 180 | 250 | _ | 5 to 15 | | | Table 9.3 Average Preloads and Axial Clearance for Bearing Series 79C | | Extra l | ight EL | Lig | ht L | Medi | um M | Hea | vy H | |----------------|---------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------| | Bearing
No. | Preload | Axial clearance | | | (N) | (µm) | (N) | (µm) | (N) | (µm) | (N) | (µm) | | 7900C | 7 | 5 | 16 | 2 | 29 | -1 | 58 | -6 | | 7901C | 8.6 | 4 | 16 | 2 | 41 | -3 | 77 | -8 | | 7902C | 12 | 3 | 25 | 0 | 47 | -4 | 104 | -11 | | 7903C | 11 | 3 | 25 | 0 | 56 | -5 | 119 | -12 | | 7904C | 20 | 1 | 42 | -3 | 80 | -8 | 152 | -15 | | 7905C | 19 | 1 | 37 | -2 | 99 | -9 | 203 | -17 | | 7906C | 25 | 0 | 46 | -3 | 95 | -8 | 204 | -16 | | 7907C | 33 | 2 | 67 | -2 | 149 | -9 | 297 | -18 | | 7908C | 41 | 1 | 78 | -3 | 196 | -12 | 384 | -22 | | 7909C | 49 | 0 | 104 | -5 | 192 | -11 | 391 | -21 | | 7910C | 49 | 0 | 95 | -4 | 240 | -13 | 499 | -24 | | 7911C | 60 | -1 | 111 | -5 | 296 | -15 | 593 | -26 | | 7912C | 60 | -1 | 113 | -5 | 305 | -15 | 581 | -25 | | 7913C | 74 | -2 | 151 | -7 | 348 | -16 | 690 | -27 | | 7914C | 101 | -4 | 205 | -10 | 503 | -22 | 1 004 | -36 | | 7915C | 103 | -4 | 190 | -9 | 489 | -21 | 997 | -35 | | 7916C | 104 | -4 | 195 | -9 | 503 | -21 | 986 | -34 | | 7917C | 138 | -6 | 307 | -14 | 629 | -25 | 1 281 | -41 | | 7918C | 153 | -3 | 289 | -9 | 740 | -23 | 1 488 | -39 | | 7919C | 154 | -3 | 294 | -9 | 800 | -24 | 1 588 | -40 | | 7920C | 191 | -5 | 387 | -13 | 905 | -28 | 1 790 | -46 | | Danie de la de | | | | | | | | | **Remark** In the axial clearance column, the measured value is given. A 194 NSK Table 9.4 Average Preloads and Axial Clearance for Bearing Series 70C | | Extra I | ight EL | Ligl | nt L | Medi | um M | Hea | vy H | |----------------|---------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------| | Bearing
No. | Preload | Axial clearance | | | (N) | (µm) | (N) | (µm) | (N) | (µm)
 (N) | (µm) | | 7000C | 13 | 3 | 25 | 0 | 49 | -5 | 96 | -12 | | 7001C | 13 | 3 | 25 | 0 | 57 | -6 | 120 | -14 | | 7002C | 12 | 3 | 29 | -1 | 66 | - 7 | 147 | -16 | | 7003C | 15 | 2 | 30 | -1 | 69 | -7 | 156 | -16 | | 7004C | 25 | 0 | 49 | -4 | 119 | -12 | 244 | -22 | | 7005C | 30 | -1 | 58 | -5 | 148 | -14 | 292 | -24 | | 7006C | 41 | 1 | 75 | -3 | 195 | -13 | 386 | -24 | | 7007C | 58 | -1 | 121 | -7 | 251 | -16 | 493 | -28 | | 7008C | 58 | -1 | 114 | -6 | 291 | -17 | 594 | -30 | | 7009C | 80 | -3 | 144 | -8 | 338 | -19 | 695 | -33 | | 7010C | 70 | -2 | 152 | -8 | 388 | -20 | 791 | -34 | | 7011C | 95 | -4 | 200 | -11 | 479 | -24 | 971 | -40 | | 7012C | 96 | -4 | 189 | -10 | 526 | -25 | 1 092 | -42 | | 7013C | 130 | -6 | 260 | -13 | 537 | -24 | 1 062 | -39 | | 7014C | 148 | -7 | 285 | -14 | 732 | -30 | 1 460 | -48 | | 7015C | 151 | -7 | 294 | -14 | 796 | -31 | 1 573 | -49 | | 7016C | 202 | -6 | 382 | -14 | 921 | -31 | 1 880 | -52 | | 7017C | 205 | -6 | 393 | -14 | 995 | -32 | 1 956 | -52 | | 7018C | 247 | -8 | 502 | -18 | 1 187 | -37 | 2 373 | -60 | | 7019C | 275 | -9 | 549 | -19 | 1 188 | -36 | 2 348 | -58 | | 7020C | 282 | -9 | 534 | -18 | 1 278 | -37 | 2 572 | -60 | Remark In the axial clearance column, the measured value is given. Table 9.5 Average Preloads and Axial Clearance for Bearing Series 72C | | Extra l | ight EL | Ligi | ht L | Medi | um M | Hea | vy H | |----------------|---------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------| | Bearing
No. | Preload | Axial clearance | | | (N) | (µm) | (N) | (µm) | (N) | (µm) | (N) | (µm) | | 7200C | 13 | 3 | 29 | -1 | 68 | -8 | 150 | -18 | | 7201C | 20 | 1 | 39 | -3 | 99 | -12 | 197 | -22 | | 7202C | 20 | 1 | 40 | -3 | 97 | -11 | 199 | -21 | | 7203C | 25 | 0 | 46 | -4 | 146 | -16 | 296 | -28 | | 7204C | 35 | -2 | 68 | -7 | 196 | -20 | 384 | -33 | | 7205C | 42 | 1 | 82 | -4 | 193 | -14 | 402 | -27 | | 7206C | 57 | -1 | 114 | -7 | 292 | -20 | 591 | -35 | | 7207C | 75 | -3 | 151 | -10 | 385 | -25 | 794 | -43 | | 7208C | 98 | -5 | 202 | -13 | 501 | -29 | 985 | -47 | | 7209C | 123 | -7 | 254 | -16 | 534 | -30 | 1 067 | -49 | | 7210C | 127 | - 7 | 248 | -15 | 590 | -31 | 1 171 | -50 | | 7211C | 142 | -8 | 289 | -17 | 788 | -38 | 1 554 | -60 | | 7212C | 190 | -11 | 397 | -22 | 928 | -42 | 1 878 | -67 | | 7213C | 219 | -12 | 448 | -23 | 1 069 | -44 | 2 175 | -70 | | 7214C | 243 | -9 | 484 | -20 | 1 164 | -42 | 2 368 | -69 | | 7215C | 270 | -10 | 530 | -21 | 1 224 | -42 | 2 445 | -68 | | 7216C | 305 | -12 | 595 | -24 | 1 367 | -47 | 2 752 | -76 | | 7217C | 355 | -14 | 697 | -27 | 1 658 | -53 | 3 358 | -85 | | 7218C | 384 | -15 | 771 | -29 | 1 865 | -57 | 3 713 | -90 | | 7219C | 448 | -18 | 876 | -33 | 2 081 | -63 | 4 153 | -99 | | 7220C | 503 | -20 | 984 | -36 | 2 337 | -68 | 4 700 | -107 | Remark In the axial clearance column, the measured value is given. A 196 A 197 #### 9.5.2 Preload of Thrust Ball Bearings When the balls in thrust ball bearings rotate at relatively high speeds, sliding due to gyroscopic moments on the balls may occur. The larger of the two values obtained from Equations(9.1) and (9.2) below should be adopted as the minimum axial load in order to prevent such sliding $$F_{\text{a min}} = \frac{C_{0\text{a}}}{100} \left(\frac{n}{N_{\text{max}}} \right)^2 \dots$$ (9.1) $$F_{\rm a\,min} = \frac{C_{0a}}{1000}$$ (9.2) where $F_{ m a\,min}$: Minimum axial load (N), {kgf} n: Speed (min⁻¹) C_{0a} : Basic static load rating (N), {kgf} $N_{ m max}$: Limiting speed (oil lubrication) (min⁻¹) #### 9.5.3 Preload of Spherical Thrust Roller Bearings When spherical thrust roller bearings are used, damage such as scoring may occur due to sliding between the rollers and outer ring raceway. The minimum axial load $F_{\rm a \; min}$ necessary to prevent such sliding is obtained from the following equation: $$F_{\rm a\,min} = \frac{C_{0\,\rm a}}{1000}$$(9.3) #### 9.6 Technical Data ## 9.6.1 Load and Displacement of Position-Preloaded Bearings Two (or more) ball or tapered roller bearings mounted side by side as a set are termed duplex (or multiple) bearing sets. The bearings most often used in multiple arrangements are single-row angular contact ball bearings for machine tool spindles, since there is a requirement to reduce the bearing displacement under load as much as possible. There are various ways of assembling sets depending on the effect desired. Duplex angular contact bearings fall into three types of arrangements, Back-to-Back, with lines of force convergent on the bearing back faces, Face-to-Face, with lines of force convergent on the bearing front faces, and Tandem, with lines of force being parallel. The symbols for these are DB, DF, and DT arrangements respectively (Fig. 9.7). DB and DF arrangement sets can take axial loads in either direction. Since the distance of the load centers of DB bearing set is longer than that of DF bearing set, they are widely used in applications where there is a moment. DT type sets can only take axial loads in one direction. However, because the two bearings share some load equally between them, a set can be used where the load in one direction is large. By selecting the DB or DF bearing sets with the proper preloads which have already been adjusted to an appropriate range by the bearing manufacturer, the radial and axial displacements of the bearing inner and outer ring can be reduced as much as allowed by certain limits. However, the DT bearing set cannot be preloaded. The amount of preload can be adjusted by changing clearance between bearings, δ_{a0} , as shown in Figs. 9.9 to 9.11. Preloads are divided into four graduated classification — Extra light (EL), Light (L), Medium (M), and Heavy (H). Therefore, DB and DF bearing sets are often used for applications where shaft misalignments and displacements due to loads must be minimized. Triplex sets are also available in three types (symbols: DBD, DFD, and DTD) of arrangements as shown in Fig. 9.8. Sets of four or five bearings can also be used depending on the application requirements. Duplex bearings are often used with a preload applied. Since the preload affects the rise in bearing temperature during operation, torque, bearing noise, and especially bearing life, it is extremely important to avoid applying an excessive preload. Generally, the axial displacement δ_a under an axial load F_a for single-row angular contact ball bearings is calculated as follows. $$\delta_a = c F_a^{2/3}$$ (9.4) where, c: Constant depending on the bearing type and dimensions. Fig. 9.9 shows the preload curves of duplex DB arrangement, and Figs. 9.10 and 9.11 show those for triplex DBD arrangement. If the inner rings of the duplex bearing set in Fig. 9.9 are pressed axially, A-side and B-side bearings are deformed δ_{a0A} and δ_{a0B} respectively and the clearance (between the inner rings), δ_{a0} , becomes zero. This condition means that the preload F_{a0} is applied on the bearing set. If an external axial load F_a is applied on the preloaded bearing set from the A-side, then the A-side bearing will be deformed δ_{a1} additionally and the displacement of B-side bearing will be reduced to the same amount as the A-side bearing displacement δ_{a1} . Therefore, the displacements of A- and B-side bearings are $\delta_{aA} = \delta_{a0A} + \delta_{a1}$ and $\delta_{aB} = \delta_{a0B} + \delta_{a1}$ respectively. That is, the load on A-side bearing including the preload is $(F_{a0} + F_a - F_a')$ and the B-side bearing is $(F_{a0} - F_a')$. Fig. 9.7 Duplex Bearing Arrangements Fig. 9.8 Triplex Bearing Arrangements Fig. 9.9 Preload Graph of DB Arrangement Duplex Bearings NSK TECHNICAL INFORMATION If the bearing set has an applied preload, the A-side bearing should have a sufficient life and load capacity for an axial load $(F_{a0}+F_a-F_a')$ under the speed condition. The axial clearance δ_{a0} is shown in Tables 9.3 to 9.5 of Section 9.5.1 (Pages A195 to A197). In Fig. 9.10, with an external axial load F_a applied on the AA-side bearings, the axial loads and displacements of AA- and B-side bearings are summarized in Table 9.6. In Fig. 9.11, with an external axial load F_a applied on the A-side bearing, the axial loads and displacements of A- and BB-side bearings are summarized in Table 9.7. The examples, Figs. 9.12 to 9.17, show the relation of the axial loads and axial displacements using duplex DB and triplex DBD arrangements of 7018C and 7018A bearings under several preload ranges. AA-side δ_{aoA} B-side δ_{aob} Table 9.6 | Direction | Displacement | Axial load | |-----------|--|--| | AA-side | $\delta_{\scriptscriptstyle a0A} + \delta_{\scriptscriptstyle a1}$ | $F_{\mathrm{a}0} + F_{\mathrm{a}} - F_{\mathrm{a}}{}^{\prime}$ | | B-side | $\delta_{\scriptscriptstyle a0B} - \delta_{\scriptscriptstyle a1}$ | $F_{\mathrm{a0}}{-}F_{\mathrm{a}^{'}}$ | Table 9.7 | Direction | Displacement | Axial load | |-----------|--|--| | A-side | $\delta_{\scriptscriptstyle a0A} + \delta_{\scriptscriptstyle a1}$ | $F_{\mathrm{a}0}\!+\!F_{\mathrm{a}}\!-\!F_{\mathrm{a}}{}^{\prime}$ | | BB-side | $\delta_{\scriptscriptstyle{ ext{a}0 ext{B}}} - \delta_{\scriptscriptstyle{ ext{a}1}}$ | $F_{\mathrm{a0}}{-}F_{\mathrm{a}}{'}$ | Fig. 9.10 Preload Graph of Triplex DBD Bearing Set (Axial load is applied from AA-side) Fig. 9.11 Preload Graph of Triplex DBD Bearing set (Axial load is applied from A-side) Fig. 9.13 100 7018C DBD (Axiat load is applied to the A-side) 80 Single bearing DBD C2 Axial displacement (δ_a) , 60 50 40 30 10 11 12 13 14 15 kN 3 9 8 500 1 000 1 500 kgf Axial
load (F_a) Fig. 9.14 ## Remark A (•) mark on the axial load or displacement curve indicates the point where the preload is zero. Therefore, if the axial load is larger than this, the opposed bearing does not impose a load. A 205 A 204 Fig. 9.15 Fig. 9.16 Fig. 9.17 Remark A (•) mark on the axial load or displacement curve indicates the point where the preload is zero. Therefore, if the axial load is larger than this, the opposed bearing does not impose a load. A 207 A 206 #### 9.6.2 Axial Displacement of Deep Groove Ball Bearings When an axial load F_a is applied to a radial bearing with a contact angle α_0 and the inner ring is displaced δ_a , the center Oi of the inner ring raceway radius is also moved to Oi' resulting in the contact angle α as shown in Fig. 9.18. If $\delta_{\rm N}$ represents the elastic deformation of the raceway and ball in the direction of the rolling element load Q, Equation (9.5) is derived from Fig. 9.18. $$(m_0+\delta_N)^2=(m_0\cdot\sin\alpha_0+\delta_a)^2+(m_0\cdot\cos\alpha_0)^2$$ $$\therefore \delta_{\rm N} = m_0 \left\{ \sqrt{\left(\sin \alpha_0 + \frac{\delta_a}{m_0} \right)^2 + \cos^2 \alpha_0} - 1 \right\} \dots (9.5)$$ Also there is the following relationship between the rolling element load Q and elastic deformation $\delta_{\rm N}$. $$Q=K_{\rm N}\cdot\delta_{\rm N}^{3/2}$$ (9.6) where, $K_{\rm N}$: Constant depending on bearing material, type, and dimension .. If we introduce the relation of $$m_0 = \left(\frac{r_{\rm e}}{D_{\rm w}} + \frac{r_i}{D_{\rm w}} - 1\right) D_{\rm w} = B \cdot D_{\rm w}$$ Equations (9.5) and (9.6) are, $$Q=K_{\rm N} (B \cdot D_{\rm w})^{3/2} \left\{ \sqrt{(\sin \alpha_0 + h)^2 + \cos^2 \alpha_0} - 1 \right\}^{3/2}$$ where, $$h = \frac{\delta_a}{m_0} = \frac{\delta_a}{R \cdot D_a}$$ where, $h=\frac{\delta_{\rm a}}{m_{\rm 0}}=\frac{\delta_{\rm a}}{B\cdot D_{\rm w}}$ If we introduce the relation of $K_{\rm N}$ = $K\cdot \frac{\sqrt{D_{\rm w}}}{B^{3/2}}$ $$Q=K\cdot D_{\rm w}^{\ 2}\left\{\sqrt{(\sin\alpha_0+h)^2+\cos^2\alpha_0}-1\right\}^{3/2}$$ (9.7) On the other hand, the relation between the bearing axial load and rolling element load is shown in Equation (9.8) using Fig. 9.19: $$F_a = Z \cdot Q \cdot \sin \alpha$$ (9.8) Based on Fig. 9.18, we obtain, $$(m_0+\delta_N) \sin\alpha=m_0\cdot\sin\alpha_0+\delta_n$$ $$\therefore \sin\alpha = \frac{m_0 \cdot \sin\alpha_0 + \delta_a}{m_0 + \delta_N} = \frac{\sin\alpha_0 + h}{1 + \frac{\delta_N}{m_0}}$$ If we substitute Equation (9.5). $$\sin\alpha = \frac{\sin\alpha_0 + h}{\sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0}}$$ (9.9) That is, the relation between the bearing axial load F_a and axial displacement δ_a can be obtained by substituting Equations (9.7) and (9.9) for Equation $$F_a = K \cdot Z \cdot D_w^2$$ $$\frac{\left\{\sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0 - 1}\right\}^{3/2} \times (\sin\alpha_0 + h)}{\sqrt{(\sin\alpha_0 + h)^2 + \cos^2\alpha_0}}$$(9.10) where, K: Constant depending on the bearing material and design $D_{\rm w}$: Ball diameter Z: Number of balls Initial contact angle In case of single-row deep groove ball bearings, the initial contact angle can be obtained using Equation (5) of Page C012 Actual axial deformation varies depending on the bearing mounting conditions, such as the material and thickness of the shaft and housing, and bearing fitting. For details, consult with NSK regarding the axial deformation after mounting. Fig. 9.18 Fig. 9.19 the radial clearance. NSK Fig. 9.20 gives the relation between axial load and axial displacement for 6210 and 6310 single-row deep groove ball bearings with initial contact angles of α_0 =0°, 10°, 15°. The larger the initial contact angle α_0 , the more rigid the bearing will be in the axial direction and also the smaller the difference between the axial displacements of 6210 and 6310 under the same axial load. The angle α_0 depends upon the groove radius and Fig. 9.21 gives the relation between axial load and axial displacement for 72 series angular contact ball bearings with initial contact angles of 15° (C), 30° (A), and 40° (B). Because 70 and 73 series bearings with identical contact angles and bore diameters can be considered to have almost the same values as 72 series bearings. Angular contact ball bearings that sustain loads in the axial direction must maintain their running accuracy and reduce the bearing elastic deformation from applied loads when used as multiple bearing sets with a preload applied. To determine the preload to keep the elastic deformation caused by applied loads within the required limits, it is important to know the characteristics of load vs. deformation. The relationship between load and displacement can be expressed by Equation (9.10) as $F_a \propto \delta_a^{3/2}$ or $\delta_a \propto F_a^{2/3}$. That is, the axial displacement δ_a is proportional to the axial load F_a to the 2/3 power. When this axial load index is less than one, it indicates the relative axial displacement will be small with only a small increase in the axial load. (Fig. 9.21) The underlying reason for applying a preload is to reduce the amount of displacement. Fig. 9.20 Axial Load and Axial Displacement of Deep Groove Ball Bearings Fig. 9.21 Axial Load and Axial Displacement of Angular Contact Ball Bearings A 210 A 210 ## 9.6.3 Axial Displacement of Tapered Roller Bearings Tapered roller bearings are widely used in pairs like angular contact ball bearings. Care should be taken to select appropriate tapered roller bearings. For example, the bearings of machine tool head spindles and automobile differential pinions are preloaded to increase shaft rigidity. When a bearing with an applied preload is to be used in an application, it is essential to have some knowledge of the relationship between axial load and axial displacement. For tapered roller bearings, the axial displacement calculated using Palmgren's method, Equation (9.11) generally agrees well with actual measured values. Actual axial deformation varies depending on the bearing mounting conditions, such as the material and thickness of the shaft and housing, and bearing fitting. For details, consult with NSK regarding the axial deformation after mounting. $$\begin{array}{ll} \delta_{\rm a} = & \frac{0.000077}{\sin\alpha} \cdot \frac{Q^{0.9}}{L_{\rm we}^{0.8}} & & (\rm N) \\ \\ = & \frac{0.0006}{\sin\alpha} \cdot \frac{Q^{0.9}}{L_{\rm we}^{0.8}} & & \{\rm kgf\} \\ \end{array} \right\} \qquad \cdots \quad \textbf{(9.11)}$$ where, δ_a : Axial displacement of inner, outer ring (mm) α: Contact angle...1/2 the cup angle (°) (Refer to Fig. 9.22) Q: Load on rolling elements (N), {kgf} $$Q = \frac{F_{\rm a}}{Z {\rm sin}\alpha}$$ $L_{ m we}$: Length of effective contact on roller (mm) F_a : Axial load (N), {kgf} Z: Number of rollers Equation (9.11) can also be expressed as Equation (9.12). $$\delta_a = K_a \cdot F_a^{0.9}$$ (9.12) where, $K_{\rm a} = \frac{0.000077}{(\sin\!\alpha)^{1.9}\; Z^{0.9}\; L_{\rm we}^{0.8}} \;\; \dots \eqno (N)$ $$= \frac{0.0006}{(\sin \alpha)^{1.9} Z^{0.9} L_{we}^{0.8}}$$ (kgf) Here, $K_{\rm a}$: Coefficient determined by the bearing internal design. Axial loads and axial displacement for tapered roller bearings are plotted in Fig. 9.23. The amount of axial displacement of tapered roller bearings is proportional to the axial load raised to the 0.9 power. The displacement of ball bearings is proportional to the axial load raised to the 0.67 power, thus the preload required to control displacement is much greater for ball bearings than for tapered roller bearings. Caution should be taken not to make the preload indiscriminately large on tapered roller bearings, since too large of a preload can cause excessive heat, seizure, and reduced bearing life. Fig. 9.22 Fig. 9.23 Axial Load and Axial Displacement for Tapered Roller Bearings # 10. FRICTION | 10.1 Coe | officients of Dynamic Friction A 216 | |----------|---| | 10.1.1 | Bearing Types and Their Coefficients of Dynamic Friction μ | | 10.2 Em | pirical Equations for Running Torque A 216 | | 10.3 Tec | hnical Data A 216 | | 10.3.1 | Preload and Starting Torque for Angular Contact Ball Bearings A 216 | | 10.3.2 | Empirical Equations of Running Torque of High-Speed Ball Bearings A 218 | | 10.3.3 | Preload and Starting Torque for Tapered Roller Bearings | | 10.3.4 | Empirical Equations for Running Torque of Tapered Roller BearingsA 222 | ### 10. FRICTION ### 10.1 Coefficients of Dynamic Friction ## 10.1.1 Bearing Types and Their Coefficients of Dynamic Friction μ $$\mu = \frac{M}{P \cdot \frac{d}{2}} \quad (10.1)$$ M: Dynamic friction torque (N·mm), {kgf·mm} P: Load on a bearing (Dynamic equivalent load) (N), {kgf} d: Shaft diameter, Inner ring bore diameter (mm) Table 10.1 Coefficients of Dynamic Friction | Bearing Types | Approximate values of μ | |---|-----------------------------| | Deep Groove Ball Bearings | 0.0013 | | Angular Contact Ball Bearings | 0.0015 | | Self-Aligning Ball Bearings | 0.0010 | | Thrust Ball Bearings | 0.0011 | | Cylindrical Roller Bearings
Tapered Roller Bearings
Spherical Roller Bearings | 0.0010
0.0022
0.0028 | | Needle Roller Bearings
with Cages | 0.0015 | | Full Complement Needle
Roller Bearings | 0.0025 | | Spherical Thrust Roller
Bearings | 0.0028 | ### 10.2 Empirical Equations for Running Torque Dynamic torque of bearing (heat generation) $M=M_l+M_v$ Load term (Determined by bearing type and load) $M_l=f_1Fd_m$ where f_1 : Coefficient determined by bearing type and load F: Load $d_{\scriptscriptstyle \mathrm{m}}$: Pitch circle diameter of rolling element Speed term (Determined by oil viscosity, amount, speed) $M_v = f_0 (v_0 n)^{2/3} dm^3$ where f_0 : Coefficient determined by bearing and
lubricating method v_0 : Kinematic viscosity of oil n: Speed ### 10.3 Technical Data ## 10.3.1 Preload and Starting Torque for Angular Contact Ball Bearings Angular contact ball bearings, like tapered roller bearings, are most often used in pairs rather than alone or in other multiple bearing sets. Back-to-back and face-to-face bearing sets can be preloaded to adjust bearing rigidity. Extra light (EL), Light (L), Medium (M), and Heavy (H) are standard preloads. Friction torque for the bearing will increase in direct proportion to the preload. The starting torque of angular contact ball bearings is mainly the torque caused by angular slippage between the balls and contact surfaces on the inner and outer rings. Starting torque for the bearing M due to such spin is given by, $$M=M_s\cdot Z\sin\alpha$$ (mN·m), {kgf·mm} ······ (10.2) where, $M_{\rm s}$: Spin friction for contact angle α centered on the shaft. $$M_{\rm s} = \frac{3}{8} \mu_{\rm s} \cdot Q \cdot a \cdot E(k)$$ (mN⋅m), {kgf⋅mm} Contact-surface slip friction coefficient Q: Load on rolling elements (N), {kgf} a: (1/2) of contact-ellipse major axis (mm) $$E(k)$$: With $k = \sqrt{1 - \left(\frac{b}{a}\right)}$ as the population parameter, second class complete ellipsoidal integration b: (1/2) of contact-ellipse minor axis (mm) Z: Number of balls α : Contact angle (°) Actual measurements with 15° angular contact ball bearings correlate well with calculated results using μ_s =0.15 in Equation (10.2). Fig. 10.1 shows the calculated friction torque for 70C and 72C series bearings. Fig. 10.1 Preload and Starting Torque for Angular Contact Ball Bearings (lpha=15°) of DF and DB Duplex Sets ## 10.3.2 Empirical Equation of Running Torque of High-Speed Ball Bearings We present here empirical equations for the running torque of high speed ball bearings subject to axial loading and jet lubrication. These equations are based on the results of tests of angular contact ball bearings with bore diameters of 10 to 30 mm, but they can be extrapolated to bigger bearings. The running torque M can be obtained as the sum of a load term M_l and speed term M_v as follows: $$M=M_l+M_v \text{ (mN}\cdot\text{m)}, \{\text{kgf}\cdot\text{mm}\} \cdots (10.3)$$ The load term M_l is the term for friction, which has no relation with speed or fluid friction, and is expressed by Equation (10.4) which is based on experiments. $$\frac{M_{l}=0.672\times10^{-3}D_{pw}^{0.7}F_{a}^{1.2} (\text{mN}\cdot\text{m})}{=1.06\times10^{-3}D_{pw}^{0.7}F_{a}^{1.2} \{\text{kgf}\cdot\text{mm}\}} \right\} \cdots (10.4)$$ where, D_{pw} : Pitch diameter of rolling elements (mm) F_a : Axial load (N), {kgf} The speed term M_v is that for fluid friction, which depends on angular speed, and is expressed by Equation (10.5). $$M_v = 3.47 \times 10^{-10} D_{pw}^{3} n_i^{1.4} Z_B^{a} Q^{b} \text{ (mN \cdot m)}$$ = $3.54 \times 10^{-11} D_{pw}^{3} n_i^{1.4} Z_B^{a} Q^{b} \text{ (kgf \cdot mm)}$(10.5) where, n_i : Inner ring speed (min⁻¹) Z_B: Absolute viscosity of oil at outer ring temperature (mPa·s), {cp} Q: Oil flow rate (kg/min) The exponents a and b, that affect the oil viscosity and flow rate factors, depend only on the angular speed and are given by Equations (10.6) and (10.7) as follows: $$a=24n_i^{-0.37}$$ (10.6) $$b=4\times10^{-9}n_i^{1.6}+0.03$$ (10.7) An example of the estimation of the running torque of high speed ball bearings is shown in Fig. 10.2. A comparison of values calculated using these equations and actual measurements is shown in Fig. 10.3. When the contact angle exceeds 30°, the influence of spin friction becomes big, so the running torque given by the equations will be low. #### **Calculation Example** Obtain the running torque of high speed angular contact ball bearing 20BNT02 (ϕ 20× ϕ 47×14) under the following conditions: n_i =70 000 min⁻¹ F_a =590 N, {60 kgf} Lubrication: Jet, oil viscosity: 10 mPa·s {10 cp} oil flow: 1.5 kg/min From Equation (10.4), M_i =0.672×10⁻³ $D_{pw}^{07}F_a^{1.2}$ =0.672×10⁻³×33.5^{0.7}×590^{1.2} =16.6 (mN·m) M_i =1.06×10⁻³×33.5^{0.7}×60^{1.2} =1.7 {kgf·mm} From Equations (10.6) and (10.7), $a=24n_i^{-0.37}$ $=24\times70\ 000^{-0.37}=0.39$ $b=4\times10^{-9}n_i^{1.6}+0.03$ $=4\times10^{-9}\times70\ 000^{1.6}+0.03=0.26$ From Equation (10.5), M_v =3.47×10⁻¹⁰ $D_{pv}^{3}n_i^{1.4}Z_B^{a}Q^b$ =3.47×10⁻¹⁰×33.5³×70 000^{1.4}×10^{0.39}×1.5^{0.26} =216 (mN·m) M_v =3.54×10⁻¹¹×33.5³×70 000^{1.4}×10^{0.39}×1.5^{0.26} =22.0 {kgf·mm} $M=M_l+M_v=16.6+216=232.6 \text{ (mN}\cdot\text{m)}$ $M=M_l+M_v=1.7+22=23.7 \text{ {kgf}\cdot\text{mm}}$ Fig. 10.2 Typical Test Example Fig. 10.3 Comparison of Actual Measurements and Calculated Values NSK ## 10.3.3 Preload and Starting Torque for Tapered Roller Bearings The balance of loads on the bearing rollers when a tapered roller bearing is subjected to axial load F_a is expressed by the following three Equations (10.8), (10.9), and (10.10): $$Q_e$$ = $\frac{F_a}{Z \sin \alpha}$(10.8) $$Q_{i}=Q_{c}\cos 2\beta = \frac{\cos 2\beta}{Z\sin \alpha}F_{a}$$ (10.9) $$Q_{i}=Q_{e}\sin 2\beta = \frac{\sin 2\beta}{Z \sin \alpha}F_{a} \qquad (10.10)$$ where, $Q_{\rm e}$: Rolling element load on outer ring (N), $\{kgf\}$ Q_i : Rolling element load on inner ring (N), $\{kgf\}$ $Q_{\rm f}$: Rolling element load on inner-ring large end rib, (N), {kgf} (assume $Q_{\rm f} \perp Q_{\rm i}$) Z: Number of rollers α : Contact angle...(1/2) of the cup angle (°) β : (1/2) of tapered roller angle (°) $D_{\rm w1}^{'}$: Roller large-end diameter (mm) (Fig. 10.4) e: Contact point between roller end and rib (Fig. 10.4) As represented in Fig. 10.4, when circumferential load F is applied to the bearing outer ring and the roller turns in the direction of the applied load, the starting torque for contact point C relative to instantaneous center A becomes $e u_c Q_t$. Therefore, the balance of frictional torque is, $$D_{\text{wl}}F = e \mu_{\text{e}}Q_{\text{f}} \text{ (mN \cdot m)}, \{\text{kgf} \cdot \text{mm}\} \cdot \cdots \cdot (10.11)$$ where, μ_e : Friction coefficient between inner ring large rib and roller endface The starting torque M for one bearing is given by, $M=FZ\ l$ $$= \frac{e \ \mu_e \ l \ \sin \ 2\beta}{D_{\text{w1}} \ \sin \ \alpha} F_a$$ $$(\text{mN} \cdot \text{m}), \{\text{kgf} \cdot \text{mm}\} \cdots \cdots (\textbf{10.12})$$ because, $D_{\text{w1}} = 2\ \overline{OB}\ \sin\beta$, and $l = \overline{OB}\ \sin\alpha$. If we substitute these into Equation (10.12) we obtain, $M = e\ \mu_{\text{e}}\ \cos\!\beta\ F_{\text{a}}\ (\text{mN}\cdot\text{m}), \ \{\text{kgf}\cdot\text{mm}\}$(10.13) The starting torque M is sought considering only the slip friction between the roller end and the inner-ring large-end rib. However, when the load on a tapered roller bearing reaches or exceeds a certain level (around the preload) the slip friction in the space between the roller end and inner-ring large end rib becomes the decisive factor for bearing starting torque. The torque caused by other factors can be ignored. Values for e and β in Equation (10.12) are determined by the bearing design. Consequently, assuming a value for μ_e , the starting torque can be calculated. The values for μ_e and for e have to be thought of as a dispersion, thus, even for bearings with the same number, the individual starting torques can be quite diverse. When using a value for e determined by the bearing design, the average value for the bearing starting torque can be estimated using μ_e =0.20 which is the average value determined from various test results Fig. 10.5 shows the results of calculations for various tapered roller bearing series. Fig. 10.4 Fig. 10.5 Axial Load and Starting Torque for Tapered Roller Bearings ## 10.3.4 Empirical Equations for Running Torque of Tapered Roller Bearings When tapered roller bearings operate under axial load, we reanalyzed the torque of tapered roller bearings based on the following two kinds of resistance, which are the major components of friction: - (1) Rolling resistance (friction) of rollers with outer or inner ring raceways elastic hysteresis and viscous rolling resistance of EHL - (2) Sliding friction between inner ring ribs and roller ends When an axial load $F_{\rm a}$ is applied on tapered roller bearings, the loads shown in Fig. 10.6 are applied on the rollers. $$Q_{\rm e} = Q_{\rm i} = \frac{F_{\rm a}}{Z \sin \alpha}$$ (10.14) $$Q_{t} = \frac{F_{a} \sin 2\beta}{Z \sin \alpha} \dots (10.15)$$ where, Q_e : Rolling element load on outer ring - Q_i : Rolling element load on inner ring - Q_f: Rolling element load on inner-ring large end rib - Z: Number of rollers - α : Contact angle...(1/2) of the cup angle - β : (1/2) of tapered roller angle For simplification, a model using the average diameter $D_{\rm wc}$ as shows in Fig. 10.7 can be used. Where, M_i , M_e : F_{si} , F_{se} , F_{sf} : Rolling resistance (moment) Sliding friction R_i, R_e : Radii at center of inner and outer ring raceways e: Contact height of roller end face with rib In Fig. 10.7, when the balance of sliding friction and moments on the rollers are considered, the following equations are obtained: $$M_{\rm f} + M_{\rm e} = \frac{D_{\rm w}}{2} F_{\rm se} + \frac{D_{\rm w}}{2} F_{\rm sf} + \left(\frac{D_{\rm w}}{2} - e\right) F_{\rm sf}$$(10.17) When the running torque M applied on the outer (inner) ring is calculated using Equations (10.16) and (10.17) and multiplying by Z, which is the number of rollers: $$M=Z (R_e F_{sc}-M_e)$$ $$= \frac{Z}{D_w} (R_e M_i + R_i M_e) + \frac{Z}{D_w} R_e e F_{sf}$$ $$= M_e + M_e$$ Therefore, the friction on the raceway surface $M_{\rm R}$ and that on the ribs $M_{\rm S}$ are separately obtained. Additionally, $M_{\rm R}$ and $M_{\rm S}$ are rolling friction and sliding friction respectively. Fig. 10.6 Loads Applied on Roller Fig. 10.7 Model of Parts where Friction is
Generated The running torque M of a tapered roller bearing can be obtained from the rolling friction on the raceway $M_{\rm R}$ and sliding friction on the ribs $M_{\rm S}$. ### Sliding Friction on Rib $M_{ m S}$ As a part of $M_{\rm S}$, $F_{\rm sf}$ is the tangential load caused by sliding, so we can write $F_{\rm sf} = \mu Q_{\rm f}$ using the coefficient of dynamic friction μ . Further, by substitution of the axial load $F_{\rm a}$, the following equation is obtained: $$M_{\rm S} = e \,\mu \, {\rm cos}\beta \, F_{\rm a} \, \cdots$$ (10.19) This is the same as the equation for starting torque, but μ is not constant and it decreases depending on the conditions or running in. For this reason, Equation (10.19) can be rewritten as follows: $$M_{\rm S}=e \mu_0 \cos\beta F_{\rm a} f'(\Lambda, t, \sigma) \cdots (10.20)$$ Where μ_0 is approximately 0.2 and $f'(\Lambda, t, \sigma)$ is a function which decreases with running in and oil film formation, but it is set equal to one when starting. ### Rolling Friction on Raceway Surface $M_{ m R}$ Most of the rolling friction on the raceway is viscous oil resistance (EHL rolling resistance). M_i and M_e in Equation (10.18) correspond to it. A theoretical equation exists, but it should be corrected as a result of experiments. We obtained the following equation that includes corrective terms: $$M_{i, e} = \left[f(w) \left(\frac{1}{1 + 0.29L^{0.78}} \right) \frac{4.318}{\alpha_0} \right]$$ $$(G \cdot U)^{0.658} W^{0.0126} R^2 L_{we} \Big]_{i, e} \cdots \cdots \cdots (10.21)$$ $$f(w) = \left(\frac{kF_a}{E' D_w L_{we} Z \sin \alpha}\right)^{0.3} \dots (10.22)$$ Therefore, M_R can be obtained using Equations (10. 21) and (10.22) together with the following equation: $$M_{\rm R} = \frac{Z}{D_{\rm or}} (R_{\rm e} M_i + R_i M_{\rm e})$$ ### Running Torque of Bearings M From these, the running torque of tapered roller bearings M is given by Equation (10.23) $$M = \frac{Z}{D_{w}} (R_{e}M_{i} + R_{i}M_{e}) + e \,\mu_{0} \cos\beta \,F_{a}f' \,(A, t, \sigma)$$(10.23) As shown in Figs. 10.8 and 10.9, the values obtained using Equation (10.23) correlate rather well with actual measurements. Therefore, estimation of running torque with good accuracy is possible. When needed, please consult NSK. #### [Explanation of Symbols] G, W, U: EHL dimensionless parameters L: Coefficient of thermal load α_0 : Pressure coefficient of lubricating oil viscosity R: Equivalent radius k: Constant E': Equivalent elastic modulus α : Contact angle (Half of cup angle) lpha: Contact angle (Half of cup angle) $R_i,\,R_{\rm e}$: Inner and outer ring raceway radii (center) : Half angle of roller i, e: Indicate inner ring or outer ring respectively $L_{\rm we}$: Effective roller length Fig. 10.8 Comparison of Empirical Values with Actual Measurements Fig. 10.9 Viscosity Variation and Running Torque ## 11. LUBRICATION | 11.1 Purposes of Lubrication | A 22 | |---|-------------| | 11.2 Lubricating Methods | ······ A 22 | | 11.2.1 Grease Lubrication | A 22 | | (1) Grease Quantity | A 22 | | (2) Replacement of Grease | ······ A 22 | | (3) Replenishing Interval | A 22 | | (4) Grease Life of Sealed Ball Bearings | A 23 | | 11.2.2 Oil Lubrication | ······ A 23 | | (1) Oil Bath Lubrication | ······ A 23 | | (2) Drip-Feed Lubrication | ······ A 23 | | (3) Splash Lubrication | ······ A 23 | | (4) Circulating Lubrication | ······ A 23 | | (5) Jet Lubrication | ······ A 23 | | (6) Oil Mist Lubrication | ······ A 23 | | (7) Oil/Air Lubricating Method | A 23 | | 11.3 Lubricants | A 23 | | 11.3.1 Lubricating Grease | A 23 | | (1) Base Oil | A 23 | | (2) Thickener | A 23 | | (3) Additives | A 23 | | (4) Consistency | A 23 | | (5) Mixing Different Types of Grease | ······ A 23 | | 11.3.2 Lubricating Oil | | | 11.4 Technical Data | A 24 | | 11 A 1 Rrands and Properties of Lubricating Greases | Λ 24 | ### 11. LUBRICATION ### 11.1 Purposes of Lubrication The main purposes of lubrication are to reduce friction and wear inside the bearings that may cause premature failure. The effects of lubrication may be briefly explained as follows: ### (1) Reduction of Friction and Wear Direct metallic contact between the bearing rings, rolling elements and cage, which are the basic components of a bearing, is prevented by an oil film which reduces the friction and wear in the contact areas. ### (2) Extension of Fatigue Life The rolling fatigue life of bearings depends greatly upon the viscosity and film thickness between the rolling contact surfaces. A heavy film thickness prolongs the fatigue life, but it is shortened if the viscosity of the oil is too low so the film thickness is insufficient. (3) Dissipation of Frictional Heat and Cooling Circulation lubrication may be used to carry away frictional heat or heat transferred from the outside to prevent the bearing from overheating and the oil from deteriorating. #### (4) Others Adequate lubrication also helps to prevent foreign material from entering the bearings and guards against corrosion or rusting. ### 11.2 Lubricating Methods The various lubricating methods are first divided into either grease or oil lubrication. Satisfactory bearing performance can be achieved by adopting the lubricating method which is most suitable for the particular application and operating condition. In general, oil offers superior lubrication; however, grease lubrication allows a simpler structure around the bearings. A comparison of grease and oil lubrication is given in Table 11.1. Table 11. 1 Comparison of Grease and Oil Lubrication | Item | Grease Lubrication | Oil Lubrication | |---|--|---| | Housing Structure and
Sealing Method | Simple | May be complex, Careful maintenance required. | | Speed | Limiting speed is 65% to 80% of that with oil lubrication. | Higher limiting speed. | | Cooling Effect | Poor | Heat transter is possible using forced oil circulation. | | Fluidity | Poor | Good | | Full Lubricant
Replacement | Sometimes difficult | Easy | | Removal of Foreign
Matter | Removal of particles from grese is impossible. | Easy | | External
Contamination due to
Leakage | Surroundings seldom contaminated by leakage. | Often leaks without proper countermeasures. Not suitable if external contamination must be avoided. | #### 11.2.1 Grease Lubrication ### (1) Grease Quantity The quantity of grease to be packed in a housing depends on the housing design and free space, grease characteristics, and ambient temperature. For example, the bearings for the main shafts of machine tools, where the accuracy may be impaired by a small temperature rise, require only a small amount of grease. The quantity of grease for ordinary bearings is determined as follows. Sufficient grease must be packed inside the bearing including the cage guide face. The available space inside the housing to be packed with grease depends on the speed as follows: 1/2 to 2/3 of the space ... When the speed is less than 50% of the limiting speed. 1/3 to 1/2 of the space ... When the speed is more than 50% of the limiting speed. ### (2) Replacement of Grease Grease, once packed, usually need not be replenished for a long time; however, for severe operating conditions, grease should be frequently replenished or replaced. In such cases, the bearing housing should be designed to facilitate grease replenishment and replacement. When replenishment intervals are short, provide replenishment and discharge ports at appropriate positions so deteriorated grease is replaced by fresh grease. For example, the housing space on the grease supply side can be divided into several sections with partitions. The grease on the partitioned side gradually passes through the bearings and old grease forced from the bearing is discharged through a grease valve (Fig. 11.1). If a grease valve is not used, the space on Fig. 11.1 Combination of Partitioned Grease Reservoir and Grease Valve the discharge side is made larger than the partitioned side so it can retain the old grease, which is removed periodically by removing the cover. ### (3) Replenishing Interval Even if high-quality grease is used, there is deterioration of its properties with time; therefore, periodic replenishment is required. Figs 11.2 (1) and (2) show the replenishment time intervals for various bearing types running at different speeds. Figs.11.2 (1) and (2) apply for the condition of high-quality lithium soap-mineral oil grease, bearing temperature of 70° C, and normal load (P/C=0.1). Temperature If the bearing temperature exceeds 70°C, the replenishment time interval must be reduced by half for every 15°C temperature rise of the bearings. · Grease In case of ball bearings especially, the replenishing time interval can be extended depending on used grease type. (For example, high-quality lithium soapsynthetic oil grease may extend about two times of replenishing time interval shown in Fig.11.2 (1). If the temperature of the bearings is less than 70°C, the usage of lithium soap-mineral oil grease or lithium soap-synthetic oil grease is appropriate.) It is advisable to consult NSK. · Load The replenishing time interval depends on the magnitude of the bearing load. Please refer to Fig.11.2 (3). If P/C exceeds 0.16, it is advisable to consult NSK. (1) Radial Ball Bearings, Cylindrical Roller Bearings (2) Tapered Roller Bearings, Spherical Roller Bearings (3) Load facto | r | P/C | ≦0.06 | 0.1 | 0.13 | 0.16 | |---|-------------|-------|-----|------|------| | | Load factor | 1.5 | 1 | 0.65 | 0.45 | Fig. 11.2 Grease Replenishment Intervals ### (4) Grease Life of Sealed Ball Bearings When grease is packed into single-row deep groove ball bearings, the grease life may be estimated using Equation (11.1) or
(11.2) or Fig. 11.3: (General purpose grease (1)) $$log \ t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right) T$$ (Wide-range grease (2)) $$log t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right) T$$ (11.2) where t: Average grease life, (h) n: Speed (min⁻¹) $N_{ m max}$: Limiting speed with grease lubrication $({ m min^{-1}})$ (values for ZZ and VV types listed in the bearing tables) T: Operating temperature °C Equations (11.1) and (11.2) and Fig. 11.3 apply under the following conditions: (a) Speed, n $$0.25 \le \frac{n}{N_{\text{max}}} \le 1$$ when $$\frac{n}{N_{\rm max}}$$ < 0.25, assume $\frac{n}{N_{\rm max}}$ = 0.25 Fig. 11.3 Grease Life of Sealed Ball Bearings (b) Operating Temperature, *T* For general purpose grease (1) 70 °C ≤ *T* ≤ 110 °C For wide-range grease (2) 70 °C ≤ *T* ≤ 130 °C When T < 70 °C assume T = 70 °C (c) Bearing Loads The bearing loads should be about 1/10 or less of the basic load rating C_r . Notes (1) Mineral-oil base greases (e.g. lithium soap base grease) which are often used over a temperature range of around – 10 to 110 °C. (2) Synthetic-oil base greases are usable over a wide temperature range of around – 40 to 130 °C. #### 11.2.2 Oil Lubrication ### (1) Oil Bath Lubrication Oil bath lubrication is a widely used with low or medium speeds. The oil level should be at the center of the lowest rolling element. It is desirable to provide a sight gauge so the proper oil level may be maintained (Fig. 11.4) ### (2) Drip-Feed Lubrication Drip feed lubrication is widely used for small ball bearings operated at relatively high speeds. As shown in Fig. 11.5, oil is stored in a visible oiler. The oil drip rate is controlled with the screw in the top. ### (3) Splash Lubrication With this lubricating method, oil is splashed onto the bearings by gears or a simple rotating disc installed near bearings without submerging the bearings in oil. It is commonly used in automobile transmissions and final drive gears. Fig. 11.6 shows this lubricating method used on a reduction gear. Fig. 11.5 Drip Feed Lubrication Fig. 11.4 Oil Bath Lubrication Fig. 11.6 Splash Lubrication ### (4) Circulating Lubrication Circulating lubrication is commonly used for high speed operation requiring bearing cooling and for bearings used at high temperatures. As shown in Fig. 11.7 (a), oil is supplied by the pipe on the right side, it travels through the bearing, and drains out through the pipe on the left. After being cooled in a reservoir, it returns to the bearing through a pump and filter. The oil discharge pipe should be larger than the supply pipe so an excessive amount of oil will not back up in the housing. Fig. 11.7 Circulating Lubrication ### (5) Jet Lubrication Jet lubrication is often used for ultra high speed bearings, such as the bearings in jet engines with a $d_{\rm m}n$ valve ($d_{\rm m}$: pitch diameter of rolling element set in mm; n: rotational speed in \min^{-1}) exceeding one million. Lubricating oil is sprayed under pressure from one or more nozzles directly into the bearing. Fig. 11.8 shows an example of ordinary jet lubrication. The lubricating oil is sprayed on the inner ring and cage guide face. In the case of high speed operation, the air surrounding the bearing rotates with it causing the oil jet to be deflected. The jetting speed of the oil from the nozzle should be more than 20 % of the circumferential speed of the inner ring outer surface (which is also the guide face for the cage). More uniform cooling and a better temperature distribution is achieved using more nozzles for a given amount of oil. It is desirable for the oil to be forcibly discharged so the agitating resistance of the lubricant can be reduced and the oil can effectively carry away the heat. Fig. 11.8 Jet Lubrication ### (6) Oil Mist Lubrication Oil mist lubrication, also called oil fog lubrication, utilizes an oil mist sprayed into a bearing. This method has the following advantages: (a) Because of the small quantity of oil required, the oil agitation resistance is small, and higher speeds are possible. (b) Contamination of the vicinity around the bearing is slight because the oil leakage is small. (c) It is relatively easy to continuously supply fresh oil; therefore, the bearing life is extended. This lubricating method is used in bearings for the high speed spindles of machine tools, high speed pumps, roll necks of rolling mills, etc (Fig. 11.9). For oil mist lubrication of large bearings, it is advisable to consult NSK. ### (7) Oil/Air Lubricating Method Using the oil/air lubricating method, a very small amount of oil is discharged intermittently by a constant-quantity piston into a pipe carrying a constant flow of compressed air. The oil flows along the wall of the pipe and approaches a constant flow rate. The major advantages of oil/air lubrication are: (a) Since the minimum necessary amount of oil is supplied, this method is suitable for high speeds because less heat is generated. (b) Since the minimum amount of oil is fed continuously, bearing temperature remains stable. Also, because of the small amount of oil, there is almost no atmospheric pollution. Fig. 11.9 Oil Mist Lubrication - (c) Since only fresh oil is fed to the bearings, oil deterioration need not be considered. - (d) Since compressed air is always fed to the bearings, the internal pressure is high, so dust, cutting fluid, etc. - For these reasons, this method is used in the main spindles of machine tools and other high speed applications (Fig. 11.10). Fig. 11.10 Oil/Air Lubrication ### 11.3 Lubricants ### 11.3.1 Lubricating Grease Grease is a semi-solid lubricant consisting of base oil, a thickener and additives. The main types and general properties of grease are shown in Table 11.2. It should be remembered that different brands of the same type of grease may have different properties. ### (1) Base Oil Mineral oils or synthetic oils such as silicone or diester oil are mainly used as the base oil for grease. The lubricating properties of grease depend mainly on the characteristics of its base oil. Therefore, the viscosity of the base oil is just as important when selecting grease as when selecting an oil. Usually, grease made with low viscosity base oils is more suitable for high speeds and low temperatures, while greases made with high viscosity base oils are more suited for high temperatures and heavy loads. However, the thickener also influences the lubricating properties of grease; therefore, the selection criteria for grease is not the same as for lubricating oil. Moreover, please be aware that ester-based grease will cause acrylic rubber material to swell, and that silicone-based grease will cause silicone-based material to swell. ### (2) Thickener As thickeners for lubricating grease, there are several types of metallic soaps, inorganic thickeners such as silica gel and bentonite, and heat resisting organic thickeners such as polyurea and fluoric compounds. The type of thickener is closely related to the grease dropping point (1); generally, grease with a high dropping point also has a high temperature capability during operation. However, this type of grease does not have a high working temperature unless the base oil is heat-resistant. The highest possible working temperature for grease should be determined considering the heat resistance of the base oil. The water resistance of grease depends upon the type of thickener. Sodium soap grease or compound grease containing sodium soap emulsifies when exposed to water or high humidity, and therefore, cannot be used where moisture is prevalent. Moreover, please be aware that urea-based grease will cause fluorine-based material to deteriorate. Note (1) The grease dropping point is that temperature at which a grease heated in a specified small container becomes sufficiently fluid to drip. Table 11.2 Grease Properties | Name
(Popular
name) | | Lithium Grease | | | Calcium Grease
(Cup Grease) | Mixed Base
Grease | Complex Base
Grease
(Complex Grease) | Non-S
(Nor | oap Base Grease
-Soap Grease) | |-----------------------------|---|--|---|---|---|---|--|--|--| | Thickener | Li Soap | | | Na Soap | Ca Soap | Na + Ca Soap,
Li + Ca Soap,
etc. | Ca Complex Soap,
Al Complex Soap,
Li Complex Soap,
etc. | | te, Carbon Black, Fluoric
Heat Resistant Organic
tc. | | Base
Oil
Properties | Mineral Oil | Diester Oil,
Polyatomic
Ester Oil | Silicone Oil | Mineral Oil | Synthetic Oil (Ester Oil,
Polyatomic Ester Oil,
Synthetic Hydrocarbon
Oil, Silicone Oil, Fluoric
Based Oil) | | Dropping
Point, °C | 170 to 195 | 170 to 195 | 200 to 210 | 170 to 210 | 70 to 90 | 160 to 190 | 180 to 300 | > 230 | > 230 | | Working
Temperatures, °C | -20 to +110 | -50 to +130 | -50 to +160 | -20 to +130 | -20 to +60 | -20 to +80 |
-20 to +130 | -10 to +130 | < +220 | | Working
Speed, %(1) | 70 | 100 | 60 | 70 | 40 | 70 | 70 | 70 | 40 to 100 | | Mechanical
Stability | Good | Good | Good | Good | Poor | Good | Good | Good | Good | | Pressure
Resistance | Fair | Fair | Poor | Fair | Poor | Fair to Good | Fair to Good | Fair | Fair | | Water Resistance | Good | Good | Good | Poor | Good | Poor for Na
Soap Grease | Good | Good | Good | | Rust Prevention | Good | Good | Poor | Poor to Good | Good | Fair to Good | Fair to Good | Fair to Good | Fair to Good | | Remarks | General
purpose
grease used
for numerous
applications | Good low
temperature
and torque
characteristics.
Often used for
small motors
and instrument
bearings. Pay
attention to
rust caused
by insulation
varnish. | Mainly for high temperature applications. Unsuitable for bearings for high and low speeds or heavy loads or those having numerous sliding-contact areas (roller bearings, etc.) | Long and short
fiber types are
available. Long
fiber grease is
unsuitable for
high speeds.
Attention to
water and high
temperature is
requred. | Extreme pressure grease containing high viscosity mineral oil and extreme pressure additive (Pb soap, etc.) has high pressure resistance. | Often used for
roller bearings
and large ball
bearing. | Suitable
for extreme
pressures
mechanically
stable | and high tem
lubricant. Syn
is recommend
temperature. | se grease is middle
perature purpose
thetic oil base grease
led for low or high
Some silicone and
ed grease have poor
n and noise. | **Note** (1) The values listed are percentages of the limiting speeds given in the bearing tables. **Remark** The grease properties shown here can vary between brands. #### (3) Additives Grease often contains various additives such as antioxidants, corrosion inhibitors, and extreme pressure additives to give it special properties. It is recommended that extreme pressure additives be used in heavy load applications. For long use without replenishment, an antioxidant should be added. #### (4) Consistency Consistency indicates the "softness" of grease. Table 11.3 shows the relation between consistency and working conditions. ### Table 11.3 Consistency and Working Conditions | Consistency
Number | 0 | 1 | 2 | 3 | 4 | |--|---|--|--|--|--| | Consistency(1)
1/10 mm | 355 to 385 | 310 to 340 | 265 to 295 | 220 to 250 | 175 to 205 | | Working
Conditions
(Application) | For centralized oiling When fretting is likely to occur | For centralized oiling When fretting is likely to occur For low temperatures | -For general use -For sealed ball bearings | For general use For sealed ball bearings For high temperatures | ·For high
temperatures
·For grease seals | Note (1) Consistency: The depth to which a cone descends into grease when a specified weight is applied, indicated in units of 1/10mm. The larger the value, the softer the grease. ### (5) Mixing Different Types of Grease In general, different brands of grease must not be mixed. Mixing grease with different types of thickneners may destroy its composition and physical properties. Even if the thickeners are of the same type, possible differences in the additive may cause detrimental effects. ### 11.3.2 Lubricating Oil The lubricating oils used for rolling bearings are usually highly refined mineral oil or synthetic oil that have a high oil film strength and superior oxidation and corrosion resistance. When selecting a lubricating oil, the viscosity at the operating conditions is important. If the viscosity is too low, a proper oil film is not formed and abnormal wear and seizure may occur. On the other hand, if the viscosity is too high, excessive viscous resistance may cause heating or large power loss. In general, low viscosity oils should be used at high speed; however, the viscosity should increase with increasing bearing load and size. Table 11.4 gives generally recommended viscosities for bearings under normal operating conditions. For use when selecting the proper lubricating oil, Fig. 11.11 shows the relationship between oil temperature and viscosity, and examples of selection are shown in Table 11.5. Table 11. 4 Bearing Types and Proper Viscosity of Lubricating Oils | Bearing Type | Proper Viscosity
at Operating
Temperature | |--|---| | Ball Bearings and
Cylindrical Roller Bearings | Higher than 13mm²/s | | Tapered Roller Bearings and
Spherical Roller Bearings | Higher than 20mm²/s | | Spherical Thrust Roller Bearings | Higher than $32 mm^2/s$ | Remark 1mm²/s=1cSt (centistokes) Fig. 11.11 Temperature-Viscosity Chart ### Oil Replacement Intervals Oil replacement intervals depend on the operating conditions and oil quantity. In those cases where the operating temperature is less than 50°C, and the environmental conditions are good with little dust, the oil should be replaced approximately once a year. However, in cases where the oil temperature is about 100°C, the oil must be changed at least once every three months. If moisture may enter or if foreign matter may be mixed in the oil, then the oil replacement interval must be shortened. Mixing different brands of oil must be prevented for the same reason given previously for grease. Table 11. 5 Examples of Selection Lubricating Oils | Operating
Temperature | Speed Light or normal Load | | Heavy or Shock Load | |--------------------------|--|---|--| | −30 to 0 °C | Less than limiting speed ISO VG 15, 22, 32 (refrigerating machine oil) | | _ | | | Less than 50% of limiting speed | ISO VG 32, 46, 68 (bearing oil, turbine oil) | ISO VG 46, 68, 100 (bearing oil, turbine oil) | | 0 to 50 °C | 50 to 100% of limiting speed | ISO VG 15, 22, 32 (bearing oil, turbine oil) | ISO VG 22, 32, 46 (bearing oil, turbine oil) | | | More than limiting speed | ISO VG 10, 15, 22 (bearing oil) | - | | | Less than 50% of limiting speed | ISO VG 100, 150, 220 (bearings oil) | ISO VG 150, 220, 320 (bearing oil) | | 50 to 80 °C | 50 to 100% of limiting speed | ISO VG 46, 68, 100 (bearing oil, turbine oil) | ISO VG 68, 100, 150 (bearing oil, turbine oil) | | | More than limiting speed | ISO VG 32, 46, 68 (bearing oil, turbine oil) | _ | | | Less than 50% of limiting speed | ISO VG 320, 460 (bearing oil) | ISO VG 460, 680 (bearing oil,
gear oil) | | 80 to 110 °C | 50 to 100% of limiting speed | ISO VG 150, 220 (bearing oil) | ISO VG 220, 320 (bearing oil) | | | More than limiting speed | ISO VG 68, 100 (bearing oil, turbine oil) | _ | - **Remarks** 1. For the limiting speed, use the values listed in the bearing tables. - 2. Refer to Refrigerating Machine Oils (IIS K 2211), Bearing Oils (IIS K 2239), Turbine Oils (IIS K 2213), Gear Oils (JIS K 2219). - 3. If the operating temperature is near the high end of the temperature range listed in the left column, select a high viscosity oil. - 4. If the operating temperature is lower than -30°C or higher than 110°C, it is advisable to consult NSK. A 239 A 238 ### 11.4 Technical Data ### 11. 4. 1 Brands and Properties of Lubricating Greases Table 11. 6 Brands of ### **Lubricating Greases** | Brands | Thickeners | Base Oils | Dropping Point (°C) | Consistency | Working
Temperature
Range(¹)(°C) | Pressure Resistance | Usable Limit Compared
to Listed Limiting
Speed(Grease)(2)(%) | |------------------------------------|-----------------|-------------------------------------|---------------------|-------------|--|---------------------|--| | EA3 GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 230 | -40 to +150 | Fair | 100 | | EA5 GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 251 | -40 to +160 | Good | 60 | | EA6 GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 220 | -40 to + 160 | Fair | 70 | | EA7 GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 243 | -40 to +160 | Fair | 100 | | EA9 GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 314 | -40 to +140 | Fair | 100 | | ENS GREASE | Urea (3) | Polyol ester oil (4) | ≧260 | 264 | -40 to +160 | Poor | 100 | | ECE GREASE | Lithium | Poly-α-olefin oil | ≧260 | 235 | -10 to +120 | Poor | 100 | | DOW CORNING(R) SH 44 M GREASE | Lithium | Silicone oil (5) | 210 | 260 | -30 to +130 | Poor | 60 | | NS HI-LUBE | Lithium | Ester oil + Diester oil (4) | 192 | 250 | -40 to +130 | poor | 100 | | LG2 GREASE | Lithium | Poly-α-olefin oil + Mineral oil | 201 | 199 | -20 to +70 | Poor | 100 | | LGU GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 201 | -40 to +120 | Fair | 70 | | EMALUBE 8030 | Urea (3) | Mineral oil | ≧260 | 280 | 0 to +130 | Good | 60 | | KP1 GREASE | PTFE | Perfluoropolyether oil | Not applicable | 290 | -30 to +200 | Fair | 60 | | SHELL ALVANIA GREASE S2 | Lithium | Mineral oil | 181 | 275 | -10 to +110 | Fair | 70 | | SHELL ALVANIA GREASE S3 | Lithium | Mineral oil | 182 | 242 | -10 to +110 | Fair | 70 | | SHELL SUNLIGHT GREASE 2 | Lithium | Mineral oil | 200 | 274 | -10 to +110 | Fair | 70 | | WPH GREASE | Urea (3) | Poly-α-olefin oil | 259 | 240 | -40 to +150 | Fair | 70 | | NIGLUBE RSH | Sodium Complex | Glycol oil | ≧260 | 270 | -20 to +140 | Fair | 60 | | PALMAX RBG | Lithium Complex | Mineral oil | 216 | 300 | -10 to +130 | Good | 70 | | MULTEMP PS No.2 | Lithium | Poly-α-olefin oil + Diester oil (4) | 190 | 275 | -50 to
+110 | Poor | 100 | | MOLYKOTE(R) FS-3451GREASE | PTFE | Fluorosilicone oil (5) | Not applicable | 285 | 0 to +180 | Fair | 70 | | UME GREASE | Urea (3) | Mineral oil | ≧260 | 272 | -10 to +130 | Fair | 70 | | RW1 GREASE | Urea (3) | Mineral oil | ≧260 | 300 | -10 to +130 | Fair | 70 | | HA1 GREASE | Urea (3) | Ether oil | ≧260 | 290 | -40 to +160 | Fair | 70 | | HA2 GREASE | Urea (3) | Ether + Poly-α-olefin oil | ≧260 | 295 | -30 to +170 | Fair | 70 | | KLUBERSYNTH HB 72-52 | Urea (3) | Ester oil (4) | 250 | 295 | -30 to +160 | Fair | 70 | | NOXLUB KF0921 | PTFE | Perfluoropolyether oil | Not applicable | 280 | -40 to +200 | Fair | 70 | | ECH GREASE | Carbon Brack | Perfluoropolyether oil | Not applicable | 205 | -30 to +260 | Fair | 60 | | FWG GREASE | Urea (3) | Mineral oil + Poly-α-olefin oil | ≧260 | 268 | -30 to +150 | Fair | 70 | | HT1 GREASE | Urea (3) | Poly-α-olefin oil | ≧260 | 236 | -40 to +150 | Fair | 100 | | ARAPEN RB320 | Lithium-Calcium | Mineral oil | 177 | 305 | -10 to +80 | Fair | 70 | | SHELL GADUSRAIL S4 HIGH SPEED EUFR | Lithium | Mineral oil | 188 | 266 | -10 to +110 | Fair | 100 | A 241 A 240 Notes (1) If grease will be used at the upper or lower limit sufficient of the temperature range or in a special environment such as vacuum, it is advisable to consult NSK. ⁽²⁾ For short-term operation or when cooling is grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate. (3) Urea-based grease causes fluorine-based material to deteriorate. (4) Ester-based grease causes acrylic rubber material to swell. (5) Silicone-based grease causes silicone-based material to swell. | 12. BEARING MATERIALS | |--| | 12.1 Materials for Bearing Rings and Rolling Elements A 244 | | 12.2 Cage Materials A 245 | | 12.3 Characteristics of Bearing and Shaft/Housing Materials A 246 | | 12.4 Technical Data A 248 | | 12.4.1 Comparison of National Standards of Rolling Bearing Steel | | 12.4.2 Long Life Bearing Steel (NSK Z Steel) A 250 | | 12.4.3 Dimensional Stability of Bearing Steel A 252 | | 12.4.4 Fatigue Analysis A 254 | | (1) Measurement of Fatigue Degree A 254 | | (2) Surface and Sub-Surface Fatigues A 256 | | 12.4.5 Hi-TF Bearings and Super-TF Bearings A 258 | | (1) Hi-TF Bearings, Super-TF Bearings, and TF TechnologyA 258 | | (2) TF Technology A 258 | | (3) Material Properties of Hi-TF Bearings and Super-TF Bearings A 259 | | (4) Service Life under Contaminated Lubrication Conditions A 260 | | (5) Service Life under Clean Lubrication Conditions A 260 | | (6) Service Life under Boundary Lubrication Conditions A 261 | | (7) Wear and Seizure Resistance A 261 | | (8) Heat Resistance A 261 | | 12.4.6 Physical Properties of Representative Polymers Used as Bearing Material | | 12.4.7 Characteristics of Nylon Material for Cages A 264 | | 12.4.8 Heat-Resistant Resin Materials for Cages A 266 | ### 12. BEARING MATERIALS The bearing rings and rolling elements of rolling bearings are subjected to repetitive high pressure with a small amount of sliding. The cages are subjected to tension and compression and sliding contact with the rolling elements and either or both of the bearing rings. Therefore, the materials used for the rings, rolling elements, and cages require the following characteristics: Other necessary characteristics, such as easy production, shock and heat resistance, and corrosion resistance, are required depending on individual applications. ### 12.1 Materials for Bearing Rings and Rolling Elements Primarily, high carbon chromium bearing steel (Table 12.1) is used for the bearing rings and rolling elements. Most NSK bearings are made of SUJ2 among the JIS steel types listed in Table 12.1, while the larger bearings generally use SUJ3. The chemical composition of SUJ2 is approximately the same as AISI 52100 specified in the USA, DIN 100 Cr6 in Germany, and BS 535A99 in England. For bearings that are subjected to very severe shock loads, carburized low-carbon alloy steels such as chrome steel, chrome molybdenum steel, nickel chrome molybdenum steel, etc. are often used. Such steels, when they are carburized to the proper depth and have sufficient surface hardness, are more shock resistant than normal, through-hardened bearing steels because of the softer energy-absorbing core. The chemical composition of common carburized bearing steels is listed in Table 12.2. Table 12.1 Chemical Composition of High-Carbon Chromium Bearing Steel (Major Elements) | Standard | Symbols - | Chemical Composition (%) | | | | | | | | | |------------|-----------|--------------------------|--------------|-------------------|--------------------|--------------------|--------------|-------------------|--|--| | | | С | Si | Mn | P | S | Cr | Mo | | | | JIS G 4805 | SUJ 2 | 0.95 to 1.10 | 0.15 to 0.35 | Less than
0.50 | Less than
0.025 | Less than
0.025 | 1.30 to 1.60 | _ | | | | | SUJ 3 | 0.95 to 1.10 | 0.40 to 0.70 | 0.90 to 1.15 | Less than
0.025 | Less than
0.025 | 0.90 to 1.20 | _ | | | | | SUJ 4 | 0.95 to 1.10 | 0.15 to 0.35 | Less than
0.50 | Less than
0.025 | Less than
0.025 | 1.30 to 1.60 | 0.10 to 0.25 | | | | ASTM A 295 | 52100 | 0.93 to 1.05 | 0.15 to 0.35 | 0.25 to 0.45 | Less than
0.025 | Less than
0.015 | 1.35 to 1.60 | Less than
0.10 | | | Table 12.2 Chemical Composition of Carburizing Bearing Steels (Major Elements) | Standard | Symbols | | Chemical Composition (%) | | | | | | | | |------------|------------|--------------|--------------------------|--------------|--------------------|--------------------|-------------------|--------------|--------------|--| | Standard | Syllibols | С | Si | Mn | P | S | Ni | Cr | Mo | | | JIS G 4052 | SCr 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | Less than
0.030 | Less than
0.030 | Less than
0.25 | 0.85 to 1.25 | _ | | | | SCM 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | Less than
0.030 | Less than
0.030 | Less than
0.25 | 0.85 to 1.25 | 0.15 to 0.35 | | | | SNCM 220 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | Less than
0.030 | Less than
0.030 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.30 | | | | SNCM 420 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.030 | Less than
0.030 | 1.55 to 2.00 | 0.35 to 0.65 | 0.15 to 0.30 | | | JIS G 4053 | SNCM 815 | 0.12 to 0.18 | 0.15 to 0.35 | 0.30 to 0.60 | Less than
0.030 | Less than
0.030 | 4.00 to 4.50 | 0.70 to 1.00 | 0.15 to 0.30 | | | ASTM A 534 | 8620 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | Less than
0.025 | Less than
0.015 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.25 | | | | 4320 H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.025 | Less than
0.015 | 1.55 to 2.00 | 0.35 to 0.65 | 0.20 to 0.30 | | | | 9310 H | 0.07 to 0.13 | 0.15 to 0.35 | 0.40 to 0.70 | Less than
0.025 | Less than
0.015 | 2.95 to 3.55 | 1.00 to 1.40 | 0.08 to 0.15 | | Table 12.3 Chemical Composition of High Speed Steel for Bearings Used at High Temperatures | Standard | Cumbala | | Chemical Composition (%) | | | | | | | | | | | | |----------|-----------|--------------|--------------------------|-------------------|--------------------|--------------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------|--| | | Syllinois | С | Si | Mn | P | S | Cr | Mo | V | Ni | Cu | Co | W | | | AISI | M50 | 0.77 to 0.85 | Less than
0.25 | Less than
0.35 | Less than
0.015 | Less than
0.015 | 3.75 to 4.25 | 4.00 to 4.50 | 0.90 to 1.10 | Less than
0.10 | Less than
0.10 | Less than
0.25 | Less than
0.25 | | NSK uses highly pure vacuum-degassed bearing steel containing a minimum of oxygen, nitrogen, and hydrogen compound impurities. The rolling fatigue life of bearings has been remarkably improved using this material combined with the appropriate heat treatment. For special purpose bearings, high temperature bearing steel, which has superior heat resistance, and stainless steel having good corrosion resistance may be used. The chemical composition of these special materials are given in Tables 12.3 and 12.4. ### 12.2 Cage Materials The low carbon steels shown in Table 12.5 are the main ones for the pressed cages for bearings. Depending on the purpose, brass or stainless steel may be used. For machined cages, high strength brass (Table 12.6) or carbon steel (Table 12.5) is used. Sometimes synthetic resin is also used. Table 12.4 Chemical Composition of Stainless Steel for Rolling Bearing (Major Elements) | Standard | Symbols | | Chemical Composition (%) | | | | | | | | | | | |------------|-----------|--------------|--------------------------|-------------------|--------------------|--------------------|----------------|-------------------|--|--|--|--|--| | Stanuaru | | С | Si | Mn | P | S | Cr | Mo | | | | | | | JIS G 4303 | SUS 440 C | 0.95 to 1.20 | Less than
1.00 | Less than
1.00 | Less than
0.040 | Less than
0.030 | 16.00 to 18.00 | Less than
0.75 | | | | | | | SAE J 405 | 51440 C | 0.95 to 1.20 | Less than
1.00 | Less than
1.00 | Less than
0.040 | Less than
0.030 | 16.00 to 18.00 | Less than
0.75 | | | | | | Table 12.5 Chemical Composition of Steel sheet and Carbon Steel for Cages (Major Elements) | Classification | Standard | Symbols | | Chem | ical Composition | al Composition (%) | | | | |---------------------------------|------------|---------------|-------------------|-------------------|-------------------|--------------------|--------------------|--|--| | Glassification | Statiuatu | Syllibuis | С | Si | Mn | P | S | | | | Steel sheet and | JIS G 3141 | SPCC | Less than
0.12 | _ | Less than
0.50 | Less than
0.04 | Less than
0.045 | | | | strip for pressed | BAS 361 | BAS 361 SPB 2 | | Less than
0.30 | 0.25 to 0.60 | Less than
0.03 | Less than
0.030 | | | | cages | JIS G 3311
 S 50 CM | 0.47 to 0.53 | 0.15 to 0.35 | 0.60 to 0.90 | Less than
0.03 | Less than
0.035 | | | | Carbon steel for machined cages | JIS G 4051 | S 25 C | 0.22 to 0.28 | 0.15 to 0.35 | 0.30 to 0.60 | Less than 0.03 | Less than 0.035 | | | Remark BAS is Japanese Bearing Association Standard. Table 12.6 Chemical Composition of High Strength Brass for Machined Cages | | | Chemical Composition (%) | | | | | | | | | | | |------------|--------------------|--------------------------|--------------|------------|------------|------------|------------------|------------------|------------------|------------------|--|--| | Standard | Symbols | Cu | Zn | Ma | Fe | Λ1 | Sn | Ni | Impurities | | | | | | | Cu | ZII | Mn | ге | Al | SII | INI | Pb | Si | | | | JIS H 5120 | CAC301
(HBsC 1) | 55.0 to 60.0 | 33.0 to 42.0 | 0.1 to 1.5 | 0.5 to 1.5 | 0.5 to 1.5 | Less than
1.0 | Less than
1.0 | Less than
0.4 | Less than
0.1 | | | | JIS H 3250 | C 6782 | 56.0 to 60.5 | Residual | 0.5 to 2.5 | 0.1 to 1.0 | 0.2 to 2.0 | _ | _ | Less than
0.5 | | | | Remark Improved HBsC 1 is also used. ## 12.3 Characteristics of Bearing and Shaft/ Housing Materials Rolling bearings must be able to resist high load, run at high speed, and endure long-time operation. It is also important to know the characteristics of the shaft and housing materials if the bearing performance is to be fully exploited. Physical and mechanical properties or typical materials of a bearing and shaft/housing are shown for reference in Table 12.7. Table 12.7 Physical and Mechanical Properties of Bearing and Shaft/Housing Materials | | Material | Heat treatment | Density
g/cm ³ | Specific
heat
kJ/(kg·K) | Thermal conductivity W/(m·K) | Electric
resistance
μΩ·cm | Linear
expansion
coeff.
(0 to 100°C)
×10 ⁻⁶ /°C | Young's
modulus
MPa
{kgf/mm²} | Yield point
MPa
{kgf/mm²} | Tensile
strength
MPa
{kgf/mm²} | Elong-
ation
% | Hardness
HB | Remarks | |---------|--------------------------------|---|------------------------------|-------------------------------|------------------------------|---------------------------------|--|--|---------------------------------|---|----------------------|-----------------|---| | | SUJ2 | Quenching, tempering | 7.83 | | 46 | 22 | 12.5 | | 1 370
{140} | 1 570
to 1 960
{160
to 200} | 0.5 Max. | 650 to
740 | High carbon
chrome
bearing
steel No. 2 | | | SUJ2 | Spheroidizing annealing | 7.86 | 0.47 | | | 11.9 | 208 000 | 420
{43} | 647
{66} | 27 | 180 | steel No. 2 | | | SCr420 | Quenching, low temp
tempering | 7.83 | 0.47 | 48 | 21 | 12.8 | {21 200} | 882
{90} | 1 225
{125} | 15 | 370 | Chrome
steel | | g | SAE4320
(SNCM420) | Quenching, low temp tempering | 7.00 | | 44 | 20 | 11.7 | | 902
{92} | 1 009
{103} | 16 | **293
to 375 | Nickel
chrome | | Bearing | SNCM815 | Quenching, low temp
tempering | 7.89 | | 40 | 35 | _ | | _ | *1 080
{110} Min. | *12 Min. | *311
to 375 | molybde-
num steel | | Ш | SUS440C | Quenching, low temp
tempering | 7.68 | 0.46 | 24 | 60 | 10.1 | 200 000
{20 400} | 1 860
{190} | 1 960
{200} | _ | **580 | Martensitic
stainless
steel | | | SPCC | Annealing | | 0.47 | 59 | 15 | 11.6 | 206 000 | _ | *275
{28} Min. | *32 Min. | _ | Cold rolled steel plate | | | S25C | Annealing | 7.86 | 0.48 | 50 | 17 | 11.8 | {21 000} | 323
{33} | 431
{44} | 33 | 120 | Carbon steel
for machine
structure | | | CAC301
(HB _s C1) | _ | 8.5 | 0.38 | 123 | 6.2 | 19.1 | 103 000
{10 500} | _ | *431
{44} Min. | *20 Min. | _ | High-tension
brass | | | S45C | Quenching, 650°C tempering | | | 47 | 18 | 12.8 | 207 000
{21 100} | 440
{45} | 735
{75} | 25 | 217 | Carbon steel
for machine
structure | | | SCr430 | Quenching, 520 to 620°C fast cooling | | 0.48 | | 22 | 12.5 | | *637
{65} Min. | *784
{80} Min. | *18 Min. | *229
to 293 | Chrome | | | SCr440 | Quenching, 520 to 620°C fast cooling | 7.83 | 0.47 | 45 | 23 | 12.5 | 208 000 {21 100} | *784
{80} Min. | *930
{95} Min. | *13 Min. | *269
to 331 | steel | | Shaft | SCM420 | Quenching, 150 to 200°C air cooling | 7.03 | | 48 | 21 | 12.8 | (21 100) | _ | *930
{95} Min. | *14 Min. | *262
to 352 | Chrome
molybde-
num steel | | S | SNCM439 | Quenching, 650°C tempering | | | 38 | 30 | 11.3 | 207 000
{21 100} | 920
{94} | 1 030
{105} | 18 | 320 | Nickel
chrome
molybde-
num steel | | | SC46 | Normalizing | _ | _ | _ | _ | _ | 206 000
{21 000} | 294
{30} | 520
{53} | 27 | 143 | Low carbon cast steel | | | SUS420J2 | 1 038°C oil cooling,
400°C air cooling | 7.75 | 0.46 | 22 | 55 | 10.4 | 200 000
{20 400} | 1 440
{147} | 1 650
{168} | 10 | 400 | Martensitic
stainless
steel | | | FC200 | Casting | 7.3 | 0.50 | 43 | _ | | 98 000
{10 000} | _ | *200
{20} Min. | _ | *217 Max. | Gray cast
iron | | | FCD400 | Casting | 7.0 | 0.48 | 20 | _ | 11.7 | 169 000
{17 200} | *250
{26} Min. | *400
{41} Min. | *12 Min. | *201
Max. | Spheroidal
graphite
cast iron | | βι | A1100 | Annealing | 2.69 | 0.90 | 222 | 3.0 | 23.7 | 70 600
{7 200} | 34
{3.5} | 78
{8} | 35 | _ | Pure
aluminum | | Housing | AC4C | Casting | 2.68 | 0.88 | 151 | 4.2 | 21.5 | 72 000
{7 350} | 88
{9} | 167
{17} | 7 | _ | Aluminum
alloy for
sand casting | | | ADC10 | Casting | 2.74 | 0.96 | 96 | 7.5 | 22.0 | 71 000
{7 240} | 167
{17} | 323
{33} | 4 | _ | Aluminum
alloy for die
casting | | | SUS304 | Annealing | 8.03 | 0.50 | 15 | 72 | 15.7 to
16.8 | 193 000
{19 700} | 245
{25} | 588
{60} | 60 | 150 | Austenitic
stainless
steel | Note * JIS standard or reference value. ** Though Rockwell C scale is generally Remark Proportional limits of SUJ2 and SCr420 used, Brinel hardness is shown for comparison. are 833 MPa (85 kgf/mm²) and 440 MPa (45 kgf/mm²) respectively as reference. A 246 A 247 ### 12.4 Technical Data ### 12.4.1 Comparison of National Standards of Rolling Bearing Steel The dimension series of rolling bearings as mechanical elements have been standardized internationally, and the material to be used for them specified in ISO 683/17 (heat treatment, alloy, and free cutting steels / Part 17 ball and roller bearing steels). However, materials are also standardized according to standards of individual countries and, in some cases, makers are even making their own modifications. As internationalization of products incorporating bearings and references to the standards of these kinds of steels are increasing nowadays, applicable standards are compared and their features described for some representative bearing steels. **Table 12.8** ### Applicable National Standards and Chemical Composition of High-Carbon Chrome Bearing Steel | JIS | ASTM | Other major | | | Chemical cor | mposition (%) | | | Application | Remarks | | |--------|---------------------|--------------------|--------------|--------------|---------------|---------------|---------------|--------------------|---|---|--| | G 4805 | ASTW | national standards | С | Si | Mn | Cr | Mo | Others | Application | nemarks | | | SUJ1 | _ | _ | 0.95 to 1.10 | 0.15 to 0.35 | ≦0.50 | 0.90 to 1.20 | _ | *1 | Not used | Equivalent to each | | | _ | 51100 | _ | 0.98 to 1.10 | 0.15 to 0.35 | 0.25 to 0.45 | 0.90 to 1.15 | ≦0.10 | *1 | generally | other though there are slight differences in the ranges. | | | SUJ2 | _ | _ | 0.95 to 1.10 | 0.15 to 0.35 | ≦0.50 | 1.30 to 1.60 | _ | *1 | Typical steel | Equivalent to each | | | _ | A 295-89
52100 | _ | 0.93 to 1.05 | 0.15 to 0.35 | 0.25 to 0.45 | 1.35 to 1.60 | ≦ 0.10 | P≦0.025
S≦0.015 | type for small
and medium
size bearings | other though there are slight differences in the ranges. | | | _ | _ | 100Cr6 (DIN) | 0.90 to 1.05 | 0.15 to 0.35 | 0.25 to 0.40 | 1.40 to 1.65 | _ | _ | Sizo boarings | the ranges. | | | _ | _ | 100C6 (NF) | 0.95 to 1.10 | 0.15 to 0.35 | 0.20 to 0.40 | 1.35 to 1.60 | ≦0.08 | P≦0.030
S≦0.025 | | | | | _ | _ | 535A99 (BS) | 0.95 to 1.10 | 0.10 to 0.35 | 0.40 to 0.70 | 1.20 to 1.60 | _ | *1 | | | | | SUJ3 | _ | _ | 0.95 to 1.10 | 0.40 to 0.70 | 0.90 to 1.15 | 0.90 to 1.20 | _ | *1 | For large size | SUJ3 is equivalent to | | | _ | A 485-03
Grade 1 | _ | 0.90 to 1.05 | 0.45 to 0.75 | 0.90 to 1.20 | 0.90 to 1.20 | ≦0.10 | P≦0.025
S≦0.015 | bearings | Grade 1. Grade 2 has better quenching | | | _ | A 485-03
Grade 2 | _ | 0.85 to 1.00 | 0.50 to 0.80 | 1.40 to 1.70 | 1.40 to 1.80 | ≦0.10 | P≦0.025
S≦0.015 | | capability | | | SUJ4 | _ | _ | 0.95 to 1.10 | 0.15 to 0.35 | ≦ 0.50 | 1.30 to 1.60 | 0.10 to 0.25 | *1 | Scarcely used | Better quenching capability than SUJ2 | | | SUJ5 | _ | _ | 0.95 to 1.10 | 0.40 to 0.70 | 0.90 to 1.15 | 0.90 to 1.20 | 0.10 to 0.25 | *1 | For ultralarge | Though Grade 3 is | | | _ | A 485-03
Grade 3 | _ | 0.95 to 1.10 | 0.15 to 0.35 | 0.65 to 0.90 | 1.10 to 1.50 | 0.20 to 0.30 | P≦0.025
S≦0.015 | size bearings | equivalent to SUJ5,
quenching capability
of Grade 3 is better
than SUJ5. | | **Note** *1: $P \le 0.025$, $S \le 0.025$ Remark ASTM: Standard of American Society of Testing Materials, DIN: German Standard, NF: French Standard, BS: British Standard Table 12.9 JIS and ASTM Standards and Chemical Composition of Carburizing Bearing Steel | JIS
CAMED | ASTM | | | | Chemical cor | nposition (%) | | | Application | Damanica | |------------------|----------|--------------|--------------|--------------|--------------|---------------|--------------|--------
-------------|---| | G 4052
G 4053 | A 534-90 | С | Si | Mn | Ni | Cr | Mo | Others | Application | Remarks | | SCr420H | _ | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | ≦0.25 | 0.85 to 1.25 | _ | *2 | For small | Similar steel type | | _ | 5120H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 1.00 | _ | 0.60 to 1.00 | _ | *3 | bearings | | | SCM420H | _ | 0.17 to 0.23 | 0.15 to 0.35 | 0.55 to 0.95 | ≦0.25 | 0.85 to 1.25 | 0.15 to 0.35 | *2 | For small | Similar steel type, | | _ | 4118H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 1.00 | _ | 0.30 to 0.70 | 0.08 to 0.15 | *3 | bearings | though quenching
capability of 4118H is
inferior to SCM420H | | SNCM220H | _ | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.30 | *2 | For small | Equivalent, though | | _ | 8620H | 0.17 to 0.23 | 0.15 to 0.35 | 0.60 to 0.95 | 0.35 to 0.75 | 0.35 to 0.65 | 0.15 to 0.25 | *3 | bearings | there are slight differences | | SNCM420H | _ | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | 1.55 to 2.00 | 0.35 to 0.65 | 0.15 to 0.30 | *2 | For medium | Equivalent, though | | _ | 4320H | 0.17 to 0.23 | 0.15 to 0.35 | 0.40 to 0.70 | 1.55 to 2.00 | 0.35 to 0.65 | 0.20 to 0.30 | *3 | bearings | there are slight differences | | SNCM815 | _ | 0.12 to 0.18 | 0.15 to 0.35 | 0.30 to 0.60 | 4.00 to 4.50 | 0.70 to 1.00 | 0.15 to 0.30 | *2 | For large | Similar steel type | | _ | 9310H | 0.07 to 0.13 | 0.15 to 0.35 | 0.40 to 0.70 | 2.95 to 3.55 | 1.00 to 1.45 | 0.08 to 0.15 | *3 | bearings | | **Note** *2: $P \le 0.030$, $S \le 0.030$ *3: $P \le 0.025$, $S \le 0.015$ ### 12.4.2 Long Life Bearing Steel (NSK Z Steel) It is well known that the rolling fatigue life of high-carbon chrome bearing steel (SUJ2, SAE52100) used for rolling bearings is greatly affected by non-metallic inclusions. Non-metallic inclusions are roughly divided into threetypes: sulfide, oxide, and nitride. The life test executed for long periods showed that oxide non-metallic inclusions exert a particularly adverse effect on the rolling fatigue life. Fig. 12.1 shows the parameter (oxygen content) indicating the amount of oxide non-metallic inclusions vs. life. The oxygen amount in steel was minimized as much as possible by reducing impurities (Ti, S) substantially, thereby achieving a decrease in the oxide non-metallic inclusions. The resulting long-life steel is the Z steel. The Z steel is an achievement of improved steelmaking inclusions. The resulting long-life steel is the Z steel. The Z steel is an achievement of improved steelmaking facility and operating conditions made possible by cooperation with a steel maker on the basis of numerous life test data. A graph of the oxygen content in steel over the last 25 years is shown in Fig. 12.2. The result of the life test with sample material in Fig. 12.2 is shown in Fig. 12.3. The life tends to become longer with decreasing oxygen content in steel. The high-quality Z steel has a life span which is about 1.8 times longer than that of conventional degassed steel. Fig. 12.1 Oxygen Content in Steel and Life of Bearing Steel Fig. 12.2 Transition of Oxygen Content in NSK Bearing Steels | Classification | Test
quantity | Failured quantity | Weibull
slope | L_{10} | L_{50} | |--|------------------|-------------------|------------------|----------------------|----------------------| | O Air-melting steel | 44 | 44 | 1.02 | 1.67×10 ⁶ | 1.06×10 ⁷ | | $\overset{\triangle}{\text{ Vacuum degassed}}$ steel | 30 | 30 | 1.10 | 2.82×10 ⁶ | 1.55×10 ⁷ | | ☐ MGH vacuum degassed steel | 46 | 41 | 1.16 | 6.92×10 ⁶ | 3.47×10 ⁷ | | | 70 | 39 | 1.11 | 1.26×10 ⁷ | 6.89×10 ⁷ | Remark Testing of bearings marked dark ■ and ◆ has not been finished testing yet. Fig. 12.3 Result of Thrust Life Test of Bearing Steel A 250 A 251 ### 12.4.3 Dimensional Stability of Bearing Steel Sectional changes or changes in the dimensions of rolling bearings as time passes during operation is called aging deformation. When the inner ring develops expansion due to such deformation, the result is a decrease in the interference between the shaft and inner ring. This becomes one of the causes of inner ring creep. Creep phenomenon, by which the shaft and inner ring slip mutually, causes the bearing to proceed from heat generation to seizure, resulting in critical damage to the entire machine. Consequently, appropriate measures must be taken against aging deformation of the bearing depending on the application. Aging deformation of bearings may be attributed to secular thermal decomposition of retained austenite in steel after heat treatment. The bearing develops gradual expansion along with phase transformation. The dimensional stability of the bearings, therefore, varies in accordance with the relative relationship between the tempering during heat treatment and the bearing's operating temperature. The bearing dimensional stability increases with rising tempering temperature while the retained austenite decomposition gradually expands as the bearing's operating temperature rises. Fig. 12.4 shows how temperature influences the bearing's dimensional stability. In the right-hand portion of the figure, the interference between the inner ring and shaft in various shaft tolerance classes is shown as percentages for the shaft diameter. As is evident from Fig. 12.4, the bearing dimensional stability becomes more unfavorable as the bearing's temperature rises. Under these conditions, the interference between the shaft and inner ring of a general bearing is expected to decrease gradually. In this view, loosening of the fit surface needs to be prevented by using a bearing which has received dimension stabilization treatment. When the bearing temperature is high, there is a possibility of inner ring creep. Since due attention is necessary for selection of an appropriate bearing, it is essential to consult NSK beforehand. Fig. 12.4 Bearing Temperature and Dimensional Change Ratio A 252 A 253 ### 12.4.4 Fatigue Analysis It is necessary for prediction of the fatigue life of rolling bearings and estimation of the residual life to know all fatigue break-down phenomena of bearings. But, it will take some time before we reach a stage enabling prediction and estimation. Rolling fatigue, however, is fatigue proceeding under compressive stress at the contact point and known to develop extremely great material change until breakdown occurs. In many cases, it is possible to estimate the degree of fatigue of bearings by detecting material change. However, this estimation method is not effective in the cases where the defects in the raceway surface cause premature cracking or chemical corrosion occurs on the raceway. In these two cases, flaking grows in advance of the material change. (1) Measurement of Fatigue Degree The progress of fatigue in a bearing can be determined by using an X-ray to measure changes in the residual stress, diffraction half-value width, and retained austenite amount. These values change as the fatigue progresses as shown in Fig. 12.5. Residual stress, which grows early and approaches the saturation value, can be used to detect extremely small fatigue. For large fatigue, change of the diffraction half-value width and retained austenite amount may be correlated to the progress of fatigue. These measurements with X-ray are put together into one parameter (fatigue index) to determine the relationship with the endurance test period of a bearing. Measured values were collected by carrying out endurance test with many ball, tapered roller, and cylindrical roller bearings under various load and lubrication conditions. Simultaneously, measurements were made on bearings used in actual machines. Fig. 12.6 summarizes the data. Variance is considerable because data reflects the complexity of the fatigue phenomenon. But, there exists correlation between the fatigue index and the endurance test period or operating hours. If some uncertainty is allowed, the fatigue degree can be handled quantitatively. Description of "sub-surface fatigue" in Fig. 12.6 applies to the case when fatigue is governed by internal shearing stress. "Surface fatigue" shows correlation when the surface fatigue occurs earlier and more severely than sub-surface fatigue due to contamination or oil film breakdown of lubricating oil. Fig. 12.5 Change in X-ray Measurements Fig. 12.6 Fatigue Progress and Fatigue Index A 254 A 255 ### (2) Surface and Sub-Surface Fatigues Rolling bearings have an extremely smooth finish surface and enjoy relatively satisfactory lubrication conditions. It has been considered that internal shearing stress below the rolling surface governs the failure of a bearing. Shearing stress caused by rolling contact becomes maximum at a certain depth below the surface, with a crack (which is an origin of break-down) occurring initially under the surface. When the raceway is broken due to such sub-surface fatigue, the fatigue index as measured in the depth direction is known to increase according to the theoretical calculation of shearing stress, as is evident from an example of the ball bearing shown in Fig. 12.7. The fatigue pattern shown in Fig. 12.7 occurs mostly when lubrication conditions are satisfactory and oil film of sufficient thickness is formed in rolling contact points. The basic dynamic load rating described in the bearing catalog is determined using data of bearing failures according to the above internal fatigue pattern. Fig. 12.8 shows an example of a cylindrical roller bearing subject to endurance test under lubrication conditions causing unsatisfactory oil film. It is evident that the surface fatigue degree rises much earlier than the calculated life. In this test, all bearings failed before sub-surface fatigue became apparent. In this way, bearing failure due to surface fatigue is mostly attributed to lubrication conditions such as
insufficient oil film due to excessively low oil viscosity or entry of foreign matters or moisture into lubricant. Needless to say, bearing failure induced by surface fatigue occurs in advance of that by sub-surface fatigue. Bearings in many machines are exposed frequently to danger of initiating such surface fatigue and, in most of the cases, failure by surface fatigue prior to failure due to sub-surface fatigue (which is the original life limit of bearings). Fatigue analysis of bearings used in actual machines shows not the sub-surface fatigue pattern, but the surface fatigue pattern as shown in the figure in overwhelmingly high percentage. In this manner, knowing the distribution of the fatigue index in actually used bearings leads to an understanding of effective information not only on residual life of bearings, but also on lubrication and load conditions. Depth below surface, mm - ∠1: Oil film parameter - Z_0 : Depth position of maximum shearing stress Fig. 12.7 Progress of Sub-Surface Fatigue Fig. 12.8 Progress of Surface Fatigue ## 12.4.5 Hi-TF Bearings and Super-TF Bearings ## (1) Hi-TF Bearings, Super-TF Bearings, and TF Technology In its quest for longer bearing service life, NSK has spent many years analyzing the mechanisms of fatigue in bearings and researching and developing materials, heat treatment processes and operating conditions. The range of approaches to achieving longer service life taken by our research team are shown in Fig. 12.9. The technology incorporated in our Hi-TF Bearings and Super-TF Bearings is designed to maximize service life under conditions where bearings are subject to surface-originating flaking. Fig. 12.9 Approaches to Achieving Longer Service Life in Bearings (2) TF Technology Bearings may be required to operate under clean or dirty conditions; under dirty conditions their lubricating oil is easily contaminated. Metal particles or casting sand in the lubricating oil make dents in the contact surfaces. As shown in Fig. 12.10, stress is concentrated around these dents and eventually leads to cracking and to surface-originating flaking. The concentration of stress around a dent is expressed by the equation $[P/P_0 \propto (r/c)^{-0.24}]$, where "r" is the radius at the shoulder of the dent and "2c" is the shoulder-to-shoulder width of the dent. The greater the value of "r/c", the smaller the stress concentration and the longer the service life of the bearing. NSK is a world leader in the research and development of material properties to reduce the concentration of stress around surface dents. As shown in Fig. 12.11, our work has revealed that a high level of retained austenite is an extremely effective means of maximizing the r/c value around surface dents in the bearing material. TF technology is a unique heat treatment process developed by NSK to optimize the level of retained austenite in bearing materials. 2b Fig. 12.10 Concentration of Stress around a Surface Dent Fig. 12.11 Relationship of r/c Value to Retained Austenite Level ### (3) Material Properties of Hi-TF Bearings and Super-TF Bearings \dot{NSK} has developed the Hi-TF Bearings and Super- \dot{TF} Bearings as two series of bearings that offer longer service life exceeding that of TF Bearings. As we have seen, the approach to achieving long service life taken in the Super-TF Bearings is to minimize the concentration of stress around the shoulders of surface dents. A high level of retained austenite helps to maximize the value of r/c and reduce the concentration of stress around the dents. However, austenite itself has a soft microstructure, and reduces the hardness of the bearing material. In order to meet the seemingly conflicting needs for greater hardness of the bearing material and a higher level of retained austenite, we decided to adopt a technique that would both promote the uniform distribution and reduce the diameter of carbide and carbonitride particles in the bearing material. To this end, our researchers have developed a new type of steel that has added the proper quantity of element used in the formation of carbides, and have developed the carbonitriding heat treatment to extract minute carbide and nitride compulsorily for the first time in the world. Hi-TF Bearings adopt a new type of steel, which has a specific amount of chrome added to it. Super-TF Bearings adopt a new type of steel, which has a specific amount of chrome and molybdenum added to it. Figures 12.12 and 12.13 illustrate the image analysis results of carbide distribution in the structures of Super-TF Bearings and an ordinary carburized steel bearing. It is clear that the Super-TF Bearings has a greater amount of fine-size carbide and carbonitride particles. Fig. 12.14 shows that the formations of finer carbide and carbonitride particle give Hi-TF Bearings and Super-TF Bearings a greater degree of hardness and higher retained austenite levels than those of TF Bearings. As a result, Hi-TF Bearings and Super-TF Bearings achieve a higher r/c value. (Fig. 12.15) Fig. 12.12 Average Diameter of Carbide and Carbonitride Particles in a Super-TF Bearing Fig. 12.14 Relationship of Material Hardness and Retained Austenite Level Fig. 12.15 Change of r/c Value under Repeated Stress A 258 800 600 ## (4) Service Life under Contaminated Lubrication Conditions Table 12.10 and Fig. 12.17 show the results of service life tests conducted under contaminated lubrication conditions with NSK L44649/10 tapered roller bearings. If the service life of an ordinary carburized steel bearing of this type is taken as 1, then the L_{10} life of TF, Hi-TF, and Super-TF Bearings would be 4.5, 7.1, and 10.2 respectively (Table 12.10). Hi-TF Bearings and Super-TF Bearings thus offer over seven time and ten times the service life of ordinary carburized steel bearings. Service life is generally affected both by the conditions in which the bearing is used and by the amount of contamination in the lubricant. Under contaminated lubricated conditions, service life may fall to as little as 1/5 of the catalog life. As a result of attempting longer service life under contaminated lubrication, Hi-TF Bearings and Super-TF Bearings can achieve service life that exceeds the catalog life of existing products under contaminated lubrication for the first time. | Ordinary
carburized
steel | TF | Hi-TF | Super-TF | |---------------------------------|-----|-------|----------| | 1 | 4.5 | 7.1 | 10.2 | Table 12.10 Comparison of Service Life of L44649/10 Tapered Roller Bearings ### (5) Service Life under Clean Lubrication Conditions Fig. 12.18 shows the result of service life tests under clean lubrication conditions using 6206 deep groove ball bearings. Under clean lubrication, Hi-TF Bearings and Super-TF Bearings show a slightly longer service life than those made of SUJ2. The most important factor is the cleanliness of the steel from which the bearing is made. Material with a greater degree of purity offers a greater degree of long-life performance. Fig. 12.16 Comparison of Service Life under Contaminated Lubrication Fig. 12.17 Service Life of L44649/10 Bearings under Contaminated Lubrication Fig. 12.18 Service Life Tests of 6206 Bearings under Clean Lubrication ### (6) Service Life under Boundary Lubrication Conditions Under boundary lubrication conditions where there is an insufficient amount of EHL film, metal-to-metal contact occurs, thus reducing bearing life. Fig. 12.19 shows the results of service life tests conducted under conditions where oil film parameter Λ , which represents the ratio of the thickness of the oil film to the roughness of the surface, is very small (Λ =0.3). When Λ is very small, peeling damage occurs (Fig. 12.20), but in Hi-TF Bearings and Super-TF Bearings, the concentration of stress around the projections of the contact area is reduced, giving a service life approximately 4.7 times and 5.5 times greater than that of ordinary carburized steel bearings. Fig. 12.19 Service Life Tests under Boundary Lubrication Conditions ### (7) Wear and Seizure Resistance Bésides extending service life under contaminated lubrication conditions, another goal is to increase the bearing's resistance to wear and seizure by ensuring the dispersion of a large number of fine carbides and nitrides in the bearing material. Fig. 12.21 presents the results of a Sawin-type wear test, showing the degree of wear and the seizure limit for different types of bearing material. The test reveals that Hi-TF Bearings and Super-TF Bearings have superior wear resistance to both SUJ2 steel and TF Bearings. Hi-TF Bearings and Super-TF Bearings are also 20% and 40% more resistant to seizure than both SUJ2 steel and TF Bearings. ### (8) Heat Resistance Fig. 12.22 shows the results of service life tests conducted with 6206 ball bearings at 160°C under clean lubrication conditions. Test results reveal that Super-TF Bearings (heat-resistant specifications) have approximately 4 times the service life of SUJ2X26 steel bearings. Fig. 12.20 Peeling Damage Fig. 12.21 Comparison of Wear Resistance Fig. 12.22 Service Life Test of 6206 under High Temperature Clean Lubrication ## 12.4.6 Physical Properties of Representative Polymers Used as Bearing Material Because of lightweight, easy formability, and high corrosion resistance, polymer materials are used widely as a material for cages. Polymers may be used independently, but they are usually combined with functional fillers to form a composite material. Composites can be customized to have specific properties. In this way composites can be designed to be bearing materials. For example, fillers can be used to improve such properties as low friction, low wear, non-stick slip characteristic, high limit PV value, non-scrubbing of counterpart material, mechanical properties, and heat resistance, etc. Table 12.11 shows characteristics of representative polymer materials used for bearings. Table 12.11 Characteristics of
Representative Polymers | Plastics | Elastic
modulus
(GPa) (¹) | Strength
GPa (1) | Density
g/cm ³ | Specific
elastic
modulus
×10 ⁴ mm | Specific
strength
×10 ⁴ mm | Melting
point
°C | Glass
transition
temp
°C | Thermal deformation temperature °C (²) | Continuous
operating
temperature
°C | Remarks | |---|---------------------------------|---------------------|------------------------------|---|---|-------------------------------|-----------------------------------|--|--|---| | Polyethylene
HDPE
UHMWPE | 0.115
0.5 | 0.03
0.025 | 0.96
0.94 | 12.6
53.2 | 3.3
2.7 | 132
136 | -20
-20 | 75/50
75/50 | = | High creep and toughness, softening | | Polyamide
Nylon 6
Nylon 66 | 2.5
3.0 | 0.07
0.08 | 1.13
1.14 | 221.2
263.2 | 6.2
7.0 | 215
264 | 50
60 | 150/57
180/60 | 80 to 120
80 to 120 | High water
absorption and
toughness | | Nylon 11 | 1.25 | 0.04 | 1.04 | 120.2 | 3.8 | 180 | _ | 150/55 | Lower than
nylon 6
or 66 | Low water absorption | | Polytetra fluoroethylene
PTFE | 0.40 | 0.028 | 2.16 | 18.5 | 1.3 | 327 | 115 | 120/— | 260 | High creep,
sintering,low
friction and
adhesion, inert.
Stable at 290°C | | Poly buthylene terephthalate PBT | 2.7 | 0.06 | 1.31 | 206.1 | 4.6 | 225 | 30 | 230/215 | 155 | | | Polyacetal
POM
Homo-polymer
Co-polymer | 3.2
2.9 | 0.07
0.06 | 1.42
1.41 | 225.3
205.7 | 4.9
4.3 | 175
165 | -13
- | 170/120
155/110 |
104 | High hardness and toughness, low water absorption | | Polyether sulfon
PES | 2.46 | 0.086 | 1.37 | 179.6 | 6.3 | _ | 225 | 210/203 | 180 | Usable up to 200°C
Chemically stable | | Polysulfon
PSf | 2.5 | 0.07 | 1.24 | 201.6 | 5.6 | _ | 190 | 181/175 | 150 | | | Polyallylate
(Aromatic polyester) | 1.3
3.0 | 0.07
0.075 | 1.35
1.40 | 96.3
214.3 | 5.2
5.4 | 350
350 | _ | 293
293 | 300
260 to 300 | Inert, high
hardness, Used as
filler for PTFE
Stable up to 320°C | | Polyphenylene sulfide
PPS (GF 40%) | 4.2 | 0.14 | 1.64 | 256.1 | 8.5 | 275 | 94 | >260 | 220 | Hot cured at 360°C | | Polyether ether keton
PEEK | 1.7 | 0.093 | 1.30 | 130.8 | 7.2 | 335 | 144 | 152 | 240 | | | Poly-meta-phenylene isophthalic amide | 10
(fiber)
7.7
(mold) | 0.7
0.18 | 1.38
1.33 | 724.6
579 | 50.7
13.5 | 375
415
(decomposition) | >230
>230 | 280
280 | 220
220 | Fire retardant, heat resistance fiber | | Polypromellitic imide | 3
(film) | 0.17 | 1.43 | 203 | 7.0 | Heat de-
composition | 417
decomposition | 360/250 | 300 (³) | No change in inert
gas up to 350°C | | (Aromatic polyimide) PI | 2.5 to 3.2
(mold) | 0.1 | 1.43 | 203 | 7.0 | Heat de-
composition | 417
decomposition | 360/250 | 260 | Usable up to
300°C for bearing.
Sintering, no fusion
(molded products) | | Polyamide imide
PAI | 4.7 | 0.2 | 1.41 | 333.3 | 14.2 | _ | 280 | 260 | 210 | Usable up to
290°C as adhesive
or enamel
Improved
polyimide of
melting forming | | Polyether imide
(Aromatic polyimide) PI | 3.6 | 0.107 | 1.27 | 240.9 | _ | _ | 215 | 210/200 | 170 | Improved polyimide of melting forming | | Polyamino bis-maleimide | _ | 0.35 | 1.6 | _ | 21.9 | _ | _ | 330 (³) | 260 | | **Notes** (1) $GPa = 10^4 \text{ kgf/cm}^2 = 10^2 \text{ kgf/mm}^2$ (2) If there is a slash mark "/" in the thermal (3) Reference value deformation temperature column, then the value to the left of the "/" applies to 451 kPa, If there, the value relates to 1.82 MPa. ### 12.4.7 Characteristics of Nylon Material for Cages In various bearings these days, plastic cages have come to replace metal cages increasingly. Advantages of using plastic cages may be summarized as follows: - (1) Lightweight and favorable for use with highspeed rotation - (2) Self-lubricating and low wear. Worn powders are usually not produced when plastic cages are used. As a result, a highly clean internal state is maintained. - (3) Low noise appropriate atm silent environments - (4) Highly corrosion resistant, without rusting - (5) Highly shock resistant, proving durable under high moment loading - (6) Easy molding of complicated shapes, ensures high freedom for selection of cage shape. Thus, better cage performance can be obtained. As to disadvantages when compared with metal cages, plastic cages have low heat resistance and limited operating temperature range (normally 120°C). Due attention is also necessary for use because plastic cages are sensitive to certain chemicals. Polyamide resin is a representative plastic cage material. Among polyamide resins, nylon 66 is used in large quantity because of its high heat resistance and mechanical properties. Polyamide resin contains the amide coupling (-NHCO-) with hydrogen bonding capability in the molecular chain and is characterized by its regulation of mechanical properties and water absorption according to the concentration and hydrogen bonding state. High water absorption (Fig. 12.23) of nylon 66 is generally regarded as a shortcoming because it causes dimensional distortion or deterioration of rigidity. On the other hand, however, water absorption helps enhance flexibility and prevents cage damage during bearing assembly when a cage is required to have a substantial holding interference for the rolling elements. This also causes improvement is toughness which is effective for shock absorption during use. In this way, a so-called shortcoming may be considered as an advantage under certain conditions. Nylon can be improved substantially in strength and heat resistance by adding a small amount of fiber. Therefore, materials reinforced by glass fiber may be used depending on the cage type and application. In view of maintaining deformation of the cage during assembly of bearings, it is common to use a relatively small amount of glass fiber to reinforce the cage. (Table 12.12) Nylon 66 démonstrates vastly superior performance under mild operating conditions and has wide application possibilities as a mainstream plastic cage material. However, it often develops sudden deterioration under severe conditions (in high temperature oil, etc.). Therefore, due attention should be paid to this material during practical operation. As an example, Table 12.13 shows the time necessary for the endurance performance of various nylon 66 materials to drop to 50% of the initial value under several different cases. Material deterioration in oil varies depending on the kind of oil. Deterioration is Fig. 12.23 Equilibrium Moisture Content and Relative Humidity of Various Nylons excessive if the oil contains an extreme-pressure agent. It is known that sulfurous extreme-pressure agents accelerate deterioration more than phosphorous extreme-pressure agents and such deterioration occurs more rapidly with rising temperatures. On the other hand, material deteriorates less in grease or air than in oil. Besides, materials reinforced with glass fiber can suppress deterioration of the strength through material deterioration by means of the reinforcement effect of glass fibers, thereby, helping to extend the durability period. Table 12.12 Examples of Applications with Fiber Reinforced Nylon Cages | | Bearing type | Main aplication | Cage material | | | |----------------|-------------------------------------|--|---|--|--| | D | Miniature ball bearings | VCR, IC cooling fans | | | | | 3all bearing | Deep groove ball bearings | Alternators, fan motors for air conditioners | Nylon 66
(Glass fiber content: 0 to 10%) | | | | Ball | Angular contact ball bearings | Magnetic clutches, automotive wheels | (diago nosi content. o to 1070) | | | | Bu | Needle roller bearings | Automotive transmissions | | | | | Roller bearing | Tapered roller bearings | Automotive wheels | Nylon 66 | | | | ller t | ET-type cylindrical roller bearings | General | (Glass fiber content: 10 to 25%) | | | | Rol | H-type spherical roller bearings | General | | | | Table 12.13 Environmental Resistance of Nylon 66 Resin | En | vironment | Temper-
ature, °C | Glass
content | Hours for the phy | sical property v | alue to drop to 5 | 50%, h
2000 | Remarks | |-----|---------------------------------|----------------------|------------------|-------------------|------------------|-------------------|----------------|----------------------| | | | 120 | 0
D | | <u> </u> | <u> </u> | → | Contains an extreme | | | Gear oil | 140 | 0
A
D | | | | — → | pressure
additive | | | | 100 | A | | | | → | Contains an | | | | 120 | A | | | | | extreme
pressure | | | Synthetic
lubricating
oil | 130 | 0
A
C | | | _ | | additive | | Oil | | 150 | 0
B
D | | | | → | | | UII | | 80 | 0
D | | | | — | Contains an extreme | | | Hydraulic
oil | 120 | 0
D | | | | ─ | pressure
additive | | | | 150 | 0
D | | | | | | | | | 120 | 0
D | | | | → | | | | ATF oil | 140 | 0
A
D | | | | ─ | | | | Engine oil | 120 | 0
D | | | | — | | | | | 80 | 0
D | | | | → | | | | Grease | 120 | 0
D | | | | → | | | | | 130 | A
D | | | | — | | | | Air | 160 | 0
A
C | | | | | | | | | 180 | 0
B | | | _ | | | Class content: A<B<C<D ### 12.4.8 Heat-Resistant Resin Materials for Cages Currently, polyamide resin shows superior performance under medium operating environmental conditions. This feature plus its relative inexpensiveness lead to its use in increasing quantities. But, the material suffers from secular
material deterioration or aging which creates a practical problem during continuous use at 120°C or more or under constant or intermittent contact with either oils (containing an extreme pressure agent) or acids. Super-engineering plastics should be used for the cage materials of bearings running in severe environments such as high temperature over 150°C or corrosive chemicals. Though super-engineering plastics have good material properties like heat resistance, chemical resistance, rigidity at high temperature, mechanical strength, they have problems with characteristics required for the cage materials like toughness when molding or bearing assembling, weld strength, fatigue resistance. Also, the material cost is expensive. Table 12.14 shows the evaluation results of typical superengineering plastics, which can be injection molded into cage shapes. Among the materials in Table 12.14, though the branch type polyphenylene sulfide (PPS) is popularly used, the cage design is restricted since forced-removal from the die is difficult due to poor toughness and brittleness. Moreover, PPS is not always good as a cage material, since the claw, stay, ring, or flange of the cage is easily broken on the bearing assembling line. On the other hand, the heat resistant plastic cage developed by NSK, is made of linear-chain high molecules which have been polymerized from molecular chains. These molecular chains do not contain branch or crosslinking so they have high toughness compared to the former material (branch type PPS). Linear PPS is not only superior in heat resistance, oil resistance, and chemical resistance, but also has good mechanical characteristics such as snap fitting (an important characteristic for cages), and high temperature rigidity. NSK has reduced the disadvantages associated with linear PPS: difficulty of removing from the die and slow crystallization speed, thereby establishing it as a material suitable for cages. Thus, linear PPS is thought to satisfy the required capabilities for a heat resistant cage material considering the relation between the cost and performance. Table 12.14 Properties of Typical Super-Engineering Plastic Materials for Cages | Classification | Polyether sulfone
(PES) | Polyether imide
(PEI) | Polyamide imide
(PAI) | Polyether etherketon
(PEEK) | Branch type
polyphenylene
sulfide (PPS) | Linear type
polyphenylene
sulfide (L-PPS) | |--------------------------------|---|---|---|---|---|---| | Resin | Amorphous resin | Amorphous resin | Amorphous resin | Crystalline resin | Crystalline resin | Crystalline resin | | Continuous temp | 180°C | 170℃ | 210℃ | 240°C | 220°C | 220℃ | | Physical properties | Poor toughness (Pay attention to cage shape) Low weld strength Small fatigue resistance | Poor toughness Small weld strength Small fatigue resistance | •Very brittle (No forced-removal molding) •Special heat treatment before use •High rigidity, after heat treatment | Excellent
toughness, wear
and fatigue
resistance Small weld strength | Excellent mechanical properties Slightly low toughness | Excellent mechanical properties Good toughness Good dimensional stability (No water absorption) | | Environmental properties | Water absorption (Poor dimensional stability) Good aging resistance Poor stress cracking resistance | Good aging resistance Poor stress cracking resistance | •Good environment resistance | •Good environment resistance | •Good environment resistance | •Good environment resistance (Not affected by most chemicals. Doesn't deteriorate in high temperature oil with extreme pressure additives). | | Material cost
(Superiority) | 3 | 2 | 5 | 4 | 1 | 1 | | Cage application | Many performance problems High material price | Many performance problems High material cost | Good performance High material and molding cost (For special applications) | Excellent performance High material cost (For special applications) | Problems with toughness Cost is high compared to its performance | Reasonable cost for its performance (For general applications) | A 266 A 267 ## 13. DESIGN OF SHAFTS AND HOUSINGS | 13.1 | Accuracy and Surface Finish of Shafts and Housings | |------|--| | 13.2 | Shoulder and Fillet Dimensions A 27 | | 13.3 | Bearing Seals A 27 | | 13. | 3.1 Non-Contact Types Seals A 27: | | (| 1) Oil Groove Seals A 27: | | (| 2) Flinger (Slinger) Type Seals A 27: | | (| 3) Labyrinth Seals A 27 | | 13. | 3.2 Contact Type Seals A 27 | | (| 1) Oil Seals | | (| 2) Felt Seals A 27 | ### 13. DESIGN OF SHAFTS AND HOUSINGS ### 13.1 Accuracy and Surface Finish of Shafts and Housings If the accuracy of a shaft or housing does not meet the specification, the performance of the bearings will be affected and they will not provide their full capability. For example, inaccuracy in the squareness of the shaft shoulder may cause misalignment of the bearing inner and outer rings, which may reduce the bearing fatigue life by adding an edge load in addition to the normal load. Cage fracture and seizure sometimes occur for this same reason. Housings should be rigid in order to provide firm bearing support. High rigidity housings are advantageous also from he standpoint of noise. load distribution, etc. For normal operating conditions, a turned finish or smooth bored finish is sufficient for the fitting surface: however, a ground finish is necessary for applications where vibration and noise must be low or where heavy loads are applied. In cases where two or more bearings are mounted in one single-piece housing, the fitting surfaces of the housing bore should be designed so both bearing seats may be finished together with one operation such as in -line boring. In the case of split housings. care must be taken in the fabrication of the housing so the outer ring will not become deformed during installation. The accuracy and surface finish of shafts and housings are listed in Table 13.1 for normal operating conditions. Table 13. 1 Accuracy and Roughness of Shaft and Housing | Item | Class of
Bearings | Shaft | Housing Bore | |--|----------------------|--|--| | Tolerance for | Normal, Class 6 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | Out-of-roundness | Class 5, Class 4 | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | | Tolerance for | Normal, Class 6 | $\frac{\text{IT3}}{2}$ to $\frac{\text{IT4}}{2}$ | $\frac{\text{IT4}}{2}$ to $\frac{\text{IT5}}{2}$ | | Cylindricality | Class 5, Class 4 | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | $\frac{\text{IT2}}{2}$ to $\frac{\text{IT3}}{2}$ | | Tolerance for | Normal, Class 6 | IT3 | IT3 to IT4 | | Shoulder Runout | Class 5, Class 4 | IT3 | IT3 | | Roughness of Fitting Surfaces Ra Small Bearings Large Bearings | | 0.8
1.6 | 1.6
3.2 | Remarks This table is for general recommendation using radius measuring method, the basic tolerance (IT) class should be selected in accordance with the bearing precision class. Regarding the figures of IT. please refer to the Appendix Table 11 (page > In cases that the outer ring is mounted in the housing bore with interference or that a thin crosssection bearing is mounted on a shaft and housing. the accuracy of the shaft and housing should be higher since this affects the bearing raceway directly. ### 13.2 Shoulder and Fillet Dimensions The shoulders of the shaft or housing in contact with the face of a bearing must be perpendicular to the shaft center line. (Refer to Table 13.1) The front face side shoulder bore of the housing for a tapered roller bearing should be parallel with the bearing axis in order to avoid interference with the cage. The fillets of the shaft and housing should not come in contact with the bearing chamfer: therefore, the fillet radius r_2 must be smaller than the minimum bearing chamfer dimension r or r_1 . Fig. 13.1 Chamfer Dimensions, Fillet Radius of Shaft and Housing, and Shoulder Height The shoulder heights for both shafts and housings for radial bearings should be sufficient to provide good support over the face of the bearings, but enough face should extend beyond the shoulder to permit use of special dismounting tools. The recommended minimum shoulder heights for metric series radial bearings are listed in Table 13.2 Nominal dimensions associated with bearing mounting are listed in the bearing tables including the proper shoulder diameters. Sufficient shoulder height is particularly important for supporting the side ribs of tapered roller bearings and cylindrical roller bearings subjected to high axial loads. The values of h and r_a in Table 13.2 should be adopted in those cases where the fillet radius of the shaft or housing is as shown in Fig. 13.2 (a), while the values in Table 13.3 are generally used with an undercut fillet radius produced when grinding the shaft as shown in Fig. 13.2 (b). Table 13. 2 Recommended Minimum Shoulder Heights for Use with Metric Series Radial Bearings Units: mm | | | | UIIII . IIIIII | | |----------------------------|------------------------------
--|---|--| | Nominal | Shaft or Housing | | | | | Chamfer
Dimensions | Fillet | Minimun Shoulder Heights h (min.) | | | | r (min.) or r_1 (min.) | Radius
$r_{\rm a}$ (max.) | Deep Groove Ball
Bearings,
Self-Aligning Ball
Bearings,
Cylindrical Roller
Bearings,
Solid Needle Roller
Bearings | Angular Contact
Ball Bearings,
Tapered Roller
Bearings, Spherical
Roller Bearings | | | 0.05 | 0.05 | 0.2 | | | | 0.08 | 0.08 | 0.3 | | | | 0.1 | 0.1 | 0.4 | | | | 0.15 | 0.15 | 0.6 | — | | | 0.2 | 0.2 | 0.8 | — | | | 0.3 | 0.3 | 1 | 1.25 | | | 0.6 | 0.6 | 2 | 2.5 | | | 1 | 1 | 2.5 | 3 | | | 1.1 | 1 | 3.25 | 3.5 | | | 1.5 | 1.5 | 4 | 4.5 | | | 2 | 2 | 4.5 | 5 | | | 2.1 | 2 | 5.5 | 6 | | | 2.5 | 2 | — | 6 | | | 3 | 2.5 | 6.5 | 7 | | | 4 | 3 | 8 | 9 | | | 5 | 4 | 10 | 11 | | | 6 | 5 | 13 | 14 | | | 7.5 | 6 | 16 | 18 | | | 9.5 | 8 | 20 | 22 | | | 12 | 10 | 24 | 27 | | | 15 | 12 | 29 | 32 | | | 19 | 15 | 38 | 42 | | - Remarks 1. When heavy axial loads are applied, the shoulder height must be sufficiently higher than the values listed. - 2. The fillet radius of the corner is also applicable to thrust bearings. - 3. The shoulder diameter is listed instead of shoulder height in the bearing tables. Fig. 13. 2 Chamfer Dimensions, Fillet Radius, and Shoulder Height Table 13, 3 Shaft Undercut Unite : mm | | | | UIIIIS . IIIIII | | |---------------------------------------|---------------------|-----------------|-----------------|--| | Chamfer Dimensions of Inner and | Undercut Dimensions | | | | | Outer Rings r (min.) or r 1(min.) | t | $\gamma_{ m g}$ | b | | | 1 | 0.2 | 1.3 | 2 | | | 1.1 | 0.3 | 1.5 | 2.4 | | | 1.5 | 0.4 | 2 | 3.2 | | | 2 | 0.5 | 2.5 | 4 | | | 2.1 | 0.5 | 2.5 | 4 | | | 2.5 | 0.5 | 2.5 | 4 | | | 3 | 0.5 | 3 | 4.7 | | | 4 | 0.5 | 4 | 5.9 | | | 5 | 0.6 | 5 | 7.4 | | | 6 | 0.6 | 6 | 8.6 | | | 7.5 | 0.6 | 7 | 10 | | A 270 A 271 For thrust bearings, the squareness and contact area of the supporting face for the bearing rings must be adequate. In the case of thrust ball bearings, the housing shoulder diameter $D_{\rm a}$ should be less than the pitch circle diameter of the balls, and the shaft shoulder diameter $d_{\rm a}$ should be greater than the pitch circle diameter of the balls (Fig. 13.3). For thrust roller bearings, it is advisable for the full contact length between rollers and rings to be supported by the shaft and housing shoulder (Fig. 13.4). These diameters d_a and D_a are listed in the bearing tables. Fig. 13.3 Face Supporting Diameters for Thrust Ball Bearings Fig. 13.4 Face Supporting Diameters for Thrust Roller Bearings ## **13.3 Bearing Seals**To insure the longest p To insure the longest possible life of a bearing, it may be necessary to provide seals to prevent leakage of lubricant and entry of dust, water and other harmful material like metallic particles. The seals must be free from excessive running friction and the probability of seizure. They should also be easy to assemble and disassemble. It is necessary to select a suitable seal for each application considering the lubricating method. ### 13.3.1 Non-Contact Type Seals Various sealing devices that do not contact the shaft, such as oil grooves, flingers, and labyrinths, are available. Satisfactory sealing can usually be obtained with such seals because of their close running clearance. Centrifugal force may also assist in preventing internal contamination and leakage of the lubricant. ### (1) Oil Groove Seals The effectiveness of oil groove seals is obtained by means of the small gap between the shaft and housing bore and by multiple grooves on either or both of the housing bore and shaft surface (Fig. 13.5 (a), (b)). Since the use of oil grooves alone is not completely effective, except at low speeds, a flinger or labyrinth type seal is often combined with an oil groove seal (Fig. 13.5 (c)). The entry of dust is impeded by packing grease with a consistency of about 200 into the grooves. The smaller the gap between the shaft and housing, the greater the sealing effect; however, the shaft and housing must not come in contact while running. The recommended gaps are given in Table 13.4. The recommended groove width is approximately 3 to 5mm, with a depth of about 4 to 5mm. In the case of sealing methods using grooves only, there should be three or more grooves. ### (2) Flinger (Slinger) Type Seals A flinger is designed to force water and dust away by means of the centrifugal force acting on any contaminants on the shaft. Sealing mechanisms with flingers inside the housing as shown in Fig. 13.6 (a), (b) are mainly intended to prevent oil leakage, and are used in environments with relatively little dust. Dust and moisture are prevented from entering by the centrifugal force of flingers shown in Figs 13.6 (c), (d). Table 13. 4 Gaps between Shafts and Housings for Oil-Groove Type Seals | | Ullis : mm | | |------------------------|-------------|--| | Nominal Shaft Diameter | Radial Gap | | | Under 50 | 0.25 to 0.4 | | | 50-200 | 0.5 to 1.5 | | (3) Labyrinth Seals Labyrinth seals are formed by interdigitated segments attached to the shaft and housing that are separated by a very small gap. They are particularly suitable for preventing oil leakage from the shaft at high speeds. The type shown in Fig. 13.7 (a) is widely used because of its ease of assembly, but those shown in Fig. 13.7 (b), (c) have better seal effectiveness. Table 13. 5 Labyrinth Seal Gaps Units: mm | Nominal Shaft Diameter | Labyrinth Gaps | | | |------------------------|----------------|------------|--| | Nominal Shart Diameter | Radial Gap | Axiall Gap | | | Under 50 | 0.25 to 0.4 | 1 to 2 | | | 50-200 | 0.5 to 1.5 | 2 to 5 | | Fig. 13.6 Examples of Flinger Configurations Fig. 13.5 Examples of Oil Grooves Fig. 13.7 Examples of Labyrinth Designs rig. 10.7 Examples of Eabyrillin Designs ### 13.3.2 Contact Type Seals The effectiveness of contact seals is achieved by the physical contact between the shaft and seal, which may be made of synthetic rubber, synthetic resin, felt, etc. Oil seals with synthetic rubber lips are most frequently used. ### (1) Oil Seals Many types of oil seals are used to prevent lubricant from leaking out as well as to prevent dust, water, and other foreign matter from entering (Figs. 13.8 and 13.9) In Japan, such oil seals are standardized (Refer to JIS B 2402) on the basis of type and size. Since many oil seals are equipped with circumferential springs to maintain adequate contact force, oil seals can follow the non-uniform rotational movement of a shaft to some degree. Seal lip materials are usually synthetic rubber including nitrile, acrylate, silicone, and fluorine. Tetrafluoride ethylene is also used. The maximum allowable operating temperature for each material increases in this same order. Synthetic rubber oil seals may cause trouble such as overheating, wear, and seizure, unless there is an oil film between the seal lip and shaft. Therefore, some lubricant should be applied to the seal lip when the seals are installed. It is also desirable for the lubricant inside the housing to spread a little between the sliding surfaces. However, please be aware that ester-based grease will cause acrylic rubber material to swell. Also, low aniline point mineral oil, silicone-based grease, and silicon-based oil will cause silicone-based material to swell. Moreover, urea-based grease will cause fluorine-based material to deteriorate. The permissible circumferential speed for oil seals varies depending on the type, the finish of the shaft surface, liquid to be sealed, temperature, shaft eccentricity, etc. The temperature range for oil seals is restricted by the lip material. Approximate circumferential surface speeds and temperature permitted under favorable conditions are listed in Table 13.6. When oil seals are used at high circumferential surface speed or under high internal pressure, the contact surface of the shaft must be smoothly finished and the shaft eccentricity should be less than 0.02 to 0.05 mm. The hardness of the shaft's contact surface should be made higher than HRC40 by means of heat treatment or hard chrome plating in order to gain abrasion resistance. If possible, a hardness of more than HRC 55 is recommended. The approximate level of contact surface finish required for several shaft circumferential surface speeds is given in Table 13.7. Fig. 13.8 Example of Application of Oil Seal (1) Fig. 13.9 Example of Application of Oil Seal (2) ## Table 13. 6 Permissible Circumferential Surface Speeds and Temperature Range for Oil Seals | Seal Materials | | Permissible
Circumferential
Speeds (m/sec) | Operating
Temperature
Range(°C)(¹) | |------------------------------|-------------------------------|--|--| | | Nitrile Rubber | Under 16 | -25 to +100 | | Synthetic
Rubber | Acrylic Rubber | Under 25 | -15 to +130 | | | Silicone Rubber | Under 32 | −70 to + 200 | | | Fluorine-
containes Rubber | Under 32 | -30 to +200 | | Tetrafluoride Ethylene Resin | | Under 15 | -50 to +220 | Note (1) The upper limit of the temperature range may be raised about 20 °C for operation for short intervals. Table 13. 7 Shaft Circumferential Surface Speeds and Finish of Contact Surfaces | Circumferential Surface
Speeds (m/s) | Surface Finish
R _a (µm) | |---|---------------------------------------| | Under 5 | 0.8 | | 5 to 10 | 0.4 | | Over 10 | 0.2 | #### (2) Felt Seals Felt seals are one of the simplest and most common seals being used for transmission shafts, etc. However, since oil permeation and leakage are However, since oil permeation and leakage are
unavoidable if oil is used, this type of seal is used only for grease lubrication, primarily to prevent dust and other foreign matter from entering. Felt seals are not suitable for circumferential surface speeds exceeding 4m/sec; therefore, it is preferable to replace them with synthetic rubber seals depending on the application. # **BEARING HANDLING AND MAINTENANCE** ## Part B | BEARING HANDLING AND | MAINTENANCE | |----------------------|-------------| | 1. BEARING HANDLING | В 005 | | 2. | BEARING DAMAGE AND | | |----|----------------------------------|------| | | MEASURES (Bearing Doctor) | В 02 | | 1. | BEA | RING | HAN | DLING | |----|-----|------|-----|-------| |----|-----|------|-----|-------| | 1.1 Pre | cautions for Proper Handling of Bearings | В 00 | |---------|--|------| | 1.2 Bea | aring Storage | В 00 | | 1.2.1 | Bearing Storage Location | В 00 | | 1.2.2 | How to Store Bearings | В 00 | | 1.3 Mo | unting | В 00 | | 1.3.1 | Mounting of Bearings with Cylindrical Bores | В 00 | | 1.3.2 | Mounting of Bearings with Tapered Bores | В 00 | | 1.4 Ope | eration Inspection | В 00 | | 1.5 Dis | mounting | В 01 | | 1.5.1 | Dismounting of Outer Rings | В 01 | | 1.5.2 | Dismounting of Bearings with Cylindrical Bores | B 01 | | 1.5.3 | Dismounting of Bearings with Tapered Boress | В 01 | | 1.6 Ins | pection of Bearings | B 01 | | 1.6.1 | Bearing Cleaning | В 01 | | 1.6.2 | Inspection and Evaluation of Bearings | В 01 | | 1.7 Che | ecking of Shaft and Housing | В 01 | | 1.7.1 | Checking of Shafts | В 01 | | 1.7.2 | Checking of Housing | В 01 | | 1.8 Ma | intenance and Inspection | В 01 | | 1.8.1 | Detecting and Correcting Irregularities | В 01 | | 1.8.2 | Diagnosis with Sound and Vibration | В 01 | ### 1. BEARING HANDLING ### 1.1 Precautions for Proper Handling of Bearings Since rolling bearings are high precision machine parts, they must be handled accordingly. Even if high quality bearings are used, their expected performance cannot be achieved if they are not handled properly. The main precautions to be observed are as follows: ### (1) Keep Bearings and Surrounding Area Clean Dust and dirt, even if invisible to the naked eye, have harmful effects on bearings. It is necessary to prevent the entry of dust and dirt by keeping the bearings and their environment as clean as possible. #### (2) Careful Handling Heavy shocks during handling may cause bearings to be scratched or otherwise damaged possibly resulting in their failure. Excessively strong impacts may cause brinelling, breaking, or cracking, ### (3) Use Proper Tools Always use the proper equipment when handling bearings and avoid general purpose tools. ### (4) Prevent Corrosion Since perspiration on the hands and various other contaminants may cause corrosion, keep the hands clean when handling bearings. Wear gloves if possible. Pay attention to rust of bearing caused by corrosive gasses. #### 1.2 Bearing Storage To prevent rusting, each bearing is treated and packed with an anticorrosive agent, but depending on the environment of the storing place, the effectiveness of the corrosion countermeasures varies greatly. Careful attention is necessary to select a suitable place to keep and stock replacement bearings. ### 1.2.1 Bearing Storage Location Bearings shall be stocked indoors in a place that is not exposed to wind or rain. Also, an indoor environment where temperature and/or humidity is high would be unsuitable for storage, because such a place would deteriorate the anticorrosion effect. Be sure to stock the bearings in a place where environmental temperature variation is small. #### 1.2.2 How to Store Bearings After considering the size and weight of bearing to be stocked, secure enough space and proper carrying equipment to transport the bearing safely. It is recommended to provide proper storing shelves to stock bearings. The lowest tray of the storing shelves shall be at least 30 cm above the floor. Please avoid putting bearings directly on the floor. The anticorrosive effectiveness of the package varies depending on the storing environment, but it is generally effective for about one to three years. Due to some special reason, if storing of the bearing for a longer time, or even up to nearly ten years is necessary, then a special storage method must be used. One such method is to immerse the bearing in a turbine oil which prevents corrosion. ### 1.3 Mounting The method of mounting rolling bearings strongly affects their accuracy, life, and performance, so their mounting deserves careful attention. Their characteristics should first be thoroughly studied, and then they should be mounted in the proper manner. It is recommended that the handling procedures for bearings be fully investigated by the design engineers and that standards be established with respect to the following items: - (1) Cleaning the bearings and related parts. - (2) Checking the dimensions and finish of related parts. - (3) Mounting - (4) Inspection after mounting. - (5) Supply of lubricants. Bearings should not be unpacked until immediately before mounting. When using ordinary grease lubrication, the grease should be packed in the bearings without first cleaning them. Even in the case of ordinary oil lubrication, cleaning the bearings is not required. However, bearings for instruments or for high speed operation must first be cleaned with clean filtered oil in order to remove the anti-corrosion agent. After the bearings are cleaned with filtered oil, they should be protected to prevent corrosion. Prelubricated bearings must be used without cleaning. Bearing mounting methods depend on the bearing type and type of fit. As bearings are usually used on rotating shafts, the inner rings require a tight fit. Bearings with cylindrical bores are usually mounted by pressing them on the shafts (press fit) or heating them to expand their diameter (shrink fit). Bearings with tapered bores can be mounted directly on tapered shafts or cylindrical shafts using tapered sleeves. Bearings are usually mounted in housings with a loose fit. However, in cases where the outer ring has an interference fit, a press may be used. Bearings can be interference-fitted by cooling them before mounting using dry ice. In this case, a rust preventive treatment must be applied to the bearing because moisture in the air condenses on its surface. ### 1.3.1 Mounting of Bearings with Cylindrical Bores ### (1) Press Fits Fitting with a press is widely used for small bearings. A mounting tool is placed on the inner ring as shown in Fig. 1.1 and the bearing is slowly pressed on the shaft with a press until the side of the inner ring rests against the shoulder of the shaft. The mounting tool must not be placed on the outer ring for press mounting, since the bearing may be damaged. Before mounting, applying oil to the fitted shaft surface is recommended for smooth insertion. The mounting method using a hammer should only be used for small ball bearings with minimally tight fits and when a press is not available. In the case of tight interference fits or for medium and large bearings, this method should not be used. Any time a hammer is used, a mounting tool must be placed on the inner ring. Fig. 1.1 Press Fitting Inner Ring Fig. 1.2 Simultaneous Press Fitting of Inner and Outer Rings When both the inner and outer rings of non-separable bearings, such as deep groove ball bearings, require tight-fit, a mounting tool is placed on both rings as shown in Fig. 1.2, and both rings are fitted at the same time using a screw or hydraulic press. Since the outer ring of self-aligning ball bearings may deflect a mounting tool such as that shown in Fig. 1.2 should always be used for mounting them. In the case of separable bearings, such as cylindrical roller bearings and tapered roller bearings, the inner and outer rings may be mounted separately. Assembly of the inner and outer rings, which were previously mounted separately, should be done carefully to align the inner and outer rings correctly. Careless or forced assembly may cause scratches on the rolling contact surfaces. #### (2) Shrink Fits Since press fitting large bearings requires a large force, a shrink fit is widely used. The bearings are first heated in oil to expand them before mounting. This method prevents an excessive force from being imposed on the bearings and allows mounting them in a short time. The expansion of the inner ring for various temperature differences and bearing sizes is shown in Fig. 1.3. The precautions to follow when making shrink fits are as follows: - (a) Do not heat bearings to more than 120°C. - (b) Put the bearings on a wire net or suspend them in an oil tank in order to prevent them from touching the tank's bottom directly. - (c) Heat the bearings to a temperature 20 to 30°C higher than the lowest temperature required for mounting without interference since the inner ring will cool a little during mounting. - (d) After mounting, the bearings will shrink in the axial direction as well as the radial direction while cooling. Therefore, press the bearing firmly against the shaft shoulder using locating methods to avoid a clearance between the bearing and shoulder. ### **NSK Bearing Induction Heaters** Besides heating in oil. NSK Bearing Heaters, which use electromagnetic induction to heat bearings, are widely used. In NSK Bearing Heaters, electricity (AC) in a coil produces a magnetic field that induces a current inside the bearing that generates heat. Consequently, without using flames or oil uniform heating in a short time is possible, making bearing shrink fitting efficient and In the case of relatively frequent mounting and dismounting such as cylindrical roller bearings for roll necks of rolling mills and for railway journal boxes, induction heating should be used for mounting and dismounting inner rings. B 006 B 007 ### 1.3.2 Mounting of Bearings with Tapered Bores Bearings with tapered bores
are mounted on tapered shafts directly or on cylindrical shafts with adapters or withdrawal sleeves (Figs. 1.4 and 1.5). Large spherical roller bearings are often mounted using hydraulic pressure. Fig. 1.6 shows a bearing mounting utilizing a sleeve and hydraulic nut. Fig. 1.7 shows another mounting method. Holes are drilled in the sleeve which are used to feed oil under pressure to the bearing seat. As the bearing expands radially, the sleeve is inserted axially with adjusting bolts. Spherical roller bearings should be mounted while checking their radial-clearance reduction and referring to the push-in amounts listed in Table 1.1. The radial clearance must be measured using clearance gauges. In this measurement, as shown in Fig. 1.8, the clearance for both rows of rollers must be measured simultaneously, and these two values should be kept roughly the same by adjusting the relative position of the outer and inner rings. When a large bearing is mounted on a shaft, the outer ring may be deformed into an oval shape by its own weight. If the clearance is measured at the lowest part of the deformed bearing, the measured value may be bigger than the true value. If an incorrect radial internal clearance is obtained in this manner and the values in Table 1.1 are used, then the interference fit may become too tight and the true residual clearance may become too small. In this case, as shown in Fig. 1.9. one half of the total clearance at points a and b (which are on a horizontal line passing through the bearing center) and c (which is at the lowest position of the bearing) may be used as the residual clearance. When a self-aligning ball bearing is mounted on a shaft with an adapter, be sure that the residual clearance does not become too small. Sufficient clearance for easy alignment of the outer ring must be allowed. ### 1.4 Operation Inspection After the mounting has been completed, a running test should be conducted to determine if the bearing has been mounted correctly. Small machines may be manually operated to assure that they rotate smoothly. Items to be checked include sticking due to foreign matter or visible flaws, uneven torque caused by improper mounting or an improper mounting surface, and excessive torque caused by an inadequate clearance, mounting error, or seal friction. If there are no abnormalities, powered operation may be started. Fig. 1.4 Mounting with Adapter Fig. 1.6 Mounting with Hvdraulic Nut Fig. 1.5 Mounting with Withdrawal Sleeve Fig. 1.7 Mounting with Special Sleeve and Hydraulic Pressure Fig. 1.8 Clearance Measurement of Spherical Roller Bearing Units: mm | Ullits : mr | | | | | | | | | | |--|----------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------|--------------|------|---|----------------------------------| | Bearing Bore
Diameter | | Reduction in Radial | | Push-in amount in axial direction | | | | Minimum Permissible
Residual Clearance | | | d | | Clearance | | Taper 1 : 12 | | Taper 1 : 30 | | an. | G0 | | over | incl. | min. | max. | min. | max. | min. | max. | CN | C3 | | 30
40
50
65 | 40
50
65
80 | 0.025
0.030
0.030
0.040 | 0.030
0.035
0.035
0.045 | 0.40
0.45
0.45
0.60 | 0.45
0.55
0.55
0.70 | = | | 0.010
0.015
0.025
0.030 | 0.025
0.030
0.035
0.040 | | 80 | 100 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | | 100 | 120 | 0.050 | 0.060 | 0.75 | 0.90 | 1.9 | 2.25 | 0.045 | 0.065 | | 120 | 140 | 0.060 | 0.070 | 0.90 | 1.10 | 2.25 | 2.75 | 0.055 | 0.080 | | 140 | 160 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | | 160 | 180 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | | 180 | 200 | 0.080 | 0.100 | 1.3 | 1.6 | 3.25 | 4.0 | 0.070 | 0.110 | | 200 | 225 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | | 225 | 250 | 0.100 | 0.120 | 1.6 | 1.9 | 4 | 4.75 | 0.090 | 0.140 | | 250 | 280 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | | 280 | 315 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | | 315 | 355 | 0.140 | 0.170 | 2.2 | 2.7 | 5.5 | 6.75 | 0.120 | 0.180 | | 355 | 400 | 0.150 | 0.190 | 2.4 | 3.0 | 6 | 7.5 | 0.130 | 0.200 | | 400 | 450 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | | 450 | 500 | 0.190 | 0.240 | 3.0 | 3.7 | 7.5 | 9.25 | 0.160 | 0.240 | | 500 | 560 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | | 560 | 630 | 0.230 | 0.300 | 3.7 | 4.8 | 9.25 | 12.0 | 0.200 | 0.310 | | 630 | 710 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0.220 | 0.330 | | 710 | 800 | 0.280 | 0.370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | | 800 | 900 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.280 | 0.430 | | 900 | 1 000 | 0.340 | 0.460 | 5.5 | 7.4 | 14.0 | 18.5 | 0.310 | 0.470 | | 1 000 | 1 120 | 0.370 | 0.500 | 5.9 | 8.0 | 15.0 | 20.0 | 0.360 | 0.530 | | Pamark. The values for reduction in radial internal clearance are for hearings with CN clearance. For hearing with C | | | | | | | | | | Remark The values for reduction in radial internal clearance are for bearings with CN clearance. For bearing with C3 Clearance the maximum values listed should be used for the reduction in radial internal clearance. Measuring Clearance in Large Spherical Roller Bearing Large machines, which cannot be turned by hand, can be started after examination with no load, and the power immediately cutoff and the machine allowed to coast to a stop. Confirm that there is no abnormality such as vibration, noise, contact of rotating parts, etc. Powered operation should be started slowly without load and the operation should be observed carefully until it is determined that no abnormalities exist, then gradually increase the speed, load, etc. to their normal levels. Items to be checked during the test operation include the existence of abnormal noise, excessive rise of bearing temperature, leakage and contamination of lubricants, etc. If any abnormality is found during the test operation, it must be stopped immediately and the machine should be inspected. If necessary, the bearing should be dismounted for examination. Although the bearing temperature can generally be estimated by the temperature of the outside surface of the housing, it is more desirable to directly measure the temperature of the outer ring using oil holes for The bearing temperature should rise gradually to the steady state level within one to two hours after the operation starts. If the bearing or its mounting is improper, the bearing temperature may increase rapidly and become abnormally high. The cause of this abnormal temperature may be an excessive amount of lubricant, insufficient bearing clearance, incorrect mounting, or excessive friction of the seals. In the case of high speed operation, an incorrect selection of bearing type or lubricating method may also cause an abnormal temperature rise. The sound of a bearing may be checked with a noise locater or other instruments. Abnormal conditions are indicated by a loud metallic sound, or other irregular noise, and the possible cause may include incorrect lubrication, poor alignment of the shaft and housing, or the entry of foreign matter into the bearing. The possible causes and measures for irregularities are listed in Table 1.2. Table 1. 2 Causes of and Measures for Operating Irregularities | Table 1. 2 Causes of and measures for Operating Inegularities | | | | | | | | |---|----------------------------|---|--|--|--|--|--| | Irregularities | | Possible Causes | Measures | | | | | | | Loud Metallic
Sound (¹) | Abnormal Load | Improve the fit, internal clearance, preload, position of housing shoulder, etc. | | | | | | | | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method. | | | | | | | | Insufficient or improper Lubricant | Replenish the lubricant or select another lubricant. | | | | | | | | Contact of rotating parts | Modify the labyrinth seal, etc. | | | | | | Noise | Loud Regular
Sound | Flaws,corrosion,or scratches on raceways | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | | | Brinelling | Replace the bearing and use care when handling bearings. | | | | | | | | Flaking on raceway | Replace the bearing. | | | | | | | Irregular
Sound | Excessive clearance | Improve the fit, clearance and preload. | | | | | | | | Penetration of foreign particles | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | | | Flaws or flaking on balls | Replace the bearing. | | | | | | | | Excessive amount of lubricant | Reduce amount of lubricant, select stiffer grease. | | | | | | | | Insufficient or improper lubricant | Replenish lubricant or select a better one. | | | | | | Abnorn | nal Tamparatura | Abnormal load | Improve the fit, internal clearance, preload, position of housing shoulder. | | | | | | Abnormal Temperature
Rise | | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting, or mounting method. | | | | | | | | Creep on fitted surface, excessive seal friction | 3, 1 11 | | | | | | | | Seal Hiction | Correct the seals, replace the bearing, correct the fitting or mounting. | | | | | | Vibration
(Axial runout) | | Brinelling | Replace the bearing and use care when handling bearings. | | | | | | | | Flaking | Replace the bearing. | | | | | | | | Incorrect mounting | Correct the squareness between the shaft and housing shoulder or side
of spacer. | | | | | | | | Penetration of foreign particles | Replace or clean the bearing, improve the seals. | | | | | | Leakage or
Discoloration of
Lubricant | | Too much lubricant, Penetration by foreign matter or abrasion chips | Reduce the amount of lubricant, select a stiffer grease.
Replace the bearing or lubricant. Clean the housing and
adjacent parts. | | | | | Note (1) Intermittent squeal or high-pitch noise may be heard in medium- to large-sized cylindrical roller bearings or ball bearings that are operating under grease lubrication in low-temperature environments. Under such low-temperature conditions, bearing temperature will not rise resulting in fatigue nor is grease performance affected. Although intermittent squeal or high-pitch noise may occur under these conditions, the bearing is fully functional and can continue to be used. In the event that greater noise reduction or quieter running properties are needed, please contact your nearest NSK branch office. ### 1.5 Dismounting A bearing may be removed for periodic inspection or for other reasons. If the removed bearing is to be used again or it is removed only for inspection, it should be dismounted as carefully as when it was mounted. If the bearing has a tight fit. its removal may be difficult. The means for removal should be considered in the original design of the adjacent parts of the machine. When dismounting, the procedure and sequence of removal should first be studied using the machine drawing and considering the type of mounting fit in order to perform the operation properly. ### 1.5.1 Dismounting of Outer Rings In order to remove an outer ring that is tightly fitted, first place bolts in the push-out holes in the housing at several locations on its circumference as shown in Fig. 1.10, and remove the outer ring by uniformly tightening the bolts. These bolt holes should always be fitted with blank plugs when not being used for dismounting. In the case of separable bearings, such as tapered roller bearings, some notches should be made at several positions in the housing shoulder, as shown in Fig. 1.11, so the outer ring may be pressed out using a dismounting tool or by tapping it. ## 1.5.2 Dismounting of Bearings with Cylindrical If the mounting design allows space to press out the inner ring, this is an easy and fast method. In this case, the withdrawal force should be imposed only on the inner ring (Fig. 1.12). Withdrawal tools like those shown in Figs. 1.13 and 1.14 are often used. Fig. 1.10 Removal of Outer Ring with Dismounting Bolts Fig. 1.11 Removal Notches Fig. 1.12 Removal of Inner Ring Using a Press Fig. 1.13 Removal of Inner Ring Using Withdrawal Tool (1) Fig. 1.14 Removal of Inner Ring Using Withdrawal Tool (2) B 011 B 010 In both cases, the claws of the tools must substantially engage the face of the inner ring; therefore, it is advisable to consider the size of the shaft shoulder or to cut grooves in the shoulder to accommodate the withdrawal tools (Fig. 1.14). The oil injection method is usually used for the withdrawal of large bearings. The withdrawal is achieved easily by mean of oil pressure applied through holes in the shaft. In the case of extra wide bearings, the oil injection method is used together with a withdrawal tool. Induction heating is used to remove the inner rings of NU and NJ types of cylindrical roller bearings. The inner rings are expanded by brief local heating, and then withdrawn (Fig. 1.15). Induction heating is also used to mount several bearings of these types on a shaft. ### 1.5.3 Dismounting of Bearings with Tapered Bores When dismounting relatively small bearings with adapters, the inner ring is held by a stop fastened to the shaft and the nut is loosened several turns. This is followed by hammering on the sleeve using a suitable tool as shown in Fig. 1.18. Fig. 1.16 shows one procedure for dismounting a withdrawal sleeve by tightening the removal nut. If this procedure is difficult, it may be possible to drill and tap bolt holes in the nut and withdraw the sleeve by tightening the bolts as shown in Fig. 1.17. Large bearings may be withdrawn easily using oil pressure. Fig. 1.19 illustrates the removal of a bearing by forcing oil under pressure through a hole and groove in a tapered shaft to expand the inner ring. The bearing may suddenly move axially when the interference is relieved during this procedure so a stop nut is recommended for protection. Fig. 1.20 shows a withdrawal using a hydraulic nut. Fig. 1.15 Removal of Inner Ring Using **Induction Heater** Fig. 1.16 Removal of Withdrawal Sleeve Using Withdrawal Nut (1) Fig. 1.17 Removal of Withdrawal Sleeve Using Withdrawal Nut (2) Fig. 1.18 Removal of Adapter with Stop and Axial Pressure Fig. 1.19 Removal Using Oil Injection Hydraulic Pump ### 1.6 Inspection of Bearings ### 1.6.1 Bearing Cleaning When bearings are inspected, the appearance of the bearings should first be recorded and the amount and condition of the residual lubricant should be checked. After the lubricant has been sampled for examination, the bearings should be cleaned. In general, light oil or kerosene may be used as a cleaning solution. Dismounted bearings should first be given a preliminary cleaning followed by a finishing rinse. Each bath should be provided with a metal net to support the bearings in the oil without touching the sides or bottom of the tank. If the bearings are rotated with foreign matter in them during preliminary cleaning, the raceways may be damaged. The lubricant and other deposits should be removed in the oil bath during the initial rough cleaning with a brush or other means. After the bearing is relatively clean, it is given the finishing rinse. The finishing rinse should be done carefully with the bearing being rotated while immersed in the rinsing oil. It is necessary to always keep the rinsing oil clean. Fig. 1.20 Removal Using Hydraulic Nut ### 1.6.2 Inspection and Evaluation of Bearings After being thoroughly cleaned, bearings should be examined for the condition of their raceways and external surfaces, the amount of cage wear, the increase in internal clearance, and degradation of tolerances. These should be carefully checked, in addition to examination for possible damage or other abnormalities, in order to determine the possibility for In the case of small non-separable ball bearings, hold the bearing horizontally in one hand, and then rotate the outer ring to confirm that it turns smoothly. Separable bearings such as tapered roller bearings may be checked by individually examining their rolling elements and the outer ring raceway. Large bearings cannot be rotated manually; however, the rolling elements, raceway surfaces, cages, and contact surface of the ribs should be carefully examined visually. The more important a bearing is, the more carefully it should be inspected. The determination to reuse a bearing should be made only after considering the degree of bearing wear, the function of the machine, the importance of the bearings in the machine, operating conditions, and the time until the next inspection. However, if any of the following defects exist, reuse is impossible and replacement is necessary. - (a) When there are cracks in the inner or outer rings, rolling elements, or cage. - (b) When there is flaking of the raceway or rolling elements. - (c) When there is significant smearing of the raceway surfaces, ribs, or rolling elements. - (d) When the cage is significantly worn or rivets are - (e) When there is rust or scoring on the raceway surfaces or rolling elements. - (f) When there are any significant impact or brinell traces on the raceway surfaces or rolling elements. - (g) When there is significant evidence of creep on the bore or the periphery of the outer ring. - (h) When discoloration by heat is evident. - (i) When significant damage to the seals or shields of grease sealed bearings has occurred. B 012 B 013 ### 1.7 Checking of Shaft and Housing #### 1.7.1 Checking of Shaft ### (a) Cylindrical Shaft - (1) Dimensional check of shaft Measure the shaft size at the place where the bearing will be mounted to confirm that the bearing size is correct. The measurement positions are shown in Fig. 1.21. Use an outside micrometer. - (2) Observation of the shaft outside surface Observe the surface of shaft where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. - When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. - . When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. - When there is stepped wearing After the dimensional measurement of the shaft, decide whether correction is possible. - (3) Anticorrosive agent After completion of check, apply an anticorrosive agent. ### (b) Tapered Shaft (1) Check of shaft shape Measure the shape of shaft where the bearing will be mounted to confirm that its shape is correct. The measurement positions are shown in Fig. 1.22. As for the measurement instrument, use a taper gauge (sine bar system). (Fig. 2.2 and Fig. 1.22) - (2) Observation of the shaft outside surface Observe the shaft surface where the bearing was mounted to check whether there are scratches. dents, rust or stepped wearing. - . When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. - When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. (In this case if the zone to be corrected is wide, it is necessary to inspect the shape of the tapered part by using a taper gauge. The inspection method is: apply a thin coat of bluing over the entire surface of taper gauge bore face, insert it slowly after adjusting the taper gauge to the shaft center tapered shaft, then, do a run-in by moving back-and-forth. Then, pull the taper gauge out slowly when adjusting to the shaft center. Observe where blue dve is attached to the surface
of tapered shaft. If the blue ares is bigger than 80%, the shaft may be reused. When using a taper gauge (sinebar type), follow the instructions given in the Operation Manual issued by the manufacturer). - When there is stepped wearing After the dimensional measurement of the shaft, decide whether correction is possible. - (3) Anticorrosive agent After completion of check, apply an anticorrosive agent. B 017 ### 1.7.2 Checking of Housing ### (a) Integrated Type Housing (1) Check of bore size of housing Measure the housing bore size where the bearing will be mounted to confirm that the size is correct. The measurement position is shown in Fig. 1.23. As for the measurement instrument, use an inside micrometer. (2) Observation of housing bore face Observe the surface of the housing bore where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. · When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. When there is stepped wearing (Fig. 1.25) After the dimensional measurement of the housing bore, decide whether correction and reuse is possible. In this case, if the measured value of the housing bore is within its tolerance, remove the stepped worn part with oil stone and/or sand paper, etc. and smoothen the surface, then, reuse. If the stepped wearing is severe, either plate or apply thermal spraying to reconstitute to the correct housing size before reusina. (3) Anticorrosive agent After completion of check, apply an anticorrosive agent. ### (b) Split Housing (1) Check of the housing bore size In case of a split housing, assemble correctly the housing without bearing, and measure its bore dimension at the place where the bearing will be mounted to confirm that the dimension is correct. The measurement position is shown in Fig. 1.24 (a). As for the measurement instrument, an inside micrometer shall be used. (2) Observation of housing bore face Observe the surface of the housing bore where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. • When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. • When there is stepped wearing (Fig. 1.25) After the dimensional measurement of the housing bore, decide whether correction is possible. In this case, if the measured value of housing bore is within its tolerance, remove the stepped worn portion with oil stone and/or sand paper, etc. and smoothen the surface, then, reuse. • When the stepped wearing is severe If the stepped wearing is severe, either plate or apply thermal spraying to reconstitute to the correct housing size and reuse. When there is a step As step may occur at the joining part of the split halves housing, confirm whether there is a step. If a step is found, correct it in the way as shown in Fig. 1.24 (c). (3) Anticorrosive agent After completion of check, apply an anticorrosive ### 1.8 Maintenance and Inspection ### 1.8.1 Detecting and Correcting Irregularities In order to maintain the original performance of a bearing for as long as possible, proper maintenance and inspection should be performed. If proper procedures are used, many bearing problems can be avoided and the reliability, productivity, and operating costs of the equipment containing the bearings are all improved. It is suggested that periodic maintenance be done following the procedure specified. This periodic maintenance encompasses the supervision of operating conditions, the supply or replacement of lubricants, and regular periodic inspection, Items that should be regularly checked during operation include bearing noise, vibration, temperature, and lubrication. If an irregularity is found during operation, the cause should be determined and the proper corrective actions should be taken after referring to Table 1.2. If necessary, the bearing should be dismounted and examined in detail. As for the procedure for dismounting and inspection, refer to Section 1.6, Inspection of Bearings. ### 1.8.2 Diagnosis with Sound and Vibration Classification of sounds and vibrations Sound and vibration accompany the rotation of rolling bearings. The tone and amplitude of such sound and vibration vary depending on the type of bearing, mounting conditions, operational conditions, etc. The sound and vibration of a rolling bearing can be classified under the following four chief categories and each category can be further classified into several sub-categories, as described in Table 1.3 below. Boundaries between groups are, however, not definite. Even if some types of sounds or vibrations are inherent in the bearings, the volume might be related to the manufacturing process, while some types of sounds or vibrations, even if they arise due to manufacturing, cannot be eliminated even in normal conditions. By recording sounds and vibrations of a rotating machine and analyzing them, it is possible to infer the cause. As can be seen from figures on the next page, a mechanically normal bearing shows a stable waveform. However, a bearing with a scratch, for example, shows a waveform with wide swings indicating large-amplitude sounds at regular intervals. (Refer to Figs. 1.26 and 1.27) | | lable 1.3 Classification of Sounds and Vibrations in a Rolling Bearing | | | | | | |---------------|--|---------------|--|------------------------|--|--| | | SC | ound | Vibration | | Features | | | | Race noise | | Free vibration of raceway ring | | Continuous noise, basic unavoidable noise which all bearings generate | | | | Click noise | | Free vibration of raceway ring, free vibration of cage | | Regular noise at a certain interval, large bearings and horizontal shaft, radial load and low rpm | | | | Squeal no | ise | Free vibration of raceway | | Intermittent or continuous, mostly large cylindrical roller bearings, radial load, grease lubrication, at particular speed | | | Structural | | "CK" noise | Free vibration | of cage | Regular noise at a certain interval, all bearing types generate it | | | | Cage
noise | "CG" noise | Vibration of ca | age | Intermittent or continuous, lubrication with particular grease | | | | | Tapping noise | Free vibration | of cage | Certain interval, but a little irregular under radial load and during initial stage | | | | _ | | Rolling element passage vibration | | Continuous, all bearing types under radial load | | | | Waviness noise | | Vibration
due to
waviness | Inner ring | Continuous noise | | | Manufacturing | | | | Outer ring | Continuous noise | | | | | | | Rolling element | Continuous with rollers, occasional with balls | | | | | | | Inner ring | Regular noise at a certain interval | | | Handling | Flaw noise | | Vibration due to flaw | Outer ring | | | | | | | naw | Rolling element | | | | | Contamination noise | | Vibration due to contamination | | Irregular | | | Seal noise | | 9 | Free vibration of a seal | | Contact seal | | | | Lubricant noise | | _ | | Irregular | | | Others | | | | f_{r} | Continuous | | | | | _ | Runout | f_{c} | Continuous | | | | | | | $f_{\rm r}-2f_{\rm c}$ | Continuous | | Number of rolling elements Sound waveform of a normal bearing Sound waveform of a scratched bearing Fig. 1.26 When there is damage on an inner-ring raceway surface Bore diameter: 100 mm Recording and analysis method: Envelope analysis result of sounds of a test machine recorded by a microphone Number of rotations: 50 min⁻¹ Fig. 1.27 | Generated frequency (frequency analysis) | | | | | | |---|-----------------------------------|-------------------------|--|---|--| | FFT of original wave | | FFT after | Source | Measures | | | Radial (angular) direction Axial direction | | envelope
(basic No.) | | | | | f_{RiN}, f_{MI} | f_{AIN} , f_{AM} | _ | Selective resonance of waviness (rolling friction) | Improve rigidity around the bearings, appropriate radial clearance, high-viscosity lubricant, high-quality bearings | | | $f_{\it RiN}, f_{\it MI}$
Natural frequen | f_{AiN}, f_{AM} icy of cage | Zf _c | Collision of rolling elements with inner ring or cage | Reduce radial clearance, apply preload, high-viscosity oil | | | $(\approx f_{R2N}, f_{R3N})$ | _ | ? | Self-induced vibration caused by sliding friction at rolling surface | Reduce radial clearance, apply preload, change the grease, replace with countermeasured bearings | | | Natural frequen | cy of cage | fc | Collision of cage with rolling elements or rings | Apply preload, high-viscosity lubricant, reduce mounting error | | | Natural frequen | cy of cage | ? | Self-induced vibration caused by friction at cage guide surface | Change of grease brand, replace with countermeasured cage | | | Natural frequen | cy of cage | Zf _c | Collision of cage and rolling element caused by grease resistance | Reduce radial clearance, apply preload, low-viscosity lubricant | | | Zf _c | _ | _ | Displacement of inner ring due to rolling element passage | Reduce radial clearance, apply preload | | | $nZf_i \pm f_r (nZ \pm 1 \text{ peaks})$ | <i>nZ_{fi} (nZ</i> peaks) | _ | Inner ring raceway waviness, irregularity of shaft exterior | High-quality bearings, improve shaft accuracy | | | nZf_c ($nZ\pm 1$ peaks) | nZfc (nZ peaks) | _ | Outer ring raceway waviness, irregular bore of housing | High-quality bearings,
improve housing bore accuracy | | | $2nf_b \pm f_c$ (2n peaks) $2nf_b$ (2n peaks) | | _ | Rolling element waviness | High-quality bearings | | | | | Z _f | Nicks, dents, rust, flaking on inner ring raceway | Replacement and careful bearing handling | | | f_{RiN} , f_{MI} | f_{AIN} , f_{AM} | Zfc | Nicks, dents, rust, flaking on inner ring raceway | Replacement and careful bearing handling | | | | | 2f _b | Nicks, dents, rust, flaking on rolling elements | Replacement and careful bearing handling | | | f_{RiN} , f_{MI} | f_{AiN}, f_{AM} | Irregular | Entry of dirt and debris | Washing, improve sealing | | | Natural frequency of seal | | (f_r) | Self-induced vibration due to friction at seal contact area | Change the seal, change the grease | | | ? | ? | Irregular | Lubricant or lubricant bubbles crushed between rolling elements and raceways | Change the grease | | | fr | _ | _ | Irregular inner ring cross-section | High-quality bearings | | | f_{c} | _ | _ | Ball variation in bearing, rolling elements non-equidistant | High-quality bearings | | | $f_{r}-2f_{c}$ | _ | _ | Non-linear vibration due to rigid variation by ball variation | High-quality bearings | | Orbital revolution frequency of rolling elements, Hz f_{RIN} : Ring natural frequency in radial bending mode, Hz Natural frequency in the mode of angular vibration in inertia of outer ring-spring system, Hz Rotation frequency of inner ring, Hz Ring natural frequency in axial bending mode, Hz Natural frequency in the mode of axial vibration in mass of outer ring-spring system, Hz $f_i = f_r - f_c$, Hz Rotation frequency of rolling element around its center, Hz | 2. BEARING DAMAGE AND MEASURES (Bearing Doctor) | | | | | |---|-------------------------------------|--|--|--| | 2.1 Bea | ring Damage B 022 | | | | | | | | | | | 2.2 Rur | ning Traces and Applied Loads B 022 | | | | | | | | | | | 2.3 Bea | ring Damage and Measures B 024 | | | | | 2.3.1 | Flaking B 025 | | | | | 2.3.2 | Peeling B 029 | | | | | 2.3.3 | Scoring | | | | | 2.3.4 | Smearing | | | | | 2.3.5 | Fracture B 034 | | | | | 2.3.6 | Cracks | | | | | 2.3.7 | Cage Damage | | | | | 2.3.8 | Denting B 039 | | | | | 2.3.9 | Pitting | | | | | 2.3.10 | Wear | | | | | 2.3.11 | Fretting B 043 | | | | | 2.3.12 | False Brinelling B 044 | | | | | 2.3.13 | Seizure B 045 | | | | | 2.3.14 | Creep | | | | | 2.3.15 | Electrical Corrosion B 048 | | | | | 2.3.16 | Rust and Corrosion B 049 | | | | | 2.3.17 | Mounting Flaws | | | | | 2.3.18 | Discoloration B 051 | | | | | | | | | | | Appendix | Bearing Diagnostic Chart B 052 | | | | ### 2. BEARING DAMAGE AND MEASURES (Bearing Doctor) ### 2.1 Bearing Damage In general, if rolling bearings are used correctly they will survive to their predicted fatigue life. However, they often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, handling, or lubrication, entry of foreign matter, or abnormal heat generation. For instance, the causes of rib scoring, as one example of premature failure, may include insufficient lubrication, use of improper lubricant, faulty lubrication system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft, or any combination of these. Thus, it is difficult to determine the real cause of some premature failures. If all the conditions at the time of failure and previous to the time of failure are known, including the application, the operating conditions, and environment; then by studying the nature of the failure and its probable causes, the possibility of similar future failures can be reduced. ### 2.2 Running Traces and Applied Loads As the bearing rotates, the raceways of the inner ring and outer ring make contact with the rolling elements. This results in a wear path on both the rolling elements and raceways. Running traces are useful, since they indicate the loading conditions, and should be carefully observed when the bearing is disassembled. If the running traces are clearly defined, it is possible to determine whether the bearing is carrying a radial load, axial load or moment load. Also, the roundness condition of the bearing can be determined. Check whether unexpected bearing loads or large mounting errors occurred. Also, determine the probable cause of the bearing damage. Fig. 2.2 shows the running traces generated in deep groove bearings under various load conditions. Fig. 2.2 (a) shows the most common running trace generated when the inner ring rotates under a radial load only. Figs. 2.2 (e) through (h) show several different running traces that result in a shortened life due to their adverse effect on the bearings. Similarly, Fig. 2.2 shows different roller bearing running traces: Fig. 2.2 (i) shows the outer ring running trace when a radial load is properly applied to a cylindrical roller bearing which has a load on a rotating inner ring. Fig. 2.2 (j) shows the running trace in the case of shaft bending or relative inclination between the inner and outer rings. This misalignment leads to the generation of slightly shaded (dull) bands in the width direction. Traces are diagonal at the beginning and end of the loading zone. For double-row tapered roller bearings where a single load is applied to the rotating inner ring, Fig. 2.2 (k) shows the running trace on the outer ring under radial load while Fig. 2.2 (l) shows the running trace on the outer ring under axial load. When misalignment exists between the inner and the outer rings, then the application of a radial load causes running traces to appear on the outer ring as shown in Fig. 2.2 (m). Fig. 2.2 Typical Running Traces of Deep Groove Ball Bearings Fig. 2.2 Typical Running Traces on Roller Bearings NSK ### 2.3 Bearing Damage and Measures In general, if rolling bearings are used correctly, they will survive to their predicted fatigue life. Bearings. however, often fail prematurely due to avoidable mistakes. In contrast to fatigue life, this premature failure is caused by improper mounting, mishandling, poor lubrication, entry of foreign matter or abnormal heat generation. For example, one cause of premature failure is rib scoring which is due to insufficient lubrication, use of improper lubricant, faulty lubrication system, entry of foreign matter, bearing mounting error, excessive deflection of the shaft or some combination of these. If all conditions are known for the times both before and after the failure, including the application. the operating conditions, and environment, then a measure can be determined by studying the nature of the failure and its probable causes. A successful measure will reduce similar failures or prevent them from happening again. Sections 2.3.1 through 2.3.18 give various type of bearing damage and measures. Please consult these sections when trying to determine the cause of bearing damage. By the way, the bearing diagnostic chart in the Appendix may be useful as a quick reference guide. ### 2.3.1 Flaking | Damage Condition | Possible Cause | Measures | |---|---|---| | Flaking occurs when small pieces of bearing material are split off from the smooth surface of the raceway or rolling elements due to rolling fatigue, thereby creating regions having rough and coarse texture. | Excessive load Poor mounting (misalignment) Moment load Entry of foreign debris, water penetration Poor lubrication, Improper lubricant Unsuitable bearing clearance Improper precision for shaft or housing, unevenness in housing rigidity, large shaft bending Progression from rust, corrosion pits, smearing, dents (Brinelling) | Reconfirm the bearing application and check the load conditions Improve the mounting method Improve the sealing mechanism, prevent rusting during non-running Use a lubricant with a proper viscosity, improve the lubrication method Check the precision of shaft and housing Check the bearing internal clearance | Symptom: Inner ring of an angular contact ball bearing Flaking occurs around half of the circumference of the raceway surface Cause: Poor lubrication due to entry of cutting coolant into bearing Photo 1-2 Part: Symptom: Cause: Inner ring of an angular contact ball bearing Flaking occurs diagonally along raceway Poor alignment between shaft and housing during mounting Part: Symptom: Outer ring of Photo 1-4 Dents due to shock load while stationary Cause: Photo 1-4 Part: Balls of Photo 1-3 Symptom: Flaking of ball surface Dents due to shock load while stationary Cause: B 025 Photo 1-3 Flaking of raceway surface at ball pitch Photo 1-5 Part: Inner ring of a spherical roller bearing Flaking of only one raceway over its entire Symptom: circumference Excessive axial load Cause: Photo 1-6 Part: Outer ring of Photo 1-5 Symptom: Flaking of only one raceway over its entire circumference Excessive axial load Cause: Photo 1-11 Part: Outer ring of a spherical roller bearing Discoloration and flaking occur on outer ring Symptom: raceway surface Poor lubrication under high temperatures Cause: Photo 1-12 Cause: Part: Outer ring of a cylindrical roller
bearing for sendzimir Mills Flaking occurs on outside surface Symptom: Progression of fatigue in outer ring material (Long period of grinding on outer ring outside surface) Photo 1-7 Part: Inner ring of a spherical roller bearing Symptom: Flaking of only one row of raceway Cause: Poor lubrication Photo 1-8 Part: Rollers of a cylindrical roller bearing Symptom: Premature flaking occurs axially on the rolling Cause: Scratches caused during improper mounting Photo 1-13 Part: Inner ring of a cylindrical roller bearing for sendzimir Mills Symptom: Flaking occurs on the raceway surface Cause: Severe operating conditions and oil lubrication of low viscosity Photo 1-14 Part: Roller of a cylindrical roller bearing Flaking of rolling surfaces Symptom: Cause: Origin from flaw or crack in roller during mounting of outer ring and roller Part: Outer ring of a four-row tapered roller bearing Flaking of raceway(Loading area) Symptom: Excessive moment load Cause: Photo 1-10 Part: Symptom: Cause: Enlargement of raceway surface in Photo 1-9 Flaking of one-side of the raceway Excessive pressure due to be misalignment Photo 1-15 Part: Inner ring of deep groove ball bearing Symptom: Flaking of raceway at ball pitch Dents due to shock load during mounting Cause: Photo 1-16 Part: Inner ring of an angular contact ball bearing Symptom: Flaking of raceway at ball pitch Dents due to shock load while stationary Cause: B 028 ## —Example of flaking and other damage combined 1— Photo 1-15 Outer ring of a cylindrical roller bearing Symptom: Rust, flaking and crack occur on raceway Rust at the pitch interval leads to flaking during Cause: operation⇒ Further operation results in cracking ## —Example of flaking and other damage combined 2— Photo 1-16 Outer ring of a spherical roller bearing Symptom: Example of flaking, cracking, and wear combined on the outer ring raceway Cause: Wear in two places due to poor lubrication (primary damage) progresses to flaking in one spot (secondary damage) that later becomes a crack (tertiary damage) ### 2.3.2 Peeling | Damage Condition | Possible Cause | Measures | |--|--|--| | Dull or cloudy spots appear on surface along with light wear. From such dull spots, tiny cracks are generated downward to a depth of 5 to 10 µm. Small particles fall off and minor flaking occurs widely. | Entry of debris into lubricant
Rough surface due to poor lubrication
Surface roughness of mating rolling | Select a proper lubricant Improve the sealing mechanism Improve the surface finish of the rolling mating parts | Photo 2-1 Inner ring of a spherical roller bearing Round shaped peeling pattern occurs Symptom: on the center of the raceway surface Cause: Poor lubrication Photo 2-2 Enlargement of pattern in Photo 2-1 Convex rollers of Photo 2-1 Symptom: Round shaped peeling pattern occurs on the center of the rolling surfaces Poor lubrication Photo 2-4 Part: Outer ring of a spherical roller bearing Symptom: Peeling occurs near the shoulder of the raceway over the entire circumference Cause: Poor lubrication Photo 2-3 Cause: ### 2.3.3 Scoring | Damage Condition | Possible Cause | Measures | |--|--|---| | Scoring is surface damage due to accumulated small seizures caused by sliding under improper lubrication or under severe operating conditions. Linear damage appears circumferentially on the raceway surface and rolling surface. Cycloidal shaped damage on the roller end. Scoring on rib surface contacting roller end. | Particles are caught in the surface
Inclination of inner and outer rings
Shaft bending
Poor precision of the shaft and
housing | Check the size of the load Adjust the preload Improve the lubricant and the lubrication method Check the precision of the shaft and housing | Photo 3-1 Part: Symptom: Cause: Inner ring of a spherical roller bearing Scoring on large rib face of inner ring Roller slipping due to sudden acceleration and deceleration Photo 3-2 Part: Symptom: Cause: Convex rollers of Photo 3-1 Scoring on roller end face Roller slipping due to sudden acceleration and deceleration Photo 3-5 Part: Symptom: Cause: Inner ring of a spherical thrust roller bearing Scoring on the rib face of inner ring Debris, which is caught in surface, and excessive axial loading Photo 3-6 Part: Symptom: Cause: Convex rollers of Photo 3-5 Scoring on the roller end face Debris, which is caught in surface, and excessive axial loading Photo 3-3 Part: Symptom: Cause: Inner ring of a tapered roller thrust bearing Scoring on the face of inner ring rib Worn particles become mixed with lubricant, and breakdown of oil film occurs due to excessive load Photo 3-4 Part: Symptom: Cause: Rollers of a double-row cylindrical roller bearing Scoring on the roller end face Poor lubrication and excessive axial load Photo 3-7 Part: Symptom: Cause: Cage of a deep groove ball bearing Scoring on the pressed-steel cage pockets Entry of debris Photo 3-8 Part: Symptom: Cause: Outer ring a double-row cylindrical roller bearing Notable scoring on the face of outer ring rib Excessive axial loading B 031 B 030 2.3.4 Smearing | Damage Condition | Possible Cause | Measures | |--|---|---| | Smearing is surface damage which occurs from a collection of small seizures between bearing components caused by oil film rupture and/or sliding. Surface roughening occurs along with melting. | High speed and light load
Sudden acceleration/deceleration
Improper lubricant
Entry of water | Improve the preload Improve the bearing clearance Use a lubricant with good oil film formation ability Improve the lubrication method Improve the sealing mechanism | Photo 4-5 Part: Inner ring of a spherical roller bearing Symptom: Partial smearing occurs circumferentially on raceway surface Poor lubrication Cause: Photo 4-6 Cause: Part: Outer ring of Photo 4-5 Symptom: Partial smearing occurs circumferentially on raceway surface Poor lubrication Photo 4-1 Part: Inner ring of a cylindrical roller bearing Smearing occurs circumferentially on raceway Symptom: Cause: Roller slipping due to excessive grease filling Photo 4-2 Symptom: Part: Outer ring of Photo 4-1 Smearing occurs circumferentially on raceway surface Cause: Roller slipping due to excessive grease filling Photo 4-7 Part: Convex rollers of Photo 4-5 Symptom: Smearing occurs at the center of the rolling surface Cause: Poor lubrication Photo 4-8 Part: Symptom: Cause: Rollers of a large cylindrical roller bearing Smearing occurs on rolling surface Light load and poor lubrication Photo 4-3 Part: Inner ring of a spherical roller bearing Symptom: Smearing occurs circumferentially on raceway surface Poor lubrication Cause: Photo 4-4 Part: Outer ring of Photo 4-3 Symptom: Smearing occurs circumferentially on raceway surface Cause: Poor lubrication Photo 4-9 Part: Symptom: Cause: Outer ring of a large tapered roller bearing Smearing occurs on outer ring raceway surface High speed, light load and poor lubrication B 033 B 032 ### 2.3.5 Fracture | Damage Condition | Possible Cause | Measures | |---|--------------------------------|--| | Fracture refers to small pieces which were broken off due to excessive load or shock load acting locally on a part of the roller corner or rib of a raceway ring. | Poor handling such as dropping | Improve the mounting method
(Shrink fit, use of proper tools) Reconsider the loading conditions Provide enough back-up and
support for the bearing rib | ### 2.3.6 Cracks | Damage Condition | Possible Cause | Measures | |--|--|--| | Cracks in the raceway ring and rolling
elements. Continued use under this condition leads to larger cracks or fractures. | Excessive interference Excessive load, shock load Progression of flaking Heat generation and fretting caused by contact between mounting parts and raceway ring Heat generation due to creep Poor taper angle of tapered shaft Poor cylindricality of shaft Interference with bearing chamfer due to a large shaft corner radius | Correct the interference Check the load conditions Improve the mounting method Use an appropriate shaft shape | Photo 5-1 Part: Inner ring of a double-row cylindrical roller bearing Symptom: Chipping occurs at the center rib Cause: Excessive load during mounting Photo 5-2 Part: Inner ring of a tapered roller bearing Symptom: Fracture occurs at the cone back face rib Cause: Large shock during mounting Photo 6-1 Part: Outer ring of a double-row cylindrical roller bearing Symptom: Thermal cracks occur on the outer ring side face Cause: Abnormal heat generation due to contact sliding between mating part and face of outer ring Photo 6-2 Part: Symptom: Cause: Roller of a tapered roller thrust bearing Thermal cracks occur at large end face of roller Heat generation due to sliding with the inner ring rib under poor lubrication Photo 5-3 Part: Inner ring of a spherical thrust roller bearing Symptom: Fracture occurs at the large rib Cause: Repeated load Photo 5-4 Part: Symptom: Cause: Outer ring of a solid type needle roller bearing Fracture occurs at the outer ring rib Roller inclination due to excessive loading (Needle rollers are long compared to their diameter. Under excessive or uneven loading, rollers become inclined and push against the ribs.) Photo 6-3 Part: Outer ring of a double-row cylindrical roller Cracks propageted outward in the axial and Symptom: circumferential directions from the flaking origin on the raceway surface Cause: Flaking from a flaw due to shock Possible Cause Poor mounting (Bearing misalignment) Excessive rotation speed, sudden acceleration and deceleration Poor handling Poor lubrication Temperature rise Large moment load Shock and large vibration Measures Check the mounting method and load conditions Reduce the vibration Select a cage type lubricant Check the temperature, rotation, Select a lubrication method and Photo 6-4 Part: Outer ring of a double-row cylindrical roller bearing used for outer ring rolling (Outer ring rotation) Cracks occur on outside surface Symptom: Cause: Flat wear and heat generation due to nonrotation of the outer ring Photo 6-5 Part: Outer ring of a cylindrical roller bearing for sendzimir Mills Symptom: Fatigue crack occurs on outer ring raceway surface Bending stress (Large rotating outer ring load) Cause: Photo 6-6 Part: Symptom: Cause: Inner ring of a spherical roller bearing Axial cracks occur on raceway surface Large fitting stress due to temperature difference between shaft and inner ring Cross section of a fractured inner ring in Photo 6-6 Origin is directly beneath the raceway surface Symptom: 2.3.7 Cage Damage Fracture of cage pillar Deformation of side face Wear of pocket surface Wear of guide surface Cage damage includes cage deformation, fracture, and wear Damage Condition Photo 7-1 Part: Cage of a deep groove ball bearing Symptom: Fracture of pressed-steel cage-pocket Photo 7-2 Cause: Part: Cage of an angular contact ball bearing Symptom: Pocket pillar fractures from a cast iron machined Abnormal load action on cage due to misaligned mounting between inner and outer rings Photo 6-8 Part: Symptom: Roller of a spherical roller bearing Axial cracks occur on rolling surface Photo 6-9 Part: Symptom: Outer ring of four-row tapered roller bearing Secondary damage after flaking occurs on outer ring raceway surface Photo 7-3 Part: Cage of an angular contact ball bearing Fracture of machined high-tension brass cage Symptom: Photo 7-4 Part: Cage of a tapered roller bearing Symptom: Pillar fractures of pressed-steel cage B 036 B 037 ### 2.3.8 Denting | Damage Condition | Possible Cause | Measures | |--|--|---| | When debris such as small metallic particles are caught in the rolling contact zone, denting occurs on the raceway surface or rolling element surface. Denting can occur at the rolling element pitch interval if there is a shock during the mounting (Brinell dents). | Debris such as metallic particles are
caught in the surface
Excessive load
Shock during transport or mounting | Wash the housing Improve the sealing mechanism Filter the lubrication oil Improve the mounting and handling methods | Photo 7-5 Part: Symptom: Cause: Cage of an angular contact ball bearing Pressed-steel cage deformation Shock load due to poor handling Photo 7-6 Part: Symptom: Cage of a cylindrical roller bearing Deformation of the side face of a machined high-tension brass cage Cause: Large shock during mounting Photo 8-1 Part: Symptom: Cause: Inner ring of a double-row tapered roller bearing Frosted raceway surface Debris caught in the surface Photo 8-2 Part: Outer ring of a double-row tapered roller bearing Indentations on raceway surface Symptom: Cause: Debris caught in the surface Photo 7-7 Part: Symptom: Cage of a cylindrical roller bearing Deformation and wear of a machined hightension brass cage Photo 7-8 Part: Symptom: Cage of an angular contact ball bearing Stepped wear on the outside surface and pocket surface of a machined high-tension brass cage Photo 8-3 Part: Inner ring of a tapered roller bearing Small and large indentations occur over entire Symptom: raceway surface Debris caught in the surface Cause: Photo 8-4 Part: Tapered rollers of Photo 8-3 Symptom: Small and large indentations occur over the rolling Cause: Debris caught in the surface ### 2.3.9 Pitting | Damage Condition | Possible Cause | Measures | |---|--|--| | The pitted surface has a dull luster which appears on the rolling element surface or raceway surface. | Debris becomes caught in the lubricant Exposure to moisture in the atmosphere Poor lubrication | Improve the sealing mechanism Filter the lubrication oil thoroughly Use a proper lubricant | ### 2.3.10 Wear | faces, rib face, cage pockets, etc. Poor lubrication Sliding due to irregular motion of method Check the lubricant and lubrication method | Damage Condition | Possible Cause | Measures | |---|--|---|---| | Tolling contents | sliding friction at the surface of the raceway, rolling elements, roller end | Progression from rust and electrical corrosion Poor lubrication | Clean the housing Filter the lubrication oil thoroughly Check the lubricant and lubrication | Photo 9-1 Part: Symptom: Cause: Outer ring of a slewing bearing Pitting occurs on the raceway surface Rust at bottoms of indentations Photo 9-2 Part: Symptom: rt: Ball of Photo 9-1 mptom: Pitting occurs on the rolling element surface Photo 10-1 Part: Inner ring of a cylindrical roller bearing Symptom: Many pits occur due to electrical corrosion and wave-shaped wear on raceway surface Cause: Electrical corrosion Photo 10-2 Part: Outer ring of a spherical roller bearing Symptom: Wear having a wavy or concave-and-convex texture on loaded side of raceway surface Cause: Entry of debris under repeated vibration while stationary Photo 10-3 Part: Symptom: Cause: Outer ring of a spherical roller bearing Wear occurs on loaded side of raceway surface Low speed, heavy load and poor lubrication(No oil film) Photo 10-4 Part: Outer ring of a spherical roller bearing (enlargement) **Symptom:** Example of small flaking and wear combined on the raceway Cause: Insufficient oil film due to poor lubrication leads to wear (primary damage) that progresses to flaking (secondary damage) ### 2.3.11 Fretting | Damage Condition | Possible Cause | Measures | | | | | | | |---|---|---|--|--|--|--|--|--| | Wear occurs due to repeated sliding between the two surfaces. Fretting occurs at fitting surface and also at contact area between raceway ring and rolling elements. Fretting corrosion is another term used to describe the reddish brown or black worn particles. | Poor lubrication
Vibration with a small amplitude
Insufficient interference | Use a proper lubricant Apply a
preload Check the interference fit Apply a film of lubricant to the fitting surface | | | | | | | Photo 10-5 Part: Symptom: Cause: Outer ring of a tapered roller bearing Wear occurs on outer ring raceway surface Insufficient oil film and wear due to poor lubrication Photo 10-6 Symptom: Inner ring of a double-row tapered roller bearing Fretting wear of raceway and stepped wear on the rib face Fretting progression due to excessive load while Cause: stationary Photo 11-1 Part: Inner ring of a deep groove ball bearing Symptom: Fretting occurs on the bore surface Cause: Vibration Photo 11-2 Inner ring of an angular contact ball bearing Notable fretting occurs over entire Part: Symptom: circumference of bore surface Insufficient interference fit Cause: Photo 11-3 Symptom: Outer ring of a double-row cylindrical roller bearing Fretting occurs on the raceway surface at roller pitch intervals Photo 10-7 Part: Symptom: Cause: Tapered rollers of Photo 10-6 Stepped wear on the roller head and face Fretting progression due to excessive load while stationary ### 2.3.12 False Brinelling | Damage Condition | Possible Cause | Measures | |--|---|--| | Among the different types of fretting, false brinelling is the occurrence of hollow spots that resemble brinell dents, and are due to wear caused by vibration and swaying at the contact points between the rolling elements and raceway. | Oscillation and vibration of a stationary
bearing during such times as
transporting
Oscillating motion with a small
amplitude
Poor lubrication | Secure the shaft and housing during transporting Transport with the inner and outer rings packed separately Reduce the vibration by preloading Use a proper lubricant | ### 2.3.13 Seizure | Damage Condition | Possible Cause | Measures | | | | | | |---|--|---|--|--|--|--|--| | When sudden overheating occurs during rotation, the bearing becomes discolored. Next, raceway rings, rolling elements, and cage will soften, melt and deform as damage accumulates. | Poor lubrication Excessive load (Excessive preload) Excessive rotational speed Excessively small internal clearance Entry of water and debris Poor precision of shaft and housing, excessive shaft bending | Study the lubricant and lubrication method Reinvestigate the suitability of the bearing type selected Study the preload, bearing clearance, and fitting Improve the sealing mechanism Check the precision of the shaft and housing Improve the mounting method | | | | | | Photo 12-1 Part: Symptom: Cause: Inner ring of a deep groove ball bearing False brinelling occurs on the raceway Vibration from an external source while stationary Part: Symptom: Cause: False brinelling occurs on the raceway Vibration from an external source while stationary Photo 13-3 Part: Photo 13-1 Symptom: Part: Cause: Inner ring of an angular contact ball bearing Raceway discoloration, melting occurs at ball pitch intervals raceway Insufficient lubrication Excessive preload Cause: Photo 13-2 Convex rollers of Photo 13-1 Part: Symptom: Discoloration and melting of roller rolling surface, adhesion of worn particles from cage Cause: Insufficient lubrication Photo 12-3 Part: Symptom: Cause: Outer ring of a thrust ball bearing False brinelling of raceway surface at ball pitch Repeated vibration with a small oscillating angle Photo 12-4 Part: Symptom: Cause: Rollers of a cylindrical roller bearing False brinelling occurs on rolling surface Vibration from an external source while stationary Inner ring of a spherical roller bearing Raceway is discolored and melted. Worn particles from the cage were rolled and attached to the Symptom: Photo 13-4 Part: Outer ring in Photo 13-3 Raceway discoloration, melting occurs at ball pitch Symptom: intervals Cause: Excessive preload ## 2.3.14 Creep | Damage Condition | Possible Cause | Measures | |--|--|---| | Creep is the phenomenon in bearings where relative slipping occurs at the fitting surfaces and thereby creates a clearance at the fitting surface. Creep causes a shiny appearance, occasionally with scoring or wear. | Insufficient interference or loose fit
Insufficient sleeve tightening | Check the interference, and prevent rotation Correct the sleeve tightening Study the shaft and housing precision Preload in the axial direction Tighten the raceway ring side face Apply adhesive to the fitting surface Apply a film of lubricant to the fitting surafce | Photo 13-5 Part: Balls and cage of Photo 13-3 Cage is damaged by melting, balls become Symptom: discolored and melted Cause: Excessive preload Photo 13-6 Part: Symptom: Cause: Rollers of a large tapered roller bearing Seizure occur at large end face of roller Poor lubrication and excessive axial load Photo 14-1 Part: Symptom: Cause: Inner ring of a spherical roller bearing Creep accompanied by scoring of bore surface Insufficient interference Photo 14-2 Part: Outer ring of a spherical roller bearing Creep occurs over entire circumference of outside Symptom: surface Cause: Loose fit between outer ring and housing Photo 13-7 Cylindrical roller bearing Symptom: Seizure occurs on ring raceway surface and Cause: Excessively small internal clearance causes heat generation by sliding of the inner ring and rollers under high speed and light load ### 2.3.15 Electrical Corrosion | Damage Condition | Possible Cause | Measures | |---|--|---| | When electric current passes through a bearing, arcing and burning occur through the thin oil film at points of contact between the race and rolling elements. The points of contact are melted locally to form "fluting" or groove-like corrugations which are seen by the naked eye. The magnification of these grooves will reveal crater-like depressions which indicate melting by arcing. | Electrical potential difference between inner and outer rings Electrical potential difference of a high frequency that is generated by instruments or substrates when used near a bearing. | Design electric circuits which
prevent current flow through the
bearings Insulation of the bearing | Photo 15-1 Part: Inner ring of a tapered roller bearing Symptom: Striped pattern of corrosion occurs on the raceway surface Photo 15-3 Part: Symptom: Inner ring of a cylindrical roller bearing Belt pattern of electrical corrosion accompanied by pits on the raceway surface Part: Inner ring of a deep groove ball bearing Symptom: Fluting occurs on the raceway surface (High frequency) Tapered rollers in Photo 15-1 Symptom: Striped pattern of corrosion occurs on the rolling surface Photo 15-4 Part: Symptom: Balls of a groove ball bearing Electrical corrosion has a dark color that covers the entire ball surface Photo 15-6 Part: Enlargement Outer ring of a deep groove ball bearing Fluting occurs on the raceway surface (High frequency) ### 2.3.16 Rust and Corrosion | Damage Condition | Possible Cause | Measures | |---
---|---| | Bearing rust and corrosion are pits on
the surface of rings and rolling
elements and may occur at the rolling
element pitch on the rings or over the
entire bearing surfaces. | Entry of corrosive gas or water Improper lubricant Formation of water droplets due to condensation of moisture High temperature and high humidity while stationary Poor rust preventive treatment during transporting Improper storage conditions Improper handling | Improve the sealing mechanism Study the lubrication method Anti-rust treatment for periods of non-running Improve the storage methods Improve the handling method | Photo 16-1 Part: Outer ring of a cylindrical roller bearing Rust on the rib face and raceway surface Symptom: Cause: Poor lubrication due to water entry Photo 16-2 Part: Outer ring of a slewing ring Rust on raceway surface at ball pitch Symptom: Cause: Moisture condensation during stationary periods Photo 16-3 Part: Symptom: Cause: Inner ring of a spherical roller bearing Rust on raceway surface at roller pitch Entry of water into lubricant Photo 16-4 Part: Cause: Symptom: Rollers of a spherical roller bearing Pit-shaped rust on rolling contact surface. Corroded portions. Moisture condensation during storage ### 2.3.17 Mounting Flaws | Damage Condition | Possible Cause | Measures | |--|---|--| | Straight line scratches on surface of raceways or rolling elements caused during mounting or dismounting of bearing. | Inclination of inner and outer rings during mounting or dismounting. Shock load during mounting or dismounting. | Use appropriate jig and tool Avoid a shock load by use of a press machine Center the relative mating parts during mounting | ### 2.3.18 Discoloration | Damage Condition | Possible Cause | Measures | |---|--|--------------------------------| | Discoloration of cage, rolling elements, and raceway ring occurs due to a reaction with lubricant and high temperature. | Poor lubrication Oil stain due to a reaction with lubricant High temperature | Improve the lubrication method | Photo 17-1 Part: Symptom: Cause: Inner ring of a cylindrical roller bearing Axial scratches on raceway surface Inclination of inner and outer rings during mounting Photo 17-2 Part: Outer ring of a double-row cylindrical roller bearing Axial scratches at roller pitch intervals on Symptom: raceway surface Inclination of inner and outer rings during Cause: mounting Photo 18-1 Part: Inner ring of an angular contact ball bearing Bluish or purplish discoloration on raceway Symptom: surface Cause: Heat generation due to poor lubrication Photo 18-2 Part: Inner ring of a 4-point contact ball bearing Bluish or purplish discoloration on raceway Symptom: surface Cause: Heat generation due to poor lubrication Photo 17-3 Rollers of a cylindrical roller bearing Part: Symptom: Axial scratches on rolling surface Inclination of inner and outer rings during Cause: mounting B 050 B 051 ## **Appendix Bearing Diagnostic Chart** | | _ | | | | | | | Cause | 9 | | | | | | | |-----------------------------|---|----------------|------------|---------------|----------------------------|-------------|-----------|--------------------|----------------------------|--------|------------------|--|------------------------------|-------------------|--| | | | Hand | dling | | earin
round | | | bri-
ion | | Load | | Sp | eed | | | | Damage name | Location (Phenomenon) | Stock-Shipping | Mounting | Shaft Housing | Sealed device Water-Debris | Temperature | Lubricant | Lubrication method | Excessive load Impact load | Moment | Ultra small load | High speed, High acceleration & deceleration | Shaking-Vibration Stationary | Bearing Selection | Remarks | | 2.3.1 Flaking | Raceway, Rolling surface | 0, | _ | 0, | 0, | ' | _ | _ | | _ | | | 0, | | Hemarks | | 2.3.1 Flakilly | , , | | | | | | | | | | | | | | | | 2.3.2 Peeling | Raceway, Rolling surface Bearing outside surface | | | <u>*</u> | | | 0 | 0 | | | | \cup | | | *Mating rolling | | | (Rolling contact) Roller end face surface, | | | 0 | 0 | | 0 | 0 | | | | | | | part | | 2.3.3 Scoring | Rib surface | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | | | | | | Cage guide surface,
Pocket surface | | 0 | | 0 | | 0 | 0 | | | | | | | | | 2.3.4 Smearing | Raceway, Rolling surface | | | | 0 | | 0 | 0 | | | 0 | 0 | | | | | 2.3.5 Fracture | Raceway collar, Rollers | 0 | 0 | 0 | | | | | 0 | 0 | | | | | | | 0.0.0.0 | Raceway rings,
Rolling elements | | 0 | 0 | | 0 | | | 0 | 0 | | | | | | | 2.3.6 Cracks | Rib surface, Roller end face, Cage guide surface (Thermal crack) | | | 0 | | | | 0 | 0 | 0 | | | | | | | 2.3.7 Cage damage | (Deformation), (Fracture) | | 0 | 0 | | | | | 0 | 0 | | | | | | | 2.5.7 Gaye damaye | (Wear) | | 0 | | 0 | | 0 | 0 | 0 | 0 | | 0 | | | | | 2.3.8 Denting | Raceway, Rolling surface,
(Innumerable small dents) | | | | 0 | | | 0 | | | | | | | | | 2.0.0 Denting | Raceway (Debris on the rolling element pitch) | 0 | 0 | | | | | | 0 | | | | 0 | | | | 2.3.9 Pitting | Raceway, Rolling surface | | | | 0 | | 0 | 0 | | | | | | | | | 2.3.10 Wear | Raceway, Rolling surface,
Rib surface, Roller end face | | 0 | | 0 | | 0 | 0 | | | | | | | | | | Raceway, Rolling surface | 0 | 0 | 0 | | | 0 | 0 | 0 | | | 0 | 0 | | | | 2.3.11 Fretting | Bearing outside & bore, side surface (Contact with housing and shaft) | | 0 | 0 | | | | | 0 | | | | | | | | 2.3.12 False brinelling | Raceway, Rolling surface | 0 | | | | | 0 | 0 | | | | | 0 | | | | 2.3.13 Seizure | Raceway ring, Rolling element,
Cage | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | | 0 | | | 2.3.14 Creep | Fitting surface | | \bigcirc | 0 | | 0 | o* | o* | 0 | | | 0 | | | *Clearance fit | | 2.3.15 Electrical corrosion | Raceway, Rolling surface | | * | o* | | | | | | | | | | | *Electricity passing
through the rolling
element | | 2.3.16 Rust and corrosion | Raceway ring, Rolling element,
Cage | 0 | 0 | | 0 | 0 | 0 | 0 | | | | | | | | | 2.3.17 Mounting flaws | Raceway, Rolling surface | | 0 | 0 | | | | | | | | | | | | | 2.3.18 Discoloration | Raceway ring, Rolling element,
Cage | | | | | 0 | 0 | 0 | | | | | | | | **Remark** This chart is not comprehensive. It lists only the more commonly occurring damages, causes, and locations. B 052 B 053 Note # **BEARINGS TABLE** ## Part C ### **BEARINGS TABLE** | 1. | DEEP GROOVE BALL BEARINGS C 000 | |------------|---| | 2. | EXTRA SMALL BALL BEARINGS AND MINIATURE BALL BEARINGS | | 3. | ANGULAR CONTACT BALL BEARINGSc 07 | | 4. | SELF-ALIGNING BALL BEARINGSC 11: | | 5 . | CYLINDRICAL ROLLER BEARINGSC 12: | | 6. | TAPERED ROLLER BEARINGSC 18 | | 7. | SPHERICAL ROLLER BEARINGSc 25 | | 8. | THRUST BALL BEARINGS C 29 | | 9. | THRUST CYLINDRICAL ROLLER BEARINGS C 31: | | 10. | THRUST TAPERED ROLLER BEARINGS C 32 | | 11. | THRUST SPHERICAL ROLLER BEARINGSc 33 | | 12. | NEEDLE ROLLER BEARINGS C 34 | | 13. | BALL BEARING UNITS C 34 | | 14. | PLUMMER BLOCKS C 34 | | 15. | ACCESSORIES FOR ROLLING BEARINGS | ### 1. DEEP GROOVE BALL BEARINGS | INTRODUCTION | | C 00 | 0 | |--------------|--|------|---| |--------------|--|------|---| ### **TECHNICAL DATA** | Radial and Axial Internal Clearances and Contac
Single-Row Deep Groove Ball Bearings | • | |---|---| | Features and Operating Temperature Range of B
Seal Material | • | | Free Space and Grease Filling Amount for Deep Ball Bearings | | ### **BEARINGS TABLE** Single-Row Deep Groove Ball Bearings Open Type, Shielded Type, Sealed Type | | Bore Diameter 10 – 240 mm C 020 | |----------------------------|-------------------------------------| | Open Type | Bore Diameter 260 – 800 mm C 040 | | Creep-Free Bearings™ | Bore Diameter 10 – 100 mm C 046 | | Maximum Type Ball Bearings | Bore Diameter 25 – 110 mm C 048 | | Magneto Bearings | Bore Diameter 4 – 20 mm ····· C 050 | C 004 C 005 ### **DESIGN, TYPES, AND FEATURES** ### SINGLE-ROW DEEP GROOVE BALL BEARINGS Single-Row Deep Groove Ball Bearings are classified into the types shown below. The proper amount of good quality grease is packed in shielded and sealed ball bearings. A comparison of the features of each type is shown in Table 1. Table 1 Features of Sealed Ball Bearings | Туре | Shielded Type
(ZZ Type) | Non-Contact
Rubber Sealed Type
(VV Type) | Contact Rubber Sealed Type
(DDU Type) | |------------------------------|----------------------------|---|--| | Torque | Low | Low | Higher than ZZ, VV types due to contact seal | | Speed capability | Good | Good | Limited by contact seals | | Grease sealing effectiveness | Good | Better than ZZ type | A little
better than VV type | | Dust
resistance | Good | Better than ZZ type
(usable in
moderately dusty
environment) | Best (usable even in very dusty environment) | | Water
resistance | Not
suitable | Not suitable | Good (usable even if fluid is splashed on bearing) | | Operating temperature (1) | −10 to
+110°C | -10 to +110°C | −10 to +100°C | Note (1) The above temperature range applies to standard bearings. By using cold or heat resistant grease and changing the type of rubber, the operating temperature range can be extended. For such applications, please contact NSK. Open Type With Snap Ring Non-Contact **Rubber Sealed** Type (VV Type) Shielded Type (ZZ Type) Contact Rubber Sealed Type (DDU Type) For deep groove ball bearings, pressed cages are usually used. For big bearings, machined brass cages are used. (Refer to Table 2) Machined cages are also used for high speed applications. Table 2 Standard Cages for Deep Groove Ball Bearings | Series | Pressed Steel Cages | Machined Brass Cages | |--------|---------------------|----------------------| | 68 | 6800 – 6838 | 6840 - 68/800 | | 69 | 6900 – 6936 | 6938 - 69/800 | | 160 | 16001 – 16026 | 16028 - 16064 | | 60 | 6000 – 6040 | 6044 - 60/670 | | 62 | 6200 – 6240 | 6244 – 6272 | | 63 | 6300 – 6332 | 6334 – 6356 | ### ☐ Formulation of Bearing Numbers Single-Row Deep Groove Ball Bearings Bearing number example ①Bearing type symbol 6 : Single-Row Deep Groove Ball Bearings ②Dimension symbol 2:02 Series, 3:03 Series, 9:19 Series, 0:10 Series ③Bore number Less than 03, Bearing bore 00: 10mm, 01: 12mm, 02: 15mm, 03: 17mm Over 04, Bearing bore Bore number X 5 (mm) (4) Seals, Shields symbol ZZ: Shield on Both Side, DDU: Contact Rubber Seal on Both Side, VV: Non-Contact Rubber Sealed on Both Side ⑤Internal clearance symbol Omitted: CN clearance*1, C3: Clearance greater than CN, C4: Clearance greater than C3, CM: For Electric Motors*1 ⑥NSKHPS™ symbol & : NSKHPS™ Bearings ⑦Grease symbol NS7 : NS HI-LUBE *1 The CM clearance can be used in substitute of the CN clearance. (The opposite is not available.) ### **NSKHPS™** Deep Groove Ball Bearings Features Compared to the conventional bearing - Improved reliability - Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. As a result, the NSKHPSTM bearings contribute to reducing maintenance cost and facilitate the downscaling of related equipment. - New product line-up The standard dimensions are the same as for the standardsize bearings. NSK has expanded the line-up of NSKHPS™ bearings focusing on a wide range of sizes offering a high degree of versatility for various general-purpose applications C 006 ### Creep-Free Bearings™ Creep-Free Bearings, which come with two O-rings mounted in the outer ring, help to prevent the occurrence of creep by restricting the amount of clearance between the outer ring and housing. No special machining is required; bearings can be used with the same housing as standard bearings. In creep limit load tests, the more housing clearance is reduced, the greater the improvement in creep prevention, due to the tension of the O-ring mounted in the outer ring. ### **Features** ### Prevents creep O-rings help prevent creep ### Reusable housing Very little abrasion occurs on the bore surface of the housing, making reuse possible. ### Easy to assemble Assembly is easy since bearings can be fitted with a loose tolerance. ### ■No special machining of the housing is required Bearings can be replaced since boundary dimensions are identical to standard bearings. No reworking of the housing is required. 600 • Creep-Free Bearing Z resistance, l 000 000 000 ▲ Conventional bearing (without O-ring) 200 100 Housing clearance (diameter), µm Fig. 1 Structure of Creep-Free Bearings Fig. 2 Creep limit load test (example: 6204) 700 Fig. 3 Fit and insertion force Fig. 4 Fit and sliding force Note on mounting Creep-Free **Bearings** - When oil or grease is applied to the outer diameter of the bearing, use a mineral oil or a synthetic hydrocarbon oil (NSK's EA2, etc.). - O-ring material is nitrile rubber (operating temperature range: -30 to 120°C) as a standard specification. Please contact NSK for use under special environments such as high temperatures. Note on the product name "Creep-Free Bearings": The term "free" should not be construed to mean that creep is nonexistent. Maximum Type Ball Bearings contain a larger number of balls than normal deep groove ball bearings because of filling slots in the inner and outer rings. Because of their filling slots, they are not suitable for applications with high axial loads. BL2 and BL3 types of bearings have boundary dimensions equal to those of single-row deep groove ball bearings of Series 62 and 63 respectively. Besides the open type, ZZ type shielded bearings are also available. When using these bearings, it is important for the filling slot in the outer ring to be outside of the loaded zone as much as possible. Their cages are pressed steel. ### **MAGNETO BEARINGS** The groove in the inner ring is a little shallower than that of deep groove ball bearings and one side of the outer ring is relieved. Consequently, the outer ring is separable, which makes it convenient for mounting. Pressed cages are standard, but for high speed applications, machined synthetic resin cages are used. ### PRECAUTIONS FOR USE OF DEEP GROOVE BALL BEARINGS For deep groove ball bearings, if the bearing load is too small during operation, slippage occurs between the balls and raceways, which may result in smearing. The higher the weight of balls and cage, the higher this tendency becomes, especially for large bearings. If very small bearing loads are expected, please contact NSK for selection of an appropriate bearing. ### **TOLERANCES AND RUNNING ACCURACY** | SINGLE-ROW DEEP GROOVE BALL BEARINGSTable 7.2 (Pages A128 to A131) NSKHPS DEEP GROOVE BALL BEARINGS Tolerance for Dimensions : ISO Normal Running Accuracy : ISO Normal | |---| | MAXIMUM TYPE BALL BEARINGSTable 7.2 (Pages A128 to A131) | | MAGNETO BEARINGSTable 7.5 (Pages A138 and A139 | ## RECOMMENDED FITS | ·Table 8.3 (Page A164) | |------------------------| | Table 8.5 (Page A165) | | ·Table 8.3 (Page A164) | | Table 8.5 (Page A165) | | -Table 8.3 (Page A164) | | Table 8.5 (Page A165) | | | ### **INTERNAL CLEARANCES** | BEARINGS | ·Table 8.10 (Page A169 | |------------------------------------|------------------------| | NSKHPS DEEP GROOVE BALL BEARINGS | | | INTERNAL CLEARANCE SYMBOL: CN, C3, | C4, CM | | MAXIMUM TYPE BALL BEARINGS | -Table 8.10 (Page A169 | | MAGNETO BEARINGS | -Table 8.12 (Page A169 | ### LIMITING SPEEDS (GREASE/OIL) CINCLE DOW DEED CDOOVE DALL The limiting speeds (grease) and limiting speeds (oil) listed in the bearing tables should be adjusted depending on the bearing load condition. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to page A098 for detailed information. C 010 ### **TECHNICAL DATA** ### Radial and Axial Internal Clearances and Contact Angles for Single Row Deep Groove Ball Bearings ### (1) Radial and Axial Internal Clearances The internal clearance in single row bearings has been specified as the radial internal clearance. The bearing internal clearance is the amount of relative displacement possible between the bearing rings when one ring is fixed and the other ring does not bear a load. The amount of movement along the direction of the bearing radius is called the radial clearance, and the amount along the direction of the axis is called the axial clearance. The geometric relation between the radial and axial clearance is shown in Fig. 1. Fig. 1 Relationship Between Δ_r and Δ_a Symbols used in Fig. 1 - O_a : Ball center - O_e : Center of groove curvature, outer ring - $O_{\rm i}$: Center of groove curvature, inner ring - $D_{\rm w}$: Ball diameter (mm) - re: Radius of outer ring groove (mm) re: Radius of inner ring groove (mm) - r_i : Radius of inner rin α : Contact angle (°) - ∠_r: Radial clearance (mm) - Δ_a : Axial clearance (mm) It is apparent from Fig. 1 that $\Delta_r = \Delta r_e + \Delta r_i$. From geometric relationships, various equations for clearance, contact angle, etc. can be derived. $$\Delta_r=2 (1-\cos\alpha) (r_o+r_i-D_w) \cdots (1)$$ $$\frac{\Delta_{\rm a}}{\Delta_{\rm r}} = \cot \frac{\alpha}{2} \qquad (3)$$ $$\Delta_a \stackrel{.}{=} 2 (r_e + r_i - D_w)^{1/2} \Delta_r^{1/2} \dots$$ (4) $$\alpha = \cos^{-1}\left(\frac{r_e + r_i - D_w - \frac{\Delta_r}{2}}{r_e + r_i - D_w}\right) \dots (5)$$ $$=\sin^{-1}\left(\frac{\Delta_{a}/2}{r_{c}+r_{i}-D_{w}}\right)$$ (6) Because $(r_{\rm c}+r_{\rm i}-D_{\rm w})$ is a constant, it is apparent why fixed relationships between $\Delta_{\rm r}$, $\Delta_{\rm a}$ and α exist for all the various bearing types. As was previously mentioned, the clearances for deep groove ball bearings are given as radial clearances, but there are specific applications where it is desirable to have an axial clearance as well. The relationship between deep groove ball bearing radial clearance $\Delta_{\rm l}$ and axial clearance $\Delta_{\rm l}$ is given in Equation (4). To simplify, $$\Delta_{a} \stackrel{:}{=} K \Delta_{r}^{1/2} \dots (7)$$ where K : Constant depending on bearing design $K = 2 \; (r_{\rm e} + r_{\it i} - D_{\rm w})^{1/2}$ Fig. 2 shows one example. The various values for K are presented by bearing size in Table 1 below. ### Example Assume a 6312 bearing, for a sample calculation, which has a radial clearance of 0.017 mm. From Table 1, K=2.09. Therefore, the axial clearance Δ_a is: $\Delta=2.09\times\sqrt{0.017}=2.09\times0.13=0.27$ (mm) Fig.
2 Radial Clearance, Δ_r and Axial Clearance, Δ_s of Deep Groove Ball Bearings Table 1 Constant Values of K for Radial and Axial Clearance Conversion | Bearing | | I | K | | |----------|--------------|--------------|--------------|--------------| | bore No. | Series 160 | Series 60 | Series 62 | Series 63 | | 00 | _ | _ | 0.93 | 1.14 | | 01 | 0.80 | 0.80 | 0.93 | 1.06 | | 02 | 0.80 | 0.93 | 0.93 | 1.06 | | 03
04 | 0.80
0.90 | 0.93
0.96 | 0.99
1.06 | 1.11
1.07 | | 05 | 0.90 | 0.96 | 1.06 | 1.20 | | 06 | 0.96 | 1.01 | 1.07 | 1.19 | | 07 | 0.96 | 1.06 | 1.25 | 1.37 | | 08 | 0.96 | 1.06 | 1.29 | 1.45 | | 09
10 | 1.01
1.01 | 1.11
1.11 | 1.29
1.33 | 1.57
1.64 | | 11 | 1.06 | 1.20 | 1.40 | 1.70 | | 12 | 1.06 | 1.20 | 1.50 | 2.09 | | 13 | 1.06 | 1.20 | 1.54 | 1.82 | | 14 | 1.16 | 1.29 | 1.57 | 1.88 | | 15
16 | 1.16
1.20 | 1.29
1.37 | 1.57
1.64 | 1.95
2.01 | | 17 | 1.20 | 1.37 | 1.70 | 2.06 | | 18 | 1.29 | 1.44 | 1.76 | 2.11 | | 19 | 1.29 | 1.44 | 1.82 | 2.16 | | 20 | 1.29 | 1.44 | 1.88 | 2.25 | | 21
22 | 1.37
1.40 | 1.54
1.64 | 1.95
2.01 | 2.32
2.40 | | 24 | 1.40 | 1.64 | 2.06 | 2.40 | | 26 | 1.54 | 1.70 | 2.11 | 2.49 | | 28 | 1.54 | 1.70 | 2.11 | 2.59 | | 30 | 1.57 | 1.76 | 2.11 | 2.59 | C 012 C 013 ## (2) Relation between Radial Clearance and Contact Angle Single-row deep groove ball bearings are sometimes used as thrust bearings. In such applications, it is recommended to make the contact angle as large as possible. The contact angle for ball bearings is determined by the geometric relationship between the radial clearance and the radii of the inner and outer grooves. Using Equations (1) to (6), Fig. 3 shows the particular relationship between the radial clearance and contact angle of 62 and 63 series bearings. The initial contact angle, α_0 , is the initial contact angle when the axial load is zero. Application of any load to the bearing will change this contact angle. If the initial contact angle α_0 exceeds 20°, it is necessary to check whether or not the contact area of the ball and raceway touch the edge of raceway shoulder. (Refer to Section 8.1.2) For applications when an axial load alone is applied, the radial clearance for deep groove ball bearings is normally greater than the normal clearance in order to ensure that the contact angle is relatively large. The initial contact angles for C3 and C4 clearances are given for selected bearing sizes in Table 2 below. Table 2 Initial Contact Angle, α_0 , with C3 and C4 Clearances | Bearing No. | $lpha_{\scriptscriptstyle 0}$ with C3 | $lpha_{\scriptscriptstyle 0}$ with C4 | |-------------|---------------------------------------|---------------------------------------| | 6205 | 12.5° to 18° | 16.5° to 22° | | 6210 | 11.5° to 16.5° | 13.5° to 19.5° | | 6215 | 11.5° to 16° | 15.5° to 19.5° | | 6220 | 10.5° to 14.5° | 14° to 17.5° | | 6305 | 11° to 16° | 14.5° to 19.5° | | 6310 | 9.5° to 13.5° | 12° to 16° | | 6315 | 9.5° to 13.5° | 12.5° to 15.5° | | 6320 | 9° to 12.5° | 12° to 15° | Fig. 3 Radial Clearance and Contact Angle C 014 ## Features and Operating Temperature Range of Ball Bearing Seal Material The sealed ball bearing is a ball bearing with seals as shown in Figs. 1 and 2. There are two seal types: non-contact seal type and contact seal type. For rubber seal material, nitrile rubber is used for general purpose and poly-acrylic rubber, silicon rubber, and fluoric rubber are used depending on temperature conditions. These rubbers have their own unique nature and appropriate rubber must be selected by considering the particular application environment and running conditions. Table 1 shows principal features of each rubber material and the operating temperature range of the bearing seal. The operating temperature range of Table 1 is a guideline for continuous operation. Thermal aging of rubber is related to the temperature and time. Rubber may be used in a much wider range of operating temperatures depending on the operating time and frequency. depending on the operating time and frequency. In the non-contact seal, heat generation due to friction on the lip can be ignored. And thermal factors, which cause aging of the rubber, are physical changes due to atmospheric and bearing temperatures. Accordingly, increased hardness or loss of elasticity due to thermal aging exerts only a negligible effect on the seal performance. A rubber non-contact seal can thus be used in an expanded range of operating temperatures greater than that for a contact seal. But there are some disadvantages. The contact seal has a problem with wear occurring at the seal lip due to friction, thermal plastic deformation, and hardening. When friction or plastic deformation occurs, the contact pressure between the lip and slide surface decreases, resulting in a clearance. This clearance is minimum and does not cause excessive degradation of sealing performance (for instance, it does not allow dust entry or grease leakage). In most cases, this minor plastic deformation or slightly increased hardness presents no practical problems. However, in external environments with dust and water in large quantity, the bearing seal is used as an auxiliary seal and a principal seal should be provided separately. As so far described, the operating temperature range of rubber material is only a guideline for selection. Since heat resistant rubber is expensive, it is important to understand the temperature conditions so that an economical selection can be made. Due attention should also be paid not only to heat resistance, but also to the distinctive features of each rubber. Non-contact rubber seal (VV) Contact rubber seal (DDU) Fig. 1 Fig. 2 ### Table 1 Features and Operating Temperature Range of Rubber Materials | Mat | erial | Nitrile rubber | Polyacrylic rubber | Silicon rubber | Fluorine rubber | |----------------------------------|----------------------------------|--|--|---|--| | | atures | oMost popular seal material Superior in oil and wear resistances and mechanical properties Readily ages under direct sunrays Less expensive than other rubbers | Superior in heat and oil resistances Large compression causes permanent deformation Inferior in cold resistance One of the less expensive materials among the high temperature materials Attention is neces- | oHigh heat and cold resistances Inferior in mechanical properties other than permanent deformation by compression. Pay attention to tear strength OPay attention so as to avoid swell caused by low aniline point mineral oil, silicone grease, and | High heat resistance Superior in oil and chemical resistances Cold resistance similar to nitrile rubber Attention is necessary because it deteriorates the urea grease | | Operating | Non-
contact seal -50 to +130 | | sary because it
swells the ester oil
based grease -30 to +170 | silicone oil -100 to +250 | -50 to +220 | | temperature
range (1)
(°C) | Contact
seal | -30 to +110 | -15 to +150 | -70 to +200 | -30 to +200 | $\textbf{Note} \ (^{\scriptscriptstyle 1}) \quad \text{This operating temperature is the temperature of seal rubber materials}.$ C 016 C 017 ### Free Space and Grease Filling Amount for Deep Groove Ball Bearings Grease lubrication can simplify the bearing's peripheral construction. In place of oil lubrication, grease lubrication is now employed along with enhancement of the grease quality for applications in many fields. It is important to select a grease appropriate to the operating conditions. Due care is also necessary as to the filling amount, since too much or too little grease greatly affects the temperature rise and torque. The amount of grease needed depends on such factors as housing construction, free space, grease brand, and environment. A general guideline is described next. First, the bearing is filled with an appropriate amount of grease. In this case, it is essential to push grease onto the cage guide surface. Then, the free space, whic excludes the spindle and bearing inside the housing, is filled with an amount of grease as shown next: 1/2 to 2/3 when the bearing speed is 50% or less of the allowable speed specified in the catalog. when the bearing speed is 50% or 1/3 to 1/2 more. Roughly, low speeds require more grease while high speeds require less grease. Depending on the particular application, the filling amount may have to be reduced further to reduce the torque and to prevent heat generation. When the bearing speed is extremely low, on the other hand, grease may be packed almost full to prevent dust and water entry. Accordingly, it is necessary to know the extent of the housing's free space for the specific bearing to determine the correct filling amount. As a reference, the volume of free space is shown in Table 1 for an open type deep groove ball bearing. Note that the free space of the open type deep groove ball bearing is the volume obtained by subtracting the volume of the balls and cage from the space formed between inner and outer rings. Table 1 Free Space of Open Type Deep Groove Ball Bearing Units: cm3 | | В | earing free spa | се | | Bearing free space | | | | | | | | |---------------------|-----
-----------------|-----|---------------------|--------------------|-----|-------|--|--|--|--|--| | Bearing
bore No. | | Bearing series | | Bearing
bore No. | | | | | | | | | | 20.0.10. | 60 | 62 | 63 | 20.0.120. | 60 | 62 | 63 | | | | | | | 00 | 1.2 | 1.5 | 2.9 | 14 | 34 | 61 | 148 | | | | | | | 01 | 1.2 | 2.1 | 3.5 | 15 | 35 | 67 | 180 | | | | | | | 02 | 1.6 | 2.7 | 4.8 | 16 | 47 | 84 | 213 | | | | | | | 03 | 2.0 | 3.7 | 6.4 | 17 | 48 | 104 | 253 | | | | | | | 04 | 4.0 | 6.0 | 7.9 | 18 | 63 | 127 | 297 | | | | | | | 05 | 4.6 | 7.7 | 12 | 19 | 66 | 155 | 345 | | | | | | | 06 | 6.5 | 11 | 19 | 20 | 68 | 184 | 425 | | | | | | | 07 | 9.2 | 15 | 25 | 21 | 88 | 216 | 475 | | | | | | | 08 | 11 | 20 | 35 | 22 | 114 | 224 | 555 | | | | | | | 09 | 14 | 23 | 49 | 24 | 122 | 310 | 675 | | | | | | | 10 | 15 | 28 | 64 | 26 | 172 | 355 | 830 | | | | | | | 11 | 22 | 34 | 79 | 28 | 180 | 415 | 1 030 | | | | | | | 12 | 23 | 45 | 98 | 30 | 220 | 485 | 1 140 | | | | | | | 13 | 24 | 54 | 122 | 32 | 285 | 545 | 1 410 | | | | | | Remark The table above shows the free space of a bearing using a pressed steel cage. The free space of a bearing using a high-tension brass machined cage is about 50 to 60% of the value in the table. C 019 C 018 ### **SINGLE-ROW DEEP GROOVE BALL BEARINGS** Bore Diameter 10 - 17 mm Open Type Sealed Type ### Dynamic Equivalent Load $P = XF_r + YF_a$ | 1 –21 | $I_{T} + I I_{2}$ | l | | | | | | |--------------------------|-------------------|---|----------|------------------------------|------|--|--| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{ m r}}$ | >e | | | | U _{0r} | | X | Y | X | Y | | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | | | | | | | ### Static Equivalent Load $$\frac{F_a}{F_r} > 0.8, P_0 = 0.6F_r + 0.5F_a$$ $\frac{F_a}{F_r} \le 0.8, P_0 = F_r$ | | | | | VV | | · DDU | N | J0 V C | NF | | $\frac{1}{F_r} \leq 0.8, P_0 = F_r$ |--------------------------------|--------------------------|----------------------------------|----------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|-----------------|--------------------------|-------------------------------------|-------------------|---------------------|---|-----------------|------------------------|--------------------|-------------------|----------------------|--------------------------|-----------------------|------------------------------|--------------------------------|--|----------------------------------|--|-----------------|--|-----------|-----|----------|-------------------|----------|-------|-----------------|--------|--|---------|--------------------|--|--------|--|--------------| | Boundary Dimens | isions | Basic Loa | Ü | Factor | | ing Speeds | (min ⁻¹) | Beari | Bearing Numbers | With With | Sna | p Ring G | roove Din
(mm) | nensions | S (1) | Snap F
Dimer | nsions | | Abutmen | nt and Fill
(mm | | nsions | | Mass
(kg) | | d D B | γ
min. | $C_{\rm r}$ | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shielde | ed Sea | aled | Snap Snap
Ring Ring
Groove | a
max. | $b \atop { m min.}$ | $D_{\scriptscriptstyle 1} \atop {\rm max.}$ | r_0 max. | $ m \emph{r}_{N}$ min. | $D_2^{(m m}$ max. | m)
f
max. | min. | $d_{ m a}$ (2) max. | $D_{ m a}^{(2)}$ max. | ${\pmb \gamma}_{\rm a}$ max. | $D_{\mathbf{x}}_{\text{min.}}$ | $C_{\scriptscriptstyle \mathrm{Y}}$ max. | approx. | 10 19 5
22 6
26 8 | 0.3 | 1 720
2 700
4 550 | 840
1 270
1 970 | 14.8
14.0
12.4 | 34 000
32 000
30 000 | 24 000
22 000
22 000 | 40 000
38 000
36 000 | 6800 ZZ
6900 ZZ
6000 ZZ | VV | | N(3) NR(3)
N(4) NR(4) | 1.05
1.35 | —
0.8
0.87 | 20.8
24.5 | 0.2
0.2 | 0.2
0.3 | —
24.8
28.7 | —
0.7
0.84 | 12
12
12 | 12
12.5
13 | 17
20
24 | 0.3
0.3
0.3 | 25.5
29.4 | —
1.5
1.9 | 0.005
0.009
0.018 | 30 9
30 9
35 11
35 11 | 0.6
0.6
0.6
0.6 | 5 350
5 100
8 500
8 100 | 2 390
2 390
3 450
3 450 | 13.2
13.2
11.2
11.2 | 28 000
24 000
26 000
22 000 | 18 000
18 000
17 000
17 000 | 34 000
30 000
30 000
26 000 | * 6200 ZZ
6200 ZZ
* 6300 ZZ
6300 ZZ | VV
VV | DDU
DDU
DDU
DDU |
N NR

N NR | 2.06
—
2.06 | 1.35
—
1.35 | 28.17
—
33.17 | 0.4
0.4 | 0.5
-
0.5 | 34.7
—
39.7 | 1.12
—
1.12 | 14
14
14
14 | 16
16
16.5
16.5 | 26
26
31
31 | 0.6
0.6
0.6
0.6 | 35.5
—
40.5 | 2.9
-
2.9 | 0.032
0.032
0.052
0.052 | 12 21 5
24 6
28 7 | 0.3
0.3
0.3 | 1 920
2 890
5 100 | 1 040
1 460
2 370 | 15.3
14.5
13.0 | 32 000
30 000
28 000 | 20 000
20 000
— | 38 000
36 000
32 000 | 6801 ZZ
6901 ZZ
16001 — | | | N(3) NR(3) | 1.05
— | 0.8 | 22.8
— | 0.2 | 0.2
— | 26.8
— | 0.7
— | 14
14
14 | 14
14.5
— | 19
22
26 | 0.3
0.3
0.3 | 27.5
— | 1.5
— | 0.006
0.010
0.019 | 28 8
28 8
32 10 | 0.3
0.3
0.6 | 5 350
5 100
7 150 | 2 370
2 370
3 050 | 13.0
13.0
12.3 | 32 000
28 000
26 000 | 18 000
18 000
17 000 | 38 000
32 000
32 000 | * 6001 ZZ
6001 ZZ
* 6201 ZZ | VV | DDU
DDU
DDU | N(4) NR(4) | 1.35
— | 0.87
— | 26.5
— | 0.2 | 0.3
— | 30.7
— | 0.84
— | 14
14
16 | 15.5
15.5
17 | 26
26
28 | 0.3
0.3
0.6 | 31 <u>.4</u> | 1.9
— | 0.022
0.022
0.037 | 32 10
37 12
37 12 | 0.6
1
1 | 6 800
10 200
9 700 | 3 050
4 200
4 200 | 12.3
11.1
11.1 | 22 000
24 000
20 000 | 17 000
16 000
16 000 | 28 000
28 000
24 000 | * 6201 ZZ
* 6301 ZZ
6301 ZZ | VV | DDU
DDU
DDU | N NR
N NR | 2.06
—
2.06 | 1.35
—
1.35 | 30.15
—
34.77 | 0.4
0.4 | 0.5
—
0.5 | 36.7
—
41.3 | 1.12
—
1.12 | 16
17
17 | 17
18
18 | 28
32
32 | 0.6
1
1 | 37.5
—
42 | 2.9
—
2.9 | 0.037
0.060
0.060 | 15 24 5
28 7
32 8 | 0.3
0.3
0.3 | 2 070
4 350
5 600 | 1 260
2 260
2 830 | 15.8
14.3
13.9 | 28 000
26 000
24 000 | 17 000
17 000
— | 34 000
30 000
28 000 | 6802 ZZ
6902 ZZ
16002 — | | | N(3) NR(3) | 1.30
— | 0.95
— | 26 <u>.7</u> | 0.25
— | 0.3
— | 30.8 | 0.85
— | 17
17
17 | 17
17
— | 22
26
30 | 0.3
0.3
0.3 | 31.5 | 1.8
— | 0.007
0.015
0.027 | 32 9
32 9
35 11 | 0.3
0.3
0.6 | 5 850
5 600
8 000 | 2 830
2 830
3 750 | 13.9
13.9
13.2 | 26 000
24 000
22 000 | 15 000
15 000
14 000 | 32 000
28 000
28 000 | * 6002 ZZ
6002 ZZ
* 6202 ZZ | VV | DDU
DDU
DDU |
N NR
 | 2.06
— | 1.35
— | 30.15
— | 0.4 | 0.3
— | 36.7
— | 1.12
— | 17
17
19 | 19
19
20.5 | 30
30
31 | 0.3
0.3
0.6 | 37 <u>.5</u> | 2.9
— | 0.031
0.031
0.045 | 35 11
42 13
42 13 | 0.6
1
1 | 7 650
12 000
11 400 | 3 750
5 450
5 450 | 13.2
12.3
12.3 | 20 000
19 000
17 000 | 14 000
13 000
13 000 | 24 000
24 000
20 000 | * 6202 ZZ
* 6302 ZZ
6302 ZZ | VV | DDU
DDU
DDU | N NR
N NR | 2.06
—
2.06 | 1.35
—
1.35 | 33.17
—
39.75 | 0.4
0.4 | 0.5
—
0.5 | 39.7
—
46.3 | 1.12
—
1.12 | 19
20
20 | 20.5
22.5
22.5 | 31
37
37 | 0.6
1
1 | 40.5
—
47 | 2.9
2.9 | 0.045
0.083
0.083 | 17 26 5
30 7
35 8 | 0.3
0.3
0.3 | 2 630
4 600
6 000 | 1 570
2 550
3 250 | 15.7
14.7
14.4 | 26 000
24 000
22 000 | 15 000
15 000
— | 30 000
28 000
26 000 | 6803 ZZ
6903 ZZ
16003 — | | DD
DDU | N(3) NR(3) | 1.30
— | 0.95
— | 28 <u>.7</u> | 0.25
— | 0.3
— | 32.8
— | 0.85
— | 19
19
19 | 19
19.5
— | 24
28
33 | 0.3
0.3
0.3 | 33.5 | 1.8
— | 0.007
0.017
0.033 | 35 10
35 10
40 12 | 0.3
0.3
0.6 | 6 300
6 000
10 100 | 3 250
3 250
4 800 | 14.4
14.4
13.2 | 24 000
22 000
20 000 | 13 000
13 000
12 000 | 28 000
26 000
24 000 | * 6003 ZZ
6003 ZZ
* 6203 ZZ | VV | DDU
DDU
DDU |
N NR
 | 2.06
— | 1.35
— | 33 <u>.17</u> | 0.4 | 0.3
— | 39.7
— | 1.12
— | 19
19
21 | 21.5
21.5
23.5 | 33
33
36 | 0.3
0.3
0.6 | 40.5 | 2.9
— | 0.041
0.041
0.067 | 40 12
47 14
47 14 | 0.6
1
1 | 9 550
14 300
13 600 | 4 800
6 650
6 650 | 13.2
12.4
12.4 | 17 000
17 000
15 000 | 12 000
11 000
11 000 | 20 000
20 000
18 000 | * 6203 ZZ
* 6303 ZZ
6303 ZZ | VV | DDU
DDU
DDU | N NR
— —
N NR | 2.06
—
2.46 | 1.35
—
1.35 |
38.1
—
44.6 | 0.4 | 0.5
—
0.5 | 44.6
—
52.7 | 1.12
—
1.12 | 21
22
22 | 23.5
25.5
25.5 | 36
42
42 | 0.6
1
1 | 45.5
—
53.5 | 2.9
—
3.3 | 0.067
0.113
0.113 | | | | | | | | | | | | | | | | | | | - **Notes** (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. - (3) Ring types N and NR applicable only to open-type bearings. Please consult NSK about the snap ring groove dimensions of sealed or shielded bearings. - (4) Snap ring groove dimensions and snap ring dimensions are not conformed to ISO15. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. ### **SINGLE-ROW DEEP GROOVE BALL BEARINGS** Open Type #### Dynamic Equivalent Load D VE VE | P = X | $F_{\rm r} + YF_{\rm z}$ | ı | | | | | | | | | |--------------------------|--------------------------|---|-----------------------------------|------|------|--|--|--|--|--| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | | | | | | U _{0r} | | X | Y | X | Y | | | | | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | | | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | | | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | | | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | | | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | | | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | | | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | | | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | | | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | ### Static Equivalent Load $$\frac{F_a}{F_r} > 0.8, P_0 = 0.6F_r + 0.5F_a$$ $$\frac{F_a}{F_r} \le 0.8, P_0 = F_r$$ | | Opei | ZZ Sealed Type Sealed Type Ring Groove Snap Ring VV DD · DDU N NR | | | | | | | | | | ı | | | | | | C | y -= =- | | $\frac{F_{ m a}}{F_{ m r}}$ | ≦0.8, <i>P</i> | $F_0 = F_r$ | | | | | | | | |-----|----------------|---|------------------|----------------------------|----------------------------|----------------------|----------------------------|----------------------------|----------------------------|--------------------------|---------------|----------------|------|--|----------------------|----------------|----------------------|----------------------|---|-------------------|-----------------------------|----------------------|----------------------|--------------------|-----------------------|-----------------------|------------------------|------------------------------|-------------------|-------------------------| | Bou | ndary
(m | Dimer
m) | nsions | Basic Loa | d Ratings | Factor | | ng Speeds | | | Bearing | g Num | bers | | With With | | | | | | | | ling (¹)
Isions | | | Mass
(kg) | | | | | | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Oil
Open
Z | Open | Shielded | Sea | ıled | | Snar
Ring
Groo | | а
max. | $b \atop { m min.}$ | $D_{\scriptscriptstyle 1} \atop {\sf max.}$ | $ ho_0$ max. | $ m \emph{r}_{N}$ min. | $D_2^{(m)}$ max. | m)
f
max. | min. | $d_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${\it r}_{\rm a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | 20 | 32
37
42 | 7
9
8 | | 4 000
6 400
7 900 | 2 470
3 700
4 450 | 15.5
14.7
14.5 | 22 000
19 000
18 000 | 13 000
12 000
— | 26 000
22 000
20 000 | | ZZ
ZZ
— | | | | N
N | NR
NR
— | 1.30
1.70
— | 0.95
0.95
— | 30.7
35.7
— | 0.25
0.25
— | 0.3
0.3
— | 34.8
39.8
— | 0.85
0.85
— | 22
22
22 | 22
24
— | 30
35
40 | 0.3
0.3
0.3 | 35.5
40.5
— | 1.8
2.3
— | 0.017
0.037
0.048 | | | 42
42
47 | 12
12
14 | 0.6 | 9 850
9 400
13 400 | 5 000
5 000
6 600 | 13.8
13.8
13.1 | 20 000
18 000
17 000 | 11 000
11 000
11 000 | 24 000
20 000
20 000 | * 6004
6004
* 6204 | ZZ | VV
VV
VV | DDU | | N
— | NR
— | 2.06
— | 1.35
— | 39.75
— | 0.4 | 0.5
— | 46.3
— | 1.12
— | 24
24
25 | 25.5
25.5
26.5 | 38
38
42 | 0.6
0.6
1 | 47_
— | 2.9 | 0.068
0.068
0.107 | | | 47
52
52 | 14
15
15 | 1.1 | 12 800
16 700
15 900 | 6 600
7 900
7 900 | 13.1
12.4
12.4 | 15 000
16 000
14 000 | 11 000
10 000
10 000 | 18 000
19 000
17 000 | * 6304 | ZZ | VV
VV
VV | DDU | | N
N | NR
—
NR | 2.46
—
2.46 | 1.35
—
1.35 | 44.6
—
49.73 | 0.4
0.4 | 0.5
—
0.5 | 52.7
—
57.9 | 1.12
—
1.12 | 25
26.5
26.5 | 26.5
28
28 | 42
45.5
45.5 | 1
1
1 | 53.5
—
58.5 | 3.3
—
3.3 | 0.107
0.145
0.145 | | 22 | 44
50
56 | 12
14
16 | 1 | 9 400
12 900
18 400 | 5 050
6 800
9 250 | 14.0
13.5
12.4 | 17 000
14 000
13 000 | 11 000
9 500
9 500 | 20 000
16 000
16 000 | 60/22
62/22
63/22 | ZZ | VV
VV
VV | DDU | | N
N
N | NR
NR
NR | 2.06
2.46
2.46 | 1.35
1.35
1.35 | 41.75
47.6
53.6 | 0.4
0.4
0.4 | 0.5
0.5
0.5 | 48.3
55.7
61.7 | 1.12
1.12
1.12 | 26
27
28.5 | 26.5
29.5
30.5 | 40
45
49.5 | 0.6
1
1 | 49
56.5
62.5 | 2.9
3.3
3.3 | 0.074
0.119
0.179 | | 25 | 37
42
47 | 7
9
8 | | 4 500
7 050
8 850 | 3 150
4 550
5 600 | 16.1
15.4
15.1 | 18 000
16 000
15 000 | 10 000
10 000
— | 22 000
19 000
18 000 | | ZZ
ZZ
— | | | | N
N(3) | NR
NR(3) | 1.30
1.70
— | 0.95
0.95
— | 35.7
40.7
— | 0.25
0.25
— | 0.3
0.3
— | 39.8
44.8
— | 0.85
0.85
— | 27
27
27 | 27
28.5
— | 35
40
45 | 0.3
0.3
0.3 | 40.5
45.5
— | 1.8
2.3
— | 0.021
0.042
0.059 | | | 47
47
52 | 12
12
15 | 0.6 | 10 600
10 100
14 700 | 5 850
5 850
7 850 | 14.5
14.5
13.9 | 18 000
15 000
15 000 | 9 500
9 500
9 000 | 22 000
18 000
18 000 | * 6005
6005
* 6205 | ZZ | VV
VV
VV | DDU | | N
— | NR
— | 2.06
— | 1.35
— | 44.6
— | 0.4 | 0.5
— | 52.7
— | 1.12
— | 29
29
30 | 30
30
32 | 43
43
47 | 0.6
0.6
1 | 53.5 | 2.9 | 0.079
0.079
0.129 | | | 52
62
62 | 15
17
17 | 1.1 | 14 000
21 600
20 600 | 7 850
11 200
11 200 | 13.9
13.2
13.2 | 13 000
13 000
11 000 | 9 000
8 000
8 000 | 15 000
16 000
13 000 | * 6305 | ZZ | VV
VV
VV | DDU | | N
N | NR
—
NR | 2.46
—
3.28 | 1.35
—
1.9 | 49.73
—
59.61 | 0.4
0.6 | 0.5
—
0.5 | 57.9
—
67.7 | 1.12

1.7 | 30
31.5
31.5 | 32
36
36 | 47
55.5
55.5 | 1
1
1 | 58.5
—
68.5 | 3.3
-
4.6 | 0.129
0.235
0.235 | | 28 | 52
58
68 | 12
16
18 | 1 | 12 500
16 600
26 700 | 7 400
9 500
14 000 | 14.5
13.9
12.4 | 14 000
12 000
10 000 | 8 500
8 000
7 500 | 16 000
14 000
13 000 | 60/28
62/28
63/28 | ZZ | VV
VV
VV | DDU | | N
N
N | NR
NR
NR | 2.06
2.46
3.28 | 1.35
1.35
1.9 | 49.73
55.6
64.82 | 0.4
0.4
0.6 | 0.5
0.5
0.5 | 57.9
63.7
74.6 | 1.12
1.12
1.7 | 32
33
34.5 | 34
35.5
38 | 48
53
61.5 | 0.6
1
1 | 58.5
64.5
76 | 2.9
3.3
4.6 | 0.096
0.175
0.287 | | 30 | 42
47
55 | 7
9
9 | | 4 700
7 250
11 200 | 3 650
5 000
7 350 | 16.4
15.8
15.2 | 15 000
14 000
13 000 | 9 000
8 500
— | 18 000
17 000
15 000 | | ZZ | VV
VV | | | N
N | NR
NR
— | 1.30
1.70
— | 0.95
0.95
— | 40.7
45.7
— | 0.25
0.25
— | 0.3
0.3
— | 44.8
49.8
— | 0.85
0.85
— | 32
32
32 | 32
34
— | 40
45
53 | 0.3
0.3
0.3 | 45.5
50.5 | 1.8
2.3
— | 0.024
0.052
0.087 | | | 55
55
62 | 13
13
16 | 1 | 13 900
13 200
20 400 | 8 300
8 300
11 300 | 14.7
14.7
13.8 | 15 000
13 000
12 000 | 8 000
8 000
7 500 | 18 000
15 000
15 000 | * 6006
6006
* 6206 | ZZ | VV
VV
VV | DDU | | _
N
_ | NR
— | 2.08
— |
1.35
 | 52.6
— | 0.4 | 0.5
— | 60 <u>.7</u> | 1.12
— | 35
35
35 | 36.5
36.5
38.5 | 50
50
57 | 1
1
1 | 61.5
— | 2.9
— | 0.116
0.116
0.199 | | | 62
72
72 | 16
19
19 | 1.1 | 19 500
28 000
26 700 | 11 300
15 000
15 000 | 13.8
13.3
13.3 | 11 000
11 000
9 500 | 7 500
6 700
6 700 | 13 000
13 000
12 000 | * 6306 | | | DDU | | N
N | NR
—
NR | 3.28
—
3.28 | 1.9
—
1.9 | 59.61
—
68.81 | 0.6
0.6 | 0.5
—
0.5 | 67.7
—
78.6 | 1.7
-
1.7 | 35
36.5
36.5 | 38.5
42.5
42.5 | 57
65.5
65.5 | 1
1
1 | 68.5
—
80 | 4.6
-
4.6 | 0.199
0.345
0.345 | - **Notes** (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. - (3) Ring types N and NR applicable only to open-type bearings. Please consult NSK about the snap ring groove dimensions of sealed or shielded bearings. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if
they are sealed, shielded, or have snap rings. - 3. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. Dynamic Equivalent Load Bore Diameter 32 - 45 mm Open Type Shielded Type ZZ **SINGLE-ROW DEEP GROOVE BALL BEARINGS** Static Equivalent Load $$\frac{F_a}{F_r}$$ > 0.8, P_0 = 0.6 F_r + 0.5 F_a | $F_{\rm a}$ | < 0 0 | D = F | |-------------|-------|-------------| | $F_{\rm r}$ | ≅0.0, | $P_0 = F_r$ | | | | | | | | VV | DD | · DDU | N | | | NR | | | | | | | | | | $F_{\rm r} \stackrel{\text{defo}, I_0 - I_{\rm r}}{=}$ | | | | | | | | | |-----|------------------|-------------------------|-----|----------------------------|----------------------------|----------------------|----------------------------|-------------------------|----------------------------|--------------------------|----------|--------------|-----|--------------------|----------------|----------------------|----------------------|--------------------------|-------------------|---------------------------------|----------------------|--|------------------|-----------------------|-----------------------|---------------------------|------------------------------|-------------------|-------------------------|--| | Воц | | Dimension
m) | S | Basic Load Ratings
(N) | | Factor | Limiting Speeds
Grease | | (min ⁻¹) | | Bearing | Numb | ers | | h With | Sna | Ring G | roove Dir
(mm) | nensions | S (1) | Dimer | | | Abutmer | nt and Fill
(mm | | nsions | | Mass
(kg) | | | d | D | B r | - 1 | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open | Shielded | Seale | d | Sna
Rin
Groo | | а
max. | $b \atop ext{min.}$ | $D_{1\atop \text{max.}}$ | $ ho_0$ max. | $oldsymbol{\gamma}_{ m N}$ min. | $D_2^{(m m}$ max. | m)
max. | min. | $d_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{\rm a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | | 32 | 58
65
75 | 13 1
17 1
20 1. | 1 | 15 100
20 700
29 900 | 9 150
11 600
17 000 | 14.5
13.6
13.2 | 12 000
10 000
9 000 | 7 500
7 100
6 300 | 14 000
12 000
11 000 | 60/32
62/32
63/32 | ZZ | VV D
VV D | DÜ | N
N
N | NR
NR
NR | 2.08
3.28
3.28 | 1.35
1.9
1.9 | 55.6
62.6
71.83 | 0.4
0.6
0.6 | 0.5
0.5
0.5 | 63.7
70.7
81.6 | 1.12
1.7
1.7 | 37
37
38.5 | 38.5
40
44.5 | 53
60
68.5 | 1
1
1 | 64.5
71.5
83 | 2.9
4.6
4.6 | 0.122
0.225
0.389 | | | 35 | 47
55
62 | 7 0.
10 0.
9 0. | 6 | 4 900
10 600
11 700 | 4 100
7 250
8 200 | 16.7
15.5
15.6 | 14 000
12 000
11 000 | 7 500
7 500
— | 16 000
15 000
13 000 | 6807
6907
16007 | ZZ
ZZ | | | N
N | NR
NR
— | 1.30
1.70
— | 0.95
0.95
— | 45.7
53.7
— | 0.25
0.25
— | 0.3
0.5
— | 49.8
57.8 | 0.85
0.85
— | 37
39
37 | 37
39
— | 45
51
60 | 0.3
0.6
0.3 | 50.5
58.5
— | 1.8
2.3
— | 0.027
0.075
0.107 | | | | 62
62
72 | 14 1
14 1
17 1. | 1 | 16 800
16 000
27 000 | 10 300
10 300
15 300 | 14.8
14.8
13.8 | 13 000
11 000
11 000 | 6 700
6 700
6 300 | 15 000
13 000
13 000 | * 6007
6007
* 6207 | | VV D
VV D | DÜ | _
N
_ | NR | 2.08
— | 1.9 | 59.61
— | 0.6 | 0.5 | 67.7
— | 1.7
— | 40
40
41.5 | 41.5
41.5
44.5 | 57
57
65.5 | 1
1
1 | 68.5
— | 3.4 | 0.151
0.151
0.284 | | | | 72
80
80 | 17 1.
21 1.
21 1. | 5 | 25 700
35 000
33 500 | 15 300
19 200
19 200 | 13.8
13.2
13.2 | 9 500
10 000
8 500 | 6 300
6 000
6 000 | 11 000
12 000
10 000 | * 6207
* 6307
6307 | ZZ | VV D
VV D | DÜ | N
N | NR
—
NR | 3.28
—
3.28 | 1.9

1.9 | 68.81
—
76.81 | 0.6 | 0.5
0.5 | 78.6
—
86.6 | 1.7
—
1.7 | 41.5
43
43 | 44.5
47
47 | 65.5
72
72 | 1
1.5
1.5 | 80_
88 | 4.6
4.6 | 0.284
0.464
0.464 | | | 40 | 52
62
68 | 7 0.
12 0.
9 0. | 6 | 6 350
13 700
12 600 | 5 550
10 000
9 650 | 17.0
15.7
16.0 | 12 000
11 000
10 000 | 6 700
6 300
— | 14 000
13 000
12 000 | 6808
6908
16008 | ZZ ' | VV D | | N
N
— | NR
NR | 1.30
1.70
— | 0.95
0.95
— | 50.7
60.7
— | 0.25
0.25
— | 0.3
0.5
— | 54.8
64.8
— | 0.85
0.85
— | 42
44
42 | 42
46
— | 50
58
66 | 0.3
0.6
0.3 | 55.5
65.5
— | 1.8
2.3
— | 0.031
0.112
0.13 | | | | 68
68
80 | 15 1
15 1
18 1. | 1 | 17 600
16 800
30 500 | 11 500
11 500
17 900 | 15.3
15.3
14.0 | 12 000
10 000
9 500 | 6 000
6 000
5 600 | 14 000
12 000
12 000 | * 6008
6008
* 6208 | ZZ | VV D
VV D | DÜ | _
N
_ | NR | 2.49
— | 1.9 | 64.82
— | 0.6 | 0.5 | 74.6
— | 1.7
— | 45
45
46.5 | 47.5
47.5
50.5 | 63
63
73.5 | 1
1
1 | 76
— | 3.8 | 0.19
0.19
0.366 | | | | 80
90
90 | 18 1.
23 1.
23 1. | | 29 100
43 000
40 500 | 17 900
24 000
24 000 | 14.0
13.2
13.2 | 8 500
9 000
7 500 | 5 600
5 300
5 300 | 10 000
11 000
9 000 | * 6208
* 6308
6308 | ZZ | VV D
VV D | DÜ | N
N | NR
—
NR | 3.28
-
3.28 | 1.9
2.7 | 76.81
—
86.79 | 0.6 | 0.5 | 86.6
—
96.5 | 1.7
 | 46.5
48
48 | 50.5
53
53 | 73.5
82
82 | 1
1.5
1.5 | 88_
98 | 4.6
5.4 | 0.366
0.636
0.636 | | | 45 | 58
68
75 | 7 0.
12 0.
10 0. | 6 | 6 600
14 100
14 900 | 6 150
10 900
11 400 | 17.2
15.9
15.9 | 11 000
9 500
9 000 | 6 000
5 600
— | 13 000
12 000
11 000 | 6809
6909
16009 | | VV D | | N
N | NR
NR
— | 1.30
1.70
— | 0.95
0.95
— | 56.7
66.7 | 0.25
0.25
— | 0.3
0.3(³) | 60.8
70.8 | 0.85
0.85
— | 47
49
49 | 47.5
50
— | 56
64
71 | 0.3
0.6
0.6 | 61.5
72
— | 1.8
2.3
— | 0.038
0.126
0.167 | | | | 75
75
85 | 16 1
16 1
19 1. | 1 | 22 000
20 900
33 000 | 15 200
15 200
20 400 | 15.3
15.3
14.4 | 10 000
9 000
9 000 | 5 300
5 300
5 300 | 12 000
11 000
11 000 | * 6009
6009
* 6209 | ZZ | VV D
VV D | DÜ | _
N
_ | NR | 2.49
— | 1.9 | 71.83
— | 0.6 | 0.5
— | 81.6
— | 1.7
— | 50
50
51.5 | 53.5
53.5
55.5 | 70
70
78.5 | 1
1
1 | 83_
_ | 3.8 | 0.241
0.241
0.42 | | | | 85
100
100 | 19 1.
25 1.
25 1. | 5 | 31 500
55 500
53 000 | 20 400
32 000
32 000 | 14.4
13.1
13.1 | 7 500
7 500
6 700 | 5 300
4 800
4 800 | 9 000
9 500
8 000 | * 6309 | | | DÜ | N
N | NR
—
NR | 3.28
—
3.28 | 1.9
 | 81.81
—
96.8 | 0.6
—
0.6 | 0.5
—
0.5 | 91.6
—
106.5 | 1.7
—
2.46 | 51.5
53
53 | 55.5
61.5
61.5 | 78.5
92
92 | 1
1.5
1.5 | 93
108 | 4.6
—
5.4 | 0.42
0.829
0.829 | | - Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. - (3) Not Conformed to ISO15. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. Dynamic Equivalent Load $P = XF_r + YF_a$ NSK 0.56 0.56 1.04 1.00 ### Bore Diameter 50 - 60 mm Open Type C 026 **SINGLE-ROW DEEP GROOVE BALL BEARINGS** ZZ Sealed Type DD · DDU Ring Groove Snap Ring NR #### $\frac{F_{\rm a}}{F_{\rm r}} > e$ $\frac{F_{\rm a}}{F_{\rm r}} \leq e$ C_{0r} 0.172 0.19 0.56 2.30 0.56 1.99 0.345 0.22 0 1.71 1.55 1.45 0.689 0.26 0 0.56 0.56 0.56 1.03 0.28 0.30 0 1.38 2.07 0.34 0.56 1.31 3.45 0.38 0.56 1.15 ### Static Equivalent Load 5.17 6.89 0.42 0.44 $$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$$ | Boundary Dimensions (mm) | | | | | ad Ratings | Factor | | ng Speeds (| | Beari | ng Number | | With With
Snan Snan | | Snap Ring Groove Dimensions (1) Snap Ring (1) Abutment and Fillet Dimen (mm) | | | | | | | | nsions | sions Mass | | | | |--------------------------|-------------------|---------------|------------------|----------------------------|----------------------------|----------------------|-------------------------|-------------------------|----------------------------|-----------------------------------|-------------------------|--------------|---------------------------------|-------------------|--|----------------------------|-----------------------|------------------------|-----------------------|-------------------|--------------------|-----------------------|-----------------------|---------------------------|------------------------------|-----------------|-------------------------| | d | D | B | γ
min. | C_{r} | $C_{0\mathrm{r}}$ | f_0 | Open Z · ZZ V · VV | DU
DDU | Oil
Open
Z | Open Shielder | d Sealed | S
R
Gr | Snap Snap
Ring Ring
roove | а
max. | $b \atop ext{min.}$ | $D_{ m 1} \atop { m max.}$ | $oldsymbol{r}_0$ max. | $ m \emph{r}_{N}$ min. | $D_2^{(\mathrm{mi})}$ | m)
max. | min. | $d_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{\rm a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | 50 | 65
72
80 | | | 6 400
14 500
15 400 | 6 200
11 700
12 400 | 17.2
16.1
16.1 | 9 500
9 000
8 500 | 5 300
5 300
—
| 11 000
11 000
10 000 | 6810 ZZ
6910 ZZ
16010 — | VV DD
VV DD | | | 1.30
1.70
— | 0.95
0.95
— | 63.7
70.7
— | 0.25
0.25
— | 0.3
0.5
— | 67.8
74.8
— | 0.85
0.85
— | 52
54
54 | 52.5
55
— | 63
68
76 | 0.3
0.6
0.6 | 68.5
76
— | 1.8
2.3
— | 0.050
0.135
0.175 | | | 80
80
90 | 16 | 1 | 22 900
21 800
37 000 | 16 600
16 600
23 200 | 15.6
15.6
14.4 | 9 500
8 500
8 000 | 4 800
4 800
4 800 | 11 000
10 000
10 000 | * 6010 ZZ
6010 ZZ
* 6210 ZZ | VV DD
VV DD
VV DD | N | NR |
2.49
 | 1.9
— | 76.81
— | 0.6 | 0.5
— | 86.6
— | 1.7
— | 55
55
56.5 | 58.5
58.5
60 | 75
75
83.5 | 1
1
1 | 88
_ | 3.8
— | 0.261
0.261
0.459 | | | 90
110
110 | 27 | 2 | 35 000
65 000
62 000 | 23 200
38 500
38 500 | 14.4
13.2
13.2 | 7 100
7 100
6 000 | 4 800
4 300
4 300 | 8 500
8 500
7 500 | * 6210 ZZ
* 6310 ZZ
6310 ZZ | VV DD
VV DD
VV DD | _ | | 3.28
—
3.28 | 2.7
 | 86.79

106.81 | 0.6
0.6 | 0. <u>5</u>
0.5 | 96.5
116.6 | 2.46
 | 56.5
59
59 | 60
68
68 | 83.5
101
101 | 1
2
2 | 98_
118 | 5.4
5.4 | 0.459
1.06
1.06 | | 55 | 72
80
90 | 9
13
11 | | 8 800
16 000
19 400 | 8 500
13 300
16 300 | 17.0
16.2
16.2 | 8 500
8 000
7 500 | 4 800
4 500
— | 10 000
9 500
9 000 | 6811 ZZ
6911 ZZ
16011 — | | | | 1.70
2.10
— | 0.95
1.3
— | 70.7
77.9
— | 0.25
0.4
— | 0.3
0.5
— | 74.8
84.4
— | 0.85
1.12
— | 57
60
59 | 59
61.5
— | 70
75
86 | 0.3
1
0.6 | 76
86
— | 2.3
2.9
— | 0.081
0.189
0.257 | | | 90
90
100 | 18 | 1.1 | 29 700
28 300
45 500 | 21 200
21 200
29 300 | 15.3
15.3
14.3 | 8 500
7 500
7 500 | 4 500
4 500
4 300 | 10 000
9 000
9 000 | * 6011 ZZ
6011 ZZ
* 6211 ZZ | VV DD
VV DD
VV DD | N | - —
I NR
- — |
2.87
 | 2.7
— | 86.79
— | 0.6 | 0.5
— | 96.5
— |
2.46
 | 61.5
61.5
63 | 64
64
66.5 | 83.5
83.5
92 | 1
1
1.5 | 98_
_ | _
5 | 0.381
0.381
0.619 | | | 100
120
120 | 29 | 2 | 43 500
75 000
71 500 | 29 300
44 500
44 500 | 14.3
13.1
13.1 | 6 300
6 700
5 600 | 4 300
4 000
4 000 | 7 500
8 000
6 700 | 6211 ZZ
* 6311 ZZ
6311 ZZ | VV DD
VV DD
VV DD | _ | | 3.28
—
4.06 | 2.7
 | 96.8
—
115.21 | 0.6
0.6 | 0.5
—
0.5 | 106.5
—
129.7 | 2.46
—
2.82 | 63
64
64 | 66.5
72.5
72.5 | 92
111
111 | 1.5
2
2 | 108_
131.5 | 5.4
—
6.5 | 0.619
1.37
1.37 | | 60 | 78
85
95 | 13 | 1 | 11 500
19 400
20 000 | 10 900
16 300
17 500 | 16.9
16.2
16.3 | 8 000
7 500
7 100 | 4 500
4 300
— | 9 500
9 000
8 500 | 6812 ZZ
6912 ZZ
16012 — | VV DD
VV DD | N
N | | 1.70
2.10
— | 1.3
1.3 | 76.2
82.9 | 0.4
0.4
— | 0.3
0.5
— | 82.7
89.4
— | 1.12
1.12
— | 62
65
64 | 64
66
— | 76
80
91 | 0.3
1
0.6 | 84
91
— | 2.5
2.9
— | 0.103
0.192
0.281 | | | 95
95
110 | 18 | 1.1 | 31 000
29 500
55 000 | 23 200
23 200
36 000 | 15.6
15.6
14.3 | 8 000
7 100
6 700 | 4 000
4 000
3 800 | 9 500
8 500
8 000 | * 6012 ZZ
6012 ZZ
* 6212 ZZ | VV DD
VV DD
VV DD | N | NR |
2.87
 | 2.7
— | 91.82
— | 0.6 | 0.5
— | 101.6 | 2 <u>.46</u> | 66.5
66.5
68 | 69
69
74.5 | 88.5
88.5
102 | 1
1
1.5 | 103_ | _
5 | 0.412
0.412
0.783 | | | 110
130
130 | | 2.1 | 52 500
86 000
82 000 | 36 000
52 000
52 000 | 14.3
13.1
13.1 | 5 600
6 000
5 300 | 3 800
3 600
3 600 | 7 100
7 100
6 300 | * 6212 ZZ
* 6312 ZZ
6312 ZZ | VV DD
VV DD
VV DD | _ | | 3.28
—
4.06 | 2.7
 | 106.81
—
125.22 | 0.6 | 0.5
—
0.5 | 116.6
—
139.7 | 2.46
—
2.82 | 68
71
71 | 74.5
79
79 | 102
119
119 | 2 | 118
 | 5.4
—
6.5 | 0.783
1.72
1.72 | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. - 4. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. #### Bore Diameter 65 - 75 mm Open Type #### Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | |-------|--------------------------| | | | | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{ m r}}$ | >e | |--------------------------|------|-----------------------------|----------|------------------------------|------| | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | | | #### Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$$ | | U | pen i | γpe | Z | zu Type
Z | Sealed Type
VV | Seale | ed Type
· DDU | Ring Gro
N | | | Snap Rir
NR | g | | ļ | | | | | | C | γ—н — | | $ rac{F_{ m a}}{F_{ m r}}$ | -≦0.8, <i>P</i> | $P_0 = F_r$ | | | | |----|----------------|----------------------|----------------------------|------------------------------|----------------------------|----------------------|--------------------------|-------------------------|-------------------------|--------|----------|----------------|----|-------------|-------------------------|-------------------|----------------------|------------------------|-----------------|------------------------|---------------------|-------------------|--------------------|----------------------------|-----------------------|----------------------|------------------------------|-----------------|-------------------------| | В | ounda | ry Din
(mm) | ensions | | ad Ratings
N) | Factor | Limitir | ng Speeds (| (min ⁻¹) | | Bearin | ng Numbe | rs | | h With | Snap | Ring G | Groove Din
(mm) | nensions | S (1) | Snap F
Dimer | nsions | | Abutme | nt and Fill
(mn | | ensions | | Mass
(kg) | | ĺ | d i | D. | B r
min. | $C_{\rm r}$ | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open | Shielded | l Seale | i | Rin
Groo | p Snap
g Ring
ove | а
max. | $b \atop {\rm min.}$ | $D_{1} \\ \text{max.}$ | r_0 max. | $ m \emph{r}_{N}$ min. | $D_2^{(m m}$ max. | f
max. | min. | $d_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | $ m \emph{r}_a$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | 6 | ç | 90 1 | 0 0.6
3 1
1 0.6 | 11 900
17 400
20 500 | 12 100
16 100
18 700 | 17.0
16.6
16.5 | 7 500
7 100
6 700 | 4 000
4 000
— | 8 500
8 500
8 000 | | ZZ | VV DI | | N
N
— | NR
NR | 1.70
2.10
— | 1.3
1.3 | 82.9
87.9
— | 0.4
0.4
— | 0.5
0.5
— | 89.4
94.4
— | 1.12
1.12
— | 69
70
69 | 69
71.5
— | 81
85
96 | 0.6
1
0.6 | 91
96
— | 2.5
2.9
— | 0.128
0.218
0.30 | | | 10 | 00 1 | 8 1.1
8 1.1
3 1.5 | 32 000
30 500
60 000 | 25 200
25 200
40 000 | 15.8
15.8
14.4 | 7 500
6 700
6 300 | 4 000
4 000
3 600 | 9 000
8 000
7 500 | 6013 | ZZ | VV DI
VV DI | DÚ | _
N
_ | NR
— |
2.87
 | 2.7
— | 96.8
— | 0.6 | 0.5
— | 106.5
— | 2.46
— | 71.5
71.5
73 | 73
73
80 | 93.5
93.5
112 | 1
1
1.5 | 108_
_ | 5
— | 0.439
0.439
1.0 | | | 14 | 20 2
10 3
10 3 | 1.5
13 2.1
13 2.1 | 57 500
97 500
92 500 | 40 000
60 000
60 000 | 14.4
13.2
13.2 | 5 300
5 600
4 800 | 3 600
3 400
3 400 | 6 300
6 700
6 000 | * 6313 | ZZ | VV DI
VV DI | DÚ | N
N | NR
—
NR | _ | 3 <u>.1</u>
3.1 | 115.21
—
135.23 | 0.6
0.6 | 0.5
—
0.5 | 129.7
—
149.7 | 2.82
—
2.82 | 73
76
76 | 80
85.5
85.5 | 112
129
129 | 1.5
2
2 | 131 <u>.5</u>
152 | 6.5
7.3 | 1.0
2.11
2.11 | | 7 | 10 | 00 1 | 0 0.6
6 1
3 0.6 | 12 100
23 700
26 800 | 12 700
21 200
23 600 | 17.2
16.3
16.3 | 6 700
6 300
6 000 | 3 800
3 600
— | 8 000
7 500
7 100 | | ZZ | VV DI | | N
N | NR
NR
— | | 1.3
1.3 | 87.9
97.9
— | 0.4
0.4
— | 0.5
0.5
— | 94.4
104.4
— | 1.12
1.12
— | 74
75
74 | 74.5
77.5
— | 86
95
106 | 0.6
1
0.6 | 96
106
— | 2.5
3.3
— | 0.134
0.349
0.441 | | | 11 | | 10 1.1
10 1.1
14 1.5 | 40 000
38 000
65 500 | 31 000
31 000
44 000 | 15.6
15.6
14.5 | 7 100
6 000
6 000 | 3 600
3 600
3 400 | 8 500
7 100
7 100 | | ZZ | VV DI
VV DI | DÚ | _
N | NR
— |
2.87
 | 2 <u>.7</u> | 106.81
— | 0.6 | 0.5
— | 116.6
— | 2.46
— | 76.5
76.5
78 | 80.5
80.5
84 | 103.5
103.5
117 | 1
1
1.5 | 118
— | 5
— | 0.608
0.608
1.09 | | | 12
15
15 | 50 3 | 14 1.5
15
2.1
15 2.1 | 62 000
109 000
104 000 | 44 000
68 000
68 000 | 14.5
13.2
13.2 | 5 000
5 300
4 500 | 3 400
3 200
3 200 | 6 300
6 300
5 300 | * 6314 | ZZ | VV DI
VV DI | DÚ | N
N | NR
—
NR | 4.06
—
4.90 | 3.1
3.1 | 120.22
—
145.24 | 0.6 | 0.5
—
0.5 | 134.7
—
159.7 | 2.82
—
2.82 | 78
81
81 | 84
92
92 | 117
139
139 | 1.5
2
2 | 136.5
—
162 | 6.5
7.3 | 1.09
2.57
2.57 | | 7! | 10 |)5 1 | 0 0.6
6 1
3 0.6 | 12 500
24 400
27 600 | 13 900
22 600
25 300 | 17.3
16.5
16.4 | 6 300
6 000
5 600 | 3 600
3 400
— | 7 500
7 100
6 700 | | ZZ | VV DI | | N
N
— | NR
NR
— | | 1.3
1.3 | 92.9
102.6
— | 0.4
0.4
— | 0.5
0.5
— | 99.4
110.7 | 1.12
1.12
— | 79
80
79 | 79.5
82
— | 91
100
111 | 0.6
1
0.6 | 101
112
— | 2.5
3.3
— | 0.149
0.364
0.463 | | | 11
11
13 | 5 2
 5 2
 80 2 | 10 1.1
10 1.1
15 1.5 | 41 500
39 500
69 500 | 33 500
33 500
49 500 | 15.8
15.8
14.7 | 6 700
5 600
5 600 | 3 400
3 400
3 200 | 8 000
6 700
6 700 | 6015 | ZZ | VV DI
VV DI | DU | _
N
_ | NR
— |
2.87
 | 2 <u>.7</u> | _
111.81
_ | 0.6 | 0.5
— | 121.6 | 2.46
— | 81.5
81.5
83 | 85.5
85.5
90 | 108.5
108.5
122 | 1
1
1.5 | 123
— | _
5 | 0.649
0.649
1.19 | | _ | 16 | 30 3 | 25 1.5
37 2.1
37 2.1 | 66 000
119 000
113 000 | 49 500
77 000
77 000 | 14.7
13.2
13.2 | 4 800
4 800
4 300 | 3 200
2 800
2 800 | 5 600
6 000
5 000 | * 6315 | ZZ | VV DI
VV DI | υ | _ | NR
—
NR | 4.06
—
4.90 | 3.1

3.1 | 125.22
—
155.22 | 0.6
0.6 | 0.5
—
0.5 | 139.7
—
169.7 | 2.82
—
2.82 | 83
86
86 | 90
98.5
98.5 | 122
149
149 | 1.5
2
2 | 141.5
—
172 | 6.5
—
7.3 | 1.19
3.08
3.08 | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. - 4. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. #### Bore Diameter 80 - 90 mm Open Type Shielded Type ZZ DD · DDU Ring Groove Snap Ring NR #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |--------------------------|------|-----------------------------|----------|---|------| | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | | | #### Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}} > 0.8, P_0 = 0.6F_{\rm r} + 0.5F_{\rm a}$$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$$ $$\frac{F_a}{F_a} \le 0.8, P_0 = F_1$$ | Boundary Dimensions | Basic Load Ratings | Factor | Limiting Speeds (r | | Bearing Numbers | With With | Snap | Ring G | roove Dim | ensions | (1) | Snap R
Dimen | | | Abutme | nt and Fill | | ensions | | Mass
(kg) | |--------------------------------------|---|----------------------|---|-------------------------|--|----------------------------------|-------------------|---------------------|-----------------------|-----------------|-----------------|------------------------|-------------------|--------------------|------------------------|-----------------------|---------------------|------------------------------|-----------------|-------------------------| | d D B r min. | $C_{ m r}$ $C_{ m 0r}$ | f_0 | Grease
Open
Z · ZZ DU
V · VV DDU | Oil
Open
Z | Open Shielded Sealed | Snap Snap
Ring Ring
Groove | a
max. | $b \atop { m min.}$ | $D_{ m 1}$ max. | | $r_{ m N}$ min. | $D_2^{(m)}_{max.}$ | f max. | min. | $d_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${m r}_{ m a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | | 12 700 | 17.4
16.6
16.4 | 6 000 3 400
5 600 3 200
5 300 — | 7 100
6 700
6 300 | 6816 ZZ VV DDU
6916 ZZ VV DDU
16016 — — — | N NR
N NR
— — | 1.7
2.5
— | 1.3
1.3
— | 97.9
107.6
— | 0.4
0.4
— | 0.5
0.5
— | 104.4
115.7
— | 1.12
1.12
— | 84
85
84 | 84.5
87.5
— | 96
105
121 | 0.6
1
0.6 | 106
117
— | 2.5
3.3
— | 0.151
0.391
0.621 | | | 50 000 | 15.6
15.6
14.6 | 6 300 3 200
5 300 3 200
5 300 3 000 | 7 100
6 300
6 300 | * 6016 ZZ VV DDU
6016 ZZ VV DDU
* 6216 ZZ VV DDU |
N NR
 |
2.87
 | 3.1 | 120.22
— | 0.6 | 0.5
— | 134.7
— | 2.82
— | 86.5
86.5
89 | 91
91
95.5 | 118.5
118.5
131 | 1
1
2 | 136.5 | 5.3 | 0.872
0.872
1.42 | | 170 39 2.1 1 | 72 500 53 000
129 000 86 500
123 000 86 500 | 14.6
13.3
13.3 | 4 500 3 000
4 500 2 800
4 000 2 800 | 5 300
5 600
4 800 | * 6216 ZZ VV DDU
* 6316 ZZ VV DDU
6316 ZZ VV DDU | N NR
N NR | 4.90
—
5.69 | 3.1
3.5 | 135.23
—
163.65 | 0.6 | 0.5
-
0.5 | 149 <u>.7</u>
182.9 | 2.82
—
3.1 | 89
91
91 | 95.5
104.5
104.5 | 131
159
159 | 2
2
2 | 152
—
185 | 7.3
—
8.4 | 1.42
3.67
3.67 | | | 18 700 20 000
32 000 29 600
33 000 31 500 | 17.1
16.4
16.5 | 5 600 3 200
5 300 3 000
5 000 — | 6 700
6 300
6 000 | 6817 ZZ VV DDU
6917 ZZ VV DDU
16017 — — — | N NR
N NR
— — | 2.10
3.30
— | 1.3
1.3 | 107.6
117.6 | 0.4
0.4
— | 0.5
0.5
— | 115.7
125.7
— | 1.12
1.12
— | 90
91.5
89 | 90.5
94.5
— | 105
113.5
126 | 1
1
0.6 | 117
127
— | 2.9
4.1
— | 0.263
0.55
0.652 | | 130 22 1.1
130 22 1.1
150 28 2 | 52 000 | 15.8
15.8
14.5 | 6 000 3 000
5 000 3 000
4 800 2 800 | 7 100
6 000
6 000 | * 6017 ZZ VV DDU
6017 ZZ VV DDU
* 6217 ZZ VV DDU |
N NR
 |
2.87
 | 3 <u>.1</u> |
125.22
 | 0.6 | 0.5
— | 139.7
— |
2.82
 | 91.5
91.5
94 | 96
96
102 | 123.5
123.5
141 | 1
1
2 | 141. <u>5</u> | 5.3
— | 0.918
0.918
1.76 | | 180 41 3 1 | 84 000 62 000
139 000 97 000
133 000 97 000 | 14.5
13.3
13.3 | 4 300 2 800
4 300 2 600
3 800 2 600 | 5 000
5 000
4 500 | 6217 ZZ VV DDU
* 6317 ZZ VV DDU
6317 ZZ VV DDU | N NR

N NR | 4.90
—
5.69 | 3.1
3.5 | _ | 0.6 | 0.5
 | 159.7
—
192.9 | 2.82
—
3.1 | 94
98
98 | 102
110.5
110.5 | 141
167
167 | 2
2.5
2.5 | 162
—
195 | 7.3
—
8.4 | 1.76
4.28
4.28 | | | 19 000 21 000
33 000 31 500
41 500 39 500 | 17.2
16.5
16.3 | 5 300 3 000
5 000 2 800
4 800 — | 6 300
6 000
5 600 | 6818 ZZ VV DDU
6918 ZZ VV DDU
16018 — — — | N NR
N NR
— — | | 1.3
1.3 | 112.6
122.6 | 0.4
0.4
— | 0.5
0.5
— | 120.7
130.7 | 1.12
1.12
— | 95
96.5
95 | 95.5
98.5
— | 110
118.5
135 | 1
1
1 | 122
132
— | 2.9
4.1
— | 0.276
0.585
0.873 | | 140 24 1.5 | 61 000 50 000
58 000 50 000
101 000 71 500 | 15.6
15.6
14.5 | 5 600 2 800
4 800 2 800
4 500 2 600 | 6 300
5 600
5 600 | * 6018 ZZ VV DDU
6018 ZZ VV DDU
* 6218 ZZ VV DDU |
N NR
 | 3.71
— | 3.1
— |
135.23
 | 0.6 | 0.5
— | 149 <u>.7</u> |
2.82
 | 98
98
99 | 103
103
107.5 | 132
132
151 | 1.5
1.5
2 |
152 | 6.1
— | 1.19
1.19
2.18 | | 190 43 3 | 96 000 71 500
150 000 107 000
143 000 107 000 | 14.5
13.3
13.3 | 4 000 2 600
4 000 2 400
3 600 2 400 | 4 800
4 800
4 300 | 6218 ZZ VV DDU
* 6318 ZZ VV DDU
6318 ZZ VV DDU | N NR NR NR | 4.90
—
5.69 | 3.1
—
3.5 | _ | 0.6
—
0.6 | 0.5
—
0.5 | 169.7
—
202.9 | 2.82
—
3.1 | 99
103
103 | 107.5
117
117 | 151
177
177 | 2
2.5
2.5 | 172
 | 7.3
—
8.4 | 2.18
4.98
4.98 | Notes (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. - 4. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. Bore Diameter 95 - 105 mm Open Type ZZ Sealed Type Sealed Type Ring Groove #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | >e | |--------------------------|------|---|----------|---|------| | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | |
1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | | | #### Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}}$$ >0.8, P_0 =0.6 $F_{\rm r}$ +0.5 $F_{\rm a}$ $$\frac{F_a}{F_a} \leq 0.8, P_0 = F_r$$ | | | | | | | VV | DD | · DĎÚ | N | | | NR | | | | | | | | | | | $F_{\rm r}$ | ⊒0.0, 1 | 0 –1 ′r | | | | |-----|-------------------|----------------|---------------------|-------------------------------|------------------------------|----------------------|-------------------------|-------------------------|-------------------------|--------------------------------|---------|-------------------------|---------------------|-------------------------|-------------------|--------------------------|-----------------------|-----------------|---------------------|--------------------------------------|-------------------|---------------------|-------------------------|-----------------------------|------------------------|------------------------------|-----------------|-------------------------| | В | oundary
(r | Dime | nsions | 1 | ad Ratings
N) | Factor | Limitir | ng Speeds (| min ⁻¹) | Ве | aring N | lumbers | | h With | Snap | Ring (| Groove Din | nension | S (1) | Snap R
Dimen | nsions | | Abutme | nt and Fil
(mn | | ensions | | Mass
(kg) | | a | ! D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Open Z · ZZ V · VV | DU
DDU | Open
Z | Open Shie | lded | Sealed | Sna
Ring
Groo | p Snap
g Ring
ove | а
max. | $_{\min .}^{\textit{b}}$ | $D_1 \atop { m max.}$ | $ ho_0$ max. | ${m r}_{ m N}$ min. | $D_2^{(\mathrm{m})}_{\mathrm{max.}}$ | m)
f
max. | min. | $d_{ m a}$ (2) max. | $D_{\mathrm{a}^{(2)}}$ max. | ${\it r}_{\rm a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | 95 | 130 | | 1.1 | 19 300
33 500
43 000 | 22 000
33 500
42 000 | 17.2
16.6
16.4 | 5 000
4 800
4 500 | 2 800
2 800
— | 6 000
5 600
5 300 | 6819 Z
6919 Z
16019 — | Z V | V DDU | N
N | NR
NR
— | | 1.3
1.3 | 117.6
127.6 | 0.4
0.4
— | 0.5
0.5
— | 125.7
135.7
— | 1.12
1.12
— | 100
101.5
100 | 101.5
103.5 | 115
123.5
140 | 1
1
1 | 127
137
— | 2.9
4.1
— | 0.297
0.601
0.904 | | | 145 | | 1.5
1.5
2.1 | 63 500
60 500
114 000 | 54 000
54 000
82 000 | 15.8
15.8
14.4 | 5 300
4 500
4 300 | 2 600
2 600
2 600 | 6 000
5 300
5 000 | * 6019 Z
6019 Z
* 6219 Z | Z V | V DDU | _
N
_ | NR
— | _
3.71
_ | 3.1 | 140.23
— | 0.6 | 0.5 | 154.7
— |
2.82
 | 103
103
106 | 108.5
108.5
114 | 137
137
159 | 1.5
1.5
2 | 157
— | 6.1
— | 1.23
1.23
2.64 | | | 170
200
200 | 45 | 2.1 | 109 000
160 000
153 000 | 82 000
119 000
119 000 | 14.4
13.3
13.3 | 3 800
3 400
3 000 | 2 600
2 400
2 400 | 4 500
4 300
3 600 | 6219 Z
* 6319 Z
6319 Z | Z V | V DDU
V DDU
V DDU | N
N | NR
—
NR | 5.69
-
5.69 | 3.5
3.5 | 163.65
—
193.65 | 0.6 | 0.5
0.5 | 182.9
212.9 | 3.1
3.1 | 106
108
108 | 114
123.5
123.5 | 159
187
187 | 2
2.5
2.5 | 185

215 | 8.4
—
8.4 | 2.64
5.76
5.76 | | 100 | 140 | | 1.1 | 19 600
43 000
42 500 | 23 000
42 000
42 000 | 17.3
16.4
16.5 | 4 800
4 500
4 300 | 2 800
2 600
— | 5 600
5 300
5 300 | 6820 Z
6920 Z
16020 — | | | N
N | NR
NR
— | | 1.3
1.9 | 122.6
137.6
— | 0.4
0.6
— | 0.5
0.5
— | 130.7
145.7 | 1.12
1.7
— | 105
106.5
105 | 105.5
111
— | 120
133.5
145 | 1
1
1 | 132
147
— | 2.9
4.7
— | 0.31
0.828
0.945 | | | 150
150
180 | 24 | 1.5
1.5
2.1 | 63 000
60 000
128 000 | 54 000
54 000
93 000 | 15.9
15.9
14.4 | 5 000
4 300
4 000 | 2 600
2 600
2 400 | 6 000
5 300
4 800 | * 6020 Z
6020 Z
* 6220 Z | Z V | V DDU | _
N
_ | NR
— | 3.71
— | 3.1
— |
145.24
 | 0.6 | 0.5
— | 159.7 |
2.82
 | 108
108
111 | 112.5
112.5
121.5 | 142
142
169 | 1.5
1.5
2 | 162
— | 6.1
— | 1.29
1.29
3.17 | | | 180
215 | 34
47 | 2.1 | 122 000
173 000 | 93 000
141 000 | 14.4
13.2 | 3 600
2 800 | 2 400
2 200 | 4 300
3 400 | 6220 Z
6320 Z | | | <u>N</u> | NR
— | 5.69 | 3.5 | 173.66
— | 0.6 | 0.5 | 192.9 | 3.1 | 111
113 | 121.5
133 | 169
202 | 2
2.5 | 195
— | 8.4 | 3.17
7.04 | | 105 | 145 | 13
20
18 | 1.1 | 19 800
42 500
52 000 | 23 900
42 000
50 500 | 17.4
16.5
16.3 | 4 800
4 300
4 000 | 2 600
—
— | 5 600
5 300
4 800 | 6821 Z
6921 Z
16021 — | Z V | V — | N
N | NR
NR
— | | 1.3
1.9 | 127.6
142.6
— | 0.4
0.6
— | 0.5
0.5
— | 135.7
150.7
— | 1.12
1.7
— | 110
111.5
110 | 110.5
116
— | 125
138.5
155 | 1
1
1 | 137
152
— | 2.9
4.7
— | 0.324
0.856
1.24 | | | 160
160
190 | 26 | 3 2
3 2
3 2.1 | 76 000
72 500
140 000 | 66 000
66 000
105 000 | 15.8
15.8
14.4 | 4 500
4 000
3 800 | 2 400
2 400
2 200 | 5 600
4 800
4 500 | * 6021 Z
6021 Z
* 6221 Z | Z V | V DDU
V DDU
V DDU | _
N
_ | NR
— | 3.71
— | 3.1
— |
155.22
 | 0.6 | 0.5 | 169.7
— |
2.82
 | 114
114
116 | 120
120
127.5 | 151
151
179 | 2
2
2 | 172
— | 6.1
— | 1.58
1.58
3.79 | | | 190
225 | | 3 2.1 | 133 000
184 000 | 105 000
154 000 | 14.4
13.2 | 3 400
2 600 | 2 200
2 000 | 4 000
3 200 | 6221 Z
6321 Z | | | | NR
— | 5.69
— | 3.5 | 183.64 | 0.6 | 0.5 | 202.9 | 3.1 | 116
118 | 127.5
138 | 179
212 | 2
2.5 | 205_ | 8.4 | 3.79
8.09 | **Notes** (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - **Remarks** 1. Diameter Series 7 (extra thin section bearings) are also available, please contact NSK. - 2. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 3. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. - 4. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. Open Type Shielded Type ZZ · ZZŚ #### Dynamic Equivalent Load $P = XF_r + YF_a$ | | | • | | | | |--------------------------|------|---|----------|------------------------------|------| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{ m r}}$ | >e | | ∪ _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | | | | | | #### Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}}$$ >0.8, P_0 =0.6 $F_{\rm r}$ +0.5 $F_{\rm a}$ $$\frac{F_a}{F_r} \leq 0.8, P_0 = F_r$$ | | | | | | VV | DD - | DDU | N | NR | | | | | | | | | | $F_{\rm r}$ | ⊒0.0,1(|) —I' _I | | | | |-----|--------------------------|--------------------------------------|--|--|------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|-------------------|---------------------|-----------------------|---------------------|----------------------|-----------------------|-----------------|--------------------------|------------------------------|-----------------------------|-------------------------|------------------------------|-----------------|------------------------------| | Вс | undary [
(m | imensions
n) | | ad Ratings
N) | Factor | Limitin | ig Speeds (i | min ⁻¹) | Bearing Numbers | With With | Sna | ıp Ring (| Groove Dir | nensions | (1) | Snap R
Dimen | isions | | Abutme | nt and Fill
(mm | | nsions | | Mass
(kg) | | d | D | $B \underset{\text{min.}}{\pmb{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shielded Sealed | Snap Snap
Ring Ring
Groove | a
max. | $b \atop { m min.}$ | $D_{ m 1}$ max. | ${m \gamma}_0$ max. | $ m \emph{r}_N$ min. | $D_2^{(\mathrm{mi})}$ | f max. | min. | $d_{ m a}^{(2)}$ max. | $D_{\mathrm{a}^{(2)}}$ max. | ${\pmb{\gamma}}_a$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | 110 | 140
150
170 | 20 1.1 | 28 100
43 500
57 500 | 32 500
44 500
56 500 | 17.1
16.6
16.3 | 4 300
4 300
3 800 | 2 400
2 400
— | 5 300
5 000
4 500 | 6822 ZZ VV DDU
6922 ZZ VV DDU
16022 — — | N NR
N NR
— — | 2.50
3.30
— | 1.9
1.9
— | 137.6
147.6
— | 0.6
0.6 | 0.5
0.5
— | 145.7
155.7
— | 1.7
1.7
— | 115
116.5
115 | 117
121
— | 135
143.5
165 | | 147
157
— | 3.9
4.7
— | 0.497
0.893
1.51 | | | 170
170
200
240 | 28 2
28 2
38 2.1
50 3 | 89 000
85 000
144 000
205 000 | 73 000
73 000
117 000
179 000 | 15.5
15.5
14.3
13.2 | 4 500
3 800
2 800
2 400 | 2 200
2 200
2 200
— | 5 300
4 500
3 400
3 000 | * 6022 ZZ VV DDU
6022 ZZ VV DDU
6222 ZZ VV DDU
6322 ZZ — — |
N NR
N NR
 | 3.71
5.69 | 3.5
3.5
— |
163.65
193.65
— | 0.6
0.6
— | 0.5
0.5
— | 182.9
212.9 | 3.1
3.1
— | 119
119
121
123 | 124.5
124.5
134
147 | 161
161
189
227 | 2
2
2
2.5 | 185
215
— | 6.4
8.4
— | 1.94
1.94
4.45
9.51 | | 120 | 150
165
180 | 16 1
22 1.1
19 1 | 28 900
53 000
56 500 | 35 500
54 000
57 500 | 17.3
16.5
16.5 | 4 000
3 800
3 600 | 2 200 | 4 800
4 500
4 300 | 6824 ZZ VV DD
6924 ZZ — —
16024 — — | N NR
N NR
— — | 2.50
3.70
— | 1.9
1.9
— | 147.6
161.8 | 0.6
0.6
— | 0.5
0.5
— | 155.7
171.5
— | 1.7
1.7
— | 125
126.5
125 | 127
132
— | 145
158.5
175 | | 157
173
— | 3.9
5.1
— | 0.537
1.21
1.6 | | | 180
180
215
260 | 28 2
28 2
40 2.1
55 3 | 92 500
88 000
155 000
207 000 | 80 000
80 000
131 000
185 000 | 15.7
15.7
14.4
13.5 | 4 000
3 600
2 600
2 200 | 2 200
2 200
2 000
1 800 | 4 800
4 300
3 200
2 800 | * 6024 ZZ VV DDU
6024 ZZ VV DDU
6224 ZZ VV DDU
6324 ZZS — DDU | N NR
 | 3.71
—
— | 3.5
— | 173.66
—
— | 0.6 | 0.5
— | 192.9
— | 3.1
— | 129
129
131
133 | 134.5
134.5
146
161 | 171
171
204
247 | 2
2
2
2.5 | 195
—
— | 6.4
— | 2.08
2.08
5.29
12.5 | | 130 | 165
180
200 | 18 1.1
24 1.5
22 1.1 | 37 000
65 000
75 500 | 44 000
67 500
77 500 | 17.1
16.5
16.4 | 3 600
3 400
3 000 | 2 000 | 4 300
4 000
3 600 | 6826 ZZS VV DD
6926 ZZ — —
16026 — — — | N NR
N NR
— — | 3.30
3.70
— | 1.9
1.9
— | 161.8
176.8 | 0.6
0.6
— | 0.5
0.5
— | 171.5
186.5
— | 1.7
1.7
— | 136.5
138
136.5 | 138
144
— | 158.5
172
193.5 | | 173
188
— | 4.7
5.1
— | 0.758
1.57
2.4 | | | 200
230
280 | 33 2
40 3
58 4 | 106 000
167 000
229 000 | 101 000
146 000
214 000 | 15.8
14.5
13.6 | 3 000
2 400
2 200 | 1 900 | 3 600
3 000
2 600 | 6026 ZZ — DDU
6226 ZZ — —
6326 ZZS — — | N NR
— —
— — | 5.69
— | 3.5 | 193.65
—
— | 0.6
— | 0.5
— | 212.9 | 3.1
 | 139
143
146 | 148.5
157
175 | 191
217
264 | 2
2.5
3 | 215
— | 8.4
— | 3.26
5.96
15.2 | | 140 | 190 | 18 1.1
24 1.5
22 1.1 | 38 500
66 500
77 500 | 48 000
72 000
82 500 | 17.3
16.6
16.5 | 3 400
3 200
2 800 | 1 900 | 4 000
3 800
3 400 | 6828 ZZ VV DDU
6928 ZZS VV —
16028 — — — | N NR
N NR
— — | 3.30
3.70
— | 1.9
1.9
— | 171.8
186.8
— | 0.6
0.6
— | 0.5
0.5
— | 181.5
196.5
— | 1.7
1.7
— | 146.5
148
146.5 | 148.5
153.5
— | 168.5
182
203.5 | | 183
198
— | 4.7
5.1
— | 0.832
1.67
2.84 | | | 210
250
300 | 33 2
42 3
62 4 | 110 000
166 000
253 000 | 109 000
150 000
246 000 | 16.0
14.9
13.6 | 2 800
2 200
2 000 | 1 800
1 700
— | 3 400
2 800
2 400 | 6028 ZZ — DDU
6228 ZZS — DDU
6328 ZZS — — | ΞΞ | = | _ | = | _
_
_ | _ | _
_
_ | _
_
_ | 149
153
156 | 158.5
171.5
187 | 201
237
284 | 2
2.5
3 | _
_
_ | _
_
_ | 3.48
7.68
18.5 | | 150 | 210 | 20 1.1
28 2
24 1.1 | 47 500
85 000
84 000 | 58 500
90 500
91 000 | 17.1
16.5
16.6 | 3 200
2 600
2 600 | 1 800
1 700
— | 3 800
3 200
3 000 | 6830 ZZ VV DDU
6930 ZZS — DDU
16030 — — — | N NR
— —
— — | 3.30
— | 1.9 | 186.8
—
— | 0.6
— | 0.5
— | 196.5
— | 1.7
 | 156.5
159
156.5 | 160
166
— | 183.5
201
218.5 | 1
2
1 | 198
_
_ | 4.7
— | 1.15
3.01
3.62 | | | 225
270
320 | 35 2.1
45 3
65 4 | 126 000
176 000
274 000 | 126 000
168 000
284 000 | 15.9
15.1
13.9 | 2 600
2 000
1 800 | 1 700
—
— | 3 000
2 600
2 200 | 6030 ZZ VV DDU
6230 ZZS — —
6330 ZZS — — | ΞΞ | = | = | | _
_
_ | _
_
_ | _ | _
_
_ | 161
163
166 | 170
186
203 | 214
257
304 | 2
2.5
3 | _
_
_ | _ | 4.24
10
22.7 | **Notes** (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. (2) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. - Remarks 1. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 2. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. - 3. The bearings denoted by an asterisk(*) are NSKHPS™ Deep groove ball bearings. C 034 #### Bore Diameter 160 mm Open Type Shielded Type ZZ · ZZS Sealed Type Sealed Type DD · DDU Ring Groove Snap Ring NR #### Dynamic Equivalent Load D VE VE | P = X | $F_{\rm r} + YF_{\rm z}$ | ı | | | | |--------------------------|--------------------------|-----------------------------|----------|-------------------------------|------| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{ m a}}{F_{ m r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}}$ | >e | | ∪ _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | #### Static Equivalent Load $$\frac{F_a}{F_r} > 0.8, P_0 = 0.6F_r + 0.5F_a$$ $$\frac{F_a}{F_r} \le 0.8, P_0 = F_r$$ | Bou | ndary C | | sions | | ad Ratings
N) | Factor | Limitin
Grea | g Speeds (i | min ⁻¹) | Bearing | Numbers | With With | Sna | p Ring G | roove Dim
(mm) | nensions | (1) | Snap R
Dimen | sions | | Abutmei | nt and Fill
(mm | | nsions | | Mass
(kg) | |-----|-------------------|----------------|-----------------|-------------------------------|-------------------------------|----------------------|--------------------------|---------------------|-------------------------|---------------------------------|------------------------|----------------------------------|-----------|---------------------|-------------------|----------------------------|------------------------|---------------------|----------|---------------------|-----------------------|-----------------------|---------------------------|------------------------------|-----------------|----------------------| | d | D | В | γ
min. | $C_{ m r}$ | C_{0r} | f_0 | Open
Z · ZZ
V · VV | DU
DDU | Open
Z | Open Shielded | Sealed | Snap Snap
Ring Ring
Groove | а
max. | $b \atop { m min.}$ | $D_{ m 1}$ max. | $oldsymbol{\gamma}_0$ max. | $ m \emph{r}_{N}$ min. | $D_2^{(m mr}$ max. | f max. | min. | $d_{ m a}^{(2)}$ max. | $D_{ m a}^{(2)}$ max. | ${m \gamma}_{\rm a}$ max. | $D_{\rm x} \atop {\rm min.}$ | $C_{ m Y}$ max. | approx. | | 160 | 200
220
240 | 20
28
25 | 1.1
2
1.5 | 48 500
87 000
99 000 | 61 000
96 000
108 000 | 17.2
16.6
16.5 | 2 600
2 600
2 400 | 1 700
1 600
— | 3 200
3 000
2 800 | 6832 ZZS
6932 ZZS
16032 — | VV DDU
— DDU
— — | N NR
— —
— — | 3.30
— | 1.9
— | 196.8 | 0.6 | 0.5
— | 206.5 | 1.7
— | 166.5
169
168 | 170.5
176
— | 193.5
211
232 | 1
2
1.5 | 208_ | 4.7
— | 1.23
2.71
4.2 | | | 240
290
340 | 38
48
68 | 2.1
3
4 | 137 000
185 000
278 000 | 135 000
186 000
287 000 | 15.9
15.4
13.9 | 2 400
1 900
1 700 | 1 600
— | 2 800
2 400
2 000 | 6032 ZZ
6232 ZZS
6332 ZZS | — DDU
— —
— — | = = | _ | _ | = | | _ | _
_
_ | _ | 171
173
176 | 181.5
202
215.5 | 229
277
324 | 2
2.5
3 | _
_
_ | _ | 5.15
12.8
26.2 | **Notes** (1) For tolerances for the snap ring grooves and snap ring dimensions, refer to Pages A116 to A119. - Remarks 1. When using bearings with rotating outer rings, contact NSK if they are sealed, shielded, or have snap rings. - 2. Please consult NSK about the snap ring groove dimensions of sealed and shielded bearings when the diameter of dimension series 18 and 19 is 50 mm or more. #### Bore Diameter 170 – 240 mm Dynamic Equivalent Load $P = XF_r + YF_a$ | | 1 r 1 1 1 2 | 1 | | | | |--------------------------|-------------|---|----------|-----------------------------|------| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{ m a}}{F_{ m r}}$ | >e | | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | Static Equivalent Load $$\frac{F_a}{F_r}$$ >0.8, P_0 =0.6 F_r +0.5 F_a $$\frac{F_{\rm a}}{F_{\rm r}}$$ \leq 0.8, P_0 = $F_{\rm r}$ | Open Type ZZS Seale | |---------------------| |---------------------| | | | | | | | | | VV | | | | | | | | |-----|-------------------|----------------|-------------------|-------------------------------|-------------------------------|----------------------|----------------------------------|-------------|-------------------------|--|---------------------|----------------------|-----------------------|----------------------|----------------------| | Bou | ındary [
m | Dimen:
im) | sions | 1 | ad Ratings
N) | Factor | | g Speeds (r | | Bearing Numbers | | Abutment
Dimensio | | | Mass
(kg) | | d | D | В | γ
min.
| $C_{\rm r}$ | C_{0r} | f_0 | Grea
Open
Z · ZZ
V · VV | DU
DDU | Oil
Open
Z | Open Shielded Sealed | min. | $d_{ m a}$ (1) max. | $D_{ m a}^{(1)}$ max. | $ m \emph{r}_a$ max. | approx. | | 170 | 215
230
260 | 22
28
28 | 1.1
2
1.5 | 60 000
86 000
114 000 | 75 000
97 000
126 000 | 17.1
16.7
16.5 | 2 600
2 400
2 200 | 1 600 | 3 000
2 800
2 600 | 6834 ZZS VV DDU
6934 ZZS — —
16034 — — | 176.5
179
178 | 182
186 | 208.5
221
252 | 1
2
1.5 | 1.86
3.34
5.71 | | | 260
310
360 | 42
52
72 | 2.1
4
4 | 161 000
212 000
325 000 | 161 000
224 000
355 000 | 15.8
15.3
13.6 | 2 200
1 800
1 600 | _ | 2 600
2 200
2 000 | 6034 ZZS VV —
6234 ZZS — —
6334 — — — | 181
186
186 | 194.5
215
— | 249
294
344 | 2 3 3 | 6.89
15.8
36.6 | | 180 | 225
250
280 | 22
33
31 | 1.1
2
2 | 60 500
119 000
145 000 | 78 500
128 000
157 000 | 17.2
16.4
16.3 | 2 400
2 200
2 000 | = | 2 800
2 600
2 400 | 6836 — VV —
6936 ZZS — —
16036 — — — | 186.5
189
189 | 192
198.5
— | 218.5
241
271 | 1
2
2 | 1.98
4.16
7.5 | | | 280
320
380 | 46
52
75 | 2.1
4
4 | 180 000
227 000
355 000 | 185 000
241 000
405 000 | 15.6
15.1
13.9 | 2 000
1 700
1 500 | _ | 2 400
2 000
1 800 | 6036 ZZS VV —
6236 ZZS — —
6336 — — — | 191
196
196 | 208
223
— | 269
304
364 | 2
3
3 | 8.88
15.9
43.1 | | 190 | 240
260
290 | 24
33
31 | 1.5
2
2 | 73 000
113 000
149 000 | 93 500
127 000
168 000 | 17.1
16.6
16.4 | 2 200
2 200
2 000 | _ | 2 600
2 600
2 400 | 6838 — VV —
6938 — — —
16038 — — — | 198
199
199 | 202.5
—
— | 232
251
281 | 1.5
2
2 | 2.53
5.18
7.78 | | | 290
340
400 | 46
55
78 | 2.1
4
5 | 188 000
255 000
355 000 | 201 000
282 000
415 000 | 15.8
15.0
14.1 | 2 000
1 600
1 400 | _ | 2 400
2 000
1 700 | 6038 ZZS — —
6238 ZZS — —
6338 — — — | 201
206
210 | 218
236
— | 279
324
380 | 2
3
4 | 9.39
22.3
49.7 | | 200 | 250
280
310 | 24
38
34 | 1.5
2.1
2 | 74 000
143 000
161 000 | 98 000
158 000
180 000 | 17.2
16.4
16.4 | 2 200
2 000
1 900 | _ | 2 600
2 400
2 200 | 6840 — — —
6940 ZZS — —
16040 — — — | 208
211
209 | 222_ | 242
269
301 | 1.5
2
2 | 2.67
7.28
10 | | | 310
360
420 | 51
58
80 | 2.1
4
5 | 207 000
269 000
380 000 | 226 000
310 000
445 000 | 15.6
15.2
13.8 | 1 900
1 500
1 300 | _ | 2 200
1 800
1 600 | 6040 ZZS — —
6240 ZZS — —
6340 — — — | 211
216
220 | 231.5
252
— | 299
344
400 | 2
3
4 | 12
26.7
55.3 | | 220 | 270
300
340 | 24
38
37 | 1.5
2.1
2.1 | 76 500
146 000
180 000 | 107 000
169 000
217 000 | 17.4
16.6
16.5 | 1 900
1 800
1 600 | | 2 400
2 200
2 000 | 6844 ZZS — —
6944 ZZS — —
16044 — — — | 228
231
231 | 233.5
242
— | 262
289
329 | 1.5
2
2 | 2.9
7.88
13.1 | | | 340
400
460 | 56
65
88 | 3
4
5 | 235 000
310 000
410 000 | 271 000
375 000
520 000 | 15.6
15.1
14.3 | 1 700
1 300
1 200 | _ | 2 000
1 600
1 500 | 6044 ZZS — —
6244 — — —
6344 — — — | 233
236
240 | 254.5
—
— | 327
384
440 | 2.5
3
4 | 18.6
37.4
73.9 | | 240 | 300
320
360 | 28
38
37 | 2
2.1
2.1 | 98 500
154 000
196 000 | 137 000
190 000
243 000 | 17.3
16.8
16.5 | 1 700
1 700
1 500 | _ | 2 000
2 000
1 900 | 6848 — — —
6948 ZZS — —
16048 — — — | 249
251
251 | 262
_ | 291
309
349 | 2
2
2 | 4.48
8.49
13.9 | | | 360
440
500 | 56
72
95 | 3
4
5 | 244 000
340 000
470 000 | 296 000
430 000
625 000 | 15.9
15.2
14.2 | 1 500
1 200
1 100 | | 1 900
1 500
1 300 | 6048 — — —
6248 — — —
6348 — — — | 253
256
260 | = | 347
424
480 | 2.5
3
4 | 19.9
50.5
94.4 | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. **Remark** When using bearings with rotating outer rings, contact NSK if they are sealed or shielded. #### Bore Diameter 260 - 360 mm | nen | Type | | |-----|------|--| | E | Boundary Dimensions
(mm) | | Basic Load Ratings Fact | | Factor | Limiting
(mi | • | Bearing
Numbers | | ment and I
ensions (m | | Mass
(kg) | | |-----|-----------------------------|-----|-------------------------|-------------|-------------------|-----------------|--------|--------------------|-------|--------------------------|-----------------------|----------------------|---------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | $d_{ m a}^{(1)}$ min. | $D_{ m a}^{(1)}$ max. | $ m \emph{r}_a$ max. | approx. | | 260 | 320 | 28 | 2 | 101 000 | 148 000 | 17.4 | 1 600 | 1 900 | 6852 | 269 | 311 | 2 | 4.84 | | | 360 | 46 | 2.1 | 204 000 | 255 000 | 16.5 | 1 500 | 1 800 | 6952 | 271 | 349 | 2 | 14 | | | 400 | 44 | 3 | 237 000 | 310 000 | 16.4 | 1 400 | 1 700 | 16052 | 273 | 387 | 2.5 | 21.1 | | | 400 | 65 | 4 | 291 000 | 375 000 | 15.8 | 1 400 | 1 700 | 6052 | 276 | 384 | 3 | 29.4 | | | 480 | 80 | 5 | 400 000 | 540 000 | 15.1 | 1 100 | 1 300 | 6252 | 280 | 460 | 4 | 67 | | | 540 | 102 | 6 | 505 000 | 710 000 | 14.6 | 1 000 | 1 200 | 6352 | 286 | 514 | 5 | 118 | | 280 | 350 | 33 | 2 | 133 000 | 191 000 | 17.3 | 1 500 | 1 700 | 6856 | 289 | 341 | 2 | 7.2 | | | 380 | 46 | 2.1 | 209 000 | 272 000 | 16.6 | 1 400 | 1 700 | 6956 | 291 | 369 | 2 | 15.1 | | | 420 | 44 | 3 | 243 000 | 330 000 | 16.5 | 1 300 | 1 600 | 16056 | 293 | 407 | 2.5 | 22.7 | | | 420 | 65 | 4 | 300 000 | 410 000 | 16.0 | 1 300 | 1 600 | 6056 | 296 | 404 | 3 | 31.2 | | | 500 | 80 | 5 | 400 000 | 550 000 | 15.2 | 1 000 | 1 300 | 6256 | 300 | 480 | 4 | 70.4 | | | 580 | 108 | 6 | 570 000 | 840 000 | 14.5 | 900 | 1 100 | 6356 | 306 | 554 | 5 | 144 | | 300 | 380 | 38 | 2.1 | 166 000 | 233 000 | 17.1 | 1 300 | 1 600 | 6860 | 311 | 369 | 2 | 10.3 | | | 420 | 56 | 3 | 269 000 | 370 000 | 16.4 | 1 300 | 1 500 | 6960 | 313 | 407 | 2.5 | 23.9 | | | 460 | 50 | 4 | 285 000 | 405 000 | 16.4 | 1 200 | 1 400 | 16060 | 316 | 444 | 3 | 31.5 | | | 460 | 74 | 4 | 355 000 | 500 000 | 15.8 | 1 200 | 1 400 | 6060 | 316 | 444 | 3 | 44.2 | | | 540 | 85 | 5 | 465 000 | 670 000 | 15.1 | 950 | 1 200 | 6260 | 320 | 520 | 4 | 87.8 | | 320 | 400 | 38 | 2.1 | 168 000 | 244 000 | 17.2 | 1 300 | 1 500 | 6864 | 331 | 389 | 2 | 10.8 | | | 440 | 56 | 3 | 266 000 | 375 000 | 16.5 | 1 200 | 1 400 | 6964 | 333 | 427 | 2.5 | 25.3 | | | 480 | 50 | 4 | 293 000 | 430 000 | 16.5 | 1 100 | 1 300 | 16064 | 336 | 464 | 3 | 33.2 | | | 480 | 74 | 4 | 390 000 | 570 000 | 15.7 | 1 100 | 1 300 | 6064 | 336 | 464 | 3 | 46.5 | | | 580 | 92 | 5 | 530 000 | 805 000 | 15.0 | 850 | 1 100 | 6264 | 340 | 560 | 4 | 111 | | 340 | 420 | 38 | 2.1 | 175 000 | 265 000 | 17.3 | 1 200 | 1 400 | 6868 | 351 | 409 | 2 | 11.5 | | | 460 | 56 | 3 | 273 000 | 400 000 | 16.6 | 1 100 | 1 300 | 6968 | 353 | 447 | 2.5 | 26.6 | | | 520 | 82 | 5 | 440 000 | 660 000 | 15.6 | 1 000 | 1 200 | 6068 | 360 | 500 | 4 | 62.3 | | | 620 | 92 | 6 | 530 000 | 820 000 | 15.3 | 800 | 1 000 | 6268 | 366 | 594 | 5 | 129 | | 360 | 440 | 38 | 2.1 | 192 000 | 290 000 | 17.3 | 1 100 | 1 300 | 6872 | 371 | 429 | 2 | 11.8 | | | 480 | 56 | 3 | 280 000 | 425 000 | 16.7 | 1 100 | 1 300 | 6972 | 373 | 467 | 2.5 | 27.9 | | | 540 | 82 | 5 | 460 000 | 720 000 | 15.7 | 950 | 1 200 | 6072 | 380 | 520 | 4 | 65.3 | | | 650 | 95 | 6 | 555 000 | 905 000 | 15.4 | 750 | 950 | 6272 | 386 | 624 | 5 | 145 | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. #### Dynamic Equivalent Load $P = XF_r + YF_a$ | | 1 6 | • | | | | | |------------------------------|------|---|----------|-----------------------------------|------|--| | $\frac{f_0 F_a}{C_{0r}}$ e | | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{\rm r}} > e$ | | | | C _{0r} | | X | Y | X | Y | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | #### Static Equivalent Load $$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8$$, $P_0 = F_{\rm r}$ #### Bore Diameter 380 - 600 mm Open Type | E | Boundary I | Dimension
nm) | 18 | | ad Ratings
N) | Factor | Limiting
(mi | | Bearing
Numbers | | | nent and Fi
nsions (m | | Mass
(kg) | |-----|-------------------|------------------|------------------|-------------------------------|---------------------------------|----------------------|---------------------|-------------------------|----------------------------|-------------------------------|------------|--------------------------|----------------------------|----------------------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | $d_{\scriptscriptstyle m a}$ | (¹)
in. | $D_{ m a}^{(1)}$ max. | $\emph{\textbf{r}}_a$ max. | approx. | | 380 | 480
520
560 | 46
65
82 | 2.1
4
5 | 238 000
325 000
455 000 | 375 000
510 000
725 000 | 17.1
16.6
15.9 | 1 000
950
900 | 1 200
1 200
1 100 | 6876
6976
6076 | 39
39
40 | 96 | 469
504
540 | 2
3
4 | 19.5
40
68 | | 400 | 500
540
600 | 46
65
90 | 2.1
4
5 | 241 000
335
000
510 000 | 390 000
540 000
825 000 | 17.2
16.7
15.7 | 950
900
850 | 1 200
1 100
1 000 | 6880
6980
6080 | 41
41
42 | 16 | 489
524
580 | 2
3
4 | 20.5
42
88.4 | | 420 | 520
560
620 | 46
65
90 | 2.1
4
5 | 245 000
340 000
530 000 | 410 000
570 000
895 000 | 17.3
16.8
15.8 | 900
900
800 | 1 100
1 100
1 000 | 6884
6984
6084 | 43
43
44 | 36 | 509
544
600 | 2
3
4 | 21.4
43.6
92.2 | | 440 | 540
600
650 | 46
74
94 | 2.1
4
6 | 248 000
395 000
550 000 | 425 000
680 000
965 000 | 17.4
16.6
16.0 | 900
800
750 | 1 100
1 000
900 | 6888
6988
6088 | 45
45
46 | 56 | 529
584
624 | 2
3
5 | 22.3
60.2
106 | | 460 | 580
620
680 | 56
74
100 | 3
4
6 | 310 000
405 000
605 000 | 550 000
720 000
1 080 000 | 17.1
16.7
15.8 | 800
800
710 | 1 000
950
850 | 6892
6992
6092 | 47
47
48 | 76 | 567
604
654 | 2.5
3
5 | 34.3
62.6
123 | | 480 | 600
650
700 | 56
78
100 | 3
5
6 | 315 000
450 000
605 000 | 575 000
815 000
1 090 000 | 17.2
16.6
15.9 | 800
750
710 | 950
900
850 | 6896
6996
6096 | 49
50
50 | 00 | 587
630
674 | 2.5
4
5 | 35.4
73.5
127 | | 500 | 620
670
720 | 56
78
100 | 3
5
6 | 320 000
460 000
630 000 | 600 000
865 000
1 170 000 | 17.3
16.7
16.0 | 750
710
670 | 900
850
800 | 68/500
69/500
60/500 | 51
52
52 | 20 | 607
650
694 | 2.5
4
5 | 37.2
82
131 | | 530 | 650
710
780 | 56
82
112 | 3
5
6 | 325 000
455 000
680 000 | 625 000
870 000
1 300 000 | 17.4
16.8
16.0 | 710
670
600 | 850
800
750 | 68/530
69/530
60/530 | 54
55
55 | 50 | 637
690
754 | 2.5
4
5 | 39.8
89.8
184 | 670 600 560 600 560 530 800 750 670 710 670 630 68/560 69/560 60/560 68/600 69/600 60/600 573 580 586 613 620 626 667 730 793.5 717 780 844 2.5 4 5 2.5 5 41.5 50.9 120 236 105 **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. 330 000 525 000 735 000 355 000 550 000 790 000 650 000 1 040 000 1 500 000 735 000 1 160 000 1 640 000 17.4 16.7 16.2 17.5 16.9 16.1 #### Dynamic Equivalent Load $P = XF_r + YF_a$ | | | - | | | | |--------------------------|------|---|----------|-----------------------------|------| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{ m a}}{F_{ m r}}$ | >e | | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | #### Static Equivalent Load $$\frac{F_a}{F_r} > 0.8$$, $P_0 = 0.6F_r + 0.5F_a$ $$\frac{F_{\rm a}}{F_{\rm r}} \leq 0.8, P_0 = F_{\rm r}$$ 680 750 820 730 800 870 560 600 56 85 115 60 90 118 5 6 #### Bore Diameter 630 – 800 mm | Boundary Dimensions (mm) | | Basic Load Ratings (N) | | | Limiting
(mir | | Bearing
Numbers | Abu
Din | Mass
(kg) | | | | | |--------------------------|-------|------------------------|------------------|-------------|-------------------|-------|--------------------|------------|--------------|-----------------------|-----------------------|---------------------|---------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | f_0 | Grease | Oil | Open | $d_{ m a}^{(1)}$ min. | $D_{ m a}^{(1)}$ max. | \emph{r}_{a} max. | approx. | | 630 | 780 | 69 | 4 | 420 000 | 890 000 | 17.3 | 560 | 670 | 68/630 | 646 | 764 | 3 | 71.3 | | | 850 | 100 | 6 | 625 000 | 1 350 000 | 16.7 | 530 | 630 | 69/630 | 656 | 824 | 5 | 163 | | | 920 | 128 | 7.5 | 750 000 | 1 620 000 | 16.4 | 480 | 600 | 60/630 | 662 | 888 | 6 | 285 | | 670 | 820 | 69 | 4 | 435 000 | 965 000 | 17.4 | 500 | 630 | 68/670 | 686 | 804 | 3 | 75.4 | | | 900 | 103 | 6 | 675 000 | 1 460 000 | 16.7 | 480 | 560 | 69/670 | 696 | 874 | 5 | 181 | | | 980 | 136 | 7.5 | 765 000 | 1 730 000 | 16.6 | 450 | 530 | 60/670 | 702 | 948 | 6 | 351 | | 710 | 870 | 74 | 4 | 480 000 | 1 100 000 | 17.4 | 480 | 560 | 68/710 | 726 | 854 | 3 | 92.6 | | | 950 | 106 | 6 | 715 000 | 1 640 000 | 16.8 | 450 | 530 | 69/710 | 736 | 924 | 5 | 208 | | 750 | 920 | 78 | 5 | 525 000 | 1 260 000 | 17.4 | 430 | 530 | 68/750 | 770 | 900 | 4 | 110 | | | 1 000 | 112 | 6 | 785 000 | 1 840 000 | 16.7 | 400 | 500 | 69/750 | 776 | 974 | 5 | 245 | | 800 | 980 | 82 | 5 | 530 000 | 1 310 000 | 17.5 | 400 | 480 | 68/800 | 820 | 960 | 4 | 132 | | | 1 060 | 115 | 6 | 825 000 | 2 050 000 | 16.8 | 380 | 450 | 69/800 | 826 | 1 034 | 5 | 275 | **Note** (1) When heavy axial loads are applied, increase d_a and decrease D_a from the above values. #### Dynamic Equivalent Load $P = XF_r + YF_a$ | | 1 6 | 1 | | | | |--------------------------|------|---|----------|-----------------------------|------| | $\frac{f_0 F_a}{C_{0r}}$ | e | $\frac{F_{\mathrm{a}}}{F_{\mathrm{r}}}$ | $\leq e$ | $\frac{F_{ m a}}{F_{ m r}}$ | >e | | C _{0r} | | X | Y | X | Y | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | #### Static Equivalent Load $$\frac{F_a}{F_r} > 0.8$$, $P_0 = 0.6F_r + 0.5F_a$ $$\frac{F_{\rm a}}{F_{\rm r}} \le 0.8, P_0 = F_{\rm r}$$ #### Bore Diameter 10 – 100 mm | | Bearing outer diameter | Bearing width | Basic loa | nd ratings | Recommended | |----------------------|------------------------|----------------------|---------------------|-------------------------------|-------------| | $d \atop ext{(mm)}$ | (mm) | $B \atop ext{(mm)}$ | $C_{\rm r}({ m N})$ | $C_{0\mathrm{r}}(\mathrm{N})$ | fits (1) | | | 26 | 8 | 4 550 | 1 970 | | | 10 | 30
35 | 9
11 | 5 100
8 100 | 2 390
3 450 | | | | 28 | 8 | 5 100 | 2 370 | - | | 12 | 32 | 10 | 6 800 | 3 050 | | | | 37 | 12 | 9 700 | 4 200 | | | | 32 | 9 | 5 600 | 2 830 | | | 15 | 35
42 | 11
13 | 7 650
11 400 | 3 750
5 450 | | | | 35 | 10 | 6 000 | 3 250 | _ | | 17 | 40 | 12 | 9 550 | 4 800 | | | | 47 | 14 | 13 600 | 6 650 | | | 20 | 42
47 | 12
14 | 9 400
12 800 | 5 000
6 600 | | | 20 | 52 | 15 | 15 900 | 7 900 | | | | 47 | 12 | 10 100 | 5 850 | 1 | | 25 | 52 | 15 | 14 000 | 7 850 | | | | 62 | 17 | 20 600 | 11 200 | _ | | 30 | 55
62 | 13
16 | 13 200
19 500 | 8 300
11 300 | | | 30 | 72 | 19 | 26 700 | 15 000 | | | | 62 | 14 | 16 000 | 10 300 | | | 35 | 72 | 17 | 25 700 | 15 300 | | | | 80 | 21 | 33 500 | 19 200 | - | | 40 | 68
80 | 15
18 | 16 800
29 100 | 11 500
17 900 | | | 40 | 90 | 23 | 40 500 | 24 000 | H7 or | | | 75 | 16 | 20 900 | 15 200 | G6 | | 45 | 85
100 | 19
25 | 31 500
53 000 | 20 400
32 000 | | | | 80 | 16 | 21 800 | 16 600 | - | | 50 | 90 | 20 | 35 000 | 23 200 | | | | 110 | 27 | 62 000 | 38 500 | | | | 90 | 18 | 28 300 | 21 200 | | | 55 | 100
120 | 21
29 | 43 500
71 500 | 29 300
44 500 | | | | 95 | 18 | 29 500 | 23 200 | - | | 60 | 110 | 22 | 52 500 | 36 000 | | | | 130 | 31 | 82 000 | 52 000 | _ | | 65 | 100
120 | 18
23 | 30 500
57 500 | 25 200
40 000 | | | 00 | 140 | 33 | 92 500 | 60 000 | | | | 110 | 20 | 38 000 | 31 000 | 1 | | 70 | 125 | 24 | 62 000 | 44 000 | | | | 150 | 35 | 104 000 | 68 000 | - | | 75 | 115
130 | 20
25 | 39 500
66 000 | 33 500
49 500 | | | | 125 | 22 | 47 500 | 40 000 | 1 | | 80 | 140 | 26 | 72 500 | 53 000 | | | 85 | 130 | 22 | 49 500 | 43 000 | | | | 150 | 28 | 84 000 | 62 000 | 4 | | 90 | 140 | 24 | 58 000 | 50 000 | 4 | | 95 | 145 | 24 | 60 500 | 54 000 | 4 | | 100 | 150 | 24 | 60 000 | 54 000 | | | Notes | (1) | Although recommended fits are H7 or G6, G6 is recommended when used under conditions that prioritize insertion under | |-------|-----|--| | | | light pre-load. | ⁽²⁾ Low-contact seal available for seal type bearings, Contact NSK for details. | Bearing number | | | | | | | | | | |-------------------------|-------------|-----------------------|-----------------------|--|--|--|--|--|--| | Basic number(Open type) | Shield type | Contact seal type (2) | Non-contact seal type | | | | | | | | 6000
6200
6300 | ZZ | DDU | vv | | | | | | | | 6001
6201
6301 | ZZ | DDU | vv | | | | | | | | 6002
6202
6302 | ZZ | DDU | VV | | | | | | | | 6003
6203
6303 | ZZ | DDU | vv | | | | | | | | 6004
6204
6304 | ZZ | DDU | VV | | | | | | | | 6005
6205
6305 | ZZ | DDU | VV | | | | | | | | 6006
6206
6306 | ZZ | DDU | VV | | | | | | | | 6007
6207
6307 | ZZ | DDU | VV | | | | | | | | 6008
6208
6308 | ZZ | DDU | vv | | | | | | | | 6009
6209
6309 | ZZ | DDU | vv | | | | | | | | 6010
6210
6310 | ZZ | DDU | vv | | | | | | | | 6011
6211
6311 | ZZ | DDU | vv | | | | | | | | 6012
6212
6312 | ZZ | DDU | vv | | | | | | | | 6013
6213
6313 | zz | DDU | vv | | | | | | | | 6014
6214
6314 | ZZ | DDU | vv | | | | | | | | 6015
6215 | ZZ | DDU | VV | | | | | | | | 6016
6216 | ZZ | DDU | VV | | | | | | | | 6017
6217 | ZZ | DDU | vv | | | | | | | | 6018 | ZZ | DDU | VV | | | | | | | | 6019 | ZZ | DDU | VV | | | | | | | | 6020 | ZZ | DDU | VV | | | | | | | C 046 #### BEARINGS TABLE **NSK** # MAXIMUM TYPE BALL BEARINGS Bore Diameter 25 – 110 mm Open Type
Shielded Type (One Shield) Z Shielded Type (Two Shields) ZZ | | Boundary I | Dimension | s | Basic Load | d Ratings | Limitino | Speeds | | Bearing Number | ers | Abu | tment and Fil | let Dimensio | ns | Mass | |-----|------------|-----------|------------------|--------------------|--------------------|--------------------------|----------------|------------------|----------------------|------------------------|-----------------|-----------------|-----------------|--------------------|---------------| | | (m | | | (N | | (mi | | | | | | (mr | | | (kg) | | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease
Open
Z · ZZ | Open
Z | Open | With
One Shielded | With
Two Shields | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $m{\gamma}_a$ max. | approx. | | 25 | 52 | 15 | 1 | 14 400 | 10 500 | 12 000 | 15 000 | BL 205 | BL 205 Z | BL 205 ZZ | 30 | 32 | 47 | 1 | 0.133 | | | 62 | 17 | 1.1 | 21 500 | 15 500 | 11 000 | 13 000 | BL 305 | BL 305 Z | BL 305 ZZ | 31.5 | 36 | 55.5 | 1 | 0.246 | | 30 | 62 | 16 | 1 | 21 000 | 16 300 | 10 000 | 12 000 | BL 206 | BL 206 Z | BL 206 ZZ | 35 | 38.5 | 57 | 1 | 0.215 | | | 72 | 19 | 1.1 | 27 900 | 20 700 | 9 000 | 11 000 | BL 306 | BL 306 Z | BL 306 ZZ | 36.5 | 42 | 65.5 | 1 | 0.364 | | 35 | 72 | 17 | 1.1 | 27 800 | 22 100 | 9 000 | 11 000 | BL 207 | BL 207 Z | BL 207 ZZ | 41.5 | 44.5 | 65.5 | 1 | 0.307 | | | 80 | 21 | 1.5 | 37 000 | 29 100 | 8 000 | 9 500 | BL 307 | BL 307 Z | BL 307 ZZ | 43 | 44.5 | 72 | 1.5 | 0.486 | | 40 | 80 | 18 | 1.1 | 35 500 | 28 800 | 8 000 | 9 500 | BL 208 | BL 208 Z | BL 208 ZZ | 46.5 | 50 | 73.5 | 1 | 0.394 | | | 90 | 23 | 1.5 | 46 500 | 36 000 | 7 500 | 9 000 | BL 308 | BL 308 Z | BL 308 ZZ | 48 | 52.5 | 82 | 1.5 | 0.685 | | 45 | 85 | 19 | 1.1 | 37 000 | 32 000 | 7 500 | 9 000 | BL 209 | BL 209 Z | BL 209 ZZ | 51.5 | 55.5 | 78.5 | 1 | 0.449 | | | 100 | 25 | 1.5 | 55 500 | 44 000 | 6 300 | 8 000 | BL 309 | BL 309 Z | BL 309 ZZ | 53 | 61.5 | 92 | 1.5 | 0.883 | | 50 | 90
110 | 20
27 | 1.1
2 | 39 000
65 000 | 35 000
52 500 | 6 700
6 000 | 8 500
7 100 | BL 210
BL 310 | BL 210 Z
BL 310 Z | BL 210 ZZ
BL 310 ZZ | 56.5
59 | 60
68 | 83.5
101 | 1 2 | 0.504
1.16 | | 55 | 100 | 21 | 1.5 | 48 000 | 44 000 | 6 300 | 7 500 | BL 211 | BL 211 Z | BL 211 ZZ | 63 | 66.5 | 92 | 1.5 | 0.667 | | | 120 | 29 | 2 | 75 000 | 61 500 | 5 600 | 6 700 | BL 311 | BL 311 Z | BL 311 ZZ | 64 | 72.5 | 111 | 2 | 1.49 | | 60 | 110 | 22 | 1.5 | 58 000 | 54 000 | 5 600 | 6 700 | BL 212 | BL 212 Z | BL 212 ZZ | 68 | 74.5 | 102 | 1.5 | 0.856 | | | 130 | 31 | 2.1 | 85 500 | 71 500 | 5 000 | 6 000 | BL 312 | BL 312 Z | BL 312 ZZ | 71 | 79 | 119 | 2 | 1.88 | | 65 | 120 | 23 | 1.5 | 63 500 | 60 000 | 5 300 | 6 300 | BL 213 | BL 213 Z | BL 213 ZZ | 73 | 80 | 112 | 1.5 | 1.09 | | | 140 | 33 | 2.1 | 103 000 | 89 500 | 4 800 | 5 600 | BL 313 | BL 313 Z | BL 313 ZZ | 76 | 85.5 | 129 | 2 | 2.36 | | 70 | 125 | 24 | 1.5 | 69 000 | 66 000 | 5 000 | 6 000 | BL 214 | BL 214 Z | BL 214 ZZ | 78 | 84 | 117 | 1.5 | 1.19 | | | 150 | 35 | 2.1 | 115 000 | 102 000 | 4 300 | 5 300 | BL 314 | BL 314 Z | BL 314 ZZ | 81 | 92 | 139 | 2 | 2.87 | | 75 | 130 | 25 | 1.5 | 72 000 | 72 000 | 4 500 | 5 600 | BL 215 | BL 215 Z | BL 215 ZZ | 83 | 90 | 122 | 1.5 | 1.29 | | | 160 | 37 | 2.1 | 126 000 | 116 000 | 4 000 | 5 000 | BL 315 | BL 315 Z | BL 315 ZZ | 86 | 98.5 | 149 | 2 | 3.43 | | 80 | 140
170 | 26
39 | 2
2.1 | 84 000
136 000 | 85 000
130 000 | 4 300
3 800 | 5 300
4 500 | BL 216
BL 316 | BL 216 Z
BL 316 Z | BL 216 ZZ
BL 316 ZZ | 89
91 | 95.5
104.5 | 131
159 | 2 2 | 1.61
4.08 | | 85 | 150
180 | 28
41 | 2 | 93 000
147 000 | 93 000
145 000 | 4 000
3 600 | 5 000
4 300 | BL 217
BL 317 | BL 217 Z
BL 317 Z | BL 217 ZZ
BL 317 ZZ | 94
98 | 102
110.5 | 141
167 | 2
2.5 | 1.97
4.77 | | 90 | 160
190 | 30
43 | 2 | 107 000
158 000 | 107 000
161 000 | 3 800
3 400 | 4 500
4 000 | BL 218
BL 318 | BL 218 Z
BL 318 Z | BL 218 ZZ
BL 318 ZZ | 99
103 | 107.5
117 | 151
177 | 2
2.5 | 2.43
5.45 | | 95 | 170 | 32 | 2.1 | 121 000 | 123 000 | 3 600 | 4 300 | BL 219 | BL 219 Z | BL 219 ZZ | 106 | 114 | 159 | 2 | 2.95 | | | 200 | 45 | 3 | 169 000 | 178 000 | 2 800 | 3 600 | BL 319 | BL 319 Z | BL 319 ZZ | 108 | 124 | 187 | 2.5 | 6.4 | | 100 | 180 | 34 | 2.1 | 136 000 | 140 000 | 3 400 | 4 000 | BL 220 | BL 220 Z | BL 220 ZZ | 111 | 121.5 | 169 | 2 | 3.54 | | 105 | 190 | 36 | 2.1 | 148 000 | 157 000 | 3 200 | 3 800 | BL 221 | BL 221 Z | BL 221 ZZ | 116 | 127.5 | 179 | 2 | 4.23 | | 110 | 200 | 38 | 2.1 | 160 000 | 176 000 | 2 800 | 3 400 | BL 222 | — | — | 121 | — | 189 | 2 | 4.84 | **Remark** When using Maximum Type Ball Bearings, please contact NSK. C 048 #### Bore Diameter 4 – 20 mm **MAGNETO BEARINGS** #### Outside Diameter Tolerance (Class N) | | | | | Ur | iits : µn | | | | | | | |---------------------|-------|------|---|-----------|-----------|--|--|--|--|--|--| | Nom
Outs
Diam | side | Sing | Single Plane Mean Outside Diameter $\Delta D_{ m mp}$ | | | | | | | | | | D (n | | E Se | eries | EN Series | | | | | | | | | Over | Incl. | High | Low | High | Low | | | | | | | | | 10 | + 8 | 0 | 0 | - 8 | | | | | | | | 10 | 18 | + 8 | 0 | 0 | - 8 | | | | | | | | 18 | 30 | + 9 | 0 | 0 | - 9 | | | | | | | | 30 | 50 | +11 | 0 | 0 | -11 | | | | | | | #### Dynamic Equivalent Load $P = XF_r + YF_o$ | 1 | AI'r T | L I a | | | |---------------|----------------|---------------|-----|-----| | $F_{\rm a}/I$ | $G_{r} \leq e$ | $F_{\rm a}/I$ | | | | X | Y | X | Y | е | | 1 | 0 | 0.5 | 2.5 | 0.2 | | | Воц | undary Dim
(mm) | ensions | | Basic Loa | | Limiting
(mi | • | Bearing | Numbers | | | ment and F
ensions (m | | Mass
(kg) | |----------------|----------------|--------------------|---------------------|----------------------------|-------------------------|-------------------------|----------------------------|----------------------------|----------------------|-------------------------|---------|-----------------|--------------------------|-------------------------------|-------------------------| | d | D | B,C,T | γ
min. | $oldsymbol{\gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | E Series EN Series | | ı | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | 4
5
6 | 16
16
21 | 5
5
7 | 0.15
0.15
0.3 | 0.1
0.1
0.15 | 1 650
1 650
2 490 | 288
288
445 | 34 000
34 000
30 000 | 40 000
40 000
36 000 | E 4
E 5
E 6 | EN 4
EN 5
EN 6 | | 5.2
6.2
8 | 14.8
14.8
19 | 0.15
0.15
0.3 | 0.005
0.004
0.011 | | 7
8
9 | 22
24
28 | 7
7
8 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 2 490
3 450
4 550 | 445
650
880 | 30 000
28 000
24 000 | 36 000
34 000
30 000 | E 7
E 8
E 9 | EN 7
EN 8
EN 9 | 1 | 9
10
11 | 20
22
26 | 0.3
0.3
0.3 | 0.013
0.014
0.022 | | 10
11
12 | 28
32
32 | 8
7
7 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 4 550
4 400
4 400 | 880
845
845 | 24 000
22 000
22 000 | 30 000
26 000
26 000 | E 10
E 11
E 12 | EN 10
EN 11
EN 12 | 1 | 12
13
14 | 26
30
30 | 0.3
0.3
0.3 | 0.021
0.029
0.028 | | 13
14 | 30
35 | 7
8 | 0.3
0.3 | 0.15
0.15 | 4 400
5 800 | 845
1 150 | 22 000
19 000 | 26 000
22 000 | E 13
— | EN 13
EN 14 | 1 | 15
16 | 28
33 | 0.3
0.3 | 0.021
0.035 | | 15
16 | 35
40
38 | 8
10
10 | 0.3
0.6
0.6 | 0.15
0.3
0.2 | 5 800
7 400
6 900 | 1 150
1 500
1 380 | 19 000
17 000
17 000 | 22 000
20 000
22 000 | E 15
BO 15 | EN 15
—
EN 16 | 1 | 17
19
20 | 33
36
34 | 0.3
0.6
0.6 | 0.034
0.055
0.049 | | 17 | 40
44
44 | 10
11
11 | 0.6
0.6
0.6 | 0.3
0.3
0.3 | 7 400
7 350
7 350 | 1 500
1 500
1 500 | 17 000
16 000
16 000 | 20 000
19 000
19 000 | L 17
BO 17 | EN 17
— | 2 2 2 2 | 21
21
21 | 36
40
40 | 0.6
0.6
0.6 | 0.051
0.080
0.080 | | 18
19 | 40
40 | 9 | 0.6
0.6 | 0.2
0.2 | 5 050
5 050 | 1 030
1 030 | 17 000
17 000 | 20 000
20 000 | E 19 | EN 18
EN 19 | 2 2 | 22
23 | 36
36 | 0.6
0.6 | 0.051
0.049 | | 20 | 47
47 | 12
14 | 1
1 | 0.6
0.6 | 11 000
11 000 | 2 380
2 380 | 14 000
14 000 | 17 000
17 000 | E 20
L 20 | EN 20
— | 2 2 2 | 25
25 | 42
42 | 1 | 0.089
0.101 | **Remarks** 1. The outside diameters of Magneto Bearings Series E always have plus tolerances. 2. When using Magneto Bearings other than E, please contact NSK. INTRODUCTION C 054 BEARINGS TABLE #### **EXTRA SMALL BALL BEARINGS · MINIATURE BALL BEARINGS** | Metric Desig | n | Bore Diameter 1 – 9mm····· | C 058 | |--------------|-------------|-------------------------------------|-------| | | With Flange | Bore Diameter 1 – 9mm····· | C 062 | | Inch Design | | Bore Diameter 1.016 – 9.525mm ····· | C 066 | | | With Flange | Bore Diameter 1.191 – 9.525mm | C 068 | #### **DESIGN AND TYPES** The size ranges of extra small and miniature ball bearings are shown in Table 1. The design, types, and type symbols are shown in Table 2. Those types among them that are listed in the bearing tables are indicated by the shading in Table 2. Table 1 Size Ranges of Bearings Units: mm | | ì | ì | |--------|--|----------------------------| | Design | Extra Small Ball Bearings | Miniature Ball Bearings | | Metric | Outside diameter $D \ge 9$
Bore diameter $d < 10$ | Outside diameter $D<9$ | | Inch | Outside diameter $D \ge 9.525$
Bore diameter $d < 10$ | Outside diameter $D<9.525$ | Please refer to NSK Miniature Ball Bearings (CAT. No. E126) for
details. Table 2 Design, Types, and Type Symbols | | | | Type S | ymbols | | | |--------------------------------------|---|-------------|--------------|--------------|---------------|---| | D | Design · Types | Metric | Inch | Spe | cial | Remarks | | | | Wetric | IIICII | Metric | Inch | | | | | 600 | R | MR | _ | Shielded · sealed
bearings are
available. | | | Thin section | _ | _ | SMT | _ | | | Single-Row Deep Groove Ball Bearings | With flange | F6 0 0 | FR | MF | _ | Shielded · sealed
bearings are
available. | | | Extended inner ring | _ | _ | _ | RW | Shielded bearings are available. | | Singl | With flange
and extended
inner ring | _ | _ | _ | FRW | Shielded bearings are available. | | | For synchro motors | _ | _ | _ | SR00X00 | Shielded bearings are available. | | Pivot Ball
Bearings | | _ | _ | BCF | _ | | | Thrust Ball
Bearings | | _ | _ | F | _ | | | F | Remark Single | -row angula | r contact ba | all bearings | are available | besides those shown | above. #### TOLERANCES AND RUNNING ACCURACY METRIC DESIGN BEARINGSTable 7.2(Pages A128 to A131) The flange tolerances for metric design bearings are listed in Table 3. #### Table 3 Flange Tolerances for Metric Flanged Bearings | (1) Tolerances of Flange Outside | de Diameter | |----------------------------------|-------------| |----------------------------------|-------------| Units : µm | | Nominal F
Outside Dia | • | Deviation of Flange Outside Diameter ${\it extit{ extit{$d$}}}_{D_{1{ m S}}}$ | | | | | | | | | | |---|--------------------------|-------|--|-------------|------|-------------|--|--|--|--|--|--| | | D_1 (mr | n) | (1 |) | 2 | | | | | | | | | 0 | ver | incl. | high | low | high | low | | | | | | | | | 10 | | +220 | -36 | 0 | -36 | | | | | | | | 1 | 10 | 18 | +270 | -43 | 0 | -43 | | | | | | | | 1 | 18 | 30 | +330 | - 52 | 0 | - 52 | | | | | | | **Remarks** ②is applied when the flange outside diameter is used for positioning. (2) Flange Width Tolerances and Running Accuracies Related to Flange Units : µm | Nom
Bearing (
Diam | Outside
eter | Flange | ation of
e Width
C_{18} | Va
Flange | Outside
Genera | on of Bea
e Surface
trix Inclir
ange Bac
S_{D1} | nation | Flange Backface Runout with Raceway S_{ea1} | | | | | | |--------------------------|-----------------|----------------------|---------------------------------|-------------------------------------|-------------------|---|---------|--|---------|---------|---------|---------|---------| | (1111) | (mm) | | Classes 6,5,4,2 | Normal and class 6 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | Class 5 | Class 4 | Class 2 | | over | incl. | high | low | max. | | | | | max. | | max. | | | | 2.5(1) | 6 | Use the ΔB_S | | Use the $\varDelta V_{ m BS}$ | | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | | 6 | 18 | of the same | | tolerance for d of the same bearing | | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | | 18 | 30 | same class | | of the same class | 5 | 2.5 | 1.5 | 8 | 4 | 1.5 | 11 | 7 | 3 | Notes (1) 2.5 mm is included INCH DESIGN BEARINGSTable 7.2 (Pages A128 to A131) The flange tolerances for inch design flanged bearings are listed in Table 7.9(2) (Pages A146 and A147). INSTRUMENT BALL BEARINGSTable 7.9 (Pages A146 and A147) #### RECOMMENDED FITS Please refer to NSK Miniature Ball Bearings (CAT.No.E126). INTERNAL CLEARANCESTable 8.11 (Page A169) #### LIMITING SPEEDS The limiting speeds listed in the bearing tables should be adjusted depending on the bearing toad conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A098 for detailed information. #### Metric Design Bore Diameter 1 – 4 mm Open Type Shielded Type ZZ · ZZ1 | | | Bounda | ry Dimen
(mm) | sions | | Basic Load | | Limiting
(mi | Speeds
n ⁻¹) | | Bearing Numbers | | | Abutn | nent and F
(m | | nsions | | Mass
(g) | | | |----------|------------------|--------------------------|----------------------|-----------------------------|---------------------------|--------------------------|--------------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------|-----------------|--------------------------|------------------------|------------------------------|------------------------|-----------------------------|----------------------------------|------------------------------|---------------------------|--| | <i>d</i> | D | В | B_1 | γ (¹)
min. | r_1 (1) min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease
Open
Z ZZ | Oil
Open
Z | Open | Shielded | Shielded Sealed | | $d_{ m b}$ max. | $D_{\rm a} \atop {\rm max.}$ | $D_{ m b}$ min. | ${\pmb r}_{\rm a}$ max. | $r_{ m a}$ $r_{ m b}$ ax. max. 0 | | approx.
Open Shielded | | | 1 | 3
3
4 | 1
1.5
1.6 | _ | 0.05
0.05
0.1 | | 80
80
138 | 23
23
35 | 130 000
130 000
100 000 | 150 000
150 000
120 000 | 681
MR 31
691 | | = = | 1.4
1.4
1.8 | _ | 2.6
2.6
3.2 | = | 0.05
0.05
0.1 | _ | 0.03
0.04
0.09 | | | | 1.2 | 4 | 1.8 | 2.5 | 0.1 | 0.1 | 138 | 35 | 110 000 | 130 000 | MR 41 X | MR 41 XZZ | | 2.0 | 1.9 | 3.2 | 3.5 | 0.1 | 0.1 | 0.10 | 0.14 | | | 1.5 | 4
5
6 | 1.2
2
2.5 | 2
2.6
3 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 112
237
330 | 33
69
98 | 100 000
85 000
75 000 | 120 000
100 000
90 000 | 681 X
691 X
601 X | 681 XZZ
691 XZZ
601 XZZ | = = | 1.9
2.7
2.7 | 2.1
2.5
3.0 | 3.6
3.8
4.8 | 3.6
4.3
5.4 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 0.07
0.17
0.33 | 0.11
0.20
0.38 | | | 2 | 5
5
6 | 1.5
2
2.3 | 2.3
2.5
3 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 169
187
330 | 50
58
98 | 85 000
85 000
75 000 | 100 000
100 000
90 000 | 682
MR 52 B
692 | 682 ZZ
MR 52 BZZ
692 ZZ | ΞΞ | 2.6
2.8
3.2 | 2.7
2.7
3.0 | 4.4
4.2
4.8 | 4.2
4.4
5.4 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 0.12
0.16
0.28 | 0.17
0.23
0.38 | | | | 6
7
7 | 2.5
2.5
2.8 | 2.5
3
3.5 | 0.15
0.15
0.15 | 0.15
0.15
0.15 | 330
385
385 | 98
127
127 | 75 000
63 000
63 000 | 90 000
75 000
75 000 | MR 62
MR 72
602 | MR 62 ZZ
MR 72 ZZ
602 ZZ | ΞΞ | 3.2
3.2
3.2 | 3.0
3.8
3.8 | 4.8
5.8
5.8 | 5.2
6.2
6.2 | 0.15
0.15
0.15 | 0.15
0.15
0.15 | 0.30
0.45
0.51 | 0.29
0.49
0.58 | | | 2.5 | 6
7
8
8 | 1.8
2.5
2.5
2.8 | 2.6
3.5
—
4 | 0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 208
385
560
550 | 74
127
179
175 | 71 000
63 000
60 000
60 000 | 80 000
75 000
67 000
71 000 | 682 X
692 X
MR 82 X
602 X | 682 XZZ
692 XZZ
—
602 XZZ | | 3.1
3.7
4.1
3.7 | 3.7
3.8
—
4.1 | 5.4
5.8
6.4
6.8 | 5.4
6.2
—
7.0 | 0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 0.23
0.41
0.56
0.63 | 0.29
0.55
—
0.83 | | | 3 | 6
7
8 | 2
2
2.5 | 2.5
3
— | 0.1
0.1
0.15 | 0.1
0.1
— | 208
390
560 | 74
130
179 | 71 000
63 000
60 000 | 80 000
75 000
67 000 | MR 63
683 A
MR 83 | MR 63 ZZ
683 AZZ
— | = = | 3.8
3.8
4.2 | 3.7
4.0
— | 5.2
6.2
6.8 | 5.4
6.4
— | 0.1
0.1
0.15 | 0.1
0.1
— | 0.20
0.32
0.54 | 0.27
0.45
— | | | | 8
9
9 | 3
2.5
3 | 4
4
5 | 0.15
0.2
0.15 | 0.15
0.15
0.15 | 560
570
570 | 179
187
187 | 60 000
56 000
56 000 | 67 000
67 000
67 000 | 693
MR 93
603 | 693 ZZ
MR 93 ZZ
603 ZZ | ΞΞ | 4.2
4.6
4.2 | 4.3
4.3
4.3 | 6.8
7.4
7.8 | 7.3
7.9
7.9 | 0.15
0.2
0.15 | 0.15
0.15
0.15 | 0.61
0.73
0.87 | 0.83
1.18
1.45 | | | | 10
13 | 4
5 | 4
5 | 0.15
0.2 | 0.15
0.2 | 630
1 300 | 218
485 | 50 000
40 000 | 60 000
48 000 | 623
633 | 623 ZZ
633 ZZ | = = | 4.2
4.6 | 4.3
6.0 | 8.8
11.4 | 8.0
11.3 | 0.15
0.2 | 0.15
0.2 | 1.65
3.38 | 1.66
3.33 | | | 4 | 7
7
8
9 | 2
—
2
2.5 | 2.5
3
4 | 0.1
—
0.15
(0.15) | 0.1
0.1
(0.15) | 310
255
395
640 | 115
107
139
225 | 60 000
60 000
56 000
53 000 | 67 000
71 000
67 000
63 000 | MR 74

MR 84
684 A | MR 74 ZZ
MR 84 ZZ
684 AZZ | | 4.8
—
5.2
4.8 |
4.8
5.0
5.2 | 6.2
—
6.8
8.2 |
6.3
7.4
8.1 | 0.1
—
0.15
0.1 | 0.1
0.1
0.1 | 0.22
—
0.36
0.63 | 0.29
0.56
1.01 | | | | 10
11
12 | 3
4
4 | 4
4
4 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 710
960
960 | 270
345
345 | 50 000
48 000
48 000 | 60 000
56 000
56 000 | MR 104 B
694
604 | MR 104 BZZ
694 ZZ
604 ZZ | = = | 5.6
5.2
5.6 | 5.9
5.6
5.6 | 8.4
9.8
10.4 | 8.8
9.9
9.9 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 1.04
1.7
2.25 | 1.42
1.75
2.29 | | | | 13
16 | 5
5 | 5
5 | 0.2
0.3 | 0.2
0.3 | 1 300
1 730 | 485
670 | 40 000
36 000 | 48 000
43 000 | 624
634 | 624 ZZ
634 ZZ1 | = = | 5.6
6.0 | 6.0
7.5 | 11.4
14.0 | 11.3
13.8 | 0.2
0.3 | 0.2
0.3 | 3.03
5.24 | 3.04
5.21 | | **Remark** When using bearings with a rotating outer ring, please contact NSK if they are shielded. C 058 C 059 #### Metric Design Bore Diameter 5 - 9 mm
Shielded Type ZZ · ZZ1 Non-Contact Sealed Type Contact Sealed Type | | | | | | | | | VV | | DD | | | | | | | | | | |---|-------------------------|----------------------------|-------------------------|---------------------------------|-------------------------------------|--|--|--|--------------------------------------|--|---|---|--------------------------|---------------------------------------|------------------------------------|------------------------------|----------------------------------|-------------------------------------|---| | | ı | Boundary
(1 | Dimens | ions | | Basic Loa | • | | ng Speeds (
ase | min ⁻¹)
Oil | | Bearing Numbers | | Abut | ment and F
(m | Fillet Dime | nsions | | Mass
(g) | | d | D | В | B_1 | γ (¹) min. | $ _1^{(1)}$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Open
Z · ZZ
V · VV | D · DD | Open
Z | Open | Shielded Seale | d d
min | | $D_{ m a}$ max. | $D_{ m b}$ min. | ${\it r}_{\rm a}$ max. | $ m \emph{r}_{b}$ max. | approx.
Open Shielded | | 5 | 8
8
9
10
11 | 2

2.5
3

3 | 2.5
3
4
4
5 | 0.1
0.15
0.15
0.15
 | 0.1
0.15
0.15
0.15
0.15 | 310
278
430
430
715
715 | 120
131
168
168
276
281 | 53 000
53 000
50 000
50 000
48 000
45 000 | _
_
_
_
_ | 63 000
63 000
60 000
60 000
56 000
53 000 | MR 85
—
MR 95
MR 105
—
685 | MR 85 ZZ — | - 6
6 | 5.8
2 6.0
2 6.0
6.3
2 6.2 | 7.2
—
7.8
8.8
—
9.8 | 7.4
8.2
8.4
9.8 | 0.1
0.15
0.15
-
0.15 | 0.1
0.15
0.15
0.15
0.15 | 0.26 — 0.34
0.50 0.58
0.95 1.29
— 1.49
1.2 1.96 | | | 13
14 | 4
5 | 4
5 | 0.2
0.2 | 0.2
0.2 | 1 080
1 330 | 430
505 | 43 000
40 000 | 40 000
38 000 | 50 000
50 000 | 695
605 | 695 ZZ VV D
605 ZZ — D | | | 11.4
12.4 | 11.2
12.2 | 0.2
0.2 | 0.2 | 2.45 2.5
3.54 3.48 | | | 16
19 | 5 | 5 | 0.3
0.3 | 0.3
0.3 | 1 730
2 340 | 670
885 | 36 000
32 000 | 32 000
30 000 | 43 000
40 000 | 625
635 | 625 ZZ1 VV D
635 ZZ1 VV D | D 7 | 0 7.5 | 14.0
17.0 | 13.8
16.5 | 0.3
0.3 | 0.3
0.3 | 4.95 4.86
8.56 8.34 | | 6 | 10
12
13 | 2.5
3
3.5 | 3
4
5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 495
715
1 080 | 218
292
440 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | MR 106
MR 126
686 A | MR 106 ZZ1 — -
MR 126 ZZ — D
686 AZZ VV D | | 6 7.2 | 8.8
10.4
11.8 | 9.3
10.9
11.7 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.56 0.68
1.27 1.74
1.91 2.69 | | | 15
17
19
22 | 5
6
6
7 | 5
6
6
7 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 1 730
2 260
2 340
3 300 | 670
835
885
1 370 | 40 000
38 000
32 000
30 000 | 36 000
34 000
30 000
28 000 | 45 000
45 000
40 000
36 000 | 696
606
626
636 | 696 ZZ1 VV D
606 ZZ VV D
626 ZZ1 VV D
636 ZZ VV D | D 8 | 0 8.2
0 8.5 | 13.4
15.0
17.0
20.0 | 13.3
14.8
16.5
19.0 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 3.88 3.72
5.97 6.08
8.15 7.94
14 14 | | 7 | 11
13
14 | 2.5
3
3.5 | 3
4
5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 455
540
1 170 | 201
276
510 | 43 000
40 000
40 000 | _
34 000 | 50 000
48 000
45 000 | MR 117
MR 137
687 | MR 117 ZZ — -
MR 137 ZZ — -
687 ZZ1 VV D | - 8
- 8
D 8 | 6 9.0 | 9.8
11.4
12.8 | 10.5
11.6
12.7 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.62 0.72
1.58 2.02
2.13 2.97 | | | 17
19
22
26 | 5
6
7
9 | 5
6
7
9 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 1 610
2 340
3 300
4 550 | 710
885
1 370
1 970 | 36 000
36 000
30 000
28 000 | 28 000
32 000
28 000
22 000 | 43 000
43 000
36 000
34 000 | 697
607
627
637 | 697 ZZ1 VV D
607 ZZ1 VV D
627 ZZ VV D
637 ZZ1 VV D | D 9 9 9 | 0 9.1
0 10.5 | 15.0
17.0
20.0
24.0 | 14.8
16.5
19.0
22.8 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 5.26 5.12
7.67 7.51
12.7 12.9
24 25 | | 8 | 12
14
16 | 2.5
3.5
4 | 3.5
4
5 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 545
820
1 610 | 274
385
710 | 40 000
38 000
36 000 | —
32 000
28 000 | 48 000
45 000
43 000 | MR 128
MR 148
688 A | MR 128 ZZ1 — -
MR 148 ZZ VV D
688 AZZ1 VV D | | 6 9.2 | 10.8
12.4
14.4 | 11.3
12.8
14.2 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 0.71 0.97
1.86 2.16
3.12 4.02 | | | 19
22
24
28 | 6
7
8
9 | 6
7
8
9 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 2 240
3 300
3 350
4 550 | 910
1 370
1 430
1 970 | 36 000
34 000
28 000
28 000 | 28 000
28 000
24 000
22 000 | 43 000
40 000
34 000
34 000 | 698
608
628
638 | 698 ZZ VV D
608 ZZ VV D
628 ZZ VV D
638 ZZ1 VV D | D 10
D 10
D 10 | 0 10.5
0 12.0 | 17.0
20.0
22.0
26.0 | 16.5
19.0
20.5
22.8 | 0.3
0.3
0.3
0.3 | 0.3
0.3
0.3
0.3 | 7.23 7.18
12.1 12.2
17.2 17.4
28.3 28.6 | | 9 | 17
20
24 | 4
6
7 | 5
6
7 | 0.2
0.3
0.3 | 0.2
0.3
0.3 | 1 330
1 720
3 350 | 665
840
1 430 | 36 000
34 000
32 000 | 24 000
24 000
24 000 | 43 000
40 000
38 000 | 689
699
609 | 689 ZZ1 VV D
699 ZZ1 VV D
609 ZZ VV D | D 11 | 0 12.0 | 15.4
18.0
22.8 | 15.2
17.2
20.5 | 0.2
0.3
0.3 | 0.2
0.3
0.3 | 3.53 4.43
8.45 8.33
14.5 14.7 | | | 26
30 | 8
10 | 8
10 | (0.6)
0.6 | (0.6)
0.6 | 4 550
5 100 | 1 970
2 390 | 28 000
24 000 | 22 000
— | 34 000
30 000 | 629
639 | 629 ZZ VV D
639 ZZ VV - | D 11 | | 24.0
26.0 | 22.8
25.6 | 0.3
0.6 | 0.3
0.6 | 19.5 19.3
36.5 36 | **Note** (1) The values in parentheses are not based on ISO 15. Remarks 1. When using bearings with a rotating outer ring, please contact NSK if they are sealed or shielded. 2. Bearings with snap rings are also available, please contact NSK. #### Metric Design With Flange Bore Diameter 1 – 4 mm Open Type Shielded Type ZZ · ZZ1 | | | | Во | undary
(n | Dimens | sions | | | | Basic Load | Ü | Limiting
(mi | ' | | Bearing Numbers | | Abutme | | illet Dim | ensions | Ma
(g | ass
g) | |----------|-------------------------|-----------------------------------|-----------------------------------|--------------------------|-----------------------|--------------------------|------------------------|------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|--|--|---|--|-----------------|---------------------------------|---------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------| | <i>d</i> | D | D_1 | D_2 | В | B_1 | C_1 | C_2 | γ (¹) min. | $ m \emph{r}_{1}(^{1})$ min. | $C_{ m r}$ | C_{0r} | Grease
Open
Z · ZZ | Oil
Open
Z | Open | Shielded | Sealed | $d_{ m a}$ min. | $d_{ m b}$ max. | ${m \gamma}_{\rm a}$ max. | $ m \emph{r}_{b}$ max. | app
Open | rox.
Shielded | | 1 | 3
4 | 3.8
5 | _ | 1
1.6 | _ | 0.3
0.5 | _ | 0.05
0.1 | _ | 80
140 | 23
36 | 130 000
100 000 | 150 000
120 000 | F 681
F 691 | = | = = | 1.4
1.8 | _ | 0.05
0.1 | _ | 0.04
0.14 | _ | | 1.2 | 4 | 4.8 | _ | 1.8 | _ | 0.4 | _ | 0.1 | _ | 138 | 35 | 110 000 | 130 000 | MF 41 X | _ | | 2.0 | _ | 0.1 | _ | 0.12 | _ | | 1.5 | 4
5
6 | 5
6.5
7.5 | 5
6.5
7.5 | 1.2
2
2.5 | 2
2.6
3 | 0.4
0.6
0.6 | 0.6
0.8
0.8 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 112
237
330 | 33
69
98 | 100 000
85 000
75 000 | 120 000
100 000
90 000 | F 681 X
F 691 X
F 601 X | F 681 XZZ
F 691 XZZ
F 601 XZZ | = = | 1.9
2.7
2.7 | 2.1
2.5
3.0 | 0.05
0.15
0.15 | 0.05
0.15
0.15 | 0.09
0.23
0.42 | 0.14
0.28
0.52 | | 2 | 5
5
6 | 6.1
6.2
7.5 | 6.1
6.2
7.5 | 1.5
2
2.3 | 2.3
2.5
3 | 0.5
0.6
0.6 | 0.6
0.6
0.8 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 169
187
330 | 50
58
98 | 85 000
85 000
75 000 | 100 000
100 000
90 000 | F 682
MF 52 B
F 692 | F 682 ZZ
MF 52 BZZ
F 692 ZZ | = = | 2.6
2.8
3.2 | 2.7
2.7
3.0 | 0.08
0.1
0.15 | 0.08
0.1
0.15 | 0.16
0.21
0.35 | 0.22
0.27
0.48 | | | 6
7
7 | 7.2
8.2
8.5 | —
8.2
8.5 | 2.5
2.5
2.8 | —
3
3.5 | 0.6
0.6
0.7 | 0.6
0.9 | 0.15
0.15
0.15 | —
0.15
0.15 | 330
385
385 | 98
127
127 | 75 000
63 000
63 000 | 90 000
75 000
75 000 | MF 62
MF 72
F 602 | MF 72 ZZ
F 602 ZZ | = = | 3.2
3.2
3.2 | 3.8
3.1 | 0.15
0.15
0.15 | 0.15
0.15 | 0.36
0.52
0.60 | —
0.56
0.71 | | 2.5 | 6
7
8
8 | 7.1
8.5
9.2
9.5 | 7.1
8.5
—
9.5 | 1.8
2.5
2.5
2.8 | 2.6
3.5
—
4 | 0.5
0.7
0.6
0.7 | 0.8
0.9
—
0.9 |
0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 208
385
560
550 | 74
127
179
175 | 71 000
63 000
60 000
60 000 | 80 000
75 000
67 000
71 000 | F 682 X
F 692 X
MF 82 X
F 602 X | F 682 XZZ
F 692 XZZ
—
F 602 XZZ | $\equiv \equiv$ | 3.1
3.7
4.1
3.7 | 3.7
3.8
—
3.5 | 0.08
0.15
0.2
0.15 | 0.08
0.15
—
0.15 | 0.25
0.51
0.62
0.74 | 0.36
0.68
—
0.98 | | 3 | 6
7
8 | 7.2
8.1
9.2 | 7.2
8.1
— | 2
2
2.5 | 2.5
3
— | 0.6
0.5
0.6 | 0.6
0.8
— | 0.1
0.1
0.15 | 0.1
0.1
— | 208
390
560 | 74
130
179 | 71 000
63 000
60 000 | 80 000
75 000
67 000 | MF 63
F 683 A
MF 83 | MF 63 ZZ
F 683 AZZ
— | ΞΞ | 3.8
3.8
4.2 | 3.7
4.0
— | 0.1
0.1
0.15 | 0.1
0.1
— | 0.27
0.37
0.56 | 0.33
0.53
— | | | 8
9
9
10
13 | 9.5
10.2
10.5
11.5
15 | 9.5
10.6
10.5
11.5
15 | 3
2.5
3
4
5 | 4
4
5
4
5 | 0.7
0.6
0.7
1 | 0.9
0.8
1
1 | 0.15
0.2
0.15
0.15
0.2 | 0.15
0.15
0.15
0.15
0.2 | 560
570
570
630
1 300 | 179
187
187
218
485 | 60 000
56 000
56 000
50 000
36 000 | 67 000
67 000
67 000
60 000
43 000 | F 693
MF 93
F 603
F 623
F 633 | F 693 ZZ
MF 93 ZZ
F 603 ZZ
F 623 ZZ
F 633 ZZ | | 4.2
4.6
4.2
4.2
4.6 | 4.3
4.3
4.3
4.3
6.0 | 0.15
0.2
0.15
0.15
0.2 | 0.15
0.15
0.15
0.15
0.2 | 0.70
0.81
1.0
1.85
3.73 | 0.97
1.34
1.63
1.86
3.59 | | 4 | 7
7
8
9 | 8.2
—
9.2
10.3 | 8.2
9.2
10.3 | 2

2
2.5 | 2.5
3
4 | 0.6
0.6
0.6 |
0.6
0.6
1 | 0.1

0.15
(0.15) | 0.1
0.1
(0.15) | 310
255
395
640 | 115
107
139
225 | 60 000
60 000
56 000
53 000 | 67 000
71 000
67 000
63 000 | MF 74
MF 84
F 684 | MF 74 ZZ
MF 84 ZZ
F 684 ZZ | | 4.8
—
5.2
4.8 |
4.8
5.0
5.2 | 0.1

0.15
0.1 | 0.1
0.1
0.1 | 0.29
—
0.44
0.70 |
0.35
0.63
1.14 | | | 10
11
12 | 11.2
12.5
13.5 | 11.6
12.5
13.5 | 3
4
4 | 4
4
4 | 0.6
1
1 | 0.8
1
1 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 710
960
960 | 270
345
345 | 50 000
48 000
48 000 | 60 000
56 000
56 000 | MF 104 B
F 694
F 604 | MF 104 BZZ
F 694 ZZ
F 604 ZZ | = = | 5.6
5.2
5.6 | 5.9
5.6
5.6 | 0.2
0.15
0.2 | 0.15
0.15
0.2 | 1.13
1.91
2.53 | 1.59
1.96
2.53 | | | 13
16 | 15
18 | 15
18 | 5
5 | 5
5 | 1
1 | 1
1 | 0.2
0.3 | 0.2
0.3 | 1 300
1 730 | 485
670 | 40 000
36 000 | 48 000
43 000 | F 624
F 634 | F 624 ZZ
F 634 ZZ1 | = = | 5.6
6.0 | 6.0
7.5 | 0.2
0.3 | 0.2
0.3 | 3.38
5.73 | 3.53
5.62 | **Remark** When using bearings with a rotating outer ring, please contact NSK if they are shielded. C 062 C 063 #### Metric Design With Flange Bore Diameter 5 - 9 mm **■**EXTRA SMALL BALL BEARINGS · MINIATURE BALL BEARINGS | | Op | oen Type | , | _ | | | ded Typ
· ZZ1 | е | | Non-Cor
Sealed 7
VV | | | Contac
Sealed Ty
DD | | | Γ | | | | | | | | | |----------|----------------------|--------------------------|----------------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--|----------------|----------------------|--------------------------|---------------------------|-------------------------------|--------------------------|------------------------------|------------------------------| | | | | Воц | | Dimen:
nm) | sions | | | | Basic Load | 3 | Grease | g Speeds (| min ⁻¹)
Oil | | Bearing Numbers | | | | | and Fille
ns (mm | | Ma
(g | | | <i>d</i> | D | D_1 | D_2 | В | B_1 | C_1 | C_2 | γ
min. | ${m r}_1$ min. | $C_{\rm r}$ | C_{0r} | Open
Z · ZZ
V · VV | D · DD | Open
Z | Open | Shielded | Sea | led | $d_{ m a}$ min. | $d_{ m b}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | $ m \emph{r}_b$ max. | app
Open | rox.
Shielded | | 5 | 8
8
9
10 | 9.2
—
10.2
11.2 | 9.2
10.2
11.6 | 2

2.5
3 |
2.5
3
4 | 0.6

0.6
0.6 | 0.6
0.6
0.8 | 0.1

0.15
0.15 | 0.1
0.15
0.15 | 310
278
430
430 | 120
131
168
168 | 53 000
53 000
50 000
50 000 | _
_
_ | 63 000
63 000
60 000
60 000 | MF 85
MF 95
MF 105 | MF 85 ZZ
MF 95 ZZ1
MF 105 ZZ | = | | 5.8
—
6.2
6.2 | 5.8
6.0
6.0 | 0.1
0.15
0.15 | 0.1
0.15
0.15 | 0.33
—
0.59
1.05 | —
0.41
0.66
1.46 | | | 11
13
14 | 12.5
15
16 | 12.5
15
16 | 3
4
5 | 5
4
5 | 0.8
1
1 | 1
1
1 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 715
1 080
1 330 | 281
430
505 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | F 685
F 695
F 605 | F 685 ZZ
F 695 ZZ
F 605 ZZ | vv
– | DD
DD | 6.2
6.6
6.6 | 6.2
6.6
6.9 | 0.15
0.2
0.2 | 0.15
0.2
0.2 | 1.37
2.79
3.9 | 2.18
2.84
3.85 | | | 16
19 | 18
22 | 18
22 | 5
6 | 5
6 | 1
1.5 | 1
1.5 | 0.3
0.3 | 0.3
0.3 | 1 730
2 340 | 670
885 | 36 000
32 000 | 32 000
30 000 | 43 000
40 000 | F 625
F 635 | F 625 ZZ1
F 635 ZZ1 | VV
VV | DD
DD | 7.0
7.0 | 7.5
8.5 | 0.3
0.3 | 0.3
0.3 | 5.37
9.49 | 5.27
9.49 | | 6 | 10
12
13 | 11.2
13.2
15 | 11.2
13.6
15 | 2.5
3
3.5 | 3
4
5 | 0.6
0.6
1 | 0.6
0.8
1.1 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 495
715
1 080 | 218
292
440 | 45 000
43 000
40 000 | 40 000
38 000 | 53 000
50 000
50 000 | MF 106
MF 126
F 686 A | MF 106 ZZ1
MF 126 ZZ
F 686 AZZ | _
_
vv | DD
DD | 7.2
7.6
7.2 | 7.2 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.65
1.38
2.25 | 0.77
1.94
3.04 | | | 15
17
19
22 | 17
19
22
25 | 17
19
22
25 | 5
6
6
7 | 5
6
6
7 | 1.2
1.2
1.5
1.5 | 1.2
1.2
1.5
1.5 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 1 730
2 260
2 340
3 300 | 670
835
885
1 370 | 40 000
38 000
32 000
30 000 | 36 000
34 000
30 000
28 000 | 45 000
45 000
40 000
36 000 | F 696
F 606
F 626
F 636 | F 696 ZZ1
F 606 ZZ
F 626 ZZ1
F 636 ZZ | VV
VV
VV | DD
DD
DD
DD | 7.6
8.0
8.0
8.0 | 7.9
8.2
8.5
10.5 | 0.2
0.3
0.3
0.3 | 0.2
0.3
0.3
0.3 | 4.34
6.58
9.09
14.6 | 4.26
6.61
9.09
14.7 | | 7 | 11
13
14 | 12.2
14.2
16 | 12.2
14.6
16 | 2.5
3
3.5 | 3
4
5 | 0.6
0.6
1 | 0.6
0.8
1.1 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 455
540
1 170 | 201
276
510 | 43 000
40 000
40 000 |
34 000 | 50 000
48 000
45 000 | MF 117
MF 137
F 687 | MF 117 ZZ
MF 137 ZZ
F 687 ZZ1 | _
_
VV | _
DD | 8.2
8.6
8.2 | 8.0
9.0
8.5 | 0.15
0.2
0.15 | 0.1
0.15
0.15 | 0.72
1.7
2.48 | 0.82
2.23
3.37 | | | 17
19
22 | 19
22
25 | 19
22
25 | 5
6
7 | 5
6
7 | 1.2
1.5
1.5 | 1.2
1.5
1.5 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 1 610
2 340
3 300 | 715
885
1 370 | 36 000
36 000
30 000 | 28 000
32 000
28 000 | 43 000
43 000
36 000 | F 697
F 607
F 627 | F 697 ZZ1
F 607 ZZ1
F 627 ZZ | VV
VV
VV | DD
DD
DD | 9.0
9.0
9.0 | 9.1 | 0.3
0.3
0.3 | 0.3
0.3
0.3 | 5.65
8.66
14.2 | 5.65
8.66
14.2 | | 8 | 12
14
16 | 13.2
15.6
18 | 13.6
15.6
18 | 2.5
3.5
4 | 3.5
4
5 | 0.6
0.8
1 | 0.8
0.8
1.1 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 545
820
1 610 | 274
385
710 | 40 000
38 000
36 000 | 32 000
30 000 | 48 000
45 000
43 000 | MF 128
MF 148
F 688 A | MF 128 ZZ1
MF 148 ZZ
F 688 AZZ | VV
VV | DD
DD | 9.2
9.6
9.6 | 9.0
9.2
10.2 | 0.15
0.2
0.2 | 0.1
0.15
0.2 | 0.82
2.09
3.54 | 1.15
2.39
4.47 | | | 19
22 | 22
25 | 22
25 | 6
7 | 6
7 | 1.5
1.5 | 1.5
1.5 | 0.3
0.3 | 0.3
0.3 | 2 240
3 300 | 910
1 370 | 36 000
34 000 | 28 000
28 000 | 43 000
40 000 | F 698
F 608 | F 698 ZZ
F 608 ZZ | VV
VV | DD
DD | 10.0
10.0 | | 0.3
0.3 | 0.3
0.3 | 8.35
13.4 | 8.3
13.5 | | 9 | 17
20 | 19
23 | 19
23 | 4
6 | 5
6 | 1
1.5 | 1.1
1.5 | 0.2
0.3 | 0.2
0.3 | 1 330
1 720 | 665
840 | 36 000
34 000 | 24 000
24 000 | 43 000
40 000 | F 689
F 699 | F 689 ZZ1
F 699 ZZ1 | VV
VV | DD
DD | 10.6
11.0 | | 0.2
0.3 | 0.2
0.3 | 3.97
9.51 | 4.91
9.51 | **Remark** When using bearings with a rotating outer ring, please contact NSK if they are shielded. #### Inch Design Bore Diameter 1.016 – 9.525 mm Open Type | | Bound | lary Dimens
(mm) | ions | | Basic Loa | d Ratings | | g Speeds | Bearing | Numbers | A | butment a | and Fillet D | imension | S | | lass
(g) | |-------|--------------------------|-------------------------|-------------------------|--------------------|---------------------|-------------------|----------------------------|----------------------------|-------------------------|-----------------------------------|-------------------|-------------------
--------------------|--------------------|-------------------------|----------------------|----------------------| | d | D | В | B_1 | γ
min. | C_{r} | C_{0r} | Grease
Open
Z · ZZ | Oil
Open
Z | Open | Shielded | $d_{ m a}$ min. | $d_{ m b}$ max. | $D_{ m a}$ max. | $D_{ m b}$ min. | ${\pmb{\gamma}}_a$ max. | | prox.
Shielded | | 1.016 | 3.175 | 1.191 | _ | 0.1 | 80 | 23 | 130 000 | 150 000 | R 09 | _ | 1.9 | _ | 2.3 | _ | 0.1 | 0.04 | _ | | 1.191 | 3.967 | 1.588 | 2.380 | 0.1 | 138 | 35 | 110 000 | 130 000 | R 0 | R 0 ZZ | 2.0 | 1.9 | 3.1 | 3.5 | 0.1 | 0.09 | 0.11 | | 1.397 | 4.762 | 1.984 | 2.779 | 0.1 | 231 | 66 | 90 000 | 110 000 | R 1 | R 1 ZZ | 2.2 | 2.3 | 3.9 | 4.1 | 0.1 | 0.15 | 0.19 | | 1.984 | 6.350 | 2.380 | 3.571 | 0.1 | 310 | 108 | 67 000 | 80 000 | R 1-4 | R 1-4 ZZ | 2.8 | 3.9 | 5.5 | 5.9 | 0.1 | 0.35 | 0.50 | | 2.380 | 4.762
4.762
7.938 | 1.588
—
2.779 | 2.380
3.571 | 0.1
0.1
0.15 | 188
143
550 | 60
52
175 | 80 000
80 000
60 000 | 95 000
95 000
71 000 | R 133
—
R 1-5 | R 133 ZZS
R 1-5 ZZ | 3.2
—
3.6 | 3.0
4.1 | 3.9
-
6.7 | 4.2
7.0 | 0.1
0.1
0.15 | 0.10
—
0.60 | —
0.13
0.72 | | 3.175 | 6.350
7.938
9.525 | 2.380
2.779
2.779 | 2.779
3.571
3.571 | 0.1
0.1
0.15 | 283
560
640 | 95
179
225 | 67 000
60 000
53 000 | 80 000
67 000
63 000 | R 144
R 2-5
R 2-6 | R 144 ZZ
R 2-5 ZZ
R 2-6 ZZS | 4.0
4.0
4.4 | 3.9
4.3
4.6 | 5.5
7.1
8.3 | 5.9
7.3
8.2 | 0.1
0.1
0.15 | 0.25
0.55
0.96 | 0.27
0.72
1.13 | | | 9.525
12.700 | 3.967
4.366 | 3.967
4.366 | 0.3
0.3 | 630
640 | 218
225 | 56 000
53 000 | 67 000
63 000 | R 2
R 2A | R 2 ZZ
R 2A ZZ | 5.2
5.2 | 4.8
4.6 | 7.5
10.7 | 8.0
8.2 | 0.3
0.3 | 1.36
3.3 | 1.39
3.23 | | 3.967 | 7.938 | 2.779 | 3.175 | 0.1 | 360 | 149 | 53 000 | 63 000 | R 155 | R 155 ZZS | 4.8 | 5.5 | 7.1 | 7.3 | 0.1 | 0.51 | 0.56 | | 4.762 | 7.938
9.525
12.700 | 2.779
3.175
3.967 | 3.175
3.175
4.978 | 0.1
0.1
0.3 | 360
710
1 300 | 149
270
485 | 53 000
50 000
43 000 | 63 000
60 000
53 000 | R 156
R 166
R 3 | R 156 ZZS
R 166 ZZ
R 3 ZZ | 5.6
5.6
6.8 | 5.5
5.9
6.5 | 7.1
8.7
10.7 | 7.3
8.8
11.2 | 0.1
0.1
0.3 | 0.39
0.81
2.21 | 0.42
0.85
2.79 | | 6.350 | 9.525
12.700 | 3.175
3.175 | 3.175
4.762 | 0.1
0.15 | 420
1 080 | 204
440 | 48 000
40 000 | 56 000
50 000 | R 168B
R 188 | R 168 BZZ
R 188 ZZ | 7.2
7.6 | 7.0
7.4 | 8.7
11.5 | 8.9
11.6 | 0.1
0.15 | 0.58
1.53 | 0.62
2.21 | | | 15.875
19.050 | 4.978
5.558 | 4.978
7.142 | 0.3
0.4 | 1 610
2 620 | 660
1 060 | 38 000
36 000 | 45 000
43 000 | R 4B
R 4AA | R 4B ZZ
R 4AA ZZ | 8.4
9.4 | 8.4
9.0 | 13.8
16.0 | 13.8
16.6 | 0.3
0.4 | 4.5
7.48 | 4.43
9.17 | | 7.938 | 12.700 | 3.967 | 3.967 | 0.15 | 540 | 276 | 40 000 | 48 000 | R 1810 | R 1810 ZZ | 9.2 | 9.0 | 11.5 | 11.6 | 0.15 | 1.56 | 1.48 | | 9.525 | 22.225 | 5.558 | 7.142 | 0.4 | 3 350 | 1 410 | 32 000 | 38 000 | R 6 | R 6 ZZ | 12.6 | 11.9 | 19.2 | 20.0 | 0.4 | 9.02 | 11 | **Remarks** 1. When using bearings with a rotating outer ring, please contact NSK if they are shielded. 2. Bearings with double shields (ZZ, ZZS) are also available with single shields (Z, ZS). C 066 #### Inch Design With Flange Bore Diameter 1.191 – 9.525 mm Open Type Shielded Type ZZ · ZZS | | | | Boundary D | | | | | | d Ratings | Lim | niting S | Speeds
⁻¹) | Beari | ing Numbers | | ment and
ensions (r | | Ma
(ç | ass
g) | |----------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------|--------------------------|-------------------------|----------------------------------|----------|--------------------------------------|------------------------------------|---|--------------------------|--------------------------|---------------------------|------------------------------|------------------------------| | <i>d</i> | D | D_1 | В | B_1 | C_1 | C_2 | r
min. | $C_{ m r}$ | C_{0r} | Greasi
Open
Z · ZZ | 1 | Oil
Open
Z | Open | Shielded | $d_{ m a}$ min. | $d_{ m b}$ max. | ${\it r}_{\rm a}$ max. | app
Open | rox.
Shielded | | 1.191 | 3.967 | 5.156 | 1.588 | 2.380 | 0.330 | 0.790 | 0.1 | 138 | 35 | 110 0 | 00 | 130 000 | FR 0 | FR 0 ZZ | 2.0 | 1.9 | 0.1 | 0.11 | 0.16 | | 1.397 | 4.762 | 5.944 | 1.984 | 2.779 | 0.580 | 0.790 | 0.1 | 231 | 66 | 90 00 | 00 | 110 000 | FR 1 | FR 1 ZZ | 2.2 | 2.3 | 0.1 | 0.20 | 0.25 | | 1.984 | 6.350 | 7.518 | 2.380 | 3.571 | 0.580 | 0.790 | 0.1 | 310 | 108 | 67 0 | 00 | 80 000 | FR 1-4 | FR 1-4 ZZ | 2.8 | 3.9 | 0.1 | 0.41 | 0.58 | | 2.380 | 4.762
4.762
7.938 | 5.944
5.944
9.119 | 1.588
—
2.779 |
2.380
3.571 | 0.460
—
0.580 |
0.790
0.790 | 0.1
0.1
0.15 | 188
143
550 | 60
52
175 | 80 00
80 00
60 00 | 00 | 95 000
95 000
71 000 | FR 133
—
FR 1-5 | FR 133 ZZS
FR 1-5 ZZ | 3.2
—
3.6 | 3.0
4.1 | 0.1
0.1
0.15 | 0.13
—
0.68 | 0.19
0.82 | | 3.175 | 6.350
7.938
9.525
9.525 | 7.518
9.119
10.719
11.176 | 2.380
2.779
2.779
3.967 | 2.779
3.571
3.571
3.967 | 0.580
0.580
0.580
0.760 | 0.790
0.790
0.790
0.760 | 0.1
0.1
0.15
0.3 | 283
560
640
630 | 95
179
225
218 | 67 00
60 00
53 00
56 00 | 00
00 | 80 000
67 000
63 000
67 000 | FR 144
FR 2-5
FR 2-6
FR 2 | FR 144 ZZ
FR 2-5 ZZ
FR 2-6 ZZS
FR 2 ZZ | 4.0
4.0
4.4
5.2 | 3.9
4.3
4.6
4.8 | 0.1
0.1
0.15
0.3 | 0.31
0.62
1.04
1.51 | 0.35
0.81
1.25
1.55 | | 3.967 | 7.938 | 9.119 | 2.779 | 3.175 | 0.580 | 0.910 | 0.1 | 360 | 149 | 53 0 | 00 | 63 000 | FR 155 | FR 155 ZZS | 4.8 | 5.5 | 0.1 | 0.59 | 0.67 | | 4.762 | 7.938
9.525
12.700 | 9.119
10.719
14.351 | 2.779
3.175
4.978 | 3.175
3.175
4.978 | 0.580
0.580
1.070 | 0.910
0.790
1.070 | 0.1
0.1
0.3 | 360
710
1 300 | 149
270
485 | 53 00
50 00
43 00 | 00 | 63 000
60 000
53 000 | FR 156
FR 166
FR 3 | FR 156 ZZS
FR 166 ZZ
FR 3 ZZ | 5.6
5.6
6.8 | 5.5
5.9
6.5 | 0.1
0.1
0.3 | 0.47
0.90
2.97 | 0.53
0.98
3.09 | | 6.350 | 9.525
12.700
15.875 | 10.719
13.894
17.526 | 3.175
3.175
4.978 | 3.175
4.762
4.978 | 0.580
0.580
1.070 | 0.910
1.140
1.070 | 0.1
0.15
0.3 | 420
1 080
1 610 | 204
440
660 | 48 00
40 00
38 00 | 00 | 56 000
50 000
45 000 | FR 168B
FR 188
FR 4B | FR 168 BZZ
FR 188 ZZ
FR 4B ZZ | 7.2
7.6
8.4 | 7.0
7.4
8.4 | 0.1
0.15
0.3 | 0.66
1.64
4.78 | 0.75
2.49
4.78 | | 7.938 | 12.700 | 13.894 | 3.967 | 3.967 | 0.790 | 0.790 | 0.15 | 540 | 276 | 40 00 | 00 | 48 000 | FR 1810 | FR 1810 ZZ | 9.2 | 9.0 | 0.15 | 1.71 | 1.63 | | 9.525 | 22.225 | 24.613 | 7.142 | 7.142 | 1.570 | 1.570 | 0.4 | 3 350 | 1 410 | 32 0 | 00 | 38 000 | FR 6 | FR 6 ZZ | 12.6 | 11.9 | 0.4 | 10.1 | 12.1 | **Remarks** 1. When using bearings with a rotating outer ring, please contact NSK if they are shielded. 2. Bearings with double shields (ZZ, ZZS) are also available with single shields (Z, ZS). C 068 | INTRODUCTION C 072 | |--| | TECHNICAL DATA | | Free Space of Angular Contact Ball Bearings c 078 | | Dynamic Equivalent Load of Triplex Angular Contact Ball Bearingsc 080 | | Angular Clearances in Double-Row Angular Contact Ball Bearingsc 082 | | Relationship between Radial and Axial Clearances in Double-Row Angular Contact Ball Bearings C 084 | | BEARINGS TABLE | | Single-Row and Matched Angular Contact Ball Bearings Bore Diameter 10 – 200 mm······ C 086 | | Double-Row Angular Contact Ball Bearings | | Bore Diameter 10 – 85 mm C 106 | | Four-Point Contact Ball Bearings | Bore Diameter 30 – 200 mm------ C 108 Contact angle **BEARINGS TABLE** #### **DESIGN, TYPES, AND FEATURES** #### SINGLE-ROW ANGULAR CONTACT BALL BEARINGS Since these bearings have a contact angle, they can sustain significant axial loads in one direction together with radial loads. Because of their design, when a radial load is applied, an axial force component is produced; therefore, two opposed bearings or a combination of more than two must be used. Since the rigidity of single-row angular contact ball bearings can be increased by preloading, they are often used in the main spindles of machine tools, for which high running accuracy is required. (Refer to Chapter 9, Preload, Page A192). Usually, the cages for angular contact ball bearings with a contact angle of 30° (Symbol A) or 40°(Symbol B) are in accordance with Table 1, but depending on the application, machined synthetic resin cages or molded polyamide resin cages are also used. The basic load ratings given in the bearing tables are based on the standard cages. Though the figures in the bearing tables (Pages C086 to C101; bearing bore diameters of 10 to 120) show bearings with single-shoulder-type inner rings, both-shoulder-type bearings are also available. Please consult NSK for more detailed information. Table 1 Features of Single-Row Angular Contact Ball Bearings | Cage | Material | Steel | Nylo | n 46 | L-PPS resin | Bra | iss | |----------|--------------------|-------------|------|------|-------------|---------|-------| | Spec. | Method | pressed | Mol | ded | Molded | macl | nined | | | Symbols | W | TYN | T85 | T7 | Omitted | MR | | Features |
High Load Capacity | 0 | 0 | 0 | 0 | 0 | 0 | | | High-Speed | \triangle | 0 | 0 | 0 | Δ | 0 | | | High-Temperature | 0 | Δ | Δ | 0 | 0 | 0 | | | Vibration | Δ | Δ | Δ | Δ | 0 | 0 | In addition, for bearings with the same serial number, if the type of cages are different, the number of balls may also be different. In such a case, the load rating will differ from the one listed in the bearing tables. Angular Contact Ball Bearings with contact angles of 15° (Symbol **C**) and 25° (Symbol **A5**) are primarily for high precision or high speed applications, and molded polyamide cages (Symbol TYN) or machined brass cages or synthetic resin cages (Symbol T) are used. The maximum operating temperature of molded polyamide cages is 150°C. #### MATCHED ANGULAR CONTACT BALL BEARINGS The types and features of matched angular contact ball bearings are shown in Table 2. Table 2 Types and Features of Matched Angular Contact Ball Bearings | Figure | Arrangement | Features | |-------------------|--|---| | a | Back-to-back
(DB)
(Example)
7208 A DB | Radial loads and axial loads in both directions can be sustained. Since the distance between the effective load centers \boldsymbol{a}_0 is big, this type is suitable if moments are applied. | | -a ₀ - | Face-to-face
(DF)
(Example)
7208 B DF | Radial loads and axial loads in both directions can be sustained. Compared with the DB Type, the distance between the effective load centers is small, so the capacity to sustain moments is inferior to the DB Type. | | | Tandem
(DT)
(Example)
7208 A DT | Radial loads and axial loads in one direction can be sustained. Since two bearings share the axial load, this arrangement is used when the load in one direction is heavy. | #### NSKHPS™ ANGULAR CONTACT BALL BEARINGS In comparison with standard angular contact ball bearings, these bearings have high capacity, high limiting speed, and highly accurate universal matching as the features. The molded polyamide cages are standard specification for the HPS type. #### ☐ Formulation of Bearing Numbers Single-Row Angular Contact Ball Bearings Matched Angular Contact Ball Bearings Bearing type symbol 7 : Single-Row Angular Contact Ball Bearings, Matched Angular Contact Ball Bearings 2 Dimension symbol 2:02 Series. 3:03 Series. 9:19 Series. 0:10 Series 3Bore number Less than 03, Bearing bore 00: 10mm, 01: 12mm, 02: 15mm, 03: 17mm Over 04, Bearing bore Bore number $\times 5$ (mm) (4) Contact angle symbol C: 15°, A5: 25°, A: 30°, B: 40° 5 Internal design symbol EA: High Load Capacity 6 Cage symbol W: Pressed Steel Cage, MR: Machined Brass Cage (Ball guided), No symbol: Machined Brass Cage (Inner Ring guided), TYN: Polyamide Resin Cage, T85: Polyamide 46 Resin Cage, T7: L-PPS Resin Cage 7 Arrangement symbol SU: Universal arrangement (Single row), DU: Universal arrangement (Double row), DB: Back-to-back arrangement, DF: Face-to-face arrangement, DT: Tandem arrangement EL: Extra light preload, L: Light preload, M: Medium preload, H: Heavy preload ®Preload symbol Axial internal Omitted: CN clearance, C3: Clearance greater than CN, C4: Clearance greater than C3, clearance symbol CNB: CN Clearance equivalent (Universal arrangement) #### **DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS** This is basically a back-to-back mounting of two single-row angular contact ball bearings, but their inner and outer rings are each integrated into one. Axial loads in both directions can be sustained, and the capacity to sustain moments is good. This type is used as fixed-end bearings. Their cages are pressed steel. #### ☐ Formulation of Bearing Numbers **Double-Row Angular Contact Ball Bearings** 2 Dimension symbol 2:02 Series ③Bore number Less than 03, Bearing bore 00: 10mm, 01: 12mm, 02: 15mm, 03: 17mm Over 04, Bearing bore Bore number $\times 5$ (mm) #### FOUR-POINT CONTACT BALL BEARINGS The inner ring is split radially into two pieces. Their design allows one bearing to sustain significant axial loads in either direction. The contact angle is 35°, so the axial load capacity is high. This type is suitable for carrying pure axial loads or combined loads where the axial loads are high. The cages are made of machined brass. #### ☐ Formulation of Bearing Numbers Four-Point Contact Ball Bearings (1) Bearing type symbol QJ: Four-Point Contact Ball Bearings 2 Dimension symbol 10:10 Series, 2:02 Series, 3:03 Series (3)Bore number Less than 03. Bearing bore 00: 10mm, 01: 12mm, 02: 15mm, 03: 17mm Over 04, Bearing bore Bore number $\times 5$ (mm) M: Machined Brass Cage 4 Cage symbol (5)Internal clearance symbol C2: Clearance less than CN. Omitted: CN clearance. C3: Clearance greater than CN, C4: Clearance greater than C3 **BEARINGS TABLE** Units: um #### PRECAUTIONS FOR USE OF ANGULAR CONTACT BALL BEARINGS Under severe operating conditions where the speed and temperature are close to their limits, lubrication is marginal, vibration and moment loads are heavy, they may not be suitable, particularly for certain types of cages. In such a case, please consult with NSK beforehand. And if the load on angular contact ball bearings becomes too small, or if the ratio of the axial and radial loads for matched bearings exceeds 'e' (e is listed in the bearings tables) during operation, slippage occurs between the balls and raceways, which may result in smearing. Especially with large bearings since the weight of the balls and cage is high. If such load conditions are expected, please consult with NSK for selection of the bearings. #### TOLERANCES AND RUNNING ACCURACY | SINGLE-ROW ANGULAR CONTACT | |---| | BALL BEARINGSTable 7.2 (Pages A128 to A131) | | NSKHPS ANGULAR CONTACT BALL BEARINGS | | Tolerance for Dimensions: Class 6, | | Running Accuracy: Class 5Table 7.2 (Pages A128 to A131) | | MATCHED ANGULAR CONTACT | | BALL BEARINGSTable 7.2 (Pages A128 to A131) | | DOUBLE-ROW ANGULAR CONTACT | | BALL BEARINGSTable 7.2 (Pages A128 to A131) | | FOUR-POINT CONTACT BALL | | BEARINGS Table 7.2 (Pages A128 to A131) | | | #### REC | COMMENDED FITS | | |---|--| | SINGLE-ROW ANGULAR CONTACT BALL
BEARINGS AND HPS ANGULAR CONTACT | | | BALL BEARINGS | | | MATCHED ANGULAR CONTACT BALL BEARINGS. | | | DOUBLE-ROW ANGULAR CONTACT BALL | Table 8.5 (Page A165) | | BEARINGS | Table 8.3 (Page A164)
Table 8.5 (Page A165) | | FOUR-POINT CONTACT BALL BEARINGS | Table 8.3 (Page A164)
Table 8.5 (Page A165) | #### INTERNAL CLEARANCES #### MATCHED ANGULAR CONTACT BALL BEARINGS..... Table 8.18 (Page A174) Matched angular contact ball bearings with precision better than P5 are primarily used in the main spindles of machine tools, so they are used with a preload for rigidity. For convenience of selection, internal clearances are adjusted to produce Very Light, Light, Medium, and Heavy Preloads. Their fitting is also special. Concerning these matters, please refer to Tables 9.1 and 9.5 (Pages A194 and A197). The clearance (or preload) of matched bearings is obtained by axially tightening a pair of bearings till the side faces of their inner or outer rings are pressed against each other. #### **NSKHPS ANGULAR CONTACT BALL BEARINGS** Axial Internal Clearance (Measured Clearances) | Nominal Bo | re Diameter | | Axial Interr | nal Clearan | ce | |------------|-------------|------|--------------|-------------|------| | d (r | nm) | CI | VВ | G | A | | over | incl. | min. | max. | min. | max. | | 12 | 18 | 17 | 25 | | | | 18 | 18 30 | | 28 | -2 | 6 | | 20 | EΛ | 24 | 22 | 1 | | 29 41 #### **DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS** For the clearance in double-row angular contact ball bearings, please consult with FOUR-POINT CONTACT BALL BEARINGS.....Table 8.19 (Page A174) #### LIMITING SPEEDS (Grease/Oil) In cases of single-row and matched angular contact ball bearings, The limiting speeds (grease) and limiting speeds (oil) listed in the bearing table are for bearings with standard cage. For those with option cages, limiting speeds (grease/oil) may differ depending on cages. Please consult with NSK. For example, limiting speeds (grease/oil) of machined cage (No symbol) is 1.25 times higher than pressed cage. The limiting speeds of bearings with contact angles of 15° (Symbol C) and 25° (Symbol A5) are for bearings with precision of P5 and better (with machined synthetic-resin cages (T) or molded polyamide cages (TYN)). The limiting speeds listed in the bearing tables should be adjusted depending on the bearing load conditions. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to Page A098 for detailed information. **BEARINGS TABLE** #### **TECHNICAL DATA** #### Free Space of Angular Contact Ball Bearings Angular contact ball bearings are used in various components, such as spindles of machine tools, vertical pump motors, and worm gear reducers. This kind of bearing is used mostly with grease lubrication. But such grease lubrication may affect the bearing in terms of temperature rise or durability. To allow a bearing to demonstrate its full performance, it is essential to fill the bearing with bearing's free space. The angular ball bearing is available in various kinds which are independent of the combinations of bearing series, contact angle, and cage type. The free space of the bearing used most frequently is described below. Table 1 shows the free space of a bearing with a pressed cage for general use and Table 2 shows that of a bearing with a high-tension brass machined cage. The contact angle symbols A, B, and C in each table refer to the nominal contact angle of 30°, 40°, and
15° of each bearing. the proper amount of a suitable grease. A prerequisite for this job is a knowledge of the Table 1 Free Space of Angular Contact Ball Bearing (1) (With Pressed Steel Cage) Units: cm3 | | | | | Ollits, CIII | |---------------------|-------|----------------|-----------------|--------------| | | | Bearing f | ree space | | | Bearing
bore No. | Beari | ng series — Co | ontact angle sy | mbol | | 5010 140. | 72-A | 72-B | 73-A | 73-B | | 00 | 1.5 | 1.4 | 2.9 | 2.8 | | 01 | 2.1 | 2.0 | 3.7 | 3.5 | | 02 | 2.8 | 2.7 | 4.8 | 4.6 | | 00 | 0.7 | 0.0 | 0.0 | F 0 | | 03 | 3.7 | 3.6 | 6.2 | 5.9 | | 04 | 6.2 | 5.9 | 8.4 | 8.0 | | 05 | 7.8 | 7.4 | 13 | 12 | | | | | | | | 06 | 12 | 11 | 20 | 19 | | 07 | 16 | 15 | 26 | 24 | | 08 | 20 | 19 | 36 | 34 | | | | | | | | 09 | 25 | 24 | 48 | 45 | | 10 | 28 | 27 | 63 | 60 | | | | | | | Table 2 Free Space of Angular Contact Ball Bearing (2) (With High-Tension Brass Machined Cage) Units: cm3 | | | | Bearing free space | | | |----------|------|--------------|-----------------------|--------------|------| | Bearing | | Bearing s | series — Contact angl | e symbol | | | bore No. | 70-C | 72-A
72-C | 72-B | 73-A
73-C | 73-B | | 00 | 0.9 | 1.0 | 1.0 | 2.2 | 2.1 | | 01 | 0.9 | 1.6 | 1.6 | 2.5 | 2.5 | | 02 | 1.2 | 1.9 | 1.9 | 3.4 | 3.3 | | 03 | 1.6 | 2.7 | 2.7 | 4.6 | 4.4 | | 04 | 3.0 | 4.7 | 4.2 | 6.1 | 5.9 | | 05 | 3.5 | 6.0 | 5.3 | 9.2 | 9.0 | | 06 | 4.3 | 8.5 | 8.1 | 14 | 13 | | 07 | 6.5 | 12 | 11 | 18 | 17 | | 08 | 8.3 | 14 | 14 | 25 | 24 | | 09 | 10 | 18 | 17 | 34 | 33 | | 10 | 11 | 20 | 20 | 45 | 44 | | 11 | 16 | 26 | 25 | 57 | 55 | | 12 | 17 | 33 | 31 | 71 | 69 | | 13 | 18 | 38 | 37 | 87 | 83 | | 14 | 24 | 43 | 42 | 107 | 103 | | 15 | 24 | 47 | 45 | 129 | 123 | | 16 | 34 | 58 | 57 | 152 | 146 | | 17 | 37 | 71 | 70 | 179 | 172 | | 18 | 44 | 88 | 85 | 207 | 201 | | 19 | 44 | 105 | 105 | 261 | 244 | | 20 | 47 | 127 | 127 | 282 | 278 | C 078 C 079 ## Dynamic Equivalent Load of Triplex Angular Contact Ball Bearings Three separate single-row bearings may be used side by side as shown in the figure when angular contact ball bearings are to be used to carry a large axial load. There are three patterns of combination, which are expressed by combination symbols of DBD, DFD, and DTD. As in the case of single-row and double-row bearings, the dynamic equivalent load, which is determined from the radial and axial loads acting on a bearing, is used to calculate the fatigue life for these combined bearings. Assuming the dynamic equivalent radial load as $P_{\rm r}$, the radial load as $F_{\rm s}$, and axial load as $F_{\rm s}$, the relationship between the dynamic equivalent radial load and bearing load may be approximated as follows: The axial load factor varies with the contact angle. In an angular contact ball bearing, whose contact angle is small, the contact angle varies substantially when the axial load increases. A change in the contact angle can be expressed by the ratio between the basic static load rating $C_{\rm or}$ and axial load $F_{\rm a}$. Accordingly, for the angular contact ball bearing with a contact angle of 15°, the axial load factor at a contact angle corresponding to this ratio is shown. If the angular contact ball bearings have contact angles of 25°, 30° and 40°, the effect of change in the contact angle on the axial load factor may be ignored and thus the axial load factor is assumed as constant. | Arrangement | Load direction | |--|---| | 3 row matched stack, axial load is supported by 2 rows. (Symbol DBD or DFD) | DBD F_r F_a DFD F_r F_r | | 3 row matched stack, axial load is supported by 1 row. (Symbol DBD or DFD) | DBD F _r F _a F _r DFD F _r | | 3 row tandem matched stack (Symbol) DTD | DTD F _r | **BEARINGS TABLE** Table 1 Factors \boldsymbol{X} and \boldsymbol{Y} of Triplex Angular Contact Ball Bearing | Contact angle | j | $\frac{C_{0r}}{jF_a}$ | $\frac{F_{\rm a}}{F_{\rm r}}$ | $\leq e$ | $\frac{F_{\rm a}}{F_{ m r}}$ | >e | e | Basic load
3 row bal | l rating of
I bearings | |---------------|-----|-----------------------|-------------------------------|----------|------------------------------|------|------|-------------------------|---------------------------| | α | | J1 a | X | Y | X | Y | | $C_{\rm r}$ | C_{0r} | | | | 5 | | 0.64 | | 1.46 | 0.51 | | | | | | 10 | | 0.70 | | 1.61 | 0.47 | | | | | | 15 | | 0.74 | | 1.70 | 0.44 | | | | 15° | 1.5 | 20 | 1 | 0.76 | 0.58 | 1.75 | 0.42 | | | | | | 25 | | 0.78 | | 1.81 | 0.41 | 2.16 times | 3 times | | | | 30 | | 0.80 | | 1.83 | 0.40 | of single
bearing | of single
bearing | | | | 50 | | 0.83 | | 1.91 | 0.39 | Dearing | bearing | | 25° | _ | _ | 1 | 0.48 | 0.54 | 1.16 | 0.68 | | | | 30° | _ | _ | 1 | 0.41 | 0.52 | 1.01 | 0.80 | | | | 40° | _ | _ | 1 | 0.29 | 0.46 | 0.76 | 1.14 | | | | | | 5 | | 2.28 | | 2.37 | 0.51 | | | | | | 10 | | 2.51 | | 2.61 | 0.47 | | | | | | 15 | | 2.64 | | 2.76 | 0.44 | | | | 15° | 3 | 20 | 1 | 2.73 | 0.95 | 2.85 | 0.42 | | | | | | 25 | | 2.80 | | 2.93 | 0.41 | 2.16 times | 3 times | | | | 30 | | 2.85 | | 2.98 | 0.40 | of single
bearing | of single
bearing | | | | 50 | | 2.98 | | 3.11 | 0.39 | Dearing | Dearing | | 25° | _ | _ | 1 | 1.70 | 0.88 | 1.88 | 0.68 | | | | 30° | _ | _ | 1 | 1.45 | 0.84 | 1.64 | 0.80 | | | | 40° | _ | _ | 1 | 1.02 | 0.76 | 1.23 | 1.14 | | | | | | 5 | | | | 1.10 | 0.51 | | | | | | 10 | | | | 1.21 | 0.47 | | | | | | 15 | | | | 1.28 | 0.44 | | | | 15° | 1 | 20 | 1 | 0 | 0.44 | 1.32 | 0.42 | | | | | | 25 | | | | 1.36 | 0.41 | 2.16 times | 3 times | | | | 30 | | | | 1.38 | 0.40 | of single
bearing | of single
bearing | | | | 50 | | | | 1.44 | 0.39 | Dearing | Dearing | | 25° | _ | _ | 1 | 0 | 0.41 | 0.87 | 0.68 | | | | 30° | _ | _ | 1 | 0 | 0.39 | 0.76 | 0.80 | | | | 40° | _ | _ | 1 | 0 | 0.35 | 0.57 | 1.14 | | | C 080 #### **Angular Clearances in Double-Row Angular Contact Ball Bearings** The angular clearance in double-row bearings is defined in exactly the same way as for single-row bearings; i.e., with one of the bearing rings fixed, the angular clearance is the greatest possible angular displacement of the axis of the other ring. Since the angular clearance is the greatest total relative displacement of the two ring axes, it is twice the possible angle of inner and outer ring movement (the maximum angular displacement in one direction from the center without creating a moment). The relationship between axial and angular clearance for double-row angular contact ball bearings is given by Equation (1) below. $$\Delta_{a}=2m_{0}\left\{\sin\alpha_{0}+\frac{\theta R_{i}}{2m_{0}}-\sqrt{1-\left(\cos\alpha_{0}+\frac{\theta l}{4m_{0}}\right)^{2}}\right\}$$(1) where, Δ_a : Axial clearance (mm) m_0 : Distance between inner and outer ring groove curvature centers, $m_0 = r_e + r_i - D_w \text{ (mm)}$ $r_{\rm e}$: Outer-ring groove radius (mm) r_i : Inner-ring groove radius (mm) α_0 : Initial contact angle (°) θ : Angular clearance (rad) R_i : Distance between shaft center and innerring groove curvature center (mm) l : Distance between left and right groove centers of inner-ring (mm) The above equation is shown plotted in Fig. 1 for NSK double-row angular contact ball bearings series 52, 53, 32, and 33. The relationship between radial clearance Δ_r and axial clearance Δ_a for double-row angular contact ball bearings was explained in pages C086 and C087. Based on those equations, Fig. 2 shows the relationship between angular clearance θ and radial clearance Δ_r . Fig. 1 Relationship between Axial and Angular Clearances Fig. 2 Relationship between Radial and Angular Clearances C 082 C 083 ## Relationship between Radial and Axial Clearances in Double-Row Angular Contact Ball Bearings The relationship between the radial and axial internal clearances in double-row angular contact ball bearings can be determined geometrically as shown in Fig. 1 below. Fig. 1 where, $\Delta_{\rm r}$: Radial clearance (mm) - Δ_a : Axial clearance (mm) - α₀: Initial contact angle, inner or outer ring displaced axially - α_R : Initial contact angle, inner or outer ring displaced radially - O_e: Center of outer-ring groove curvature (outer ring fixed) - O₁₀: Center of inner-ring groove curvature (inner ring displaced axially) - O_{iR}: Center of inner-ring groove curvature (inner ring displaced radially) - m_0 : Distance between inner and outer ring groove-curvature centers, $m_0 = r_t + r_c D_w$ - $D_{\rm w}$: Ball diameter (mm) - r_i : Radius of inner-ring groove (mm) - $r_{\rm e}$: Radius of outer-ring groove (mm) The following relations can be derived from Fig. 1: $$m_0 \sin \alpha_0 = m_0 \sin \alpha_R + \frac{\Delta_a}{2}$$ (1) $$m_0 \cos \alpha_0 = m_0 \cos \alpha_R - \frac{\Delta_r}{2}$$ (2) since $$\sin^2 \alpha_0 = 1 - \cos^2 \alpha_0$$, $(m_0 \sin \alpha_0)^2 = m_0^2 - (m_0 \cos \alpha_0)^2 \cdots$ (3) Combined Equations (1), (2), and (3), we obtain: $$\left(m_0 \sin \alpha_R + \frac{\Delta_a}{2}\right)^2 = m_0^2 - \left(m_0 \cos \alpha_R - \frac{\Delta_r}{2}\right)^2 \qquad (4$$ $\alpha_{\mathbb{R}}$ is 25° for 52 and 53 series bearings and 32° for 32 and 33 series bearings. If we set $\alpha_{\mathbb{R}}$ equal to 0°, Equation (5) becomes: $$\Delta_{a}=2\sqrt{m_{0}^{2}-\left(m_{0}-\frac{\Delta_{r}}{2}\right)}$$ $$=2\sqrt{m_{0}\Delta_{r}-\frac{\Delta_{r}^{2}}{4}}$$ However, $\frac{\Delta_r^2}{4}$ is negligible. $$\therefore \Delta_a = 2m_0^{1/2} \Delta_r^{1/2} \cdots$$ (6) This is identical to the relationship between the radial and axial clearances in single-row deep groove ball bearings. The value of m_0 is dependent on the inner and outer ring groove radii. The relation between Δ_1 and Δ_2 , as given by Equation (5), is shown in Figs. 2 and 3 for NSK 52, 53, 32, and 33 series
double-row angular contact ball bearings. When the clearance range is small, the axial clearance is given approximately by $$\Delta_a = \Delta_r \cot \alpha_R$$ (7) However, when the clearance is relatively large, (when $\varDelta_{\rm r}/D_{\rm w}>0.002)$ the error in Equation (7) can be quite large. The contact angle α_R is independent of the radial clearance; however, the initial contact angle α_0 varies with the radial clearance when the inner or outer ring is displaced axially. This relationship is given by Equation (2). Fig. 2 Radial and Axial Clearances of Bearing Series 52 and 53 Fig. 3 Radial and Axial Clearances of Bearing Series 32 and 33 #### SINGLE/MATCHED MOUNTINGS Bore Diameter 10 – 15 mm Back-to-Back DB Single Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|-------------|------|---------|------------|---------|-------|---------|------------|---------|-------| | | | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | $r \leq e$ | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25º | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25⁰ | 0.5 | 0.38 | 1 | 0.76 | | 30⁰ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | | Bounda | ary Dime | ensions | | Basic Loa
(Sin | gle) | Factor | Limiting S | | Eff.Load
Centers
(mm) | | nent and I
nsions (n | | Mass
(kg) | Ca | Bear
ge Symb | ring Numbers (2
ool (4) | ()
 | Basic Loa
(Mato | ched) | Speeds (1) | (Matched) | | (mm) | | nent and | | |----|----------------|----------------|-------------------|----------------------|--------------------------|-------------------------|-----------|----------------------------|----------------------------|-----------------------------|----------------------|---------------------------|------------------------|-------------------------|-------------------------------|-----------------|---------------------------------|----------------------------------|--------------------|-------------------------|----------------------------|----------------------------|----------------------|--------------------|-----------------------|----------------------|---| | d | D | B | γ
min. | $ eals_1$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | a | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${\it r}_{\rm a}$ max. | approx. | Single | Standar | d Option | Duplex | $C_{\rm r}$ | C_{0r} | Grease (mi | Oil | DB a_0 | DF | $d_{ m b}^{(3)}$ min. | $D_{ m b}$ max. | $\mathbf{\gamma}_{\mathrm{b}}^{(3)}$ max. | | 10 | 22
22
26 | 6
6
8 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 2 880
3 000
5 350 | 1 450
1 520
2 600 | 14.1
— | 40 000
48 000
24 000 | 56 000
63 000
34 000 | 6.7
5.1
9.2 | 12.5
12.5
12.5 | 19.5
19.5
23.5 | 0.3
0.3
0.3 | 0.010
0.010
0.019 | 7900 A5
7900 C
7000 A | | (M),T | DB DF DT
DB DF DT
DB DF DT | | 2 900
3 050
5 200 | 32 000
38 000
20 000 | 43 000
53 000
28 000 | 13.5
10.3
18.4 | 1.5
1.7
2.4 | —
—
11.2 | 20.8
20.8
24.8 | 0.15
0.15
0.15 | | | 26
30
30 | 8
9
9 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 5 300
5 400
5 000 | 2 490
2 710
2 500 | 12.6
— | 45 000
22 000
16 000 | 63 000
30 000
22 000 | 6.4
10.3
12.9 | 12.5
15
15 | 23.5
25
25 | 0.3
0.6
0.6 | 0.019
0.032
0.032 | 7000 C
7200 A
7200 B | TYN
W
W | W,(M),T
(M), TYN
(M), T | DB DF DT DB DF DT DB DF DT | | 5 000
5 400
5 000 | 36 000
18 000
13 000 | 50 000
24 000
18 000 | 12.8
20.5
25.8 | 3.2
2.5
7.8 | —
12.5
12.5 | 24.8
27.5
27.5 | 0.15
0.3
0.3 | | | 30
35
35 | 9
11
11 | 0.6
0.6
0.6 | 0.3
0.3
0.3 | 5 400
9 300
8 750 | 2 610
4 300
4 050 | 13.2
— | 40 000
16 000
14 000 | 56 000
22 000
20 000 | 7.2
12.0
14.9 | 15
15
15 | 25
30
30 | 0.6
0.6
0.6 | 0.032
0.053
0.054 | 7200 C
7300 A
7300 B | TYN
W
W | W,(M),T
(M), T
(M), T | DB DF DT DB DF DT DB DF DT | 15 100 | 5 200
8 600
8 100 | 13 000 | 45 000
17 000
16 000 | 14.4
24.0
29.9 | 3.6
2.0
7.9 | —
12.5
12.5 | 27.5
32.5
32.5 | 0.3
0.3
0.3 | | 12 | 24
24
28 | 6
6
8 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 3 200
3 350
5 800 | 1 770
1 860
2 980 | 14.7
— | 38 000
45 000
22 000 | 53 000
63 000
30 000 | 7.2
5.4
9.8 | 14.5
14.5
14.5 | 21.5
21.5
25.5 | 0.3
0.3
0.3 | 0.011
0.011
0.021 | 7901 A5
7901 C
7001 A | TYN
TYN
W | (M),T | DB DF DT DB DF DT DB DF DT | 5 450 | 3 550
3 700
5 950 | 36 000 | 43 000
50 000
24 000 | 14.4
10.8
19.5 | 2.4
1.2
3.5 | —
—
13.2 | 22.8
22.8
26.8 | 0.15
0.15
0.15 | | | 28
32
32 | 8
10
10 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 5 800
8 000
7 450 | 2 900
4 050
3 750 | 13.2
— | 40 000
20 000
15 000 | 56 000
28 000
20 000 | 6.7
11.4
14.2 | 14.5
17
17 | 25.5
27
27 | 0.3
0.6
0.6 | 0.021
0.037
0.038 | 7001 C
7201 A
7201 B | TYN
W
W | W,(M),T
(M), T,TYN
(M),T | DB DF DT DB DF DT DB DF DT | 13 000 | 5 800
8 050
7 500 | 32 000
16 000
12 000 | 45 000
22 000
16 000 | 13.4
22.7
28.5 | 2.6
2.7
8.5 | —
14.5
14.5 | 26.8
29.5
29.5 | 0.15
0.3
0.3 | | | 32
32
37 | 10
10
12 | 0.6
0.6
1 | 0.3
0.3
0.6 | 8 150
7 900
9 450 | 3 750
3 850
4 500 | 12.5
— | 20 000
36 000
15 000 | 30 000
50 000
20 000 | 14.2
7.9
13.1 | 17
17
18 | 27
27
31 | 0.6
0.6
1 | 0.036
0.036
0.060 | *7201 BE/
7201 C
7301 A | | —
W,(M),T
(M), T | | 12 800
15 400 | 7 700
9 000 | 30 000 | 24 000
40 000
16 000 | 28.5
15.9
26.1 | 8.5
4.1
2.1 | 14.5
—
17 | 29.5
29.5
32 | 0.3
0.3
0.6 | | | 37
37 | 12
12 | 1
1 | 0.6
0.6 | 8 850
11 100 | 4 200
4 950 | = | 13 000
18 000 | 18 000
26 000 | 16.3
16.3 | 18
18 | 31
31 | 1
1 | 0.062
0.061 | 7301 B
*7301 BE | W
A T85 | (M), T
— | DB DF DT | 14 400
— | 8 400
— | 10 000
15 000 | 14 000
22 000 | 32.6
32.6 | 8.6
8.6 | 17
17 | 32
32 | 0.6
0.6 | | 15 | 28
28
32 | 7
7
9 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 4 550
4 750
6 100 | 2 530
2 640
3 450 | 14.5
— | 32 000
38 000
19 000 | 43 000
53 000
26 000 | 8.5
6.4
11.3 | 17.5
17.5
17.5 | 25.5
25.5
29.5 | 0.3
0.3
0.3 | 0.016
0.016
0.030 | 7902 A5
7902 C
7002 A | | (M),T
(M),T
(M), T,TYN | DB DF DT DB DF DT DB DF DT | 7 750 | 5 050
5 300
6 850 | 30 000 | 34 000
43 000
22 000 | 17.0
12.8
22.6 | 3.0
1.2
4.6 | —
—
16.2 | 26.8
26.8
30.8 | 0.15
0.15
0.15 | | | 32
35
35 | 9
11
11 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 6 250
8 650
7 950 | 3 400
4 650
4 300 | 14.1
— | 34 000
18 000
13 000 | 48 000
24 000
18 000 | 7.6
12.7
16.0 | 17.5
20
20 | 29.5
30
30 | 0.3
0.6
0.6 | 0.030
0.045
0.046 | 7002 C
7202 A
7202 B | TYN
W
W | W, (M),T
(M), T,TYN
(M),T | DB DF DT DB DF DT | 14 000 | 6 750
9 300
8 600 | 14 000 | 38 000
20 000
14 000 | 15.3
25.4
32.0 | 2.7
3.4
10.0 | —
17.5
17.5 | 30.8
32.5
32.5 | 0.15
0.3
0.3 | | | 35
35
42 | 11
11
13 | 0.6
0.6
1 | 0.3
0.3
0.6 | 9 800
8 650
13 400 | 4 800
4 550
7 100 | 13.2
— | 18 000
32 000
13 000 | 26 000
45 000
17 000 | 16.0
8.8
14.7 | 20
20
21 | 30
30
36 | 0.6
0.6
1 | 0.044
0.045
0.084 | *7202 BE
7202 C
7302 A | | —
W,(M),T
(M), T |
DB DF DT
DB DF DT | | 9 050
14 200 | 14 000
26 000
10 000 | 20 000
36 000
13 000 | 32.0
17.7
29.5 | 10.0
4.3
3.5 | 17.5
—
20 | 32.5
32.5
37 | 0.3
0.3
0.6 | | | 42
42 | 13
13 | 1
1 | 0.6
0.6 | 12 500
14 300 | 6 600
6 900 | | 11 000
16 000 | 15 000
22 000 | 18.5
18.5 | 21
21 | 36
36 | 1
1 | 0.086
0.084 | 7302 B
*7302 BE | W
4 T85 | (M), T
— | DB DF DT | 20 200 | 13 200
— | 9 000
13 000 | 12 000
18 000 | 36.9
36.9 | 10.9
10.9 | 20
20 | 37
37 | 0.6
0.6 | - Notes (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked in the column for $d_{\rm b}$, $d_{\rm b}$ and $r_{\rm b}$ for shafts are $d_{\rm a}$ (min) and $r_{\rm a}$ (max) respectively. Note (4) (M) in the column of cage
symbols are usually omitted from the bearing number. Remark The bearings denoted by an asterisk (*) are NSKHPS™ Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. #### SINGLE/MATCHED MOUNTINGS Bore Diameter 17 - 25 mm Back-to-Back DB Single Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|---------------------------------|------|---------------|------------|---------------|-----------------|---------|------|---------|-------| | | $\frac{i J_0 \Gamma_a}{C_{or}}$ | e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | $c_{\rm r} > e$ | F_a/F | r≦e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25⁰ | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30₂ | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25⁰ | 0.5 | 0.38 | 1 | 0.76 | | 30º | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | h | | D | | | |---|---|---|---|--| | 匚 | _ | | J | | | ı | | | ı | | | | | | | | | | Bounda | ary Dime | ensions | | Basic Load | gle) | Factor | | Speeds (1) | Eff.Load
Centers | | nent and
nsions (r | | Mass
(kg) | (| Be
Cage Syr | aring Numbers | 2) | (M | oad Ratings
atched) | Speeds (1) | niting
(Matched) | Load C
Spacing | s (mm) | | nent and | | |----|----------------|----------------|-------------------|----------------------|----------------------------|----------------------------|--------|----------------------------|----------------------------|----------------------|----------------------|-----------------------|------------------------|-------------------------|-----------------------------|----------------|----------------------------------|-------------|----------------------------------|------------------------|--------------------------|---------------------------|----------------------|---------------------|-----------------------|----------------------|--| | d | D | B | r
min. | $ eals_1$ min. | $C_{\rm r}$ (N | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${\it r}_{\rm a}$ max. | approx. | Single | Stand | ard Option | Duplex | C_{r} | C_{0r} | Grease | in ⁻¹)
Oil | DB DB | DF | $d_{ m b}^{(3)}$ min. | | $ {\pmb{\gamma}}_{\bf b}(^3) \\ {\rm max}. \\$ | | 17 | 30
30
35 | 7
7
10 | 0.3
0.3
0.3 | 0.15
0.15
0.15 | 4 750
5 000
6 400 | 2 800
2 940
3 800 | 14.8 | 30 000
34 000
17 000 | 40 000
48 000
24 000 | 9.0
6.6
12.5 | 19.5
19.5
19.5 | 27.5
27.5
32.5 | 0.3
0.3
0.3 | 0.017
0.017
0.040 | 7903 A
7903 C
7003 A | TY | N (M),T
N (M),T
(M), T,TYN | DB DF | 7 75
0T 8 15
0T 10 40 | 0 5 850 | 28 000 | 38 000 | 18.0
13.3
25.0 | 4.0
0.7
5.0 | —
18.2 | 28.8
28.8
33.8 | 0.15 | | | 35
40
40 | 10
12
12 | 0.3
0.6
0.6 | 0.15
0.3
0.3 | 6 600
10 800
9 950 | 3 800
6 000
5 500 | _ | 32 000
16 000
11 000 | 43 000
22 000
15 000 | 8.5
14.2
18.0 | 19.5
22
22 | 32.5
35
35 | 0.3
0.6
0.6 | 0.040
0.067
0.068 | 7003 C
7203 A
7203 B | W | W, (M),T
(M), T,TYN
(M),T | DB DF | OT 10 70
OT 17 60
OT 16 10 | 0 12 000 | 13 000 | 17 000 | 17.0
28.5
35.9 | 3.0
4.5
11.9 | —
19.5
19.5 | 33.8
37.5
37.5 | 0.15
0.3
0.3 | | | 40
40
47 | 12
12
14 | 0.6
0.6
1 | 0.3
0.3
0.6 | 11 600
10 900
15 900 | 6 100
5 850
8 650 | 13.3 | 16 000
28 000
11 000 | 22 000
38 000
15 000 | 18.2
9.8
16.2 | 22
22
23 | 35
35
41 | 0.6
0.6
1 | 0.065
0.065
0.116 | *7203 B
7203 C
7303 A | TY | T7
N W,(M),T
(M), T | | OT 17 60
OT 25 90 | | | 32 000 | 36.3
19.6
32.5 | 12.3
4.4
4.5 | 19.5
—
22 | 37.5
37.5
42 | 0.3
0.3
0.6 | | | 47
47 | 14
14 | 1
1 | 0.6
0.6 | 14 800
16 800 | 8 000
8 300 | | 10 000
14 000 | 14 000
20 000 | 20.4
20.4 | 23
23 | 41
41 | 1
1 | 0.118
0.113 | 7303 B
*7303 B | | (M), T | | 24 00
- | | 8 000
11 000 | | 40.9
40.9 | 12.9
12.9 | 22
22 | 42
42 | 0.6
0.6 | | 20 | 37
37
42 | 9
9
12 | 0.3
0.3
0.6 | 0.15
0.15
0.3 | 6 600
6 950
10 800 | 4 050
4 250
6 600 | 14.9 | 24 000
28 000
14 000 | 32 000
38 000
20 000 | 11.1
8.3
14.9 | 22.5
22.5
25 | 34.5
34.5
37 | 0.3
0.3
0.6 | 0.037
0.036
0.068 | 7904 A
7904 C
7004 A | TY | N (M),T
N (M),T
(M), T,TYN | DB DF | T 10 70
T 11 30
T 17 60 | 8 500 | 22 000 | 32 000 | 22.3
16.6
29.9 | 4.3
1.4
5.9 |

22.5 | 35.8
35.8
39.5 | 0.15
0.15
0.3 | | | 42
47
47 | 12
14
14 | 0.6
1
1 | 0.3
0.6
0.6 | 11 100
14 500
13 300 | 6 550
8 300
7 650 | | 26 000
13 000
9 500 | 36 000
18 000
13 000 | 10.1
16.7
21.1 | 25
26
26 | 37
41
41 | 0.6
1
1 | 0.068
0.106
0.109 | 7004 C
7204 A
7204 B | W | N W,(M),T
(M), T,TYN
(M),T | DB DF | 18 00
0T 23 50
0T 21 60 | | 11 000 | | 20.3
33.3
42.1 | 3.7
5.3
14.1 | 25
25 | 39.5
42
42 | 0.3
0.6
0.6 | | | 47
47 | 14
14 | 1
1 | 0.6
0.6 | 15 600
14 600 | 8 150
8 050 | | 13 000
24 000 | 19 000
34 000 | 21.1
11.5 | 26
26 | 41
41 | 1
1 | 0.103
0.104 | *7204 B
7204 C | | 5 T7
N W,(M),T | DB DF | |
0 16 100 | 11 000
19 000 | | 42.1
23.0 | 14.1
5.0 | 25
— | 42
42 | 0.6
0.6 | | | 52
52
52 | 15
15
15 | 1.1
1.1
1.1 | 0.6
0.6
0.6 | 18 700
17 300
19 800 | 10 400
9 650
10 500 | _ | 10 000
9 000
13 000 | 13 000
12 000
18 000 | 17.9
22.6
22.6 | 27
27
27 | 45
45
45 | 1
1
1 | 0.146
0.150
0.149 | 7304 A
7304 B
*7304 B | W | (M), T
(M), T
6 MR, T7 | | 30 50
28 20 | | | | 35.8
45.2
45.2 | 5.8
15.2
15.2 | 25
25
25 | 47
47
47 | 0.6
0.6
0.6 | | 25 | 42
42
47 | 9
9
12 | 0.3
0.3
0.6 | 0.15
0.15
0.3 | 7 450
7 850
11 300 | 5 150
5 400
7 400 | 15.5 | 20 000
24 000
12 000 | 28 000
34 000
17 000 | 12.3
9.0
16.4 | 27.5
27.5
30 | 39.5
39.5
42 | 0.3
0.3
0.6 | 0.043
0.043
0.079 | 7905 A
7905 C
7005 A | TY | N (M),T
N (M),T
(M), T,TYN | DB DF | OT 12 10
OT 12 70
OT 18 30 | | 19 000 | | 24.6
18.0
32.8 | 6.6
0.0
8.8 |

27.5 | 40.8
40.8
44.5 | 0.15
0.15
0.3 | | | 47
52
52 | 12
15
15 | 0.6
1
1 | 0.3
0.6
0.6 | 11 700
16 200
14 800 | 7 400
10 300
9 400 | _ | 22 000
12 000
8 500 | 30 000
16 000
11 000 | 10.8
18.6
23.7 | 30
31
31 | 42
46
46 | 0.6
1
1 | 0.078
0.130
0.133 | 7005 C
7205 A
7205 B | W | W,(M),T
(M), T,TYN
(M),T | | 19 00
26 30
24 00 | 20 500 | 18 000
9 500
6 700 | 13 000 | 21.6
37.2
47.3 | 2.4
7.2
17.3 | 30
30 | 44.5
47
47 | 0.3
0.6
0.6 | | | 52
52
62 | 15
15
17 | 1
1
1.1 | 0.6
0.6
0.6 | 17 600
16 600
26 400 | 10 200
10 200
15 800 | 14.0 | 12 000
22 000
8 500 | 17 000
28 000
11 000 | 23.7
12.7
21.1 | 31
31
32 | 46
46
55 | 1
1
1 | 0.127
0.129
0.235 | *7205 B
7205 C
7305 A | TY | T7
N W,(M),T
(M), T | DB DF DB DF | OT 27 00
43 00 | | | 24 000 | 47.3
25.3
42.1 | 17.3
4.7
8.1 | 30
30 | 47
47
57 | 0.6
0.6
0.6 | - Notes (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked in the column for $d_{\rm b}$, $d_{\rm b}$ and $r_{\rm b}$ for shafts are $d_{\rm a}$ (min) and $r_{\rm a}$ (max) respectively. Note (4) (M) in the column of cage symbols are usually omitted from the bearing number. Remark The bearings denoted by an asterisk (*) are NSKHPS™ Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. #### SINGLE/MATCHED MOUNTINGS Bore Diameter 25 - 40 mm Back-to-Back DB Single Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|--------------------------------|------|---------------|------------|---------------|-----------------|---------------|------|---------|-------| | Contact | $\frac{\iota j_0 r_a}{C_{or}}$ | e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | $c_{\rm r} > e$ | $F_{\rm a}/I$ | r≦e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 |
0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25⁰ | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25⁰ | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | | |)_ | | | |---|---|----|---|--| | _ | _ | | l | | | | | | ı | | | | | | | | | | | | _ | | | | Bounda | ıry Dime | ensions | | Basic Loa
(Sin | gle) | Factor | Limiting S | | Eff.Load
Centers | | nent and
nsions (r | | Mass
(kg) | ()
 | (Mat | | Speeds (1) | iting
(Matched) | Load C
Spacing: | s (mm) | | nent and | | | | | |----|----------------|----------------|-------------------|---------------------|----------------------------|----------------------------|-----------|----------------------------|----------------------------|----------------------|--------------------|-----------------------|---------------------------|-------------------------|------------------------------|-------------------|---------------------------------|----------------------------------|----------------------------|--------------------|---------------------------|----------------------------|----------------------|---------------------|-----------------------|--------------------|--| | d | D | В | r
min. | ${m r}_1$ min. | $C_{\rm r}$ (N | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | D_{a} max. | ${m \gamma}_{\rm a}$ max. | approx. | Single | Standard | d Option | Duplex | $C_{\rm r}$ | C_{0r} | Grease | in ⁻¹)
Oil | DB | DF | $d_{ m b}^{(3)}$ min. | | $ {\pmb{\mathcal{T}}}_b(^3) \\ \text{max}. $ | | 25 | 62
62 | 17
17 | 1.1
1.1 | 0.6
0.6 | 24 400
27 200 | 14 600
14 900 | = | 7 500
10 000 | 10 000
15 000 | 26.7
26.8 | 32
32 | 55
55 | 1
1 | 0.241
0.229 | 7305 B
*7305 BE | W
A T85 | (M), T
MR, T7 | DB DF D1 | 39 500 | 29 300
— | 6 000
8 500 | 8 000
12 000 | 53.5
53.5 | 19.5
19.5 | 30
30 | 57
57 | 0.6
0.6 | | 30 | 47
47
55 | 9
9
13 | 0.3
0.3
1 | 0.15
0.15
0.6 | 7 850
8 300
14 500 | 5 950
6 250
10 100 | | 18 000
22 000
11 000 | 24 000
28 000
14 000 | 13.5
9.7
18.8 | 32.5
32.5
36 | 44.5
44.5
49 | 0.3
0.3
1 | 0.050
0.049
0.116 | 7906 A5
7906 C
7006 A | | (M),T
(M),T
(M), T,TYN | | 12 800
13 500
23 600 | 12 500 | 14 000
17 000
8 500 | 19 000
24 000
12 000 | 27.0
19.3
37.5 | 9.0
1.3
11.5 | —
—
35 | 45.8
45.8
50 | 0.15
0.15
0.6 | | | 55
62
62 | 13
16
16 | 1
1
1 | 0.6
0.6
0.6 | 15 100
22 500
20 500 | 10 300
14 800
13 500 | l — | 19 000
9 500
7 100 | 26 000
13 000
9 500 | 12.2
21.3
27.3 | 36
36
36 | 49
56
56 | 1
1
1 | 0.115
0.197
0.202 | 7006 C
7206 A
7206 B | TYN
W
W | W,(M),T
(M), T,TYN
(M),T | DB DF D1
DB DF D1
DB DF D1 | 36 500 | 29 500 | 15 000
8 000
5 600 | 22 000
11 000
7 500 | 24.4
42.6
54.6 | 1.6
10.6
22.6 | —
35
35 | 50
57
57 | 0.6
0.6
0.6 | | | 62
62
72 | 16
16
19 | 1
1
1.1 | 0.6
0.6
0.6 | 23 700
23 000
33 500 | 14 300
14 700
20 900 | | 10 000
18 000
7 100 | 14 000
24 000
9 500 | 27.3
14.2
24.2 | 36
36
37 | 56
56
65 | 1
1
1 | 0.194
0.197
0.346 | *7206 BE
7206 C
7306 A | | MR, T7
W,(M),T
(M), T | | 37 500
54 500 | | 8 000
14 000
5 600 | 11 000
20 000
7 500 | 54.6
28.3
48.4 | 22.6
3.7
10.4 | 35
—
35 | 57
57
67 | 0.6
0.6
0.6 | | | 72
72 | 19
19 | 1.1
1.1 | 0.6
0.6 | 31 000
36 500 | 19 300
20 600 | = | 6 300
9 000 | 8 500
13 000 | 30.9
30.9 | 37
37 | 65
65 | 1
1 | 0.354
0.336 | 7306 B
*7306 BE | W
A T85 | (M), T
MR, T7 | DB DF D1 | 50 500 | 38 500
— | 5 000
7 100 | 7 100
10 000 | 61.8
61.8 | 23.8
23.8 | 35
35 | 67
67 | 0.6
0.6 | | 35 | 55
55
62 | 10
10
14 | 0.6
0.6
1 | 0.3
0.3
0.6 | 11 400
12 100
18 300 | 8 700
9 150
13 400 | | 15 000
18 000
9 000 | 20 000
24 000
13 000 | 15.5
11.0
21.0 | 40
40
41 | 50
50
56 | 0.6
0.6
1 | 0.075
0.075
0.153 | 7907 A5
7907 C
7007 A | | (M),T
(M),T
(M), T,TYN | DB DF D1 | 18 600
19 600
29 700 | 18 300 | 12 000
14 000
7 500 | 17 000
20 000
10 000 | 31.0
22.1
42.0 | 11.0
2.1
14.0 | _
40 | 52.5
52.5
57 | 0.3
0.3
0.6 | | | 62
72
72 | 14
17
17 | 1
1.1
1.1 | 0.6
0.6
0.6 | 19 100
29 700
27 100 | 13 700
20 100
18 400 | _ | 17 000
8 500
6 000 | 22 000
12 000
8 000 | 13.5
23.9
30.9 | 41
42
42 | 56
65
65 | 1
1
1 | 0.153
0.287
0.294 | 7007 C
7207 A
7207 B | TYN
W
W | W,(M),T
(M), T,TYN
(M),T | | 31 000
48 500
44 000 | 40 000 | 13 000
6 700
4 800 | 19 000
9 500
6 700 | 27.0
47.9
61.9 | 1.0
13.9
27.9 |
40
40 | 57
67
67 | 0.6
0.6
0.6 | | | 72
72
80 | 17
17
21 | 1.1
1.1
1.5 | 0.6
0.6
1 | 32 500
30 500
40 000 | 19 600
19 900
26 300 | 13.9
— | 8 500
15 000
6 300 | 12 000
20 000
8 500 | 30.9
15.7
27.1 | 42
42
44 | 65
65
71 | 1
1
1.5 | 0.271
0.320
0.464 | *7207 BE
7207 C
7307 A | A T85
(M)
W | MR, T7
W,T,TYN
(M), T | | 49 500
65 000 | | 6 700
12 000
5 000 | 9 500
17 000
6 700 | 61.9
31.3
54.2 | 27.9
2.7
12.2 | 40
—
41 | 67
67
74 | 0.6
0.6
1 | | | 80
80 | 21
21 | 1.5
1.5 | 1
1 | 36 500
40 500 | 24 200
24 400 | _ | 5 600
8 000 | 7 500
11 000 | 34.6
34.6 | 44
44 | 71
71 | 1.5
1.5 | 0.474
0.451 | 7307 B
*7307 BE | W
A T85 | (M), T
MR, T7 | DB DF D1 | 59 500
— | 48 5 <u>00</u> | 4 500
6 300 | 6 000
9 000 | 69.2
69.2 | 27.2
27.2 | 41
41 | 74
74 | 1 | | 40 | 62
62
68 | 12
12
15 | 0.6
0.6
1 | 0.3
0.3
0.6 | 14 300
15 100
19 500 | 11 200
11 700
15 400 | | 14 000
16 000
8 500 | 18 000
22 000
11 000 | 17.9
12.8
23.1 | 45
45
46 | 57
57
62 | 0.6
0.6
1 | 0.110
0.109
0.190 | 7908 A5
7908 C
7008 A | | (M),T | | 23 300
24 600
31 500 | 23 500 | 11 000
13 000
6 700 | 15 000
18 000
9 000 | 35.8
25.7
46.2 | 11.8
1.7
16.2 | —
—
45 | 59.5
59.5
63 | 0.3
0.3
0.6 | | | 68
80
80 | 15
18
18 | 1
1.1
1.1 | 0.6
0.6
0.6 | 20 600
35 500
32 000 | 15 900
25 100
23 000 | l — | 15 000
7 500
5 300 | 20 000
10 000
7 500 | 14.7
26.3
34.2 | 46
47
47 | 62
73
73 | 1
1
1 | 0.213
0.375
0.383 | 7008 C
7208 A
7208 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | DB DF D1
DB DF D1
DB DF D1 | 33 500
57 500
52 000 | 50 500 | 12 000
6 000
4 300 | 17 000
8 500
6 000 | 29.5
52.6
68.3 | 0.5
16.6
32.3 | —
45
45 | 63
75
75 | 0.6
0.6
0.6 | - Notes (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked in the column for $d_{\rm b}$, $d_{\rm b}$ and $r_{\rm b}$ for shafts are $d_{\rm a}$ (min) and $r_{\rm a}$ (max) respectively. Note (4) (M) in the column of cage symbols are usually omitted from the bearing number. Remark The bearings denoted by an asterisk (*) are NSKHPS™ Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. #### SINGLE/MATCHED MOUNTINGS Bore Diameter 40 – 55 mm Back-to-Back DB Single **Boundary Dimensions** Face-to-Face DF Basic Load Ratings | Factor | Limiting Speeds (1) | Eff.Load DT Mass Bearing Numbers (2) #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|-------------|------|---------|------------|---------|-------|---------|------|---------|-------| | | | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | r≤e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25º | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | Load Center *For i, use 2 for DB, DF and 1 for DT Limiting Basic Load Ratings (Matched) (N) #### Static Equivalent Load
$P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25⁰ | 0.5 | 0.38 | 1 | 0.76 | | 30° | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Speeds (1) (Matched) | Spacings (mm) Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ Abutment and Fillet Dimensions (mm) | | | (mm) | | | | gie) | | (mı | n-') | Centers | Dime | ensions (| mm) | (kg) | Cag | e Symb | OI (4) | | | | | |----|----------------|----------------|-------------------|----------------------------|----------------------------|----------------------------|-----------|---------------------------|----------------------------|----------------------|-----------------|-----------------|--------------------------|-------------------------|-------------------------------|-----------------|-----------------------------|----------------|----------------|----------|----------| | d | D | В | ∤
min. | $oldsymbol{\gamma}_1$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{ m a}$ max. | approx. | Single | Standard | d Option | [| Duplex | | (| | 40 | 80
80
90 | 18
18
23 | 1.1
1.1
1.5 | 0.6
0.6
1 | 38 500
36 500
49 000 | 24 500
25 200
33 000 | 14.1
— | 7 500
14 000
5 600 | 11 000
19 000
7 500 | 34.2
17.0
30.3 | 47
47
49 | 73
73
81 | 1
1
1.5 | 0.357
0.418
0.633 | *7208 BEA
7208 C
7308 A | (M)
W | MR, T7
W,T,TYN
(M), T | DB
DB | DF
DF | DT
DT | 59
79 | | | 90
90 | 23
23 | 1.5
1.5 | 1
1 | 45 000
53 000 | 30 500
33 000 | _ | 5 000
7 100 | 6 700
10 000 | 38.8
38.8 | 49
49 | 81
81 | 1.5
1.5 | 0.648
0.619 | 7308 B
*7308 BEA | W
T85 | (M), T
MR, T7 | DB
— | DF
— | DT
— | 73 | | 45 | 68
68
75 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 15 100
16 000
23 100 | 12 700
13 400
18 700 | 16.0
— | 12 000
14 000
7 500 | 17 000
20 000
10 000 | 19.2
13.6
25.3 | 50
50
51 | 63
63
69 | 0.6
0.6
1 | 0.130
0.129
0.250 | 7909 A5
7909 C
7009 A | (M)
(M)
W | T,TYN
T, TYN
(M), TYN | DB
DB
DB | DF
DF
DF | | 26 | Abutment and Fillet | d | D | В | γ
min. | $ m \emph{r}_1$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${\it r}_{\rm a}$ max. | approx. | Single | Standa | rd Option | Duplex | $C_{\rm r}$ | C_{0r} | Grease (mi | n-¹)
Oil | DB | O DF | $d_{ m b}^{(3)}$ min. | | $ {\pmb {\mathcal Y}}_b(^3) \\ \text{max}. $ | |----|-----------------|----------------|-------------------|----------------------|----------------------------|----------------------------|-----------|---------------------------|----------------------------|----------------------|-----------------|---------------------------|------------------------|-------------------------|-------------------------------|-------------------|---------------------------------|----------------------------|--------------|-------------|----------------|---------------------------|----------------------|---------------------|-----------------------|--------------------|--| | 40 | 80
80
90 | 18
18
23 | 1.1
1.1
1.5 | 0.6
0.6
1 | 38 500
36 500
49 000 | 24 500
25 200
33 000 | 14.1
— | 7 500
14 000
5 600 | 11 000
19 000
7 500 | 34.2
17.0
30.3 | 47
47
49 | 73
73
81 | 1
1
1.5 | 0.357
0.418
0.633 | *7208 BE
7208 C
7308 A | A T85
(M)
W | MR, T7
W,T,TYN
(M), T | DB DF DT DB DF DT | | | | 8 500
15 000
6 000 | 68.3
34.1
60.5 | 32.3
1.9
14.5 | 45
—
46 | 75
75
84 | 0.6
0.6
1 | | | 90
90 | 23
23 | 1.5
1.5 | 1
1 | | 30 500
33 000 | | 5 000
7 100 | 6 700
10 000 | 38.8
38.8 | 49
49 | 81
81 | 1.5
1.5 | 0.648
0.619 | 7308 B
*7308 BE | W
A T85 | (M), T
MR, T7 | DB DF DT | 73 000
— | 60 500
— | | 5 300
8 000 | 77.5
77.5 | 31.5
31.5 | 46
46 | 84
84 | 1 | | 45 | 68
68
75 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 16 000 | 12 700
13 400
18 700 | 16.0
— | 12 000
14 000
7 500 | 17 000
20 000
10 000 | 19.2
13.6
25.3 | 50
50
51 | 63
63
69 | 0.6
0.6
1 | 0.130
0.129
0.250 | 7909 A5
7909 C
7009 A | | T,TYN
T, TYN
(M), TYN | DB DF DT DB DF DT DB DF DT | 26 000 | 26 800 | 12 000 | 13 000
16 000
8 500 | 38.4
27.1
50.6 | 14.4
3.1
18.6 | —
50 | 65.5
65.5
70 | 0.3
0.3
0.6 | | | 75
85
85 | 16
19
19 | 1
1.1
1.1 | 0.6
0.6
0.6 | 24 400
39 500
36 000 | 19 300
28 700
26 200 | 15.4
— | 14 000
6 700
5 000 | 19 000
9 500
6 700 | 16.0
28.3
36.8 | 51
52
52 | 69
78
78 | 1
1
1 | 0.274
0.411
0.421 | 7009 C
7209 A
7209 B | (M)
W
W | W,TYN
(M), T,TYN
(M),T | DB DF DT DB DF DT DB DF DT | 64 500 | 57 500 | 5 600 | 15 000
7 500
5 300 | 32.1
56.5
73.5 | 0.1
18.5
35.5 | —
50
50 | 70
80
80 | 0.6
0.6
0.6 | | | 85
85
100 | 19
19
25 | 1.1
1.1
1.5 | 0.6
0.6
1 | 40 500
41 000
63 500 | 27 100
28 800
43 500 | 14.2
— | 7 100
12 000
5 000 | 10 000
17 000
6 700 | 36.8
18.2
33.4 | 52
52
54 | 78
78
91 | 1
1
1.5 | 0.400
0.468
0.848 | *7209 BE
7209 C
7309 A | A T85
(M)
W | MR, T7
W,T, TYN
(M), T | DB DF DT DB DF DT | | | | 8 000
14 000
5 300 | 73.5
36.4
66.9 | 35.5
1.6
16.9 | 50
—
51 | 80
80
94 | 0.6
0.6
1 | | | 100
100 | 25
25 | 1.5
1.5 | 1
1 | 58 500
62 500 | 40 000
39 500 | | 4 500
6 300 | 6 000
9 000 | 42.9
42.9 | 54
54 | 91
91 | 1.5
1.5 | 0.869
0.823 | 7309 B
*7309 BE | W
A T85 | (M), T
MR, T7 | DB DF DT | 95 000
— | 80 500
— | 3 600
5 000 | 4 800
7 100 | 85.8
85.8 | 35.8
35.8 | 51
51 | 94
94 | 1 | | 50 | 72
72
80 | 12
12
16 | 0.6
0.6
1 | 0.3
0.3
0.6 | 16 900 | 14 200
15 000
21 100 | 16.2
— | 11 000
13 000
6 700 | 15 000
18 000
9 500 | 20.2
14.2
26.8 | 55
55
56 | 67
67
74 | 0.6
0.6
1 | 0.132
0.130
0.263 | 7910 A5
7910 C
7010 A | | T,TYN
T, TYN
(M), T,TYN | DB DF DT DB DF DT DB DF DT | 27 400 | 30 000 | 11 000 | 12 000
15 000
7 500 | 40.5
28.3
53.5 | 16.5
4.3
21.5 | —
—
55 | 69.5
69.5
75 | 0.3
0.3
0.6 | | | 80
90
90 | 16
20
20 | 1
1.1
1.1 | 0.6
0.6
0.6 | 41 500 | 21 900
31 500
28 600 | 15.7
— | 12 000
6 300
4 500 | 17 000
9 000
6 300 | 16.7
30.2
39.4 | 56
57
57 | 74
83
83 | 1
1
1 | 0.293
0.466
0.477 | 7010 C
7210 A
7210 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | DB DF DT DB DF DT DB DF DT | 67 000 | 63 000 | 5 000 | 14 000
7 100
5 000 | 33.4
60.4
78.7 | 1.4
20.4
38.7 | —
55
55 | 75
85
85 | 0.6
0.6
0.6 | | | 90
90
110 | 20
20
27 | 1.1
1.1
2 | 0.6
0.6
1 | 42 000
43 000
74 000 | | 14.5
— | 6 300
12 000
4 500 | 9 500
16 000
6 000 | 39.4
19.4
36.6 | 57
57
60 | 83
83
100 | 1
1
2 | 0.453
0.528
1.10 | * 7210 BE
7210 C
7310 A | A T85
(M)
W | MR, T7
W,T,TYN
(M), T | DB DF DT DB DF DT | 69 500 | | 9 500 | 7 500
13 000
4 800 | 78.7
38.7
73.2 | 38.7
1.3
19.2 | 55
—
56 | 85
85
104 | 0.6
0.6
1 | | | 110
110 | 27
27 | 2 2 | 1
1 | | 48 000
50 500 | _ | 4 000
5 600 | 5 600
8 000 | 47.1
47.1 | 60
60 | 100
100 | 2 2 | 1.12
1.07 | 7310 B
*7310 BE | W
A T85 | (M), T
MR, T7 | DB DF DT | 111 000
— | 96 000
— | 4 | 4 500
6 700 | 94.1
94.1 | 40.1
40.1 | | 104
104 | 1 | | 55 | 80
80
90 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 19 100 | 16 800
17 700
27 700 | 16.3
— | 10 000
12 000
6 300 | 14 000
16 000
8 500 | 22.2
15.5
29.9 | 61
61
62 | 74
74
83 | 1
1
1 | 0.184
0.182
0.391 | 7911 A5
7911 C
7011 A | (M) | T,TYN
T, TYN
(M), T,TYN | DB DF DT DB DF DT DB DF DT | 31 000 | 35 500 | 9 500 | 11 000
13 000
6 700 | 44.5
31.1
59.9 | 18.5
5.1
23.9 | —
60 | 75
75
85 | 0.6
0.6
0.6 | **Notes** (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. Note (4) (M) in the column of cage symbols are usually omitted from the bearing number. Remark The bearings denoted by an asterisk (*) are NSKHPSTM Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. #### SINGLE/MATCHED MOUNTINGS Bore Diameter 55 - 65 mm Back-to-Back DB Basic Load Ratings Factor Single **Boundary Dimensions** Face-to-Face DF Limiting Speeds (1) Tandem DT Eff.Load Abutment and Fillet 84 84 93 93 1.5 1.5 1.5 1.5 2 111 111 111 128 128 128 Bearing Numbers (2) T.TYN (M),T MR, T7 (M), T (M), T W,T,TYN (M) W (M) W *7313 BEA T85 MR, T7 T, TYN (M), T,TYN (M), T,TYN #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|-------------|------|---------|------------|---------|-------|---------|------|---------|-------| | | | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | r≤e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | |
0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25º | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30° | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | Load Center *For i, use 2 for DB, DF and 1 for DT Limiting Basic Load Ratings #### Static Equivalent Load $P_0 = X_0 F_r + Y_0 F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25º | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $= F_r > 0.5F_r + Y_0F_a$ use $P_0=F_r$ $r_{\rm b}(3)$ max. 0.6 Abutment and Fillet Dimensions (mm) $D_{\rm h}$ max. 85 0.6 94 94 94 94 114 114 114 80 0.6 90 0.6 90 0.6 104 104 104 104 123 123 123 85 0.6 85 0.6 95 0.6 95 114 114 114 114 133 133 133 $d_{\rm b}^{(3)}$ min. 61 61 61 61 61 61 65 66 66 66 67 67 67 70 71 71 71 72 72 72 | | Dounua | (mm) | 511510115 | | (Sin | igle) | ractor | (mi | | Centers | | inent and
iensions (i | | (kg) | Ca | ge Sym | bol (4) | | | | (Matc | hed) | Speeds (1) | (Matched) | | s (mm) | , | |----------|-------------------|----------------|-------------------|-------------------|----------------------------|----------------------------|----------------|--------------------------|---------------------------|----------------------|-----------------|------------------------------|--------------------------|-------------------------|------------------------------|-------------------|---------------------------------|---------|---------|----------------|-----------------------------|----------------------------|-------------------------|---------------------------|----------------------|---------------------|-----| | <i>d</i> | D | В | r
min. | ${m r}_1$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{\rm a} \atop {\rm max.}$ | ${m \gamma}_{ m a}$ max. | approx. | Single | Standa | rd Option | | Duplex | | $C_{\rm r}$ (N | C_{0r} | Grease | n-')
Oil | DB DB | DF | d | | 55 | 90
100
100 | 18
21
21 | 1.1
1.5
1.5 | 0.6
1
1 | 34 000
51 000
46 500 | 28 600
39 500
36 000 | 15.5
—
— | 11 000
5 600
4 000 | 15 000
8 000
5 600 | 18.7
32.9
43.0 | 62
64
64 | 83
91
91 | 1
1.5
1.5 | 0.430
0.613
0.627 | 7011 C
7211 A
7211 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | DB | | DT
DT
DT | 83 000 | 57 500
79 000
72 000 | 9 000
4 500
3 400 | 12 000
6 300
4 500 | 37.4
65.7
86.0 | 1.4
23.7
44.0 | 6 | | | 100
100
120 | 21
21
29 | 1.5
1.5
2 | 1
1
1 | 51 500
53 000
86 000 | | 14.5
— | 6 000
10 000
4 000 | 8 500
14 000
5 600 | 43.0
20.9
39.8 | 64
64
65 | 91
91
110 | 1.5
1.5
2 | 0.596
0.688
1.41 | *7211 BE
7211 C
7311 A | A T85
(M)
W | MR, T7
W,T,TYN
(M), T | | | DT
DT | 86 000
139 000 | | 4 500
8 500
3 200 | 6 700
12 000
4 300 | 86.0
41.7
79.5 | 44.0
0.3
21.5 | - | | | 120
120 | 29
29 | 2 2 | 1
1 | | 56 500
58 500 | _ | 3 600
5 000 | 5 000
7 500 | 51.2
51.2 | 65
65 | 110
110 | 2 2 | 1.45
1.36 | 7311 B
*7311 BE | W
A T85 | (M), T
MR, T7 | DB
— | DF
— | DT
— | 128 000 | 113 000 | 3 000
4 000 | 4 000
6 000 | 102.4
102.4 | 44.4
44.4 | | | 60 | 85
85
95 | 13
13
18 | 1
1
1.1 | 0.6
0.6
0.6 | 18 300
19 400
33 000 | 18 700 | 16.5
— | 9 500
11 000
5 600 | 13 000
15 000
8 000 | 23.4
16.2
31.4 | 66
66
67 | 79
79
88 | 1
1
1 | 0.197
0.194
0.417 | 7912 A5
7912 C
7012 A | (M)
(M)
W | T,TYN
T, TYN
(M), T,TYN | | DF | DT
DT
DT | | 37 500 | 7 500
9 000
4 500 | 10 000
12 000
6 300 | 46.8
32.4
62.7 | 20.8
6.4
26.7 | - | | | 95
110
110 | 18
22
22 | 1.1
1.5
1.5 | 0.6
1
1 | | 30 500
48 500
44 500 | 15.7
— | 10 000
5 300
3 800 | 14 000
7 100
5 300 | 19.4
35.5
46.7 | 67
69
69 | 88
101
101 | 1
1.5
1.5 | 0.460
0.798
0.815 | 7012 C
7212 A
7212 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | | DF | DT | 57 000
100 000
91 000 | 97 500 | 8 500
4 300
3 000 | 12 000
6 000
4 000 | 38.8
71.1
93.3 | 2.8
27.1
49.3 | - 6 | | | 110
110
130 | 22
22
31 | 1.5
1.5
2.1 | 1
1
1.1 | 61 500
64 000
98 000 | | 14.4
— | 5 300
9 500
3 800 | 7 500
13 000
5 000 | 46.7
22.4
42.9 | 69
69
72 | 101
101
118 | 1.5
1.5
2 | 0.791
0.889
1.74 | *7212 BE
7212 C
7312 A | A T85
(M)
W | MR, T7
W,T,TYN
(M), T | | | | 104 000
159 000 | | 4 300
7 500
3 000 | 6 000
11 000
4 000 | 93.3
44.8
85.9 | 49.3
0.8
23.9 | - | | | 130
130 | 31
31 | 2.1
2.1 | 1.1
1.1 | 90 000
102 000 | 65 500
68 500 | _ | 3 400
4 800 | 4 500
6 700 | 55.4
55.4 | 72
72 | 118
118 | 2 2 | 1.78
1.70 | 7312 B
*7312 BE | W
A T85 | (M), T
MR, T7 | DB
— | DF
— | DT
— | 146 000 | 131 000 | 2 600
3 800 | 3 800
5 600 | 110.7
110.7 | 48.7
48.7 | 6 | 0.211 0.208 0.455 0.493 1.03 1.05 1.01 1.14 2.12 2.17 2.09 7913 A5 7913 C 7013 A 7013 C 7213 A 7213 B 7213 C 7313 A 7313 B *7213 BEA T85 Mass 90 90 100 100 120 120 120 120 140 140 140 13 13 18 23 23 23 23 33 33 0.6 0.6 1.1 1.1 1.1 0.6 1.5 1.5 1.5 2.1 114 000 77 000 **Notes** (1) For applications operating near the limiting speed, refer to Page CO77. 19 100 35 000 37 000 70 500 63 500 70 000 73 000 111 000 102 000 20 200 20 500 19 400 33 000 34 500 58 000 52 500 53 500 58 500 82 000 75 500 - The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. - (3) For bearings marked in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. 9 000 10 000 5 300 10 000 4 800 3 400 9 000 3 600 3 200 4 300 16.7 15.9 14.6 12 000 14 000 7 500 13 000 6 700 4 800 7 100 12 000 4 800 4 300 6 300 24.6 16.9 32.8 20.0 38.2 50.3 50.3 23.9 46.1 59.5 59.5 71 72 74 74 74 74 77 77 (4) (M) in the column of cage symbols are usually omitted from the bearing number. DB DF DT DB DF DT DB DF DT Remark The bearings denoted by an asterisk (*) are NSKHPS™ Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. 31 000 39 000 65 500 **DB DF DT** 33 000 41 000 DB DF DT 103 000 105 000 **DB DF DT** 119 000 117 000 **DB DF DT** 180 000 164 000 **DB DF DT** 166 000 151 000 56 500 60 500 **DF DT** 114 000 116 000 7 100 8 500 4 300 8 000 3 800 2 800 7 100 2 800 2 400 3 600 9 500 12 000 6 000 11 000 5 300 3 800 5 600 9 500 3 800 3 400 5 000 49.1 33.8 65.6 40.1 76.4 100.6 100.6 47.8 92.2 119.0 119.0 23.1 7.8 29.6 4.1 30.4 54.6 54.6 1.8 26.2 53.0 53.0 #### SINGLE/MATCHED MOUNTINGS Bore Diameter 70 – 80 mm Back-to-Back DB Single Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|---------------------------------|------|---------------|------------|---------------|-----------------|---------|------|---------|-------| | | $\frac{i J_0 \Gamma_a}{C_{or}}$ | e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | $c_{\rm r} > e$ | F_a/F | r≦e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25⁰ | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30₂ | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25º | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT Single of D1 mounting When $F_r > 0.5F_r + Y_0F_a$ $_$ use $P_0 = F_r$ | | Bounda | ary Dime | ensions | | | gle) | Factor | | Speeds (1) | Eff.Load
Centers | | ment and
ensions (r | | Mass
(kg) | Ca | Bea
ge Syml | ring Numbers (2
pol (4) |) | (Mat | | Speeds (1) | (Matched) | Load C
Spacing: | s (mm) | | ent and
nsions (r | | |----|---------------------------------|----------------------------|---------------------------------|-----------------------------|---|---|-----------|---|--|--------------------------------------|----------------------------|---------------------------------|---------------------------
--------------------------------------|--|-------------------|---|-------------------------------|-----------------------------------|--------------------|---|---|------------------------|-------------------------------------|---------------------------------|---------------------------------|-------------------| | d | D | B | r
min. | ${m r}_1$ min. | $C_{\rm r}$ (1 | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${m \gamma}_{\rm a}$ max. | approx. | Single | Standar | d Option | Duplex | $C_{\rm r}$ | C_{0r} | Grease | n-')
Oil | DB | DF | $d_{\mathrm{b}^{(3)}}$ min. | $D_{ m b}$ max. | | | 70 | 100
100
110 | 16
16
20 | 1
1
1.1 | 0.6
0.6
0.6 | 26 500
28 100
44 000 | 26 300
27 800
41 500 | 16.4 | 8 000
9 500
5 000 | 11 000
13 000
6 700 | 27.8
19.4
36.0 | 76
76
77 | 94
94
103 | 1
1
1 | 0.341
0.338
0.625 | 7914 A5
7914 C
7014 A | (M)
(M)
W | T,TYN
T, TYN,T85
(M), T,TYN | DB DF D
DB DF D
DB DF D | 4 5 500 | 55 500 | 6 300
7 500
4 000 | 9 000
11 000
5 600 | 55.6
38.8
72.0 | 23.6
6.8
32.0 | —
—
75 | | 0.6
0.6
0.6 | | | 110
125
125 | 20
24
24 | 1.1
1.5
1.5 | 0.6
1
1 | 47 000
76 500
69 000 | 43 000
63 500
58 000 | _ | 9 000
4 500
3 200 | 12 000
6 300
4 500 | 22.1
40.1
52.9 | 77
79
79 | 103
116
116 | 1
1.5
1.5 | 0.698
1.11
1.14 | 7014 C
7214 A
7214 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | | 76 000
124 000
112 000 | 127 000 | 7 100
3 600
2 600 | 10 000
5 000
3 600 | 44.1
80.3
105.8 | 4.1
32.3
57.8 | —
76
76 | 105
119
119 | 0.6
1
1 | | | 125
125
150 | 24
24
35 | 1.5
1.5
2.1 | 1
1
1.1 | 75 500
79 500
125 000 | 58 500
64 500
93 500 | | 4 500
8 500
3 200 | 6 700
11 000
4 300 | 52.9
25.1
49.3 | 79
79
82 | 116
116
138 | 1.5
1.5
2 | 1.08
1.24
2.60 | *7214 BE
7214 C
7314 A | A T85
(M)
W | MR, T7
W,T,TYN,T7
(M), T | DB DF D | | | 3 600
6 700
2 600 | 5 300
9 000
3 400 | 105.8
50.1
98.5 | 57.8
2.1
28.5 | 76
—
77 | 119
119
143 | 1
1
1 | | | 150
150 | 35
35 | 2.1
2.1 | 1.1
1.1 | 114 000
124 000 | 86 000
87 500 | _ | 2 800
4 000 | 4 000
6 000 | 63.6
63.7 | 82
82 | 138
138 | 2 2 | 2.65
2.53 | 7314 B
*7314 BE | W
A T85 | (M), T
MR, T7 | DB DF D | 186 000 | 172 000
— | 2 400
3 200 | 3 200
4 800 | 127.3
127.3 | 57.3
57.3 | 77
77 | 143
143 | 1 | | 75 | 105
105
115 | 16
16
20 | 1
1
1.1 | 0.6
0.6
0.6 | 26 900
28 600
45 000 | 27 700
29 300
43 500 | 16.6 | 7 500
9 000
4 800 | 10 000
12 000
6 300 | 29.0
20.1
37.4 | 81
81
82 | 99
99
108 | 1
1
1 | 0.355
0.357
0.661 | 7915 A5
7915 C
7015 A | (M)
(M)
W | TYN
T, TYN
(M), T,TYN | | 44 000
46 500
73 000 | 58 500 | 6 000
7 100
3 800 | 8 500
10 000
5 300 | 58.0
40.1
74.8 | 26.0
8.1
34.8 | —
80 | 100 | 0.6
0.6
0.6 | | | 115
130
130 | 20
25
25 | 1.1
1.5
1.5 | 0.6
1
1 | 48 000
76 000
68 500 | 45 500
64 500
58 500 | _ | 8 500
4 300
3 200 | 12 000
6 000
4 300 | 22.7
42.1
55.5 | 82
84
84 | 108
121
121 | 1
1.5
1.5 | 0.748
1.19
1.22 | 7015 C
7215 A
7215 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | | 78 000
123 000
112 000 | 129 000 | 6 700
3 600
2 400 | 9 500
4 800
3 400 | | 5.4
34.2
61.0 | 81
81 | 110
124
124 | 0.6
1
1 | | | 130
130
160
160
160 | 25
25
37
37
37 | 1.5
1.5
2.1
2.1
2.1 | 1
1
1.1
1.1
1.1 | 78 500
83 000
136 000
125 000
134 000 | 63 500
70 000
106 000
97 500
98 500 | 14.8
— | 4 300
8 000
3 000
2 800
3 800 | 6 300
11 000
4 000
3 800
5 600 | 55.5
26.2
52.4
67.8
67.8 | 84
84
87
87
87 | 121
121
148
148
148 | 1.5
1.5
2
2
2 | 1.18
1.36
3.13
3.19
3.03 | *7215 BE
7215 C
7315 A
7315 B
*7315 BE | (M)
W
W | MR
W,T,TYN,T7
(M), T
(M),MR,T
MR | DB DF D | 134 000
1 221 000
202 000 | 212 000
195 000 | 3 600
6 300
2 400
2 200
3 000 | 5 000
9 000
3 200
3 000
4 500 | 52.4
104.8
135.6 | 61.0
2.4
30.8
61.6
61.6 | 81
—
82
82
82
82 | 124
124
153
153
153 | 1
1
1
1 | | 80 | 110
110
125 | 16
16
22 | 1
1
1.1 | 0.6
0.6
0.6 | 27 300
29 000
55 000 | 29 000
30 500
53 000 | | 7 100
8 500
4 300 | 10 000
12 000
6 000 | 30.2
20.7
40.6 | 86
86
87 | 104
104
118 | 1
1
1 | 0.380
0.376
0.880 | 7916 A5
7916 C
7016 A | (M)
(M)
W | T,TYN
T, TYN
(M), T,TYN | DB DF D | 44 500
47 000
89 500 | 61 500 | 5 600
6 700
3 600 | 8 000
9 500
4 800 | 60.3
41.5
81.2 | 28.3
9.5
37.2 | —
—
85 | 105
105
120 | 0.6
0.6
0.6 | | | 125
140
140 | 22
26
26 | 1.1
2
2 | 0.6
1
1 | 58 500
89 000
80 500 | 55 500
76 000
69 500 | <u> </u> | 8 000
4 000
2 800 | 11 000
5 600
4 000 | 24.7
44.8
59.1 | 87
90
90 | 118
130
130 | 1
2
2 | 0.966
1.46
1.49 | 7016 C
7216 A
7216 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M),T | | 95 500
145 000
131 000 | 152 000 | 6 300
3 200
2 400 | 9 000
4 500
3 200 | 49.4
89.5
118.3 | 5.4
37.5
66.3 | —
86
86 | 120
134
134 | 0.6
1
1 | | | 140
140
170
170
170 | 26
26
39
39
39 | 2
2
2.1
2.1
2.1 | 1
1
1.1
1.1
1.1 | 87 500
93 000
147 000
135 000
144 000 | 109 000 | | 4 000
7 500
2 800
2 600
3 600 | 6 000
10 000
3 800
3 400
5 300 | 59.2
27.7
55.6
71.9
71.9 | 90
90
92
92
92 | 130
130
158
158
158 | 2
2
2
2
2 | 1.42
1.63
3.71
3.79
3.59 | *7216 BE
7216 C
7316 A
7316 B
*7316 BE | (M)
W
W | MR, T7
W,T,TYN
(M), T
(M), T
MR, T7 | DB DF D | 151 000
1 239 000
1 219 000 | 238 000 | 3 200
6 000
2 200
2 000
2 800 | 4 800
8 000
3 000
2 800
4 300 | 55.5
111.2
143.9 | 66.3
3.5
33.2
65.9
65.9 | 86
—
87
87
87 | 134
134
163
163
163 | 1
1
1
1 | - Notes (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked in the column for $d_{\rm b}$, $d_{\rm b}$ and $r_{\rm b}$ for shafts are $d_{\rm a}$ (min) and $r_{\rm a}$ (max) respectively. Note (4) (M) in the column of cage symbols are usually omitted from the bearing number. Remark The bearings denoted by an asterisk (*) are NSKHPSTM Angular contact ball bearings and the column of Duplex in Bearing Numbers indicates the universal matching. ## SINGLE/MATCHED MOUNTINGS Back-to-Back DB Single Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | DB or DF | | | | | | | | |---------|---------------------------------|------|---------------|------------|---------------|-----------------|----------|------|---------------|------|--|--|--|--| | | $\frac{i J_0 \Gamma_a}{C_{or}}$ | e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | $c_{\rm r} > e$ | F_a/F | r≦e | $F_a/F_r > e$ | | | | | | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | | | | 15º | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | | | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | | | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | | | | | | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | | | | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | | | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | | | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | | | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | | | | | 25⁰ | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | | | | | 30₂ | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | | | | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | | | | | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25º | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | | Boundary Dimensions (Single) Basic Load Ratings Factor (Single) | | | Factor | r Limiting Speeds (1) | | Eff.Load Abutment and Fillet Dimensions (mm) | | | Mass Bearing Numbers (kg) Cage Symbol (4) | | |) | Basic Load Ratings
(Matched) | | Limiting Speeds (1) (Matched) | | Load Center
Spacings (mm) | | Abutment and Fille
Dimensions (mm | | | | | | | | |----------|---|----------------------------|---------------------------|---------------------------------|-------------------------------|---|--|---
---|---|---------------------------------|---------------------------------|------------------------------------|--------------------------------------|--|-------------------------------|---|------------------------------|-------------------------------|--------------------------------------|---|---|--|-------------------------------------|-------------------------------|---------------------------------|--------------------------| | <i>d</i> | D | В | γ
min. | ${m r}_1$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | Single | Standa | d Option | Duplex | $C_{\rm r}$ | C_{0r} | Grease | oil | DB DB | O DF | $d_{ m b}^{(3)}$ min. | $D_{\rm b} \\ {\rm max.}$ | $ m \emph{r}_b(^3)$ max. | | 85 | 120
120
130 | 18
18
22 | 1.1
1.1
1.1 | 0.6
0.6
0.6 | 36 500
39 000
56 500 | 38 500
40 500
56 000 | —
16.5
— | 6 700
8 000
4 300 | 9 000
11 000
5 600 | 32.9
22.7
42.0 | 92
92
92 | 113
113
123 | 1
1
1 | 0.541
0.534
0.913 | 7917 A5
7917 C
7017 A | (M)
(M)
W | T,TYN
T, TYN
(M), T,TYN | DB DF DT DB DF DT | | 81 500 | 5 300
6 300
3 400 | 7 500
9 000
4 500 | 65.8
45.5
84.1 | 29.8
9.5
40.1 | —
90 | 115
115
125 | 0.6
0.6
0.6 | | | 130
150
150 | 22
28
28 | 1.1
2
2 | 0.6
1
1 | 60 000
103 000
93 000 | 58 500
89 000
81 000 | _ | 7 500
3 800
2 800 | 10 000
5 300
3 800 | 25.4
47.9
63.3 | 92
95
95 | 123
140
140 | 1
2
2 | 1.01
1.83
1.87 | 7017 C
7217 A
7217 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M), T | DB DF D | 98 000
167 000
151 000 | 178 000 | 6 000
3 000
2 200 | 8 500
4 300
3 000 | 50.8
95.8
126.6 | 6.8
39.8
70.6 | —
91
91 | 125
144
144 | 0.6
1
1 | | | 150
150
180
180
180 | 28
28
41
41
41 | 2
2
3
3
3 | 1
1
1.1
1.1
1.1 | | 81 500
90 500
133 000
122 000
133 000 | 14.7
—
— | 3 800
6 700
2 600
2 400
3 400 | 5 600
9 500
3 600
3 200
5 000 | 63.3
29.7
58.8
76.1
76.1 | 95
95
99
99 | 140
140
166
166
166 | 2
2
2.5
2.5
2.5 | 1.75
2.04
4.33
4.42
4.34 | 7217 BE
7217 C
7317 A
7317 B
7317 BE | (M)
W
W | —
W,T,TYN
(M), T
(M), T
MR, T7 | DB DF D | 174 000
258 000
236 000 | 265 000
244 000 | 3 200
5 600
2 200
1 900
2 800 | 4 500
7 500
2 800
2 600
4 000 | 126.6
59.5
117.5
152.2
152.2 | 70.6
3.5
35.5
70.2
70.2 | 91
—
92
92
92 | 144
144
173
173
173 | 1
1
1
1 | | 90 | 125
125
140 | 18
18
24 | 1.1
1.1
1.5 | 0.6
0.6
1 | 39 500
41 500
67 500 | 43 500
46 000
66 500 | 16.6
— | 6 300
7 500
3 800 | 8 500
10 000
5 300 | 34.1
23.4
45.2 | 97
97
99 | 118
118
131 | 1
1
1.5 | 0.560
0.563
1.19 | 7918 A5
7918 C
7018 A | (M)
(M)
W | T,TYN
T, TYN
(M), T,TYN | DB DF D | 64 000
67 500
109 000 | 92 000 | 5 000
6 000
3 200 | 7 100
8 500
4 300 | 68.1
46.8
90.4 | 32.1
10.8
42.4 | —
—
96 | 120
120
134 | 0.6
0.6
1 | | | 140
160
160 | 24
30
30 | 1.5
2
2 | 1
1
1 | 71 500
118 000
107 000 | 69 000
103 000
94 000 | 15.7
— | 7 100
3 600
2 600 | 9 500
4 800
3 400 | 27.4
51.1
67.4 | 99
100
100 | 131
150
150 | 1.5
2
2 | 1.34
2.25
2.29 | 7018 C
7218 A
7218 B | (M)
W
W | W,T, TYN
(M), T,TYN
(M), T | DB DF D | 116 000
191 000
173 000 | 206 000 | 5 600
2 800
2 000 | 8 000
4 000
2 800 | 54.8
102.2
134.9 | 6.8
42.2
74.9 | —
96
96 | 134
154
154 | 1
1
1 | | | 160
160
190
190
190 | 30
30
43
43
43 | 2
2
3
3
3 | 1
1
1.1
1.1
1.1 | 171 000
156 000 | 105 000
147 000 | 14.6
—
— | 3 600
6 300
2 600
2 200
3 200 | 5 300
9 000
3 400
3 000
4 500 | 67.4
31.7
61.9
80.2
80.2 | 100
100
104
104
104 | 150
150
176
176
176 | 2
2
2.5
2.5
2.5 | 2.19
2.51
5.06
5.17
4.97 | 7218 BE
7218 C
7318 A
7318 B
7318 BE | (M)
W
W | MR
W,T,TYN
(M), T
(M), T
MR | DB DF D | 199 000
277 000
254 000 | 294 000
270 000 | 3 000
5 300
2 000
1 800
2 600 | 4 300
7 100
2 800
2 400
3 600 | 134.9
63.5
123.8
160.5
160.5 | 74.9
3.5
37.8
74.5
74.5 | 96
—
97
97
97 | 154
154
183
183
183 | 1
1
1
1 | | 95 | 130
130
145 | 18
18
24 | 1.1
1.1
1.5 | 0.6
0.6
1 | 40 000
42 500
67 000 | 45 500
48 000
67 000 | 16.7
— | 6 000
7 100
4 500 | 8 500
10 000
6 300 | 35.2
24.1
46.6 | 102
102
104 | 123
123
136 | 1
1
1.5 | 0.597
0.591
1.43 | 7919 A5
7919 C
7019 A | (M)
(M)
(M) | T,TYN
T, TYN
T,TYN | DB DF D | 64 500
68 500
109 000 | 96 000 | 4 800
5 600
3 800 | 6 700
8 000
5 000 | 70.5
48.1
93.3 | 34.5
12.1
45.3 | _
_
_ | 125
125
139 | 0.6
0.6
1 | | | 145
170
170 | 24
32
32 | 1.5
2.1
2.1 | 1
1.1
1.1 | | 73 000
111 000
101 000 | 15.9
— | 6 700
3 400
2 400 | 9 000
4 500
3 200 | 28.1
54.2
71.6 | 104
107
107 | 136
158
158 | 1.5
2
2 | 1.42
2.68
2.74 | 7019 C
7219 A
7219 B | (M)
W
W | T, TYN
(M), T,TYN
(M), T | DB DF D | 119 000
208 000
188 000 | 221 000 | 5 300
2 600
1 900 | 7 500
3 600
2 600 | 56.1
108.5
143.2 | 8.1
44.5
79.2 | —
102
102 | 139
163
163 | 1
1
1 | | | 170
170
200
200
200 | 32
32
45
45
45 | 2.1
2.1
3
3
3 | 1.1
1.1
1.1
1.1
1.1 | 133 000
183 000
167 000 | 107 000
112 000
162 000
149 000
160 000 | 14.6
—
— | 3 400
6 000
2 400
2 200
3 000 | 5 000
8 500
3 200
3 000
4 500 | 71.6
33.7
65.1
84.3
84.3 | 107
107
109
109
109 | 158
158
186
186
186 | 2
2
2.5
2.5
2.5
2.5 | 2.67
3.05
5.83
5.98
5.82 | 7219 BE
7219 C
7319 A
7319 B
7319 BE | (M)
W
W | MR, T7
W,T,TYN
(M), T
(M), T
MR | DB DF D | 216 000
297 000
272 000 | 325 000 | 2 800
4 800
1 900
1 700
2 400 | 4 000
6 700
2 600
2 400
3 600 | 143.2
67.5
130.2
168.7
168.7 | 79.2
3.5
40.2
78.7
78.7 | 102
—
102
102
102 | 163
163
193
193
193 | 1
1
1
1 | | 100 | 140
140
150 | 20
20
24 | 1.1
1.1
1.5 | 0.6
0.6
1 | 47 500
50 000
68 500 | 51 500
54 000
70 500 | 16.5
— | 5 600
6 700
4 500 | 8 000
9 000
6 000 | 38.0
26.1
48.1 | 107
107
109 | 133
133
141 | 1
1
1.5 | 0.804
0.794
1.48 | 7920 A5
7920 C
7020 A | (M)
(M)
(M) | T,TYN
T, TYN
T,TYN | DB DF D1 | 77 000
81 500
111 000 | 108 000 | 4 500
5 300
3 600 | 6 300
7 500
5 000 | 76.0
52.2
96.2 | 36.0
12.2
48.2 | _
_
_ | 135
135
144 | 0.6
0.6
1 | **Notes** (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked — in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. **Note** (4) (M) in the column of cage symbols are usually omitted from the bearing number. # ■ ANGULAR CONTACT BALL BEARINGS ### SINGLE/MATCHED MOUNTINGS Bore Diameter 100 – 120 mm Back-to-Back DB Single Face-to-Face DF DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|---------------------------------|------|---------------|------------|---------------|-----------------|---------|------|---------|-------| | | $\frac{i J_0 \Gamma_a}{C_{or}}$ | e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | $c_{\rm r} > e$ | F_a/F | r≦e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25⁰ | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30₂ | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25⁰ | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | | Bounda | ary Dime | ensions | | (Sir | ad Ratings | Factor | | Speeds (1) |
Eff.Load
Centers | | nent and
nsions (r | | Mass
(kg) | Ca | Bea
age Symb | ring Numbers (3 | ()
 | Basic Load | hed) | Speeds (1) | (Matched) | Load C
Spacing | s (mm) | | nent and | | |-----|--|----------------------------------|------------------------------------|---------------------------------|--|---|------------------------|--|--|--|--|--|------------------------------------|--|---|-------------------------------|--|----------------------------|--|--|----------------------------------|--|---|---|-------------------------------|--|---| | d | D | B | r
min. | ${\it r}_{\rm 1}$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{\rm a}$ max. | approx. | Single | Standar | d Option | Duplex | $C_{\rm r}$ (N | C_{0r} | Grease | Oil | DB | O DF | $d_{\mathrm{b}^{(3)}}$ min. | $D_{ m b}$ max. | $\begin{array}{c} \pmb{\varUpsilon}_b(^3) \\ \text{max.} \end{array}$ | | 100 | 150
180
180 | 24
34
34 | 1.5
2.1
2.1 | 1
1.1
1.1 | | 77 000
126 000
114 000 | _ | 6 300
3 200
2 200 | 9 000
4 300
3 000 | 28.7
57.4
75.7 | 109
112
112 | 141
168
168 | 1.5
2
2 | 1.46
3.22
3.28 | 7020 C
7220 A
7220 B | (M)
W
W | T, TYN
(M), T,TYN
(M), T | | 122 000
233 000
212 000 | 251 000 | 2 600 | 7 100
3 400
2 400 | 57.5
114.8
151.5 | 9.5
46.8
83.5 | —
107
107 | 144
173
173 | 1 1 1 | | | 180
180
215
215
215 | 34
34
47
47
47 | 2.1
2.1
3
3 | 1.1
1.1
1.1
1.1 | 136 000
149 000
207 000
190 000 | 122 000
127 000
193 000
178 000
187 000 | 14.5
— | 3 200
5 600
2 200
2 000
2 800 | 4 500
8 000
3 000
2 800
4 000 | 75.7
35.7
69.0
89.6
89.6 | 112
112
114
114
114 | 168
168
201
201
201 | 2
2
2.5
2.5
2.5
2.5 | 3.27
3.65
7.29
7.43
7.14 | 7220 BE
7220 C
7320 A
7320 B
7320 BE | A T85
(M)
W | MR
W,T,TYN
(M), T
(M), T
MR, T7 |
DB DF DT | 242 000 3
335 000 | | 2 600
4 500
1 800 | 3 600
6 300
2 400
2 200
3 200 | 151.5
71.5
137.9
179.2
179.2 | 83.5
3.5
43.9
85.2
85.2 | 107
—
107
107
107 | 173
173
208
208
208 | 1
1
1
1 | | 105 | 145
145
160
160
190
190 | 20
20
26
26
36
36 | 1.1
1.1
2
2
2.1
2.1 | 0.6
0.6
1
1
1.1 | | 57 000 | 16.6
—
15.9
— | 5 600
6 300
4 300
6 000
3 000
2 200 | 7 500
9 000
5 600
8 500
4 000
3 000 | 39.2
26.7
51.2
30.7
60.6
79.9 | 112
112
115
115
117
117 | 138
138
150
150
178
178 | 1
1
2
2
2
2 | 0.820
0.826
1.84
1.82
3.84
3.92 | 7921 A5
7921 C
7021 A
7021 C
7221 A
7221 B | (M)
(M)
(M)
(M)
W | T,TYN
T, TYN
T,TYN
T, TYN
(M), T
(M), T | DB DF DT DB DF DT DB DF DT | 78 500
83 000
130 000
143 000
254 000
231 000 | 114 000
163 000
179 000
283 000 | 5 300
3 400
4 800
2 400 | 6 000
7 100
4 500
6 700
3 400
2 400 | 78.3
53.5
102.5
61.5
121.2
159.8 | 38.3
13.5
50.5
9.5
49.2
87.8 |

112
112 | 140
140
154
154
183
183 | 0.6
0.6
1
1 | | | 190
190
190
225
225
225 | 36
36
49
49 | 2.1
2.1
3
3
3 | 1.1
1.1
1.1
1.1
1.1 | 148 000
162 000
208 000 | 133 000
143 000
193 000
177 000 | 14.5
— | 3 000
5 300
2 600
2 400
2 600 | 4 500
7 500
3 600
3 200
4 000 | 79.9
79.9
37.7
72.1
93.7
93.7 | 117
117
117
119
119
119 | 178
178
178
211
211
211 | 2
2
2.5
2.5
2.5
2.5 | 3.92
3.69
4.33
9.34
9.43
8.12 | 7221 B
7221 C
7221 C
7321 A
7321 B
7321 BE | (M)
(M)
(M) | W,T,TYN
T |
DB DF DT
DB DF DT | 264 000 :
335 000 :
310 000 : | | 2 400
4 300
2 200 | 3 600
6 000
2 800
2 600
3 200 | 159.8
75.5
144.3
187.4
187.4 | 87.8
3.5
46.3
89.4
89.4 | 112
112
—
—
— | 183
183
218
218
218 | 1
1
1
1
1 | | 110 | 150
150
170
170 | 20
20
28
28 | 1.1
1.1
2 | 0.6
0.6
1 | 49 000
52 000
96 500 | 59 500 | 16.7
— | 5 300
6 300
4 000
5 600 | 7 100
8 500
5 300
8 000 | 40.3
27.4
54.4
32.7 | 117
117
120
120 | 143
143
160
160 | 1
1
2
2 | 0.877
0.867
2.28
2.26 | 7922 A5
7922 C
7022 A
7022 C | (M)
(M)
(M) | T,TYN
T, TYN
T,TYN
T, TYN | DB DF DT
DB DF DT | 79 500
84 500
157 000 | 119 000
191 000 | 5 000
3 200 | 5 600
6 700
4 300
6 300 | 80.6
54.8
108.8
65.5 | 40.6
14.8
52.8
9.5 | | 145
145
164
164 | 0.6
0.6
1 | | | 200
200
200 | 38
38
38 | 2.1
2.1
2.1 | 1.1
1.1
1.1 | 170 000
154 000 | 158 000
144 000
144 000 | = | 2 800
2 000
2 800 | 3 800
2 800
4 300 | 63.7
84.0
84.0 | 122
122
122 | 188
188
188 | 2 2 2 | 4.49
4.58
4.48 | 7222 A
7222 B
7222 BE | W | (M), T,TYN
(M), T | | 276 000 | 315 000 | 2 200 | 3 200
2 200
3 400 | 127.5
168.1
168.1 | 51.5
92.1
92.1 | 117
117
117 | 193
193
193 | 1 1 | | | 200
240
240
240 | 38
50
50
50 | 2.1
3
3
3 | 1.1
1.1
1.1
1.1 | 176 000
220 000
201 000 | 160 000 | 14.5
— | 5 000
2 600
2 200
2 600 | 7 100
3 400
3 000
3 800 | 39.8
75.5
98.4
98.4 | 122
124
124
124 | 188
226
226
226 | 2
2.5
2.5
2.5
2.5 | 5.10
11.1
11.2
9.91 | 7222 C
7322 A
7322 B
7322 BE | (M)
(M)
(M) | W,T,TYN
W,T
W,T
MR | DB DF DT | 286 000 3
360 000 3
325 000 3 | 430 000 | 4 000
2 000 | 5 600
2 600
2 400
3 000 | 79.5
151.0
196.8
196.8 | 3.5
51.0
96.8
96.8 | | 193
233
233
233 | 1
1
1
1 | | 120 | 165
165
180 | 22
22
28 | 1.1
1.1
2 | 0.6
0.6
1 | | 77 000
81 000
107 000 | 16.5 | 4 800
5 600
3 600 | 6 300
7 500
5 000 | 44.2
30.1
57.3 | 127
127
130 | 158
158
170 | 1
1
2 | 1.15
1.15
2.45 | 7924 A5
7924 C
7024 A | (M) | T,TYN
T, TYN
T,TYN | DB DF DT | 110 000
117 000
166 000 | 162 000 | 4 500 | 5 300
6 300
4 000 | 88.5
60.2
114.6 | 44.5
16.2
58.6 | _ | 160
160
174 | 0.6
0.6
1 | | | 215
215
215 | 40
40
40 | 2.1
2.1
2.1 | 1.1
1.1
1.1 | 165 000 | 177 000
162 000
177 000 | - | 3 200
2 400
2 600 | 4 500
3 200
3 800 | 68.3
90.3
90.3 | 132
132
132 | 203
203
203 | 2
2
2 | 6.22
6.26
5.37 | 7224 A
7224 B
7224 BE | (M)
(M)
A T85 | T
T
MR, T7 | | 297 000 3
269 000 3 | | | 3 600
2 600
3 000 | 136.7
180.5
180.5 | 56.7
100.5
100.5 | | 208
208
208 | 1
1
1 | | | 260
260
260 | 55
55
55 | 3
3
3 | 1.1
1.1
1.1 | | 252 000
231 000
250 000 | _ | 2 200
2 000
2 200 | 3 000
2 800
3 400 | 82.3
107.2
107.2 | 134
134
134 | 246
246
246 | 2.5
2.5
2.5 | 14.5
14.4
12.8 | 7324 A
7324 B
7324 BE | | T | | 400 000
365 000 | | | 2 400
2 200
2 800 | 164.7
214.4
214.4 | 54.7
104.4
104.4 | | 253
253
253 | 1
1
1 | Notes (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. (3) For bearings marked — in the column for $d_{\rm b}$, $d_{\rm b}$ and $r_{\rm b}$ for shafts are $d_{\rm a}$ (min) and $r_{\rm a}$ (max) respectively. **Note** (4) (M) in the column of cage symbols are usually omitted from the bearing number. # **MANGULAR CONTACT BALL BEARINGS** ## SINGLE/MATCHED MOUNTINGS Bore Diameter 130 – 170 mm Single Back-to-Back DB Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|---------------------------------|------|---------------|------------|---------------|-----------------|---------|------|---------|-------| | | $\frac{i J_0 \Gamma_a}{C_{or}}$ | e | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | $c_{\rm r} > e$ | F_a/F | r≦e | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 |
0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25º | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30₂ | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40° | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25º | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º | 0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | | Bounda | ı ry Dim e
(mm) | ensions | | (Sir | d Ratings | Factor | | Speeds (1) | Eff.Load
Centers
(mm) | | ment and
ensions (r | | Mass
(kg) | Ca | Bea
ige Sym | ring Numbers (3
pol (4) | 2) | | (Mat | ad Ratings
ched) | Limi
Speeds (1) | (Matched) | Load (| | | nent and
nsions (r | | |----------|--------------------------|---------------------------|------------------|--------------------------|-------------------------------|--|-----------|----------------------------------|----------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------|------------------------------|--------------------------------------|--------------------------|----------------------------|-------|----------|--------------------|--|----------------------------------|----------------------------------|----------------------------------|--------------------------------|-----------------------|--------------------------|--------------------------| | <i>d</i> | D | В | r
min. | $ m \emph{r}_{1}$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | a | $d_{ m a}$ min. | $D_{ m a}$ max. | ${m \gamma}_{\rm a}$ max. | approx. | Single | Standa | rd Option | Duple | ex | $C_{\rm r}$ | C_{0r} | Grease | Oil | DB | DF | $d_{ m b}^{(3)}$ min. | $D_{ m b}$ max. | $ m \emph{r}_b(^3)$ max. | | 130 | 180
180
200 | 24
24
33 | 1.5
1.5
2 | 1
1
1 | 74 000
78 500
117 000 | 86 000
91 000
125 000 | 16.5 | 4 300
5 000
3 400 | 6 000
7 100
4 500 | 48.1
32.8
64.1 | 139
139
140 | 171
171
190 | 1.5
1.5
2 | 1.54
1.50
3.68 | 7926 A5
7926 C
7026 A | (M)
(M)
(M) | T,TYN
T, TYN
T,TYN | DB DF | DT | 128 000 | 172 000
182 000
251 000 | 3 400
4 000
2 600 | 4 800
5 600
3 600 | 96.3
65.5
128.3 | 48.3
17.5
62.3 | = | 174
174
194 | 1
1
1 | | | 230
230
280
280 | 40
40
58
58 | 3
3
4
4 | 1.1
1.1
1.5
1.5 | 171 000
273 000 | 193 000
175 000
293 000
268 000 | _ | 2 400
2 200
2 200
1 900 | 3 200
3 000
2 800
2 600 | 72.0
95.5
88.2
115.0 | 144
144
148
148 | 216
216
262
262 | 2.5
2.5
3 | 7.06
7.10
17.5
17.6 | 7226 A
7226 B
7326 A
7326 B | (M)
(M)
(M)
(M) | T
T
T | DB DF | DT
DT | 278 000
445 000 | 385 000
350 000
585 000
535 000 | 1 900
1 700
1 700
1 500 | 2 600
2 400
2 200
2 000 | 176.3 | 63.9
111.0
60.3
114.0 | _
_
_ | | 1
1
1.5
1.5 | | 140 | 190
190
210 | 24
24
33 | 1.5
1.5
2 | 1
1
1 | 75 000
79 500
120 000 | | 16.7 | 4 000
4 800
3 200 | 5 600
6 700
4 300 | 50.5
34.1
67.0 | 149
149
150 | 181
181
200 | 1.5
1.5
2 | 1.63
1.63
3.90 | 7928 A5
7928 C
7028 A | (M)
(M)
(M) | T,TYN
T, TYN
T | DB DF | DT | 129 000 | 180 000
191 000
265 000 | 3 200
3 800
2 600 | 4 500
5 300
3 400 | 100.9
68.2
134.0 | 52.9
20.2
68.0 | _ | 184
184
204 | 1
1
1 | | | 250
250
300
300 | 42
42
62
62 | 3
3
4
4 | 1.1
1.1
1.5
1.5 | 197 000
300 000 | 234 000
213 000
335 000
310 000 | _ | 2 200
2 000
2 000
1 700 | 3 000
2 800
2 600
2 400 | 77.3
102.8
94.5
123.3 | 154
154
158
158 | 236
236
282
282 | 2.5
2.5
3 | 8.92
8.94
21.4
21.6 | 7228 A
7228 B
7328 A
7328 B | (M)
(M)
(M)
(M) | T
T
T | DB DF | DT
DT | 320 000
490 000 | 470 000
425 000
670 000
615 000 | 1 800
1 600
1 600
1 400 | 2 400
2 200
2 000
1 900 | 154.6
205.6
189.0
246.6 | 70.6
121.6
65.0
122.6 | | 243
243
291
291 | 1
1
1.5
1.5 | | 150 | 210
210
225 | 28
28
35 | 2
2
2.1 | 1
1
1.1 | 102 000 | 115 000
122 000
154 000 | 16.6
— | 3 800
4 300
2 400 | 5 000
6 000
3 000 | 56.0
38.1
71.6 | 160
160
162 | 200
200
213 | 2
2
2 | 2.97
2.96
4.75 | 7930 A5
7930 C
7030 A | (M)
(M)
(M) | _
_
T | DB DF | DT | 166 000 | 231 000
244 000
305 000 | 3 000
3 600
1 900 | 4 000
4 800
2 400 | 112.0
76.2
143.3 | 56.0
20.2
73.3 | | 204
204
218 | 1
1
1 | | | 270
270
320
320 | 45
45
65
65 | 3
3
4
4 | 1.1
1.1
1.5
1.5 | 225 000
315 000 | 280 000
254 000
370 000
340 000 | _ | 2 000
1 800
1 800
1 600 | 2 800
2 600
2 400
2 200 | 83.1
110.6
100.3
131.1 | 164
164
168
168 | 256
256
302
302 | 2.5
2.5
3 | 11.2
11.2
26.0
25.9 | 7230 A
7230 B
7330 A
7330 B | (M)
(M)
(M)
(M) | | DB DF | DT
DT | 365 000
515 000 | 560 000
510 000
745 000
680 000 | 1 600
1 500
1 500
1 300 | 2 200
2 000
1 900
1 800 | 166.3
221.2
200.7
262.2 | 76.3
131.2
70.7
132.2 | _
_
_ | | 1
1
1.5
1.5 | | 160 | 220
240
290 | 28
38
48 | 2
2.1
3 | 1
1.1
1.1 | 155 000 | 133 000
176 000
305 000 | _ | 3 800
2 200
1 900 | 5 000
2 800
2 600 | 39.4
76.7
89.0 | 170
172
174 | 210
228
276 | 2
2
2.5 | 3.10
5.77
14.1 | 7932 C
7032 A
7232 A | (M)
(M)
(M) | TYN
T
T | DB DF | DT | 252 000 | 265 000
355 000
615 000 | 3 000
1 700
1 500 | 4 000
2 400
2 000 | 78.9
153.5
177.9 | 22.9
77.5
81.9 | | 214
233
283 | 1
1
1 | | | 290
340
340 | 48
68
68 | 3
4
4 | 1.1
1.5
1.5 | 345 000 | 279 000
420 000
385 000 | _ | 1 700
1 700
1 500 | 2 400
2 200
2 000 | 118.4
106.2
138.9 | 174
178
178 | 276
322
322 | 2.5
3
3 | 14.2
30.7
30.8 | 7232 B
7332 A
7332 B | (M)
(M)
(M) | T
T | DB DF | DT | 565 000 | 555 000
845 000
770 000 | 1 400
1 400
1 200 | 1 900
1 800
1 700 | 236.8
212.3
277.8 | 140.8
76.3
141.8 | | | 1
1.5
1.5 | | 170 | 230
260
310 | 28
42
52 | 2
2.1
4 | 1
1.1
1.5 | 186 000 | 148 000
214 000
360 000 | l — | 3 600
2 000
1 800 | 4 800
2 600
2 400 | 40.8
83.1
95.3 | 180
182
188 | 220
248
292 | 2
2
3 | 3.36
7.90
17.3 | 7934 C
7034 A
7234 A | (M)
(M)
(M) | Ξ | DB DF | DT | 300 000 | 297 000
430 000
715 000 | 2 800
1 600
1 400 | 3 800
2 200
1 900 | 81.6
166.1
190.6 | 25.6
82.1
86.6 | | 224
253
301 | 1
1
1.5 | | | 310
360
360 | 52
72
72 | 4
4
4 | 1.5
1.5
1.5 | 266 000
390 000
355 000 | | _ | 1 600
1 600
1 400 | 2 200
2 200
2 000 | 126.7
112.5
147.2 | 188
188
188 | 292
342
342 | 3
3
3 | 17.6
35.8
35.6 | 7234 B
7334 A
7334 B | (M)
(M)
(M) | _
 | DB DF | DT | 630 000 | 650 000
970 000
890 000 | 1 300
1 300
1 100 | 1 700
1 700
1 600 | 253.4
225.0
294.3 | 149.4
81.0
150.3 | _ | 301
351
351 | 1.5
1.5
1.5 | - Notes (1) For applications operating near the limiting speed, refer to Page C077. (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. - (3) For bearings marked in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. **Note** (4) (M) in the column of cage symbols are usually omitted from the bearing number. # ■ ANGULAR CONTACT BALL BEARINGS #### SINGLE/MATCHED MOUNTINGS Bore Diameter 180 – 200 mm Single Back-to-Back DB Face-to-Face DF Tandem DT #### Dynamic Equivalent Load $P = XF_r + YF_a$ | Contact | $if_0F_a^*$ | | | Singl | e, DT | | | DB c | r DF | | |---------|-------------|------|---------|------------|---------|-------|---------|------------|---------|-------| | | | e | F_a/F | $r \leq e$ | F_a/F | r > e | F_a/F | $r \leq e$ | F_a/F | r > e | | Angle | Cor | | X | Y | X | Y | X | Y | X | Y | | | 0.178 | 0.38 | 1 | 0 | 0.44 | 1.47 | 1 | 1.65 | 0.72 | 2.39 | | | 0.357 | 0.40 | 1 | 0 | 0.44 | 1.40 | 1 | 1.57 | 0.72 | 2.28 | | | 0.714 | 0.43 | 1 | 0 | 0.44 | 1.30 | 1 | 1.46 | 0.72 | 2.11 | | 15º | 1.07 | 0.46 | 1 | 0 | 0.44 | 1.23 | 1 | 1.38 | 0.72 | 2.00 | | 15- | 1.43 | 0.47 | 1 | 0 | 0.44 | 1.19 | 1 | 1.34 | 0.72 | 1.93 | | | 2.14 | 0.50 | 1 | 0 | 0.44 | 1.12 | 1 | 1.26 | 0.72 | 1.82 | | | 3.57 | 0.55 | 1 | 0 | 0.44 | 1.02 | 1 | 1.14 | 0.72 | 1.66 | | | 5.35 | 0.56 | 1 | 0 | 0.44 | 1.00 | 1 | 1.12 | 0.72 | 1.63 | | 25º | _ | 0.68 | 1 | 0 | 0.41 | 0.87 | 1 | 0.92 | 0.67 | 1.41 | | 30⁰ | _ | 0.80 | 1 | 0 | 0.39 | 0.76 | 1 | 0.78 | 0.63 | 1.24 | | 40⁰ | _ | 1.14 | 1 | 0 | 0.35 | 0.57 | 1 | 0.55 | 0.57 | 0.93 | *For i, use 2 for DB, DF and 1 for DT #### Static Equivalent Load $P_0=X_0F_r+Y_0F_a$ | Contact | Singl | e, DT | DB c | r DF | |---------|-------|-------|-------|-------| | Angle | X_0 | Y_0 | X_0 | Y_0 | | 15º | 0.5 | 0.46 | 1 | 0.92 | | 25⁰ | 0.5 | 0.38 | 1 | 0.76 | | 30₂ | 0.5 | 0.33 | 1 | 0.66 | | 40º |
0.5 | 0.26 | 1 | 0.52 | Single or DT mounting When $F_r > 0.5F_r + Y_0F_a$ use $P_0 = F_r$ | | Bounda | ary Dime
(mm) | ensions | | | nd Ratings
ngle) | Factor | | Speeds (1)
n-1) | Eff.Load
Centers | | ment and
ensions (r | | Mass
(kg) | Ca | Beari
ge Symb | ng Numbers
ool (4) | (2) | | (Mat | | Limit
Speeds (1) | (Matched) | | s (mm) | | nent and
ensions (| | |-----|-------------------|------------------|------------------|-------------------|-------------------------------|-------------------------------|--------|-------------------------|-------------------------|-------------------------|-------------------|---------------------------|---------------------------|----------------------|----------------------------|-------------------|-----------------------|-----|-------------------------|-------------------------------|-----------------------------------|-------------------------|-------------------------|-------------------------|------------------------|-----------------------------|-----------------------|---------------------------------------| | d | D | B | γ
min. | ${m r}_1$ min. | $C_{\rm r}$ | C_{0r} | f_0 | Grease | Oil | (mm)
a | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${m \gamma}_{\rm a}$ max. | approx. | Single | Standar | d Option | | Duplex | $C_{\rm r}$ | C_{0r} | (mir
Grease | Oil | DB DB | O DF | $d_{\mathrm{b}}^{(3)}$ min. | $D_{ m b}$ max. | $ {\pmb \gamma}_b(^3) \\ {\rm max}. $ | | 180 | 250
280
320 | 33
46
52 | 2
2.1
4 | 1
1.1
1.5 | 145 000
207 000
305 000 | | _ | 3 200
1 900
1 700 | 4 500
2 400
2 200 | 45.3
89.4
98.2 | 190
192
198 | 240
268
302 | 2
2
3 | 4.90
10.5
18.1 | 7936 C
7036 A
7236 A | (M)
(M)
(M) | Ξ | DB | DF DT
DF DT
DF DT | 335 000 | 370 000
505 000
770 000 | 2 600
1 500
1 400 | 3 600
2 000
1 800 | 90.6
178.8
196.3 | 24.6
86.8
92.3 | _ | 244
273
311 | 1
1
1.5 | | | 320
380
380 | 52
75
75 | 4
4
4 | 1.5
1.5
1.5 | | 350 000
535 000
490 000 | _ | 1 500
1 500
1 300 | 2 000
2 000
1 800 | 130.9
118.3
155.0 | 198
198
198 | 302
362
362 | 3
3
3 | 18.4
42.1
42.6 | 7236 B
7336 A
7336 B | (M)
(M)
(M) | = | | DF DT DF DT DF DT | | 700 000
1 070 000
975 000 | 1 200
1 200
1 100 | | 261.8
236.6
309.9 | 157.8
86.6
159.9 | _
_
_ | 311
371
371 | 1.5
1.5
1.5 | | 190 | 260
290
340 | 33
46
55 | 2
2.1
4 | 1
1.1
1.5 | 147 000
224 000
315 000 | | _ | 3 000
1 800
1 600 | 4 300
2 400
2 200 | 46.6
92.3
104.0 | 200
202
208 | 250
278
322 | 2
2
3 | 4.98
11.3
22.4 | 7938 C
7038 A
7238 A | (M)
(M)
(M) | TYN
—
— | DB | DF DT DF DT DF DT | | 385 000
560 000
825 000 | 2 400
1 400
1 300 | 3 400
1 900
1 700 | 93.3
184.6
208.0 | 27.3
92.6
98.0 | _
_
_ | 254
283
331 | 1
1
1.5 | | | 340
400
400 | 55
78
78 | 4
5
5 | 1.5
2
2 | | 375 000
600 000
550 000 | _ | 1 400
1 400
1 300 | 2 000
1 900
1 700 | 138.7
124.2
162.8 | 208
212
212 | 322
378
378 | 3
4
4 | 22.5
47.5
47.2 | 7238 B
7338 A
7338 B | (M)
(M)
(M) | | DB | DF DT DF DT DF DT | | 750 000
1 200 000
1 100 000 | 1 100
1 100
1 000 | | 277.3
248.3
325.5 | 167.3
92.3
169.5 | _
_
_ | 331
390
390 | 1.5
2
2 | | 200 | 280
310
360 | 38
51
58 | 2.1
2.1
4 | 1.1
1.1
1.5 | 240 000 | 244 000
310 000
450 000 | _ | 2 800
1 700
1 500 | 4 000
2 200
2 000 | 51.2
99.1
109.8 | 212
212
218 | 268
298
342 | 2
2
3 | 6.85
13.7
26.5 | 7940 C
7040 A
7240 A | (M)
(M)
(M) | <u>T</u> | DB | DF DT DF DT DF DT | 390 000 | 490 000
620 000
900 000 | 2 200
1 300
1 200 | 3 200
1 800
1 600 | 102.3
198.2
219.6 | 26.3
96.2
103.6 | _
_
_ | 273
303
351 | 1
1
1.5 | | | 360
420
420 | 58
80
80 | 4
5
5 | 1.5
2
2 | 475 000 | 410 000
660 000
600 000 | _ | 1 300
1 300
1 200 | 1 800
1 800
1 600 | 146.5
129.5
170.1 | 218
222
222 | 342
398
398 | 3
4
4 | 26.6
54.4
55.3 | 7240 B
7340 A
7340 B | (M)
(M)
(M) | _
T
_ | | DF DT | 495 000
770 000
700 000 | 815 000
1 320 000
1 200 000 | 1 100
1 100
950 | | 292.9
259.0
340.1 | 176.9
99.0
180.1 | _
_
_ | 351
410
410 | 1.5
2
2 | - **Notes** (1) For applications operating near the limiting speed, refer to Page C077. - (2) The suffixes A, A5, B, and C represent contact angles of 30°, 25°, 40°, and 15° respectively. - (3) For bearings marked in the column for d_b , d_b and r_b for shafts are d_a (min) and r_a (max) respectively. **Note** (4) (M) in the column of cage symbols are usually omitted from the bearing number. # **DOUBLE-ROW ANGULAR CONTACT BALL BEARINGS** Bore Diameter 10 – 85 mm # Dynamic Equivalent Load $P = XF_{\rm r} + YF_{\rm a}$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | |---------------|------------|---------------|-------|------| | X | Y | X | Y | e | | 1 | 0.92 | 0.67 | 1.41 | 0.68 | Static Equivalent Load $P_0 = F_r + 0.76 F_a$ | | | ry Dimensions
(mm) | | | nd Ratings | | Speeds
n ⁻¹) | Bearing | Load Center
Spacings | Abutmen | t and Fillet D | Dimensions | Mass
(kg) | |----------|-----|-----------------------|------------------|------------------|-------------------|--------|-----------------------------|---------|-------------------------------|-----------------|--|--------------------|--------------| | <i>d</i> | D | В | γ
min. | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | Numbers | (mm)
<i>a</i> ₀ | $d_{ m a}$ min. | $\begin{array}{c} D_{\rm a} \\ {\rm max.} \end{array}$ | $m{r}_{ m a}$ max. | approx. | | 10 | 30 | 14.3 | 0.6 | 7 150 | 3 900 | 17 000 | 22 000 | 5200 | 14.5 | 15 | 25 | 0.6 | 0.050 | | 12 | 32 | 15.9 | 0.6 | 10 500 | 5 800 | 15 000 | 20 000 | 5201 | 16.7 | 17 | 27 | 0.6 | 0.060 | | 15 | 35 | 15.9 | 0.6 | 11 700 | 7 050 | 13 000 | 17 000 | 5202 | 18.3 | 20 | 30 | 0.6 | 0.070 | | | 42 | 19 | 1 | 17 600 | 10 200 | 11 000 | 15 000 | 5302 | 22.0 | 21 | 36 | 1 | 0.13 | | 17 | 40 | 17.5 | 0.6 | 14 600 | 9 050 | 11 000 | 15 000 | 5203 | 20.8 | 22 | 35 | 0.6 | 0.10 | | | 47 | 22.2 | 1 | 21 000 | 12 600 | 10 000 | 13 000 | 5303 | 25.0 | 23 | 41 | 1 | 0.18 | | 20 | 47 | 20.6 | 1 | 19 600 | 12 400 | 10 000 | 13 000 | 5204 | 24.3 | 26 | 41 | 1 | 0.16 | | | 52 | 22.2 | 1.1 | 24 600 | 15 000 | 9 000 | 12 000 | 5304 | 26.7 | 27 | 45 | 1 | 0.22 | | 25 | 52 | 20.6 | 1 | 21 300 | 14 700 | 8 500 | 11 000 | 5205 | 26.8 | 31 | 46 | 1 | 0.18 | | | 62 | 25.4 | 1.1 | 32 500 | 20 700 | 7 500 | 10 000 | 5305 | 31.8 | 32 | 55 | 1 | 0.35 | | 30 | 62 | 23.8 | 1 | 29 600 | 21 100 | 7 100 | 9 500 | 5206 | 31.6 | 36 | 56 | 1 | 0.30 | | | 72 | 30.2 | 1.1 | 40 500 | 28 100 | 6 300 | 8 500 | 5306 | 36.5 | 37 | 65 | 1 | 0.57 | | 35 | 72 | 27 | 1.1 | 39 000 | 28 700 | 6 300 | 8 000 | 5207 | 36.6 | 42 | 65 | 1 | 0.46 | | | 80 | 34.9 | 1.5 | 51 000 | 36 000 | 5 600 | 7 500 | 5307 | 41.6 | 44 | 71 | 1.5 | 0.76 | | 40 | 80 | 30.2 | 1.1 | 44 000 | 33 500 | 5 600 | 7 100 | 5208 | 41.5 | 47 | 73 | 1 | 0.62 | | | 90 | 36.5 | 1.5 | 56 500 | 41 000 | 5 300 | 6 700 | 5308 | 45.5 | 49 | 81 | 1.5 | 1.03 | | 45 | 85 | 30.2 | 1.1 | 49 500 | 38 000 | 5 000 | 6 700 | 5209 | 43.4 | 52 | 78 | 1 | 0.67 | | | 100 | 39.7 | 1.5 | 68 500 | 51 000 | 4 500 | 6 000 | 5309 | 50.6 | 54 | 91 | 1.5 | 1.37 | | 50 | 90 | 30.2 | 1.1 | 53 000 | 43 500 | 4 800 | 6 000 | 5210 | 45.9 | 57 | 83 | 1 | 0.72 | | | 110 | 44.4 | 2 | 81 500 | 61 500 | 4 300 | 5 600 | 5310 | 55.6 | 60 | 100 | 2 | 1.84 | | 55 | 100 | 33.3 | 1.5 | 56 000 | 49 000 | 4 300 | 5 600 | 5211 | 50.1 | 64 | 91 | 1.5 | 1.01 | | | 120 | 49.2 | 2 | 95 000 | 73 000 | 3 800 | 5 000 | 5311 | 60.6 | 65 | 110 | 2 | 2.40 | | 60 | 110 | 36.5 | 1.5 | 69 000 | 62 000 | 3 800 | 5 000 | 5212 | 56.5 | 69 | 101 | 1.5 | 1.33 | | | 130 | 54 | 2.1 | 125 000 | 98 500 | 3 400 | 4 500 | 5312 | 69.2 | 72 | 118 | 2 | 2.92 | | 65 | 120 | 38.1 | 1.5 | 76 500 | 69 000 | 3 600 | 4 500 | 5213 | 59.7 | 74 | 111 | 1.5 | 1.71 | | | 140 | 58.7 | 2.1 | 142 000 | 113 000 | 3 200 | 4 300 | 5313 | 72.8 | 77 | 128 | 2 | 3.67 | | 70 | 125 | 39.7 | 1.5 | 94 000 | 82 000 | 3 400 | 4 500 | 5214 | 63.8 | 79 | 116 | 1.5 | 1.75 | | | 150 | 63.5 | 2.1 | 159 000 | 128 000 | 3 000 | 3 800 | 5314 | 78.3 | 82 | 138 | 2 | 4.55 | | 75 | 130 | 41.3 | 1.5 | 93 500 | 83 000 | 3 200 | 4 300 | 5215 | 66.1 | 84 | 121 | 1.5 | 1.88 | | 80 | 140 | 44.4 | 2 | 99 000 | 93 000 | 3 000 | 3 800 | 5216 | 69.6 | 90 | 130 | 2 | 2.51 | | 85 | 150 | 49.2 | 2 | 116 000 | 110 000 | 2 800 | 3 600 | 5217 | 75.3 | 95 | 140 | 2 | 3.16 | C 106 C 107 # FOUR-POINT CONTACT BALL BEARINGS - # Bore Diameter 30 – 95 mm Dynamic Equivalent Load $P_{\rm a} = F_{\rm a}$ Static Equivalent Load $P_{0a} = F_a$ | | Boundary
(| / Dimensions | | Basic Load | d Ratings | Limiting
(mi | | Bearing | Load Center
Spacings | Abutmer | nt and Fillet [
(mm) | Dimensions | Mass
(kg) | |----|-------------------|----------------|------------------|------------------------------|-------------------------------|-------------------------|-------------------------|-----------------------------|-------------------------------|-------------------|-------------------------|-------------------------------|---------------------| | d | D | B | r
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Grease | Oil | Numbers | (mm)
a ₀ | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | 30 | 62
72 | 16
19 | 1
1.1 | 31 000
46 000 | 45 000
63 000 | 8
500
8 000 | 12 000
11 000 | QJ 206
QJ 306 | 32.2
35.7 | 36
37 | 56
65 | 1 | 0.24
0.42 | | 35 | 72
80 | 17
21 | 1.1
1.5 | 41 000
55 000 | 61 500
80 000 | 7 500
7 100 | 10 000
9 500 | QJ 207
QJ 307 | 37.5
40.3 | 42
44 | 65
71 | 1
1.5 | 0.35
0.57 | | 40 | 80
90 | 18
23 | 1.1
1.5 | 49 000
67 000 | 77 500
100 000 | 6 700
6 300 | 9 000
8 500 | QJ 208
QJ 308 | 42.0
45.5 | 47
49 | 73
81 | 1
1.5 | 0.45
0.78 | | 45 | 85
100 | 19
25 | 1.1
1.5 | 55 000
87 500 | 88 500
133 000 | 6 300
5 600 | 8 500
7 500 | QJ 209
QJ 309 | 45.5
50.8 | 52
54 | 78
91 | 1
1.5 | 0.52
1.05 | | 50 | 90
110 | 20
27 | 1.1
2 | 57 000
102 000 | 97 000
159 000 | 5 600
5 000 | 8 000
6 700 | QJ 210
QJ 310 | 49.0
56.0 | 57
60 | 83
100 | 1
2 | 0.59
1.35 | | 55 | 100
120 | 21
29 | 1.5
2 | 71 000
118 000 | 122 000
187 000 | 5 300
4 500 | 7 100
6 300 | QJ 211
QJ 311 | 54.3
61.3 | 64
65 | 91
110 | 1.5
2 | 0.77
1.75 | | 60 | 110
130 | 22
31 | 1.5
2.1 | 85 500
135 000 | 150 000
217 000 | 4 800
4 300 | 6 300
5 600 | QJ 212
QJ 312 | 59.5
66.5 | 69
72 | 101
118 | 1.5
2 | 0.98
2.15 | | 65 | 120
140 | 23
33 | 1.5
2.1 | 97 500
153 000 | 179 000
250 000 | 4 300
3 800 | 6 000
5 300 | QJ 213
QJ 313 | 64.8
71.8 | 74
77 | 111
128 | 1.5
2 | 1.2
2.7 | | 70 | 125
150 | 24
35 | 1.5
2.1 | 106 000
172 000 | 197 000
285 000 | 4 000
3 600 | 5 600
5 000 | QJ 214
QJ 314 | 68.3
77.0 | 79
82 | 116
138 | 1.5
2 | 1.3
3.18 | | 75 | 130
160 | 25
37 | 1.5
2.1 | 110 000
187 000 | 212 000
320 000 | 3 800
3 400 | 5 300
4 800 | QJ 215
QJ 315 | 71.8
82.3 | 84
87 | 121
148 | 1.5
2 | 1.5
3.9 | | 80 | 125
140
170 | 22
26
39 | 1.1
2
2.1 | 77 000
124 000
202 000 | 167 000
236 000
360 000 | 3 800
3 600
3 200 | 5 300
5 000
4 300 | QJ 1016
QJ 216
QJ 316 | 71.8
77.0
87.5 | 87
90
92 | 118
130
158 | 1
2
2 | 1.05
1.85
4.6 | | 85 | 130
150
180 | 22
28
41 | 1.1
2
3 | 79 000
143 000
218 000 | 176 000
276 000
405 000 | 3 800
3 400
3 000 | 5 000
4 800
4 000 | QJ 1017
QJ 217
QJ 317 | 75.3
82.3
92.8 | 92
95
99 | 123
140
166 | 1
2
2.5 | 1.1
2.2
5.34 | | 90 | 140
160
190 | 24
30
43 | 1.5
2
3 | 94 000
164 000
235 000 | 208 000
320 000
450 000 | 3 400
3 200
2 800 | 4 800
4 300
3 800 | QJ 1018
QJ 218
QJ 318 | 80.5
87.5
98.0 | 99
100
104 | 131
150
176 | 1.5
2
2.5 | 1.45
2.75
6.4 | | 95 | 145
170
200 | 24
32
45 | 1.5
2.1
3 | 96 500
177 000
251 000 | 220 000
340 000
495 000 | 3 400
3 000
2 600 | 4 500
4 000
3 600 | QJ 1019
QJ 219
QJ 319 | 84.0
92.8
103.3 | 104
107
109 | 136
158
186 | 1.5
2
2.5 | 1.5
3.35
7.4 | **Remark** When using four-point contact ball bearings, please contact NSK. C 109 C 108 # **FOUR-POINT CONTACT BALL BEARINGS** # Bore Diameter 100 – 200 mm Dynamic Equivalent Load $P_{\rm a} = F_{\rm a}$ Static Equivalent Load $P_{0a} = F_a$ | | Boundary Dimensions (mm) | | | Basic Load Ratings
(N) | | Limiting (| | Bearing | Load Center
Spacings | Abutment and Fillet Dimensions (mm) | | | Mass
(kg) | |----------|--------------------------|----------------|------------------|-------------------------------|-------------------------------------|-------------------------|-------------------------|-----------------------------|-------------------------------|-------------------------------------|---------------------------|-------------------------------|---------------------| | <i>d</i> | D | В | r
min. | C_{a} | $C_{0\mathrm{a}}$ | Grease | Oil | Numbers | (mm)
<i>a</i> ₀ | $d_{\scriptscriptstyle m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | 100 | 150
180
215 | 24
34
47 | 1.5
2.1
3 | 98 500
199 000
300 000 | 232 000
390 000
640 000 | 3 200
2 800
2 400 | 4 300
3 800
3 400 | QJ 1020
QJ 220
QJ 320 | 87.5
98.0
110.3 | 109
112
114 | 141
168
201 | 1.5
2
2.5 | 1.6
4.0
9.3 | | 105 | 160
190
225 | 26
36
49 | 2
2.1
3 | 115 000
217 000
305 000 | 269 000
435 000
640 000 | 3 000
2 600
2 400 | 4 000
3 600
3 200 | QJ 1021
QJ 221
QJ 321 | 92.8
103.3
115.5 | 115
117
119 | 150
178
211 | 2
2
2.5 | 2.0
4.7
10.5 | | 110 | 170
200
240 | 28
38
50 | 2
2.1
3 | 139 000
235 000
320 000 | 315 000
490 000
710 000 | 2 800
2 600
2 200 | 3 800
3 400
3 000 | QJ 1022
QJ 222
QJ 322 | 98.0
108.5
122.5 | 120
122
124 | 160
188
226 | 2
2
2.5 | 2.5
5.6
12.5 | | 120 | 180
215
260 | 28
40
55 | 2
2.1
3 | 147 000
265 000
360 000 | 350 000
585 000
835 000 | 2 600
2 400
2 000 | 3 600
3 200
2 800 | QJ 1024
QJ 224
QJ 324 | 105.0
117.3
133.0 | 130
132
134 | 170
203
246 | 2
2
2.5 | 2.65
6.9
15.4 | | 130 | 200
230
280 | 33
40
58 | 2
3
4 | 169 000
274 000
400 000 | 415 000
635 000
970 000 | 2 400
2 200
1 900 | 3 200
3 000
2 600 | QJ 1026
QJ 226
QJ 326 | 115.5
126.0
143.5 | 140
144
148 | 190
216
262 | 2
2.5
3 | 4.0
7.7
19 | | 140 | 210
250
300 | 33
42
62 | 2
3
4 | 172 000
315 000
440 000 | 435 000
775 000
1 110 000 | 2 200
2 000
1 700 | 3 000
2 800
2 400 | QJ 1028
QJ 228
QJ 328 | 122.5
136.5
154.0 | 150
154
158 | 200
236
282 | 2
2.5
3 | 4.3
9.8
24 | | 150 | 225
270
320 | 35
45
65 | 2.1
3
4 | 197 000
360 000
460 000 | 505 000
925 000
1 230 000 | 2 000
1 800
1 600 | 2 800
2 600
2 200 | QJ 1030
QJ 230
QJ 330 | 131.3
147.0
164.5 | 162
164
168 | 213
256
302 | 2
2.5
3 | 5.2
12
29 | | 160 | 240
290
340 | 38
48
68 | 2.1
3
4 | 224 000
380 000
505 000 | 580 000
1 010 000
1 400 000 | 1 900
1 700
1 500 | 2 600
2 400
2 000 | QJ 1032
QJ 232
QJ 332 | 140.0
157.5
175.1 | 172
174
178 | 228
276
322 | 2
2.5
3 | 6.4
15
31 | | 170 | 260
310
360 | 42
52
72 | 2.1
4
4 | 268 000
425 000
565 000 | 705 000
1 180 000
1 610 000 | 1 800
1 600
1 400 | 2 400
2 200
2 000 | QJ 1034
QJ 234
QJ 334 | 150.5
168.0
185.6 | 182
188
188 | 248
292
342 | 2
3
3 | 8.6
19.5
41 | | 180 | 280
320
380 | 46
52
75 | 2.1
4
4 | 299 000
440 000
595 000 | 830 000
1 270 000
1 770 000 | 1 700
1 500
1 300 | 2 200
2 000
1 800 | QJ 1036
QJ 236
QJ 336 | 161.0
175.1
196.1 | 192
198
198 | 268
302
362 | 2
3
3 | 11
20.5
48 | | 190 | 290
340
400 | 46
55
78 | 2.1
4
5 | 325 000
440 000
655 000 | 925 000
1 290 000
1 980 000 | 1 600
1 400
1 300 | 2 200
2 000
1 700 | QJ 1038
QJ 238
QJ 338 | 168.0
185.6
206.6 | 202
208
212 | 278
322
378 | 2
3
4 | 11.5
23
54.5 | | 200 | 310
360
420 | 51
58
80 | 2.1
4
5 | 345 000
490 000
690 000 | 1 020 000
1 480 000
2 180 000 | 1 500
1 300
1 200 | 2 000
1 800
1 600 | QJ 1040
QJ 240
QJ 340 | 178.6
196.1
217.1 | 212
218
222 | 298
342
398 | 2
3
4 | 15
27
61.5 | **Remark** When using four-point contact ball bearings, please contact NSK. C 110 C 111 | 4. | SEL | .F-/ | AL | IGNI | NG | BALL | BEARINGS | |----|-----|------|----|-------------|----|-------------|-----------------| |----|-----|------|----|-------------|----|-------------|-----------------| | INTRODUCTION C 114 | |--------------------------------| | BEARINGS TABLE | | SELF-ALIGNING BALL BEARINGS | | Bore Diameter 5 – 110 mm C 116 | C 112 # **DESIGN, TYPES, AND FEATURES** The outer ring has a spherical raceway and its center of curvature coincides with that of the bearing; therefore, the axis of the inner ring, balls and cage can deflect to some extent around the bearing center. This type is recommended when the alignment of the shaft and housing is difficult and when the shaft may bend. Since the contact angle is small, the axial load capacity is low. Pressed steel cages are usually used. #### PROTRUSION AMOUNT OF BALLS Among self-aligning ball bearings, there are some in which the balls protrude from the side face as shown below. This protrusion amount b_1 is listed in the following table. | Bearing No. | <i>b</i> ₁ (mm) | | | | | | |------------------------------------|----------------------------|--|--|--|--|--| | 2222(K), 2316(K) | 0.5 | | | | | | | 2319(K), 2320(K)
2321 , 2322(K) | 0.5 | | | | | | | 1318(K) | 1.5 | | | | | | | 1319(K) | 2 | | | | | | | 1320(K), 1321
1322(K) | 3 | | | | | | | ACCURACY Table 7.2 (Pages A | A128 to A131 | |------------------------------------|--------------| | RECOMMENDED FITS Table 8.3 (Page A | , | INTERNAL CLEARANCE...... Table 8.13 (Page A170) # PERMISSIBLE MISALIGNMENT The permissible misalignment of self-aligning ball bearings is approximately 0.07 to 0.12 radian (4° to 7°) under normal loads. However, depending on the surrounding structure, such an angle may not be possible. Use care in the structural design. #### **SELF-ALIGNING BALL BEARINGS** #### Bore Diameter 5 – 30 mm Tapered Bore #### **Dynamic Equivalent Load** | $P = XF_r + Y$ | YF | |----------------|----| |----------------|----| | F_a/F | r≤e | $F_{\rm
a}/F_{\rm r}{>}e$ | | | | | | |---------|-------|---------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_3 | 0.65 | Y_2 | | | | | #### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are listed in the table below. **Note** (1) The suffix K represents bearings with tapered bores (1 : 12) **Remark** For the dimensions related to adapters, refer to Page C348. # Bore Diameter 35 - 70 mm Cylindrical Bore Tapered Bore # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | r≤e | $F_{\rm a}/F_{\rm r} > e$ | | | | | | |---------------|-------|---------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_3 | 0.65 | Y_2 | | | | | #### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are listed in the table below. | | | Dimension | S | Basic Load Ratings
(N) | | Limiting Speeds
(min ⁻¹) | | Bearing | Numbers | Abutment | and Fillet Dir | nensions | Constant | t Axial Load Factors | | actors | Mass
(kg) | |----|--------------------------|----------------------|--------------------------|---------------------------------------|--------------------------------------|---|----------------------------------|------------------------------|--------------------|----------------------|--------------------------|---------------------------|------------------------------|--------------------------|--------------------------|--------------------------|----------------------------| | d | D | B | γ
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical
Bore | Tapered
Bore(1) | $d_{ m a}$ min. | D_{a} max. | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 35 | 72 | 17 | 1.1 | 15 900 | 5 100 | 8 500 | 10 000 | 1207 | 1207 K | 41.5 | 65.5 | 1 | 0.23 | 4.2 | 2.7 | 2.8 | 0.33 | | | 72 | 23 | 1.1 | 21 700 | 6 600 | 8 500 | 10 000 | 2207 | 2207 K | 41.5 | 65.5 | 1 | 0.37 | 2.6 | 1.7 | 1.8 | 0.403 | | | 80 | 21 | 1.5 | 25 300 | 7 850 | 7 500 | 9 500 | 1307 | 1307 K | 43 | 72 | 1.5 | 0.26 | 3.8 | 2.5 | 2.6 | 0.52 | | | 80 | 31 | 1.5 | 40 000 | 11 300 | 7 100 | 9 000 | 2307 | 2307 K | 43 | 72 | 1.5 | 0.46 | 2.1 | 1.4 | 1.4 | 0.671 | | 40 | 80 | 18 | 1.1 | 19 300 | 6 500 | 7 500 | 9 000 | 1208 | 1208 K | 46.5 | 73.5 | 1 | 0.22 | 4.3 | 2.8 | 2.9 | 0.42 | | | 80 | 23 | 1.1 | 22 400 | 7 350 | 7 500 | 9 000 | 2208 | 2208 K | 46.5 | 73.5 | 1 | 0.33 | 3.0 | 1.9 | 2.0 | 0.506 | | | 90 | 23 | 1.5 | 29 800 | 9 700 | 6 700 | 8 500 | 1308 | 1308 K | 48 | 82 | 1.5 | 0.24 | 4.0 | 2.6 | 2.7 | 0.727 | | | 90 | 33 | 1.5 | 45 500 | 13 500 | 6 300 | 8 000 | 2308 | 2308 K | 48 | 82 | 1.5 | 0.43 | 2.3 | 1.5 | 1.5 | 0.918 | | 45 | 85 | 19 | 1.1 | 22 000 | 7 350 | 7 100 | 8 500 | 1209 | 1209 K | 51.5 | 78.5 | 1 | 0.21 | 4.7 | 3.0 | 3.1 | 0.47 | | | 85 | 23 | 1.1 | 23 300 | 8 150 | 7 100 | 8 500 | 2209 | 2209 K | 51.5 | 78.5 | 1 | 0.30 | 3.2 | 2.1 | 2.2 | 0.556 | | | 100 | 25 | 1.5 | 38 500 | 12 700 | 6 000 | 7 500 | 1309 | 1309 K | 53 | 92 | 1.5 | 0.25 | 4.0 | 2.6 | 2.7 | 0.971 | | | 100 | 36 | 1.5 | 55 000 | 16 700 | 5 600 | 7 100 | 2309 | 2309 K | 53 | 92 | 1.5 | 0.41 | 2.4 | 1.5 | 1.6 | 1.2 | | 50 | 90 | 20 | 1.1 | 22 800 | 8 100 | 6 300 | 8 000 | 1210 | 1210 K | 56.5 | 83.5 | 1 | 0.21 | 4.7 | 3.1 | 3.2 | 0.535 | | | 90 | 23 | 1.1 | 23 300 | 8 450 | 6 300 | 8 000 | 2210 | 2210 K | 56.5 | 83.5 | 1 | 0.28 | 3.4 | 2.2 | 2.3 | 0.598 | | | 110 | 27 | 2 | 43 500 | 14 100 | 5 600 | 6 700 | 1310 | 1310 K | 59 | 101 | 2 | 0.23 | 4.2 | 2.7 | 2.8 | 1.23 | | | 110 | 40 | 2 | 65 000 | 20 200 | 5 000 | 6 300 | 2310 | 2310 K | 59 | 101 | 2 | 0.42 | 2.3 | 1.5 | 1.6 | 1.63 | | 55 | 100 | 21 | 1.5 | 26 900 | 10 000 | 6 000 | 7 100 | 1211 | 1211 K | 63 | 92 | 1.5 | 0.20 | 4.9 | 3.2 | 3.3 | 0.708 | | | 100 | 25 | 1.5 | 26 700 | 9 900 | 6 000 | 7 100 | 2211 | 2211 K | 63 | 92 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 0.807 | | | 120 | 29 | 2 | 51 500 | 17 900 | 5 000 | 6 300 | 1311 | 1311 K | 64 | 111 | 2 | 0.23 | 4.2 | 2.7 | 2.8 | 1.6 | | | 120 | 43 | 2 | 76 500 | 24 000 | 4 800 | 6 000 | 2311 | 2311 K | 64 | 111 | 2 | 0.41 | 2.4 | 1.5 | 1.6 | 2.08 | | 60 | 110 | 22 | 1.5 | 30 500 | 11 500 | 5 300 | 6 300 | 1212 | 1212 K | 68 | 102 | 1.5 | 0.18 | 5.3 | 3.4 | 3.6 | 0.91 | | | 110 | 28 | 1.5 | 34 000 | 12 600 | 5 300 | 6 300 | 2212 | 2212 K | 68 | 102 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 1.1 | | | 130 | 31 | 2.1 | 57 500 | 20 800 | 4 500 | 5 600 | 1312 | 1312 K | 71 | 119 | 2 | 0.23 | 4.3 | 2.8 | 2.9 | 2.0 | | | 130 | 46 | 2.1 | 88 500 | 28 300 | 4 300 | 5 300 | 2312 | 2312 K | 71 | 119 | 2 | 0.40 | 2.4 | 1.6 | 1.6 | 2.58 | | 65 | 120 | 23 | 1.5 | 31 000 | 12 500 | 4 800 | 6 000 | 1213 | 1213 K | 73 | 112 | 1.5 | 0.17 | 5.7 | 3.7 | 3.8 | 1.16 | | | 120 | 31 | 1.5 | 43 500 | 16 400 | 4 800 | 6 000 | 2213 | 2213 K | 73 | 112 | 1.5 | 0.28 | 3.5 | 2.3 | 2.4 | 1.5 | | | 140 | 33 | 2.1 | 62 500 | 22 900 | 4 300 | 5 300 | 1313 | 1313 K | 76 | 129 | 2 | 0.23 | 4.2 | 2.7 | 2.9 | 2.47 | | | 140 | 48 | 2.1 | 97 000 | 32 500 | 3 800 | 4 800 | 2313 | 2313 K | 76 | 129 | 2 | 0.39 | 2.5 | 1.6 | 1.7 | 3.2 | | 70 | 125
125
150
150 | 24
31
35
51 | 1.5
1.5
2.1
2.1 | 35 000
44 000
75 000
111 000 | 13 800
17 100
27 700
37 500 | 4 800
4 500
4 000
3 600 | 5 600
5 600
5 000
4 500 | 1214
2214
1314
2314 | = | 78
78
81
81 | 117
117
139
139 | 1.5
1.5
2
2 | 0.18
0.26
0.22
0.38 | 5.3
3.7
4.4
2.6 | 3.4
2.4
2.8
1.7 | 3.6
2.5
3.0
1.8 | 1.3
1.55
3.03
3.9 | **Note** (1) The suffix K represents bearings with tapered bores (1 : 12) **Remark** For the dimensions related to adapters, refer to Pages C348 and C349. C 118 C 119 # **SELF-ALIGNING BALL BEARINGS** # Bore Diameter 75 - 110 mm Tapered Bore # Dynamic Equivalent Load | P | $=XF_{r}$ | + | Y | F | 7 | |---|-----------|---|---|---|---| | | | | | | | | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | | |---------------|------------|---------------------------|-------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | Y_3 | 0.65 | Y_2 | | | | | #### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are listed in the table below. | | | Dimension
nm) | S | Basic Load Ratings (N) | | Limiting Speeds
(min ⁻¹) | | Bearing | Numbers | Abutment | and Fillet Di | imensions | Constant | Axial Load Factors | | | Mass
(kg) | |-----|--------------------------|----------------------|----------------------|---|--------------------------------------|---|----------------------------------|----------------------------------|--------------------|--------------------------|---------------------------|---------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Cylindrical
Bore | Tapered
Bore(1) | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 75 | 130 | 25 | 1.5 | 39 000 | 15 700 | 4 300 | 5 300 | 1215 | 1215 K | 83 | 122 | 1.5 | 0.17 | 5.6 | 3.6 | 3.8 | 1.41 | | | 130 | 31 | 1.5 | 44 500 | 17 800 | 4 300 | 5 300 | 2215 | 2215 K | 83 | 122 | 1.5 | 0.25 | 3.9 | 2.5 | 2.6 | 1.6 | | | 160 | 37 | 2.1 | 80 000 | 30 000 | 3 800 | 4 500 | 1315 | 1315 K | 86 | 149 | 2 | 0.22 | 4.4 | 2.8 | 2.9 | 3.63 | | | 160 | 55 | 2.1 | 125 000 | 43 000 | 3 400 | 4 300 | 2315 | 2315 K | 86 | 149 | 2 | 0.38 | 2.5 | 1.6 | 1.7 | 4.78 | | 80 | 140 | 26 | 2 | 40 000 | 17 000 | 4 000 | 5 000 | 1216 | 1216 K | 89 | 131 | 2 | 0.16 | 6.0 | 3.9 | 4.1 | 1.73 | | | 140 | 33 | 2 | 49 000 | 19 900 | 4 000 | 5 000 | 2216 | 2216 K | 89 | 131 | 2 | 0.25 | 3.9 | 2.5 | 2.7 | 2.02 | | | 170 | 39 | 2.1 | 89 000 | 33 000 | 3 600 | 4 300 | 1316 | 1316 K | 91 | 159 | 2 | 0.22 | 4.5 | 2.9 | 3.1 | 4.24 | | | 170 | 58 | 2.1 | 130 000 | 45 000 | 3 200 | 4 000 | * 2316 | * 2316 K | 91 | 159 | 2 | 0.39 | 2.5 | 1.6 | 1.7 | 5.63 | | 85 | 150 | 28 | 2 | 49 500 | 20 800 | 3 800 | 4 500 | 1217 | 1217 K | 94 | 141 | 2 | 0.17 | 5.7 | 3.7 | 3.8 | 2.09 | | | 150 | 36 | 2 | 58 500 | 23 600 | 3 800 | 4 800 | 2217 | 2217 K | 94 | 141 | 2 | 0.25 | 3.9 | 2.5 | 2.6 | 2.56 | | | 180 | 41 | 3 | 98 500 | 38 000 | 3 400 | 4 000 | 1317 | 1317 K | 98 | 167 | 2.5 | 0.21 | 4.6 | 2.9 | 3.1 | 5.03 | | | 180 | 60 | 3 | 142 000 | 51 500 | 3 000 | 3 800 | 2317 | 2317 K | 98 | 167 | 2.5 | 0.37 | 2.6 | 1.7 | 1.8 | 6.56 | | 90 | 160 | 30 | 2 | 57 500 | 23 500 | 3 600 | 4 300 | 1218 | 1218 K | 99 | 151 | 2 | 0.17 | 5.8 | 3.8 | 3.9 | 2.55 | | | 160 | 40 | 2 | 70 500 | 28 700 | 3 600 | 4 300 | 2218 | 2218 K | 99 | 151 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 3.22 | | | 190 | 43 | 3 | 117 000 | 44 500 | 3 200 | 3 800 | * 1318 | * 1318 K | 103 | 177 | 2.5 | 0.22 | 4.3 | 2.8 | 2.9 | 5.83 | | | 190 | 64 | 3 | 154 000 | 57 500 | 2 800 | 3 600 | 2318 | 2318 K | 103 | 177 | 2.5 | 0.38 | 2.6 | 1.7 | 1.7 | 7.75 | | 95 | 170 | 32 | 2.1 | 64 000 | 27 100 | 3 400 | 4 000 | 1219 | 1219 K | 106 | 159 | 2 | 0.17 | 5.8 | 3.7 | 3.9 | 3.21 | | | 170 | 43 | 2.1 | 84 000 | 34 500 | 3 400 | 4 000 | 2219 | 2219 K | 106 | 159 | 2 | 0.27 | 3.7 | 2.4 | 2.5 | 3.96 | | | 200 | 45 | 3 | 129 000 | 51 000 | 3 000 | 3 600 | * 1319 | * 1319 K | 108 | 187 | 2.5 | 0.23 | 4.3 | 2.8 | 2.9 | 6.79 | | | 200 | 67 | 3 | 161 000 | 64 500 | 2 800 | 3 400 | * 2319 | * 2319 K | 108 | 187 | 2.5 | 0.38 | 2.6 | 1.7 | 1.8 | 8.97 | | 100 | 180 | 34 | 2.1 | 69 500 | 29 700 | 3 200 | 3 800 | 1220 | 1220 K | 111 | 169 | 2 | 0.17 | 5.6 | 3.6 | 3.8 | 3.82 | | | 180 | 46 | 2.1 | 94 500 | 38 500 | 3 200 | 3 800 | 2220 | 2220 K | 111 | 169 | 2 |
0.27 | 3.7 | 2.4 | 2.5 | 4.71 | | | 215 | 47 | 3 | 140 000 | 57 500 | 2 800 | 3 400 | * 1320 | * 1320 K | 113 | 202 | 2.5 | 0.24 | 4.1 | 2.7 | 2.8 | 8.4 | | | 215 | 73 | 3 | 187 000 | 79 000 | 2 400 | 3 200 | * 2320 | * 2320 K | 113 | 202 | 2.5 | 0.38 | 2.6 | 1.7 | 1.8 | 11.5 | | 105 | 190
190
225
225 | 36
50
49
77 | 2.1
2.1
3
3 | 75 000
109 000
154 000
200 000 | 32 500
45 000
64 500
87 000 | 3 000
3 000
2 600
2 400 | 3 600
3 600
3 200
3 000 | 1221
2221
* 1321
* 2321 | = = | 116
116
118
118 | 179
179
212
212 | 2
2
2.5
2.5 | 0.18
0.28
0.23
0.38 | 5.5
3.5
4.2
2.6 | 3.6
2.3
2.7
1.7 | 3.7
2.4
2.9
1.7 | 4.52
5.73
9.58
14.5 | | 110 | 200 | 38 | 2.1 | 87 000 | 38 500 | 2 800 | 3 400 | 1222 | 1222 K | 121 | 189 | 2 | 0.17 | 5.7 | 3.7 | 3.9 | 5.33 | | | 200 | 53 | 2.1 | 122 000 | 51 500 | 2 800 | 3 400 | * 2222 | * 2222 K | 121 | 189 | 2 | 0.28 | 3.5 | 2.2 | 2.3 | 6.75 | | | 240 | 50 | 3 | 161 000 | 72 000 | 2 400 | 3 000 | * 1322 | * 1322 K | 123 | 227 | 2.5 | 0.22 | 4.4 | 2.8 | 3.0 | 11.5 | | | 240 | 80 | 3 | 211 000 | 94 500 | 2 200 | 2 800 | * 2322 | * 2322 K | 123 | 227 | 2.5 | 0.37 | 2.6 | 1.7 | 1.8 | 17.5 | **Notes** (1) The suffix K represents bearings with tapered bores (1:12) (*) The balls of the bearings marked * protrude slightly from the bearing face. The protrusion amounts are shown on **Remark** For the dimensions related to adapters, refer to Pages C350 and C351. C 120 C 121 | . CYLINDRICAL RO | LLER BEARINGS | | |------------------------|----------------------------------|----------| | SINGLE-ROW AND DOU | BLE-ROW CYLINDRICAL ROLLER | BEARINGS | | INTRODUCTION | | C 124 | | TECHNICAL DATA | | | | Free Space of Cylindri | ical Roller Bearings | C 130 | | BEARINGS TABLE | | | | Single-Row Cylindrica | l Roller Bearings | | | | Bore Diameter 20 – 500 mm ····· | C 132 | | L-Shaped Thrust Colla | rs For Cylindrical Roller Bearin | gs | | | Bore Diameter 20 – 320 mm ····· | C 156 | | Double-Row Cylindric | al Roller Bearings | | | | Bore Diameter 25 – 360 mm ····· | C 158 | | | | | | FULL COMPLEMENT C | YLINDRICAL ROLLER BEARINGS | | | SINGLE-ROW(NCF), D | OUBLE-ROW(NNCF) AND FOR S | HEAVES | | INTRODUCTION | | C 162 | | BEARINGS TABLE | | | | Single-Row(NCF) | Bore Diameter 100 – 800 mm····· | C 166 | | Double-Row(NNCF) | Bore Diameter 100 – 500 mm | C 170 | | For Sheaves Open Typ | e Fixed-End Bearing RS-48E4, | RS-49E4 | | | Free-End Bearing RSF-48E4, | RSF-49E4 | | | Bore Diameter 50 – 560 mm | C 174 | | For Sheaves Prelubric | ated Type RS-50, RS-50NR | | | | Bore Diameter 40 – 400 mm ····· | C 178 | | | | | C 122 #### **DESIGN. TYPES. AND FEATURES** Depending on the existence of ribs on their rings, Cylindrical Roller Bearings are classified into the following types. Types NU, N, NNU, and NN are suitable as free-end bearings. Types NJ and NF can sustain limited axial loads in one direction. Types NH and NUP can be used as fixed-end bearings. NH-type cylindrical roller bearings consist of the NJ-type cylindrical roller bearings and HJ-type L-shaped thrust collars (See Pages C156 and C157). The inner ring loose rib of a NUP-type cylindrical roller bearing should be mounted so that the marked side is on the outside. #### Features of Single-Row Cylindrical Roller Bearings | Cage Spec. | Material | Steel | Steel | Polyamide 66
resin | L-PPS resin | Bra | ass | | |------------|--------------------|-------|-------|-----------------------|-------------|----------|-----|--| | | Method | pres | ssed | Mol | ded | machined | | | | | Symbols | W | EW | ET | ET7 | M | EM | | | | High Load Capacity | 0 | 0 | 0 | 0 | Δ | 0 | | | Features | High-Speed | Δ | 0 | 0 | 0 | 0 | 0 | | | | High-Temperature | 0 | 0 | Δ | 0 | 0 | 0 | | | | Vibration | × | × | × | × | Δ | 0 | | For a given bearing number, if the type of cage is not the standard one, the number of rollers may vary; in such a case, the load rating will differ from the one listed in the bearing tables. Among the NN Type of double-row bearings, there are many of high precision that have tapered bores, and they are primarily used in the main spindles of machine tools. Their cages are either molded polyphenylenesulfide (PPS) or machined brass. #### ☐ Formulation of Bearing Numbers Single-Row Cylindrical Rollers Bearing number example ①Bearing type symbol NU: Single-Row Cylindrical Roller Bearings (Outer ring with both ribs + Inner ring without rib) Please refer to page C124 for detailed information. ②Dimension symbol 10:10 Series, 2:02 Series, 2:22 Series, 3:03 Series, 23:23 Series, 4:04 Series, ③Bore number Less than 03, Bearing bore 01:12mm, 02:15mm, 03:17mm Over 04, Bearing bore Bore number X 5 (mm) 4 Internal design symbol E: High Load Capacity ⑤Cage symbol W: Pressed Steel Cage, M: Machined Brass Cage, No symbol: Machined Brass Cage(In case of 10 Series) T: Polyamide 66 Resin Cage, T7: L-PPS Resin Cage (6) Internal clearance symbol For All Radial Brgs. Omitted: CN clearance, C3: Clearance greater than CN, C4: Clearance greater than C3, CG: Special Clearance For Non-Interchangeable Cylindrical Roller Bearings CC: Normal Clearance, CC3: Clearance greater than CC, CC4: Clearance greater than CC3, CCG: Special Clearance Omitted: ISO Normal, P6: ISO Class 6, P5: ISO Class 5, P4: ISO Class 4 a MOULIBOTHO I I Tolerance Class : ISO Normal # **NSKHPS™** Cylindrical Roller Bearings Features (Tolerance class symbol Compared to the conventional bearing #### 1. Improved reliability Bearing life has increased by a maximum of 60% compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. 2. Wide-range product line-up NSK has offerd the wide-range line-up of NSKHPS bearings with four types of cages focusing on a wide range of sizes offering a high degree of versatility for various general-purpose applications. - Pressed steel cage with high cost perfomance - · Highly reliable machined brass cage - Polyamide resin cage that excels in heat resistance and chemical resistance #### PRECAUTIONS FOR USE OF CYLINDRICAL ROLLER BEARINGS If the load on cylindrical roller bearings becomes too small during operation, slippage between the rollers and raceways occurs, which may result in smearing. Especially with large bearings since the weight of the roller and cage is high. In case of strong shock loads or vibration, pressed-steel cages are sometimes inadequate. If very small bearing load or strong shock loads or vibration are expected, please consult with NSK for selection of the bearings. Bearings with molded polyamide cages (ET type) can be used continuously at temperatures between —40 and 120°C. If the bearings are used in gear oil, nonflammable hydraulic oil, or ester oil at a high temperature over 100°C, please contact NSK beforehand. #### **TOLERANCES AND RUNNING ACCURACY** CYLINDRICAL ROLLER BEARINGS Table 7.2 (Pages A128 to A131) NSKHPS CYLINDRICAL ROLLER BEARINGS NSKHPS CYLINDRICAL ROLLER BEAKING Tolerance for Dimensions : ISO Normal Running Accuracy : ISO Normal DOUBLE-ROW CYLINDRICAL ROLLER **BEARINGS** Table 7.2 (Pages A128 to A131) Table 2 Tolerances for Roller Inscribed Circle Diameter $F_{\rm w}$ and Roller Circumscribed Circle Diameter $E_{\rm w}$ of Cylindrical Roller Bearings Having Interchangeable Rings | Nomina
Diameter | | Tolerances fo
NU, NJ, NUP, NF | or $F_{ m w}$ of types H, and NNU ${ extstyle \Delta F_{ m w}}$ | Tolerances for E_{w} of types N, NF, and NN \varDelta E_{w} | | | | |--------------------|-------|----------------------------------|---|---|-----------------|--|--| | over | incl. | high | low | high | low | | | | _ | 20 | +10 | 0 | 0 | -10 | | | | 20 | 50 | +15 | 0 | 0 | — 15 | | | | 50 | 120 | +20 | 0 | 0 | -20 | | | | 120 | 200 | +25 | 0 | 0 | -2 5 | | | | 200 | 250 | +30 | 0 | 0 | -30 | | | | 250 | 315 | +35 | 0 | 0 | -35 | | | | 315 | 400 | +40 | 0 | 0 | -40 | | | | 400 | 500 | +45 | 0 | _ | _ | | | #### RECOMMENDED FITS | CYLINDRICAL ROLLER BEARINGS | Table 8.3 | (Page A | 164) | |-------------------------------|-----------|---------|------| | | Table 8.5 | (Page A | 165) | | DOUBLE-ROW CYLINDRICAL ROLLER | | | | | BEARINGS | Table 8.3 | (Page A | 164) | | | Table 8.5 | (Page A | 165) | #### **INTERNAL CLEARANCES** CYLINDRICAL ROLLER BEARINGS.....Table 8.15 (Page A171) NSKHPS CYLINDRICAL ROLLER BEARINGS INTERNAL CLEARANCE SYMBOL: CN, C3, C4 DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS....Table 8.15 (Page A171) #### PERMISSIBLE MISALIGNMENT The permissible misalignment of cylindrical roller bearings varies depending on the type and internal specifications, but under normal loads, the angles are approximately as follows: Cylindrical Roller Bearings of width series 0 or 10.0012 radian (4') Cylindrical Roller Bearings of width series 2......0.0006 radian (2') For double-row cylindrical roller bearings, nearly no misalignment is allowed. C 126 C 127 # LIMITING SPEEDS (Mechanical) In some single row cylindrical roller bearings, optional cage types are available for special purposes or customer requests. The limiting speeds (mechanical) in the bearing tables are the values for the standard cage type. Please consult with NSK about the limiting speeds(mechanical) of optional cage. # LIMITING SPEEDS (Grease/Oil) The limiting speeds (grease) and limiting speeds (oil) listed in the bearing tables should be adjusted depending on the bearing load condition. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to page A098 for detailed information. C 128 ### **TECHNICAL DATA** ## Free Space of Cylindrical Roller Bearings Cylindrical roller bearings employ grease
lubrication in many cases because it makes maintenance easier and simplifies the peripheral construction of the housing. It is essential to select a grease brand appropriate for the operating conditions while paying due attention to the filling amount and position of the bearing as well as its housing. The cylindrical roller bearings can be divided into NU, NJ, N, NF, NH, and NUP types of construction according to the collar, collar ring, and position of the inner or outer ring ribs. Even if bearings belong to the same dimension series, they may have different amounts of free space. The free space also differs depending on whether the cage provided is made from pressed steel or from machined hightension brass. When determining the grease filling amount, please refer to Tables 1 and 2 which show the free space of NU type bearings. (By the way, the cylindrical roller bearing type is used most frequently). For types other than the NU type, the free space can be determined from the free space ratio with the NU type. Table 3 shows the approximate free space ratio for each type of cylindrical roller bearing. For example, the free space of NJ310 with a pressed steel cage may be calculated approximately at 47 cm³. This result was calculated by multiplying the free space 52 cm³ of NU310 in Table 1 by the space ratio 0.90 for the NJ type (Table 3). Units: cm3 | | | | | Units: cm | |---------------------|-----|-----------|-----------|-----------| | | | Bearing f | ree space | | | Bearing
bore No. | | Bearing | g series | | | 5010 140. | NU2 | NU3 | NU22 | NU23 | | 05 | 6.6 | 11 | 7.8 | 16 | | 06 | 9.6 | 17 | 12 | 24 | | 07 | 14 | 22 | 18 | 35 | | | | | | | | 08 | 18 | 31 | 22 | 44 | | 09 | 20 | 42 | 23 | 62 | | 10 | 23 | 52 | 26 | 80 | | | | | | | | 11 | 30 | 68 | 35 | 102 | | 12 | 37 | 85 | 45 | 130 | | 13 | 44 | 107 | 57 | 156 | | | | | | | | 14 | 51 | 124 | 62 | 179 | | 15 | 58 | 155 | 70 | 226 | | 16 | 71 | 177 | 85 | 260 | | | | | | | | 17 | 85 | 210 | 104 | 300 | | 18 | 103 | 244 | 134 | 365 | | 19 | 132 | 283 | 164 | 415 | | 20 | 151 | 335 | 200 | 540 | Table 2 Free Space of Cylindrical Roller Bearing (NU Type) (2) (with High-Tension Brass Machined Cage) Units: cm3 | Bearing bore No | NU2
5.0
7.4
9.6 | NU3
7.6
12
16 | series
NU22
5.7
7.9
12 | NU23
10
16
27 | |----------------------------|--------------------------|------------------------|------------------------------------|------------------------| | 05
06
07
08
09 | 5.0
7.4
9.6
12 | 7.6
12
16 | 5.7
7.9
12 | 10
16
27 | | 06
07
08
09 | 7.4
9.6
12
15 | 12
16
21 | 7.9
12 | 16
27 | | 07
08
09 | 9.6
12
15 | 16
21 | 12 | 27 | | 08
09 | 12
15 | 21 | | | | 09 | 15 | | 15 | 00 | | 09 | 15 | | 15 | | | | - | | | 32 | | 10 | | 29 | 16 | 45 | | 10 | 18 | 38 | 17 | 58 | | | | | | | | 11 | 22 | 52 | 24 | 77 | | 12 | 26 | 62 | 31 | 88 | | 13 | 31 | 74 | 43 | 104 | | | | | | | | 14 | 37 | 92 | 44 | 129 | | 15 | 42 | 102 | 50 | 149 | | 16 | 51 | 122 | 60 | 181 | | | | | | | | 17 | 64 | 164 | 74 | 200 | | 18 | 79 | 193 | 96 | 279 | | 19 | 94 | 218 | 116 | 280 | | 20 1 | 15 | 221 | 137 | 355 | Table 3 Free Space Ratio of Each Type of Cylindrical Roller Bearing | NU Type | NJ Type | N Type | NF Type | |---------|---------|--------|---------| | 1 | 0.90 | 1.05 | 0.95 | C 130 C 131 # **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** #### Bore Diameter 20 - 30 mm | | | Bou | ndary Dir
(mm | | | | Basic Loa | | | Speeds
(min ⁻¹) | | |----|----------------------|----------------------|--------------------------|--------------------------|---------------------------|---------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------------------| | d | D | B | γ
min. | ${m r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 20 | 47
47
47 | 14
14
18 | 1
1
1 | 0.6
0.6
0.6 | 26.5
27 | 40
 | 15 400
25 700
20 700 | 12 700
22 600
18 400 | 18 000
16 000
19 000 | _
_
_ | 12 000
13 000
11 000 | | | 52
52
52
52 | 15
15
21
21 | 1.1
1.1
1.1
1.1 | 0.6
0.6
0.6
0.6 | —
27.5
28.5
27.5 | 44.5
—
—
— | 21 400
31 500
30 500
42 000 | 17 300
26 900
27 200
39 000 | 14 000
13 000
14 000
13 000 | _
_
_ | 10 000
12 000
11 000
11 000 | | 25 | 47
52
52 | 12
15
15 | 0.6
1
1 | 0.3
0.6
0.6 | 30.5
—
31.5 | 45
— | 14 300
17 700
33 500 | 13 100
15 700
27 700 | 15 000
16 000
14 000 | _
_
17 000 | 15 000
10 000
12 000 | | | 52
52
52 | 15
18
18 | 1
1
1 | 0.6
0.6
0.6 | 31.5
31.5
31.5 | = | 29 300
40 000
35 000 | 27 700
34 500
34 500 | 14 000
14 000
14 000 | 17 000
20 000
20 000 | 12 000
12 000
12 000 | | | 62
62
62 | 17
17
17 | 1.1
1.1
1.1 | 1.1
1.1
1.1 | —
34
34 | 53
 | 29 300
48 000
41 500 | 25 200
37 500
37 500 | 12 000
11 000
11 000 |
15 000
15 000 | 8 000
10 000
10 000 | | | 62
62
80 | 24
24
21 | 1.1
1.1
1.5 | 1.1
1.1
1.5 | 34
34
38.8 | —
—
62.8 | 65 500
57 000
46 500 | 56 000
56 000
40 000 | 11 000
11 000
9 500 | 18 000
18 000
— | 9 000
9 000
7 100 | | 30 | 55
62
62 | 13
16
16 | 1
1
1 | 0.6
0.6
0.6 | 36.5
—
37.5 | 48.5
53.5
— | 19 700
24 900
45 000 | 19 600
23 300
37 500 | 13 000
13 000
12 000 | _
_
14 000 | 12 000
8 500
9 500 | | | 62
62
62 | 16
20
20 | 1
1
1 | 0.6
0.6
0.6 | 37.5
37.5
37.5 | = | 39 000
56 500
49 000 | 37 500
50 000
50 000 | 12 000
12 000
12 000 | 14 000
17 000
17 000 | 9 500
9 500
9 500 | | | 72
72
72 | 19
19
19 | 1.1
1.1
1.1 | 1.1
1.1
1.1 | —
40.5
40.5 | 62
 | 38 500
61 000
53 000 | 35 000
50 000
50 000 | 10 000
9 500
9 500 | 13 000
13 000 | 7 100
8 500
8 500 | | | 72
72
90 | 27
27
23 | 1.1
1.1
1.5 | 1.1
1.1
1.5 | 40.5
40.5
45 | —
73 | 86 000
74 500
62 500 | 77 500
77 500
55 000 | 9 500
9 500
8 500 | 16 000
16 000
— | 8 000
8 000
6 000 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C156) are used, the bearings become the NH type. | | Bea | ring Numl | oers | (9) | | | | | Ab | utment | and F | illet Dim
m) | ensions | 3 | | | Mass
(kg) | |--------------------------------------|-------------------|----------------------------|----------|--------------------------|----------|--------------|------------------------------|--------------------|-----------------------|-----------------|-----------------|--|---------------------------|---------------------------|----------------------|--------------------------|----------------------------------| | | Ŭ | symbol(1)
rd Option | NU | (2)
NJ NUF | N | NF | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\!({\rm 3})}_{\rm max.}$ | $D_{\rm b} \\ {\rm max.}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | N 204
NU204E
NU2204 | W
T
W | —
Т7
М | NU
NU | NJ NUI | | NF
— | 25
25
25 |
24
24 |
25
25 |
29
29 | 32
32 |
42
42 | 43
 | 42
— | 1
1
1 | 0.6
0.6
0.6 | 0.107
0.107
0.144 | | N 304
NU304E
NU2304
NU2304E | W
T
M
T7 |
T7

_ | NU | ON NUR | 9 – | NF
 | 26.5
26.5
26.5
26.5 | 24
24
24 | —
26
27
26 | 30
30
30 | 33
33
33 |
45.5
45.5
45.5 | 48
—
—
— | 46
—
— | 1
1
1 | 0.6
0.6
0.6
0.6 | 0.148
0.145
0.217
0.209 | | NU1005
N 205
* NU205E | (M)
W
W | —
M
M, T, T7 | NU
NU | | | NF | 30
30 | 27
—
29 | 30
30 | 32
—
34 | _
37 | 43
—
47 |
48
 | —
46
— | 0.6
1
1 | 0.3
0.6
0.6 | 0.094
0.135
0.136 | | NU205E
* NU2205E
NU2205E | W
M
M | M, T, T7
T, T7
T, T7 | NU | NJ NUF
NJ NUF | – | _ | 30
30
30 | 29
29
29 | 30
30
30 | 34
34
34 | 37
37
37 | 47
47
47 | _ | _ | 1
1
1 | 0.6
0.6
0.6 | 0.136
0.16
0.16 | | N 305
* NU305E
NU305E | W
W
W | M
M, T, T7
M, T, T7 | | | – | NF
— | 31.5
31.5
31.5 | —
31.5
31.5 | —
32
32 | —
37
37 | 40
40 | —
55.5
55.5 | 55.5
—
— | 50
— | 1
1
1 | 1
1
1 | 0.233
0.269
0.269 | | *NU2305E
NU2305E
NU405 | M
M
W | T, T7
T, T7
— | | NJ NUF
NJ NUF | – | | 31.5
31.5
33 | 31.5
31.5
33 | 32
32
37 | 37
37
41 | 40
40
46 | 55.5
55.5
72 | _
72 | _
64 | 1
1
1.5 | 1
1
1.5 | 0.338
0.338
0.57 | | NU1006
N 206
* NU206E | (M)
W
W | —
M
M, T, T7 | NU
NU | | | NF | 35
35
35 | 34
—
34 | 36
—
36 | 38
—
40 | _
44 | 50
—
57 | 51
58
— | 49
56
— | 1
1
1 | 0.5
0.6
0.6 | 0.136
0.208
0.205 | | NU206E
* NU2206E
NU2206E | W
M
M | M, T, T7
T, T7
T, T7 | NU | NJ NUF
NJ NUF | – | _ | 35
35
35 | 34
34
34 | 36
36
36 | 40
40
40 | 44
44
44 | 57
57
57 | _ | _ | 1
1
1 | 0.6
0.6
0.6 | 0.205
0.255
0.255 | | N 306
*
NU306E
NU306E | W
W
W | M
M, T, T7
M, T, T7 | | | — | | 36.5
36.5
36.5 | —
36.5
36.5 | —
39
39 | —
44
44 | —
48
48 | —
65.5
65.5 | 65.5
—
— | 64
— | 1
1
1 | 1
1
1 | 0.353
0.409
0.409 | | *NU2306E
NU2306E
NU406 | M
M
W | T, T7
T, T7
M | | NJ NUF
NJ NUF
NJ — | – | _
_
NF | 36.5
36.5
38 | 36.5
36.5
38 | 39
39
43 | 44
44
47 | 48
48
52 | 65.5
65.5
82 | _
82 | —
75 | 1
1
1.5 | 1
1
1.5 | 0.518
0.518
0.758 | ⁽⁴⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. **Remark** The bearings denoted by an asterisk (*) are NSKHPS™ Cylindrical roller bearings. ⁽⁵⁾ The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. # Bore Diameter 35 - 40 mm **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** | | | Bou | ndary Dir
(mm | nensions
) | | | | ad Ratings
N) | Thermal | Speeds
(min ⁻¹) | | |----|-----------------|----------------|-------------------|-------------------|----------------------|-----------------|------------------------------|------------------------------|----------------------------|--------------------------------|--------------------------| | d | D | B | γ
min. | ${m r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{ m r}$ $C_{0 m r}$ | | Limiting (5) Mechanical | Speeds
Grease | | 35 | 62
72
72 | 14
17
17 | 1
1.1
1.1 | 0.6
0.6
0.6 | 42
—
44 | 55
61.8
— | 22 600
35 500
58 000 | 23 200
34 000
50 000 | 11 000
11 000
10 000 | _
_
12 000 | 11 000
7 500
8 500 | | | 72
72
72 | 17
23
23 | 1.1
1.1
1.1 | 0.6
0.6
0.6 | 44
44
44 | = | 50 500
71 000
61 500 | 50 000
65 500
65 500 | 10 000
11 000
11 000 | 12 000
15 000
15 000 | 8 500
8 500
8 500 | | | 80
80
80 | 21
21
21 | 1.5
1.5
1.5 | 1.1
1.1
1.1 | —
46.2
46.2 | 68.2
— | 49 500
76 500
66 500 | 47 000
65 500
65 500 | 9 500
8 500
8 500 | —
11 000
11 000 | 6 300
7 500
7 500 | | | 80
80
100 | 31
31
25 | 1.5
1.5
1.5 | 1.1
1.1
1.5 | 46.2
46.2
53 | —
83 | 107 000
93 000
75 500 | 101 000
101 000
69 000 | 9 000
9 000
7 500 | 14 000
14 000
— | 6 700
6 700
5 300 | | 40 | 68
80
80 | 15
18
18 | 1
1.1
1.1 | 0.6
1.1
1.1 | 47
—
49.5 | 61
70
— | 27 300
43 500
64 000 | 29 000
43 000
55 500 | 10 000
9 500
9 000 | _
_
11 000 | 10 000
6 700
7 500 | | | 80
80
80 | 18
23
23 | 1.1
1.1
1.1 | 1.1
1.1
1.1 | 49.5
49.5
49.5 | = | 55 500
83 000
72 500 | 55 500
77 500
77 500 | 9 000
9 000
9 000 | 11 000
13 000
13 000 | 7 500
7 500
7 500 | | | 90
90
90 | 23
23
23 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 52
52 | 77.5
—
— | 58 500
95 500
83 000 | 57 000
81 500
81 500 | 8 500
7 500
7 500 | 10 000
10 000 | 5 600
6 700
6 700 | | | 90
90
110 | 33
33
27 | 1.5
1.5
2 | 1.5
1.5
2 | 52
52
58 | <u> </u> | 131 000
114 000
95 500 | 122 000
122 000
89 000 | 8 000
8 000
6 700 | 12 000
12 000
— | 6 000
6 000
4 800 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C156) are used, the bearings become the NH type. | | Bearing Numbers | | | Ab | utmen | | illet Dim
m) | ension | S | | | Mass
(kg) | |--------------------------------|--|-----------------------|----------------------|--|-----------------|-----------------|-------------------------------------|--|---------------------------|----------------------|------------------------|-------------------------| | | Cage symbol ⁽¹⁾ NU NJ NUP N N
Standard Option | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}{}^{\scriptscriptstyle (4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\!\! (3)}_{\rm max.}$ | $\begin{array}{c} D_{\rm b} \\ {\rm max.} \end{array}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1007
N 207
*NU207E | (M) — NU NJ — N —
W M — — — N N
W M, T, T7 NU NJ NUP — — | 40
41.5
41.5 | 39
—
39 | 41
—
42 | 44
—
46 | _
50 | 57
—
65.5 | 58
68
— | 56
64
— | 1
1
1 | 0.5
0.6
0.6 | 0.18
0.301
0.304 | | NU207E
* NU2207E
NU2207E | W M, T, T7 NU NJ NUP — —
M T, T7 NU NJ NUP — —
M T, T7 NU NJ NUP — — | 41.5 | 39
39
39 | 42
42
42 | 46
46
46 | 50
50
50 | 65.5
65.5
65.5 | _ | _ | 1
1
1 | 0.6
0.6
0.6 | 0.304
0.40
0.40 | | N 307
* NU307E
NU307E | W M — — — N N
W M, T, T7 NU NJ NUP — —
W M, T, T7 NU NJ NUP — — | 41.5 | —
41.5
41.5 |
44
44 | —
48
48 |
53
53 | —
72
72 | 73.5
—
— | 70
— | 1.5
1.5
1.5 | 1
1
1 | 0.476
0.545
0.545 | | * NU2307E
NU2307E
NU407 | M T, T7 NU NJ NUP — —
M T, T7 NU NJ NUP — —
W — NU NJ — N N | 10 | 41.5
41.5
43 | 44
44
51 | 48
48
55 | 53
53
61 | 72
72
92 | —
92 | —
85 | 1.5
1.5
1.5 | 1
1
1.5 | 0.711
0.711
1.01 | | NU1008
N 208
* NU208E | (M) — NU NJ NUP N —
W M — — N N
W M, T, T7 NU NJ NUP — — | 46.5 | 44
—
46.5 | 46
—
48 | 49
—
52 | _
56 | 63
—
73.5 | 64
73.5
— | 62
72
— | 1
1
1 | 0.6
1
1 | 0.223
0.375
0.379 | | NU208E
* NU2208E
NU2208E | W M, T, T7 NU NJ NUP — —
M T, T7 NU NJ NUP — —
M T, T7 NU NJ NUP — — | 46.5 | 46.5
46.5
46.5 | 48
48
48 | 52
52
52 | 56
56
56 | 73.5
73.5
73.5 | _ | _ | 1
1
1 | 1
1
1 | 0.379
0.480
0.480 | | N 308
* NU308E
NU308E | W M — — — N N
W M, T, T7 NU NJ NUP — —
W M, T, T7 NU NJ NUP — — | 48 | —
48
48 |
50
50 | —
55
55 |
60
60 | —
82
82 | 82
— | 79
— | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 0.649
0.747
0.747 | | * NU2308E
NU2308E
NU408 | M T, T7 NU NJ NUP — —
M T, T7 NU NJ NUP — —
W — NU NJ NUP N N | 48 | 48
48
49 | 50
50
56 | 55
55
60 | 60
60
67 | 82
82
101 | _
101 | _
94 | 1.5
1.5
2 | 1.5
1.5
2 | 0.933
0.933
1.28 | **Notes** (3) If axial loads are applied, increase d_a and reduce D_a from the values listed above. (4) $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. (5) The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. **Remark** The bearings denoted by an asterisk (*) are NSKHPS™ Cylindrical roller bearings. C 134 C 135 # **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** # Bore Diameter 45 - 50 mm | | | Bou | ndary Dir | mensions | | | Basic Loa | | | | | |----|--------------------------|----------------------|----------------------|----------------------|-----------------------|-------------------|--|--|----------------------------------|----------------------------|----------------------------------| | d | D | B | γ min. | $ eals_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 45 | 75
85
85 | 16
19
19 | 1
1.1
1.1 | 0.6
1.1
1.1 | 52.5
—
54.5 | 67.5
75
— | 32 500
46 000
72 500 | 35 500
47 000
66 500 | 9 500
9 000
8 500 | _
10 000 | 9 000
6 300
6 700 | | | 85
85
85 | 19
23
23 | 1.1
1.1
1.1 | 1.1
1.1
1.1 | 54.5
54.5
54.5 | = | 63 000
87 500
76 000 | 66 500
84 500
84 500 | 8 500
8 500
8 500 | 10 000
12 000
12 000 | 6 700
6 700
6 700 | | | 100
100
100 | 25
25
25 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | —
58.5
58.5 | 86.5
— | 79 000
112 000
97 500 | 77 500
98 500
98 500 | 7 500
7 100
7 100 | 9 000
9 000 | 5 000
6 000
6 000 | | | 100
100
120 | 36
36
29 | 1.5
1.5
2 | 1.5
1.5
2 | 58.5
58.5
64.5 | —
100.5 | 158 000
137 000
107 000 | 153 000
153 000
102 000 | 7 100
7 100
6 300 | 11 000
11 000
— | 5 300
5 300
4 300 | | 50 | 80
90
90 | 16
20
20 | 1
1.1
1.1 | 0.6
1.1
1.1 | 57.5
—
59.5 | 72.5
80.4
— | 32 000
48 000
79 500 | 36 000
51 000
76 500 | 8 500
8 500
8 000 | 9 000 | 8 000
5 600
6 300 | | | 90
90
90 | 20
23
23 | 1.1
1.1
1.1 | 1.1
1.1
1.1 | 59.5
59.5
59.5 | = | 69 000
96 000
83 500 | 76 500
97 000
97 000 | 8 000
7 500
7 500 | 9 000
11 000
11 000 | 6 300
6 300
6 300 | | | 110
110
110 | 27
27
27 | 2
2
2 | 2
2
2 | 65
65 | 95
—
— | 87 000
127 000
110 000 | 86 000
113 000
113 000 | 7 100
6 700
6 700 | 8 000
8 000 | 4 500
5 000
5 000 | | | 110
110
130
130 | 40
40
31
31 | 2
2
2.1
2.1 | 2
2
2.1
2.1 | 65
65
—
70.8 | 110.8
— | 187 000
163 000
139 000
129 000 | 187 000
187 000
136 000
124 000 | 6 700
6 700
5 600
5 600 | 10 000
10 000
— | 5 000
5 000
4 000
4 000 | ⁽²⁾ When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C156) are used, the bearings become the NH type. | | Bearing Numbers | | | | Ab | utment | | illet Dim
m) | nension | IS | | | Mass
(kg)
| |---------------------------------------|--|--------------------|-----------------------|----------------------|-----------------------|---------------------|---------------------|-------------------------------------|---------------------------|---------------------------|----------------------|------------------------|-------------------------| | | Cage symbol(1) NU NJ NUP Standard Option | N NF | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\!\! (3)}_{\rm max.}$ | $D_{\rm b} \\ {\rm max.}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1009
N 209
*NU209E | (M) — NU — —
W M — — —
W M, T, T7 NU NJ NUP | N NF
N NF | 50
51.5
51.5 | 49
—
51.5 | 51
—
52 | 54
—
57 | —
61 | 70
—
78.5 | 71
78.5
— | 68
77
— | 1
1
1 | 0.6
1
1 | 0.279
0.429
0.438 | | NU209E
* NU2209E
NU2209E | W M, T, T7 NU NJ NUP
M T, T7 NU NJ NUP
M T, T7 NU NJ NUP | | 51.5
51.5
51.5 | 51.5
51.5
51.5 | 52
52
52 | 57
57
57 | 61
61
61 | 78.5
78.5
78.5 | _ | _ | 1
1
1 | 1
1
1 | 0.438
0.521
0.521 | | N 309
* NU309E
NU309E | W M — — —
W M, T, T7 NU NJ NUP
W M, T, T7 NU NJ NUP | | 53
53
53 | —
53
53 | —
56
56 |
60
60 | —
66
66 | 92
92 | 92
— | 77
—
— | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 0.869
1.01
1.01 | | *NU2309E
NU2309E
NU409 | M T, T7 NU NJ NUP
M T, T7 NU NJ NUP
W — NU NJ NUP | | 53
53
54 | 53
53
54 | 56
56
62 | 60
60
66 | 66
66
74 | 92
92
111 | _
111 | _
103 | 1.5
1.5
2 | 1.5
1.5
2 | 1.28
1.28
1.62 | | NU1010
N 210
*NU210E | (M) — NU NJ NUP
W M — — —
W M, T, T7 NU NJ NUP | N —
N NF
— — | 55
56.5
56.5 | 54
—
56.5 | 56
—
57 | 59
—
62 | _
67 | 75
—
83.5 | 76
83.5
— | 73
82
— | 1
1
1 | 0.6
1
1 | 0.301
0.483
0.50 | | NU210E
* NU2210E
NU2210E | 141 1, 17 140 140 1401 | | 56.5
56.5
56.5 | 56.5
56.5
56.5 | 57
57
57 | 62
62
62 | 67
67
67 | 83.5
83.5
83.5 | _ | _ | 1
1
1 | 1
1
1 | 0.50
0.562
0.562 | | N 310
* NU310E
NU310E | , ., ., | N NF
 | 59
59
59 | —
59
59 | —
63
63 | —
67
67 | 73
73 |
101
101 | 101
— | 97
— | 2
2
2 | 2
2
2 | 1.11
1.3
1.3 | | *NU2310E
NU2310E
N 410
NU410 | M T, T7 NU NJ NUP
M T, T7 NU NJ NUP
W M — —
W M NU NJ NUP |
N NF
 | 59
59
65
61 | 59
59
—
61 | 63
63
—
68 | 67
67
—
73 | 73
73
—
81 | 101
101
—
119 | _
117
119 | _
113
113.3 | 2
2
2
2 | 2
2
2
2 | 1.7
1.7
2
1.99 | C 137 C 136 # **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** # Bore Diameter 55 - 60 mm | | | | Bou | ndary Dir
mm) | mensions
) | | | Basic Loa | ad Ratings
N) | | Speeds
(min ⁻¹) | | |---|----|--------------------------|----------------------|--------------------------|--------------------------|-----------------------|-------------------|--|--|----------------------------------|--------------------------------|----------------------------------| | | d | D | B | γ
min. | $oldsymbol{r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | - | 55 | 90
100
100
100 | 18
21
21
21 | 1.1
1.5
1.5
1.5 | 1
1.1
1.1
1.1 | 64.5
—
66
66 | 80.5
88.5
— | 37 500
58 000
99 000
86 500 | 44 000
62 500
98 500
98 500 | 8 000
7 500
6 700
6 700 | 8 500
8 500 | 7 500
5 300
5 600
5 600 | | | | 100
100
120 | 25
25
29 | 1.5
1.5
2 | 1.1
1.1
2 | 66
66
— | _
_
104.5 | 117 000
101 000
111 000 | 122 000
122 000
111 000 | 6 700
6 700
6 300 | 10 000
10 000
— | 5 600
5 600
4 000 | | | | 120
120
120 | 29
29
43 | 2
2
2 | 2
2
2 | 70.5
70.5
70.5 | = | 158 000
137 000
231 000 | 143 000
143 000
233 000 | 6 000
6 000
6 000 | 7 500
7 500
9 000 | 4 500
4 500
4 500 | | | | 120
140 | 43
33 | 2
2.1 | 2
2.1 | 70.5
77.2 | —
117.2 | 201 000
139 000 | 233 000
138 000 | 6 000
5 300 | 9 000 | 4 500
3 800 | | | 60 | 95
110
110 | 18
22
22 | 1.1
1.5
1.5 | 1
1.5
1.5 | 69.5
—
72 | 85.5
97.5
— | 40 000
68 500
112 000 | 48 500
75 000
107 000 | 7 500
7 100
6 300 | —
—
7 500 | 6 700
4 800
5 300 | | | | 110
110
110 | 22
28
28 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 72
72
72 | = | 97 500
151 000
131 000 | 107 000
157 000
157 000 | 6 300
6 300
6 300 | 7 500
9 500
9 500 | 5 300
5 300
5 300 | | | | 130
130
130 | 31
31
31 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | —
77
77 | 113
—
— | 124 000
124 000
169 000 | 126 000
126 000
157 000 | 6 000
6 000
5 600 | —
—
9 500 | 3 800
3 800
4 800 | | _ | | 130
130
130
150 | 31
46
46
35 | 2.1
2.1
2.1
2.1 | 2.1
2.1
2.1
2.1 | 77
77
77
83 |

127 | 150 000
251 000
222 000
167 000 | 157 000
262 000
262 000
168 000 | 5 600
5 600
5 600
5 000 | 9 500
8 500
8 500
— | 4 800
4 300
4 300
3 400 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C156) are used, the bearings become the NH type. | | Bearing Numbers | | | | Ab | utment | t and F | illet Dim
m) | nension | S | | | Mass
(kg) | |---|--|-----------------------------|------------------------|-------------------------|-----------------------|----------------------|----------------------|------------------------------|---------------------------|---------------------------|------------------------|----------------------|----------------------------------| | | Cage symbol(1) NU NJ Standard Option | NUP N NF | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\rm (3)}$ max. | $D_{\rm b} \\ {\rm max.}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_b$ max. | approx. | | NU1011
N 211
* NU211E
NU211E | (M) — NU NJ
W M — —
W M, T, T7 NU NJ
W M, T, T7 NU NJ | | 61.5
63
63
63 | 60
—
61.5
61.5 | 63
—
64
64 | 66
—
68
68 | —
73
73 | 83.5
—
92
92 | 85
93.5
— | 82
91
— | 1
1.5
1.5
1.5 | 1
1
1 | 0.445
0.634
0.669
0.669 | | *NU2211E
NU2211E
N 311 | M T, T7 NU NJ
M T, T7 NU NJ
W M — — | | 63
63
64 | 61.5
61.5
— | 64
64
— | 68
68
— | 73
73
— | 92
92
— | _
111 | _
107 | 1.5
1.5
2 | 1
1
2 | 0.783
0.783
1.42 | | *NU311E
NU311E
*NU2311E | W M, T, T7 NU NJ
W M, T, T7 NU NJ
M T, T7 NU NJ | NUP — — | 64
64
64 | 64
64
64 | 68
68
68 | 72
72
72 | 80
80
80 | 111
111
111 | _ | | 2
2
2 | 2
2
2 | 1.64
1.64
2.18 | | NU2311E
NU411 | M T, T7 NU NJ
W — NU NJ | NUP — —
NUP N NF | 64
66 | 64
66 | 68
75 | 72
79 | 80
87 | 111
129 | _
129 | _
119 | 2 | 2 | 2.18
2.5 | | NU1012
N 212
*NU212E | (M) — NU NJ
W M — —
W M, T, T7 NU NJ | — N NF
— N NF
NUP — — | 66.5
68
68 | 65
—
68 | 68
—
70 | 71
—
75 | _
80 | 88.5
102 | 90
102
— | 87
100
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.474
0.823
0.824 | | NU212E
* NU2212E
NU2212E | W M, T, T7 NU NJ
M T, T7 NU NJ
M T, T7 NU NJ | NUP — — | 68
68
68 | 68
68
68 | 70
70
70 | 75
75
75 | 80
80
80 | 102
102
102 | _ | _
_
_ | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 0.824
1.06
1.06 | | N 312
NU312
*NU312E | W M — —
W M NU NJ
M T, T7 NU NJ | | 71
71
71 | —
71
71 | —
75
75 | —
79
79 | —
86
86 | —
119
119 | 119
— | 11 <u>5</u>
— | 2
2
2 | 2
2
2 | 1.78
1.82
2.06 | | NU312E
* NU2312E
NU2312E
NU412 | M T, T7 NU NJ
M T, T7 NU NJ
M T, T7 NU NJ
W M NU NJ | NUP — — | 71
71
71
71 | 71
71
71
71 | 75
75
75
80 | 79
79
79
85 | 86
86
86
94 | 119
119
119
139 | _
_
139 | _
_
130 | 2
2
2
2 | 2
2
2
2 | 2.06
2.7
2.7
3.04 | C 138 C 139 # ■ SINGLE-ROW CYLINDRICAL ROLLER BEARINGS # Bore Diameter 65 - 70 mm | | | | Bou | ndary Dir | mensions
) | | | | ad Ratings
N) | | Speeds
(min ⁻¹) | | |---|----|--------------------------|----------------------|------------------------|------------------------|-----------------------|--------------------|--|--|----------------------------------|--------------------------------|----------------------------------| | | d | D | B | r | r_1 | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Thermal
Reference | Limiting (5) | Speeds | | _ | | | | min. | min. | - vv | vv | -1 | - 01 | Speed | Mechanical | Grease | | | 65 | 100
120
120 | 18
23
23 | 1.1
1.5
1.5 | 1
1.5
1.5 | 74.5
—
78.5 | 90.5
105.6
— | 41 000
84 000
124 000 | 51 000
94 500
119 000 | 6 700
6 300
6 000 |
_
_
7 100 | 6 300
4 300
4 800 | | | | 120
120
120 | 23
31
31 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 78.5
78.5
78.5 | _
_
_ | 108 000
171 000
149 000 | 119 000
181 000
181 000 | 6 000
6 000
6 000 | 7 100
8 500
8 500 | 4 800
4 800
4 800 | | | | 140
140
140 | 33
33
33 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | —
83.5
82.5 | 121.5
—
— | 135 000
135 000
204 000 | 139 000
139 000
191 000 | 5 600
5 600
5 300 | —
—
8 500 | 3 600
3 600
4 300 | | | | 140
140
140 | 33
48
48 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 82.5
82.5
82.5 | | 181 000
263 000
233 000 | 191 000
265 000
265 000 | 5 300
5 600
5 600 | 8 500
7 500
7 500 | 4 300
3 800
3 800 | | | | 160
160 | 37
37 | 2.1
2.1 | 2.1
2.1 | —
89.3 | 135.3 | 195 000
182 000 | 203 000
186 000 | 4 500
4 800 | _ | 4 000
3 200 | | | 70 | 110
125
125 | 20
24
24 | 1.1
1.5
1.5 | 1
1.5
1.5 | 80
—
83.5 | 100
110.5
— | 58 500
83 500
136 000 | 70 500
95 000
137 000 | 6 300
6 300
5 600 | 9 000 | 6 000
4 000
5 000 | | | | 125
125
125 | 24
31
31 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 83.5
83.5
83.5 | = | 119 000
179 000
156 000 | 137 000
194 000
194 000 | 5 600
5 600
5 600 | 9 000
8 000
8 000 | 5 000
4 500
4 500 | | | | 150
150
150 | 35
35
35 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 90
89 | 130
—
— | 149 000
158 000
231 000 | 156 000
168 000
222 000 | 5 600
5 300
4 800 | —
8 000 | 3 200
3 200
4 000 | | | | 150
150
150
180 | 35
51
51
42 | 2.1
2.1
2.1
3 | 2.1
2.1
2.1
3 | 89
89
89
100 |

152 | 205 000
310 000
274 000
228 000 | 222 000
325 000
325 000
236 000 | 4 800
5 000
5 000
4 500 | 8 000
7 100
7 100
— | 4 000
3 600
3 600
2 800 | - Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C156) are used, the bearings become the NH type. | | Bearing I | Numbe | | 2) | | | | Al | outmer | | illet Din | nensior | าร | | | Mass
(kg) | |---|--------------|----------|--------------|----------------------------------|--------------|-----------------------|----------------------|-----------------------|-----------------------|--------------------------|-----------------------------|--|---------------------------|---------------------------|------------------------|------------------------------| | | Cage symb | | NU N | J NUP | N NF | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\mathrm{a}}^{(3)}$ max. | $\begin{array}{c} D_{\rm b} \\ {\rm max.} \end{array}$ | $D_{\rm b} \\ {\rm min.}$ | $ holdsymbol{r}_{a}$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1013
N 213
*NU213E | | M . | NU N
NU N | J —
J NUP | N NF
N NF | | 70
—
73 | 73
—
76 | 76
—
81 | —
87 | 93.5
—
112 | 95
112
— | 92
108
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.504
1.05
1.05 | | NU213E
* NU2213E
NU2213E | Μ Ť, | Ť7 I | NU N | J NUP
J NUP
J NUP | | 73
73
73 | 73
73
73 | 76
76
76 | 81
81
81 | 87
87
87 | 112
112
112 | | | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 1.05
1.41
1.41 | | N 313
NU313
*NU313E | w n | | | J NUP
J NUP | N NF | 76
76
76 | —
76
76 | —
81
80 | —
85
85 | 93
93 | —
129
129 | 129
— | 125
—
— | 2
2
2 | 2
2
2 | 2.17
2.23
2.56 | | NU313E
* NU2313E
NU2313E | M T, | T7 I | NU N | J NUP
J NUP
J NUP | = = | 76
76
76 | 76
76
76 | 80
80
80 | 85
85
85 | 93
93
93 | 129
129
129 | _
_
_ | _ | 2
2
2 | 2
2
2 | 2.56
3.16
3.16 | | N 413
NU413 | M -
W N | _
M I |
NU N |
J — | N NF | 76
76 | —
76 | —
86 | —
91 | _
100 | —
149 | 149 | 138.8 | 2 | 2 | 3.63
3.63 | | NU1014
N 214
* NU214E | W N | M | | J NUP
J NUP | N NF
N NF | | 75
—
78 | 79
—
81 | 82
—
86 | _
92 | 103.5
—
117 | 105
117
— | 101
113
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.693
1.14
1.29 | | NU214E
* NU2214E
NU2214E | M T, | T7 i | NU N | J NUP
J NUP
J NUP | = = | 78
78
78 | 78
78
78 | 81
81
81 | 86
86
86 | 92
92
92 | 117
117
117 | _ | _ | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 1.29
1.49
1.49 | | N 314
NU314
* NU314E | W | | | J NUP
J NUP | N NF | 81
81
81 | —
81
81 | —
87
86 | 92
92 | 100
100 | —
139
139 | 139
 | 133.5
—
— | 2
2
2 | 2
2
2 | 2.67
2.75
3.09 | | NU314E
* NU2314E
NU2314E
NU414 | M T,
M T, | T7 I | NU N
NU N | J NUP
J NUP
J NUP
J NUP |

N NF | 81
81
81
83 | 81
81
81
83 | 86
86
86
97 | 92
92
92
102 | 100
100
100
112 | 139
139
139
167 | _
_
167 | _
_
_
155 | 2
2
2
2.5 | 2
2
2
2.5 | 3.09
3.92
3.92
5.28 | # Bore Diameter 75 mm **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** | | | Bou | ı ndary Di ı
(mm | mensions
) | | | | ad Ratings
N) | | Speeds
(min ⁻¹) | | |----|--------------------------|----------------------|----------------------------|--------------------------|----------------------|-------------------|--|--|----------------------------------|--------------------------------|----------------------------------| | d | D | В | γ
min. | $ m \emph{r}_{1}$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 75 | 115
130
130 | 20
25
25 | 1.1
1.5
1.5 | 1
1.5
1.5 | 85
—
88.5 | 105
116.5
— | 60 000
96 500
150 000 | 74 500
111 000
156 000 | 6 000
6 000
5 300 |
8 500 | 5 600
3 800
4 800 | | | 130
130
130
160 | 25
31
31
37 | 1.5
1.5
1.5
2.1 | 1.5
1.5
1.5
2.1 | 88.5
88.5
88.5 |

139.5 | 130 000
186 000
162 000
179 000 | 156 000
207 000
207 000
189 000 | 5 300
5 300
5 300
5 000 | 8 500
7 500
7 500
— | 4 800
4 300
4 300
3 000 | | | 160
160
160 | 37
37
37 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 95.5
95
95 | _ | 179 000
271 000
240 000 | 189 000
263 000
263 000 | 5 000
4 500
4 500 | 7 500
7 500 | 3 000
3 800
3 800 | | | 160
160
190 | 55
55
45 | 2.1
2.1
3 | 2.1
2.1
3 | 95
95
104.5 | —
—
160.5 | 370 000
330 000
262 000 | 395 000
395 000
274 000 | 4 800
4 800
4 300 | 6 700
6 700
— | 3 400
3 400
2 600 | - **Notes** (1) (M) in the column of cage symbols are usually omitted from the bearing number. - (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C156) are used, the bearings become the NH type. | | Bearing Nu | | | | Al | outmer | | illet Din | nensio | าร | | | Mass
(kg) | |---|-----------------------------------|--|-----------------------|-----------------|--|-----------------|-------------------|-------------------------------------|---------------------------|---------------------------|------------------------|------------------------|-----------------------------| | | Cage symbol
Standard Option | NO NO NOP IN INI | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}{}^{\scriptscriptstyle (4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\!\! (3)}_{\rm max.}$ | $D_{\rm b} \\ {\rm max.}$ | $D_{\rm b} \\ {\rm min.}$ | ${\it r}_{\rm a}$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1015
N 215
*NU215E | (M) —
W M
M T, T | NU — — N NI
— — — N NI
7 NU NJ NUP — — | 83 | 80
—
83 | 83
—
86 | 87
—
90 | —
96 | 108.5
—
122 | 110
122
— | 106
119
— | 1
1.5
1.5 | 1
1.5
1.5 | 0.731
1.23
1.44 | | NU215E
* NU2215E
NU2215E
N 315 | M T, T
M T, T
M T, T
W M | 7 NU NJ NUP — — | · 83
· 83 | 83
83
— | 86
86
86 | 90
90
90 | 96
96
96 | 122
122
122
— | _
_
149 | _
_
143 | 1.5
1.5
1.5
2 | 1.5
1.5
1.5
2 | 1.44
1.57
1.57
3.2 | | NU315
* NU315E
NU315E | W M
M T, T
M T, T | 7 NU NJ NUP — — | 00 | 86
86
86 | 93
92
92 | 97
97
97 | 106
106
106 | 149
149
149 | _ | _ | 2
2
2 | 2
2
2 | 3.26
3.73
3.73 | | * NU2315E
NU2315E
NU415 | M T, T
M T, T
W M | | 86 | 86
86
88 | 92
92
102 | 97
97
107 | 106
106
118 | 149
149
177 | _
177 | _
164 | 2
2
2.5 | 2
2
2.5 | 4.86
4.86
6.27 | - Notes (3) If axial loads are applied, increase d_a and reduce D_a from the values listed above. (4) d_b (max.) are values for adjusting rings for NU, NJ Types. (5) The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. Remark The bearings denoted by an asterisk (*) are NSKHPSTM Cylindrical roller bearings. # Bore Diameter 80 - 90 mm | | | Bou | ndary Di | mensions | | | Basic Load | | | Speeds
(min ⁻¹) | | |----|--------------------------|----------------------|-------------------|-----------------------|----------------------------------
----------------------|--|--|----------------------------------|--------------------------------|----------------------------------| | d | D | В | r
min. | $oldsymbol{r}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 80 | 125
140
140 | 22
26
26 | 1.1
2
2 | 1
2
2 | 91.5
—
95.3 | 113.5
125.3
— | 72 500
106 000
160 000 | 90 500
122 000
167 000 | 6 000
5 600
5 000 | 8 000 | 5 300
3 600
4 500 | | | 140
140
140 | 26
33
33 | 2
2
2 | 2
2
2 | 95.3
95.3
95.3 | _ | 139 000
214 000
186 000 | 167 000
243 000
243 000 | 5 000
5 000
5 000 | 8 000
7 100
7 100 | 4 500
4 000
4 000 | | | 170
170
170 | 39
39
39 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | —
101
101 | 147
—
— | 190 000
289 000
256 000 | 207 000
282 000
282 000 | 4 800
4 300
4 300 | 7 100
7 100 | 2 800
3 600
3 600 | | | 170
170
200 | 58
58
48 | 2.1
2.1
3 | 2.1
2.1
3 | 101
101
110 | _
_
170 | 400 000
355 000
299 000 | 430 000
430 000
315 000 | 4 500
4 500
4 000 | 6 300
6 300
— | 3 200
3 200
2 600 | | 85 | 130
150
150 | 22
28
28 | 1.1
2
2 | 1
2
2 | 96.5
—
100.5 | 118.5
133.8
— | 74 500
120 000
192 000 | 95 500
140 000
199 000 | 5 600
5 300
4 800 | | 5 000
3 400
4 300 | | | 150
150
150 | 28
36
36 | 2
2
2 | 2
2
2 | 100.5
100.5
100.5 | | 167 000
250 000
217 000 | 199 000
279 000
279 000 | 4 800
4 800
4 800 | 7 500
6 700
6 700 | 4 300
3 800
3 800 | | | 180
180
180 | 41
41
41 | 3
3
3 | 3
3
3 | 108
108 | 156
—
— | 225 000
212 000
360 000 | 247 000
228 000
330 000 | 4 500
4 800
4 000 | -
6 700 | 2 600
2 600
3 400 | | | 180
180
180
210 | 41
60
60
52 | 3
3
4 | 3
3
4 | 108
108
108
113 | _
_
_
177 | 291 000
485 000
395 000
335 000 | 330 000
485 000
485 000
350 000 | 4 000
4 300
4 300
4 000 | 6 700
6 000
6 000
— | 3 400
3 000
3 000
3 000 | | 90 | 140
160
160 | 24
30
30 | 1.5
2
2 | 1.1
2
2 | 103
—
107 | 127
143
— | 88 000
152 000
205 000 | 114 000
178 000
217 000 | 5 300
5 000
4 800 | 7 100 | 4 500
3 200
4 000 | | | 160
160
160 | 30
40
40 | 2
2
2 | 2
2
2 | 107
107
107 | _ | 182 000
274 000
242 000 | 217 000
315 000
315 000 | 4 800
4 800
4 800 | 7 100
6 300
6 300 | 4 000
3 600
3 600 | | | 190
190
190 | 43
43
43 | 3
3
3 | 3
3
3 | —
115
113.5 | 165
—
— | 240 000
240 000
390 000 | 265 000
265 000
355 000 | 4 500
4 500
4 000 | 6 300 | 2 600
2 600
3 200 | | | 190
190
190
225 | 43
64
64
54 | 3
3
4 | 3
3
4 | 113.5
113.5
113.5
123.5 | _
_
_
191.5 | 315 000
535 000
435 000
375 000 | 355 000
535 000
535 000
400 000 | 4 000
4 000
4 000
3 600 | 6 300
5 600
5 600
— | 3 200
2 800
2 800
2 800 | | Motos | (1) | /B/I | in the | column | of oogo | ovmbolo | 050 110110 | lly amittac | I from the | haaring | number | |-------|-----|-------|------------|-----------|---------|-----------|------------|-------------|---------------|---------|---------| | MULES | (+) | (IVI) |) III LIIE | COIUIIIII | oi cage | Syllibols | are usua | Ily omitted | i iroiii tiie | Dearing | mumber. | ⁽²⁾ When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on pages C156 and C157) are used, the bearings become the NH type. | | Bearing | Numb | ers | (2) | | | | А | butmeı | | illet Din | nensio | าร | | | Mass
(kg) | |---|------------------------|------------------------|------|------------------------------------|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------|---------------------------|---------------------------|------------------------|------------------------|------------------------------| | | Cage sym
Standard O | | NU I | (²)
NJ NUP | N NI | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\!\! (3)}_{\rm max.}$ | $D_{\rm b} \\ {\rm max.}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1016
N 216
* NU216E | `W | _
М
, Т7 | _ | — NUP | N - | 86.5
89
89 | 85
—
89 | 90
—
92 | 94
—
97 | _
_
104 | 118.5
—
131 | 120
131
— | 115
128
— | 1
2
2 | 1
2
2 | 0.969
1.47
1.7 | | NU216E
*NU2216E
NU2216E | M T | , T7
, T7
, T7 | NU I | NJ NUP
NJ NUP
NJ NUP | | 89
89
89 | 89
89
89 | 92
92
92 | 97
97
97 | 104
104
104 | 131
131
131 | _ | _ | 2
2
2 | 2
2
2 | 1.7
1.96
1.96 | | N 316
* NU316E
NU316E | M T | M
, T7
, T7 | | — —
NJ NUP
NJ NUP | N N | 91
91
91 | 91
91 | 98
98 | —
105
105 | —
114
114 | —
159
159 | 159
— | 150
—
— | 2
2
2 | 2
2
2 | 3.85
4.45
4.45 | | *NU2316E
NU2316E
NU416 | M T | , T7
, T7
M | | NJ NUP
NJ NUP | | 0 1 | 91
91
93 | 98
98
107 | 105
105
112 | 114
114
124 | 159
159
187 | —
187 | _
173 | 2
2
2.5 | 2
2
2.5 | 5.73
5.73
7.36 | | NU1017
N 217
*NU217E | | _
М
, Т7 | NU : |
NJ NUP | N -
N N | 91.5
94
94 | 90
—
94 | 95
—
98 | 99
—
104 | _
110 | 123.5
—
141 | 125
141
— | 120
137
— | 1
2
2 | 1
2
2 | 1.01
1.87
2.11 | | NU217E
*NU2217E
NU2217E | M T | , T7
, T7
, T7 | NU I | NJ NUP
NJ NUP
NJ NUP | = = | 94
94
94 | 94
94
94 | 98
98
98 | 104
104
104 | 110
110
110 | 141
141
141 | _ | _ | 2
2
2 | 2
2
2 | 2.11
2.44
2.44 | | N 317
NU317
* NU317E | W | M
N | | UJ NUP | N N | 98
98
98 | 98
98 | —
105
105 | —
110
110 | —
119
119 | —
167
167 | 167
—
— | 159
—
— | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 4.53
4.6
5.26 | | NU317E
* NU2317E
NU2317E
NU417 | M
M T | , T7
_
, T7
_ | NU I | NJ NUP | | 98 | 98
98
98
101 | 105
105
105
110 | 110
110
110
115 | 119
119
119
128 | 167
167
167
194 | _
_
_
194 | _
_
_
180 | 2.5
2.5
2.5
3 | 2.5
2.5
2.5
3 | 5.26
6.77
6.77
9.56 | | NU1018
N 218
*NU218E | W | —
М
, Т7 | _ | — NUP
— —
NJ NUP | N — | 98
99
99 | 96.5
—
99 | 101 | 106
—
109 | _
116 | 132
—
151 | 133.5
151
— | 129
146
— | 1.5
2
2 | 1
2
2 | 1.35
2.31
2.6 | | NU218E
* NU2218E
NU2218E | M T | , T7
, T7
, T7 | NU | NJ NUP
NJ NUP
NJ NUP | | 99
99
99 | 99
99
99 | 104
104
104 | 109
109
109 | 116
116
116 | 151
151
151 | _ | _ | 2
2
2 | 2
2
2 | 2.6
3.11
3.11 | | N 318
NU318
*NU318E | W | M
M | | — —
NJ NUP
NJ NUP | N NI | 103
103
103 | 103
103 | 112
111 | —
117
117 | —
127
127 | —
177
177 | 177
— | 168
— | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 5.31
5.38
6.1 | | NU318E
* NU2318E
NU2318E
NU418 | M
M T | , T7
—
, T7
— | NU | NJ NUP
NJ NUP
NJ NUP
NJ — | | 103
103
103
106 | 103
103
103
106 | 111
111
111
120 | 117
117
117
125 | 127
127
127
139 | 177
177
177
209 | _
_
209 | _
_
196 | 2.5
2.5
2.5
3 | 2.5
2.5
2.5
3 | 6.1
7.9
7.9
11.5 | ⁽⁵⁾ The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. # BEARINGS TABLE **NSK** # Bore Diameter 95 - 105 mm **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** | | | Bou | ndary Dir
(mm | mensions
) | | | Basic Load | | | Speeds
(min ⁻¹) | | |-----|--------------------------|----------------------|-------------------|----------------------------|----------------------------------|---------------------|--|--|----------------------------------|--------------------------------|----------------------------------| | d | D | В | γ
min. | $oldsymbol{\gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | C_{r} | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 95 | 145
170
170 | 24
32
32 | 1.5
2.1
2.1 | 1.1
2.1
2.1 | 108
—
112.5 | 132
151.5
— | 90 500
166 000
249 000 | 120 000
196 000
265 000 | 5 000
4 800
4 300 | —
—
6 700 | 4 300
3 000
3 800 | | | 170
170
170 | 32
43
43 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 112.5
112.5
112.5 | _ | 220 000
325 000
286 000 | 265 000
370 000
370 000 | 4 300
4 500
4 500 | 6 700
6 000
6 000 | 3 800
3 400
3 400 | | | 200
200
200 | 45
45
45 | 3
3
3 | 3
3
3 | —
121.5
121.5 | 173.5
—
— | 259 000
259 000
410 000 | 289 000
289 000
385 000 | 4 300
4 300
3 800 |
6 000 | 2 400
2 400
3 000 | | | 200
200
200
240 | 45
67
67
55 | 3
3
4 | 3
3
4 | 121.5
121.5
121.5
133.5 |

201.5 | 335 000
565 000
460 000
400 000 |
385 000
585 000
585 000
445 000 | 3 800
3 800
3 800
3 200 | 6 000
5 300
5 300
— | 3 000
2 600
2 600
2 600 | | 100 | 150
180
180 | 24
34
34 | 1.5
2.1
2.1 | 1.1
2.1
2.1 | 113

119 | 137
160
— | 93 000
183 000
305 000 | 126 000
217 000
305 000 | 4 800
4 500
4 300 | | 4 300
2 800
3 600 | | | 180
180
180 | 34
46
46 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 119
119
119 | | 249 000
410 000
335 000 | 305 000
445 000
445 000 | 4 300
4 300
4 300 | 6 300
5 600
5 600 | 3 600
3 200
3 200 | | | 215
215
215 | 47
47
47 | 3
3
3 | 3
3
3 | —
129.5
127.5 | 185.5
—
— | 299 000
299 000
465 000 | 335 000
335 000
425 000 | 4 000
4 000
3 600 |
5 600 | 2 200
2 200
2 800 | | | 215
215
215
250 | 47
73
73
58 | 3
3
4 | 3
3
4 | 127.5
127.5
127.5
139 | _
_
211 | 380 000
700 000
570 000
450 000 | 425 000
715 000
715 000
500 000 | 3 600
3 400
3 400
3 000 | 5 600
5 000
5 000
— | 2 800
2 400
2 400
2 600 | | 105 | 160
190
190 | 26
36
36 | 2
2.1
2.1 | 1.1
2.1
2.1 | 119.5
—
125 | 145.5
168.8
— | 109 000
201 000
320 000 | 149 000
241 000
310 000 | 4 500
4 500
4 300 |
6 000 | 4 000
3 400
3 400 | | | 190
225
225 | 36
49
49 | 2.1
3
3 | 2.1
3
3 | 125
—
133 | 195
— | 262 000
340 000
525 000 | 310 000
390 000
480 000 | 4 300
3 800
3 400 | 6 000
—
5 300 | 3 400
2 200
2 600 | | | 225
260 | 49
60 | 3
4 | 3
4 | 133
144.5 |
220.5 | 425 000
495 000 | 480 000
555 000 | 3 400
2 800 | 5 <u>300</u> | 2 600
2 400 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C157) are used, the bearings become the NH type. | | Bearing Num | | | | | А | butmer | | illet Din
m) | nensior | IS | | | Mass
(kg) | |---|------------------------------------|--|------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|---------------------------|------------------------|------------------------|------------------------------| | | Cage symbol (1)
Standard Option | NU NJ NUP | N NF | $d_{\mathrm{a}^{(3)}}$ min. | $d_{ m b}$ min. | $d_{ m b}^{(4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}^{(3)}$ max. | $\begin{array}{c} D_{\rm b} \\ {\rm max.} \end{array}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_b$ max. | approx. | | NU1019
N 219
*NU219E | (M) —
W M
M T, T7 | NU NJ —
NU NJ NUP | | 103
106
106 | 101.5
—
106 | 106
—
110 | 111
—
116 | _
123 | 137
—
159 | 138.5
159
— | 134
155
— | 1.5
2
2 | 1
2
2 | 1.41
2.79
3.17 | | NU219E
* NU2219E
NU2219E | M T, T7
M T, T7
M T, T7 | NU NJ NUP
NU NJ NUP
NU NJ NUP | | 106
106
106 | 106
106
106 | 110
110
110 | 116
116
116 | 123
123
123 | 159
159
159 | _ | _ | 2
2
2 | 2
2
2 | 3.17
3.81
3.81 | | N 319
NU319
*NU319E | W M
W M
M — | — — —
NU NJ NUP
NU NJ NUP | | 108
108
108 | 108
108 | —
118
118 | —
124
124 | —
134
134 | —
187
187 | 187
— | 177
—
— | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 6.09
6.23
7.13 | | NU319E
* NU2319E
NU2319E
NU419 | M T, T7
M —
M T, T7
M — | NU NJ NUP
NU NJ NUP
NU NJ NUP
NU NJ NUP | | | 108
108
108
111 | 118
118
118
130 | 124
124
124
136 | 134
134
134
149 | 187
187
187
224 | _
_
_
224 | _
_
206 | 2.5
2.5
2.5
3 | 2.5
2.5
2.5
3 | 7.13
9.21
9.21
13.6 | | NU1020
N 220
*NU220E | (M) —
W M
M — | | N NF | 108
111
111 | 106.5
111 | 111
—
116 | 116
—
122 | _
130 | 142
—
169 | 143.5
169
— | 139
163
— | 1.5
2
2 | 1
2
2 | 1.47
3.36
3.81 | | NU220E
* NU2220E
NU2220E | M T, T7
M —
M T, T7 | NU NJ NUP
NU NJ NUP
NU NJ NUP | | 111
111
111 | 111
111
111 | 116
116
116 | 122
122
122 | 130
130
130 | 169
169
169 | _ | = | 2
2
2 | 2
2
2 | 3.81
4.69
4.69 | | N 320
NU320
*NU320E | W M
W M
M — | — — —
NU NJ NUP
NU NJ NUP | | 113
113
113 | —
113
113 | —
126
124 | 132
132 | 143
143 | 202
202 | 202
— | 190
— | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 7.59
7.69
8.63 | | NU320E
* NU2320E
NU2320E
NU420 | M T, T7
M —
M T, T7
M — | NU NJ NUP
NU NJ NUP
NU NJ NUP
NU NJ — | | 113
113
113
116 | 113
113
113
116 | 124
124
124
135 | 132
132
132
141 | 143
143
143
156 | 202
202
202
234 | _
_
234 | _
_
215 | 2.5
2.5
2.5
3 | 2.5
2.5
2.5
3 | 8.63
11.8
11.8
15.5 | | NU1021
N 221
*NU221E | (M) —
W M
M — | NU — —
NU NJ NUP | N NF | 114
116
116 | 111.5
—
116 | 118
—
121 | 122
129 | _
137 | 151
—
179 | 153.5
179
— | 147
172
— | 2
2
2 | 1
2
2 | 1.83
4.0
4.58 | | NU221E
N 321
* NU321E | M —
W M
M — | NU NJ NUP
NU NJ NUP | N NF | 116
118
118 | 116
—
118 | 121
—
131 | 129
—
137 | 137
—
149 | 179
 | 212 | 199
— | 2
2.5
2.5 | 2
2.5
2.5 | 4.58
8.69
9.84 | | NU321E
NU421 | M —
M — | NU NJ NUP
NU NJ — | U NF | 118
121 | 118
121 | 131
141 | 137
147 | 149
162 | 212
244 |
244 |
225 | 2.5
3 | 2.5
3 | 9.84
17.3 | ⁽⁴⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. **Remark** The bearings denoted by an asterisk (*) are NSKHPS™ Cylindrical roller bearings. ⁽⁵⁾ The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. #### Bore Diameter 110 – 130 mm **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** | | Boundary Dimensions (mm) | | | | ad Ratings
N) | | Speeds
(min ⁻¹) | | | | | |-----|--------------------------|----------------|-------------------|----------------------------|-------------------------|-------------------|---------------------------------|-----------------------------------|-------------------------------|-------------------------|-------------------------| | d | D | B | γ
min. | $oldsymbol{\gamma}_1$ min. | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 110 | 170
200
200 | 28
38
38 | 2
2.1
2.1 | 1.1
2.1
2.1 | 125
—
132.5 | 155
178.5
— | 131 000
229 000
360 000 | 174 000
272 000
365 000 | 4 500
4 300
4 000 | _
_
5 600 | 3 800
2 600
3 200 | | | 200
200
200 | 38
53
53 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 132.5
132.5
132.5 | = | 293 000
470 000
385 000 | 365 000
515 000
515 000 | 4 000
4 000
4 000 | 5 600
5 000
5 000 | 3 200
2 800
2 800 | | | 240
240
240 | 50
50
50 | 3
3
3 | 3
3
3 | 143
143 | 207
—
— | 380 000
555 000
450 000 | 435 000
525 000
525 000 | 3 400
3 200
3 200 | 5 000
5 000 | 2 000
2 600
2 600 | | | 240
240
280 | 80
80
65 | 3
3
4 | 3
3
4 | 143
143
155 | = | 830 000
675 000
550 000 | 880 000
880 000
620 000 | 3 000
3 000
2 600 | 4 500
4 500
— | 2 200
2 200
2 200 | | 120 | 180
215
215 | 28
40
40 | 2
2.1
2.1 | 1.1
2.1
2.1 | 135
—
143.5 | 165
191.5
— | 139 000
260 000
410 000 | 191 000
320 000
420 000 | 4 000
4 000
3 600 |
5 300 | 3 400
2 400
3 000 | | | 215
215
215 | 40
58
58 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 143.5
143.5
143.5 | _ | 335 000
555 000
450 000 | 420 000
620 000
620 000 | 3 600
3 600
3 600 | 5 300
4 800
4 800 | 3 000
2 600
2 600 | | | 260
260
260 | 55
55
55 | 3
3
3 | 3
3
3 | —
154
154 | 226
—
— | 450 000
650 000
530 000 | 510 000
610 000
610 000 | 3 000
2 800
2 800 | 4 800
4 800 | 2 200
2 200
2 200 | | | 260
260
310 | 86
86
72 | 3
3
5 | 3
3
5 | 154
154
170 |
260 | 975 000
795 000
675 000 | 1 030 000
1 030 000
770 000 | 2 600
2 600
2 400 | 4 300
4 300
— | 2 000
2 000
2 000 | | 130 | 200
230
230 | 33
40
40 | 2
3
3 | 1.1
3
3 | 148
—
153.5 | 182
204
— | 172 000
270 000
445 000 | 238 000
340 000
455 000 | 4 000
3 800
3 400 | _
5 000 | 3 200
2 200
2 600 | | | 230
230
230 | 40
64
64 | 3
3
3 | 3
3
3 | 153.5
153.5
153.5 | _ | 365 000
650 000
530 000 | 455 000
735 000
735 000 | 3 400
3 400
3 400 | 5 000
4 500
4 500 | 2 600
2 400
2 400 | | | 280
280
280 | 58
58
58 | 4
4
4 | 4
4
4 | —
167
167 | 243
—
— | 500 000
760 000
615 000 | 570 000
735 000
735 000 | 2 800
2 600
2 600 | 4 300
4 300 | 2 200
2 200
2 200 | | | 280
280
340 | 93
93
78 | 4
4
5 | 4
4
5 | 167
167
185 |

285 | 1 130 000
920 000
825 000 | 1 230 000
1 230 000
955 000 | 2 400
2 400
2 000 | 3 800
— | 1 900
1 900
1 800 | ⁽²⁾ When L-Shaped thrust collars (See
section for L-Shaped Thrust Collars starting on page C157) are used, the bearings become the NH type. | | Bearing Num | | Abutment and Fillet Dimensions (mm) | | | | | | | | Mass
(kg) | | | | |--------------------------------|-----------------------------------|-------------------------------------|-------------------------------------|-----------------------------|-------------------|--|-------------------|-------------------|-------------------------------------|--|--|----------------------|------------------------|----------------------| | | Cage symbol(1)
Standard Option | NU NJ NUP | N NF | $d_{\mathrm{a}^{(3)}}$ min. | $d_{ m b}$ min. | $d_{ m b}{}^{\scriptscriptstyle (4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\rm a}{}^{\!\! (3)}_{\rm max.}$ | $\begin{array}{c} D_{\rm b} \\ {\rm max.} \end{array}$ | $\begin{array}{c} D_{\rm b} \\ {\rm min.} \end{array}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1022
N 222
*NU222E | (M) —
W M
M — | NU NJ —
NU NJ NUP | N NF | 119
121
121 | 116.5
—
121 | 123
—
129 | 128
—
135 | _
_
144 | 161
—
189 | 163.5
189
— | 157
182
— | 2
2
2 | 1
2
2 | 2.27
4.64
5.37 | | NU222E
*NU2222E
NU2222E | M T, T7
M —
M — | NU NJ NUP
NU NJ NUP
NU NJ NUP | | 121
121
121 | 121
121
121 | 129
129
129 | 135
135
135 | 144
144
144 | 189
189
189 | _ | _ | 2
2
2 | 2
2
2 | 5.37
7.65
7.65 | | N 322
*NU322E
NU322E | W M
M —
M — | — — —
NU NJ NUP
NU NJ NUP | | 123
123
123 | 123
123 | 139
139 | —
145
145 | —
158
158 | —
227
227 | 227
—
— | 211
—
— | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 10.3
11.8
11.8 | | *NU2322E
NU2322E
NU422 | М —
М —
М — | NU NJ NUP
NU NJ NUP
NU NJ — | | 123
123
126 | 123
123
126 | 139
139
151 | 145
145
157 | 158
158
173 | 227
227
264 | _ | _ | 2.5
2.5
3 | 2.5
2.5
3 | 18.8
18.8
22.1 | | NU1024
N 224
*NU224E | (M) —
W M
M — | NU NJ NUP
NU NJ NUP | N NF | 129
131
131 | 126.5
—
131 | 133
—
140 | 138
—
146 | _
156 | 171
—
204 | 173.5
204
— | 167
196
— | 2
2
2 | 1
2
2 | 2.43
5.63
6.43 | | NU224E
* NU2224E
NU2224E | M —
M —
M — | NU NJ NUP | = = | 131 | 131
131
131 | 140
140
140 | 146
146
146 | 156
156
156 | 204
204
204 | _ | | 2
2
2 | 2
2
2 | 6.43
9.51
9.51 | | N 324
* NU324E
NU324E | W M
M —
M — | NU NJ NUP | | 133
133
133 | 133
133 | 150
150 | 156
156 | —
171
171 | 247
247 | 247
— | 230
— | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 12.9
15
15 | | *NU2324E
NU2324E
NU424 | М —
М —
М — | | | | 133
133
140 | 150
150
166 | 156
156
172 | 171
171
190 | 247
247
290 | _
290 | _
266 | 2.5
2.5
4 | 2.5
2.5
4 | 25
25
30.2 | | NU1026
N 226
*NU226E | (M) —
W M
M — | NU NJ —
NU NJ NUP | N NF | 139
143
143 | 136.5
—
143 | 146
—
150 | 151
—
158 | _
168 | 191
—
217 | 193.5
217
— | 184
208
— | 2
2.5
2.5 | 1
2.5
2.5 | 3.66
6.48
8.03 | | NU226E
* NU2226E
NU2226E | M T, T7
M —
M — | NU NJ NUP
NU NJ NUP
NU NJ NUP | | 143
143
143 | 143
143
143 | 150
150
150 | 158
158
158 | 168
168
168 | 217
217
217 | _ | _ | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 8.03
9.44
9.44 | | N 326
* NU326E
NU326E | М —
М —
М — | — — —
NU NJ NUP
NU NJ NUP | N NF
— — | | —
146
146 | 163
163 | 169
169 | —
184
184 | —
264
264 | 264
—
— | 247.5
—
— | 3
3
3 | 3
3
3 | 17.7
18.7
18.7 | | *NU2326E
NU2326E
NU426 | M —
M —
M — | NU NJ NUP |
NF | 146 | 146
146
150 | 163
163
180 | 169
169
187 | 184
184
208 | 264
264
320 | _
320 | _
291 | 3
3
4 | 3
3
4 | 30
30
39.6 | ⁽⁴⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. C 148 C 149 ^(*) The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. Remark The bearings denoted by an asterisk (★) are NSKHPS™ Cylindrical roller bearings. # BEARINGS TABLE **NSK** #### Bore Diameter 140 – 160 mm **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** | | Boundary Dimensions (mm) | | | | | | ad Ratings
N) | | Speeds
(min ⁻¹) | | | |-----|--------------------------|-----------------------|------------------|------------------|-------------------|--------------------|--|--|----------------------------------|-------------------------|----------------------------------| | d | D | B | γ
min. | $ eals_1$ min. | $F_{ m W}$ | $E_{ m W}$ | C_{r} | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 140 | 210
250
250 | 33
42
42 | 2
3
3 | 1.1
3
3 | 158
—
169 | 192
221
— | 176 000
297 000
485 000 | 250 000
375 000
515 000 | 3 800
3 400
3 200 |

4 500 | 3 000
2 000
2 400 | | | 250
250
250 | 42
68
68 | 3
3
3 | 3
3
3 | 169
169
169 | _
_
_ | 395 000
675 000
550 000 | 515 000
790 000
790 000 | 3 200
3 200
3 200 | 4 500
4 000
4 000 | 2 400
2 200
2 200 | | | 300
300
300 | 62
62
62 | 4
4
4 | 4
4
4 | —
180
180 | 260
—
— | 550 000
815 000
665 000 | 640 000
795 000
795 000 | 2 600
2 400
2 400 | 4 000
4 000 | 2 000
2 000
2 000 | | | 300
300
360 | 102
102
82 | 4
4
5 | 4
4
5 | 180
180
198 | _
302 | 1 250 000
1 020 000
875 000 | 1 380 000
1 380 000
1 020 000 | 2 200
2 200
1 900 | 2 600
2 600
— | 1 700
1 700
1 700 | | 150 | 225
270
270 | 35
45
45 | 2.1
3
3 | 1.5
3
3 | 169.5
—
182 | 205.5
238
— | 202 000
360 000
550 000 | 294 000
465 000
595 000 | 3 600
3 000
2 800 |
4 300 | 2 800
1 800
2 200 | | | 270
270
270 | 45
73
73 | 3
3
3 | 3
3
3 | 182
182
182 | | 450 000
780 000
635 000 | 595 000
930 000
930 000 | 2 800
2 800
2 800 | 4 300
3 800
3 800 | 2 200
2 000
2 000 | | | 320
320
320 | 65
65
65 | 4
4
4 | 4
4
4 | —
193
193 | 277
—
— | 665 000
930 000
760 000 | 805 000
920 000
920 000 | 2 200
2 200
2 200 | 3 800
3 800 | 1 800
1 800
1 800 | | | 320
320
380 | 108
108
85 | 4
4
5 | 4
4
5 | 193
193
213 | | 1 430 000
1 160 000
930 000 | 1 600 000
1 600 000
1 120 000 | 2 000
2 000
1 700 | 2 400
2 400
— | 1 600
1 600
1 600 | | 160 | 240
290
290 | 38
48
48 | 2.1
3
3 | 1.5
3
3 | 180
—
195 | 220
255
— | 238 000
430 000
615 000 | 340 000
570 000
665 000 | 3 400
2 800
2 600 |
4 000 | 2 600
2 200
2 200 | | | 290
290
290 | 48
80
80 | 3
3
3 | 3
3
3 | 195
193
193 | | 500 000
995 000
810 000 | 665 000
1 190 000
1 190 000 | 2 600
2 400
2 400 | 4 000
3 600
3 600 | 2 200
1 900
1 900 | | | 340
340
340
340 | 68
68
68
114 | 4
4
4
4 | 4
4
4
4 | 204
204
204 | 292
—
—
— | 700 000
1 060 000
860 000
1 310 000 | 875 000
1 050 000
1 050 000
1 820 000 | 2 000
1 900
1 900
1 800 | 3 600
3 600
2 400 | 1 700
1 700
1 700
1 500 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C157) are used, the bearings become the NH type. | | Bearing Numb | | | А | butmer | | illet Din | nensior | IS | | | Mass
(kg) | | |--|-----------------------------------|---|--------------------------|------------------------|--|-------------------|------------------------|-----------------------------|--|---------------------------|----------------------|------------------------|------------------------------| | | Cage symbol(1)
Standard Option | (2)
NU NJ NUP N NF | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}{}^{\scriptscriptstyle (4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\mathrm{a}}^{(3)}$ max. | $\begin{array}{c} D_{\rm b} \\ {\rm max.} \end{array}$ | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1028
N 228
* NU228E | (M) —
W M
M — | | 149
153
153 | 146.5
—
153 | 156
—
165 | 161
—
171 | —
—
182 | 201
—
237 | 203.5
237
— | 194
225
— | 2
2.5
2.5 | 1
2.5
2.5 | 3.87
8.08
9.38 | | NU228E
* NU2228E
NU2228E | M —
M —
M — | NU NJ NUP — —
NU NJ NUP — —
NU NJ NUP — — | | 153
153
153 | 165
165
165 | 171
171
171 | 182
182
182 | 237
237
237 | _ | _ | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 9.38
15.2
15.2 | | N 328
* NU328E
NU328E | M —
M —
M — | — — N NF
NU NJ NUP — —
NU NJ NUP — — | 156
156
156 | —
156
156 | —
176
176 | —
182
182 | —
198
198 | —
284
284 | 284
—
— | 266
— | 3
3
3 | 3
3
3 | 21.7
22.8
22.8 | | *
NU2328E
NU2328E
NU428 | M —
M —
M — | NU NJ NUP — —
NU NJ NUP — —
NU NJ — N — | | 156
156
160 | 176
176
193 | 182
182
200 | 198
198
222 | 284
284
340 | _
340 | _
308 | 3
3
4 | 3
3
4 | 37.7
37.7
46.4 | | NU1030
N 230
*NU230E | (M) —
W M
M — | N NF | 161
163
163 | 158
—
163 | 167
—
177 | 173
—
184 | —
196 | 214
—
257 | 217
257
— | 208
242
— | 2
2.5
2.5 | 1.5
2.5
2.5 | 4.77
10.4
11.9 | | NU230E
* NU2230E
NU2230E | M —
M —
M — | NU NJ NUP — —
NU NJ NUP — —
NU NJ NUP — — | 163
163
163 | 163
163
163 | 177
177
177 | 184
184
184 | 196
196
196 | 257
257
257 | _ | _ | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 11.9
19.3
19.3 | | N 330
* NU330E
NU330E | M —
M —
M — | N NF
NU NJ NUP
NU NJ NUP | | —
166
166 | —
188
188 | —
195
195 |
213
213 | —
304
304 | 304
—
— | 283
—
— | 3
3
3 | 3
3
3 | 25.8
27.1
27.1 | | * NU2330E
NU2330E
NU430 | M —
M —
M — | NU NJ NUP — —
NU NJ NUP — —
NU NJ — — — | 166
166
170 | 166
166
170 | 188
188
208 | 195
195
216 | 213
213
237 | 304
304
360 | _ | _ | 3
3
4 | 3
3
4 | 45.1
45.1
55.8 | | NU1032
N 232
*NU232E | (M) —
M —
M — | — — N NF | 171
173
173 | 168
—
173 | 178
—
190 | 184
—
197 | _
210 | 229
—
277 | 232
277
— | 222
261
— | 2
2.5
2.5 | 1.5
2.5
2.5 | 5.81
14.1
14.7 | | NU232E
*NU2232E
NU2232E | M —
M —
M — | NU NJ NUP — —
NU NJ NUP — —
NU NJ NUP — — | 173
173
173 | 173
173
173 | 190
188
188 | 197
197
197 | 210
210
210 | 277
277
277 | _ | _ | 2.5
2.5
2.5 | 2.5
2.5
2.5 | 14.7
24.5
24.5 | | N 332
* NU332E
NU332E
NU2332E | M —
M —
M —
M — | N NU NJ NUP NU NJ NUP NU NJ NUP | 176
176
176
176 | —
176
176
176 | 199
199
199 | 211
211
211 | —
228
228
228 | —
324
324
324 | 324
—
—
— | 298
—
—
— | 3
3
3 | 3
3
3 | 30.8
32.1
32.1
53.9 | ⁽⁴⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. **Remark** The bearings denoted by an asterisk (*) are NSKHPS™ Cylindrical roller bearings. ⁽⁵⁾ The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. # BEARINGS TABLE **NSK** #### Bore Diameter 170 – 200 mm **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** | | Boundary Dimensions (mm) | | | | | | | ad Ratings
N) | | Speeds
(min ⁻¹) | | |-----|--|--|-----------------------------------|-----------------------------------|--|--|--|---|--|--------------------------------|---| | d | D | B | γ
min. | $ eals_1$ min. | $F_{ m W}$ | $E_{ m W}$ | C_{r} | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting (5) Mechanical | Speeds
Grease | | 170 | 260
310
310
310
310
310
360
360 | 42
52
52
52
52
86
86
72
72 | 2.1
4
4
4
4
4
4 | 2.1
4
4
4
4
4
4 | 193
—
207
207
205
205
—
218 | 237
272
—
—
—
—
—
310 | 287 000
475 000
740 000
605 000
1 140 000
925 000
795 000
930 000 | 415 000
635 000
800 000
800 000
1 330 000
1 010 000
1 150 000 | 3 200
2 600
2 400
2 400
2 200
2 200
1 900
1 800 | | 2 400
2 000
2 000
2 000
1 800
1 800
1 600 | | 180 | 360
280
320
320 | 120
46
52
52 | 4
2.1
4
4 | 4
2.1
4
4 | 216
205
—
217 | 255
282
— | 1 490 000
355 000
495 000
770 000 | 2 070 000
510 000
675 000
850 000 | 1 600
3 000
2 400
2 200 | 2 200
—
—
3 600 | 1 400
2 200
1 900
1 900 | | | 320
320
320 | 52
86
86 | 4
4
4 | 4
4
4 | 217
215
215 | _ | 625 000
1 240 000
1 010 000 | 850 000
1 510 000
1 510 000 | 2 200
2 000
2 000 | 3 600
3 200
3 200 | 1 900
1 700
1 700 | | | 380
380
380 | 75
75
126 | 4
4
4 | 4
4
4 | 231
227 | 328
 | 905 000
985 000
1 560 000 | 1 150 000
1 230 000
2 220 000 | 1 700
1 700
1 500 | 2 800
2 000 | 1 500
1 500
1 300 | | 190 | 290
340
340 | 46
55
55 | 2.1
4
4 | 2.1
4
4 | 215
 | 265
299
— | 365 000
555 000
855 000 | 535 000
770 000
955 000 | 2 800
2 200
2 000 | | 2 000
1 800
1 800 | | | 340
340
340 | 55
92
92 | 4
4
4 | 4
4
4 | 230
228
228 | _ | 695 000
1 360 000
1 100 000 | 955 000
1 670 000
1 670 000 | 2 000
1 900
1 900 | 3 400
3 000
3 000 | 1 800
1 600
1 600 | | | 400
400
400 | 78
78
132 | 5
5
5 | 5
5
5 | —
245
240 | 345
—
— | 975 000
1 060 000
1 770 000 | 1 260 000
1 340 000
2 520 000 | 1 600
1 600
1 400 | 2 600
2 000 | 1 400
1 400
1 300 | | 200 | 310
360
360 | 51
58
58 | 2.1
4
4 | 2.1
4
4 | 229
—
243 | 281
316
— | 390 000
620 000
945 000 | 580 000
865 000
1 060 000 | 2 600
2 000
1 900 | | 2 000
1 700
1 700 | | | 360
360
360 | 58
98
98 | 4
4
4 | 4
4
4 | 243
241
241 | | 765 000
1 500 000
1 220 000 | 1 060 000
1 870 000
1 870 000 | 1 900
1 800
1 800 | 3 200
2 200
2 200 | 1 700
1 500
1 500 | | | 420
420
420 | 80
80
138 | 5
5
5 | 5
5
5 | —
258
253 | 360
— | 975 000
1 140 000
1 910 000 | 1 270 000
1 450 000
2 760 000 | 1 600
1 500
1 300 | 2 600
1 900 | 1 300
1 300
1 200 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C157) are used, the bearings become the NH type. | | Bearing Numb | | Abutment and Fillet Dimensions (mm) | | | | | | | | Mass
(kg) | | |---|--|---|--|--|--------------------------------------|-------------------|--------------------------------------|---------------------------|---------------------------|-------------------------------|----------------------------|--| | | Cage symbol (1)
Standard Option | NU NJ NUP N NF | $egin{aligned} d_{\mathrm{a}}^{\mathrm{(3)}} & d_{\mathrm{b}} \ \mathrm{min.} \end{aligned}$ | $d_{ m b}{}^{\scriptscriptstyle (4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{ m a}{}^{\!\! (3)}$ max. | $D_{ m b}$ max. | $D_{ m b}$ min. | $m{\gamma}_{\mathrm{a}}$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1034
N 234
* NU234E
NU234E
* NU2234E
NU2234E | (M) —
M —
M —
M —
M —
M — | O O O O O O O O O O O O O O O O O O O | 181 181
186 —
186 186
186 186
186 186
186 186 | 190
202
202
202
200
200 | 197
—
211
211
211
211 | | 249
—
294
294
294
294 | 249
294
—
—
— | 239
278
—
—
— | 2
3
3
3
3 | 2
3
3
3
3
3 | 7.91
17.4
18.3
18.3
29.9
29.9 | | N 334
NU334E
NU2334E | M —
M —
M — | | 186 —
186 186
186 186 | 213
210 | 223
223 | 241
241 | 344
344 | 344
—
— | 316
—
— | 3
3
3 | 3
3
3 | 36.6
37.9
63.4 | | NU1036
N 236
* NU236E | (M) —
M —
M — | NU NJ — N NF
— — — N NF
NU NJ NUP — — | | 202
—
212 | 209
—
221 | _
233 | 269
304 | 269
304
— | 258
288
— | 2
3
3 | 2
3
3 | 10.2
18.1
19 | | NU236E
* NU2236E
NU2236E | M —
M —
M — | NU NJ NUP — — | 196 196
196 196
196 196 | 212
210
210 | 221
221
221 | 233
233
233 | 304
304
304 | _ | _ | 3
3
3 | 3
3
3 | 19
31.4
31.4 | | N 336
NU336E
NU2336E | M —
M —
M — | | 196 —
196 196
196 196 | —
226
222 | —
235
235 | —
255
255 | —
364
364 | 364
—
— | 335
—
— | 3
3
3 | 3
3
3 | 42.6
44
74.6 | | NU1038
N 238
* NU238E | (M) —
M —
M — | N NF | 201 201
206 —
206 206 | 212
—
225 | 219
—
234 |
247 | 279
—
324 | 279
324
— | 268
305
— | 2
3
3 | 2
3
3 | 10.7
22
23 | | NU238E
* NU2238E
NU2238E | М —
М —
М — | NU NJ NUP — — | 206 206
206 206
206 206 | 225
223
223 | 234
234
234 | 247
247
247 | 324
324
324 | _ | _ | 3
3
3 | 3
3
3 | 23
38.3
38.3 | | N 338
NU338E
NU2338E | М —
М —
М — | NU NJ NUP — — | 210 —
210 210
210 210 | 240
235 | 248
248 | 268
268 | 380
380 | 380 | 352
—
— | 4
4
4 | 4
4
4 | 48.7
50.6
86.2 | | NU1040
N 240
* NU240E | (M) —
M —
M — | NU NJ — N NF
— — — N NF
NU NJ NUP — — | | 226
—
238 | 233
—
247 | _
261 | 299
344 | 299
344
— | 284
323
— | 2
3
3 | 2
3
3 | 14
26.2
27.4 | |
NU240E
* NU2240E
NU2240E | М —
М —
М — | NU NJ NUP — — | 216 216
216 216
216 216 | 238
235
235 | 247
247
247 | 261
261
261 | 344
344
344 | = | _ | 3
3
3 | 3
3
3 | 27.4
46.1
46.1 | | N 340
NU340E
NU2340E | М —
М —
М — | | 220 —
220 220
220 220 | | 263
263 | 283
283 | 400
400 | 400
— | 367
— | 4
4
4 | 4
4
4 | 55.3
57.1
99.3 | ⁽⁴⁾ $d_{\rm b}$ (max.) are values for adjusting rings for NU, NJ Types. **Remark** The bearings denoted by an asterisk (*) are NSKHPS™ Cylindrical roller bearings. C 153 C 152 ⁽⁵⁾ The limiting speeds(mechanical) in the bearing tables are the value for the standard cage type. # **SINGLE-ROW CYLINDRICAL ROLLER BEARINGS** #### Bore Diameter 220 - 500 mm | | Boundary Dimensions
(mm) | | | | | | | ad Ratings
N) | | Speeds
(min ⁻¹) | | |------------|-----------------------------|------------|--------|--------|------------|------------------|------------------------|------------------------|----------------------|--------------------------------|----------------| | d | D | B | r | r_1 | $F_{ m W}$ | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference | Limiting | Speeds | | | <i>D</i> | | min. | min. | I'W | E_{W} | C _r | c_{0r} | Speed | Mechanical | Grease | | 220 | 340 | 56 | 3 | 3 | 250 | 310 | 500 000 | 750 000 | 2 400 | _ | 1 800 | | | 400
400 | 65
65 | 4
4 | 4
4 | 268 | 350 | 760 000
1 110 000 | 1 080 000
1 250 000 | 1 800
1 800 | _ | 1 500
1 500 | | | 400 | 65 | 4 | 4 | 268 | _ | 905 000 | 1 250 000 | 1 800 | _ | 1 500 | | | 400
460 | 108
88 | 4
5 | 4
5 | 270 | —
396 | 1 140 000 | 1 810 000
1 570 000 | 1 700
1 400 | _ | 1 300
1 200 | | | 460 | 88 | 5 | 5 | 284 | _ | 1 190 000 | 1 570 000 | 1 400 | _ | 1 200 | | 240 | 360 | 56 | 3 | 3 | 270 | 330 | 530 000 | 820 000 | 2 200 | _ | 1 600 | | | 440
440 | 72
72 | 4
4 | 4
4 |
295 | 385 | 935 000
935 000 | 1 340 000
1 340 000 | 1 600
1 600 | _ | 1 300
1 300 | | | 440 | 120 | 4 | 4 | 295 | _ | 1 440 000 | 2 320 000 | 1 500 | _ | 1 200 | | | 500 | 95 | 5 | 5 | _ | 430 | 1 360 000 | 1 820 000 | 1 200 | _ | 1 100 | | | 500 | 95 | 5 | 5 | 310 | _ | 1 360 000 | 1 820 000 | 1 200 | _ | 1 100 | | 260 | 400
480 | 65
80 | 4
5 | 4
5 | 296
— | 364
420 | 645 000
1 100 000 | 1 000 000
1 580 000 | 1 900
1 500 | _ | 1 500
1 200 | | | 480 | 80 | 5 | 5 | 320 | _ | 1 100 000 | 1 580 000 | 1 500 | _ | 1 200 | | | 480
540 | 130
102 | 5
6 | 5
6 | 320
336 | _ | 1 710 000
1 540 000 | 2 770 000
2 090 000 | 1 300
1 100 | _ | 1 100
1 000 | | 280 | 420 | 65 | 4 | 4 | 316 | 384 | 660 000 | 1 050 000 | 1 800 | _ | 1 400 | | | 500 | 80 | 5 | 5 | _ | 440 | 1 140 000 | 1 680 000 | 1 300 | _ | 1 100 | | 300 | 500
460 | 80
74 | 5
4 | 5
4 | 340
340 | —
420 | 1 140 000
885 000 | 1 680 000
1 400 000 | 1 300
1 600 | | 1 100
1 300 | | 300 | 540 | 85 | 5 | 5 | 364 | 4 20 | 1 400 000 | 2 070 000 | 1 200 | _ | 1 100 | | 320 | 480 | 74 | 4 | 4 | 360 | 440 | 905 000 | 1 470 000 | 1 500 | _ | 1 200 | | | 580
580 | 92
92 | 5
5 | 5
5 | 390 | 510
— | 1 540 000
1 540 000 | 2 270 000
2 270 000 | 1 100
1 100 | _ | 950
950 | | 340 | 520 | 82 | 5 | 5 | 385 | 475 | 1 080 000 | 1 740 000 | 1 400 | _ | 1 100 | | 360 | 540 | 82 | 5 | 5 | 405 | 495 | 1 110 000 | 1 830 000 | 1 300 | _ | 1 000 | | 380 | 560 | 82 | 5 | 5 | 425 | _ | 1 140 000 | 1 910 000 | 1 200 | _ | 1 000 | | 400 | 600 | 90 | 5 | 5 | 450 | 550 | 1 360 000 | 2 280 000 | 1 100 | _ | 900 | | 420 | 620 | 90 | 5 | 5 | 470 | 570 | 1 390 000 | 2 380 000 | 1 100 | _ | 850 | | 440 | 650 | 94 | 6 | 6 | 493 | - | 1 470 000 | 2 530 000 | 1 000 | _ | 800 | | 460
480 | 680
700 | 100
100 | 6
6 | 6
6 | 516
536 | 624
644 | 1 580 000
1 620 000 | 2 740 000
2 860 000 | 950
900 | | 750
750 | | 480
500 | 700
720 | 100 | 6 | 6 | 536
556 | 664 | 1 660 000 | 2 970 000 | 900 | | 750
710 | | 500 | 120 | 100 | U | U | 550 | 004 | 1 000 000 | 2 3/0 000 | 300 | | /10 | Notes (1) (M) in the column of cage symbols are usually omitted from the bearing number. (2) When L-Shaped thrust collars (See section for L-Shaped Thrust Collars starting on page C157) are used, the bearings become the NH type. | | Bearing Numl | | Abutment and Fillet Dimensions (mm) | | | | | | | | Mass
(kg) | | | | |-----------------|------------------------------------|---------------------|-------------------------------------|-----------------------|-----------------|--|-----------------|-----------------|--------------------------------------|-----------------|---------------------------|----------------------|------------------------|--------------| | | Cage symbol (1)
Standard Option | (2)
NU NJ NUP | N NF | $d_{ m a}^{(3)}$ min. | $d_{ m b}$ min. | $d_{ m b}{}^{\scriptscriptstyle (4)}$ max. | $d_{ m c}$ min. | $d_{ m d}$ min. | $D_{\mathrm{a}}^{\mathrm{(3)}}$ max. | $D_{ m b}$ max. | $D_{\rm b} \\ {\rm min.}$ | $ m \emph{r}_a$ max. | $ m \emph{r}_{b}$ max. | approx. | | NU1044
N 244 | (M) —
M — | NU NJ — | N —
N NF | 233
236 | 233 | 247 | 254 | _ | 327 | 327
384 | 313
357 | 2.5 | 2.5 | 18.2
37 | | *NU244E | М — | NU NJ NUP | | 236 | 236 | 264 | 273 | 289 | 384 | _ | _ | 3 | 3 | 37.4 | | NU244E | м — | NU NJ NUP | | 236 | 236 | 264 | 273 | 289 | 384 | _ | _ | 3 | 3 | 37.4 | | NU2244
N 344 | M —
M — | NU — — | N NF | 240 | 236 | 264 | 273 | 289 | 384 | 440 | 403 | 3
4 | 3
4 | 61.8
72.8 | | NU344 | М — | NU NJ — | — — | 240 | 240 | 278 | 287 | 307 | 440 | 440 | 403 | 4 | 4 | 74.6 | | NU1048 | (M) — | NU NJ — | N — | 253 | 253 | 266 | 275 | _ | 347 | 347 | 333 | 2.5 | 2.5 | 19.5 | | N 248 | М — | | | 256 | _ | | . — | | _ | 424 | 392 | 3 | 3 | 49.6 | | NU248 | м — | NU NJ NUP | | 256 | 256 | 289 | 298 | 316 | 424 | _ | _ | 3 | 3 | 50.4 | | NU2248
N 348 | M —
M — | NU — — | N NF | 260 | 256 | 289 | 298 | 316 | 424 | —
480 | 438 | 3
4 | 3 | 84.9
92.3 | | NU348 | М — | NU NJ — | — — | 260 | 260 | 304 | 313 | 333 | 480 | 400 | 430 | 4 | 4 | 94.6 | | NU1052 | (M) — | NU NJ — | N NF | 276 | 276 | 292 | 300 | _ | 384 | 384 | 367 | 3 | 3 | 29.1 | | N 252 | м — | | N — | 280 | _ | _ | _ | _ | _ | 460 | 428 | 4 | 4 | 66.2 | | NU252 | м — | NU NJ — | | 280 | 280 | 314 | 323 | 343 | 460 | _ | _ | 4 | 4 | 67.1 | | NU2252
NU352 | M —
M — | NU — NUP
NU NJ — | | 280
286 | 280
286 | 314
330 | 323
339 | 343
359 | 460
514 | _ | _ | 4
5 | 4
5 | 111
118 | | NU1056 | (M) — | | N NF | | 296 | 312 | 320 | _ | 404 | 404 | 387 | 3 | 3 | 30.8 | | N 256 | `м´ — | | N NF | 300 | _ | _ | _ | _ | _ | 480 | 448 | 4 | 4 | 69.6 | | NU256 | м — | NU NJ — | | 300 | 300 | 334 | 344 | 364 | 480 | _ | _ | 4 | 4 | 70.7 | | NU1060 | (M) — | | N NF | | 316 | 336 | 344 | _ | 444 | 444 | 424 | 3 | 3 | 43.7 | | NU260
NU1064 | M — | NU NJ —
NU — — | N NF | 320 | 320 | 358 | 368 | 391 | 520 | 464 | 444 | 4 | 4 | 89.2
46.1 | | N 264 | (M) —
M — | | | 340 | 336 | 356 | 365 | _ | 464 | 464
560 | 519 | 3
4 | 3
4 | 110 | | NU264 | М — | NU NJ — | | 340 | 340 | 384 | 394 | 420 | 560 | _ | _ | 4 | 4 | 112 | | NU1068 | (M) — | NU NJ — | N NF | 360 | 360 | 381 | 390 | _ | 500 | 500 | 479 | 4 | 4 | 61.8 | | NU1072 | (M) — | NU | N NF | 380 | 380 | 400 | 410 | _ | 520 | 520 | 499 | 4 | 4 | 64.6 | | NU1076 | (M) — | NU | — — | _ | 400 | 420 | 430 | _ | 540 | _ | _ | 4 | 4 | 67.5 | | NU1080 | (M) — | ${\sf NU-NUP}$ | N — | 420 | 420 | 445 | 455 | _ | 580 | 580 | 554.5 | 4 | 4 | 88.2 | | NU1084 | (M) — | NU | N — | 440 | 440 | 465 | 475 | _ | 600 | 600 | 574.5 | 4 | 4 | 91.7 | | NU1088 | (M) — | NU | | _ | 466 | 488 | 498 | _ | 624 | _ | _ | 5 | 5 | 105 | | NU1092 | (M) — | | N — | 486 | 486 | 511 | 521 | _ | 654 | 654 | 628.5 | 5 | 5 | 123 | | NU1096 | (M) — | NU NJ — | N — | 506 | 506 | 531 | 541 | _ | 674 | 674 | 654 | 5 | | 127 | | NU10/500 | (M) — | NU — — | N — | 526 | 526 | 551 | 558 | _ | 694 | 694 | 674 | 5 | 5 | 131 | **Notes** (3) If axial loads are applied, increase d_a and reduce D_a from the values listed above. (4) d_b (max.) are values for adjusting rings for NU, NJ Types. **Remark** The bearings denoted by an asterisk (*) are NSKHPSTM Cylindrical roller bearings. # L-Shaped Thrust Collars Bore Diameter 20 – 85 mm Bore Diameter 90 - 320 mm L-Shaped Thrust Collar L-Shaped Thrust Collar | н | 4 | | |---|---|--| | Ł | Ы | | | Г | Ī | | | | Bounda | ry Dim
(mm) | ensions | | Bearing | Mass
(kg) | • | | Bounda | ı ry Dim
(mm) | ensions | | Bearing | Mass
(kg) | |----------|----------------------|----------------|--------------------|-------------------|------------------------------------|-------------------------|---|----|----------------------------|-------------------------|--------------------|----------------------|-----------------------------------|-------------------------| | <i>d</i> | d_1 | B_1 | B_2 | ${m r}_1$ min. | Numbers | approx. | _ | d | $d_{\scriptscriptstyle 1}$ | B_1 | B_2 | $ m \emph{r}_1$ min. | Numbers | approx. | | 20 | 30
29.8
30 | 3
3
3 | 6.75
5.5
7.5 | 0.6
0.6
0.6 | HJ 204
HJ 204 E
HJ 2204 | 0.012
0.011
0.012 | | 55 | 70.9
70.9
77.6 | 6
6
9 | 9.5
10
14 | 1.1
1.1
2 | HJ 211 E
HJ 2211 E
HJ 311 E | 0.087
0.088
0.195 | | | 29.8
31.7
31.4 | 3
4
4 | 6.5
7.5
6.5 | 0.6
0.6
0.6 | HJ 2204 E
HJ 304
HJ 304 E | 0.012
0.017
0.017 | | | 77.6
85.2 | 9
10 | 15.5
16.5 | 2
2.1 | HJ 2311 E
HJ 411 | 0.20
0.29 | | | 31.8
31.4 | 4 | 8.5
7.5 | 0.6 | HJ 2304
HJ 2304 E | 0.017
0.018 | | 60 | 77.7
77.7
84.5 | 6
6
9 | 10
10
14.5 | 1.5
1.5
2.1 | HJ 212 E
HJ 2212 E
HJ 312 E |
0.108
0.108
0.231 | | 25 | 34.8
34.8
38.2 | 3
3
4 | 6
6.5
7 | 0.6
0.6
1.1 | HJ 205 E
HJ 2205 E
HJ 305 E | 0.014
0.014
0.025 | | | 84.5
91.8 | 9
10 | 16
16.5 | 2.1
2.1 | HJ 2312 E
HJ 412 | 0.237
0.34 | | 30 | 38.2
43.6
41.3 | 4
6
4 | 8
10.5
7 | 1.1
1.5
0.6 | HJ 2305 E
HJ 405
HJ 206 E | 0.026
0.057
0.025 | | 65 | 84.5
84.5
90.6 | 6
6
10 | 10
10.5
15.5 | 1.5
1.5
2.1 | HJ 213 E
HJ 2213 E
HJ 313 E | 0.129
0.131
0.288 | | 30 | 41.4
45.1 | 4
5 | 7.5
8.5 | 0.6
1.1 | HJ 2206 E
HJ 306 E | 0.025
0.042 | | | 90.6
98.5 | 10
11 | 18
18 | 2.1 | HJ 2313 E
HJ 413 | 0.298
0.42 | | 35 | 45.1
50.5
48.2 | 5
7
4 | 9.5
11.5
7 | 1.1
1.5
0.6 | HJ 2306 E
HJ 406
HJ 207 E | 0.043
0.080
0.033 | | 70 | 89.5
89.5
97.5 | 7
7
10 | 11
11.5
15.5 | 1.5
1.5
2.1 | HJ 214 E
HJ 2214 E
HJ 314 E | 0.157
0.158
0.33 | | | 48.2
51.1
51.1 | 4
6
6 | 8.5
9.5
11 | 0.6
1.1
1.1 | HJ 2207 E
HJ 307 E
HJ 2307 E | 0.035
0.060
0.062 | | | 97.5
110.5 | 10
12 | 18.5
20 | 2.1 | HJ 2314 E
HJ 414 | 0.345
0.605 | | 40 | 59
54.1 | 8
5 | 13
8.5 | 1.5
1.1 | HJ 407
HJ 208 E | 0.12 | | 75 | 94.5
94.5
104.2 | 7
7
11 | 11
11.5
16.5 | 1.5
1.5
2.1 | HJ 215 E
HJ 2215 E
HJ 315 E | 0.166
0.167
0.41 | | | 54.1
57.6
57.7 | 5
7
7 | 9
11
12.5 | 1.1
1.5
1.5 | HJ 2208 E
HJ 308 E
HJ 2308 E | 0.050
0.088
0.091 | | | 104.2
116 | 11
13 | 19.5
21.5 | 2.1 | HJ 2315 E
HJ 415 | 0.43
0.71 | | 45 | 64.8
59.1
59.1 | 8
5
5 | 13
8.5
9 | 2
1.1
1.1 | HJ 408
HJ 209 E
HJ 2209 E | 0.14
0.055
0.055 | | 80 | 101.6
101.6
110.6 | 8
8
11 | 12.5
12.5
17 | 2
2
2.1 | HJ 216 E
HJ 2216 E
HJ 316 E | 0.222
0.222
0.46 | | | 64.5
64.5
71.7 | 7
7
8 | 11.5
13
13.5 | 1.5
1.5
2 | HJ 2309 E
HJ 409 | 0.11
0.113
0.175 | | | 111
122 | 11
13 | 20
22 | 2.1 | HJ 2316 E
HJ 416 | 0.48
0.78 | | 50 | 64.1
64.1
71.4 | 5
5
8 | 9
9
13 | 1.1
1.1
2 | HJ 210 E
HJ 2210 E
HJ 310 E | 0.061
0.061
0.151 | | 85 | 107.6
107.6
117.9 | 8
8
12 | 12.5
13
18.5 | 2
2
3 | HJ 217 E
HJ 2217 E
HJ 317 E | 0.25
0.252
0.575 | | | 71.4
71.4
78.8 | 8
9 | 14.5
14.5 | 2 2.1 | HJ 2310 E
HJ 410 | 0.155
0.23 | - | | 117.9
126 | 12
14 | 22
24 | 3
4 | HJ 2317 E
HJ 417 | 0.595
0.88 | | | Bounda | ary Dim
(mm) | ensions | | Bearing | Mass
(kg) | |-----|--------|-----------------|---------|---------------------------------|---------------|--------------| | d | d_1 | B_1 | B_2 | ${\pmb \gamma}_1 \\ {\rm min.}$ | Numbers | approx. | | 90 | 114.3 | 9 | 14 | 2 | HJ 218 E | 0.32 | | | 114.3 | 9 | 15 | 2 | HJ 2218 E | 0.325 | | | 124.2 | 12 | 18.5 | 3 | HJ 318 E | 0.63 | | | 124.2 | 12 | 22 | 3 | HJ 2318 E | 0.66 | | | 137 | 14 | 24 | 4 | HJ 418 | 1.05 | | 95 | 120.6 | 9 | 14 | 2.1 | HJ 219 E | 0.355 | | | 120.6 | 9 | 15.5 | 2.1 | HJ 2219 E | 0.365 | | | 132.2 | 13 | 20.5 | 3 | HJ 319 E | 0.785 | | | 132.2 | 13 | 24.5 | 3 | HJ 2319 E | 0.815 | | | 147 | 15 | 25.5 | 4 | HJ 419 | 1.3 | | 100 | 127.5 | 10 | 15 | 2.1 | HJ 220 E | 0.44 | | | 127.5 | 10 | 16 | 2.1 | HJ 2220 E | 0.45 | | | 139.6 | 13 | 20.5 | 3 | HJ 320 E | 0.89 | | | 139.6 | 13 | 23.5 | 3 | HJ 2320 E | 0.92 | | | 153.5 | 16 | 27 | 4 | HJ 420 | 1.5 | | 10 | 5 145 | 13 | 20.5 | 3 | HJ 321 E | 0.97 | | | 159.5 | 16 | 27 | 4 | HJ 421 | 1.65 | | 110 | 141.7 | 11 | 17 | 2.1 | HJ 222 E | 0.62 | | | 141.7 | 11 | 19.5 | 2.1 | HJ 2222 E | 0.645 | | | 155.8 | 14 | 22 | 3 | HJ 322 E | 1.21 | | | 155.8 | 14 | 26.5 | 3 | HJ 2322 E | 1.27 | | | 171 | 17 | 29.5 | 4 | HJ 422 | 2.1 | | 120 | 153.4 | 11 | 17 | 2.1 | HJ 224 E | 0.71 | | | 153.4 | 11 | 20 | 2.1 | HJ 2224 E | 0.745 | | | 168.6 | 14 | 22.5 | 3 | HJ 324 E | 1.41 | | | 168.6 | 14 | 26 | 3 | HJ 2324 E | 1.46 | | | 188 | 17 | 30.5 | 5 | HJ 424 | 2.6 | | 130 | 164.2 | 11 | 17 | 3 | HJ 226 E | 0.79 | | | 164.2 | 11 | 21 | 3 | HJ 2226 E | 0.84 | | | 182.3 | 14 | 23 | 4 | HJ 326 E | 1.65 | | | 182.3 | 14 | 28 | 4 | HJ 2326 E | 1.73 | | | 205 | 18 | 32 | 5 | HJ 426 | 3.3 | | 140 | 180 | 11 | 18 | 3 | HJ 228 E | 0.99 | | | 180 | 11 | 23 | 3 | HJ 2228 E | 1.07 | | | 196 | 15 | 25 | 4 | HJ 328 E | 2.04 | | | 196 | 15 | 31 | 4 | HJ 2328 E | 2.14 | | | 219 | 18 | 33 | 5 | HJ 428 | 3.75 | | | Bounda | ary Dime | ensions | | Bearing | Mass
(kg) | |-----|----------------------------|----------|---------|--|------------------|--------------| | d | $d_{\scriptscriptstyle 1}$ | B_1 | B_2 | $\stackrel{\pmb{\gamma}_1}{\text{min.}}$ | Numbers | approx. | | 150 | 193.7 | 12 | 19.5 | 3 | HJ 230 E | 1.26 | | | 193.7 | 12 | 24.5 | 3 | HJ 2230 E | 1.35 | | | 210 | 15 | 25 | 4 | HJ 330 E | 2.35 | | | 210 | 15 | 31.5 | 4 | HJ 2330 E | 2.48 | | | 234 | 20 | 36.5 | 5 | HJ 430 | 4.7 | | 160 | 207.3 | 12 | 20 | 3 | HJ 232 E | 1.48 | | | 206.1 | 12 | 24.5 | 3 | HJ 2232 E | 1.55 | | | 222 | 15 | 25 | 4 | HJ 332 E | 2.59 | | | 222.1 | 15 | 32 | 4 | HJ 2332 E | 2.76 | | 170 | 220.8 | 12 | 20 | 4 | HJ 234 E | 1.7 | | | 219.5 | 12 | 24 | 4 | HJ 2234 E | 1.79 | | | 238 | 16 | 33.5 | 4 | HJ 2334 E | 3.25 | | 180 | 230.8 | 12 | 20 | 4 | HJ 236 E | 1.79 | | | 229.5 | 12 | 24 | 4 | HJ 2236 E | 1.88 | | | 252 | 17 | 35 | 4 | HJ 2336 E | 3.85 | | 190 | 244.5 | 13 | 21.5 | 4 | HJ 238 E | 2.19 | | | 243.2 | 13 | 26.5 | 4 | HJ 2238 E | 2.31 | | | 260.6 | 18 | 36.5 | 5 | HJ 2338 E | 4.45 | | 200 | 258.2 | 14 | 23 | 4 | HJ 240 E | 2.65 | | | 258 | 14 | 34 | 4 | HJ 2240 | 2.6 | | | 256.9 | 14 | 28 | 4 | HJ 2240 E | 2.78 | | | 280 | 18 | 30 | 5 | HJ 340 E | 5.0 | | 220 | 286 | 15 | 27.5 | 4 | HJ 244 | 3.55 | | | 286 | 15 | 36.5 | 4 | HJ 2244 | 3.55 | | | 307 | 20 | 36 | 5 | HJ 344 | 7.05 | | 240 | 313 | 16 | 29.5 | 4 | HJ 248 | 4.65 | | | 313 | 16 | 38.5 | 4 | HJ 2248 | 4.65 | | | 334 | 22 | 39.5 | 5 | HJ 348 | 8.2 | | 260 | 340 | 18 | 33 | 5 | HJ 252 | 6.2 | | | 340 | 18 | 40.5 | 5 | HJ 2252 | 6.2 | | | 362 | 24 | 43 | 6 | HJ 352 | 11.4 | | 280 | 360 | 18 | 33 | 5 | HJ 256 | 7.4 | | 300 | 387 | 20 | 34.5 | 5 | HJ 260 | 9.15 | | 320 | 415 | 21 | 37 | 5 | HJ 264 | 11.3 | C 157 C 156 # **DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS** # Bore Diameter 25 - 140 mm | Bound | | | | ndary Dimensions
(mm) | | | Basic Load | | Limiting Speeds
(min ⁻¹) | | | |-------|-----|------------|----------|--------------------------|------------|------------|--------------------|--------------------|---|----------------|--| | | d | D | B | γ
min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | | | 25 | 47 | 16 | 0.6 | _ | 41.3 | 25 800 | 30 000 | 14 000 | 17 000 | | | | 30 | 55 | 19 | 1 | _ | 48.5 | 31 000 | 37 000 | 12 000 | 14 000 | | | | 35 | 62 | 20 | 1 | _ | 55 | 39 500 | 50 000 | 10 000 | 12 000 | | | | 40 | 68 | 21 | 1 | _ | 61 | 43 500 | 55 500 | 9 000 | 11 000 | | | | 45 | 75 | 23 | 1 | _ | 67.5 | 52 000 | 68 500 | 8 500 | 10 000 | | | | 50 | 80 | 23 | 1 | _ | 72.5 | 53 000 | 72 500 | 7 500 | 9 000 | | | | 55 | 90 | 26 | 1.1 | _ | 81 | 69 500 | 96 500 | 6 700 | 8 000 | | | | 60 | 95 | 26 | 1.1 | _ | 86.1 | 73 500 | 106 000 | 6 300 | 7 500 | | | | 65 | 100 | 26 | 1.1 | _ | 91 | 77 000 | 116 000 | 6 000 | 7 100 | | | | 70 | 110 | 30 | 1.1 | _ | 100 | 97 500 | 148 000 | 5 600 | 6 700 | | | | 75 | 115 | 30 | 1.1 | _ | 105 | 96 500 | 149 000 | 5 300 | 6 300 | | | | 80 | 125 | 34 | 1.1 | _ | 113 | 119 000 | 186 000 | 4 800 | 6 000 | | | | 85 | 130 | 34 | 1.1 | _ | 118 | 125 000 | 201 000 | 4 500 | 5 600 | | | | 90 | 140 | 37 | 1.5 | _ | 127 | 143 000 | 228 000 | 4 300 | 5 000 | | | | 95 | 145 | 37 | 1.5 | _ | 132 | 150 000 | 246 000 | 4 000 | 5 000 | | | | 100 | 140
150 | 40
37 | 1.1
1.5 | 112
— |
137 | 155 000
157 000 | 295 000
265 000 | 4 000
4 000 | 5 000
4 800 | | | | 105 | 145
160 | 40
41 | 1.1
2 | 117
— |
146 | 161 000
198 000 | 315 000
320 000 | 3 800
3 800 | 4 800
4 500 | | | | 110 | 150
170 | 40
45 | 1.1
2 | 122
— | —
155 | 167 000
229 000 | 335 000
375 000 | 3 600
3 400 | 4 500
4 300 | | | | 120 | 165
180 | 45
46 | 1.1
2 | 133.5
— |
165 | 183 000
239 000 | 360 000
405 000 | 3 200
3 200 | 4 000
3 800 | | | | 130 | 180
200 | 50
52 | 1.5
2 | 144 |
182 | 274 000
284 000 | 545 000
475 000 | 3 000
3 000 | 3 800
3 600 | | | | 140 | 190
210 | 50
53 | 1.5
2 | 154
— |
192 | 283 000
298 000 | 585 000
515 000 | 2 800
2 800 | 3 600
3 400 | | Remark Production of double-row cylindrical roller bearings is generally in the high precision classes (Class 5 or better). | Bearing | | Abutment and Fillet Dimensions (mm) | | | | | | Mass
(kg) | | |---------------------|---------------------------|-------------------------------------|-------------|------------------|-----------------|--------------|-----------|------------------------|--------------| | Cylindrical Bore | Tapered Bore(1) | d_{z} min. | (2)
max. | $d_{ m 1a}$ min. | $d_{ m c}$ min. | max. | a
min. | ${\pmb \gamma}_a$ max. | approx. | | NN 3005 | NN 3005 KR | 29 | _ | 29 | _ | 43 | 42 | 0.6 | 0.127 | | NN 3006 | NN 3006 KR | 35 | _ | 36 | _ | 50 | 50 | 1 | 0.198 | | NN 3007 | NN 3007 KR | 40 | _ | 41 | _ | 57 | 56 | 1 | 0.258 | | NN 3008 | NN 3008 KR | 45 | _ | 46 | _ | 63 | 62 | 1 | 0.309 | | NN 3009 | NN 3009 KR | 50 | _ | 51 | _ | 70 | 69 | 1 | 0.407 | | NN 3010 | NN 3010 KR | 55 | _ | 56 | _ | 75 | 74 | 1 | 0.436 | | NN 3011 | NN 3011 KR | 61.5 | _ | 62 | _ | 83.5 | 83
 1 | 0.647 | | NN 3012 | NN 3012 KR | 66.5 | _ | 67 | _ | 88.5 | 88 | 1 | 0.693 | | NN 3013 | NN 3013 KR | 71.5 | _ | 72 | _ | 93.5 | 93 | 1 | 0.741 | | NN 3014 | NN 3014 KR | 76.5 | _ | 77 | _ | 103.5 | 102 | 1 | 1.06 | | NN 3015 | NN 3015 KR | 81.5 | _ | 82 | _ | 108.5 | 107 | 1 | 1.11 | | NN 3016 | NN 3016 KR | 86.5 | _ | 87 | _ | 118.5 | 115 | 1 | 1.54 | | NN 3017 | NN 3017 KR | 91.5 | _ | 92 | _ | 123.5 | 120 | 1 | 1.63 | | NN 3018 | NN 3018 KR | 98 | _ | 99 | _ | 132 | 129 | 1.5 | 2.09 | | NN 3019 | NN 3019 KR | 103 | _ | 104 | _ | 137 | 134 | 1.5 | 2.19 | | NNU 4920
NN 3020 | NNU 4920 KR
NN 3020 KR | | 111
— | 108
109 | 115
— | 133.5
142 |
139 | 1
1.5 | 1.9
2.28 | | NNU 4921
NN 3021 | NNU 4921 KR
NN 3021 KR | 111.5
114 | 116
— | 113
115 | 120
— | 138.5
151 |
148 | 1 2 | 1.99
2.88 | | NNU 4922
NN 3022 | NNU 4922 KR
NN 3022 KR | 116.5
119 | 121
— | 118
121 | 125
— | 143.5
161 |
157 | 1 2 | 2.07
3.71 | | NNU 4924
NN 3024 | NNU 4924 KR
NN 3024 KR | 126.5
129 | 133
— | 128
131 | 137
— | 158.5
171 |
167 | 1 2 | 2.85
4.04 | | NNU 4926
NN 3026 | NNU 4926 KR
NN 3026 KR | 138
139 | 143
— | 140
141 | 148
— | 172
191 |
185 | 1.5
2 | 3.85
5.88 | | NNU 4928
NN 3028 | NNU 4928 KR
NN 3028 KR | 148
149 | 153
— | 150
151 | 158
— | 182
201 | —
195 | 1.5
2 | 4.08
6.34 | **Note** (2) d_a (max.) are values for adjusting rings for the NNU Type. # **DOUBLE-ROW CYLINDRICAL ROLLER BEARINGS** #### Bore Diameter 150 – 360 mm | | | | ry Dimensio
(mm) | ons | | Basic Loa | Limiting Speeds
(min ⁻¹) | | | |-----|------------|------------|---------------------|------------|------------|------------------------|---|----------------|----------------| | d | D | В | γ
min. | $F_{ m W}$ | $E_{ m W}$ | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | | 150 | 210
225 | 60
56 | 2
2.1 | 167
— | 206 | 350 000
335 000 | 715 000
585 000 | 2 600
2 600 | 3 200
3 000 | | 160 | 220
240 | 60
60 | 2
2.1 | 177
— |
219 | 365 000
375 000 | 760 000
660 000 | 2 400
2 400 | 3 000
2 800 | | 170 | 230
260 | 60
67 | 2
2.1 | 187
— |
236 | 375 000
450 000 | 805 000
805 000 | 2 400
2 200 | 2 800
2 600 | | 180 | 250
280 | 69
74 | 2
2.1 | 200 |
255 | 480 000
565 000 | 1 020 000
995 000 | 2 200
2 000 | 2 600
2 400 | | 190 | 260
290 | 69
75 | 2
2.1 | 211.5
— |
265 | 485 000
595 000 | 1 060 000
1 080 000 | 2 000
2 000 | 2 600
2 400 | | 200 | 280
310 | 80
82 | 2.1
2.1 | 223
— |
282 | 570 000
655 000 | 1 220 000
1 170 000 | 1 900
1 800 | 2 400
2 200 | | 220 | 300
340 | 80
90 | 2.1
3 | 243
— | 310 | 600 000
815 000 | 1 330 000
1 480 000 | 1 700
1 700 | 2 200
2 000 | | 240 | 320
360 | 80
92 | 2.1
3 | 263
— | 330 | 625 000
855 000 | 1 450 000
1 600 000 | 1 600
1 500 | 2 000
1 800 | | 260 | 360
400 | 100
104 | 2.1
4 | 289
— |
364 | 935 000
1 030 000 | 2 100 000
1 920 000 | 1 400
1 400 | 1 800
1 700 | | 280 | 380
420 | 100
106 | 2.1
4 | 309 |
384 | 960 000
1 080 000 | 2 230 000
2 080 000 | 1 300
1 300 | 1 700
1 500 | | 300 | 420
460 | 118
118 | 3
4 | 336 | —
418 | 1 230 000
1 290 000 | 2 870 000
2 460 000 | 1 200
1 200 | 1 500
1 400 | | 320 | 440
480 | 118
121 | 3
4 | 356
— |
438 | 1 260 000
1 350 000 | 3 050 000
2 670 000 | 1 100
1 100 | 1 400
1 300 | | 340 | 520 | 133 | 5 | _ | 473 | 1 670 000 | 3 300 000 | 1 000 | 1 200 | | 360 | 540 | 134 | 5 | _ | 493 | 1 700 000 | 3 450 000 | 950 | 1 200 | Remark Production of double-row cylindrical roller bearings is generally in the high precision classes (Class 5 or better). | Bearing | g Numbers | Abutment and Fillet Dimensions (mm) | | | | | | | Mass
(kg) | |---------------------|---------------------------|-------------------------------------|-----------------------|------------------|-----------------|------------|-----------------|------------------------------|--------------| | Cylindrical Bore | Tapered Bore(1) | min. | $d_{ m a}^{(2)}$ max. | $d_{ m 1a}$ min. | $d_{ m c}$ min. | max. | $D_{ m a}$ min. | ${\pmb \gamma}_{\rm a}$ max. | approx. | | NNU 4930
NN 3030 | NNU 4930 KR
NN 3030 KR | 159
161 | 166
— | 162
162 | 171
— | 201
214 | 209 | 2
2 | 6.39
7.77 | | NNU 4932
NN 3032 | NNU 4932 KR
NN 3032 KR | 169
171 | 176
— | 172
172 | 182
— | 211
229 | 222 | 2 2 | 6.76
9.41 | | NNU 4934
NN 3034 | NNU 4934 KR
NN 3034 KR | 179
181 | 186
— | 182
183 | 192
— | 221
249 | 239 | 2 2 | 7.12
12.8 | | NNU 4936
NN 3036 | NNU 4936 KR
NN 3036 KR | 189
191 | 199
— | 193
193 | 205
— | 241
269 |
258 | 2 2 | 10.4
16.8 | | NNU 4938
NN 3038 | NNU 4938 KR
NN 3038 KR | 199
201 | 211
— | 203
203 | 217
— | 251
279 |
268 | 2 2 | 10.9
17.8 | | NNU 4940
NN 3040 | NNU 4940 KR
NN 3040 KR | 211
211 | 222
— | 214
214 | 228
— | 269
299 |
285 | 2 2 | 15.3
22.7 | | NNU 4944
NN 3044 | NNU 4944 KR
NN 3044 KR | 231
233 | 242
— | 234
236 | 248
— | 289
327 | 313 | 2
2.5 | 16.6
29.6 | | NNU 4948
NN 3048 | NNU 4948 KR
NN 3048 KR | 251
253 | 262
— | 254
256 | 269
— | 309
347 | 334 | 2
2.5 | 18
32.7 | | NNU 4952
NN 3052 | NNU 4952 KR
NN 3052 KR | 271
276 | 288
— | 275
278 | 295
— | 349
384 | 368 | 2 | 31.1
47.7 | | NNU 4956
NN 3056 | NNU 4956 KR
NN 3056 KR | 291
296 | 308 | 295
298 | 315
— | 369
404 | 388 | 2 | 33
51.1 | | NNU 4960
NN 3060 | NNU 4960 KR
NN 3060 KR | 313
316 | 335
— | 318
319 | 343
— | 407
444 |
422 | 2.5
3 | 51.9
70.7 | | NNU 4964
NN 3064 | NNU 4964 KR
NN 3064 KR | 333
336 | 355
— | 338
340 | 363
— | 427
464 | 442 | 2.5
3 | 54.9
76.6 | | NN 3068 | NN 3068 KR | 360 | _ | 365 | _ | 500 | 477 | 4 | 102 | | NN 3072 | NN 3072 KR | 380 | _ | 385 | _ | 520 | 497 | 4 | 106 | # FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS SINGLE-ROW(NCF), DOUBLE-ROW(NNCF) # Design, Types, and Features Cageless, full-complement cylindrical roller bearings have the maximum possible number of rollers and can sustain much heavier loads than cylindrical roller bearings of the same size with cages. On the other hand, high-speed capability is inferior to the bearings with cages. The open-type single- and double-row bearings are mostly used in general industrial applications at low speed and under heavy load, and the shielded-type double-row bearings are often used in crane sheaves. #### Table 1 Features of Various Types | Figure | Туре | Design and Features | |--------|------|---| | | NCF | The outer and inner rings and rollers are non-separable since a retaining snap ring is installed at the side opposite the outer ring rib. They can sustain axial loads in only one direction. | | | NNCF | NNCF is a double-row version of NCF. They can sustain heavy radial loads. | **Tolerances and Running Accuracy**......Table 7.2 (Pages A128 to A131) Single-Row Double-Row #### **Recommended Fits** Single-Row Double-Row Inner Ring Rotation Table 8.3 (Page A164) Table 8.5 (Page A165) Outer Ring Rotation Table 2 below Table 2 Fits and Internal Clearances for Full-Complement Cylindrical Roller Bearings | 0 | perating Conditions | Fitting between
Inner Ring and Shaft | Fitting between Outer
Ring and Housing Bore | Recommended
Internal Clearance | |------------------------|---|---|--|-----------------------------------| | | Thin walled housings and
heavy loads | g6 or h6 | P7 | C 3 | | Outer Ring
Rotation | Normal to heavy loads | g6 or h6 | N7 | C 3 | | | Light or fluctuating loads | g6 or h6 | M7 | CN | #### **Permissible Misalignment** The permissible misalignment of full-complement single-row cylindrical roller bearings is generally 0.0006 radian (2') under normal load. For double-row bearings, nearly on misalignment is allowed. C 162 # FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS FOR SHEAVES #### **DESIGN, TYPES, AND FEATURES** Cylindrical Roller Bearings for sheaves are specially designed thin-walled, broad-width, full-complement type double-row cylindrical roller bearings, but they are widely used also for general industrial machines running at low speed and under heavy loads. There are several series as shown in Table 1. Table 1 Series of Cylindrical Roller Bearings for Sheaves | Bearin | g Type | Fixed-End | Free-End | |---------------|-------------------------------------|------------------|----------------------| | Open Type | Open Type Without Snap Ring | | RSF-48E4
RSF-49E4 | | Shielded Type | Without Snap Ring
With Snap Ring | RS-50
RS-50NR | _ | Since all are non-separable type bearings, the inner and outer rings cannot be separated, but the RSF type can be used as a free-end bearing. In this case, the permissible axial displacement is listed in the bearing tables. Since cylindrical roller bearings for sheaves are a double-row, full-complement type, they can withstand heavy shock loads and moments and have sufficient axial load capacity for use in sheaves. Since the shielded type is a kind of bearing unit, the number of parts surrounding the bearing can be reduced, so it allows for a simple compact design. The surface of these bearings is treated for rust prevention. **Table 2 Features of Various Types** | Figure | Туре |
Design and Features | |--------|----------------------|--| | | RS-48E4
RS-49E4 | Double-row outer ring with center rib, two single-row inner rings with ribs. The outer and inner rings and rollers are non-separable since there are two retaining snap rings at the sides of the outer ring. They can suntain an axial load in either direction so they can be used as fixed-end bearings. An oil groove and holes are provided at the center of the outer ring. | | | RSF-48E4
RSF-49E4 | Double-row outer ring without ribs, double-row inner ring with three ribs. The outer and inner rings and rollers are non-separable since there is a retaining snap ring at the middle of the outer ring. They can be used as free-end bearings. The permissible axial movement is listed in the dimensional tables. An oil groove and holes are provided at the center of the outer ring. | | | RS-50
RS-50NR | Both sides shielded, double-row outer ring with center rib, two inner rings with ribs. They can sustain an axial load in either direction. They are prelubricated, but it is possible to replenish the grease through an oil groove and holes in parts mating with the inner rings. If there are snap rings at the outside of the outer ring, this type becomes RS-50NR. They are surface-treated for rust prevention. | #### RECOMMENDED FITS AND INTERNAL CLEARANGES When used with outer ring rotation for sheaves or wheels, the fit and radial internal clearance should conform to Table 3. Table 3 Fits and Internal Clearances for Cylindrical Roller Bearings for Sheaves | 0 | perating Conditions | Fitting between
Inner Ring and Shaft | Fitting between Outer
Ring and Housing Bore | Recommended
Internal Clearance | |------------------------|--------------------------------------|---|--|-----------------------------------| | | Thin walled housings and heavy loads | g6 or h6 | P7 | C3 | | Outer Ring
Rotation | Normal to heavy loads | g6 or h6 | N7 | C3 | | | Light or fluctuating loads | g6 or h6 | M7 | CN | The fits listed in Tables 8.3 (Page A164) and 8.5 (Page A165) apply when they are used with inner ring rotation in general applications, and the internal clearance should conform to Table 4. Table 4 | min.
15
20
20 | Clear
N
max.
50
55
65 | min.
35
40
45 | max.
70
75 | |------------------------|--------------------------------------|------------------------|------------------| | min.
15
20
20 | max.
50
55 | min.
35
40 | max.
70
75 | | 15
20
20 | 50
55 | 35
40 | 70
75 | | 20 | 55 | 40 | 75 | | ٥٦ | | | 90 | | 25 | 75 | 55 | 105 | | 30 | 80 | 65 | 115 | | 35 | 90 | 80 | 135 | | 40 | 105 | 90 | 155 | | 50 | 115 | 100 | 165 | | 60 | 125 | 110 | 175 | | 65 | 135 | 125 | 195 | | 75 | 150 | 140 | 215 | | 90 | 165 | 155 | 230 | | 100 | 180 | 175 | 255 | | 110 | 195 | 195 | 280 | | 125 | 215 | 215 | 305 | | 140 | 235 | 245 | 340 | | 155 | 275 | 270 | 390 | | 180 | 300 | 300 | 420 | | | 30 | 30 80 | 30 80 65 | | | 35 | 35 90 | 35 90 80 | | | 40 | 40 105 | 40 105 90 | | | 50 | 50 115 | 50 115 100 | | | 60 | 60 125 | 60 125 110 | | | 65 | 65 135 | 65 135 125 | | | 75 | 75 150 | 75 150 140 | | | 90 | 90 165 | 90 165 155 | | | 100 | 100 180 | 100 180 175 | | | 110 | 110 195 | 110 195 195 | | | 125 | 125 215 | 125 215 215 | | | 140 | 140 235 | 140 235 245 | | | 155 | 155 275 | 155 275 270 | C 164 # **■**FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS NCF Type, Single-Row Bore Diameter 100 – 260 mm | | Вс | oundary Din
(mm) | | | Basic Loa | | Daning Numbers | |----------|-----|---------------------|-----------|------------|-------------|----------|-----------------| | <i>d</i> | D | В | γ
min. | $E_{ m W}$ | $C_{\rm r}$ | C_{0r} | Bearing Numbers | | 100 | 140 | 24 | 1.1 | 130.5 | 132 | 209 | NCF2920V | | | 150 | 37 | 1.5 | 139.7 | 209 | 310 | NCF3020V | | 110 | 150 | 24 | 1.1 | 141 | 138 | 229 | NCF2922V | | | 170 | 45 | 2 | 156.3 | 278 | 405 | NCF3022V | | 120 | 165 | 27 | 1.1 | 154 | 177 | 305 | NCF2924V | | | 180 | 46 | 2 | 167.58 | 293 | 440 | NCF3024V | | 130 | 180 | 30 | 1.5 | 166.5 | 210 | 370 | NCF2926V | | | 200 | 52 | 2 | 183.81 | 415 | 615 | NCF3026V | | 140 | 190 | 30 | 1.5 | 179.4 | 227 | 395 | NCF2928V | | | 210 | 53 | 2 | 197.82 | 435 | 680 | NCF3028V | | 150 | 210 | 36 | 2 | 195 | 289 | 505 | NCF2930V | | | 225 | 56 | 2.1 | 206.82 | 460 | 710 | NCF3030V | | 160 | 220 | 36 | 2 | 207 | 310 | 535 | NCF2932V | | | 240 | 60 | 2.1 | 224.8 | 520 | 810 | NCF3032V | | 170 | 215 | 22 | 1.5 | 203.5 | 149 | 272 | NCF1834V | | | 230 | 36 | 2 | 218 | 320 | 570 | NCF2934V | | | 260 | 67 | 2.1 | 242.87 | 675 | 1 070 | NCF3034V | | 180 | 225 | 22 | 1.5 | 215 | 154 | 290 | NCF1836V | | | 250 | 42 | 2 | 231.5 | 390 | 695 | NCF2936V | | | 280 | 74 | 2.1 | 260.3 | 785 | 1 260 | NCF3036V | | 190 | 240 | 24 | 1.5 | 228.7 | 178 | 335 | NCF1838V | | | 260 | 42 | 2 | 243.6 | 435 | 785 | NCF2938V | | | 290 | 75 | 2.1 | 269.9 | 805 | 1 320 | NCF3038V | | 200 | 250 | 24 | 1.5 | 237 | 182 | 350 | NCF1840V | | | 280 | 48 | 2.1 | 261 | 530 | 955 | NCF2940V | | | 310 | 82 | 2.1 | 287.8 | 910 | 1 510 | NCF3040V | | 220 | 270 | 24 | 2 | 257.7 | 191 | 385 | NCF1844V | | | 300 | 48 | 2.1 | 282 | 555 | 1 050 | NCF2944V | | | 340 | 90 | 3 | 312.3 | 1 100 | 1 820 | NCF3044V | | 240 | 300 | 28 | 2 | 283 | 236 | 470 | NCF1848V | | | 320 | 48 | 2.1 | 303 | 580 | 1 140 | NCF2948V | | | 360 | 92 | 3 | 335.25 | 1 160 | 1 990 | NCF3048V | | 260 | 320 | 28 | 2 | 307 | 247 | 510 | NCF1852V | | | 360 | 60 | 2.1 | 333.2 | 750 | 1 460 | NCF2952V | | | 400 | 104 | 4 | 376.1 | 1 570 | 2 600 | NCF3052V | | | ment and I
ensions (n | Mass
(kg) | | |-------------------|--------------------------|-------------------------|--------------------| | d_{a} | D_{a} | $m{r}_{ m a}$ max. | approx. | | 109 | 131 | 1 | 1.0 | | 111 | 140 | 1.5 | 2.1 | | 119 | 142 | 1 | 1.1 | | 122 | 157 | 2 | 3.3 | | 130 | 155 | 1 2 | 1.7 | | 132 | 168 | | 3.6 | | 141 | 168 | 1.5 | 2.2 | | 142 | 187 | 2 | 5.6 | | 151 | 180 | 1.5 | 2.3 | | 152 | 198 | 2 | 5.9 | | 163 | 196 | 2 2 | 3.7 | | 165 | 209 | | 7.1 | | 173 | 208 | 2 2 | 3.8 | | 175 | 225 | | 8.6 | | 182
183 | 204
219 | 1.5
2
2 | 1.8
4.1 | | 185 | 244 | 1.5 | 11.9 | | 192 | 216 | | 1.8 | | 193 | 236 | 2 | 6.0 | | 195 | 263 | 2 | 15.8 | | 202 | 229 | 1.5 | 2.4 | | 203 | 245 | 2 | 6.5 | | 206 | 273 | 2 | 16.7 | | 213 | 238 | 1.5 | 2.5 | | 216 | 263 | | 8.9 | | 216
234
236 | 293
258
283 | 2
2
2
2
2.5 | 21.4
2.7
9.6 | | 238
238
254 | 320
285 | 2.5 | 28.2 | | 254
257
259 | 304
340 | 2
2
2.5 | 10.4
31.2 | | 275 | 308 | 2 | 4.5 | | 277 | 342 | 2 | 18.1 | | 282 | 377 | 3 | 45.3 | Remark Full-complement cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. C 166 C 167 # ■ FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS NCF Type, Single-Row Bore Diameter 300 – 800 mm | | Во | oundary Din
(mm | | | | ad Ratings | | |------------|-------------------|--------------------|------------------|---------------------|-----------------------|--------------------------|--| | d | D | B | γ
min. | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | | 300 | 380 | 38 | 2.5 | 359 | 445 | 870 | NCF1860V | | | 420 | 72 | 3 | 389.6 | 1 120 | 2 200 | NCF2960V | | | 460 | 118 | 4 | 431.7 | 1 980 | 3 500 | NCF3060V | | 320 | 400 | 38 | 2.1 | 380 | 460 | 925 | NCF1864V | | | 440 | 72 | 3 | 410 | 1 150 | 2 340 | NCF2964V | | | 480 | 121 | 4 | 449.6 | 2 170 | 3 900 | NCF3064V | | 340 | 420 | 38 | 2.1 | 401 | 475 | 985 | NCF1868V | | | 460 | 72 | 3 | 430.3 | 1 190 | 2 470 | NCF2968V | | | 520 | 133 | 5 | 485.8 | 2 480 | 4 350 | NCF3068V | | 360 | 440 | 38 | 2.5 | 422 | 490 | 1 040 | NCF1872V | | | 480 | 72 | 3 | 450.7 | 1 220 | 2 610 | NCF2972V | | | 540 | 134 | 5 | 503.6 | 2 550 | 4 600 | NCF3072V | | 380 | 480 | 46 | 2.5 | 452.8 | 575 | 1 230 | NCF1876V | | | 520 | 82 | 4 | 486.7 | 1 600 | 3 350 | NCF2976V | | | 560 | 135 | 5 | 521.4 | 2 610 | 4 800 | NCF3076V | | 400 | 500 | 46 | 2.5 | 475.7 | 590 | 1 300 | NCF1880V | | | 540 | 82 | 4 | 511 | 1 650 | 3 550 | NCF2980V | | | 600 | 148 | 5 | 558.7 | 3 050 | 5 750 | NCF3080AV | | 420 | 520 | 46 | 2.1 | 491 | 600 | 1 340 | NCF1884V | | | 560 | 82 | 4 | 523.2 | 1 680 | 3 650 | NCF2984V | | | 620 | 150 | 5 | 577.7 | 3 000 | 5 650 | NCF3084V | | 440 | 540 | 46 | 2.1 | 514 | 615 | 1 410 | NCF1888V | | | 600 | 95 | 4 | 562 | 2 070 | 4 300 | NCF2988V | | 460 | 580
620 | 56
95 | 3 | 552.7
576.5 | 920
2 100 | 1 950
4 450 | NCF1892V
NCF2992V | | 480 | 600
650 | 56
100 | 3 | 573
615 | 940
2 380 | 2 040
5 100 | NCF1896V
NCF2996V | | 500 | 620 | 56 | 3 | 593.5 | 960 | 2 120 | NCF18/500V | | | 670 | 100 | 5 | 630.2 | 2 420 | 5 250 | NCF29/500V | | 530
560 | 650
680
820 | 56
56
195 | 3
3
6 | 624
654.7
770 | 990
1 020
5 600 | 2 240
2 360
11 300 | NCF18/530V
NCF18/560V
NCF30/560V | | 600 | 730 | 60 | 3 | 695.5 | 1 140 | 2 680 | NCF18/600V | | | 800 | 118 | 5 | 752 | 3 050 | 7 300 | NCF29/600V | | 630 | 780 | 69 | 4 | 742 | 1 470 | 3 400 | NCF18/630V | | 670 | 820 | 69 | 4 | 780 | 1 520 | 3 550 | NCF18/670V | | 710 | 870 | 74 | 4 | 832.5 | 1 650 | 3 900 | NCF18/710V | | 750 | 920 | 78 | 5 | 882.3 | 1 930 | 4 600 | NCF18/750V | | 800 | 980 | 82 | 5 | 936 | 2 110 | 5 100 | NCF18/800V | | _ | | | | | | |
 | | ment and f
ensions (n | Mass
(kg) | | |---|---|--|--| | $d_{\scriptscriptstyle \mathrm{a}}$ | D_{a} | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | 319
320
323
338
340
343
359
361
368
380
404
404
408
421
425
429
440
445
449
461
466
483
486
503
510
524
531
531
524
531
585
685
685
700
741
786
832 | 360
398
435
381
418
454
402
438
490
423
457
509
458
518
518
518
518
518
577
625
617
627
637
625
647
637
627
647
748
787
838
883
950 | 2 2.5
3 2 2.5
3 2 2.5
4 2 2.5
4 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4 2 2 3 3 4 2 2 5 5 2.5
4 2.5 5 2.5 | 9.7
30.7
67.6
10.3
33
73
10.7
34.1
97
11.5
36
102
18.6
52
108
19.5
53.4
139
20.5
55.7
147
21.3
78.2
32.5
81.2
33.8
95.1
35.1
36
37
38
39
39
30
30
40
40
40
40
40
40
40
40
40
4 | Remark Full-complement cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. C 168 C 169 # ■ FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS NNCF Type, Double-Row Bore Diameter 100 – 260 mm | | Во | oundary Dim
(mm) | | | Basic Loa
(k | | Bearing Numbers | |----------|-----|---------------------|------------------|------------|-----------------|-------------------|------------------| | <i>d</i> | D | В | ∤
min. | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | bearing Numbers | | 100 | 140 | 40 | 1.1 | 129.8 | 194 | 400 | NNCF4920V | | | 150 | 67 | 1.5 | 139.7 | 360 | 615 | NNCF5020V | | 110 | 150 | 40 | 1.1 | 138.4 | 202 | 430 | NNCF4922V | | | 170 | 80 | 2 | 156.3 | 490 | 840 | NNCF5022V | | 120 | 165 | 45 | 1.1 | 153.8 | 226 | 480 | NNCF4924V | | | 180 | 80 | 2 | 167.58 | 500 | 885 | NNCF5024V | | 130 | 180 | 50 | 1.5 | 165.7 | 262 | 555 | NNCF4926V | | | 200 | 95 | 2 | 183.81 | 710 | 1 230 | NNCF5026V | | 140 | 190 | 50 | 1.5 | 176.2 | 272 | 595 | NNCF4928V | | | 210 | 95 | 2 | 197.82 | 750 | 1 360 | NNCF5028V | | 150 | 210 | 60 | 2 | 191.6 | 390 | 865 | NNCF4930V | | | 225 | 100 | 2.1 | 206.82 | 785 | 1 420 | NNCF5030V | | 160 | 220 | 60 | 2 | 204.1 | 410 | 930 | NNCF4932V | | | 240 | 109 | 2.1 | 224.8 | 895 | 1 620 | NNCF5032V | | 170 | 230 | 60 | 2 | 212.4 | 415 | 975 | NNCF4934V | | | 260 | 122 | 2.1 | 242.87 | 1 160 | 2 140 | NNCF5034V | | 180 | 250 | 69 | 2 | 230.5 | 550 | 1 230 | NNCF4936V | | | 280 | 136 | 2.1 | 260.3 | 1 340 | 2 510 | NNCF5036V | | 190 | 260 | 69 | 2 | 240.7 | 565 | 1 290 | NNCF4938V | | | 290 | 136 | 2.1 | 269.9 | 1 380 | 2 630 | NNCF5038V | | 200 | 250 | 50 | 1.5 | 235.9 | 320 | 825 | NNCF4840V | | | 280 | 80 | 2.1 | 259.5 | 665 | 1 500 | NNCF4940V | | | 310 | 150 | 2.1 | 287.75 | 1 560 | 3 000 | NNCF5040V | | 220 | 270 | 50 | 1.5 | 256.9 | 340 | 905 | NNCF4844V | | | 300 | 80 | 2.1 | 277 | 695 | 1 620 | NNCF4944V | | | 340 | 160 | 3 | 312.3 | 1 890 | 3 650 | NNCF5044V | | 240 | 300 | 60 | 2 | 282.6 | 495 | 1 340 | NNCF4848V | | | 320 | 80 | 2.1 | 300 | 725 | 1 770 | NNCF4948V | | | 360 | 160 | 3 | 335.25 | 1 990 | 4 000 | NNCF5048V | | 260 | 320 | 60 | 2 | 303.6 | 515 | 1 450 | NNCF4852V | | | 360 | 100 | 2.1 | 331.5 | 1 050 | 2 530 | NNCF4952V | | | 400 | 190 | 4 | 376.1 | 2 690 | 5 200 | NNCF5052V | | | ment and I
ensions (n | Mass
(kg) | | |------------|--------------------------|-------------------------|---------| | $d_{ m a}$ | D_{a} | $m{\gamma}_{ m a}$ max. | approx. | | 109 | 130 | 1 | 2.0 | | 111 | 140 | 1.5 | 3.8 | | 119 | 140 | 1 2 | 2.1 | | 122 | 157 | | 6.1 | | 130 | 155 | 1 2 | 2.9 | | 132 | 168 | | 6.5 | | 141 | 168 | 1.5 | 3.9 | | 142 | 187 | 2 | 10.3 | | 151 | 178 | 1.5 | 4.2 | | 152 | 198 | 2 | 10.8 | | 163 | 196 | 2 | 6.6 | | 165 | 209 | 2 | 13 | | 173 | 206 | 2 | 7.0 | | 175 | 225 | 2 | 15.8 | | 183 | 216 | 2 | 7.3 | | 185 | 244 | 2 | 22.1 | | 193 | 236 | 2 | 10.7 | | 195 | 263 | 2 | 29.4 | | 203 | 245 | 2 | 11.1 | | 206 | 273 | 2 | 30.8 | | 213 | 237 | 1.5 | 5.9 | | 216 | 263 | 2 | 15.7 | | 216 | 293 | 2 | 39.7 | | 233 | 257 | 1.5 | 6.4 | | 236 | 283 | 2 | 17 | | 238 | 320 | 2.5 | 50.7 | | 254 | 285 | 2 | 10.3 | | 257 | 302 | 2 | 18.4 | | 259 | 340 | 2.5 | 54.3 | | 275 | 304 | 2 | 11 | | 277 | 342 | 2 | 32 | | 282 | 377 | 3 | 82.7 | Remark Full-complement cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. C 170 C 171 # ■ FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS NNCF Type, Double-Row Bore Diameter 280 – 500 mm | | Boundary Dimensions Basic Loa
(mm) (kt | | | | | | | |-----|---|-----|------------------|------------|-------------|-------------------|------------------| | d | D | В | γ
min. | $E_{ m W}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | | 280 | 350 | 69 | 2 | 332.5 | 685 | 1 860 | NNCF4856V | | | 380 | 100 | 2.1 | 352.5 | 1 090 | 2 720 | NNCF4956V | | | 420 | 190 | 4 | 390.5 | 2 770 | 5 450 | NNCF5056V | | 300 | 380 | 80 | 2.1 | 357.2 | 805 | 2 160
| NNCF4860V | | | 420 | 118 | 3 | 386.5 | 1 580 | 3 800 | NNCF4960V | | | 460 | 218 | 4 | 431.7 | 3 400 | 7 000 | NNCF5060V | | 320 | 400 | 80 | 2.1 | 380.2 | 835 | 2 310 | NNCF4864V | | | 440 | 118 | 3 | 404.5 | 1 620 | 4 000 | NNCF4964V | | | 480 | 218 | 4 | 446.9 | 3 500 | 7 350 | NNCF5064V | | 340 | 420 | 80 | 2.1 | 397.4 | 855 | 2 430 | NNCF4868V | | | 460 | 118 | 3 | 431 | 1 690 | 4 300 | NNCF4968V | | | 520 | 243 | 5 | 485.8 | 4 250 | 8 750 | NNCF5068V | | 360 | 440 | 80 | 2.1 | 420.4 | 885 | 2 580 | NNCF4872V | | | 480 | 118 | 3 | 449 | 1 730 | 4 500 | NNCF4972V | | | 540 | 243 | 5 | 503.6 | 4 350 | 9 150 | NNCF5072V | | 380 | 480 | 100 | 2.1 | 450.6 | 1 260 | 3 600 | NNCF4876V | | | 520 | 140 | 4 | 482.5 | 2 180 | 5 650 | NNCF4976V | | | 560 | 243 | 5 | 521.4 | 4 500 | 9 600 | NNCF5076V | | 400 | 500 | 100 | 2.1 | 471.7 | 1 290 | 3 750 | NNCF4880V | | | 540 | 140 | 4 | 503 | 2 240 | 5 900 | NNCF4980V | | | 600 | 272 | 5 | 558.7 | 5 050 | 10 900 | NNCF5080V | | 420 | 520 | 100 | 2.1 | 492 | 1 320 | 3 950 | NNCF4884V | | | 560 | 140 | 4 | 523 | 2 290 | 6 200 | NNCF4984V | | | 620 | 272 | 5 | 577.7 | 5 150 | 11 300 | NNCF5084V | | 440 | 540 | 100 | 2.1 | 513 | 1 350 | 4 150 | NNCF4888V | | | 600 | 160 | 4 | 560.5 | 3 000 | 7 850 | NNCF4988V | | 460 | 580 | 118 | 3 | 549.2 | 1 730 | 5 150 | NNCF4892V | | | 620 | 160 | 4 | 573 | 3 050 | 8 050 | NNCF4992V | | 480 | 600 | 118 | 3 | 565.8 | 1 760 | 5 300 | NNCF4896V | | | 650 | 170 | 5 | 603 | 3 350 | 8 900 | NNCF4996V | | 500 | 620 | 118 | 3 | 590.7 | 1 810 | 5 600 | NNCF48/500V | | | 670 | 170 | 5 | 629 | 3 400 | 9 350 | NNCF49/500V | | | ment and l
ensions (n | Mass
(kg) | | |------------|--------------------------|--------------------|---------| | $d_{ m a}$ | D_{a} | r a
max. | approx. | | 295 | 334 | 2 | 16 | | 297 | 361 | 2 | 34 | | 302 | 395 | 3 | 87.7 | | 318 | 361 | 2 | 23 | | 320 | 398 | 2.5 | 52 | | 323 | 435 | 3 | 125 | | 338 | 381 | 2 | 24.3 | | 340 | 418 | 2.5 | 55 | | 343 | 454 | 3 | 131 | | 359 | 400 | 2 | 25.6 | | 361 | 438 | 2.5 | 58 | | 368 | 490 | 4 | 177 | | 379 | 421 | 2 | 27 | | 381 | 457 | 2.5 | 61 | | 388 | 509 | 4 | 186 | | 399 | 459 | 2 | 45.5 | | 404 | 493 | 3 | 90.5 | | 408 | 529 | 4 | 194 | | 420 | 479 | 2 | 47.5 | | 425 | 513 | 3 | 94.5 | | 429 | 568 | 4 | 256 | | 440 | 498 | 2 | 49.5 | | 445 | 533 | 3 | 98.5 | | 449 | 588 | 4 | 267 | | 461 | 518 | 2 | 51.5 | | 466 | 572 | 3 | 136 | | 483 | 555 | 2.5 | 77.5 | | 486 | 591 | 3 | 142 | | 503 | 575 | 2.5 | 80.5 | | 510 | 617 | 4 | 167 | | 524 | 594 | 2.5 | 83.5 | | 531 | 637 | 4 | 173 | **Remark** Full-complement cylindrical roller bearings are designed for specific applications, when using them, please contact NSK. C 172 C 173 ## FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS FOR SHEAVES RS-48 · RS-49 Types RSF-48 · RSF-49 Types Bore Diameter 50 - 220 mm Free-End Bearing RSF Remark Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. | Bearing Numbers ⁽¹⁾ | | Dimer
(m | | A
Fillet D | Mass
(kg) | | | |--------------------------------------|---------|--------------------|-------------------|-----------------|-----------------|-------------------------------|--------------| | Fixed-End Bearing Free-End B | Bearing | $d_{ m OH}$ (2) | Axial
Disp.(3) | $d_{ m a}$ min. | $D_{ m a}$ max. | $m{\gamma}_{\mathrm{a}}$ max. | approx. | | RS-4910E4 RSF-49 | 912E4 | 2.5 | 1.5 | 54 | 68 | 0.6 | 0.30 | | RS-4912E4 RSF-49 | | 2.5 | 1.5 | 65 | 80 | 1 | 0.46 | | RS-4913E4 RSF-49 | | 2.5 | 2 | 70 | 85 | 1 | 0.50 | | RS-4914E4 RSF-49 | 916E4 | 3 | 2 | 75 | 95 | 1 | 0.79 | | RS-4916E4 RSF-49 | | 3 | 2 | 85 | 105 | 1 | 0.89 | | RS-4918E4 RSF-49 | | 3 | 2 | 96.5 | 118.5 | 1 | 1.35 | | RS-4820E4 RSF-48 | | 2.5 | 1.5 | 105 | 120 | 1 | 0.74 | | RS-4920E4 RSF-48 | | 3 | 2 | 106.5 | 133.5 | 1 | 1.97 | | RS-4821E4 RSF-48 | | 2.5 | 1.5 | 110 | 125 | 1 | 0.77 | | RS-4921E4 RSF-49 | | 3 | 2 | 111.5 | 138.5 | 1 | 2.05 | | RS-4822E4 RSF-49
RS-4922E4 RSF-49 | | 3
3 | 2 2 | 115
116.5 | 135
143.5 | 1
1 | 1.09
2.15 | | RS-4824E4 RSF-49 | | 3 | 2 | 125 | 145 | 1 | 1.28 | | RS-4924E4 RSF-49 | | 4 | 3 | 126.5 | 158.5 | 1 | 2.95 | | RS-4826E4 RSF-49 | | 3 | 2 | 136.5 | 158.5 | 1 | 1.9 | | RS-4926E4 RSF-49 | | 5 | 3.5 | 138 | 172 | 1.5 | 3.95 | | RS-4828E4 RSF-49 | | 3 | 2 | 146.5 | 168.5 | 1 | 2.03 | | RS-4928E4 RSF-49 | | 5 | 3.5 | 148 | 182 | 1.5 | 4.25 | | RS-4830E4 RSF-48 | | 3 | 2 | 156.5 | 183.5 | 1 | 2.85 | | RS-4930E4 RSF-48 | | 5 | 3.5 | 159 | 201 | 2 | 6.65 | | RS-4832E4 RSF-49 | | 3 | 2 | 166.5 | 193.5 | 1 | 3.05 | | RS-4932E4 RSF-49 | | 5 | 3.5 | 169 | 211 | 2 | 7.0 | | RS-4834E4 RSF-48 | | 4 | 3 | 176.5 | 208.5 | 1 | 4.1 | | RS-4934E4 RSF-48 | | 4 | 3.5 | 179 | 221 | 2 | 7.35 | | RS-4836E4 RSF-48 | | 4 | 3 | 186.5 | 218.5 | 1 | 4.3 | | RS-4936E4 RSF-48 | | 6 | 4.5 | 189 | 241 | 2 | 10.7 | | RS-4838E4 RSF-48 | | 5 | 3.5 | 198 | 232 | 1.5 | 5.65 | | RS-4938E4 RSF-48 | | 6 | 4.5 | 199 | 251 | 2 | 11.1 | | RS-4840E4 RSF-49 | | 5 | 3.5 | 208 | 242 | 1.5 | 5.95 | | RS-4940E4 RSF-49 | | 7 | 5 | 211 | 269 | 2 | 15.7 | | RS-4844E4 RSF-49 | | 5 | 3.5 | 228 | 262 | 1.5 | 6.45 | | RS-4944E4 RSF-49 | | 7 | 5 | 231 | 289 | 2 | 17 | **Notes** (1) The suffix E4 indicates that the outer ring is provided with oil holes and oil groove. (2) $d_{\rm OH}$ represents the oil hole diameter in the outer ring. (3) Permissible axial displacement for free-end bearings. #### FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS FOR SHEAVES RS-48 · RS-49 Types RSF-48 · RSF-49 Types Bore Diameter 240 – 560 mm Free-End Bearing RSF Cylindrical roller bearings for sheaves are designed for specific applications, when using them, please contact NSK. | Bearing N | lumbers(1) | | nsions
ım) | | Abutment and
Dimensions (r | mm) | Mass
(kg) | |-------------------|------------------|-------------------|-------------------|-----------------|-------------------------------|------------------------|--------------| | Fixed-End Bearing | Free-End Bearing | $d_{ m OH}^{(2)}$ | Axial
Disp.(3) | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${\pmb \gamma}_a$ max. | approx. | | RS-4848E4 | RSF-4848E4 | 5 | 3.5 | 249 | 291 | 2 | 10.3 | | RS-4948E4 | RSF-4948E4 | 7 | 5 | 251 | 309 | 2 | 18.4 | | RS-4852E4 | RSF-4852E4 | 5 | 3.5 | 269 | 311 | 2 | 11 | | RS-4952E4 | RSF-4952E4 | 8 | 6 | 271 | 349 | 2 | 32 | | RS-4856E4 | RSF-4856E4 | 6 | 4.5 | 289 | 341 | 2 | 16 | | RS-4956E4 | RSF-4956E4 | 8 | 6 | 291 | 369 | 2 | 34 | | RS-4860E4 | RSF-4860E4 | 6 | 5 | 311 | 369 | 2 | 23 | | RS-4960E4 | RSF-4960E4 | 9 | 7 | 313 | 407 | 2.5 | 52 | | RS-4864E4 | RSF-4864E4 | 6 | 5 | 331 | 389 | 2 | 24.3 | | RS-4964E4 | RSF-4964E4 | 9 | 7 | 333 | 427 | 2.5 | 55 | | RS-4868E4 | RSF-4868E4 | 6 | 5 | 351 | 409 | 2 | 25.6 | | RS-4968E4 | RSF-4968E4 | 9 | 7 | 353 | 447 | 2.5 | 58 | | RS-4872E4 | RSF-4872E4 | 6 | 5 | 371 | 429 | 2 | 27 | | RS-4972E4 | RSF-4972E4 | 9 | 7 | 373 | 467 | 2.5 | 61 | | RS-4876E4 | RSF-4876E4 | 8 | 6 | 391 | 469 | 2 | 45.5 | | RS-4976E4 | RSF-4976E4 | 11 | 8 | 396 | 504 | 3 | 90.5 | | RS-4880E4 | RSF-4880E4 | 8 | 6 | 411 | 489 | 2 | 47.5 | | RS-4980E4 | RSF-4980E4 | 11 | 8 | 416 | 524 | 3 | 94.5 | | RS-4884E4 | RSF-4884E4 | 8 | 6 | 431 | 509 | 2 | 49.5 | | RS-4984E4 | RSF-4984E4 | 11 | 8 | 436 | 544 | 3 | 98.5 | | RS-4888E4 | RSF-4888E4 | 8 | 6 | 451 | 529 | 2 | 51.5 | | RS-4988E4 | RSF-4988E4 | 11 | 8 | 456 | 584 | 3 | 136 | | RS-4892E4 | RSF-4892E4 | 9 | 7 | 473 | 567 | 2.5 | 77.5 | | RS-4992E4 | RSF-4992E4 | 11 | 8 | 476 | 604 | 3 | 142 | | RS-4896E4 | RSF-4896E4 | 9 | 7 | 493 | 587 | 2.5 | 80.5 | | RS-4996E4 | RSF-4996E4 | 12 | 9 | 500 | 630 | 4 | 167 | | RS-48/500E4 | RSF-48/500E4 | 9 | 7 | 513 | 607 | 2.5 | 83.5 | | RS-49/500E4 | RSF-49/500E4 | 12 | 9 | 520 | 650 | 4 | 173 | | RS-49/530E4 | RSF-49/530E4 | 12 | 11 | 550 | 690 | 4 | 206 | | RS-49/560E4 | RSF-49/560E4 | 12 | 11 | 580 | 730 | 4 | 231 | ⁽²⁾ $d_{\rm OH}$ represents the oil hole diameter in the outer ring. ⁽³⁾ Permissible axial displacement for free-end bearings. ## FULL-COMPLEMENT CYLINDRICAL ROLLER BEARINGS FOR SHEAVES ## RS-50 Type (Prelubricated) Bore Diameter 40 – 400 mm With Locating Ring Note (1) Chamfer dimension of inner ring in radial direction. Remarks 1. Good quality grease is prepacked in bearings. 2. Grease can be supplied through oil holes in the inner rings. | Bearing N | lumbers | | | ing Ring
ions (mm) | | Oil Holes
(mm) | | ent and
isions (mm) | Mass
(kg) | |-------------------------------|---------------------|---------------|--------------|-----------------------|-------------------|-------------------|-------------------|---------------------------------|-------------------| | Without Locating Ring | With Locating Ring | C_1 | S | D_2 | f | $d_{ m OH}$ | $d_{ m a}$ min. | $D_{\mathbf{x}} \\ \text{min.}$ | approx. | | RS-5008 | RS-5008NR | 28 | 4.5 | 71.8 | 2 | 2.5 | 43.5 | 77.5 | 0.56 | | RS-5009 | RS-5009NR | 30 | 4.5 | 78.8 | 2 | 2.5 | 48.5 | 84.5 | 0.70 | | RS-5010 | RS-5010NR | 30 | 4.5 | 83.8 | 2 | 2.5 | 53.5 | 89.5 | 0.76 | | RS-5011 | RS-5011NR | 34 | 5.5 | 94.8 | 2.5 | 3 | 60 | 101 | 1.17 | | RS-5012 | RS-5012NR | 34 | 5.5 | 99.8 | 2.5 | 3 | 65 | 106 | 1.25 | | RS-5013 | RS-5013NR | 34 | 5.5 | 104.8 | 2.5 | 3 | 70 | 111 | 1.32 | | RS-5014 | RS-5014NR | 42 | 5.5 | 114.5 | 2.5 | 3 | 75 | 121 | 1.87 | | RS-5015 | RS-5015NR | 42 | 5.5 | 119.5 | 2.5 | 3 | 80 | 126 | 2.0 | | RS-5016 | RS-5016NR | 48 | 5.5 | 129.5 | 2.5 | 3 | 85 | 136 | 2.65 | | RS-5017 | RS-5017NR | 48 | 5.5 | 134.5 | 2.5 | 3 | 90 | 141 | 2.75 | | RS-5018 | RS-5018NR | 54 | 6 | 145.4 | 2.5 | 4 | 96 | 153.5 | 3.75 | | RS-5019 | RS-5019NR | 54 | 6 | 150.4 | 2.5 | 4 | 101 | 158.5 | 3.95 | | RS-5020 | RS-5020NR | 54 | 6 | 155.4 | 2.5 | 4 | 106 | 163.5 | 4.05 | | RS-5022 | RS-5022NR | 65 | 7 | 175.4 | 2.5 | 5 | 116.5 | 183.5 | 6.1 | | RS-5024 | RS-5024NR | 65 | 7 | 188 | 3 | 5 | 126.5 | 197 | 7.0 | | RS-5026 | RS-5026NR | 77 | 8.5 | 207 | 3 | 5 | 136.5 | 217 |
10.6 | | RS-5028 | RS-5028NR | 77 | 8.5 | 217 | 3 | 5 | 146.5 | 227 | 11.3 | | RS-5030 | RS-5030NR | 81 | 9 | 232 | 3 | 6 | 157 | 242 | 13.7 | | RS-5032 | RS-5032NR | 89 | 9.5 | 247 | 3 | 6 | 167 | 257 | 16.8 | | RS-5034 | RS-5034NR | 99 | 11 | 270 | 4 | 6 | 177 | 285 | 22.2 | | RS-5036 | RS-5036NR | 110 | 12.5 | 294 | 5 | 6 | 187 | 318 | 30 | | RS-5038 | RS-5038NR | 110 | 12.5 | 304 | 5 | 6 | 197 | 328 | 32 | | RS-5040 | RS-5040NR | 120 | 14.5 | 324 | 5 | 6 | 207 | 352 | 41 | | RS-5044 | RS-5044NR | 130 | 14.5 | 356 | 6 | 7 | 228.5 | 382 | 53 | | RS-5048 | RS-5048NR | 130 | 14.5 | 376 | 6 | 7 | 248.5 | 402 | 57 | | RS-5052 | RS-5052NR | 154 | 17.5 | 416 | 7 | 8 | 270 | 444 | 86 | | RS-5056 | RS-5056NR | 154 | 17.5 | 436 | 7 | 8 | 290 | 472 | 92 | | RS-5060
RS-5064
RS-5068 | RS-5060NR
—
— | 178
—
— | 19
—
— | 476
—
— | 7
— | 8
8
10 | 310
330
352 | 512
—
— | 130
135
185 | | RS-5072
RS-5076
RS-5080 | = | _
_
_ | Ξ | = | Ξ | 10
10
10 | 372
392
412 | = | | ^{4.} For shield with outside diameter larger than 180mm, the above figure is different actual shape. For detail drawing, please contact NSK. | 6. TAPERED ROLLER BEARINGS | 3 | |----------------------------|---| |----------------------------|---| | INTRODUCTION | C 182 | |--|-------| | TECHNICAL DATA | | | Free Space of Tapered Roller Bearings | C 188 | | BEARINGS TABLE | | | METRIC DESIGN TAPERED ROLLER BEARINGS | | | Bore Diameter 15 – 100 mm | C 190 | | Bore Diameter 105 – 240 mm····· | C 202 | | Bore Diameter 260 – 440 mm····· | C 208 | | INCH DESIGN TAPERED ROLLER BEARINGS | | | Bore Diameter 12.000 – 47.625 mm | C 210 | | Bore Diameter 48.412 – 69.850 mm | C 224 | | Bore Diameter 70.000 – 206.375 mm ····· | C 232 | | The index for inch design tapered roller bearings is in Appendix 14 (Page E020). | | | DOUBLE-ROW TAPERED ROLLER BEARINGS | | | Bore Diameter 40 – 260 mm | C 246 | C 180 ## **DESIGN, TYPES, AND FEATURES** Tapered roller bearings are designed so the apices of the cones formed by the raceways of the cone and cup and the conical rollers all coincide at one point on the axis of the bearing. When a radial load is imposed, an axial force component occurs; therefore, it is necessary to use two bearings in opposition or some other multiple arrangement. For metric-design medium-angle and steep-angle tapered roller bearings, the respective contact angle symbol C or D is added after the bore number. For normal-angle tapered roller bearings, no contact angle symbol is used. Medium-angle tapered roller bearings are primarily used for the pinion shafts of differential gears of automobiles. Among those with high load capacity(HR series), some bearings have the basic number suffixed by J to conform to the specifications of ISO for the cup back face raceway diameter, cup width, and contact angle. Therefore, the cone assembly and cup of bearings with the same basic number suffixed by J are internationally interchangeable. Among metric-design tapered roller bearings specified by ISO 355, there are those having new dimensions that are different than the dimension series 3XX used in the past. Part of them are listed in the bearing tables. They conform to the specifications of ISO for the smaller end diameter of the cup and contact angle. The cone and cup assemblies are internationally interchangeable. The bearing number formulation, which is different than that for past metric design, is as follows: Besides metric design tapered roller bearings, there are also inch design bearings. For the cone assemblies and cups of inch design bearings, except four-row tapered roller bearings, the bearing numbers are approximately formulated as follows: For tapered roller bearings, besides single-row bearings, there are also various combinations of bearings. The cages of tapered roller bearings are usually pressed steel. ### TOLERANCES AND RUNNING ACCURACY METRIC DESIGN TAPERED ROLLER **BEARINGS** Table 7.3 (Pages A132 to A135) INCH DESIGN TAPERED ROLLER BEARINGS Table 7.4 (Pages A136 and A137) Among inch design tapered roller bearings, there are those to which the following precision classes apply. For more details, please consult with NSK. (1) J line bearings(in the bearing tables, bearings preceded by ▲) Table 2 Tolerances for Cones(CLASS K) Units : μm | (| ore Diameter d (m) | $\it \Delta_{dmp}$ | | V_{dp} | V_{dmp} | K_{ia} | |------|------------------------|--------------------|------|----------|-----------|----------| | over | incl. | high | low | max. | max. | max. | | 10 | 18 | 0 | - 12 | 12 | 9 | 15 | | 18 | 30 | 0 | - 12 | 12 | 9 | 18 | | 30 | 50 | 0 | - 12 | 12 | 9 | 20 | | 50 | 80 | 0 | - 15 | 15 | 11 | 25 | | 80 | 120 | 0 | - 20 | 20 | 15 | 30 | | 120 | 180 | 0 | - 25 | 25 | 19 | 35 | | 180 | 250 | 0 | -30 | 30 | 23 | 50 | | 250 | 315 | 0 | -35 | 35 | 26 | 60 | | 315 | 400 | 0 | -40 | 40 | 30 | 70 | Table 3 Tolerances for Cups(CALSS K) Units : μm | Nominal Diam D (r | neter | ${\it \Delta}_{Dmp}$ | | V_{Dp} | $V_{D{ m mp}}$ | K_{ea} | |--------------------------|--------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------| | over | incl. | high | low | max. | max. | max. | | 18
30
50 | 30
50
80 | 0
0
0 | - 12
- 14
- 16 | 12
14
16 | 9
11
12 | 18
20
25 | | 80
120
150 | 120
150
180 | 0
0
0 | 18
20
25 | 18
20
25 | 14
15
19 | 35
40
45 | | 180
250
315
400 | 250
315
400
500 | 0
0
0 | -30
-35
-40
-45 | 30
35
40
45 | 23
26
30
34 | 50
60
70
80 | Table 4 Tolerances for Effective Widths of Cone Assemblies and Cups, and Overall Width (CLASS K) Units: µm | Nominal Bore Diameter d (mm) | | Effective Width Deviation of Cone Assembly ΔT_{18} | | Effective Width Deviation of Cup $\varDelta_{T_{2\mathrm{S}}}$ | | Overall Width Deviation Δ_{Ts} | | |------------------------------|----------|--|------|--|-------------|---------------------------------------|------| | OV | er incl. | high | low | high | low | high | low | | 1 | 0 80 | +100 | 0 | +100 | 0 | +200 | 0 | | 8 | 120 | +100 | -100 | +100 | -100 | +200 | -200 | | 12 | 0 315 | +150 | -150 | +200 | -100 | +350 | -250 | | 31 | 5 400 | +200 | -200 | +200 | -200 | +400 | -400 | #### (2) Bearings for Front Axles of Automobiles (In the bearing tables, those preceded by t) Table 5 Tolerances for Bore Diameter and Overall Width Units : μm | Nominal Bo | re Diameter t | | Bore Diameter
Deviation
Δ_{ds} | | Overall Width Deviation Δ_{Ts} | | |---------------------|-----------------|--------|---|-----|---------------------------------------|-----| | over
(mm) 1/25.4 | | | high | low | high | low | | _ | 76.200 | 3.0000 | +20 | 0 | +356 | 0 | The tolerances for outside diameter and those for radial runout of the cones and cups conform to Table 7.4.2 (Pages A136 and A137). #### (3) Special Chamfer Dimensions For bearings marked "spec." in the column of r in the bearing tables, the chamfer dimension of the cone back-face side is as shown on the following figure. C 185 C 184 #### RECOMMENDED FITS METRIC DESIGN TAPERED ROLLER BEARINGS Table 8.3 (Page A164) Table 8.5 (Page A165) INCH DESIGN TAPERED ROLLER BEARINGS...... Table 8.7 (Page A166) Table 8.8 (Page A167) ## INTERNAL CLEARANCE | METRIC DESIGN TAPERED ROLLER BEARINGS (Matched and Double-Row) | Table | 8.17 | (Page | A173) | |--|-------|------|-------|-------| | INCH DESIGN TAPERED ROLLER BEARINGS (Matched and Double-Row) | Table | 8.17 | (Page | A173) | #### DIMENSIONS RELATED TO MOUNTING The dimensions related to mounting tapered roller bearings are listed in the bearing tables. Since the cages protrude from the ring faces of tapered roller bearings, please use care when designing shafts and housings. When heavy axial loads are imposed, the shaft shoulder dimensions and strength must be sufficient to support the cone rib. #### PERMISSIBLE MISALIGNMENT The permissible misalignment angle for tapered roller bearings is approximately 0.0009 radian (3'). # LIMITING SPEEDS (GREASE/OIL) The limiting speeds (grease) and limiting speeds (oil) listed in the bearing tables should be adjusted depending on the bearing load condition. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to page A098 for detailed information. #### PRECAUTIONS FOR USE OF TAPERED ROLLER BEARINGS - 1. If the load on tapered roller bearings becomes too small, or if the ratio of the axial and radial loads for matched bearings exceeds 'e'(e is listed in the bearing tables)during operation, slippage between the rollers and raceways occurs, which may result in smearing. Especially with large bearings since the weight of the rollers and cage is high. If such load conditions are expected, please contact NSK for selection of the bearings. - 2. Confirm the dimension of "Abutment and Fillet Dimensions" of D_a , D_b , S_a , $S_{\rm b}$ at the time of the HR series adoption. # **TECHNICAL DATA** # Free Space of Tapered Roller Bearings The tapered roller bearing can carry radial load and uni-direction axial loads. It offers high capacity. This type of bearing is used widely in machine systems with relatively severe loading conditions in various combinations by opposing or combining single-row bearings. With a view towards easier maintenance and inspection, this kind of bearing is lubricated with grease in most cases. It is important to select a grease
appropriate to the operating conditions and to use the proper amount of grease for the housing internal space. As a reference, the free space of a tapered roller bearing is shown in Table 6. 'The free space of a tapered roller bearing is the space (shadowed portion) of the bearing outer volume less the inner and outer rings and cage, as shown in Fig. 1. The bearing is filled so that grease reaches the inner ring rib surface and pocket surface in sufficient amount. Due attention must also be paid to the grease filling amount and state, especially if grease leakage occurs or maintenance of low running torque is important. Fig. 1 Free Space of Tapered Roller Bearing #### Table 6 Free Space of Tapered Roller Bearing Units: cm3 | | | | | | | Bearing f | ree space | | | | |---------------------|---------|----------|---------|---------|---------|-----------|-----------|---------|----------|---------| | Bearing
bore No. | | | | | | Bearing | g series | | | | | DOTO INO. | HR329-J | HR320-XJ | HR330-J | HR331-J | HR302-J | HR322-J | HR332-J | HR303-J | HR303-DJ | HR323-J | | 02 | _ | _ | _ | _ | _ | _ | _ | 4.5 | _ | _ | | 03 | _ | _ | _ | _ | 3.3 | 4.3 | _ | 5.7 | _ | _ | | 04 | _ | 3.5 | _ | _ | 5.3 | 6.6 | _ | 7.2 | _ | 9.2 | | /22 | _ | 3.6 | _ | _ | _ | 7.3 | _ | 9.1 | _ | _ | | 05 | _ | 3.7 | 4.3 | _ | 6.3 | 7.4 | 7.5 | 11 | 13 | 15 | | /28 | _ | 5.3 | _ | _ | 8.8 | 9.8 | 10 | 16 | _ | _ | | 06 | _ | 6.2 | 6.7 | _ | 9.2 | 11 | 12 | 18 | 21 | 23 | | /32 | _ | 6.6 | _ | _ | 11 | 13 | 14 | 20 | _ | _ | | 07 | 4.0 | 7.5 | 8.9 | _ | 13 | 17 | 18 | 23 | 26 | 35 | | 08 | 5.8 | 9.1 | 11 | _ | 18 | 23 | 25 | 31 | 35 | 45 | | 09 | _ | 11 | _ | 18 | 22 | 24 | 26 | 41 | 48 | 58 | | 10 | _ | 12 | 15 | 20 | 23 | 26 | 29 | 55 | 59 | 77 | | 11 | 8.8 | 19 | 21 | 29 | 30 | 36 | 40 | 72 | 78 | 99 | | 12 | 9.0 | 20 | 23 | _ | 39 | 47 | 53 | 88 | 95 | 130 | | 13 | _ | 21 | 25 | _ | 45 | 62 | 65 | 110 | 120 | 150 | | 14 | 17 | 29 | 33 | _ | 53 | 67 | 69 | 130 | 150 | 190 | | 15 | _ | 30 | 34 | _ | 58 | 73 | 74 | 160 | 180 | 230 | | 16 | _ | 40 | _ | _ | 75 | 91 | 100 | 200 | 200 | 270 | | 17 | _ | 43 | 49 | 76 | 92 | 120 | 130 | 230 | 250 | 320 | | 18 | 28 | 58 | _ | 110 | 110 | 150 | _ | 260 | 310 | 370 | | 19 | 29 | 60 | _ | _ | 140 | 170 | _ | 310 | 350 | 430 | | 20 | 37 | 64 | _ | 150 | 160 | 210 | 240 | 380 | 460 | 580 | # ■ SINGLE-ROW TAPERED ROLLER BEARINGS # Bore Diameter 15 – 28 mm ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $r_{\rm r} > e$ | | | | | |---------------|------------|---------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of \emph{e} , \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | | | Bour | ndary Dimens
(mm) | sions | 0 | | Basic Loa | Ü | Limiting
(mi | | | ISO355 | | | Abutm | | d Fillet D
(mm) | imensi | ions | | Eff. Load C | onstant | Axial I
Fact | | Mass
(kg) | |----|----------------------|-------------------------------|----------------------|------------------------|-------------------|-------------------|--------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|---|--------------------------------|----------------------|----------------------|------------------------|----------------------|--------------------------|-----------------------|--------------------|-------------------------------|----------------------|----------------------|---------------------------|------------------------------|----------------------------------| | d | D | T | В | С | Cone
1
mi | r | $C_{\rm r}$ | C_{0r} | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $\max_{\text{max.}} D$ | a
min. | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | Cone Cup $ m \emph{r}_a$ max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 15 | 35
42 | 11.75
14.25 | 11
13 | 10
11 | 0.6
1 | 0.6
1 | 14 800
23 600 | 13 200
21 100 | 11 000
9 500 | 15 000
13 000 | 30202
HR 30302 J | _
2FB | 23
24 | 19
22 | 30
36 | 30
36 | 33
38.5 | 2 | 1.5
3 | 0.6 0.6
1 1 | | | 1.9
2.1 | 1.0
1.2 | 0.053
0.098 | | 17 | 40
40
47 | 13.25
17.25
15.25 | 12
16
14 | 11
14
12 | 1
1
1 | 1
1
1 | 20 100
27 100
29 200 | 19 900
28 000
26 700 | 9 500
9 500
8 500 | 13 000
13 000
12 000 | HR 30203 J
HR 32203 J
HR 30303 J | 2DB
2DD
2FB | 26
26
26 | 23
22
24 | 34
34
41 | 34
34
40 | 37.5
37
43 | 2
2
2 | 2 3 3 | 1 1
1 1
1 1 | 11.2
10.4 | 0.31 | 1.7
1.9
2.1 | 0.96
1.1
1.2 | 0.079
0.103
0.134 | | 20 | 47
47
42
47 | 15.25
20.25
15
15.25 | 14
19
15
14 | 10.5
16
12
12 | 1
1
0.6 | 1
1
0.6 | 22 000
37 500
24 600
27 900 | 20 300
36 500
27 400
28 500 | 8 000
8 500
9 000
8 000 | 11 000
11 000
12 000
11 000 | 30303 D
HR 32303 J
HR 32004 XJ
HR 30204 J | 2FD
3CC
2DB | 29
28
28
29 | 23
23
24
27 | 41
41
37
41 | 34
39
35
40 | 44
43
40
44 | 2
2
3
2 | 4.5
4
3
3 | 1 1
1 1
0.6 0.6 | 12.5
10.6 | 0.29
0.37 | 0.74
2.1
1.6
1.7 | 0.41
1.2
0.88
0.96 | 0.129
0.178
0.097
0.127 | | | 47
47
47 | 15.25
19.25
19.25 | 14
18
18 | 12
15
15 | 0.3
1
1 | 1
1
1 | 23 900
35 500
31 500 | 24 000
37 500
33 500 | 8 000
8 500
8 000 | 11 000
11 000
11 000 | HR 30204 C-A-
HR 32204 J
HR 32204 CJ | 2DD
5DD | 29
29
29 | 26
25
25 | 41
41
41 | 37
38
36 | 44
44.5
44 | 2
3
2 | 3
4
4 | 0.3 1
1 1
1 1 | 13.0
12.6
14.5 | 0.55
0.33
0.52 | 1.1
1.8
1.2 | 0.60
1.0
0.64 | 0.126
0.161
0.166 | | 22 | 52
52
52 | 16.25
16.25
22.25 | 15
15
21 | 13
12
18
11.5 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 35 000
25 300
45 500 | 33 500
24 500
47 500 | 7 500
7 100
8 000 | 10 000
10 000
11 000
11 000 | HR 30304 J
30304 D
HR 32304 J | 2FB
—
2FD | 31
34
33 | 27
26
26
27 | 44
43
43 | 44
37
42 | 47.5
49
48 | 2
2
3
3 | 3
4
4 | 1.5 1.5
1.5 1.5
1.5 1.5 | 16.7
13.9 | 0.81
0.30 | 2.0
0.74
2.0 | 1.1
0.41
1.1 | 0.172
0.168
0.241
0.103 | | 22 | 44
50
50
50 | 15
15.25
15.25
19.25 | 15
14
14
18 | 11.5
12
12
15 | 0.6
1
1 | 0.6
1
1 | 25 600
29 200
27 200
36 500 | 29 400
30 500
29 500
40 500 | 8 500
7 500
7 500
7 500 | 10 000
10 000
10 000 | HR 320/22 XJ
HR 302/22
HR 302/22 C
HR 322/22 | | 30
31
31
31 | 27
29
29
28 | 39
44
44
44 | 37
42
40
41 | 42
47
47
47 | 2
2
2 | 3.5
3
3
4 | 0.6 0.6
1 1
1 1 | 11.6
13.0 | 0.37
0.49 | 1.5
1.6
1.2
1.6 | 0.83
0.90
0.67
0.89 | 0.103
0.139
0.144
0.18 | | | 50
56
56 | 19.25
17.25
17.25 | 18
16
16 | 15
14
13 | 1
1.5
1.5 | 1
1.5
1.5 | 33 500
37 000
34 500 | 39 500
36 500
34 000 | 7 500
7 100
6 700 | 10 000
9 500
9 500 | HR 322/22 C
HR 303/22
HR 303/22 C | | 31
33
33 | 29
30
30 | 44
47
47 | 39
46
44 | 48
50
52.5 | 2
2
3 | 4
3
4 | 1 1
1.5 1.5
1.5 1.5 | 15.2
12.4
15.9 | 0.51
0.32
0.59 | 1.2
1.9
1.0 | 0.65
1.0
0.56 | 0.185
0.208
0.207 | | 25 | 47
47
52 | 15
17
16.25 | 15
17
15 | 11.5
14
13 | 0.6
0.6
1 | 0.6
0.6
1 | 27 400
31 000
32 000 | 33 000
38 000
35 000 | 8 000
8 000
7 100 | 11 000
11 000
10 000 | HR 32005 XJ
HR 33005 J
HR 30205 J | 4CC
2CE
3CC | 33
33
34 | 30
29
31 | 42
42
46 | 40
41
44 | 45
44
48.5 | 3 2 | 3.5
3
3 | 0.6 0.6
0.6 0.6
1 1 | 11.0
12.7 | 0.29
0.37 | 1.4
2.1
1.6 | 0.77
1.1
0.88 | 0.116
0.131
0.157 | | | 52
52
52
52 | 16.25
19.25
19.25
22 | 15
18
18
22 | 12
16
15
18 | 1
1
1 | 1
1
1 | 28 100
40 000
35 000
47 500 | 31 500
45 000
42 000
56 500 | 9 700
7 100
7 100
7 500 | 9 500
10 000
9 500
10 000 | HR 30205 C
HR 32205 J
HR 32205 C
HR 33205 J | 2CD
-
2DE | 34
34
34 | 32
30
30
29 | 46
46
46
46 | 43
44
40
43 | 49.5
50
50
49.5 | 2
2
2
4 | 4
3
4
4 | 1 1
1 1
1 1 | 13.5
15.8 | 0.36
0.53 | 1.1
1.7
1.1
1.7 | 0.62
0.92
0.62
0.94 | 0.155
0.189
0.19
0.221 | | | 62
62
62 | 18.25
18.25
18.25 | 17
17
17 | 15
14
13 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 47 500
47 500
42 000
38 000 | 46 000
45 000
40 500 | 6 300
6 000
5 600 | 8 500
8 500
8 000 | HR 30305 J
HR 30305 C
HR 30305 DJ | 2FB
—
(7FB) | 34
36
36
39 | 34
35
34 | 54
53
53 | 54
49
47 | 57
58.5
59 | 2
3
2 | 3
4
5 | 1.5 1.5
1.5 1.5
1.5 1.5 | 13.2
16.4 | 0.30
0.55 | 2.0
1.1
0.73 | 1.1
0.60
0.40 | 0.27
0.27
0.276
0.265 | | 28 | 62
62
52 | 18.25
25.25
16 | 17
24
16 | 13
20
12 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 38 000
62 500
32 000 | 40 500
66 000
39 000 | 5 600
6 300
7 100 | 8 000
8 500
9 500 | HR 31305 J
HR 32305 J
HR 320/28 XJ |
7FB
2FD
4CC | 39
38
37 | 33
32
33 | 53
53
46 | 47
51
44 | 59
57
50 | 3
3
3 | 5
5
4 | 1.5 1.5
1.5 1.5
1.5 1.5 | 19.9
15.6
12.8 | 0.83
0.30
0.43 | 0.73
2.0
1.4 | 0.40
1.1
0.77 | 0.265
0.376
0.146 | | | 58
58
58 | 17.25
17.25
20.25 | 16
16
19 | 14
12
16 | 1
1
1 | 1
1
1 | 39 500
34 000
47 500 | 41 500
38 500
54 000 | 6 300
6 300
6 300 | 9 000
8 500
9 000 | HR 302/28
HR 302/28 C
HR 322/28 | | 37
37
37 | 34
34
34 | 52
52
52 | 50
48
49 | 55
54
55 | 2
2
2 | 3
5
4 | 1 1
1 1
1 1 | 13.2
16.9
14.6 | 0.35
0.64
0.37 | 1.7
0.94
1.6 | 0.93
0.52
0.89 | 0.203
0.198
0.243 | | | 58
68
68 | 20.25
19.75
19.75 | 19
18
18 | 16
15
14 | 1
1.5
1.5 | 1
1.5
1.5 | 42 000
55 000
49 500 | 49 500
55 500
50 500 | 6 300
6 000
5 600 | 9 000
8 000
7 500 | HR 322/28 CJ
HR 303/28
HR 303/28 C | 5DD
—
— | 37
39
39 | 33
37
38 | 52
59
59 | 45
58
57 | 55
61
63 | 2
2
3 | 4
4.5
5.5 | 1 1
1.5 1.5
1.5 1.5 | | 0.31 | 1.1
1.9
1.2 | 0.59
1.1
0.64 | 0.251
0.341
0.335 | **Remark** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. C 190 C 191 # BEARINGS TABLE **NSK** ## Bore Diameter 30 - 35 mm **SINGLE-ROW TAPERED ROLLER BEARINGS** ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | # Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}\!>\!0.5F_{\rm r}\!+\!Y_0F_{\rm a}$, use $P_0\!=\!F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | $\overline{}$ | | |---------------|---| | | L | | | | Boun | dary Dimens
(mm) | ions | 0 | 0 | Basic Loa | d Ratings | Limiting
(mi | | D . N . | ISO355 | | | Abutm | | d Fillet D | imensi | ons | 0 0 | Eff. Load
Çenters | Constant | | Load
tors | Mass
(kg) | |----|----------------------|----------------------------------|----------------------|------------------------|--------------------------|--------------------------|--------------------------------------|---------------------------------------|----------------------------------|----------------------------------|--|--------------------------------|----------------------|----------------------|------------------------|----------------------|------------------------|------------------|----------------------|---|------------------------------|------------------------------|----------------------------|-----------------------------|----------------------------------| | d | D | T | В | C | Cone
1
mi | Cup
r
in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $\max_{\text{max.}} D$ | a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cup γ_a max. | (mm)
a | e | <i>Y</i> ₁ | Y_0 | approx. | | 30 | 47
55
55 | 12
17
20 | 12
17
20 | 9
13
16 | 0.3
1
1 | 0.3
1
1 | 17 600
36 000
42 000 | 24 400
44 500
54 000 | 7 500
6 700
6 700 | 10 000
9 000
9 000 | HR 32906 J
HR 32006 XJ
HR 33006 J | 2BD
4CC
2CE | 34
39
39 | 34
35
35 | 44
49
49 | 42
47
48 | 44
53
52 | 3
3
3 | 3
4
4 | 0.3 0.3
1 1
1 1 | 9.2
13.5
13.1 | 0.32
0.43
0.29 | 1.9
1.4
2.1 | 1.0
0.77
1.1 | 0.074
0.172
0.208 | | | 62
62
62 | 17.25
17.25
21.25 | 16
16
20 | 14
12
17 | 1
1
1 | 1
1
1 | 43 000
35 500
52 000 | 47 500
37 000
60 000 | 6 000
5 600
6 000 | 8 000
7 500
8 500 | HR 30206 J
HR 30206 C
HR 32206 J | 3DB
—
3DC | 39
39
39 | 37
36
36 | 56
56
56 | 52
49
51 | 58
59
58.5 | 2
2
2 | 3
5
4 | 1 1
1 1
1 1 | 13.9
17.8
15.4 | 0.37
0.68
0.37 | 1.6
0.88
1.6 | 0.88
0.49
0.88 | 0.238
0.221
0.297 | | | 62
62
72
72 | 21.25
25
20.75
20.75 | 20
25
19
19 | 16
19.5
16
14 | 1
1
1.5
1.5 | 1
1
1.5
1.5 | 48 000
66 500
59 500
56 500 | 56 000
79 500
60 000
55 500 | 6 000
6 000
5 300
5 300 | 8 000
8 000
7 500
7 100 | HR 32206 C
HR 33206 J
HR 30306 J
HR 30306 C | 2DE
2FB | 39
39
41
41 | 35
35
40
38 | 56
56
63
63 | 48
52
62
59 | 59
59.5
66
67 | 2
5
3
3 | 4.5 | 1 1
1 1
1.5 1.5
1.5 1.5 | 17.8
16.1
15.1
18.5 | 0.55
0.34
0.32
0.55 | 1.1
1.8
1.9
1.1 | 0.60
0.97
1.1
0.60 | 0.293
0.355
0.403
0.383 | | | 72
72
72
72 | 20.75
20.75
28.75
28.75 | 19
19
27
27 | 14
14
23
23 | 1.5
1.5
1.5
1.5 | 1.5
1.5
1.5
1.5 | 49 000
49 000
80 000
76 000 | 52 500
52 500
88 500
86 500 | 4 800
4 800
5 600
5 600 | 6 700
6 800
7 500
7 500 | HR 30306 DJ
HR 31306 J
HR 32306 J
HR 32306 CJ | (7FB)
7FB
2FD
5FD | 44
44
43
43 | 40
40
38
36 | 63
63
63 | 55
55
59
54 | 68
68
66
68 | 3
3
3 | 6.5
5.5 | 1.5 1.5
1.5 1.5
1.5 1.5
1.5 1.5 | 23.1
23.1
18.0
22.0 | | 0.73
0.73
1.9
1.1 | 0.40
0.40
1.1
0.60 | 0.393
0.393
0.57
0.583 | | 32 | 58
58
65
65 | 17
21
18.25
18.25 | 17
20
17
17 | 13
16
15
14 | 1
1
1 | 1
1
1 | 37 500
41 000
48 500
45 500 | 47 000
50 000
54 000
52 500 | 6 300
6 300
5 600
5 600 | 8 500
8 500
8 000
7 500 | HR 320/32 XJ
330/32
HR 302/32
HR 302/32 C | 4CC
—
— | 41
41
41
41 | 37
37
39
39 | 52
52
59
59 | 49
50
56
54 | 55
55
61
62 | 3
2
3
3 | 4
4
3
4 | 1 1
1 1
1 1
1 1 | 14.2
13.8
14.7
16.9 | 0.45
0.31
0.37
0.55 | 1.3
1.9
1.6
1.1 | 0.73
1.1
0.88
0.60 | 0.191
0.225
0.277
0.273 | | | 65
65
65
75 | 22.25
22.25
26
21.75 | 21
21
26
20 | 18
17
20.5
17 | 1
1
1
1.5 | 1
1
1
1.5 | 56 000
49 500
70 000
56 000 | 65 000
60 000
86 500
56 000 | 6 000
5 600
5 600
5 300 | 8 000
7 500
8 000
7 100 | HR 322/32
HR 322/32 C
HR 332/32 J
303/32 | _
2DE
_ | 41
41
41
44 | 38
39
38
42 | 59
59
59
66 | 54
51
55
64 | 61
62
62
68 | 3
3
5
3 | 4
5
5.5
4.5 | 1 1
1 1
1 1
1.5 1.5 | 15.9
20.2
17.0
15.9 | 0.37
0.59
0.35
0.33 | 1.6
1.0
1.7
1.8 | 0.88
0.56
0.95
1.0 | 0.336
0.335
0.40
0.435 | | 35 | 55
62
62 | 14
18
21 | 14
18
21 | 11.5
14
17 | 0.6
1
1 | 0.6
1
1 | 27 400
43 500
49 000 | 39 000
55 500
65 000 | 6 300
5 600
5 600 | 8 500
8 000
8 000 | HR 32907 J
HR 32007 XJ
HR 33007 J | 2BD
4CC
2CE | 43
44
44 | 40
40
40 | 50
56
56 | 50
54
55 | 52.5
60
59 | 3
4
4 | 2.5
4
4 | 0.6 0.6
1 1
1 1 | 10.7
15.0
14.1 | 0.29
0.45
0.31 | 2.1
1.3
2.0 | 1.1
0.73
1.1 | 0.123
0.229
0.267 | | | 72
72
72 | 18.25
18.25
24.25 | 17
17
23 | 15
13
19 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 54 000
47 000
70 500 | 59 500
54 500
83 500 | 5 300
5 000
5 300 | 7 100
6 700
7 100 | HR 30207 J
HR 30207 C
HR 32207 J | 3DB
—
3DC | 46
46
46 | 43
44
42 | 63
63
63 | 62
59
61 | 67
68
67.5 | 3
3
3 | 3
5
5 | 1.5 1.5
1.5 1.5
1.5 1.5 | 15.0
19.6
17.9 | 0.37
0.66
0.37 | 1.6
0.91
1.6 | 0.88
0.50
0.88 | 0.34
0.331
0.456 | | | 72
72
80 | 24.25
28
22.75 | 23
28
21 | 18
22
18 | 1.5
1.5
2 | 1.5
1.5
1.5 | 60 500
86 500
76 000 | 71 500
108 000
79 000 | 5 000
5 300
4 800 | 7 100
7 100
6 700 | HR 32207 C
HR 33207 J
HR 30307 J | 2DE
2FB | 46
46
47 | 42
41
45 | 63
63
71 | 58
61
69 | 68.5
68
74 | 3
5
3 | 6
6
4.5 | 1.5 1.5
1.5 1.5
2 1.5 | 20.6
18.3
16.7 | 0.55
0.35
0.32 | 1.1
1.7
1.9 | 0.60
0.93
1.1 | 0.442
0.54
0.538 | | | 80
80
80 | 22.75
22.75
22.75
32.75 | 21
21
21
31 | 16
15
15
25 | 2
2
2
2 | 1.5
1.5
1.5
1.5 | 68 000
62 000
62 000
99 000 | 70 500
68 000
68 000
111 000 | 4 800
4 300
4 300
5 000 | 6 300
6 000
6 000
6 700 | HR 30307 C
HR 30307 DJ
HR 31307 J
HR 32307 J | —
7FB
7FB
2FE | 47
51
51
49 | 44
44
44
43 | 71
71
71
71 | 65
62
62
66 | 74
77
77
74 | 3
3
3
3 | 7.5
7.5 | 2 1.5
2 1.5
2 1.5
2 1.5
2 1.5 | 20.3
25.2
25.2
20.7 | 0.55
0.83
0.83
0.32 | 1.1
0.73
0.73
1.9 | 0.60
0.40
0.40
1.1 | 0.518
0.519
0.52
0.765 | **Remark** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. C 192 C 193 # **SINGLE-ROW TAPERED ROLLER BEARINGS** ## Bore Diameter 40 - 50 mm ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | | | | |---------------|------------|---------------
-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | # Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of \emph{e} , \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | | | Boun | dary Dimensi
(mm) | ions | | | Basic Loa | d Ratings | Limiting
(mir | | | ISO355 | | | Abutm | | d Fillet [
(mm) |)imensi | ions | | Eff. Load
Centers | Constant | | l Load
ctors | Mass
(kg) | |----|----------------------|----------------------------------|----------------------|----------------------|-------------------|--------------------------|---------------------------------------|---------------------------------------|----------------------------------|----------------------------------|---|--------------------------------|----------------------|----------------------|------------------------|------------------------|----------------------|-----------------------|-----------------|---|------------------------------|------------------------------|----------------------------|------------------------------|---------------------------------| | d | D | T | В | C | Cone
7
m | Cup
r
in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $\max_{\text{max.}} L$ |) _a
min. | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | Cone Cup
$\boldsymbol{r}_{\mathrm{a}}$
max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 40 | 62 | 15 | 15 | 12 | 0.6 | 0.6 | 34 000 | 47 000 | 5 600 | 7 500 | HR 32908 J | 2BC | 48 | 44 | 57 | 57 | 59 | 3 | 3 | 0.6 0.6 | 11.5 | 0.29 | 2.1 | 1.1 | 0.161 | | | 68 | 19 | 19 | 14.5 | 1 | 1 | 53 000 | 71 000 | 5 300 | 7 100 | HR 32008 XJ | 3CD | 49 | 45 | 62 | 60 | 65.5 | 4 | 4.5 | 1 1 | 15.0 | 0.38 | 1.6 | 0.87 | 0.28 | | | 68 | 22 | 22 | 18 | 1 | 1 | 59 000 | 81 500 | 5 300 | 7 100 | HR 33008 J | 2BE | 49 | 45 | 62 | 61 | 65 | 4 | 4 | 1 1 | 14.6 | 0.28 | 2.1 | 1.2 | 0.322 | | | 75 | 26 | 26 | 20.5 | 1.5 | 1.5 | 78 500 | 101 000 | 4 800 | 6 700 | HR 33108 J | 2CE | 51 | 46 | 66 | 65 | 71 | 4 | 5.5 | 1.5 1.5 | 18.0 | 0.36 | 1.7 | 0.93 | 0.503 | | | 80 | 19.75 | 18 | 16 | 1.5 | 1.5 | 63 500 | 70 000 | 4 800 | 6 300 | HR 30208 J | 3DB | 51 | 48 | 71 | 69 | 75 | 3 | 3.5 | 1.5 1.5 | 16.6 | 0.37 | 1.6 | 0.88 | 0.437 | | | 80 | 24.75 | 23 | 19 | 1.5 | 1.5 | 77 000 | 90 500 | 4 800 | 6 300 | HR 32208 J | 3DC | 51 | 48 | 71 | 68 | 75 | 3 | 5.5 | 1.5 1.5 | 18.9 | 0.37 | 1.6 | 0.88 | 0.548 | | | 80 | 24.75 | 23 | 19 | 1.5 | 1.5 | 74 000 | 90 500 | 4 500 | 6 300 | HR 32208 CJ | 5DC | 51 | 47 | 71 | 65 | 76 | 3 | 5.5 | 1.5 1.5 | 21.9 | 0.55 | 1.1 | 0.60 | 0.558 | | | 80 | 32 | 32 | 25 | 1.5 | 1.5 | 107 000 | 137 000 | 4 800 | 6 300 | HR 33208 J | 2DE | 51 | 46 | 71 | 67 | 76 | 5 | 7 | 1.5 1.5 | 20.8 | 0.36 | 1.7 | 0.92 | 0.744 | | | 90 | 25.25 | 23 | 20 | 2 | 1.5 | 90 500 | 101 000 | 4 300 | 5 600 | HR 30308 J | 2FB | 52 | 52 | 81 | 76 | 82 | 3 | 5 | 2 1.5 | 19.5 | 0.35 | 1.7 | 0.96 | 0.758 | | | 90
90
90
90 | 25.25
25.25
25.25
35.25 | 23
23
23
33 | 18
17
17
27 | 2
2
2
2 | 1.5
1.5
1.5
1.5 | 84 500
80 000
80 000
120 000 | 93 500
89 500
89 500
145 000 | 4 300
3 800
3 800
4 300 | 5 600
5 300
5 300
6 000 | HR 30308 C
HR 30308 DJ
HR 31308 J
HR 32308 J | 7FB
7FB
2FD | 52
56
56
54 | 50
50
50
50 | 81
81
81 | 72
70
70
73 | 84
87
87
82 | 3 3 3 | 7
8
8 | 2 1.5
2 1.5
2 1.5
2 1.5
2 1.5 | 22.8
28.7
28.7
23.4 | 0.53
0.83
0.83
0.35 | 1.1
0.73
0.73
1.7 | 0.62
0.40
0.40
0.96 | 0.735
0.728
0.728
1.05 | | 45 | 68 | 15 | 15 | 12 | 0.6 | 0.6 | 34 500 | 50 500 | 5 000 | 6 700 | HR 32909 J | 2BC | 53 | 50 | 63 | 62 | 64 | 3 | 3 | 0.6 0.6 | 12.3 | 0.32 | 1.9 | 1.0 | 0.187 | | | 75 | 20 | 20 | 15.5 | 1 | 1 | 60 000 | 83 000 | 4 500 | 6 300 | HR 32009 XJ | 3CC | 54 | 51 | 69 | 67 | 72 | 4 | 4.5 | 1 1 | 16.6 | 0.39 | 1.5 | 0.84 | 0.354 | | | 75 | 24 | 24 | 19 | 1 | 1 | 69 000 | 99 000 | 4 800 | 6 300 | HR 33009 J | 2CE | 54 | 51 | 69 | 67 | 71 | 4 | 5 | 1 1 | 16.3 | 0.29 | 2.0 | 1.1 | 0.414 | | | 80 | 26 | 26 | 20.5 | 1.5 | 1.5 | 84 000 | 113 000 | 4 500 | 6 000 | HR 33109 J | 3CE | 56 | 51 | 71 | 69 | 77 | 4 | 5.5 | 1.5 1.5 | 19.1 | 0.38 | 1.6 | 0.86 | 0.552 | | | 85 | 20.75 | 19 | 16 | 1.5 | 1.5 | 68 500 | 79 500 | 4 300 | 6 000 | HR 30209 J | 3DB | 56 | 53 | 76 | 74 | 80 | 3 | 4.5 | 1.5 1.5 | 18.3 | 0.41 | 1.5 | 0.81 | 0.488 | | | 85 | 24.75 | 23 | 19 | 1.5 | 1.5 | 83 000 | 102 000 | 4 300 | 6 000 | HR 32209 J | 3DC | 56 | 53 | 76 | 73 | 81 | 3 | 5.5 | 1.5 1.5 | 20.1 | 0.41 | 1.5 | 0.81 | 0.602 | | | 85 | 24.75 | 23 | 19 | 1.5 | 1.5 | 75 500 | 95 500 | 4 300 | 5 600 | HR 32209 CJ | 5DC | 56 | 52 | 76 | 70 | 82 | 3 | 5.5 | 1.5 1.5 | 23.6 | 0.59 | 1.0 | 0.56 | 0.603 | | | 85 | 32 | 32 | 25 | 1.5 | 1.5 | 111 000 | 147 000 | 4 300 | 6 000 | HR 33209 J | 3DE | 56 | 51 | 76 | 72 | 81 | 5 | 7 | 1.5 1.5 | 22.0 | 0.39 | 1.6 | 0.86 | 0.817 | | | 95 | 29 | 26.5 | 20 | 2.5 | 2.5 | 88 500 | 109 000 | 3 600 | 5 000 | T 7 FC045 | 7FC | 60 | 53 | 83 | 71 | 91 | 3 | 9 | 2 2 | 32.1 | 0.87 | 0.69 | 0.38 | 0.918 | | | 95 | 36 | 35 | 30 | 2.5 | 2.5 | 139 000 | 174 000 | 4 000 | 5 300 | T 2 ED045 | 2ED | 60 | 54 | 83 | 79 | 89 | 5 | 6 | 2 2 | 23.5 | 0.32 | 1.9 | 1.02 | 1.22 | | | 100 | 27.25 | 25 | 22 | 2 | 1.5 | 112 000 | 127 000 | 3 800 | 5 300 | HR 30309 J | 2FB | 57 | 58 | 91 | 86 | 93 | 3 | 5 | 2 1.5 | 21.1 | 0.35 | 1.7 | 0.96 | 1.01 | | | 100 | 27.25 | 25 | 18 | 2 | 1.5 | 95 500 | 109 000 | 3 400 | 4 800 | HR 30309 DJ | 7FB | 61 | 57 | 91 | 79 | 96 | 3 | 9 | 2 1.5 | 31.5 | 0.83 | 0.73 | 0.40 | 0.957 | | | 100
100 | 27.25
38.25 | 25
36 | 18
30 | 2 2 | 1.5
1.5 | 95 500
144 000 | 109 000
177 000 | 3 400
3 800 | 4 800
5 300 | HR 31309 J
HR 32309 J | 7FB
2FD | 61
59 | 57
56 | 91
91 | 79
82 | 96
93 | 3 | 9 | 2 1.5
2 1.5 | 31.5
25.0 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 0.947
1.42 | | 50 | 100
72
80 | 36
15
20 | 35
15
20 | 30
12
15.5 | 2.5
0.6
1 | 2.5
0.6
1 | 144 000
36 000
61 000 | 185 000
54 000
87 000 | 3 800
4 500
4 300 | 5 000
6 300
6 000 | T 2 ED050
HR 32910 J
HR 32010 XJ | 2ED
2BC
3CC | 65
58
59 | 59
54
56 | 88
67
74 | 83
66
71 | 94
69
77 | 6
3
4 | 6
3
4.5 | 2
0.6
0.6
1 | 24.2
13.5
17.9 | 0.34
0.34
0.42 | 1.8
1.8
1.4 | 0.96
0.97
0.78 | 1.3
0.193
0.38 | | | 80 | 24 | 24 | 19 | 1 | 1 | 70 500 | 104 000 | 4 300 | 6 000 | HR 33010 J | 2CE | 59 | 55 | 74 | 71 | 76 | 4 | 5 | 1 1 | 17.4 | 0.32 | 1.9 | 1.0 | 0.452 | | | 85 | 26 | 26 | 20 | 1.5 | 1.5 | 89 000 | 126 000 | 4 300 | 5 600 | HR 33110 J | 3CE | 61 | 56 | 76 | 74 | 82 | 4 | 6 | 1.5 1.5 | 20.3 | 0.41 | 1.5 | 0.8 | 0.597 | | | 90 | 21.75 | 20 | 17 | 1.5 | 1.5 | 76 000 | 91 500 | 4 000 | 5 300 | HR 30210 J | 3DB | 61 | 58 | 81 | 79 | 85 | 3 | 4.5 | 1.5 1.5 | 19.6 | 0.42 | 1.4 | 0.79 | 0.557 | | | 90 | 24.75 | 23 | 19 | 1.5 | 1.5 | 87 500 | 109 000 | 4 000 | 5 300 | HR 32210 J | 3DC | 61 | 57 | 81 | 78 | 86 | 3 | 5.5 | 1.5 1.5 | 21.0 | 0.42 | 1.4 | 0.79 | 0.642 | | | 90 | 24.75 | 23 | 18 | 1.5 | 1.5 | 77 500 | 102 000 | 3 800 | 5 300 | HR 32210 CJ | 5DC | 61 | 58 | 81 | 76 | 87 | 3 | 6.5 | 1.5 1.5 | 24.6 | 0.59 | 1.0 | 0.56 | 0.655 | | | 90 | 32 | 32 | 24.5 | 1.5 | 1.5 | 118 000 | 165 000 | 4 000 | 5 300 | HR 33210 J | 3DE | 61 | 56 | 81 | 76 | 87 | 5 | 7.5 | 1.5 1.5 | 23.2 | 0.41 | 1.5 | 0.80 | 0.867 | | | 105
110
110 | 32
29.25
29.25 | 29
27
27 | 22
23
19 | 3
2.5
2.5 | 3
2
2 | 109 000
130 000
114 000 | 133 000
148 000
132 000 | 3 200
3 400
3 200 | 4 500
4 800
4 300 | T 7 FC050
HR 30310 J
HR 30310 DJ | 7FC
2FB
7FB | 74
65
70 | 59
65
62 | 91
100
100 | 95 | 100
102
105 | 5
3
3 | 10
6
10 | 2.5 2.5
2 2
2 2 | 36.4
23.1
34.3 | 0.87
0.35
0.83 | 0.69
1.7
0.73 | 0.38
0.96
0.40 | 1.22
1.28
1.26 | | | 110
110
110 | 29.25
42.25
42.25 | 27
40
40 | 19
33
33 | 2.5
2.5
2.5 | 2
2
2 | 114 000
176 000
164 000 | 132 000
220 000
218 000 | 3 200
3 600
3 400 | 4 300
4 800
4 800 | HR 31310 J
HR 32310 J
HR 32310 CJ | 7FB
2FD
5FD | 70
68
68 | 62
62
59 | 100
100
100 | 87
91 | 105
102
103 | 3
3
3 | 10
9
9 | 2 2
2 2
2 2 | 34.3
28.0
32.8 | 0.83
0.35
0.55 | 0.73
1.7
1.1 | 0.40
0.96
0.60 | 1.26
1.88
1.93 | **Remark** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. C 194 C 195 # **SINGLE-ROW TAPERED ROLLER BEARINGS** ## Bore Diameter 55 - 65 mm ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $r_{\rm r} > e$ | | | | | |---------------|------------|---------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | # Static Equivalent Load $P_0 = 0.5F_r + Y_0F_a$ When $F_{\rm r} > 0.5F_{\rm r} + Y_0 F_{\rm a}$, use $P_0 = F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | | | Boun | dary Dimensi
(mm) | ions | 0 | 0 | Basic Loa | d Ratings
N) | Limiting (| | D : N . | ISO355 | | | Abutm | ent and | Fillet [
mm) | Dimens | ions | | Eff. Load
Centers | Constant | | Load
ctors | Mass
(kg) | |----|--------------------------|------------------------------|----------------------|----------------------
--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|--|--------------------------------|----------------------|-----------------|--------------------------|----------------------------------|-----------------|-----------------------|------------------------------|--|------------------------------|------------------------------|----------------------------|------------------------------|------------------------------| | d | D | T | В | С | Cone
1
mi | r | $C_{\rm r}$ | C_{0r} | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | Cone Cup \mathcal{Y}_{a} max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 55 | 80
90
90 | 17
23
27 | 17
23
27 | 14
17.5
21 | 1
1.5
1.5 | 1
1.5
1.5 | 45 500
81 500
91 500 | 74 500
117 000
138 000 | 4 300
3 800
3 800 | 5 600
5 300
5 300 | HR 32911 J
HR 32011 XJ
HR 33011 J | 2BC
3CC
2CE | 64
66
66 | 60
62
62 | 74
81
81 | 80 | 76
86
86 | 4
4
5 | 3
5.5
6 | 1 1
1.5 1.5
1.5 1.5 | 14.6
19.7
19.2 | 0.31
0.41
0.31 | 1.9
1.5
1.9 | 1.1
0.81
1.1 | 0.282
0.568
0.657 | | | 95
100
100 | 30
22.75
26.75 | 30
21
25 | 23
18
21 | 1.5
2
2 | 1.5
1.5
1.5 | 112 000
94 500
110 000 | 158 000
113 000
137 000 | 3 800
3 600
3 600 | 5 000
5 000
5 000 | HR 33111 J
HR 30211 J
HR 32211 J | 3CE
3DB
3DC | 66
67
67 | 62
64
63 | 86
91
91 | 89 | 91
94
95 | 5
4
4 | 7
4.5
5.5 | 1.5 1.5
2 1.5
2 1.5 | 22.4
20.9
22.7 | 0.37
0.41
0.41 | 1.6
1.5
1.5 | 0.88
0.81
0.81 | 0.877
0.736
0.859 | | | 100
115
120 | 35
34
31.5 | 35
31
29 | 27
23.5
25 | 2
3
2.5 | 1.5
3
2 | 141 000
126 000
150 000 | 193 000
164 000
171 000 | 3 600
3 000
3 200 | 5 000
4 300
4 300 | HR 33211 J
T 7 FC055
HR 30311 J | 3DE
7FC
2FB | 67
73
70 | 62
66
71 | 91
101
110 | | 96
09
11 | 6
4
4 | 8
10.5
6.5 | 2 1.5
2.5 2.5
2 2 | 25.2
39.0
24.6 | 0.40
0.87
0.35 | 1.5
0.69
1.7 | 0.83
0.38
0.96 | 1.18
1.58
1.63 | | | 120
120
120
120 | 31.5
31.5
45.5
45.5 | 29
29
43
43 | 21
21
35
35 | 2.5
2.5
2.5
2.5 | 2
2
2
2 | 131 000
131 000
204 000
195 000 | 153 000
153 000
258 000
262 000 | 2 800
2 800
3 200
3 200 | 4 000
4 000
4 300
4 300 | HR 30311 DJ
HR 31311 J
HR 32311 J
HR 32311 CJ | 7FB
7FB
2FD
5FD | 75
75
73
73 | | 110
110
110
110 | 94 1
94 1
99 1
91 1 | 14
11 | 4
4
4
4 | 10.5
10.5
10.5
10.5 | 2 2
2 2
2 2
2 2 | 37.0
37.0
29.9
35.8 | 0.83
0.83
0.35
0.55 | 0.73
0.73
1.7
1.1 | 0.40
0.40
0.96
0.60 | 1.58
1.58
2.39
2.47 | | 60 | 85
95
95 | 17
23
27 | 17
23
27 | 14
17.5
21 | 1
1.5
1.5 | 1
1.5
1.5 | 49 000
85 500
96 000 | 84 500
127 000
150 000 | 3 800
3 600
3 600 | 5 300
5 000
5 000 | HR 32912 J
HR 32012 XJ
HR 33012 J | 2BC
4CC
2CE | 69
71
71 | 65
66
66 | 79
86
86 | 85 | 81
91
90 | 4
4
5 | 3
5.5
6 | 1 1
1.5 1.5
1.5 1.5 | 15.5
20.9
20.0 | 0.33
0.43
0.33 | 1.8
1.4
1.8 | 1.0
0.77
1.0 | 0.306
0.608
0.713 | | | 100
110
110 | 30
23.75
29.75 | 30
22
28 | 23
19
24 | 1.5
2
2 | 1.5
1.5
1.5 | 115 000
104 000
131 000 | 166 000
123 000
167 000 | 3 400
3 400
3 400 | 4 800
4 500
4 500 | HR 33112 J
HR 30212 J
HR 32212 J | 3CE
3EB
3EC | 71
72
72 | 68
69
68 | 91
101
101 | | 96
03
04 | 5
4
4 | 7
4.5
5.5 | 1.5 1.5
2 1.5
2 1.5 | 23.6
22.0
24.1 | 0.40
0.41
0.41 | 1.5
1.5
1.5 | 0.83
0.81
0.81 | 0.91
0.930
1.18 | | | 110
125
130 | 38
37
33.5 | 38
33.5
31 | 29
26
26 | 2
3
3 | 1.5
3
2.5 | 166 000
151 000
174 000 | 231 000
197 000
201 000 | 3 400
2 800
3 000 | 4 500
3 800
4 000 | HR 33212 J
T 7 FC060
HR 30312 J | 3EE
7FC
2FB | 72
78
78 | | 101
111
118 | 94 1
94 1
112 1 | 19 | 6
4
4 | 9
11
7.5 | 2 1.5
2.5 2.5
2.5 2 | 27.6
41.4
26.0 | 0.40
0.82
0.35 | 1.5
0.73
1.7 | 0.82
0.40
0.96 | 1.56
2.03
2.03 | | | 130
130
130
130 | 33.5
33.5
48.5
48.5 | 31
31
46
46 | 22
22
37
35 | 3
3
3 | 2.5
2.5
2.5
2.5 | 151 000
151 000
233 000
196 000 | 177 000
177 000
295 000
249 000 | 2 600
2 600
3 000
2 800 | 3 800
3 800
4 000
3 800 | HR 30312 DJ
HR 31312 J
HR 32312 J
32312 C | 7FB
7FB
2FD | 84
84
81
81 | 74
74 | 118
118
118
116 | 103 1
103 1
107 1
102 1 | 25
20 | 4
4
4 | 11.5
11.5
11.5
13.5 | 2.5 2
2.5 2
2.5 2
2.5 2 | 40.3
40.3
31.4
39.9 | 0.83
0.83
0.35
0.58 | 0.73
0.73
1.7
1.0 | 0.40
0.40
0.96
0.57 | 1.98
1.98
2.96
2.86 | | 65 | 90
100
100 | 17
23
27 | 17
23
27 | 14
17.5
21 | 1
1.5
1.5 | 1
1.5
1.5 | 49 000
86 500
97 500 | 86 500
132 000
156 000 | 3 600
3 400
3 400 | 5 000
4 500
4 500 | HR 32913 J
HR 32013 XJ
HR 33013 J | 2BC
4CC
2CE | 74
76
76 | 70
71
71 | 84
91
91 | 90 | 86
97
96 | 4
4
5 | 3
5.5
6 | 1 1
1.5 1.5
1.5 1.5 | 16.8
22.4
21.1 | 0.35
0.46
0.35 | 1.7
1.3
1.7 | 0.93
0.72
0.95 | 0.323
0.646
0.76 | | | 110
120
120 | 34
24.75
32.75 | 34
23
31 | 26.5
20
27 | 1.5
2
2 | 1.5
1.5
1.5 | 148 000
122 000
157 000 | 218 000
151 000
202 000 | 3 200
3 000
3 000 | 4 300
4 000
4 000 | HR 33113 J
HR 30213 J
HR 32213 J | 3DE
3EB
3EC | 76
77
77 | 73
78
75 | 101
111
111 | 96 1
106 1
104 1 | | 6
4
4 | 7.5
4.5
5.5 | 1.5 1.5
2 1.5
2 1.5 | 26.0
23.8
27.1 | 0.39
0.41
0.41 | 1.5
1.5
1.5 | 0.85
0.81
0.81 | 1.32
1.18
1.55 | | | 120
140
140 | 41
36
36 | 41
33
33 | 32
28
23 | 2
3
3 | 1.5
2.5
2.5 | 202 000
200 000
173 000 | 282 000
233 000
205 000 | 3 000
2 600
2 400 | 4 000
3 600
3 400 | HR 33213 J
HR 30313 J
HR 30313 DJ | 3EE
2GB
7GB | 77
83
89 | 74
83
80 | 111
128
128 | 102 1
121 1
111 1 | 30 | 6
4
4 | 9
8
13 | 2 1.5
2.5 2
2.5 2 | 29.2
27.9
43.2 | 0.39
0.35
0.83 | 1.5
1.7
0.73 | 0.85
0.96
0.40 | 2.04
2.51
2.43 | | | 140
140 | 36
51 | 33
48 | 23
39 | 3
3 | 2.5
2.5 | 173 000
267 000 | 205 000
340 000 | 2 400
2 800 | 3 400
3 800 | HR 31313 J
HR 32313 J | 7GB
2GD | 89
86 | | 128
128 | 111 1
116 1 | | 4
4 | 13
12 | 2.5 2
2.5 2 | 43.2
34.0 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 2.43
3.6 | **Remark** The suffix C represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix C. C 197 C 196 # ■ SINGLE-ROW TAPERED ROLLER BEARINGS # Bore Diameter 70 – 80 mm ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $r_{\rm r} > e$ | | | | | |---------------|------------|---------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of e, Y_1 , and Y_0 are | | | 0. 0, 2 | 1, | |-------|--------|---------|--------| | given | in the | table | below. | | | | Bour | ndary Dimensi
(mm) | ons | Cana | Cun | Basic Loa | nd Ratings | Limiting (| | Danis North | ISO355 | | | Abutm | ent and Fillet
(mm) | Dimens | sions | 0 | Eff. Load
Centers | Constant | Axial
Fact | | Mass
(kg) | |----|--------------------------|----------------------|-----------------------|----------------------|-----------------|--------------------------|--|--|----------------------------------|----------------------------------|--|--------------------------------|----------------------|----------------------|--------------------------|--|-----------------|----------------------|----------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|------------------------------| | d | D | T | B | С | Cone
m | r | $C_{\rm r}$ | C_{0r} | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $\max_{\text{max.}} L$ | $D_{ m a}$ $D_{ m b}$ min. min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cup r_a max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 70 | 100 | 20 | 20 | 16 | 1 | 1 | 70 000 | 113 000 | 3 200 | 4 500 | HR 32914 J | 2BC | 79 | 76 | 94 | 93 96 | 4 | 4 | 1 1 | 17.6 | 0.32 | 1.9 | 1.1 | 0.494 | | | 110 | 25 | 25 | 19 | 1.5 | 1.5 | 104 000 | 158 000 | 3 200 | 4 300 | HR 32014 XJ | 4CC | 81 | 77 | 101 | 98 105 | 5
 6 | 1.5 1.5 | 23.7 | 0.43 | 1.4 | 0.76 | 0.869 | | | 110 | 31 | 31 | 25.5 | 1.5 | 1.5 | 127 000 | 204 000 | 3 000 | 4 300 | HR 33014 J | 2CE | 81 | 78 | 101 | 100 105 | 5 | 5.5 | 1.5 1.5 | 22.2 | 0.28 | 2.1 | 1.2 | 1.11 | | | 120
125
125 | 37
26.25
33.25 | 37
24
31 | 29
21
27 | 2
2
2 | 1.5
1.5
1.5 | 177 000
132 000
157 000 | 262 000
163 000
205 000 | 3 000
2 800
2 800 | 4 000
4 000
4 000 | HR 33114 J
HR 30214 J
HR 32214 J | 3DE
3EB
3EC | 82
82
82 | | 111
116
116 | 104 115
110 118
108 119 | 6
4
4 | 8
5
6 | 2 1.5
2 1.5
2 1.5 | 27.9
25.6
28.6 | 0.38
0.42
0.42 | 1.6
1.4
1.4 | 0.87
0.79
0.79 | 1.71
1.3
1.66 | | | 125 | 41 | 41 | 32 | 2 | 1.5 | 209 000 | 299 000 | 2 800 | 4 000 | HR 33214 J | 3EE | 82 | 78 | 116 | 107 120 | 7 | 9 | 2 1.5 | 30.4 | 0.41 | 1.5 | 0.81 | 2.15 | | | 140 | 39 | 35.5 | 27 | 3 | 3 | 177 000 | 229 000 | 2 400 | 3 400 | T 7 FC070 | 7FC | 88 | 79 | 126 | 106 133 | 5 | 12 | 2.5 2.5 | 46.4 | 0.87 | 0.69 | 0.38 | 2.55 | | | 150 | 38 | 35 | 30 | 3 | 2.5 | 227 000 | 268 000 | 2 400 | 3 400 | HR 30314 J | 2GB | 88 | 89 | 138 | 132 140 | 4 | 8 | 2.5 2 | 29.7 | 0.35 | 1.7 | 0.96 | 3.03 | | | 150
150
150
150 | 38
38
54
54 | 35
35
51
51 | 25
25
42
42 | 3
3
3 | 2.5
2.5
2.5
2.5 | 192 000
192 000
300 000
280 000 | 229 000
229 000
390 000
390 000 | 2 200
2 200
2 600
2 400 | 3 200
3 200
3 400
3 400 | HR 30314 DJ
HR 31314 J
HR 32314 J
HR 32314 CJ | 7GB
7GB
2GD
5GD | 94
94
91
91 | 85
85
86
84 | 138
138
138
138 | 118 142
118 142
124 140
115 141 | 4
4
4 | 13
13
12
12 | 2.5 2
2.5 2
2.5 2
2.5 2 | 45.8
45.8
36.1
43.3 | 0.83
0.83
0.35
0.55 | 0.73
0.73
1.7
1.1 | 0.40
0.40
0.96
0.60 | 2.94
2.94
4.35
4.47 | | 75 | 105 | 20 | 20 | 16 | 1 | 1 | 72 500 | 120 000 | 3 200 | 4 300 | HR 32915 J | 2BC | 84 | 81 | 99 | 98 101 | 4 | 4 | 1 1 | 18.7 | 0.33 | 1.8 | 0.99 | 0.53 | | | 115 | 25 | 25 | 19 | 1.5 | 1.5 | 109 000 | 171 000 | 3 000 | 4 000 | HR 32015 XJ | 4CC | 86 | 82 | 106 | 103 110 | 5 | 6 | 1.5 1.5 | 25.1 | 0.46 | 1.3 | 0.72 | 0.925 | | | 115 | 31 | 31 | 25.5 | 1.5 | 1.5 | 133 000 | 220 000 | 3 000 | 4 000 | HR 33015 J | 2CE | 86 | 83 | 106 | 104 110 | 6 | 5.5 | 1.5 1.5 | 23.0 | 0.30 | 2.0 | 1.1 | 1.18 | | | 125 | 37 | 37 | 29 | 2 | 2 | 182 000 | 275 000 | 2 800 | 3 800 | HR 33115 J | 3DE | 87 | 83 | 115 | 109 120 | 6 | 8 | 2 2 | 29.2 | 0.40 | 1.5 | 0.83 | 1.8 | | | 130 | 27.25 | 25 | 22 | 2 | 1.5 | 143 000 | 182 000 | 2 800 | 3 800 | HR 30215 J | 4DB | 87 | 85 | 121 | 115 124 | 4 | 5 | 2 1.5 | 27.0 | 0.44 | 1.4 | 0.76 | 1.43 | | | 130 | 33.25 | 31 | 27 | 2 | 1.5 | 165 000 | 219 000 | 2 800 | 3 800 | HR 32215 J | 4DC | 87 | 84 | 121 | 113 125 | 4 | 6 | 2 1.5 | 29.8 | 0.44 | 1.4 | 0.76 | 1.72 | | | 130 | 41 | 41 | 31 | 2 | 1.5 | 215 000 | 315 000 | 2 800 | 3 800 | HR 33215 J | 3EE | 87 | 83 | 121 | 111 125 | 7 | 10 | 2 1.5 | 31.6 | 0.43 | 1.4 | 0.77 | 2.25 | | | 160 | 40 | 37 | 31 | 3 | 2.5 | 253 000 | 300 000 | 2 400 | 3 200 | HR 30315 J | 2GB | 93 | 95 | 148 | 141 149 | 4 | 9 | 2.5 2 | 31.8 | 0.35 | 1.7 | 0.96 | 3.63 | | | 160 | 40 | 37 | 26 | 3 | 2.5 | 211 000 | 251 000 | 2 200 | 3 000 | HR 30315 DJ | 7GB | 99 | 91 | 148 | 129 152 | 6 | 14 | 2.5 2 | 48.8 | 0.83 | 0.73 | 0.40 | 3.47 | | | 160 | 40 | 37 | 26 | 3 | 2.5 | 211 000 | 251 000 | 2 200 | 3 000 | HR 31315 J | 7GB | 99 | 91 | 148 | 129 152 | 6 | 14 | 2.5 2 | 48.8 | 0.83 | 0.73 | 0.40 | 3.47 | | | 160 | 58 | 55 | 45 | 3 | 2.5 | 340 000 | 445 000 | 2 400 | 3 200 | HR 32315 J | 2GD | 96 | 91 | 148 | 134 149 | 4 | 13 | 2.5 2 | 38.9 | 0.35 | 1.7 | 0.96 | 5.31 | | | 160 | 58 | 55 | 43 | 3 | 2.5 | 310 000 | 420 000 | 2 200 | 3 200 | 32315 CA | — | 96 | 90 | 148 | 124 153 | 4 | 15 | 2.5 2 | 47.7 | 0.58 | 1.0 | 0.57 | 5.3 | | 80 | 110 | 20 | 20 | 16 | 1 | 1 | 75 000 | 128 000 | 3 000 | 4 000 | HR 32916 J | 2BC | 89 | 85 | 104 | 102 106 | 4 | 4 | 1 1 | 19.8 | 0.35 | 1.7 | 0.94 | 0.56 | | | 125 | 29 | 29 | 22 | 1.5 | 1.5 | 140 000 | 222 000 | 2 800 | 3 600 | HR 32016 XJ | 3CC | 91 | 89 | 116 | 112 120 | 6 | 7 | 1.5 1.5 | 26.9 | 0.42 | 1.4 | 0.78 | 1.32 | | | 125 | 36 | 36 | 29.5 | 1.5 | 1.5 | 172 000 | 282 000 | 2 800 | 3 600 | HR 33016 J | 2CE | 91 | 88 | 116 | 112 119 | 6 | 6.5 | 1.5 1.5 | 25.5 | 0.28 | 2.2 | 1.2 | 1.66 | | | 130
140
140 | 37
28.25
28.25 | 37
26
26 | 29
22
20 | 2
2.5
2.5 | 1.5
2
2 | 186 000
157 000
147 000 | 289 000
195 000
190 000 | 2 600
2 600
2 400 | 3 600
3 400
3 400 | HR 33116 J
HR 30216 J
30216 CA | 3DE
3EB | 82
95
95 | 88
91
92 | 121
130
130 | 113 126
124 132
122 133 | 6
4
4 | 8
6
8 | 2 1.5
2 2
2 2 | 30.4
28.1
33.8 | 0.42
0.42
0.58 | 1.4
1.4
1.0 | 0.79
0.79
0.57 | 1.88
1.68
1.66 | | | 140 | 35.25 | 33 | 28 | 2.5 | 2 | 192 000 | 254 000 | 2 600 | 3 400 | HR 32216 J | 3EC | 95 | 90 | 130 | 122 134 | 4 | 7 | 2 2 | 30.6 | 0.42 | 1.4 | 0.79 | 2.13 | | | 140 | 46 | 46 | 35 | 2.5 | 2 | 256 000 | 385 000 | 2 600 | 3 400 | HR 33216 J | 3EE | 95 | 89 | 130 | 119 135 | 7 | 11 | 2 2 | 34.8 | 0.43 | 1.4 | 0.78 | 2.93 | | | 170 | 42.5 | 39 | 33 | 3 | 2.5 | 276 000 | 330 000 | 2 200 | 3 000 | HR 30316 J | 2GB | 98 | 102 | 158 | 150 159 | 4 | 9.5 | 2.5 2 | 34.0 | 0.35 | 1.7 | 0.96 | 4.27 | | | 170 | 42.5 | 39 | 27 | 3 | 2.5 | 235 000 | 283 000 | 2 000 | 2 800 | HR 30316 DJ | 7GB | 104 | 97 | 158 | 136 159 | 6 | 15.5 | 2.5 2 | 51.8 | 0.83 | 0.73 | 0.40 | 4.07 | | | 170 | 42.5 | 39 | 27 | 3 | 2.5 | 235 000 | 283 000 | 2 000 | 2 800 | HR 31316 J | 7GB | 104 | 97 | 158 | 136 159 | 6 | 15.5 | 2.5 2 | 51.8 | 0.83 | 0.73 | 0.40 | 4.07 | | | 170 | 61.5 | 58 | 48 | 3 | 2.5 | 385 000 | 505 000 | 2 200 | 3 000 | HR 32316 J | 2GD | 101 | 98 | 158 | 143 159 | 4 | 13.5 | 2.5 2 | 41.4 | 0.35 | 1.7 | 0.96 | 6.35 | | | 170 | 61.5 | 58 | 48 | 3 | 2.5 | 365 000 | 530 000 | 2 200 | 3 000 | HR 32316 CJ | 5GD | 101 | 95 | 158 | 132 160 | 4 | 13.5 | 2.5 2 | 49.3 | 0.55 | 1.1 | 0.60 | 6.59 | **Remark** The suffix CA represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix CA. C 198 C 199 # ■ SINGLE-ROW TAPERED ROLLER BEARINGS # Bore Diameter 85 - 100 mm ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $r_{\rm r} > e$ | |---------------|------------|---------------|-----------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of e, Y_1 , and Y_0 are | | • • • • | | ٠. | ٠, | * I | , | |------|---------|-----|----|-----|------|------| | aive | n in | the | ta | hle | e he | wole | | | | Bour | ndary Dimensi
(mm) | ions | Cono | Cup | Basic Loa | d Ratings | Limiting S | | Dagwing Mumbaga | ISO355 | | | Abutm | ent and | Fillet Di | imensio | ons | Cana Cun | Eff. Load
Centers | Constant | Axial
Fact | | Mass
(kg) | |-----|--------------------------|------------------------------|-----------------------|----------------------|-------------------|------------------------|--|--|----------------------------------|----------------------------------|---|--------------------------------|--------------------------|--------------------------|--------------------------|-------------------------|----------------------|-----------------|------------------|----------------------------------|------------------------------|------------------------------|----------------------------|------------------------------|-----------------------------| | d | D | T | B | С | oone
1
mi | Cup
r
in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | $\max_{}$ L | | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cup
γ_a
max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 85 | 120
130
130 | 23
29
36 | 23
29
36 | 18
22
29.5 | 1.5
1.5
1.5 | 1.5
1.5
1.5 | 93 500
143 000
180 000 | 157 000
231 000
305 000 | 2 800
2 600
2 600 | 3 800
3 600
3 600 | HR 32917 J
HR 32017 XJ
HR 33017 J | 2BC
4CC
2CE | 96
96
96 | 92
94
94 | 111
121
121 | | 15
25
25 | 5
6
6 | 5
7
6.5 | 1.5 1.5
1.5 1.5
1.5 1.5 | 20.9
28.2
26.5 | 0.33
0.44
0.29 | 1.8
1.4
2.1 | 1.0
0.75
1.1 | 0.8
1.38
1.75 | | | 140
150
150 | 41
30.5
30.5 | 41
28
28 | 32
24
22 | 2.5
2.5
2.5 | 2
2
2 | 230 000
184 000
171 000 | 365 000
233 000
226 000 | 2 400
2 400
2 200 | 3 400
3 200
3 200 | HR 33117 J
HR 30217 J
30217 CA | 3DE
3EB | 100
100
100 | 94
97
98 | 130
140
140 | 122 1
133 1
131 1 | 41 | 7
5
5 | 9
6.5
8.5 | 2 2
2 2
2 2 | 32.7
30.3
36.2 | 0.41
0.42
0.58 | 1.5
1.4
1.0 | 0.81
0.79
0.57 | 2.51
2.12
2.07 | | | 150
150
180 | 38.5
49
44.5 | 36
49
41 | 30
37
34 | 2.5
2.5
4 | 2
2
3 | 210 000
281 000
310 000 | 277 000
415 000
375 000 | 2 200
2 400
2 000 | 3 200
3 200
2 800 | HR 32217 J
HR 33217 J
HR 30317 J | 3EC
3EE
2GB | 100
100
106 | 96
95
108 | 140
140
166 | 131 1
129 1
157 1 | 44 | | 12 | 2 2
2 2
3 2.5 | 33.9
37.3
35.8 | 0.42
0.42
0.35 | 1.4
1.4
1.7 | 0.79
0.79
0.96 | 2.64
3.57
5.08 | | | 180
180
180 |
44.5
44.5
63.5 | 41
41
60 | 28
28
49 | 4
4
4 | 3 3 | 261 000
261 000
410 000 | 315 000
315 000
535 000 | 1 900
1 900
2 000 | 2 600
2 600
2 800 | HR 30317 DJ
HR 31317 J
HR 32317 J | 7GB
7GB
2GD | 113
113
110 | 103
103
104 | 166
166
166 | | 69
69
67 | 6
6 | 16.5
16.5 | 3 2.5
3 2.5
3 2.5 | 55.4
55.4
43.6 | 0.83
0.83
0.35 | 0.73
0.73
1.7 | 0.40
0.40
0.96 | 4.88
4.88
7.31 | | 90 | 125
140
140 | 23
32
39 | 23
32
39 | 18
24
32.5 | 1.5
2
2 | 1.5
1.5
1.5 | 97 000
170 000
220 000 | 167 000
273 000
360 000 | 2 600
2 400
2 400 | 3 600
3 200
3 200 | HR 32918 J
HR 32018 XJ
HR 33018 J | 2BC
3CC
2CE | 101
102
102 | 97
99
99 | 116
131
131 | 116 1
124 1
129 1 | 34 | 5
6
7 | 5
8
6.5 | 1.5 1.5
2 1.5
2 1.5 | 22.0
29.7
27.9 | 0.34
0.42
0.27 | 1.8
1.4
2.2 | 0.96
0.78
1.2 | 0.838
1.78
2.21 | | | 150
160
160 | 45
32.5
42.5 | 45
30
40 | 35
26
34 | 2.5
2.5
2.5 | 2 2 2 | 259 000
201 000
256 000 | 405 000
256 000
350 000 | 2 400
2 200
2 200 | 3 200
3 000
3 000 | HR 33118 J
HR 30218 J
HR 32218 J | 3DE
3FB
3FC | 105
105
105 | 100
103
102 | 140
150
150 | 132 1
141 1 | 44
50
52 | 7
5
5 | 10
6.5
8.5 | 2 2
2 2
2 2 | 35.2
31.7
36.2 | 0.40
0.42
0.42 | 1.5
1.4
1.4 | 0.83
0.79
0.79 | 3.14
2.6
3.41 | | | 190
190
190
190 | 46.5
46.5
46.5
67.5 | 43
43
43
64 | 36
30
30
53 | 4
4
4 | 3
3
3
3 | 345 000
264 000
264 000
450 000 | 425 000
315 000
315 000
590 000 | 1 900
1 800
1 800
2 000 | 2 600
2 400
2 400
2 600 | HR 30318 J
HR 30318 DJ
HR 31318 J
HR 32318 J | 2GB
7GB
7GB
2GD | 111
118
118
115 | 114
110
110
109 | 176
176
176
176 | 152 1 | 76
79
79
77 | 6
6 | 16.5
16.5 | 3 2.5
3 2.5
3 2.5
3 2.5 | 37.3
58.7
58.7
46.5 | 0.35
0.83
0.83
0.35 | 1.7
0.73
0.73
1.7 | 0.96
0.40
0.40
0.96 | 5.91
5.52
5.52
8.6 | | 95 | 130
145
145 | 23
32
39 | 23
32
39 | 18
24
32.5 | 1.5
2
2 | 1.5
1.5
1.5 | 98 000
173 000
231 000 | 172 000
283 000
390 000 | 2 400
2 400
2 400 | 3 400
3 200
3 200 | HR 32919 J
HR 32019 XJ
HR 33019 J | 2BC
4CC
2CE | 106
107
107 | 102
104
103 | 121
136
136 | 121 1 | 25
40 | 5
6
7 | 5
8
6.5 | 1.5 1.5
2 1.5
2 1.5 | 23.2
31.2
28.6 | 0.36
0.44
0.28 | 1.7
1.4
2.2 | 0.92
0.75
1.2 | 0.877
1.88
2.3 | | | 160
170
170 | 46
34.5
45.5 | 46
32
43 | 38
27
37 | 3
3
3 | 3
2.5
2.5 | 283 000
223 000
289 000 | 445 000
286 000
400 000 | 2 200
2 200
2 200 | 3 000
2 800
2 800 | T 2 ED095
HR 30219 J
HR 32219 J | 2ED
3FB
3FC | 113
113
113 | 108
110
108 | 146
158
158 | 141 1
150 1
147 1 | 59 | 6
5
5 | 8
7.5
8.5 | 2.5 2.5
2.5 2
2.5 2 | 34.5
33.7
39.3 | 0.34
0.42
0.42 | 1.8
1.4
1.4 | 0.97
0.79
0.79 | 3.74
3.13
4.22 | | | 200
200
200 | 49.5
49.5
49.5 | 45
45
45 | 38
36
32 | 4
4
4 | 3
3
3 | 370 000
350 000
310 000 | 455 000
435 000
375 000 | 1 900
1 800
1 700 | 2 600
2 400
2 400 | HR 30319 J
30319 CA
HR 30319 DJ | 2GB
—
7GB | 116
116
123 | 119
119
115 | 186
186
186 | | 84
88
87 | 5 | 13.5 | 3 2.5
3 2.5
3 2.5 | 38.6
48.6
61.9 | 0.35
0.54
0.83 | 1.7
1.1
0.73 | 0.96
0.61
0.40 | 6.92
6.71
6.64 | | | 200
200 | 49.5
71.5 | 45
67 | 32
55 | 4
4 | 3
3 | 310 000
525 000 | 375 000
710 000 | 1 700
1 900 | 2 400
2 600 | HR 31319 J
HR 32319 J | 7GB
2GD | 123
120 | 115
115 | 186
186 | | 86 | 5 | 16.5 | 3 2.5
3 2.5 | 61.9
48.6 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 6.64
10.4 | | 100 | 140
145
150 | 25
24
32 | 25
22.5
32 | 20
17.5
24 | 1.5
3
2 | 1.5
3
1.5 | 117 000
113 000
176 000 | 205 000
163 000
294 000 | 2 200
2 200
2 200 | 3 200
3 000
3 000 | HR 32920 J
T 4 CB100
HR 32020 XJ | 2CC
4CB
4CC | 111
118
112 | 109
108
109 | 132
135
141 | | 34
42
44 | 5
6
6 | 5
6.5
8 | 1.5 1.5
2.5 2.5
2 1.5 | 24.2
30.1
32.5 | 0.33
0.47
0.46 | 1.8
1.3
1.3 | 1.0
0.70
0.72 | 1.18
1.18
1.95 | | | 150
165
180 | 39
52
37 | 39
52
34 | 32.5
40
29 | 2
2.5
3 | 1.5
2
2.5 | 235 000
315 000
255 000 | 405 000
515 000
330 000 | 2 200
2 000
2 000 | 3 000
2 800
2 600 | HR 33020 J
HR 33120 J
HR 30220 J | 2CE
3EE
3FB | 112
115
118 | 107
110
116 | 141
155
168 | 144 1 | 43
59
68 | 7
8
5 | 6.5
12
8 | 2 1.5
2 2
2.5 2 | 29.3
40.5
36.1 | 0.29
0.41
0.42 | 2.1
1.5
1.4 | 1.2
0.81
0.79 | 2.38
4.32
3.78 | | | 180
180
215 | 49
63
51.5 | 46
63
47 | 39
48
39 | 3
3
4 | 2.5
2.5
3 | 325 000
410 000
425 000 | 450 000
635 000
525 000 | 2 000
2 000
1 700 | 2 600
2 600
2 400 | HR 32220 J
HR 33220 J
HR 30320 J | 3FC
3FE
2GB | 118
118
121 | 115
113
128 | 168
168
201 | 155 1
152 1
185 1 | 72 | 10 | | 2.5 2
2.5 2
3 2.5 | 41.5
46.0
41.4 | 0.42
0.40
0.35 | 1.4
1.5
1.7 | 0.79
0.82
0.96 | 5.05
6.76
8.41 | | | 215
215 | 56.5
77.5 | 51
73 | 35
60 | 4
4 | 3
3 | 385 000
565 000 | 505 000
755 000 | 1 500
1 700 | 2 200
2 400 | HR 31320 J
HR 32320 J | 7GB
2GD | 136
125 | 125
125 | 201
201 | 169 2
178 2 | 102
100 | | | 3 2.5
3 2.5 | 67.7
53.2 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 9.02
12.7 | **Remark** The suffix CA represents medium-angle tapered roller bearings. Since they are designed for specific applications, please consult NSK when using bearings with suffix CA. C 200 C 201 # Bore Diameter 105 – 130 mm **SINGLE-ROW TAPERED ROLLER BEARINGS** ### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $r_{\rm r} > e$ | |---------------|------------|---------------|-----------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of \emph{e} , \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | | | Bound | ary Dimensio
(mm) | ns | | | Basic Load | Ratings | Limiting
(min | | | ISO355 | | | Abutn | nent an | d Fillet I | Dimens | ions | | Eff. Load
Centers | Constant | | l Load
ctors | Mass
(kg) | |-----|--------------------------|----------------------------|----------------------|----------------------|-------------------|--------------------|--|--|----------------------------------|----------------------------------|--|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------|------------------|----------------------------|----------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|-----------------------------| | d | D | T | В | С | Cone
7
m | | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | O _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cup
γ_a
max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 105 | 145
160
160 | 25
35
43 | 25
35
43 | 20
26
34 | 1.5
2.5
2.5 | 1.5
2
2 | 119 000
204 000
256 000 | 212 000
340 000
435 000 | 2 200
2 000
2 000 | 3 000
2 800
2 800 | HR 32921 J
HR 32021 XJ
HR 33021 J | 2CC
4DC
2DE | 116
120
120 | 114
115
115 | 137
150
150 | 137
144
146 | 154 | 5
6
7 | 5
9
9 | 1.5 1.5
2 2
2 2 | 25.3
34.3
30.9 | 0.34
0.44
0.28 | 1.8
1.4
2.1 | 0.96
0.74
1.2 | 1.23
2.48
3.03 | | | 190
190
225 | 39
53
53.5 | 36
50
49 | 30
43
41 | 3
3
4 | 2.5
2.5
3 | 280 000
360 000
455 000 | 365 000
510 000
565 000 | 1 900
1 900
1 600 | 2 600
2 600
2 200 | HR 30221 J
HR 32221 J
HR 30321 J | 3FB
3FC
2GB | 123
123
126 | 123
120
133 | 178
178
211 | 166
162
195 | 180 | 6
5
6 | 9
10
12.5 | 2.5 2
2.5 2
3 2.5 | 38.1
44.8
43.3 | 0.42
0.42
0.35 | 1.4
1.4
1.7 | 0.79
0.79
0.96 | 4.51
6.25
9.52 | | | 225
225 | 58
81.5 | 53
77 | 36
63 | 4 | 3 | 415 000
670 000 | 540 000
925 000 | 1 500
1 700 | 2 000
2 200 | HR 31321 J
HR 32321 J | 7GB
2GD | 141
130 | 130
129 | 211
211 | 177
186 | | 7
6 | 22
18.5 | 3 2.5
3 2.5 | 70.2
55.2 | 0.83
0.35 | 0.73
1.7 | 0.40
0.96 | 10
14.9 | | 110 | 150
170
170 | 25
38
47 | 25
38
47 | 20
29
37 | 1.5
2.5
2.5 | 1.5
2
2 | 123 000
236 000
294 000 | 224 000
390 000
515 000 | 2 200
2 000
2 000 | 2 800
2 600
2 600 | HR 32922 J
HR 32022 XJ
HR 33022 J | 2CC
4DC
2DE | 121
125
125 | 119
121
121 | 142
160
160 |
142
153
153 | 163 | 5
7
7 | 5
9
10 | 1.5 1.5
2 2
2 2 | 26.5
35.9
33.7 | 0.36
0.43
0.29 | 1.7
1.4
2.1 | 0.93
0.77
1.2 | 1.29
3.09
3.84 | | | 180
200
200 | 56
41
56 | 56
38
53 | 43
32
46 | 2.5
3
3 | 2
2.5
2.5 | 365 000
315 000
400 000 | 610 000
420 000
565 000 | 1 900
1 800
1 800 | 2 600
2 400
2 400 | HR 33122 J
HR 30222 J
HR 32222 J | 3EE
3FB
3FC | 125
128
128 | 121
129
127 | 170
188
188 | 156
175
171 | 187 | 9
6
5 | 13
9
10 | 2 2
2.5 2
2.5 2 | 44.1
40.2
47.2 | 0.42
0.42
0.42 | 1.4
1.4
1.4 | 0.79
0.79
0.79 | 5.54
5.28
7.35 | | | 240
240
240 | 54.5
63
84.5 | 50
57
80 | 42
38
65 | 4
4
4 | 3
3
3 | 485 000
470 000
675 000 | 595 000
605 000
910 000 | 1 500
1 400
1 500 | 2 000
1 900
2 000 | HR 30322 J
HR 31322 J
HR 32322 J | 2GB
7GB
2GD | 131
146
135 | 143
136
139 | 226
226
226 | 208
191
201 | 224 | 6
7
6 | 12.5
25
19.5 | 3 2.5
3 2.5
3 2.5 | 45.1
74.8
58.6 | | 1.7
0.73
1.7 | 0.96
0.40
0.96 | | | 120 | 165
170
180 | 29
27
38 | 29
25
38 | 23
19.5
29 | 1.5
3
2.5 | 1.5
3
2 | 161 000
153 000
242 000 | 291 000
243 000
405 000 | 1 900
1 800
1 800 | 2 600
2 600
2 400 | HR 32924 J
T 4 CB120
HR 32024 XJ | 2CC
4CB
4DC | 131
138
135 | 129
129
131 | 156
158
170 | 155
158
162 | 164 | 6
7
7 | 6
7.5
9 | 1.5 1.5
2.5 2.5
2 2 | 29.2
35.0
39.7 | 0.35
0.47
0.46 | 1.7
1.3
1.3 | 0.95
0.70
0.72 | 1.8
1.78
3.27 | | | 180
200
215 | 48
62
43.5 | 48
62
40 | 38
48
34 | 2.5
2.5
3 | 2
2
2.5 | 300 000
460 000
335 000 | 540 000
755 000
450 000 | 1 800
1 700
1 600 | 2 600
2 400
2 200 | HR 33024 J
HR 33124 J
HR 30224 J | 2DE
3FE
4FB | 135
135
138 | 130
133
141 | 168
190
203 | 161
173
190 | 192 | 6
9
6 | 10
14
9.5 | 2 2
2 2
2.5 2 | 36.0
47.9
44.4 | 0.31
0.40
0.44 | 2.0
1.5
1.4 | 1.1
0.83
0.76 | 4.2
7.67
6.28 | | | 215
260
260
260 | 61.5
59.5
68
90.5 | 58
55
62
86 | 50
46
42
69 | 3
4
4
4 | 2.5
3
3
3 | 440 000
535 000
560 000
770 000 | 635 000
655 000
730 000
1 060 000 | 1 600
1 400
1 300
1 400 | 2 200
1 900
1 800
1 900 | HR 32224 J
HR 30324 J
HR 31324 J
HR 32324 J | 4FD
2GB
7GB
2GD | 138
141
156
145 | 137
154
148
149 | 203
246
246
246 | 181
223
206
216 | 237
244 | 6
6
9
6 | 11.5
13.5
26
21.5 | 2.5 2
3 2.5
3 2.5
3 2.5 | 52.1
50.0
81.7
62.5 | 0.44
0.35
0.83
0.35 | 1.4
1.7
0.73
1.7 | 0.76
0.96
0.40
0.96 | 9.0
13.9
15.6
21.8 | | 130 | 180
180
185 | 32
32
29 | 30
32
27 | 26
25
21 | 2
2
3 | 1.5
1.5
3 | 167 000
200 000
183 000 | 281 000
365 000
296 000 | 1 800
1 800
1 700 | 2 400
2 400
2 400 | 32926
HR 32926 J
T 4 CB130 | 2CC
4CB | 142
142
148 | 141
140
141 | 171
170
171 | 168
168
171 | 173 | 6
6
8 | 6
7
8 | 2 1.5
2 1.5
2.5 2.5 | 34.7
31.4
37.5 | 0.36
0.34
0.47 | 1.7
1.8
1.3 | 0.92
0.97
0.70 | 2.25
2.46
2.32 | | | 200
200
230 | 45
55
43.75 | 45
55
40 | 34
43
34 | 2.5
2.5
4 | 2
2
3 | 320 000
395 000
375 000 | 535 000
715 000
505 000 | 1 600
1 700
1 500 | 2 200
2 200
2 000 | HR 32026 XJ
HR 33026 J
HR 30226 J | 4EC
2EE
4FB | 145
145
151 | 144
144
151 | 190
188
216 | 179
179
205 | 192 | 8
8
7 | 11
12
9.5 | 2 2
2 2
3 2.5 | 43.9
42.4
45.9 | 0.43
0.34
0.44 | 1.4
1.8
1.4 | 0.76
0.97
0.76 | 5.06
6.25
7.25 | | | 230
280
280 | 67.75
63.75
63.75 | 64
58
58 | 54
49
49 | 4
5
5 | 3
4
4 | 530 000
545 000
650 000 | 790 000
675 000
820 000 | 1 500
1 300
1 300 | 2 000
1 800
1 800 | HR 32226 J
30326
HR 30326 J | 4FD
—
2GB | 151
157
157 | 147
168
166 | 216
262
262 | 196
239
241 | 255 | 7
8
8 | 13.5
14.5
14.5 | 3 2.5
4 3
4 3 | 57.0
53.9
52.8 | 0.44
0.36
0.35 | 1.4
1.7
1.7 | 0.76
0.92
0.96 | 11.3
16.6
17.2 | | | 280
280 | 72
98.75 | 66
93 | 44
78 | 5
5 | 4
4 | 625 000
830 000 | 820 000
1 150 000 | 1 200
1 300 | 1 700
1 800 | HR 31326 J
32326 | 7GB
— | 174
162 | 159
165 | 262
262 | 220
233 | | 9
8 | 28
20.5 | 4 3
4 3 | 87.1
69.2 | 0.83
0.36 | 0.73
1.7 | 0.40
0.92 | 18.8
26.6 | C 203 C 202 # Bore Diameter 140 – 170 mm **SINGLE-ROW TAPERED ROLLER BEARINGS** # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of \emph{e} , \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | | | Boun | dary Dimensio | ons | Cono | Cun | Basic Load | • | Limiting
(mir | | Danis North | ISO355 | | | Abutr | | d Fillet I
(mm) | Dimens | ions | 0 | | Centers | Constant | Axial
Fac | | Mass
(kg) | |-----|--------------------------|-------------------------|-----------------------|----------------------|------------------|-------------------------|-------------------------------|--|----------------------------------|----------------------------------|--|-------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------|-----------------------|----------------------|---------------------------|------------------|-----------------------|------------------------------|---------------------------|------------------------------|----------------------| | d | D | T | В | С | | Cup
Y
nin. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | S_{a} min. | $S_{ m b}$ min. | Cone $\gamma_{\rm a}$ max | | (mm)
a | e | Y_1 | Y_0 | approx. | | 140 | 190
210
210 | 32
45
56 | 32
45
56 | 25
34
44 | 2
2.5
2.5 | 1.5
2
2 | 206 000
325 000
410 000 | 390 000
555 000
770 000 | 1 700
1 600
1 600 | 2 200
2 200
2 200 | HR 32928 J
HR 32028 XJ
HR 33028 J | 2CC
4DC
2DE | 152
155
155 | 150
152
153 | 180
200
198 | 178
189
189 | 202 | 6
8
7 | 7
11
12 | 2 : | 1.5
2
2 | | 0.46 | 1.7
1.3
1.7 | 0.92
0.72
0.92 | 2.64
5.32
6.74 | | | 250
250
300 | 45.75
71.75
67.75 | 42
68
62 | 36
58
53 | 4
4
5 | 3
3
4 | 390 000
610 000
740 000 | 515 000
915 000
945 000 | 1 400
1 400
1 200 | 1 900
1 900
1 700 | HR 30228 J
HR 32228 J
HR 30328 J | 4FB
4FD
2GB | 161
161
167 | 164
159
177 | 236
236
282 | 221
213
256 | 238 | 7
9
9 | 9.5
13.5
14.5 | 3 : | 2.5
2.5
3 | | 0.44
0.44
0.35 | 1.4
1.4
1.7 | 0.76
0.76
0.96 | 8.74
14.3
21.1 | | | 300
300 | 77
107.75 | 70
102 | 47
85 | 5
5 | 4
4 | 695 000
985 000 | 955 000
1 440 000 | 1 100
1 200 | 1 500
1 600 | HR 31328 J
32328 | 7GB
— | 184
172 | 174
177 | 282
282 | 236
246 | | 9 | 30
22.5 | 4 3 | 3 | | 0.83
0.37 | 0.73
1.6 | 0.40
0.88 | 28.5
33.9 | | 150 | 210
210
225 | 38
38
48 | 36
38
48 | 31
30
36 | 2.5
2.5
3 | 2
2
2.5 | 247 000
281 000
375 000 | 440 000
520 000
650 000 | 1 500
1 500
1 400 | 2 000
2 000
2 000 | 32930
HR 32930 J
HR 32030 XJ | 2DC
4EC | 165
165
168 | 162
163
164 | 200
198
213 | 195
196
202 | 202 | 7
7
8 | 7
8
12 | 2
2
2.5 | 2 2 2 | 36.7
36.5
49.8 | 0.33
0.33
0.46 | 1.8
1.8
1.3 | 1.0
1.0
0.72 | 3.8
4.05
6.6 | | | 225
270
270 | 59
49
77 | 59
45
73 | 46
38
60 | 3
4
4 | 2.5
3
3 | 435 000
485 000
705 000 | 805 000
665 000
1 080 000 | 1 400
1 300
1 300 | 2 000
1 800
1 800 | HR 33030 J
HR 30230 J
HR 32230 J | 2EE
2GB
4GD | 168
171
171 | 165
175
171 | 213
256
256 | 203
236
228 | 250 | 8
7
8 | 13
11
17 | | 2
2.5
2.5 | 48.7
51.3
64.7 | 0.36
0.44
0.44 | 1.7
1.4
1.4 | 0.90
0.76
0.76 | 8.07
11.2
17.8 | | | 320
320
320
320 | 72
72
82
114 | 65
65
75
108 | 55
55
50
90 | 5
5
5
5 | 4
4
4
4 | | 860 000
1 060 000
1 100 000
1 700 000 | 1 100
1 100
1 000
1 100 | 1 500
1 600
1 400
1 500 | 30330
HR 30330 J
HR 31330 J
32330 | 2GB
7GB | 177
177
194
182 | 193
190
187
191 | 302
302
302
302 | 275
276
253
262 | 292
300 | 8
9
8 | 17
17
32
24 | 4 | 3
3
3
3 | | 0.36
0.35
0.83
0.37 | 1.7
1.7
0.73
1.6 | 0.92
0.96
0.40
0.88 | | | 160 | 220
240
290 | 38
51
52 | 38
51
48 | 30
38
40 | 2.5
3
4 | 2
2.5
3 | 296 000
425 000
530 000 | 570 000
750
000
730 000 | 1 400
1 300
1 200 | 1 900
1 800
1 600 | HR 32932 J
HR 32032 XJ
HR 30232 J | 2DC
4EC
4GB | 175
178
181 | 173
175
189 | 208
228
276 | 206
216
253 | 231 | 7
8
8 | 8
13
12 | | 2
2
2.5 | 38.7
53.0
55.0 | 0.35
0.46
0.44 | 1.7
1.3
1.4 | 0.95
0.72
0.76 | 4.32
7.93
13.7 | | | 290
340
340 | 84
75
75 | 80
68
68 | 67
58
58 | 4
5
5 | 3
4
4 | 765 000 | 1 220 000
960 000
1 180 000 | 1 200
1 000
1 100 | 1 600
1 400
1 400 | HR 32232 J
30332
HR 30332 J | 4GD
—
2GB | 181
187
187 | 184
205
201 | 276
322
322 | 243
293
293 | 311 | 10
10
10 | 17
17
17 | 4 : | 2.5
3
3 | 70.5
64.6
62.9 | 0.44
0.36
0.35 | 1.4
1.7
1.7 | 0.92 | 22.5
28.4
29.7 | | | 340
340 | 75
121 | 68
114 | 48
95 | 5
5 | 4
4 | 675 000
1 210 000 | 875 000
1 770 000 | 950
1 000 | 1 300
1 400 | 30332 D
32332 | = | 196
192 | 198
202 | 322
322 | 270
281 | | 9
10 | 27
26 | 4 3 | 3 | 99.4
87.1 | 0.81
0.37 | 0.74
1.6 | 0.41
0.88 | 27.5
48.3 | | 170 | 230
230
260 | 38
38
57 | 36
38
57 | 31
30
43 | 2.5
2.5
3 | 2.5
2
2.5 | 258 000
294 000
505 000 | 485 000
560 000
890 000 | 1 300
1 400
1 200 | 1 800
1 800
1 700 | 32934
HR 32934 J
HR 32034 XJ | 3DC
4EC | 185
185
188 | 183
180
187 | 220
218
248 | 216
215
232 | 222 | 7
7
10 | 7
8
14 | 2
2
2.5 | | 41.6
41.7
56.6 | 0.36
0.38
0.44 | 1.7
1.6
1.4 | 0.90
0.86
0.74 | 4.3
4.44
10.6 | | | 310
310
360 | 57
91
80 | 52
86
72 | 43
71
62 | 5
5
5 | 4
4
4 | | 885 000
1 450 000
1 080 000 | 1 100
1 100
950 | 1 500
1 500
1 300 | HR 30234 J
HR 32234 J
30334 | 4GB
4GD | 197
197
197 | 202
197
221 | 292
292
342 | 273
262
312 | 294 | 8
10
10 | 14
20
18 | | 3 3 3 | 59.4
76.4
70.1 | 0.44
0.44
0.37 | 1.4
1.4
1.6 | 0.76
0.76
0.90 | 28 | | | 360
360
360 | 80
80
127 | 72
72
120 | 62
50
100 | 5
5
5 | 4
4
4 | 760 000 | 1 230 000
1 040 000
2 050 000 | 1 000
900
1 000 | 1 300
1 200
1 300 | HR 30334 J
30334 D
32334 | 2GB
—
— | 197
206
202 | 214
215
213 | 342
342
342 | 310
288
297 | 332 | 10
10
10 | 18
30
27 | 4
4
4 | 3
3
3 | 67.3
107.3
91.3 | 0.35
0.81
0.37 | 1.7
0.74
1.6 | | | C 205 C 204 # **SINGLE-ROW TAPERED ROLLER BEARINGS** # Bore Diameter 180 – 240 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | # Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\rm r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of \emph{e} , \emph{Y}_{1} , and \emph{Y}_{0} are given in the table below. | | | Boun | dary Dimension (mm) | ons | | | Basic Load | • | Limiting
(min | | | ISO355 | | | Abutn | | d Fillet I
(mm) | Dimens | sions | | Eff. Load
Centers | | | l Load
ctors | Mass
(kg) | |----------|--------------------------|-----------------------|-----------------------|-----------------------|---------------|-------------------|-------------------------------|--|----------------------------|----------------------------------|---|--------------------------------|--------------------------|-------------------|--------------------------|--------------------------|--------------------|----------------------|----------------------|---|------------------------|----------------------|---------------------------|----------------------|-------------------| | <i>d</i> | D | T | В | С | | Cup
r
nin. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | Dimension
Series
approx. | $d_{ m a}$ min. | $d_{ m b}$ max. | max. | D _a
min. | $D_{ m b}$ min. | $S_{ m a}$ min. | $S_{ m b}$ min. | Cone Cu $oldsymbol{\mathcal{Y}}_a$ max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 180 | 250
280
320 | 45
64
57 | 45
64
52 | 34
48
43 | 2.5
3
5 | 2
2.5
4 | 350 000
640 000
650 000 | 685 000
1 130 000
930 000 | 1 300
1 200
1 100 | 1 700
1 600
1 400 | HR 32936 J
HR 32036 XJ
HR 30236 J | 4DC
3FD
4GB | 195
198
207 | 192
199
210 | 240
268
302 | 227
248
281 | 267 | 8
10
9 | 11
16
14 | 2
2.5
2
4
3 | 53.9
60.4
61.8 | 0.42 | 1.3
1.4
1.3 | 0.69
0.78
0.73 | 14.3 | | | 320
380
380
380 | 91
83
83
134 | 86
75
75
126 | 71
64
53
106 | 5
5
5 | 4
4
4 | 935 000 | 1 540 000
1 230 000
1 120 000
2 290 000 | 1 100
900
850
950 | 1 400
1 300
1 200
1 300 | HR 32236 J
30336
30336 D
32336 | 4GD
—
— | 207
207
216
212 | | 302
362
362
362 | 270
324
304
310 | 345
352 | 10
10
10
10 | 20
19
30
28 | 4 3
4 3
4 3
4 3 | | 0.36 | 1.3
1.7
0.74
1.6 | | 39.3 | | 190 | 260
290
340 | 45
64
60 | 45
64
55 | 34
48
46 | 2.5
3
5 | 2
2.5
4 | 365 000
650 000
715 000 | 715 000
1 170 000
1 020 000 | 1 200
1 100
1 000 | 1 600
1 500
1 300 | HR 32938 J
HR 32038 XJ
HR 30238 J | 4DC
4FD
4GB | 205
208
217 | 201
209
223 | 250
278
322 | 237
258
302 | 279 | 8
10
9 | 11
16
14 | 2 2
2.5 2
4 3 | | 0.48
0.44
0.44 | 1.3
1.4
1.4 | 0.69
0.75
0.76 | 14.9 | | | 340
400
400 | 97
86
140 | 92
78
132 | 75
65
109 | 5
6
6 | 4
5
5 | | 1 770 000
1 340 000
2 580 000 | 1 000
850
850 | 1 400
1 200
1 200 | HR 32238 J
30338
32338 | 4GD
—
— | 217
223
229 | 248 | 322
378
378 | 290
346
332 | 366 | 10
11
11 | 22
21
31 | 4 3
5 4
5 4 | 80.5
76.1
102.7 | 0.44
0.36
0.37 | 1.4
1.7
1.6 | 0.76
0.92
0.88 | 46 | | 200 | 280
280
310 | 51
51
70 | 48
51
70 | 41
39
53 | 3
3
3 | 2.5
2.5
2.5 | 410 000
480 000
760 000 | 780 000
935 000
1 370 000 | 1 100
1 100
1 000 | 1 500
1 500
1 400 | 32940
HR 32940 J
HR 32040 XJ | 3EC
4FD | 218
218
218 | 217
216
221 | 268
268
298 | 256
258
277 | 271 | 9
9
11 | 10
12
17 | 2.5 2
2.5 2
2.5 2 | 53.4
54.2
67.4 | | 1.6
1.5
1.4 | 0.88
0.84
0.77 | | | | 360
360
420 | 64
104
89 | 58
98
80 | 48
82
67 | 5
5
6 | 4
4
5 | 1 210 000 | 1 120 000
1 920 000
1 390 000 | 950
950
850 | 1 300
1 300
1 200 | HR 30240 J
HR 32240 J
30340 | 4GB
3GD | 227
227
233 | 236
230
253 | 342
342
398 | 318
305
346 | 340 | 10
11
11 | 16
22
22 | 4 3
4 3
5 4 | 69.1
85.1
81.4 | 0.44
0.41
0.37 | 1.4
1.5
1.6 | 0.76
0.81
0.88 | 42.6 | | | 420
420 | 89
146 | 80
138 | 56
115 | 6
6 | 5
5 | 965 000
1 820 000 | 1 330 000
2 870 000 | 750
800 | 1 000
1 100 | 30340 D
32340 | = | 244
239 | 253
253 | 398
398 | 336
346 | | 11
11 | 33
31 | 5 4
5 4 | 122.9
106.7 | 0.81
0.37 | 0.74
1.6 | 0.41
0.88 | 49.6
90.9 | | 220 | 300
340
400 | 51
76
72 | 51
76
65 | 39
57
54 | 3
4
5 | 2.5
3
4 | | 990 000
1 610 000
1 150 000 | 1 000
950
850 | 1 400
1 300
1 100 | HR 32944 J
HR 32044 XJ
30244 | 3EC
4FD
— | 238
241
247 | 235
244
267 | 288
326
382 | 278
303
350 | 326 | 9
12
11 | 12
19
18 | 2.5 2
3 2.5
4 3 | 59.2
73.6
74.7 | 0.43 | 1.4
1.4
1.5 | 0.78
0.77
0.82 | 24.4 | | | 400
460
460 | 114
97
154 | 108
88
145 | 90
73
122 | 5
6
6 | 4
5
5 | | 2 210 000
1 990 000
3 200 000 | 850
750
750 | 1 100
1 000
1 000 | 32244
30344
32344 | = | 247
253
259 | 260
283
274 | 382
438
438 | 340
390
372 | 414 | 12
12
12 | 24
24
32 | 4 3
5 4
5 4 | 93.0
85.4
114.9 | 0.36 | 1.5
1.7
1.6 | 0.82
0.92
0.88 | 72.4 | | 240 | 320
360
440 | 51
76
79 | 51
76
72 | 39
57
60 | 3
4
5 | 2.5
3
4 | 920 000 | 1 040 000
1 730 000
1 400 000 | 950
850
750 | 1 300
1 200
1 000 | HR 32948 J
HR 32048 XJ
30248 | 4EC
4FD
— | 258
261
267 | 255
262
288 | 308
346
422 | 297
321
384 | 346 | 9
12
11 | 12
19
19 | 2.5 2
3 2.5
4 3 | 65.1
79.1
85.1 | 0.46
0.46
0.44 | 1.3
1.3
1.4 | 0.72
0.72
0.74 | 26.2 | | | 440
500
500 | 127
105
165 | 120
95
155 | 100
80
132 | 5
6
6 | 4
5
5 | | 2 730 000
2 340 000
4 100 000 | 750
670
670 | 1 000
950
900 | 32248
30348
32348 | = | 267
273
279 | 285
308
301 | 422
478
478 | 374
422
410 | 447 | 12
12
12 | 27
25
33 | 4 3
5 4
5 4 | 102.5
92.8
123.2 | 0.36 | 1.5
1.7
1.6 | 0.82
0.92
0.88 | 78
92.6
145 | C 207 C 206 #### BEARINGS TABLE NSK #### Bore Diameter 260 – 440 mm D 540 540 440 440 480 580 580 670 460 460 520 480 480 540 520 540 600 560 620 650 320 340 360 380 400 420 440 96 76 76 100 104 159 210 76 76 112 76 76 112 87 87 125 125 130 149 d **SINGLE-ROW TAPERED ROLLER BEARINGS** **Boundary Dimensions** (mm) B 140 72 76 100 92 150 200 72 76 72 76
106 82 82 118 82 118 122 106 C 115 63 57 74 75 125 170 63 57 92 62 57 92 71 71 100 100 104 6 5 7.5 4 6 4 6 5 6 6 6 4 7.5 5 4 5 5 6 Cone Cup Basic Load Ratings (N) 1 440 000 2 100 000 2 220 000 3 700 000 1510000 2910000 4 200 000 7 100 000 910 000 1 940 000 1 050 000 2 220 000 1 650 000 3 400 000 945 000 2 100 000 1 080 000 2 340 000 1 680 000 3 500 000 1 210 000 2 550 000 1 250 000 2 700 000 1 960 000 4 050 000 1 300 000 2 810 000 2 000 000 4 200 000 2 230 000 4 600 000 1 880 000 2 220 000 2 420 000 5 050 000 900 000 1 040 000 1 640 000 2 860 000 C_{0r} C_{r} ISO355 Dimension Series $d_{\rm a}$ 355 352 344 350 462 381 383 381 466 428 522 447 448 542 463 598 333 341 345 426 347 353 353 383 412 634 373 386 498 393 427 433 453 3FD 341 4GD 4FD 361 4FD 381 518 518 426 558 558 446 466 406 502 478 501 362 446 402 518 443 578 473 487 622 582 616 Bearing Numbers 30260 32260 32964 HR 32064 XJ 30264 32264 32364 32968 32068 32972 32072 32976 32980 32080 32984 32084 32088 HR 32972 J HR 32968 J HR 32964 J Abutment and Fillet Dimensions (mm) $D_{\rm b}$ 470 499 458 514 404 425 406 426 430 461 547 616 426 446 427 446 464 496 445 465 445 466 480 514 499 524 533 565 521 544 552 586 503 487 550 14 15 34 5 13 13 15 14 29 15 34 5 14 42 13 13 > 14 13 16 16 4 16 16 4 5 $D_{\rm a}$ #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | $r_{\rm r} > e$ | |---------------|------------|---------------|-----------------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}$ > $0.5F_{\rm r}$ $+Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of e, Y_1 , and Y_0 are Axial Load Factors 0.81 0.76 38.5 0.76 0.74 | 60.7 0.73 | 103 0.92 114 0.88 188 0.72 40.6 0.74 66.3 0.70 109 0.89 224 0.88 30.5 0.84 31.4 0.76 56.6 0.74 80.6 0.84 0.72 0.80 33.6 0.75 0.82 0.72 0.86 86.5 0.86 0.82 0.81 0.92 116 0.88 121 0.92 136 0.72 | 132 0.79 33.3 0.74 99.3 0.72 175 0.88 343 0.89 83.7 35.8 36.1 49.5 52.7 32 60 Y_1 Y_0 1.5 1.4 1.4 1.3 1.7 1.6 1.4 1.3 1.4 1.3 1.6 1.6 1.5 1.4 1.4 1.3 1.4 1.3 1.3 1.6 1.5 1.6 1.5 1.3 1.6 1.6 1.5 1.7 1.6 1.7 Mass (kg) approx. given in the table below. Centers (mm) а Cone Cup $r_{\rm a}$ 5 3 3 5 6 3 5 3 2.5 3 2.5 5 5 5 5 19 26 19 19 25 5 15 4 6.5 25 5 26 3.5 22 5.5 22 2.5 2.5 2.5 2.5 4 S_{b} $S_{\rm a}$ Eff. Load | Constant | 0.41 0.43 0.44 0.45 0.36 0.37 0.43 0.46 0.44 0.47 0.37 0.37 0.39 0.43 0.44 0.46 0.39 0.42 0.46 0.44 0.46 0.37 0.41 0.44 0.37 0.38 0.39 0.40 0.36 0.41 0.37 126.3 0.36 105.1 131.7 84.3 85.0 104.5 113.7 141.7 157.5 89.2 91.0 104.5 91.4 0.40 96.8 0.46 108.6 95.2 100.8 115.3 106. 120.0 | | | | | | m | iin. | | | | | | | approx. | min. | max. | max. | min. | min. | min. | min. | m | nax. | | | |-----|-------------------|-------------------|-------------------|------------------|-------------|---------------|-----------------------------------|-------------------------------------|-------------------|-----------------------|---|------------------------------------|------------|-------------------|-------------------|-------------------|------|-------------------|----------------|------------------|---------------|-----------------|-------------------------|-----| | 260 | 360
400
480 | 63.5
87
89 | 63.5
87
80 | 48
65
67 | 3
5
6 | 2.5
4
5 | 730 000
1 160 000
1 190 000 | 1 450 000
2 160 000
1 700 000 | 850
800
670 | 1 100
1 100
900 | · | HR 32952 J
HR 32052 XJ
30252 | 3EC
4FC | 278
287
293 | 278
287
316 | 348
382
458 | 357 | 347
383
447 | 11
14
12 | 15.5
22
22 | 2.5
4
5 | 2
3
4 | 69.8
86.3
94.6 | 0 | | | 480
540
540 | 137
113
176 | 130
102
165 | 106
85
136 | 6
6
6 | 5
6
6 | | 3 300 000
2 640 000
4 800 000 | 670
630
630 | 950
850
850 | | 32252
30352
32352 | = | 293
293
293 | 305
336
328 | 458
512
512 | 460 | 446
487
495 | 14
16
13 | 31
28
40 | 5
5
5 | 4
5
5 | 116.0
101.6
130.5 | 000 | | 280 | 380
420
500 | 63.5
87
89 | 63.5
87
80 | 48
65
67 | 3
5
6 | 2.5
4
5 | 765 000
1 180 000
1 240 000 | 1 580 000
2 240 000
1 900 000 | 800
710
630 | 1 100
1 000
850 | | HR 32956 J
HR 32056 XJ
30256 | 4EC
4FC | 298
307
313 | 297
305
339 | 368
402
478 | 374 | 368
402
462 | 12
14
12 | 15.5
22
22 | 2.5
4
5 | 2
3
4 | 75.3
91.6
98.5 | 0 | | | 500
580 | 137
187 | 130
175 | 106
145 | 6
6 | 5
6 | | 3 450 000
5 400 000 | 630
560 | 850
800 | | 32256
32356 | _ | 313
319 | 325
353 | 478
552 | | 467
532 | 14
14 | 31
42 | 5
5 | 4
5 | 123.1
139.6 | 0 | | 300 | 420
420
460 | 76
76
100 | 72
76
100 | 62
57
74 | 4
4
5 | 3
3
4 | 895 000
1 010 000
1 440 000 | 1 820 000
2 100 000
2 700 000 | 710
710
670 | 950
950
900 | | 32960
HR 32960 J
HR 32060 XJ | 3FD
4GD | 321
321
327 | 326
324
330 | 406
406
442 | 387 | 405
405
439 | 13
13
15 | 14
19
26 | 3
3
4 | 2.5
2.5
3 | 79.3
79.9
98.4 | 000 | 800 800 900 900 850 750 750 670 850 850 750 800 800 750 750 710 670 670 630 600 600 970 670 630 530 530 480 630 560 560 530 560 530 480 450 430 Limiting Speeds (min⁻¹) 0il Grease C 208 ## Bore Diameter 12.000 - 22.225 mm #### Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | |---------------|--------------------------|---------------|------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | n | 0.4 | <i>V</i> . | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\mathrm{r}}\!>\!0.5F_{\mathrm{r}}\!+\!Y_{0}F_{\mathrm{a}}$, use $P_{0}\!=\!F_{\mathrm{r}}$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | Boundary Dimensions (mm) | | | Basic Load Ratings (N) | | Limiting Speeds
(min ⁻¹) | | Bearing Numbers | | А | Abutment and Fillet Dimensions (mm) | | | | Eff. Load
Centers | Constant | Axial Load
Factors | | Mass
(kg) | | | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--|---|--------------------------------------|----------------------------------|--------------------------------------|---|-------------------------------------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|------------------------------|----------------------|---------------------------|----------------------------|--| | d | D | T | В | С | Cone Cup
<i>Y</i> min. | $C_{\rm r}$ | C_{0r} | Grease | Oil | | CONE | CUP | d_{a} | $d_{ m b}$ | D_{a} | D_{b} | Cone Cup \mathcal{Y}_{a} max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 12.000
12.700
15.000 | 31.991
34.988
34.988 | 10.008
10.998
10.998 | 10.785
10.988
10.988 | 7.938
8.730
8.730 | 0.8 1.3
1.3 1.3
0.8 1.3 | 10 300
11 700
11 700 | 8 900
10 900
10 900 | 13 000
12 000
12 000 | 18 000
16 000
16 000 | | *A 2047
A 4050
*A 4059 | A 2126
A 4138
A 4138 | 16.5
18.5
19.5 | 15.5
17
19 | 26
29
29 | 29
32
32 | 0.8 1.3
1.3 1.3
0.8 1.3 | 6.8
8.2
8.2 | 0.41
0.45
0.45 | 1.5
1.3
1.3 | 0.81
0.73
0.73 | 0.023 0.017
0.033 0.022
0.029 0.022 | | 15.875 | 34.988
39.992
41.275 | 10.998
12.014
14.288 | 10.998
11.153
14.681 | 8.712
9.525
11.112 | 1.3 1.3
1.3 1.3
1.3 2.0 | 13 800
14 900
21 300 | 13 400
15 700
19 900 | 11 000
9 500
10 000 | 15 000
13 000
13 000 | | L 21549
A 6062
03062 | L 21511
A 6157
03162 | 21.5
22
21.5 | 19.5
20.5
20 | 29
34
34 | 32.5
37
37.5 | 1.3 1.3
1.3 1.3
1.3 2 | 7.7
10.3
9.1 | 0.32
0.53
0.31 | 1.9
1.1
1.9 | 1.0
0.63
1.1 | 0.031 0.018
0.044 0.031
0.061 0.035 | | | 42.862
42.862
44.450
49.225 | 14.288
16.670
15.494
19.845 | 14.288
16.670
14.381
21.539 | 9.525
13.495
11.430
14.288 | 1.5 1.5
1.5 1.5
1.5 1.5
0.8 1.3 | 17 300
26 900
23 800
37 500 | 17 200
26 300
23 900
37 000 | 8 500
9 500
8 500
8 500 | 12 000
13 000
11 000
11 000 | | 11590
17580
05062
09062 | 11520
17520
05175
09195 | 24.5
23
23.5
22 | 22.5
21
21
21.5 | 34.5
36.5
38
42 | 39.5
39
42
44.5 | 1.5 1.5
1.5 1.5
1.5 1.5
0.8 1.3 | 13.0
10.6
11.2
10.7 | 0.33
0.36 | 0.85
1.8
1.7
2.3 | 0.47
1.0
0.93
1.2 | 0.061 0.040
0.075 0.048
0.081 0.039
0.139 0.065 | | 16.000
16.993
17.455 | 47.000
39.992
36.525 | 21.000
12.014
11.112 | 21.000
11.153
11.112 | 16.000
9.525
7.938 | 1.0 2.0
0.8 1.3
1.5 1.5 | 35 000
14 900
11 600 | 36 500
15 700
11 000 | 9 000
9 500
10 000 | 12 000
13 000
14 000 | | *HM 81649
A 6067
A 5069 | **HM 81610
A 6157
A 5144 | 27.5
22
23.5 | 23
21
21.5 | 37.5
34
30 | 43
37
33.5 | 1 2
0.8 1.3
1.5 1.5 | 14.9
10.3
8.9 | 0.55
0.53
0.49 | 1.1
1.1
1.2 | 0.63 | 0.115 0.082
0.042 0.031
0.030 0.020 | | 17.462 | 39.878
47.000 | 13.843
14.381 | 14.605
14.381 | 10.668
11.112 | 1.3 1.3
0.8 1.3 | 22 500
23 800 | 22 500
23 900 | 10 000
8 500 | 13 000
11 000 | | † LM 11749
05068 | † LM 11710
05185 | 23
23 |
21.5
22.5 | 34
40.5 | 37
42.5 | 1.3 1.3
0.8 1.3 | 8.7
10.1 | 0.29
0.36 | 2.1
1.7 | 1.2
0.93 | 0.055 0.028
0.082 0.047 | | 19.050 | 39.992
45.237
47.000 | 12.014
15.494
14.381 | 11.153
16.637
14.381 | 9.525
12.065
11.112 | 1.0 1.3
1.3 1.3
1.3 1.3 | 14 900
28 500
23 800 | 15 700
28 900
23 900 | 9 500
9 000
8 500 | 13 000
12 000
11 000 | | A 6075
† LM 11949
05075 | A 6157
† LM 11910
05185 | 24
25
25 | 23
23.5
23.5 | 34
39.5
40.5 | 37
41.5
42.5 | 1 1.3
1.3 1.3
1.3 1.3 | 10.3
9.5
10.1 | 0.53
0.30
0.36 | 1.1
2.0
1.7 | 0.63
1.1
0.93 | 0.037 0.031
0.081 0.044
0.077 0.047 | | | 49.225
49.225
49.225 | 18.034
19.845
21.209 | 19.050
21.539
19.050 | 14.288
14.288
17.462 | 1.3 1.3
1.2 1.3
1.3 1.5 | 37 500
37 500
37 500 | 37 000
37 000
37 000 | 8 500
8 500
8 500 | 11 000
11 000
11 000 | | 09067
09078
09067 | 09195
09195
09196 | 25.5
25.5
25.5 | 24
24
24 | 42
42
41.5 | 44.5
44.5
44.5 | 1.3 1.3
1.2 1.3
1.3 1.5 | 10.7 | 0.27
0.27
0.27 | 2.3
2.3
2.3 | 1.2
1.2
1.2 | 0.115 0.065
0.124 0.065
0.115 0.085 | | | 49.225
53.975 | 23.020
22.225 | 21.539
21.839 | 17.462
15.875 | C1.5 3.5
1.5 2.3 | 37 500
40 500 | 37 000
39 500 | 8 500
7 500 | 11 000
10 000 | | 09074
21075 | 09194
21212 | 26
31.5 | 24
26 | 39
43 | 44.5
50 | 1.5 3.5
1.5 2.3 | 13.8
16.3 | 0.27
0.59 | 2.3
1.0 | 1.2
0.56 | 0.124 0.082
0.156 0.097 | | 19.990
20.000
20.625 | 47.000
51.994
49.225 | 14.381
15.011
23.020 | 14.381
14.260
21.539 | 11.112
12.700
17.462 | 1.5 1.3
1.5 1.3
1.5 1.5 | 23 800
26 000
37 500 | 23 900
27 900
37 000 | 8 500
7 500
8 500 | 11 000
10 000
11 000 | | 05079
07079
09081 | 05185
07204
09196 | 26.5
27.5
27.5 | 24
27
25.5 | 40.5
45
41.5 | 42.5
48
44.5 | 1.5 1.3
1.5 1.3
1.5 1.5 | 10.1
12.1
13.8 | | 1.7
1.5
2.3 | 0.93
0.82
1.2 | 0.073 0.047
0.105 0.061
0.115 0.085 | | 20.638
21.430 | 49.225
50.005 | 19.845
17.526 | 19.845
18.288 | 15.875
13.970 | 1.5 1.5
1.3 1.3 | 36 000
38 500 | 37 000
40 000 | 8 000
8 000 | 11 000
11 000 | | 12580
† M 12649 | 12520
† M 12610 | 28.5
27.5 | 26
25.5 | 42.5
44 | 45.5
46 | 1.5 1.5
1.3 1.3 | 12.9
10.9 | 0.32
0.28 | 1.9
2.2 | 1.0
1.2 | 0.114 0.067
0.115 0.059 | | 22.000 | 45.237
45.975 | 15.494
15.494 | 16.637
16.637 | 12.065
12.065 | 1.3 1.3
1.3 1.3 | 29 200
29 200 | 33 500
33 500 | 8 500
8 500 | 11 000
11 000 | | *† LM 12749
*† LM 12749 | † LM 12710
† LM 12711 | 27.5
27.5 | 26
26 | 39.5
40 | 42.5
42.5 | 1.3 1.3
1.3 1.3 | | | 2.0
2.0 | 1.1
1.1 | 0.078 0.038
0.078 0.043 | | 22.225 | 50.005
50.005
52.388 | 13.495
17.526
19.368 | 14.260
18.288
20.168 | 9.525
13.970
14.288 | 1.3 1.0
1.3 1.3
1.5 1.5 | 26 000
38 500
40 500 | 27 900
40 000
43 000 | 7 500
8 000
7 500 | 10 000
11 000
10 000 | | 07087
† M 12648
1380 | 07196
† M 12610
1328 | 28.5
28.5
29.5 | 27
26.5
27 | 44.5
44
45 | 47
46
48.5 | 1.3 1
1.3 1.3
1.5 1.5 | 10.6
10.9
11.3 | 0.40
0.28
0.29 | 1.5
2.2
2.1 | 0.82
1.2
1.1 | 0.097 0.035
0.111 0.059
0.137 0.067 | | | 53.975
56.896
57.150 | 19.368
19.368
22.225 | 20.168
19.837
22.225 | 14.288
15.875
17.462 | 1.5 1.5
1.3 1.3
0.8 1.5 | 40 500
38 000
48 000 | 43 000
40 500
50 000 | 7 500
7 100
7 100 | 10 000
9 500
9 500 | | 1380
1755
1280 | 1329
1729
1220 | 29.5
29
29.5 | 27
27.5
29 | 46
49
49 | 49
51
52 | 1.5 1.5
1.3 1.3
0.8 1.5 | | | 2.1
2.0
1.7 | 1.1
1.1
0.95 | 0.137 0.082
0.152 0.102
0.183 0.106 | - Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 7.4.2 on Pages A136 and A137). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page C185). - * † The tolerance for the bore diameter is 0 to $-20 \, \mu m$, and for overall bearing width is +356 to 0 μm . # BEARINGS TABLE **NSK** # Bore Diameter 22.606 – 28.575 mm #### Dynamic Equivalent Load | $P = XF_{\rm r} + YF_{\rm a}$ | | |-------------------------------|---| | $F_{\circ}/F_{r} \leq e$ | F | | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | | | | | |---------------|------------|---------------|-----------------------|--|--|--|--| | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm r}\!>\!0.5F_{\rm r}\!+\!Y_0F_{\rm a}$, use $P_0\!=\!F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | | Boundary Dimensions
(mm) | | | | | Basic Loa | 3 - | Limiting Speeds (min ⁻¹) | | Bearing I | Numbers | Al | outment | and Fille (mm) | | | Centers | d Constant | | l Load
ctors | Mass
(kg) | |--------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|-------------------------------------|-------------------------------|-------------------------------|------------------------|------------------------|---|------------------------|----------------------|------------|----------------------|--| | d | D | T | В | С | Cone Cup
**
min. | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{ m a}$ | $D_{ exttt{b}}$ | Cone Cu \mathcal{Y}_{a} max. | p (mm
a | e | Y_1 | Y_0 | approx. | | 22.606 | 47.000 | 15.500 | 15.500 | 12.000 | 1.5 1.0 | 26 300 | 30 000 | 8 000 | 11 000 | LM 72849 | LM 72810 | 29 | 27 | 40.5 | 44.5 | 1.5 1 | 12.2 | 0.47 | 1.3 | 0.70 | 0.086 0.046 | | 23.812 | 50.292
56.896 | 14.224
19.368 | 14.732
19.837 | 10.668
15.875 | 1.5 1.3
0.8 1.3 | 27 600
38 000 | 32 000
40 500 | 7 100
7 100 | 10 000
9 500 | † L 44640
1779 | † L 44610
1729 | 30.5
29.5 | 28.5
28.5 | 44.5
49 | 47
51 | 1.5 1.
0.8 1. | | | | | 0.097 0.039
0.143 0.102 | | 24.000 | 55.000 | 25.000 | 25.000 | 21.000 | 2.0 2.0 | 49 500 | 55 000 | 7 100 | 9 500 | ▲JHM 33449 | ▲JHM 33410 | 35 | 30 | 47 | 52 | 2 2 | 15.8 | 0.35 | 1.7 | 0.93 | 0.181 0.107 | | 24.981 | 51.994
52.001
62.000 | 15.011
15.011
16.002 | 14.260
14.260
16.566 | 12.700
12.700
14.288 | 1.5 1.3
1.5 2.0
1.5 1.5 | 26 000
26 000
37 000 | 27 900
27 900
39 500 | 7 500
7 500
6 300 | 10 000
10 000
8 500 | 07098
07098
17098 | 07204
07205
17244 | 31
31
33 | 29
29
30.5 | 45
44.5
54 | 48
48
57 | 1.5 1.
1.5 2
1.5 1. | 12.1 | 0.40
0.40
0.38 | 1.5 | 0.82 | 0.085 0.061
0.085 0.061
0.165 0.091 | | 25.000 | 50.005
51.994 | 13.495
15.011 | 14.260
14.260 | 9.525
12.700 | 1.5 1.0
1.5 1.3 | 26 000
26 000 | 27 900
27 900 | 7 500
7 500 | 10 000
10 000 | 07097
07097 | 07196
07204 | 31
31 | 29
29 | 44.5
45 | 47
48 | 1.5 1
1.5 1 | 10.6
3 12.1 | 0.40
0.40 | | 0.82
0.82 | 0.085 0.035
0.085 0.061 | | 25.400 | 50.005
50.005
50.292 | 13.495
13.495
14.224 | 14.260
14.260
14.732 | 9.525
9.525
10.668 | 3.3 1.0
1.0 1.0
1.3 1.3 | 26 000
26 000
27 600 | 27 900
27 900
32 000 | 7 500
7 500
7 100 | 10 000
10 000
10 000 | 07100 SA
07100
† L 44643 | 07196
07196
† L 44610 | 35
30.5
31.5 | 29.5
29.5
29.5 | 44.5
44.5
44.5 | 47
47
47 | 3.3 1
1 1
1.3 1 | 10.6
10.6
3 10.9 | 0.40 | 1.5 | 0.82 | 0.082 0.035
0.084 0.035
0.090 0.039 | | | 57.150
57.150
59.530 | 17.462
19.431
23.368 | 17.462
19.431
23.114 | 13.495
14.732
18.288 | 1.3 1.5
1.5 1.5
0.8 1.5 | 39 500
42 500
50 000 | 45 500
49 000
58 000 | 6 700
6 700
6 300 | 9 000
9 000
9 000 | 15578
M 84548
M 84249 | 15520
M 84510
M 84210 | 32.5
36
36 | 30.5
33
32.5 | 51
48.5
49.5 | 53
54
56 | 1.3 1.
1.5 1.
0.8 1. | 5 16.1 | 0.55 | 1.1 | 0.60 | 0.151 0.070
0.156 0.089
0.194 0.13 | | | 62.000
63.500
64.292 | 19.050
20.638
21.433 | 20.638
20.638
21.433 | 14.288
15.875
16.670 | 0.8 1.3
3.5 1.5
1.5 1.5 | 46 000
46 000
51 000 | 53 000
53 000
64 500 | 6 000
6 000
5 600 | 8 000
8 000
8 000 | 15101
15100
M 86643 | 15245
15250 X
M 86610 | 32.5
38
38 | 31.5
31.5
36.5 | 55
55
54 | 58
59
61 | 0.8 1.
3.5 1.
1.5 1. | 5 14.9 | | 1.7 | 0.94
0.94
0.60 | | | | 65.088
68.262
72.233
72.626 | 22.225
22.225
25.400
24.608 | 21.463
22.225
25.400
24.257 | 15.875
17.462
19.842
17.462 | 1.5 1.5
0.8 1.5
0.8 2.3
2.3 1.5 | 45 000
55 000
63 500
60 000 | 47 500
64 000
83 500
58 000 | 5 600
5 600
5 000
5 600 | 8 000
7 500
7 100
7 500 | 23100
02473
HM 88630
41100 | 23256
02420
HM 88610
41286 | 39
34.5
39.5
41 | 34.5
33.5
39.5
36.5 | 53
59
60
61 | 61
63
69
68 | 1.5 1.
0.8 1.
0.8 2.
2.3
1. | 5 16.9 | | 1.1 | 0.79
0.60 | 0.214 0.142
0.28 0.152
0.398 0.188
0.32 0.177 | | 26.988 | 50.292
57.150
60.325
62.000 | 14.224
19.845
19.842
19.050 | 14.732
19.355
17.462
20.638 | 10.668
15.875
15.875
14.288 | 3.5 1.3
3.3 1.5
3.5 1.5
0.8 1.3 | 27 600
40 000
39 500
46 000 | 32 000
44 500
45 500
53 000 | 7 100
6 700
6 700
6 000 | 10 000
9 000
9 000
8 000 | † L 44649
1997 X
15580
15106 | † L 44610
1922
15523
15245 | 37.5
37.5
38.5
33.5 | 31
31.5
32
33 | 44.5
51
51
55 | 47
53.5
54
58 | 3.5 1.
3.3 1.
3.5 1.
0.8 1. | 5 13.9
5 14.7 | 0.33
0.35 | 1.8
1.7 | 1.0
0.95 | 0.081 0.039
0.152 0.077
0.141 0.123
0.211 0.081 | | 28.575 | 57.150
59.131
62.000 | 19.845
15.875
19.050 | 19.355
16.764
20.638 | 15.875
11.811
14.288 | 3.5 1.5
spec. 1.3
3.5 1.3 | 40 000
34 500
46 000 | 44 500
41 500
53 000 | 6 700
6 300
6 000 | 9 000
8 500
8 000 | 1988
† LM 67043
15112 | 1922
† LM 67010
15245 | 39.5
40
40 | 33.5
33.5
34 | 51
52
55 | 53.5
56
58 | 3.5 1.
3.5 1.
3.5 1. | | 0.41 | 1.5 | | 0.141 0.077
0.147 0.062
0.199 0.081 | | | 62.000
64.292
68.262 | 19.050
21.433
22.225 | 20.638
21.433
22.225 | 14.288
16.670
17.462 | 0.8 1.3
1.5 1.5
0.8 1.5 | 46 000
51 000
55 000 | 53 000
64 500
64 000 | 6 000
5 600
5 600 | 8 000
8 000
7 500 | 15113
M 86647
02474 | 15245
M 86610
02420 | 34.5
40
36.5 | 34
38
36 | 55
54
59 | 58
61
63 | 0.8 1.
1.5 1.
0.8 1. | 5 17.7 | 0.55 | 1.1 | 0.60
0.79 | 0.20 0.081
0.223 0.128
0.257 0.152 | | | 72.626
72.626
73.025 | 24.608
24.608
22.225 | 24.257
24.257
22.225 | 17.462
17.462
17.462 | 4.8 1.5
1.5 1.5
0.8 3.3 | 60 000
60 000
54 500 | 58 000
58 000
64 500 | 5 600
5 600
5 300 | 7 500
7 500
7 100 | 41125
41126
02872 | 41286
41286
02820 | 48
41.5
37.5 | 36.5
36.5
37 | 61
61
62 | 68
68
68 | 4.8 1.
1.5 1.
0.8 3. | 5 20.7 | 0.60
0.60
0.45 | 1.0 | | 0.292 0.177
0.295 0.177
0.321 0.16 | | | | | | | | | | • | | Notes + T | he tolerances for the l | ore diam | atar and | l overall l | haarina | width diff | r from t | no etand | ard (Sa | a Tabla | 5 on Dago (185) | Notes - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page C185). - The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 212 # BEARINGS TABLE **NSK** # Bore Diameter 29.000 - 32.000 mm ■ SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) #### Dynamic Equivalent Load | $P = XF_{\rm r} + YF_{\rm a}$ | | |-------------------------------|--------------| | $F_{\rm a}/F_{\rm r} \leq e$ | $F_{\rm a}/$ | | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | Boundary Dimensions (mm) | | | | | | Basic Load Ratings
(N) | | Limiting Speeds
(min ⁻¹) | | Bearing Numbers | | Abutment and Fillet Dime (mm) | | | | Çe | | | | I Load
ctors | Mass
(kg) | | |------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--------------------------------------|---|----------------------------------|-----------------|--|----------------------------------|-------------------------------------|-------------------------------|----------------------|----------------------|--------------------------|----------------------------------|----------------|--------------------------|--------------------|--| | d | D | T | В | С | Cone Cu
**
min. | р | $C_{\rm r}$ | C_{0r} | Grease | Oil | | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone Cone Cone Cone Max. | | n) | Y_1 | Y_0 | approx. | | 29.000
29.367 | 50.292
66.421 | 14.224
23.812 | 14.732
25.433 | 10.668
19.050 | 3.5 1.3
3.5 1.3 | | 26 800
65 000 | 34 000
73 000 | 7 100
6 000 | 9 500
8 000 | | † L 45449
2690 | † L 45410
2631 | 39.5
41 | 33
35 | 44.5
58 | 48
60 | 3.5 1
3.5 1 | .3 10
.3 14 | | 7 1.6
5 2.4 | | 0.079 0.036
0.242 0.165 | | 30.000 | 62.000
62.000
63.500
72.000 | 16.002
19.050
20.638
19.000 | 16.566
20.638
20.638
18.923 | 14.288
14.288
15.875
15.875 | 1.5 1.5
1.3 1.3
1.3 1.3
1.5 1.5 | 3 | 37 000
46 000
46 000
52 000 | 39 500
53 000
53 000
56 000 | 6 300
6 000
6 000
5 600 | 8 500
8 000
8 000
7 500 | | * 17118
* 15117
* 15117
* 26118 | 17244
15245
15250
26283 | 37
36.5
36.5
38 | 34.5
35
35
36 | 54
55
56
62 | 57
58
59
65 | 1.3 1 | .5 12
.3 13
.3 14
.5 14 | 3 0.3
9 0.3 | 1.7 | 0.94
0.94 | 0.136 0.091
0.189 0.081
0.189 0.113
0.225 0.163 | | 30.112 | 62.000 | 19.050 | 20.638 | 14.288 | 0.8 1.3 | 3 | 46 000 | 53 000 | 6 000 | 8 000 | | 15116 | 15245 | 36 | 35.5 | 55 | 58 | 0.8 1 | .3 13 | 3 0.3 | 5 1.7 | 0.94 | 0.189 0.081 | | 30.162 | 58.738
64.292
68.262 | 14.684
21.433
22.225 | 15.080
21.433
22.225 | 10.716
16.670
17.462 | 3.5 1.0
1.5 1.5
2.3 1.5 | 5 | 28 800
51 000
55 500 | 33 500
64 500
70 500 | 6 000
5 600
5 300 | 8 000
8 000
7 500 | | 08118
M 86649
M 88043 | 08231
M 86610
M 88010 | 41.5
41
43.5 | 35
38
39.5 | 52
54
58 | 55
61
65 | 3.5 1
1.5 1
2.3 1 | .5 13
.5 17
.5 19 | 7 0.5 | 5 1.1 | 0.60 | 0.12 0.057
0.211 0.128
0.263 0.146 | | | 69.850
69.850
76.200 | 23.812
23.812
24.608 | 25.357
25.357
24.074 | 19.050
19.050
16.670 | 2.3 1.3
0.8 1.3
1.5 C3.3 | 3 | 71 000
71 000
67 500 | 84 000
84 000
69 500 | 5 600
5 600
5 000 | 7 500
7 500
6 700 | | 2558
2559
43118 | 2523
2523
43300 | 40
37
45 | 36.5
36.5
42 | 61
61
64 | 64
64
73 | | .3 14
.3 14
.3 22 | 5 0.2 | 7 2.2
7 2.2
7 0.90 | | 0.297 0.169
0.298 0.169
0.383 0.146 | | 30.213 | 62.000
62.000
62.000 | 19.050
19.050
19.050 | 20.638
20.638
20.638 | 14.288
14.288
14.288 | 3.5 1.3
0.8 1.3
1.5 1.3 | 3 | 46 000
46 000
46 000 | 53 000
53 000
53 000 | 6 000
6 000
6 000 | 8 000
8 000
8 000 | | 15118
15120
15119 | 15245
15245
15245 | 41.5
36
37.5 | 35.5
35.5
35.5 | 55
55
55 | 58
58
58 | | .3 13
.3 13
.3 13 | 3 0.3 | 5 1.7 | 0.94 | 0.186 0.081
0.188 0.081
0.188 0.081 | | 30.955 | 64.292 | 21.433 | 21.433 | 16.670 | 1.5 1.5 | 5 | 51 000 | 64 500 | 5 600 | 8 000 | | M 86648 A | M 86610 | 42 | 38 | 54 | 61 | 1.5 1 | .5 17 | 7 0.5 | 5 1.1 | 0.60 | 0.205 0.128 | | 31.750 | 58.738
59.131
62.000 | 14.684
15.875
18.161 | 15.080
16.764
19.050 | 10.716
11.811
14.288 | 1.0 1.0
spec. 1.3
spec. 1.3 | 3 | 28 800
34 500
46 000 | 33 500
41 500
53 000 | 6 000
6 300
6 000 | 8 000
8 500
8 000 | | 08125
† LM 67048
15123 | 08231
† LM 67010
15245 | 37.5
42.5
42.5 | 36
36
36.5 | 52
52
55 | 55
56
58 | | .3 12
.3 13 | 6 0.4 | 1 1.5 | 0.80 | 0.113 0.057
0.127 0.062
0.165 0.081 | | | 62.000
62.000
63.500 | 19.050
19.050
20.638 | 20.638
20.638
20.638 | 14.288
14.288
15.875 | 0.8 1.3
3.5 1.3
0.8 1.3 | 3 | 46 000
46 000
46 000 | 53 000
53 000
53 000 | 6 000
6 000
6 000 | 8 000
8 000
8 000 | | 15126
15125
15126 | 15245
15245
15250 | 37
42.5
37 | 36.5
36.5
36.5 | 55
55
56 | 58
58
59 | | .3 13
.3 13
.3 14 | 3 0.3 | 5 1.7 | 0.94 | 0.176 0.081
0.174 0.081
0.176 0.113 | | | 68.262
68.262
69.012 | 22.225
22.225
19.845 | 22.225
22.225
19.583 | 17.462
17.462
15.875 | 3.5 1.5
1.5 1.5
3.5 1.3 | 5 | 55 000
55 500
47 000 | 64 000
70 500
56 000 | 5 600
5 300
5 600 | 7 500
7 500
7 500 | | 02475
M 88046
14125 A | 02420
M 88010
14276 | 44.5
43
44 | 38.5
40.5
37.5 | 59
58
60 | 63
65
63 | 3.5 1
1.5 1
3.5 1 | .5 19 | 1 0.5 | | 0.60 | 0.229 0.152
0.25 0.146
0.219 0.135 | | | 69.012
69.850
69.850 | 26.982
23.812
23.812 | 26.721
25.357
25.357 | 15.875
19.050
19.050 | 4.3 3.3
0.8 1.3
3.5 1.3 | 3 | 47 000
71 000
71 000 | 56 000
84 000
84 000 | 5 600
5 600
5 600 | 7 500
7 500
7 500 | | 14123 A
2580
2582 | 14274
2523
2523 | 41.5
38.5
44 | 37.5
37.5
37.5 | 59
61
61 | 63
64
64 | | .3 15
.3 14
.3 14 | 5 0.2 | | 0.87
1.2
1.2 | 0.289 0.132
0.282 0.169
0.28 0.169 | | | 72.626
73.025
80.000 | 30.162
29.370
21.000 | 29.997
27.783
22.403 | 23.812
23.020
17.826 | 0.8 3.3
1.3 3.3
0.8 1.3 | 3 | 79 500
74 000
68 500 | 90 000
100 000
75 500 | 5 300
5 000
4 500 | 7 500
7 100
6 300 | | 3188
HM 88542
346 | 3120
HM 88510
332 | 39.5
45.5
40 | 39.5
42.5
39.5 | 61
59
73 | 67
70
75 | 0.8 3
1.3 3
0.8 1 | .3 23 | 5 0.5 | | | 0.368 0.225
0.379 0.242
0.419 0.146 | | 32.000 | 72.233 | 25.400 |
25.400 | 19.842 | 3.3 2.3 | 3 | 63 500 | 83 500 | 5 000 | 7 100 | | *HM 88638 | HM 88610 | 48.5 | 42.5 | 60 | 69 | 3.3 2 | .3 20 | 7 0.5 | 5 1.1 | 0.60 | 0.337 0.188 | | | | | | | | | | | | | | Notes * The | maximum hore dia | matar ic | lictad an | d ite tala | ranca is | e negative | (See T | hla 7 / | on Pag | Δ136) | | - * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page C185). C 214 C 215 ## Bore Diameter 33.338 - 35.000 mm #### Dynamic Equivalent Load $P = XF_r + YF_a$ $F_a/F_r \le e \qquad F_a/$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | #### Static Equivalent Load $P_0 = 0.5F_{\rm r} + Y_0 F_{\rm a}$ When $F_{\mathrm{r}}\!>\!0.5F_{\mathrm{r}}\!+\!Y_{\!0}F_{\mathrm{a}}$, use $P_{\!0}\!=\!F_{\mathrm{r}}$ The values of e, Y_1 , and Y_0 are given in the table below. | | | Dimensions
m) | | | | Basic Load | | Limiting S | | Bearing N | lumbers | А | butment | and Fille | | sions | Eff. Load
Centers | Constant | | Load | Mass
(kg) | | |--------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------|-------------------|----------------------------|------------------------------|-------------------------|-------------------------|--|---------------------------------------|----------------------|----------------------|------------------|----------------|--|----------------------|----------------------|--------|--------------|---| | d | D | T | В | С | Cone
γ
min | ٠ . ا | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | d_{a} | $d_{ m b}$ | D_{a} | $D_{ m b}$ | Cone Cup \mathcal{Y}_{a} max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 33.338 | 66.675
68.262
69.012 | 20.638
22.225
19.845 | 20.638
22.225
19.583 | 15.875
17.462
15.875 | 3.5
0.8
3.5 | 1.5
1.5
3.3 | 46 000
55 500
47 000 | 53 500
70 500
56 000 | 5 600
5 300
5 600 | 7 500
7 500
7 500 | 1680
M 88048
14130 | 1620
M 88010
14274 | 44.5
42.5
45 | 38.5
41
38.5 | 58
58
59 | 61
65
63 | 3.5 1.5
0.8 1.5
3.5 3.3 | 19.0 | 0.37
0.55
0.38 | 1.1 | 0.60 | 0.196 0.121
0.236 0.146
0.207 0.132 | | | 69.012
69.850
72.000 | 19.845
23.812
19.000 | 19.583
25.357
18.923 | 15.875
19.050
15.875 | 0.8
3.5
3.5 | 1.3
1.3
1.5 | 47 000
71 000
52 000 | 56 000
84 000
56 000 | 5 600
5 600
5 600 | 7 500
7 500
7 500 | 14131
2585
26131 | 14276
2523
26283 | 39.5
45
44.5 | 38.5
39
38.5 | 60
61
62 | 63
64
65 | 0.8 1.3
3.5 1.3
3.5 1.5 | 14.5 | 0.38
0.27
0.36 | 2.2 | 1.2 | 0.209 0.135
0.263 0.169
0.20 0.163 | | | 72.626
73.025
76.200 | 30.162
29.370
29.370 | 29.997
27.783
28.575 | 23.812
23.020
23.020 | | 3.3
3.3
0.8 | 79 500
74 000
78 500 | 90 000
100 000
106 000 | 5 300
5 000
4 800 | 7 500
7 100
6 700 | 3197
HM 88547
HM 89444 | 3120
HM 88510
HM 89411 | 41.5
45.5
53 | 40.5
42.5
44.5 | 61
59
65 | 67
70
73 | 0.8 3.3
0.8 3.3
3.8 0.8 | 23.5 | | 1.1 | 0.60 | 0.348 0.225
0.362 0.242
0.419 0.261 | | | 76.200
79.375 | 29.370
25.400 | 28.575
24.074 | 23.020
17.462 | 0.8
3.5 | 3.3
1.5 | 78 500
67 500 | 106 000
69 500 | 4 800
5 000 | 6 700
6 700 | HM 89443
43131 | HM 89410
43312 | 46.5
51 | 44.5
42 | 62
67 | 73
74 | | | 0.55
0.67 | | | 0.421 0.257
0.348 0.22 | | 34.925 | 65.088
65.088
66.675 | 18.034
20.320
20.638 | 18.288
18.288
20.638 | 13.970
16.256
16.670 | spec.
spec.
3.5 | 1.3
1.3
2.3 | 47 500
47 500
53 000 | 57 500
57 500
62 500 | 5 600
5 600
5 600 | 7 500
7 500
7 500 | † LM 48548
† LM 48548
M 38549 | † LM 48510
† LM 48511
M 38510 | 46
46
46.5 | 40
40
40 | 58
58
58 | 61
61
62 | 3.5 1.3 | 14.1
16.4
15.2 | 0.38
0.38
0.35 | 1.6 | 0.88 | 0.172 0.087
0.172 0.108
0.194 0.112 | | | 69.012
69.012
72.233 | 19.845
19.845
25.400 | 19.583
19.583
25.400 | 15.875
15.875
19.842 | 3.5
1.5
2.3 | 1.3
1.3
2.3 | 47 000
47 000
63 500 | 56 000
56 000
83 500 | 5 600
5 600
5 000 | 7 500
7 500
7 100 | 14138 A
14137 A
HM 88649 | 14276
14276
HM 88610 | 46
42
48.5 | 40
40
42.5 | 60
60
60 | 63
63
69 | 3.5 1.3
1.5 1.3
2.3 2.3 | 15.1 | 0.38
0.38
0.55 | | 0.86 | 0.194 0.135
0.196 0.135
0.307 0.188 | | | 73.025
73.025
73.025 | 22.225
22.225
23.812 | 22.225
23.812
24.608 | 17.462
17.462
19.050 | 0.8
3.5
1.5 | 3.3
3.3
0.8 | 54 500
63 500
71 000 | 64 500
77 000
86 000 | 5 300
5 300
5 300 | 7 100
7 100
7 100 | 02878
2877
25877 | 02820
2820
25821 | 42.5
47
43 | 42
41.5
40.5 | 62
63
65 | 68
68
68 | 0.8 3.3
3.5 3.3
1.5 0.8 | 16.1 | 0.45
0.37
0.29 | 1.6 | 0.90 | 0.266 0.16
0.291 0.15
0.306 0.167 | | | 73.025
76.200
76.200 | 23.812
29.370
29.370 | 24.608
28.575
28.575 | 19.050
23.020
23.020 | 0.8 | 2.3
0.8
0.8 | 71 000
78 500
78 500 | 86 000
106 000
106 000 | 5 300
4 800
4 800 | 7 100
6 700
6 700 | 25878
HM 89446 A
HM 89446 | 25820
HM 89411
HM 89411 | 47
47.5
53 | 40.5
44.5
44.5 | 64
65
65 | 68
73
73 | 3.5 2.3
0.8 0.8
3.5 0.8 | 23.6 | 0.29
0.55
0.55 | 1.1 | 0.60 | 0.304 0.165
0.403 0.261
0.40 0.261 | | | 76.200
76.200
79.375 | 29.370
29.370
29.370 | 28.575
28.575
29.771 | 23.020
23.812
23.812 | 3.5
1.5
3.5 | 3.3
3.3
3.3 | 78 500
80 500
88 000 | 106 000
96 500
106 000 | 4 800
5 000
4 800 | 6 700
6 700
6 700 | HM 89446
31594
3478 | HM 89410
31520
3420 | 53
46
50 | 44.5
43.5
43.5 | 62
64
67 | 73
72
74 | | 21.6 | 0.55
0.40
0.37 | | 0.82 | 0.40 0.257
0.404 0.235
0.448 0.259 | | 34.976 | 68.262
72.085
80.000 | 15.875
22.385
21.006 | 16.520
19.583
20.940 | 11.908
18.415
15.875 | 1.5
1.3
1.5 | 1.5
2.3
1.5 | 45 000
47 000
56 500 | 53 500
56 000
64 500 | 5 300
5 600
5 000 | 7 100
7 500
6 700 | 19138
14139
28138 | 19268
14283
28315 | 42.5
41.5
43.5 | 40.5
40
41 | 61
60
69 | 65
65
73 | 1.5 1.5
1.3 2.3
1.5 1.5 | 17.7 | 0.44
0.38
0.40 | 1.6 | 0.87 | 0.196 0.073
0.198 0.21
0.308 0.199 | | 35.000 | 59.131
59.975
62.000 | 15.875
15.875
16.700 | 16.764
16.764
17.000 | 11.938
11.938
13.600 | spec.
spec.
spec. | 1.3
1.3
1.0 | 35 000
35 000
38 000 | 47 000
47 000
50 000 | 6 000
6 000
5 600 | 8 000
8 000
8 000 | *† L 68149
*† L 68149
* LM 78349 | † L 68110
† L 68111
** LM 78310 | 45.5
45.5
46 | 39
39
40 | 52
53
55 | 56
56
59 | 3.5 1.3
3.5 1.3
3.5 1 | 13.2
13.2
14.4 | 0.42
0.42
0.44 | 1.4 | 0.79 | 0.117 0.056
0.117 0.064
0.137 0.074 | | | 62.000
65.987
73.025 | 16.700
20.638
26.988 | 17.000
20.638
26.975 | 13.600
16.670
22.225 | spec.
3.5
3.5 | 1.5
2.3
0.8 | 38 000
53 000
75 500 | 50 000
62 500
88 500 | 5 600
5 600
5 300 | 8 000
7 500
7 500 | * LM 78349
M 38547
23691 | ** LM 78310 A
M 38511
23621 | 46
46
49 | 40
39.5
42 | 54
59
63 | 59
61
68 | 3.5 1.5
3.5 2.3
3.5 0.8 | 15.2 | 0.44
0.35
0.37 | | 0.94 | 0.138 0.073
0.193 0.103
0.309 0.212 | | | | | | | | | | | | | Notes * Th | ne maximum hore dia | motor io | lioted on | d ita tala | ranga ia | nogotivo (| on Table | 7110 | n Dogo | A126) | | Note - * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 7.4.2 on Pages A136 and A137). - † The tolerances for the bore diameter and overall bearing width differ from the standard (See Table 5 on Page C185). - * † The tolerance for the bore diameter is 0 to $-20 \, \mu m$, and for overall bearing width is +356 to 0 μm . # BEARINGS TABLE **NSK** # Bore Diameter 35.717 - 41.275 mm ■ SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) #### Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | | | | | |---------------|--------------------------|---------------|-----------------------|--|--|--|--| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | | | | | X | Y | X | Y | | | | | | 1 | 0 | 0.4 | <i>Y</i> ₁ | | | | | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | Boundary Dimensions (mm) Cone C | | | | | | | Limiting Speeds (min ⁻¹) | | Bearing | Numbers | A | butment | and Fille | | sions | Eff. Load
Centers | Constant | Axial
Fac | Load
tors | Mass
(kg) | |------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------------|---|--------------------------------------|----------------------------------|------------------------------------
------------------------------------|-------------------------------|-------------------------------|----------------------|-------------------------------|--|----------------------|------------------------------|--------------------|--------------|---| | <u>d</u> | D | T | В | С | Cone Cup
**
min. | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{\scriptscriptstyle m b}$ | Cone Cup
γ_a
max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 35.717
36.487 | 72.233
73.025 | 25.400
23.812 | 25.400
24.608 | 19.842
19.050 | 3.5 2.3
1.5 0.8 | 63 500
71 000 | 83 500
86 000 | 5 000
5 300 | 7 100
7 100 | HM 88648
25880 | HM 88610
25821 | 52
44 | 43
42 | 60
65 | 69
68 | 3.5 2.3
1.5 0.8 | 20.7
15.7 | 0.55
0.29 | 1.1
2.1 | | 0.298 | | 36.512 | 76.200
79.375
88.501
93.662 | 29.370
29.370
25.400
31.750 | 28.575
29.771
23.698
31.750 | 23.020
23.812
17.462
26.195 | 3.5 3.3
0.8 3.3
2.3 1.5
1.5 3.3 | 78 500
88 000
73 000
110 000 | 106 000
106 000
81 000
142 000 | 4 800
4 800
4 000
4 000 | 6 700
6 700
5 600
5 600 | HM 89449
3479
44143
46143 | HM 89410
3420
44348
46368 | 54
45.5
54
48.5 | 44.5
44.5
50
46.5 | 62
67
75
79 | 73
74
84
87 | 3.5 3.3
0.8 3.3
2.3 1.5
1.5 3.3 | 27.9 | 0.55
0.37
0.78
0.40 | | 0.90
0.42 | 0.38 0.257
0.429 0.259
0.502 0.245
0.765 0.405 | | 38.000 | 63.000 | 17.000 | 17.000 | 13.500 | spec. 1.3 | 38 500 | 52 000 | 5 600 | 7 500 | ▲ JL 69349 | ▲ JL 69310 | 49 | 42.5 | 56 | 60 | 3.5 1.3 | 14.6 | 0.42 | 1.4 | 0.79 | 0.132 0.071 | | 38.100 | 63.500
65.088
65.088 | 12.700
18.034
18.034 | 11.908
18.288
18.288 | 9.525
13.970
13.970 | 1.5 0.8
2.3 1.3
spec. 1.3 | 24 100
42 500
42 500 | 30 500
55 000
55 000 | 5 300
5 300
5 300 | 7 100
7 500
7 500 | 13889
LM 29749
LM 29748 | 13830
LM 29710
LM 29710 | 45
46
49 | 42.5
42.5
42.5 | 59
59
59 | 60
62
62 | 1.5 0.8
2.3 1.3
3.5 1.3 | 11.9
13.7
13.7 | 0.35
0.33
0.33 | 1.7
1.8
1.8 | 0.99 | 0.109 0.046
0.16 0.079
0.158 0.079 | | | 65.088
68.262
69.012 | 19.812
15.875
19.050 | 18.288
16.520
19.050 | 15.748
11.908
15.083 | 2.3 1.3
1.5 1.5
2.0 2.3 | 42 500
45 000
49 000 | 55 000
53 500
61 000 | 5 300
5 300
5 300 | 7 500
7 100
7 100 | LM 29749
19150
13687 | LM 29711
19268
13621 | 46
45
46.5 | 42.5
43
43 | 58
61
61 | 62
65
65 | 2.3 1.3
1.5 1.5
2 2.3 | | 0.33
0.44
0.40 | 1.8
1.4
1.5 | 0.74 | 0.16 0.094
0.173 0.073
0.193 0.104 | | | 69.012
72.238
73.025 | 19.050
20.638
23.812 | 19.050
20.638
25.654 | 15.083
15.875
19.050 | 3.5 0.8
3.5 1.3
3.5 0.8 | 49 000
48 500
73 500 | 61 000
59 500
91 000 | 5 300
5 300
5 000 | 7 100
7 100
6 700 | 13685
16150
2788 | 13620
16284
2735 X | 49.5
49.5
50 | 43
43
43.5 | 62
63
66 | 65
67
69 | 3.5 0.8
3.5 1.3
3.5 0.8 | 16.0 | 0.40
0.40
0.30 | 1.5 | 0.82 | 0.191 0.105
0.212 0.146
0.312 0.135 | | | 76.200
76.200
79.375 | 23.812
23.812
29.370 | 25.654
25.654
29.771 | 19.050
19.050
23.812 | 3.5 3.3
3.5 0.8
3.5 3.3 | 73 500
73 500
88 000 | 91 000
91 000
106 000 | 5 000
5 000
4 800 | 6 700
6 700
6 700 | 2788
2788
3490 | 2720
2729
3420 | 50
50
52 | 43.5
43.5
45.5 | 66
68
67 | 70
70
74 | 3.5 3.3
3.5 0.8
3.5 3.3 | | | 2.0
2.0
1.6 | 1.1 | 0.312 0.187
0.312 0.191
0.404 0.259 | | | 80.035
82.550
88.501 | 24.608
29.370
25.400 | 23.698
28.575
23.698 | 18.512
23.020
17.462 | 0.8 1.5
0.8 3.3
2.3 1.5 | 69 000
87 000
73 000 | 84 500
117 000
81 000 | 4 500
4 500
4 000 | 6 300
6 000
5 600 | 27880
HM 801346
44150 | 27820
HM 801310
44348 | 48
51
55 | 47
49
51 | 68
68
75 | 75
78
84 | 0.8 1.5
0.8 3.3
2.3 1.5 | 24.2 | 0.56
0.55
0.78 | 1.1
1.1
0.77 | 0.60 | 0.362 0.209
0.483 0.282
0.484 0.245 | | | 88.501
95.250 | 26.988
30.958 | 29.083
28.301 | 22.225
20.638 | 3.5 1.5
1.5 0.8 | 96 500
87 500 | 109 000
97 000 | 4 500
3 600 | 6 000
5 300 | 418
53150 | 414
53375 | 51
55 | 44.5
53 | 77
81 | 80
89 | 3.5 1.5
1.5 0.8 | 17.1
30.7 | 0.26
0.74 | 2.3
0.81 | 1.3
0.45 | 0.50 0.329
0.665 0.365 | | 39.688 | 73.025
76.200
80.167 | 25.654
23.812
29.370 | 22.098
25.654
30.391 | 21.336
19.050
23.812 | 0.8 2.3
3.5 3.3
0.8 3.3 | 62 500
73 500
92 500 | 80 000
91 000
108 000 | 5 000
5 000
4 800 | 6 700
6 700
6 300 | M 201047
2789
3386 | M 201011
2720
3320 | 45.5
52
46.5 | 48
45
45.5 | 64
66
70 | 69
70
75 | 0.8 2.3
3.5 3.3
0.8 3.3 | 19.7
15.9
18.4 | 0.33
0.30
0.27 | 1.8
2.0
2.2 | | 0.266 0.169
0.292 0.187
0.442 0.217 | | 40.000 | 80.000
80.000
88.501 | 21.000
21.000
25.400 | 22.403
22.403
23.698 | 17.826
17.826
17.462 | 3.5 1.3
0.8 1.3
2.3 1.5 | 68 500
68 500
73 000 | 75 500
75 500
81 000 | 4 500
4 500
4 000 | 6 300
6 300
5 600 | 344
344 A
44157 | 332
332
44348 | 52
46
56 | 45.5
45.5
51 | 73
73
75 | 75
75
84 | 3.5 1.3
0.8 1.3
2.3 1.5 | 14.5
14.5
27.9 | | 2.2 | 1.2 | 0.338 | | 41.000 | 68.000 | 17.500 | 18.000 | 13.500 | spec. 1.5 | 43 500 | 58 000 | 5 300 | 7 100 | * LM 300849 | ** LM 300811 | 52 | 45 | 61 | 65 | 3.5 1.5 | 13.9 | 0.35 | 1.7 | 0.95 | | | 41.275 | 73.025
73.431
73.431 | 16.667
19.558
21.430 | 17.462
19.812
19.812 | 12.700
14.732
16.604 | 3.5 1.5
3.5 0.8
3.5 0.8 | 44 500
54 500
54 500 | 54 000
67 000
67 000 | 4 800
4 800
4 800 | 6 700
6 700
6 700 | 18590
LM 501349
LM 501349 | 18520
LM 501310
LM 501314 | 53
53
53 | 46
46.5
46.5 | 66
67
66 | 69
70
70 | 3.5 1.5
3.5 0.8
3.5 0.8 | 14.0
16.3
18.2 | 0.35
0.40
0.40 | 1.7
1.5
1.5 | 0.83 | 0.199 0.086
0.226 0.108
0.226 0.129 | | | | | | | | | | | | Motoo da | The maximum here dia | motor in | liated on | d ita tala | ranga ia | nogotivo (C | aa Tabla | 7110 | n Dogo | A 4 9 C \ | | - Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 7.4.2 on Pages A136 and A137). - The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 218 C 219 # Bore Diameter 41.275 – 44.450 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | Boundary [| | | | | Basic Loa | Ü | Limiting S | | Bearing I | Numbers | A | Abutment | and Fille | | sions | Eff. Load
Centers | Constant | | Load
tors | Mass
(kg) | |--------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|-------------------------------|----------------------|----------------------|--|----------------------|------------------------------|--------------------------|----------------------------|--| | d | D | T | В | С | Cone
<i>1</i>
mi | r · | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone Cup $r_{\rm a}$ max. | | e | Y_1 | Y_0 | approx. | | 41.275 | 76.200
76.200
76.200 | 18.009
22.225
25.400 | 17.384
23.020
23.020 | 14.288
17.462
20.638 | 1.5
3.5
3.5 | 1.5
0.8
2.3 | 42 500
66 000
66 000 | 51 000
82 000
82 000 | 4 500
4 800
4 800 | 6 300
6 700
6 700 | 11162
24780
24780 | 11300
24720
24721 | 49
53
54 | 46.5
47.5
47 | 67
68
66 | 71
72
72 | 1.5 1.5
3.5 0.8
3.5 2.3 | 17.0 | 0.49
0.39
0.39 | 1.2
1.5
1.5 | 0.84 | 0.279 0.15 | | | 79.375
80.000
80.000 | 23.812
21.000
21.000 | 25.400
22.403
22.403 | 19.050
17.826
17.826 | 3.5
0.8
3.5 | 0.8
1.3
1.3 | 77 000
68 500
68 500 | 98 500
75 500
75 500 | 4 800
4 500
4 500 | 6 300
6 300
6 300 | 26882
336
342 | 26822
332
332 | 54
47
53 | 47
46
46 | 71
73
73 | 74
75
75 | 3.5 0.8
0.8 1.3
3.5 1.3 | 14.5 | 0.32
0.27
0.27 | 1.9
2.2
2.2 | 1.0
1.2
1.2 | 0.349 0.186
0.325 0.146
0.323 0.146 | | | 80.167
82.550
85.725 | 25.400
26.543
30.162 | 25.400
25.654
30.162 | 20.638
20.193
23.812 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 77 000
78 500
91 000 | 98 500
102 000
115 000 | 4 800
4 300
4 300 | 6 300
6 000
6 000 | 26882
M
802048
3877 | 26820
M 802011
3820 | 54
57
57 | 47
51
50 | 69
70
73 | 74
79
81 | 3.5 3.3
3.5 3.3
3.5 3.3 | 22.9 | 0.32
0.55
0.40 | 1.9
1.1
1.5 | 1.0
0.60
0.82 | 0.349 0.219
0.406 0.23
0.506 0.285 | | | 87.312
88.501
88.900 | 30.162
25.400
30.162 | 30.886
23.698
29.370 | 23.812
17.462
23.020 | 0.8
2.3
3.5 | 3.3
1.5
3.3 | 96 000
73 000
96 500 | 120 000
81 000
129 000 | 4 300
4 000
4 000 | 6 000
5 600
5 600 | 3576
44162
HM 803146 | 3525
44348
HM 803110 | 49
57
60 | 48
51
53 | 75
75
74 | 81
84
85 | 0.8 3.3
2.3 1.5
3.5 3.3 | 28.0 | 0.31
0.78
0.55 | 2.0
0.77
1.1 | | 0.532 0.304
0.447 0.245
0.579 0.322 | | | 88.900
90.488
93.662 | 30.162
39.688
31.750 | 29.370
40.386
31.750 | 23.020
33.338
26.195 | 0.8
3.5
0.8 | 3.3
3.3
3.3 | 96 500
139 000
110 000 | 129 000
180 000
142 000 | 4 000
4 300
4 000 | 5 600
5 600
5 600 | HM 803145
4388
46162 | HM 803110
4335
46368 | 54
57
52 | 53
51
51 | 74
77
79 | 85
85
87 | 0.8 3.3
3.5 3.3
0.8 3.3 | 24.6 | 0.55
0.28
0.40 | 1.1
2.1
1.5 | 1.2 | 0.789 0.459 | | | 95.250
98.425 | 30.162
30.958 | 29.370
28.301 | 23.020
20.638 | 3.5
1.5 | 3.3
0.8 | 106 000
87 500 | 143 000
97 000 | 3 800
3 600 | 5 300
5 300 | HM 804840
53162 | HM 804810
53387 | 61
57 | 54
53 | 81
82 | 91
91 | 3.5 3.3
1.5 0.8 | | 0.55
0.74 | 1.1
0.81 | | 0.726 0.354
0.618 0.442 | | 42.862 | 76.992
82.550
82.931
82.931 | 17.462
19.842
23.812
26.988 | 17.145
19.837
25.400
25.400 | 11.908
15.080
19.050
22.225 | 1.5
2.3
2.3
2.3 | 1.5
1.5
0.8
2.3 | 44 000
58 500
76 500
76 500 | 54 000
69 000
99 000
99 000 | 4 500
4 500
4 500
4 500 | 6 000
6 300
6 000
6 000 | 12168
22168
25578
25578 | 12303
22325
25520
25523 | 51
52
53
53 | 48.5
48.5
49.5
49.5 | 68
73
74
72 | 73
76
77
77 | 1.5 1.5
2.3 1.5
2.3 0.8
2.3 2.3 | 17.6 | 0.51
0.43
0.33
0.33 | 1.2
1.4
1.8
1.8 | 0.77
0.99 | 0.283 0.176 | | 42.875 | 76.200
80.000
82.931
83.058 | 25.400
21.000
26.988
23.812 | 25.400
22.403
25.400
25.400 | 20.638
17.826
22.225
19.050 | 3.5
3.5
3.5
3.5 | 1.5
1.3
2.3
3.3 | 77 000
68 500
76 500
76 500 | 98 500
75 500
99 000
99 000 | 4 800
4 500
4 500
4 500 | 6 300
6 300
6 000
6 000 | 26884
342 S
25577
25577 | 26823
332
25523
25521 | 55
54
55
55 | 48.5
47.5
49
49 | 69
73
72
72 | 73
75
77
77 | 3.5 1.5
3.5 1.3
3.5 2.3
3.5 3.3 | 3 14.5
3 20.8 | 0.32
0.27
0.33
0.33 | 1.9
2.2
1.8
1.8 | 1.0
1.2
0.99
0.99 | 0.337 0.136
0.305 0.146
0.381 0.248
0.381 0.201 | | 43.000 | 74.988 | 19.368 | 19.837 | 14.288 | 1.5 | 1.3 | 52 500 | 68 000 | 4 800 | 6 300 | * 16986 | 16929 | 51 | 48.5 | 67 | 71 | 1.5 1.3 | | 0.44 | 1.4 | | | | 44.450 | 80.962
82.931
83.058 | 19.050
23.812
23.812 | 17.462
25.400
25.400 | 14.288
19.050
19.050 | 0.3
3.5
3.5 | 1.5
0.8
3.3 | 45 000
76 500
76 500 | 57 000
99 000
99 000 | 4 300
4 500
4 500 | 6 000
6 000
6 000 | 13175
25580
25580 | 13318
25520
25521 | 50
57
56 | 50
50
51 | 72
74
72 | 76
77
78 | 0.3 1.5
3.5 0.8
3.5 3.3 | 17.6 | 0.53
0.33
0.33 | 1.1
1.8
1.8 | 0.99 | 0.252 0.144
0.359 0.203
0.359 0.201 | | | 87.312
88.900
93.264 | 30.162
30.162
30.162 | 30.886
29.370
30.302 | 23.812
23.020
23.812 | 3.5
3.5
3.5 | 3.3
3.3
3.2 | 96 000
96 500
103 000 | 120 000
129 000
136 000 | 4 300
4 000
3 800 | 6 000
5 600
5 300 | 3578
HM 803149
3782 | 3525
HM 803110
3720 | 57
62
58 | 51
53
52 | 75
74
82 | 81
85
88 | 3.5 3.3
3.5 3.3
3.5 3.2 | 25.6 | 0.31
0.55
0.34 | 2.0
1.1
1.8 | | 0.477 0.304
0.528 0.322
0.678 0.292 | | | 93.662
93.662
93.662
95.250 | 31.750
31.750
31.750
27.783 | 31.750
31.750
31.750
29.901 | 25.400
25.400
26.195
22.225 | 0.8
3.5
3.5
3.5 | 3.3
3.3
3.3
2.3 | 120 000
120 000
110 000
106 000 | 147 000
147 000
142 000
126 000 | 4 000
4 000
4 000
4 300 | 5 600
5 600
5 600
5 600 | 49176
49175
46176
438 | 49368
49368
46368
432 | 54
59
60
57 | 53
53
54
51 | 82
82
79
83 | 87
87
87
87 | 0.8 3.3
3.5 3.3
3.5 3.3
3.5 2.3 | 21.6
24.0 | 0.36
0.36
0.40
0.28 | | 0.92
0.82 | 0.648 0.371
0.645 0.371
0.635 0.405
0.555 0.384 | | | | | | | | | | | | | Note * T | he maximum bore dia | meter is | listed an | d its tole | rance is | negative (| See Table | 7.4.1 c | n Page | A136). | | C 220 C 221 # BEARINGS TABLE **NSK** # Bore Diameter 44.450 – 47.625 mm ■ SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) #### Dynamic Equivalent Load | | P = X | $F_{\rm r} + YF_{\rm a}$ | | | |---|---------------|--------------------------|---------------|-----| | _ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | 7,> | | | X | Y | X | | ## 0 Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | Boundary [| Dimensions
m) | | | | Basic Loa | d Ratings | Limiting S | | Bearing | Numbers | ļ , | butment | and Fille | | nsions | Eff. Loa
Centers | Constant | Axial
Fac | Load
tors | Mass
(kg) | |----------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|------------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------------|-------------------------------------|-------------------------------|----------------|----------------|-------------------|------------------------------|-------------------------------------|----------------------|--------------|--------------|---| | d | D | T | В | С | Cone
7
m | r · | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{ m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone C
γ_a
max. | (mm)
a | e | Y_1 | Y_0 | approx. | | 44.450 | 95.250
95.250
95.250 | 30.162
30.958
30.958 | 29.370
28.301
28.301 | 23.020
20.638
20.638 | 3.5
3.5
1.3 | 3.3
0.8
0.8 | 106 000
87 500
87 500 | 143 000
97 000
97 000 | 3 800
3 600
3 600 | 5 300
5 300
5 300 | HM 804843
53177
53176 | HM 804810
53375
53375 | 63
63
59 | 57
53
53 | 81
81
81 | 91
89
89 | 3.5 3
3.5 0
1.3 0 | .8 30.7 | 0.55
0.74
0.74 | 0.81 | 0.45 | 0.677 0.354
0.572 0.365
0.574 0.365 | | | 95.250
95.250
95.250 | 30.958
30.958
30.958 | 28.301
28.301
28.575 | 20.638
22.225
22.225 | 2.0
1.3
3.5 | 0.8
0.8
0.8 | 87 500
100 000
100 000 | 97 000
122 000
122 000 | 3 600
3 600
3 600 | 5 300
5 000
5 000 | 53178
HM 903247
HM 903249 | 53375
HM 903210
HM 903210 | 60
61
65 | 53
54
54 | 81
81
81 | 89
91
91 | 2 0
1.3 0
3.5 0 | | 0.74
0.74
0.74 | 0.81 | 0.45 | 0.574 0.365
0.651 0.389
0.635 0.389 | | | 98.425
103.188
104.775 | 30.958
43.658
36.512 | 28.301
44.475
36.512 | 20.638
36.512
28.575 | 3.5
1.3
3.5 | 0.8
3.3
3.3 | 87 500
178 000
139 000 | 97 000
238 000
192 000 | 3 600
3 800
3 400 | 5 300
5 000
4 800 | 53177
5356
HM 807040 | 53387
5335
HM 807010 | 63
58
66 | 53
56
59 | 82
89
89 | 91
97
100 | 3.5 0
1.3 3
3.5 3 | .3 27.0 | 0.74
0.30
0.49 | 2.0 | 1.1 | 0.568 0.442
1.23 0.637
1.14 0.502 | | | 107.950
111.125
114.300 | 27.783
30.162
44.450 | 29.317
26.909
44.450 | 22.225
20.638
34.925 | 3.5
3.5
3.5 | 0.8
3.3
3.3 | 116 000
92 500
172 000 | 149 000
110 000
205 000 | 3 400
3 200
3 600 | 4 800
4 300
4 800 | 460
55175
65385 | 453 A
55437
65320 | 60
67
65 | 54
60
59 | 97
92
97 | 100
105
107 | | .3 37.3 | 0.34
0.88
0.43 | 0.68 | | 0.93 0.42
0.867 0.514
1.39 0.894 | | 44.983
45.000
45.230 | 82.931
93.264
79.985 | 23.812
20.638
19.842 | 25.400
22.225
20.638 | 19.050
15.082
15.080 | 1.5
0.8
2.0 | 0.8
1.3
1.3 | 76 500
77 000
62 000 | 99 000
93 000
78 500 | 4 500
3 800
4 500 | 6 000
5 300
6 000 | 25584
376
17887 | 25520
374
17831 | 53
54
57 | 51
54
52 | 74
85
68 | 77
88
74 | | .3 17.1 | 0.33
0.34
0.37 | 1.8 | 0.97 | 0.354 0.203
0.492 0.174
0.274 0.136 | | 45.242 | 73.431
77.788
77.788 | 19.558
19.842
21.430 | 19.812
19.842
19.842 | 15.748
15.080
16.667 | 3.5
3.5
3.5 | 0.8
0.8
0.8 | 53 500
56 000
56 000 | 75 000
71 000
71 000 | 4 800
4 500
4 500 | 6 300
6 300
6 300 | LM 102949
LM 603049
LM 603049 | LM 102910
LM 603011
LM 603012 | 56
57
57 | 50
50
50 | 68
71
70 | 70
74
74 | 3.5 0
3.5 0
3.5 0 | .8 17.2 | 0.31
0.43
0.43 | 1.4 | 0.77 | 0.213 0.102
0.249 0.119
0.249 0.137 | | 45.618 | 82.931
82.931 | 23.812
26.988 | 25.400
25.400 | 19.050
22.225 | 3.5
3.5 | 0.8
2.3 | 76 500
76 500 | 99 000
99 000 | 4
500
4 500 | 6 000
6 000 | 25590
25590 | 25520
25523 | 58
58 | 51
51 | 74
72 | 77
77 | | .8 17.6
.3 20.8 | 0.33
0.33 | 1.8
1.8 | | 0.343 0.203
0.343 0.248 | | 46.000 | 75.000 | 18.000 | 18.000 | 14.000 | 2.3 | 1.5 | 51 000 | 71 500 | 4 500 | 6 300 | * LM 503349 | ** LM 503310 | 55 | 51 | 67 | 71 | 2.3 1 | | 0.40 | | | 0.209 0.096 | | 46.038 | 79.375
80.962
85.000 | 17.462
19.050
20.638 | 17.462
17.462
21.692 | 13.495
14.288
17.462 | 2.8
0.8
2.3 | 1.5
1.5
1.3 | 46 000
45 000
71 500 | 57 000
57 000
81 500 | 4 500
4 300
4 300 | 6 000
6 000
6 000 | 18690
13181
359 S | 18620
13318
354 A | 56
52
55 | 51
52
51 | 71
72
77 | 74
76
80 | 0.8 1 | .5 15.5
.5 20.1
.3 15.4 | 0.53 | 1.1 | 0.63 | 0.211 0.126
0.236 0.144
0.343 0.162 | | | 85.000
95.250 | 25.400
27.783 | 25.608
29.901 | 20.638
22.225 | 3.5
3.5 | 1.3
0.8 | 79 500
106 000 | 105 000
126 000 | 4 300
4 300 | 6 000
5 600 | 2984
436 | 2924
432 A | 58
59 | 52
52 | 76
84 | 80
87 | 3.5 1
3.5 0 | | 0.35
0.28 | | | 0.397 0.223
0.536 0.381 | | 47.625 | 88.900
88.900
95.250 | 20.638
25.400
30.162 | 22.225
25.400
29.370 | 16.513
19.050
23.020 | 3.5
3.5
3.5 | 1.3
3.3
3.3 | 73 000
86 000
106 000 | 85 000
107 000
143 000 | 4 000
4 000
3 800 | 5 600
5 600
5 300 | 369 A
M 804049
HM 804846 | 362 A
M 804010
HM 804810 | 60
63
66 | 53
56
57 | 81
77
81 | 84
85
91 | 3.5 3 | | 0.55 | 1.1 | 0.60 | 0.381 0.166
0.455 0.218
0.626 0.354 | | | 101.600
111.125
112.712 | 34.925
30.162
30.162 | 36.068
26.909
26.909 | 26.988
20.638
20.638 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 137 000
92 500
92 500 | 169 000
110 000
110 000 | 3 800
3 200
3 200 | 5 000
4 300
4 300 | 528
55187
55187 | 522
55437
55443 | 62
69
69 | 55
62
62 | 89
92
92 | 95
105
106 | 3.5 3 | .3 22.1
.3 37.3
.3 37.3 | 0.29
0.88
0.88 | 0.68 | 0.37 | 0.894 0.416
0.817 0.514
0.816 0.554 | | | 117.475
123.825 | 33.338
36.512 | 31.750
32.791 | 23.812
25.400 | 3.5
3.5 | 3.3
3.3 | 137 000
143 000 | 156 000
160 000 | 3 200
3 000 | 4 300
4 000 | 66187
72187 | 66462
72487 | 66
72 | 62
66 | 100
102 | 111
116 | | .3 32.1
.3 37.0 | 0.63
0.74 | | | 1.19 0.552
1.29 0.79 | | | | | | | | | | | | |
Notes t T | ha mavimum hara dia | | linted or | ما مد مدا | | | (Can Tabl | 711 | n Dono | A 1 0 C \ | | - Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 7.4.2 on Pages A136 and A137). C 222 C 223 # Bore Diameter 48.412 – 52.388 mm ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | Boundary [
(m | | | | | Basic Loa | 3 | Limiting S | | Bearing | Numbers | A | Abutment | and Fille
(mm | | | Centers | Constant | | Load
tors | | ass
(g) | |--------|-------------------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|--------------------------------------|--------------------------------------|------------------|-------------------------------|------------------|-------------------|------------------------------|-------------------------------------|----------------------|-------------------|--------------------|-------------------------|-----------------------| | d | D | T | В | С | | Cup
Y
iin. | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone C
γ_a
max. | up (mm)
a | e | Y_1 | Y_0 | app
CONE | orox.
CUP | | 48.412 | 95.250
95.250 | 30.162
30.162 | 29.370
29.370 | 23.020
23.020 | 3.5
2.3 | 3.3
3.3 | 106 000
106 000 | 143 000
143 000 | 3 800
3 800 | 5 300
5 300 | HM 804849
HM 804848 | HM 804810
HM 804810 | 66
63 | 57
57 | 81
81 | 91
91 | | .3 26.1
.3 26.1 | 0.55
0.55 | | 0.60
0.60 | 0.61
0.614 | 0.354
0.354 | | 49.212 | 104.775
114.300 | 36.512
44.450 | 36.512
44.450 | 28.575
36.068 | 3.5
3.5 | 0.8
3.3 | 139 000
196 000 | 192 000
243 000 | 3 400
3 400 | 4 800
4 800 | HM 807044
HH 506348 | HM 807011
HH 506310 | 69
71 | 63
61 | 91
97 | 100
107 | | .8 29.7
.3 30.8 | 0.49
0.40 | | 0.68
0.82 | | 0.508
0.837 | | 50.000 | 82.000
82.550
88.900 | 21.500
21.590
20.638 | 21.500
22.225
22.225 | 17.000
16.510
16.513 | 3.0
0.5
2.3 | 0.5
1.3
1.3 | 71 000
71 000
73 000 | 96 000
96 000
85 000 | 4 300
4 300
4 000 | 5 600
5 600
5 600 | ▲ JLM 104948
* LM 104947 A
366 | ▲ JLM 104910
LM 104911
362 A | 60
55
59 | 55
55
55 | 76
75
81 | 78
78
84 | 0.5 1 | .5 16.1
.3 15.7
.3 16.6 | 0.31
0.31
0.32 | | 1.1
1.1
1.0 | 0.316 | 0.133 | | | 90.000
105.000 | 28.000
37.000 | 28.000
36.000 | 23.000
29.000 | 3.0
3.0 | 2.5
2.5 | 104 000
139 000 | 136 000
192 000 | 4 000
3 400 | 5 600
4 800 | ▲ JM 205149
▲ JHM 807045 | ▲ JM 205110
▲ JHM 807012 | 62
69 | 57
63 | 80
90 | 85
100 | | .5 19.9
.5 29.7 | 0.33
0.49 | 1.8
1.2 | 1.0
0.68 | 0.507
1.01 | 0.246
0.523 | | 50.800 | 80.962
82.550
82.931 | 18.258
23.622
21.590 | 18.258
22.225
22.225 | 14.288
18.542
16.510 | 1.5
3.5
3.5 | 1.5
0.8
1.3 | 53 000
71 000
71 000 | 81 000
96 000
96 000 | 4 300
4 300
4 300 | 5 600
5 600
5 600 | L 305649
LM 104949
LM 104949 | L 305610
LM 104911 A
LM 104912 | 58
62
62 | 56
55
55 | 73
75
75 | 77
78
78 | 3.5 0 | .5 15.7
.8 17.8
.3 15.7 | 0.36
0.31
0.31 | 2.0 | 1.1 | 0.239
0.303
0.301 | 0.156 | | | 85.000
85.725
88.900 | 17.462
19.050
20.638 | 17.462
18.263
22.225 | 13.495
12.700
16.513 | 3.5
1.5
3.5 | 1.5
1.5
1.3 | 48 500
42 500
73 000 | 63 000
54 000
85 000 | 4 300
4 000
4 000 | 5 600
5 300
5 600 | 18790
18200
368 A | 18720
18337
362 A | 62
59
62 | 56
56
56 | 77
76
81 | 80
81
84 | 1.5 1 | .5 16.7
.5 21.0
.3 16.6 | 0.41
0.57
0.32 | 1.5
1.1
1.9 | | | 0.136 | | | 88.900
92.075
93.264 | 20.638
24.608
30.162 | 22.225
25.400
30.302 | 16.513
19.845
23.812 | 1.5
3.5
0.8 | 1.3
0.8
0.8 | 73 000
84 500
103 000 | 85 000
117 000
136 000 | 4 000
4 000
3 800 | 5 600
5 300
5 300 | 368
28580
3775 | 362 A
28521
3730 | 58
63
58 | 56
57
58 | 81
83
84 | 84
87
88 | 1.5 1
3.5 0
0.8 0 | | | 1.9
1.6
1.8 | 0.87 | | 0.247 | | | 93.264
95.250
101.600 | 30.162
27.783
31.750 | 30.302
28.575
31.750 | 23.812
22.225
25.400 | 3.5
3.5
3.5 | 0.8
2.3
3.3 | 103 000
110 000
118 000 | 136 000
144 000
150 000 | 3 800
3 800
3 600 | 5 300
5 300
5 000 | 3780
33889
49585 | 3730
33821
49520 | 64
64
66 | 58
58
59 | 84
85
88 | 88
90
96 | 3.5 2 | .8 22.4
.3 19.8
.3 23.4 | | | 1.0 | 0.564
0.601
0.744 | 0.267 | | | 101.600
101.600
104.775 | 34.925
34.925
36.512 | 36.068
36.068
36.512 | 26.988
26.988
28.575 | 0.8
3.5
3.5 | 3.3
3.3
0.8 | 137 000
137 000
139 000 | 169 000
169 000
192 000 | 3 800
3 800
3 400 | 5 000
5 000
4 800 | 529
529 X
HM 807046 | 522
522
HM 807011 | 59
65
70 | 58
58
63 | 89
89
91 | 95
95
100 | 3.5 3 | .3 22.1
.3 22.1
.8 29.7 | 0.29
0.29
0.49 | 2.1 | 1.2
1.2
0.68 | 0.822
0.819
0.992 | 0.416 | | | 104.775
108.966
111.125 | 36.512
34.925
30.162 | 36.512
36.512
26.909 | 28.575
26.988
20.638 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 139 000
145 000
113 000 | 192 000
181 000
152 000 | 3 400
3 600
3 000 | 4 800
4 800
4 300 | HM 807046
59200
55200 C | HM 807010
59429
55437 | 70
68
71 | 63
61
65 | 89
93
92 | 100
101
105 | 3.5 3 | .3 29.7
.3 25.4
.3 37.6 | 0.49
0.40
0.88 | | 0.82 | 0.993
0.943
0.845 | 0.594 | | | 111.125
123.825
123.825 | 30.162
36.512
36.512 | 26.909
32.791
32.791 | 20.638
25.400
25.400 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 92 500
162 000
143 000 | 110 000
199 000
160 000 | 3 200
2 800
3 000 | 4 300
4 000
4 000 | 55200
72200 C
72200 | 55437
72487
72487 | 71
77
74 | 64
67
66 | 92
102
102 | 105
116
116 | 3.5 3 | .3 37.3
.3 38.0
.3 37.0 | | 0.81 | 0.45 | | 0.514
0.79
0.79 | | | 127.000
127.000 | 44.450
50.800 | 44.450
52.388 | 34.925
41.275 | 3.5
3.5 | 3.3
3.3 | 199 000
236 000 | 258 000
300 000 | 3 000
3 200 | 4 000
4 300 | 65200
6279 | 65500
6220 | 75
71 | 69
65 | 107
108 | 119
117 | | .3 35.0
.3 30.7 | 0.49
0.30 | | 0.68
1.1 | | 1.03
1.22 | | 52.388 | 92.075
100.000
111.125 | 24.608
25.000
30.162 | 25.400
22.225
26.909 | 19.845
21.824
20.638 |
3.5
2.3
3.5 | 0.8
2.0
3.3 | 84 500
77 000
92 500 | 117 000
93 000
110 000 | 4 000
3 800
3 200 | 5 300
5 300
4 300 | 28584
377
55206 | 28521
372
55437 | 65
62
72 | 58
58
64 | 83
86
92 | 87
90
105 | 3.5 0
2.3 2
3.5 3 | | 0.38
0.34
0.88 | | 0.97 | 0.435
0.392
0.737 | 0.435 | | | | | | | | | | | | | Notes * T | he maximum hore dia | motor ic | licted or | d ito tole | aranaa i | c nogativo | (Coo Tabl | 07/1/ | n Dago | A126\ | | | - * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 224 C 225 # Bore Diameter 53.975 – 58.738 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | Boundary [
(m | | | | | Basic Load | Ü | Limiting (| | Bearing N | lumbers | A | Abutmen | t and Fille
(mm | | | Cen | | | Load
tors | | ass
kg) | |------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|---------------------|--------------------------|-------------------------------|--|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|----------------------|-------------------------------|-------------------------|-------------------------------------|------------------------------|--------------------------------------|------------------|------------|------------------------------|------------------------|-------------------------------| | d | D | T | В | С | Cone C
r
min. | Sup | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{\scriptscriptstyle \mathrm{b}}$ | Cone C $\gamma_{\rm a}$ max. | up (m | | Y_1 | Y_0 | app
CONE | prox.
CUP | | 53.975 | 104.775
107.950
122.238 | 39.688
36.512
33.338 | 40.157
36.957
31.750 | 33.338
28.575
23.812 | 3.5 3 | 3.3
3.3
3.3 | 148 000
144 000
135 000 | 207 000
182 000
156 000 | 3 600
3 600
3 000 | 4 800
4 800
4 000 | 4595
539
66584 | 4535
532 X
66520 | 70
68
75 | 63
61
68 | 90
94
105 | 99
100
116 | 3.5 | 3.3 27
3.3 24
3.3 34 | 3 0.30 | 2.0 | 1.1 | 0.989
0.88
1.2 | 0.589
0.57
0.558 | | | 123.825
123.825
123.825 | 36.512
36.512
38.100 | 32.791
32.791
36.678 | 25.400
25.400
30.162 | 3.5 3 | 3.3
3.3
3.3 | 143 000
162 000
161 000 | 160 000
199 000
221 000 | 3 000
2 800
3 000 | 4 000
4 000
4 000 | 72212
72212 C
557 S | 72487
72487
552 A | 77
79
71 | 66
67
65 | 102
102
109 | 116
116
116 | 3.5 | 3.3 37
3.3 38
3.3 28 | 0 0.74 | 0.81 | 0.45
0.45
0.95 | 1.16
1.27
1.49 | 0.79
0.79
0.764 | | | 127.000
127.000
130.175 | 44.450
50.800
36.512 | 44.450
52.388
33.338 | 34.925
41.275
23.812 | 3.5 3 | 3.3
3.3
3.3 | 236 000 | 258 000
300 000
154 000 | 3 000
3 200
2 600 | 4 000
4 300
3 600 | 65212
6280
HM911242 | 65500
6220
HM911210 | 77
74
79 | 71
67
74 | 107
108
109 | 119
117
124 | 3.5 | 3.3 35
3.3 30
3.3 42 | 7 0.30 | 2.0 | 0.68
1.1
0.40 | 1.76
1.97
1.45 | 1.03
1.22
0.725 | | 55.000 | 90.000
95.000
96.838 | 23.000
29.000
21.000 | 23.000
29.000
21.946 | 18.500
23.500
15.875 | 1.5 2 |).5
2.5
).8 | 111 000 | 111 000
152 000
100 000 | 3 800
3 800
3 600 | 5 300
5 000
5 000 | ▲ JLM506849
▲ JM207049
385 | ▲ JLM506810
▲ JM207010
382 A | 63
64
65 | 61
62
61 | 82
85
89 | 86
91
92 | | 0.5 19
2.5 21
0.8 17 | 3 0.33 | 1.8 | 0.82
0.99
0.93 | 0.378
0.59
0.455 | 0.26 | | | 110.000
115.000 | 39.000
41.021 | 39.000
41.275 | 32.000
31.496 | | 2.5 | | 225 000
214 000 | 3 400
3 200 | 4 500
4 500 | ▲ JH307749
622 X | ▲ JH307710
614 X | 71
70 | 64
64 | 97
101 | 104
108 | | 2.5 27
3 26 | | 1.7
1.9 | 0.95
1.1 | 1.13
1.3 | 0.567
0.597 | | 55.562 | 97.630
122.238
123.825
123.825 | 24.608
43.658
36.512
36.512 | 24.608
43.764
32.791
32.791 | 19.446
36.512
25.400
25.400 | 1.3 3
3.5 3 |).8
3.3
3.3
3.3 | 143 000 | 129 000
292 000
160 000
199 000 | 3 600
3 000
3 000
2 800 | 5 000
4 000
4 000
4 000 | 28680
5566
72218
72218 C | 28622
5535
72487
72487 | 68
70
78
80 | 62
68
66
67 | 88
106
102
102 | 92
116
116
116 | 1.3 3
3.5 3 | 0.8 21
3.3 29
3.3 37
3.3 38 | 9 0.36
0 0.74 | 1.7 | 0.82
0.92
0.45
0.45 | 1.76
1.12 | 0.27
0.815
0.79
0.79 | | 57.150 | 96.838
96.838
96.838 | 21.000
21.000
25.400 | 21.946
21.946
21.946 | 15.875
15.875
20.275 | 2.3 0 |).8
).8
).3 | 80 500
80 500
80 500 | 100 000
100 000
100 000 | 3 600
3 600
3 600 | 5 000
5 000
5 000 | 387 A
387
387 A | 382 A
382 A
382 S | 69
66
69 | 62
62
62 | 89
89
87 | 92
92
91 | | 0.8 17
0.8 17
2.3 22 | 6 0.35 | 1.7 | 0.93 | 0.423 | 0.179
0.179
0.249 | | | 98.425
104.775
104.775 | 21.000
30.162
30.162 | 21.946
29.317
29.317 | 17.826
24.605
24.605 | 3.5 3 |).8
3.3
3.3 | 116 000 | 100 000
149 000
149 000 | 3 600
3 400
3 400 | 5 000
4 800
4 800 | 387 A
469
462 | 382
453 X
453 X | 69
70
67 | 62
63
63 | 90
92
92 | 92
98
98 | 3.5 | 0.8 17
3.3 23
3.3 23 | 1 0.34 | 1.8 | 0.98 | 0.42
0.692
0.694 | | | | 104.775
104.775
122.238 | 30.162
30.162
33.338 | 30.958
30.958
31.750 | 23.812
23.812
23.812 | 0.8 0 | 3.3
).8
3.3 | 130 000
130 000
135 000 | 170 000
170 000
156 000 | 3 400
3 400
3 000 | 4 800
4 800
4 000 | 45289
45289
66587 | 45220
45221
66520 | 65
65
77 | 65
65
71 | 93
95
105 | 99
99
116 | 0.8 | 3.3 21
0.8 21
3.3 34 | 9 0.33 | 1.8 | | | 0.347
0.35
0.558 | | | 123.825
123.825
140.030 | 36.512
38.100
36.512 | 32.791
36.678
33.236 | 25.400
30.162
23.520 | 3.5 3 | 3.3
3.3
2.3 | | 199 000
221 000
183 000 | 2 800
3 000
2 600 | 4 000
4 000
3 600 | 72225 C
555 S
78225 | 72487
552 A
78551 | 81
83
83 | 67
68
77 | 102
109
117 | 116
116
132 | 3.5 | 3.3 38
3.3 28
2.3 44 | 8 0.35 | | 0.45
0.95
0.38 | 1.19
1.41
1.67 | 0.79
0.764
0.926 | | | 144.983
149.225 | 36.000
53.975 | 33.236
54.229 | 23.007
44.450 | | 3.5
3.3 | | 183 000
410 000 | 2 600
2 600 | 3 600
3 400 | 78225
6455 | 78571
6420 | 83
81 | 77
75 | 118
129 | 132
140 | 3.5 3
3.5 3 | 3.5 43
3.3 39 | | | 0.38
0.91 | 1.68
3.49 | 1.08
1.63 | | 57.531
58.738 | 96.838
112.712 | 21.000
33.338 | 21.946
30.048 | 15.875
26.988 | |).8
3.3 | 80 500
120 000 | 100 000
173 000 | 3 600
3 200 | 5 000
4 300 | 388 A
3981 | 382 A
3926 | 69
73 | 63
67 | 89
98 | 92
106 | 3.5 (
3.5 3 | 0.8 17
3.3 28 | | 1.7
1.5 | | 0.416
0.899 | | ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 226 C 227 # Bore Diameter 60.000 - 64.963 mm ■ SINGLE-ROW TAPERED ROLLER BEARINGS (INCH DESIGN) #### Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | |---------------|--------------------------|-----------------------| | $F_{\rm a}/I$ | $T_{r} \leq e$ | $F_{\rm a}/F_{\rm r}$ | | v | 17 | v | ## 0 Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of $e,\,Y_1$, and Y_0 are given in the table below. 0.4 | Color Colo | | | Boundary D | | | | | Basic Loa | d Ratings | Limiting S | | Bearing | Numbers | Д | butmen | t and Fill
(mm | | nsions | Eff. Lo | ad Constant
rs | | Load | | ass
(g) |
---|--------|--------------------|------------------|------------------|------------------|------------|------------|------------------|--------------------|----------------|----------------|----------------|----------------|-------------------------------|-------------------------------|-------------------|-----------------|-------------------------------|---------|-------------------|------------|--------------|----------------|----------------| | 104.775 | d | D | T | В | С | 1 | r | | - | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ exttt{b}}$ | $\boldsymbol{r}_{\mathrm{a}}$ | | | Y_1 | Y_0 | арр | orox. | | 101800 25.400 25.400 25.400 25.400 25.400 3.400 3.400 4.000 4.000 5.58 5.53 73 67 69 108 115 2.3 3.3 3.2 2.8 0.35 1.7 0.95 1.33 0.692 1.2 2.238 3.8 3.00 3.8 3.5 3.2 3.2 3.5 3.3 0.692 1.8 3.0 6.9 3.0 4.000 4.0 | 60.000 | 104.775
110.000 | 21.433
22.000 | 22.000
21.996 | 15.875
18.824 | 2.3
0.8 | 2.0
1.3 | 83 500
85 500 | 107 000
113 000 | 3 400
3 200 | 4 500
4 300 | * 39236
397 | 39412
394 A | 71
69 | 67
68 | 96
101 | 100
104 | 2.3 2
0.8 1 | 3 20. | 0.39 | 1.5
1.5 | 0.85
0.82 | 0.559
0.642 | 0.186
0.263 | | 122,238 43,688 43,764 36,512 3.5 3.3 19900 292,000 3 000 4 000 6537 6530 6537 6530 82 71 107 119 3.5 3.3 299 0.36 1.7 0.92 1.61 0.815 0.315 0.94 1.75 1. | 60.325 | 101.600 | 25.400 | 25.400 | 19.845 | 3.5 | 3.3 | 91 000 | 135 000 | 3 400 | 4 800 | 28985 | 28920 | 73 | 67 | 90 | 97 | 3.5 3 | 3 22. | 0.43 | 1.4 | 0.78 | 0.538 | 0.272 | | 61.912 136.755 53.975 56.007 44.450 3.5 3.3 264.000 355.000 2 800 3 800 6376 6320 81 74 117 126 3.5 3.3 3.3 3.0 0.32 1.8 1.0 2.45 1.39 61.912 136.525 46.038 36.512 3.5 3.3 193.000 225.000 2 400 3 400 H913342 H913810 80 82 124 138 3.5 3.3 44.4 0.78 0.77 0.42 2.2 0.898 1.52 40.000 4.600 | | 122.238 | 43.658 | 43.764 | 36.512 | 0.8 | 3.3 | 198 000 | 292 000 | 3 000 | 4 000 | 5582 | 5535 | 73 | 72 | 106 | 116 | 0.8 3 | 3 29. | 0.36 | 1.7 | 0.92 | 1.61 | 0.815 | | 146,050 | 104.775 | 61.912 | 146.050 | 41.275 | 39.688 | 25.400 | 3.5 | 3.3 | 193 000 | 225 000 | 2 400 | 3 400 | H 913842 | H 913810 | 90 | 82 | 124 | 138 | 3.5 | 3 44. | 0.78 | 0.77 | 0.42 | 2.2 | 0.898 | | 110.000 22.000 21.996 18.824 1.5 1.3 85.500 113.000 3 200 4 300 3982 3920 77 71 90 104 1.5 1.3 20.9 0.40 1.5 0.82 0.583 0.263 112.712 30.162 30.162 30.162 23.812 3.5 3.3 142.000 173.000 3 200 4 300 3982 3920 77 71 90 106 3.5 3.2 25.5 0.40 1.5 0.82 0.583 0.263 112.712 33.338 30.048 26.988 3.5 3.3 120.000 173.000 3 200 4 300 3985 39520 77 71 101 107 3.5 3.2 25.5 0.40 34 1.8 0.97 0.899 0.355 112.712 33.338 30.048 26.988 3.5 3.3 120.000 173.000 3 200 4 300 3982 3982 3982 78 71 10 107 3.5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 | 63.500 | 104.775 | 21.433 | 22.000 | 15.875 | 2.0 | 2.0 | 83 500 | 107 000 | 3 400 | 4 500 | 39250 | 39412 | 73 | 69 | 96 | 100 | 2 2 | 20. | 0.39 | 1.5 | 0.85 | 0.501 | 0.186 | | 112.712 33.338 30.048 26.988 3.5 3.3 120 000 173 000 3 200 4 300 4 000 | | 110.000 | 22.000 | 21.996 | 18.824 | 1.5 | 1.3 | 85 500 | 113 000 | 3 200 | 4 300 | 390 A | 394 A | 73 | 70 | 101 | 104 | 1.5 1 | 3 20. | 0.40 | 1.5 | 0.82 | 0.583 | 0.263 | | 122.238 | | 112.712 | 33.338 | 30.048 | 26.988 | 3.5 | 3.3 | 120 000 | 173 000 | 3 200 | 4 300 | 3982 | 3926 | 78 | 71 | 98 | 106 | 3.5 3 | 3 28. | 0.40 | 1.5 | 0.82 | 0.789 | 0.541 | | 127.000 36.512 36.170 28.575 3.5 3.3 166 000 234 000 2800 3800 565 639 633 81 74 116 120 3.5 3.3 28.3 0.36 1.6 0.91 1.46 0.655 130.175 41.275 41.275 31.750 3.5 3.3 195 000 263 000 2800 3800 639 633 81 74 116 124 3.5 3.3 29.9 0.36 1.7 0.91 1.77 0.712 136.525 41.275 41.275 31.750 3.5 3.3 152 000 183 000 2 600 3 600 78250 78537 85 79 115 130 2.3 3.3 44.2 0.87 0.69 0.38 1.51 0.782 140.030 36.512 33.236 23.520 2.3 2.3 180 00 2 600 3 600 78250 78551 85 79 117 132 2.3 2.3 44.2 0.87 0.69 0.38 1.51 0.926 <th></th> <th>122.238</th> <th>38.100</th> <th>38.354</th> <th>29.718</th> <th>3.5</th> <th>1.5</th> <th>188
000</th> <th>245 000</th> <th>3 000</th> <th>4 000</th> <th>HM 212046</th> <th>HM 212010</th> <th>80</th> <th>73</th> <th>110</th> <th>116</th> <th>3.5 1</th> <th>5 26.</th> <th>0.34</th> <th>1.8</th> <th>0.98</th> <th>1.35</th> <th>0.604</th> | | 122.238 | 38.100 | 38.354 | 29.718 | 3.5 | 1.5 | 188 000 | 245 000 | 3 000 | 4 000 | HM 212046 | HM 212010 | 80 | 73 | 110 | 116 | 3.5 1 | 5 26. | 0.34 | 1.8 | 0.98 | 1.35 | 0.604 | | 136.525 41.275 41.275 31.750 3.5 3.3 195 000 263 000 2 800 3 800 639 78250 79 76 119 125 3.5 3.3 29.9 0.36 1.7 0.91 1.77 1.04 140.030 36.512 33.236 23.520 2.3 2.3 2.3 2.3 2.3 2.3 2.4 0.87 0.69 0.38 1.51 0.926 | | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 2 800 | 3 800 | 565 | 563 | 80 | 73 | 112 | 120 | 3.5 3 | 3 28. | 0.36 | 1.6 | 0.91 | 1.46 | 0.655 | | 64.963 127.000 36.512 36.170 28.575 3.5 3.3 166 000 234 000 2 800 3 800 569 563 81 74 112 120 3.5 3.3 28.3 0.36 1.6 0.91 1.41 0.655 | | 136.525 | 41.275 | 41.275 | 31.750 | 3.5 | 3.3 | 195 000 | 263 000 | 2 800 | 3 800 | 639 | 632 | 79 | 76 | 119 | 125 | 3.5 3 | 3 29. | 0.36 | 1.7 | 0.91 | 1.77 | 1.04 | | Nate: * The maximum hard diameter is listed and its telerance is negative (See Table 7.4.1 on Page A126) | 64.963 | 127.000 | 36.512 | 36.170 | 28.575 | 3.5 | 3.3 | 166 000 | 234 000 | 2 800 | 3 800 | | | | | | | | | | | | 1.41 | 0.655 | - * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 228 C 229 # Bore Diameter 65.000 - 69.850 mm #### Dynamic Equivalent Load | | P = X | $F_{\rm r} + YF_{\rm a}$ | | | |---|---------------|--------------------------|---------------|-----| | _ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | 7;> | | | X | Y | X | | ## 0 Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. 0.4 | | | Boundary [| | | | | | ad Ratings | Limiting S | | Bearing N | lumbers | A | Abutmen | t and Fill
(mm | | | Centers | Constant | | l Load
ctors | | Mass
(kg) | |--------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------|--|--|----------------------------------|----------------------------------|---|---|----------------------|-------------------------------|--------------------------|--------------------------|------------|--|------------------------------|---------------------------|------------------------------|------------------------------|----------------------------------| | d | D | T | B | С | | e Cup
r
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone (| a | e | Y_1 | Y_0 | | pprox.
CUP | | 65.000 | 105.000
110.000
120.000
120.000 | 24.000
28.000
29.002
39.000 | 23.000
28.000
29.007
38.500 | 18.500
22.500
23.444
32.000 | 3.0
3.0
2.3
3.0 | 2.5 | 93 000
120 000
123 000
185 000 | 126 000
173 000
169 000
249 000 | 3 400
3 200
3 000
3 000 | 4 500
4 300
4 000
4 000 | ▲ JLM 710949
▲ JM 511946
478
▲ JH 211749 | ▲ JLM 710910
▲ JM 511910
472 A
▲ JH 211710 | 77
78
77
80 | 71
72
73
74 | 96
99
106
107 | 101
105
114
114 | 2.3 | 1 23.7
2.5 24.5
3.3 24.3
2.5 27.9 | 0.45
0.40
0.38
0.34 | 1.3
1.5
1.6
1.8 | 0.73
0.82
0.86
0.98 | 0.72 | 0.237
0.342
0.466
0.625 | | 65.088 | 135.755
136.525 | 53.975
46.038 | 56.007
46.038 | 44.450
36.512 | 3.5
3.5 | 3.3
3.3 | 264 000
233 000 | 355 000
370 000 | 2 800
2 600 | 3 800
3 400 | 6379
H 715340 | 6320
H 715311 | 84
88 | 77
82 | 117
118 | 126
132 | | 3.3 35.0
3.3 37.1 | 0.32
0.47 | 1.8
1.3 | 1.0
0.70 | 2.25
2.4 | 1.39
0.961 | | 66.675 | 110.000
110.000
112.712 | 22.000
22.000
30.162 | 21.996
21.996
30.048 | 18.824
18.824
23.812 | 0.8
3.5
3.5 | 1.3
1.3
3.2 | 85 500
85 500
120 000 | | 3 200
3 200
3 200 | 4 300
4 300
4 300 | 395 A
395 S
3984 | 394 A
394 A
3920 | 73
79
80 | 73
73
74 | 101
101
99 | 104
104
106 | 3.5 | 1.3 20.9
1.3 20.9
3.2 25.5 | 0.40
0.40
0.40 | 1.5
1.5
1.5 | 0.82 | | 0.263
0.263
0.454 | | | 112.712
112.712
112.712 | 30.162
30.162
30.162 | 30.048
30.162
30.162 | 23.812
23.812
23.812 | 5.5
3.5
3.5 | | 120 000
142 000
142 000 | 173 000
202 000
202 000 | 3 200
3 200
3 200 | 4 300
4 300
4 300 | 3994
39590
39590 | 3920
39521
39520 | 84
80
80 | 74
74
74 | 99
103
101 | 106
107
107 | 3.5 | 3.2 25.5
0.8 23.5
3.3 23.5 | 0.40
0.34
0.34 | 1.5
1.8
1.8 | 0.82
0.97
0.97 | 0.706
0.822
0.822 | | | | 117.475
122.238
122.238 | 30.162
38.100
38.100 | 30.162
36.678
38.354 | 23.812
30.162
29.718 | 3.5
3.5
3.5 | | 119 000
161 000
188 000 | 179 000
221 000
245 000 | 3 000
3 000
3 000 | 4 000
4 000
4 000 | 33262
560
HM 212049 | 33462
553 X
HM 212010 | 81
81
82 | 75
75
75 | 104
108
110 | 112
115
116 | 3.5 | 3.3 26.8
3.3 28.8
1.5 26.9 | 0.44
0.35
0.34 | 1.4
1.7
1.8 | 0.76
0.95
0.98 | 0.911
1.14
1.25 | 0.442
0.692
0.604 | | | 122.238
123.825
136.525 | 38.100
38.100
46.038 | 38.354
36.678
46.038 | 29.718
30.162
36.512 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 188 000
161 000
233 000 | | 3 000
3 000
2 600 | 4 000
4 000
3 400 | HM 212049
560
H 715341 | HM 212011
552 A
H 715311 | 81
81
89 | 74
75
83 | 108
109
118 | 116
116
132 | 3.5 | 3.3 26.9
3.3 28.8
3.3 37.1 | 0.34
0.35
0.47 | 1.8
1.7
1.3 | 0.98
0.95
0.70 | 1.25
1.14
2.34 | 0.598
0.764
0.961 | | 68.262 | 110.000
120.000
122.238 | 22.000
29.795
38.100 | 21.996
29.007
36.678 | 18.824
24.237
30.162 | 2.3
3.5
3.5 | 1.3
2.0
3.3 | 85 500
123 000
161 000 | 113 000
169 000
221 000 | 3 200
3 000
3 000 | 4 300
4 000
4 000 | 399 A
480
560 S | 394 A
472
553 X | 78
83
83 | 74
76
76 | 101
106
108 | 104
113
115 | 3.5 | 1.3 20.9
2 25.1
3.3 28.8 | 0.40
0.38
0.35 | 1.5
1.6
1.7 | 0.82
0.86
0.95 | 0.497
0.862
1.09 | | | | 127.000
136.525
136.525
152.400 | 36.512
41.275
46.038
47.625 | 36.170
41.275
46.038
46.038 | 28.575
31.750
36.512
31.750 | 3.5
3.5
3.5
3.5 | 3.3 | 166 000
229 000
233 000
237 000 | | 2 800
2 600
2 600
2 400 | 3 800
3 600
3 400
3 400 | 570
H 414245
H 715343
9185 | 563
H 414210
H 715311
9121 | 83
86
90
94 | 77
82
84
81 | 112
121
118
130 | 120
129
132
145 | 3.5
3.5 | 3.3 28.3
3.3 30.6
3.3 37.1
3.3 44.3 | 0.36
0.36
0.47
0.66 | 1.6
1.7
1.3
0.92 | 0.91
0.92
0.70
0.50 | 1.32
1.95
2.28
2.53 | 0.655
0.796
0.961
1.21 | | 69.850 | 112.712
112.712
117.475 | 22.225
25.400
30.162 | 21.996
25.400
30.162 | 15.875
19.050
23.812 | 1.5
1.5
3.5 | | 85 000
96 000
119 000 | 113 000
152 000
179 000 | 3 000
2 800
3 000 | 4 000
4 000
4 000 | LM 613449
29675
33275 | LM 613410
29620
33462 | 78
80
84 | 76
77
77 | 104
101
104 | 107
109
112 | 1.5 | 0.8 22.1
3.3 26.3
3.3 26.8 | 0.42
0.49
0.44 | 1.4
1.2
1.4 | 0.68 | 0.562
0.695
0.83 | | | | 120.000
120.650
127.000 | 32.545
25.400
36.512 | 32.545
25.400
36.170 | 26.195
19.050
28.575 | 3.5
1.5
3.5 | 3.3
3.3
0.8 | 152 000
96 000
166 000 | 225 000
152 000
234 000 | 3 000
2 800
2 800 | 4 000
4 000
3 800 | 47487
29675
566 | 47420
29630
563 X | 84
79
85 | 78
78
78 | 107
105
114 | 114
113
120 | 1.5 | 3.3 26.0
3.3 26.3
0.8 28.3 | 0.36
0.49
0.36 | 1.7
1.2
1.6 | 0.92
0.68
0.91 | 1.02
0.695
1.27 | 0.477
0.489
0.658 | | | 130.175
146.050
146.050 | 41.275
41.275
41.275 | 41.275
39.688
41.275 | 31.750
25.400
31.750 | 3.5
3.5
3.5 | | 195 000
193 000
207 000 | | 2 800
2 400
2 400 | 3 800
3 400
3 200 | 643
H 913849
655 | 633
H 913810
653 | 86
95
88 | 80
82
82 | 116
124
131 | 124
138
139 | 3.5 | 3.3 29.9
3.3 44.4
3.3 33.2 | 0.36
0.78
0.41 | 1.7
0.77
1.5 | 0.91
0.42
0.81 | 1.56
1.95
2.35 | 0.712
0.898
0.891 | | | 149.225
150.089 | 53.975
44.450 | 54.229
46.672 | 44.450
36.512 | 5.0
3.5 | 3.3
3.3 | 287 000
265 000 | 410 000
370 000 | 2 600
2 400 | 3 400
3 200 | 6454
745 A | 6420
742 | 94
88 | 85
82 | 129
134 | 140
142 | | 3.3 39.0
3.3 32.5 | 0.36
0.33 | 1.7
1.8 | 0.91
1.0 | 2.95
2.82 | 1.63
1.07 | ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. # Bore Diameter 70.000 - 76.200 mm #### Dynamic Equivalent Load | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | ## Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_{\rm
r}$ > 0.5 $F_{\rm r}$ + $Y_0F_{\rm a}$, use P_0 = $F_{\rm r}$ The values of e, Y_1 , and Y_0 are given in the table below. | | | Boundary D | | | 0 | 0 | | d Ratings | Limiting (| | Bearing N | umbers | Д | Abutmen | nent and Fillet Dimensions
(mm)
Cone | | | Cente | | | Load
tors | | ass
(g) | |------------------|-------------------------------|----------------------------|----------------------------|----------------------------|--------------------------|-------------------|-------------------------------|-------------------------------|-------------------------|-------------------------|--|--|-------------------------------|-------------------------------|--|-------------------|-------------------------|--|--------------|--------------------|----------------------|-------------------------|-------------------------| | <i>d</i> | D | T | В | С | Cone
Y
min. | Cup | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | $D_{\scriptscriptstyle m a}$ | $D_{ ext{b}}$ | Cone C $r_{\rm a}$ max. | i a | e e | Y_1 | Y_0 | app
CONE | orox.
CUP | | 70.000 | 110.000
115.000
120.000 | 26.000
29.000
29.795 | 25.000
29.000
29.007 | 20.500
23.000
24.237 | 3.0 | 2.5
2.5
2.0 | 98 500
126 000
123 000 | 152 000
177 000
169 000 | 3 000
3 000
3 000 | 4 000
4 000
4 000 | ▲ JLM 813049
▲ JM 612949
484 | ▲ JLM 813010
▲ JM 612910
472 | 78
83
80 | 77
77
78 | 98
103
106 | 105
110
113 | 3 | 2.5 26.4
2.5 26.4
2 25. | | 1.4 | 0.68
0.77
0.86 | 0.604
0.800
0.822 | 0.362 | | 71.438 | 117.475
120.000
127.000 | 30.162
32.545
36.512 | 30.162
32.545
36.170 | 23.812
26.195
28.575 | 3.5 | 3.3
3.3
3.3 | 119 000
152 000
166 000 | 179 000
225 000
234 000 | 3 000
3 000
2 800 | 4 000
4 000
3 800 | 33281
47490
567 S | 33462
47420
563 | 85
86
92 | 79
79
80 | 104
107
112 | 112
114
120 | 3.5 | 3.3 26.3
3.3 26.3
3.3 28.3 | 0.36 | 1.4
1.7
1.6 | 0.76
0.92
0.91 | | | | | 127.000
130.175
136.525 | 36.512
41.275
41.275 | 36.170
41.275
41.275 | 28.575
31.750
31.750 | 6.4 | 3.3
3.3
3.3 | 166 000
195 000
195 000 | 234 000
263 000
263 000 | 2 800
2 800
2 800 | 3 800
3 800
3 800 | 567 A
645
644 | 563
633
632 | 86
93
87 | 80
81
81 | 112
116
118 | 120
124
125 | 6.4 | 3.3 28.3
3.3 29.3
3.3 29.3 | 0.36 | 1.6
1.7
1.7 | 0.91
0.91
0.91 | 1.23
1.49
1.5 | 0.655
0.712
1.04 | | | 136.525
136.525 | 41.275
46.038 | 41.275
46.038 | 31.750
36.512 | | 3.3
3.3 | 229 000
233 000 | 297 000
370 000 | 2 600
2 600 | 3 600
3 400 | H 414249
H 715345 | H 414210
H 715311 | 89
92 | 83
84 | 121
119 | 129
132 | | 3.3 30.0
3.3 37. | 0.36
0.47 | 1.7
1.3 | 0.92
0.70 | | 0.796
0.961 | | 73.025 | 112.712
117.475
127.000 | 25.400
30.162
36.512 | 25.400
30.162
36.170 | 19.050
23.812
28.575 | 3.5 | 3.3
3.3
3.3 | 96 000
119 000
166 000 | 152 000
179 000
234 000 | 2 800
3 000
2 800 | 4 000
4 000
3 800 | 29685
33287
567 | 29620
33462
563 | 86
87
88 | 80
80
81 | 101
104
112 | 109
112
120 | 3.5 | 3.3 26.3
3.3 26.3
3.3 28.3 | 0.44 | 1.2
1.4
1.6 | | 0.746 | 0.273
0.442
0.655 | | | 146.050
149.225 | 41.275
53.975 | 41.275
54.229 | 31.750
44.450 | | 3.3
3.3 | 207 000
287 000 | 296 000
410 000 | 2 400
2 600 | 3 200
3 400 | 657
6460 | 653
6420 | 91
93 | 85
87 | 131
129 | 139
140 | | 3.3 33.3
3.3 39.0 | | 1.5
1.7 | 0.81
0.91 | 2.24
2.8 | 0.891
1.63 | | 73.817
74.612 | 127.000
150.000 | 36.512
41.275 | 36.170
41.275 | 28.575
31.750 | | 3.3
3.0 | 166 000
207 000 | 234 000
296 000 | 2 800
2 400 | 3 800
3 200 | 568
658 | 563
653 X | 83
92 | 82
86 | 112
133 | 120
141 | | 3.3 28.3
3 33.3 | | 1.6
1.5 | 0.91
0.81 | | 0.655
0.932 | | 75.000 | 115.000
120.000
145.000 | 25.000
31.000
51.000 | 25.000
29.500
51.000 | 19.000
25.000
42.000 | 3.0 | 2.5
2.5
2.5 | 101 000
129 000
283 000 | 150 000
198 000
410 000 | 3 000
2 800
2 600 | 4 000
3 800
3 400 | ▲ JLM 714149
▲ JM 714249
▲ JH 415647 | ▲ JLM 714110
▲ JM 714210
▲ JH 415610 | 87
88
94 | 81
83
89 | 104
108
129 | 110
115
139 | 3 | 2.5 25.3
2.5 28.3
2.5 36. | 0.44 | 1.3
1.4
1.7 | 0.72
0.74
0.91 | 0.863 | | | 76.200 | 121.442
127.000
127.000 | 24.608
30.162
30.162 | 23.012
31.000
31.001 | 17.462
22.225
22.225 | 3.5 | 2.0
3.3
3.3 | 89 000
134 000
134 000 | 124 000
195 000
195 000 | 2 800
2 800
2 800 | 3 800
3 800
3 800 | 34300
42687
42688 | 34478
42620
42620 | 86
90
94 | 84
84
84 | 111
114
114 | 116
121
121 | | 2 26.3
3.3 27.3
3.3 27.3 | 0.42 | 1.3
1.4
1.4 | 0.79 | 1.03 | 0.316
0.438
0.438 | | | 133.350
135.733
136.525 | 33.338
44.450
30.162 | 33.338
46.101
29.769 | 26.195
34.925
22.225 | 3.5 | 3.3
3.3
3.3 | 154 000
216 000
130 000 | 237 000
340 000
192 000 | 2 600
2 600
2 600 | 3 600
3 600
3 400 | 47680
5760
495 A | 47620
5735
493 | 86
94
92 | 85
88
86 | 119
119
122 | 128
130
130 | 3.5 | 3.3 29.0
3.3 32.3
3.3 28. | 0.41 | 1.5
1.5
1.4 | 0.82
0.81
0.74 | | 0.577
0.887
0.55 | | | 136.525
139.992
149.225 | 30.162
36.512
53.975 | 29.769
36.098
54.229 | 22.225
28.575
44.450 | 3.5 | 3.3
3.3
3.3 | 130 000
175 000
271 000 | 192 000
260 000
385 000 | 2 600
2 600
2 600 | 3 400
3 400
3 400 | 495 AX
575
6461 | 493
572
6420 | 98
92
96 | 86
86
89 | 122
125
129 | 130
133
140 | 3.5 | 3.3 28.
3.3 31.
3.3 39. | 0.40 | 1.4
1.5
1.7 | 0.74
0.82
0.91 | | 0.55
0.788
1.67 | | | 152.400
152.400
161.925 | 39.688
41.275
49.212 | 36.322
41.275
46.038 | 30.162
31.750
31.750 | 3.5 | 3.2
3.3
3.3 | 183 000
207 000
248 000 | 285 000
296 000
290 000 | 2 200
2 400
2 200 | 3 200
3 200
3 000 | 590 A
659
9285 | 592 A
652
9220 | 95
93
103 | 89
87
90 | 135
134
138 | 145
141
153 | 3.5
3.5 | 3.2 37.
3.3 33.3
3.3 49.8 | 0.44 | 1.4
1.5
0.85 | 0.75
0.81
0.47 | 2.11 | 1.06
1.26
1.4 | | | 161.925
161.925
161.925 | 53.975
53.975
53.975 | 55.100
55.100
55.100 | 42.862
42.862
42.862 | 6.4 | 3.3
3.3
0.8 | 325 000
325 000
325 000 | 480 000
480 000
480 000 | 2 200
2 200
2 200 | 3 000
3 000
3 000 | 6576
6575
6575 | 6535
6535
6536 | 99
104
104 | 92
92
92 | 141
141
144 | 154
154
154 | 6.4 | 3.3 40.
3.3 40.
0.8 40. | 0.40 | 1.5 | 0.82
0.82
0.82 | 3.73 | 1.67
1.67
1.68 | # Bore Diameter 76.200 - 83.345 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | Boundary [
(m | | | | | | d Ratings | Limiting (| | Bearing N | Numbers | А | butmen | t and Fille
(mm | | | Eff. Load
Centers | Constant | | Load
tors | | Mass
(kg) | |--------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|-----------------------------|-----------------------------|-------------------------------------|-------------------------------|--------------------------|-------------------------------|--|----------------------|------------------------------|-------------------|----------------------------|-----------------------|------------------------------| | d | D | T | В | С | Cone
m | Cup
r
in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle \mathrm{a}}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{\scriptscriptstyle m b}$ | Cone Cup \mathcal{V}_a max. | (mm)
a | e | Y_1 | Y_0 | | oprox. | | 76.200 | 168.275
168.275
171.450
177.800 | 53.975
53.975
49.212
55.562 | 56.363
56.363
46.038
50.800 | 41.275
41.275
31.750
34.925 | 6.4
0.8
3.5
3.5 | 3.3
3.3
3.3
3.3 | 345 000
345 000
257 000
257 000 | 470 000
470 000
310 000
310 000 | 2 200
2 200
2 000
2 000 | 3 000
3 000
2 800
2 800 | 843
837
9380
9378 | 832
832
9321
9320 | 101
90
105
105 | 89
89
98
98 | 149
149
147
148 | 155
155
164
164 | 6.4 3.3
0.8 3.3
3.5 3.3
3.5 3.3 | 35.2 | 0.30
0.30
0.76
0.76 | 2.0
0.79 | 1.1
1.1
0.43
0.43 | | 1.74
1.74
1.51
2.24 | | 77.788 | 121.442
127.000
135.733 | 24.608
30.162
44.450 | 23.012
31.000
46.101 | 17.462
22.225
34.925 | 3.5
3.5
3.5 |
2.0
3.3
3.3 | 89 000
134 000
216 000 | 124 000
195 000
340 000 | 2 800
2 800
2 600 | 3 800
3 800
3 600 | 34306
42690
5795 | 34478
42620
5735 | 90
91
96 | 84
85
89 | 110
114
119 | 116
121
130 | 3.5 2
3.5 3.3
3.5 3.3 | 26.3
27.3
32.9 | 0.45
0.42
0.41 | 1.4 | | | 0.316
0.438
0.887 | | 79.375 | 146.050
150.089 | 41.275
44.450 | 41.275
46.672 | 31.750
36.512 | 3.5
3.5 | 3.3
3.3 | 207 000
265 000 | 296 000
370 000 | 2 400
2 400 | 3 200
3 200 | 661
750 | 653
742 | 96
96 | 90
90 | 131
134 | 139
142 | 3.5 3.3
3.5 3.3 | | 0.41
0.33 | 1.5
1.8 | 0.81
1.0 | 1.99
2.42 | 0.891
1.07 | | 80.000 | 130.000 | 35.000 | 34.000 | 28.500 | 3.0 | 2.5 | 166 000 | 251 000 | 2 600 | 3 600 | ▲ JM 515649 | ▲ JM 515610 | 94 | 88 | 117 | 125 | 3 2. | 29.9 | 0.39 | 1.5 | 0.85 | 1.18 | 0.583 | | 80.962 | 136.525
139.700
139.992 | 30.162
36.512
36.512 | 29.769
36.098
36.098 | 22.225
28.575
28.575 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 130 000
175 000
175 000 | 192 000
260 000
260 000 | 2 600
2 600
2 600 | 3 400
3 400
3 400 | 496
581
581 | 493
572 X
572 | 95
96
96 | 89
90
90 | 122
125
125 | 130
133
133 | 3.5 3.3
3.5 3.3
3.5 3.3 | | 0.44
0.40
0.40 | 1.5 | 0.74
0.82
0.82 | 1.13
1.44
1.44 | 0.55
0.774
0.788 | | 82.550 | 125.412
133.350
133.350 | 25.400
30.162
33.338 | 25.400
29.769
33.338 | 19.845
22.225
26.195 | 3.5
3.5
3.5 | 1.5
3.3
3.3 | 102 000
130 000
154 000 | 164 000
192 000
237 000 | 2 600
2 600
2 600 | 3 600
3 400
3 600 | 27687
495
47686 | 27620
492 A
47620 | 96
97
97 | 89
90
90 | 115
120
119 | 120
128
128 | 3.5 1.5
3.5 3.5
3.5 3.5 | | 0.42
0.44
0.40 | 1.4 | 0.79
0.74
0.82 | 0.747
1.08
1.18 | 0.348
0.434
0.577 | | | 133.350
133.350
133.350 | 33.338
33.338
39.688 | 33.338
33.338
39.688 | 26.195
26.195
32.545 | 0.8
6.8
6.8 | 3.3
3.3
3.3 | 154 000
154 000
179 000 | 237 000
237 000
310 000 | 2 600
2 600
2 600 | 3 600
3 600
3 600 | 47685
47687
HM 516448 | 47620
47620
HM 516410 | 90
103
105 | 90
90
92 | 119
119
118 | 128
128
128 | 0.8 3.3
6.8 3.3
6.8 3.3 | | 0.40
0.40
0.40 | 1.5 | 0.82
0.82
0.82 | 1.18
1.16
1.35 | 0.577
0.577
0.767 | | | 136.525
139.700
139.992 | 30.162
36.512
36.512 | 29.769
36.098
36.098 | 22.225
28.575
28.575 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 130 000
175 000
175 000 | 192 000
260 000
260 000 | 2 600
2 600
2 600 | 3 400
3 400
3 400 | 495
580
580 | 493
572 X
572 | 97
98
98 | 90
91
91 | 122
125
125 | 130
133
133 | 3.5 3.3
3.5 3.3
3.5 3.3 | | 0.44
0.40
0.40 | 1.5 | 0.74
0.82
0.82 | 1.08
1.39
1.39 | 0.55
0.774
0.788 | | | 139.992
146.050
150.000 | 36.512
41.275
44.455 | 36.098
41.275
46.672 | 28.575
31.750
35.000 | 6.8
3.5
3.5 | 3.3
3.3
3.3 | 175 000
207 000
265 000 | 260 000
296 000
370 000 | 2 600
2 400
2 400 | 3 400
3 200
3 200 | 582
663
749 A | 572
653
743 | 104
99
99 | 91
92
93 | 125
131
134 | 133
139
142 | 6.8 3.3
3.5 3.3
3.5 3.3 | | 0.40
0.41
0.33 | 1.5 | 0.82
0.81
1.0 | 1.37
1.85
2.26 | 0.788
0.891
1.04 | | | 150.089
152.400
161.925 | 44.450
41.275
47.625 | 46.672
41.275
48.260 | 36.512
31.750
38.100 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 265 000
207 000
274 000 | 370 000
296 000
390 000 | 2 400
2 400
2 200 | 3 200
3 200
3 000 | 749 A
663
757 | 742
652
752 | 98
99
100 | 93
92
94 | 135
134
144 | 143
141
150 | 3.5 3.3
3.5 3.3
3.5 3.3 | 33.2 | | 1.8
1.5
1.8 | 1.0
0.81
0.97 | 2.26
1.85
2.79 | 1.07
1.26
1.61 | | | 161.925
168.275
168.275 | 53.975
47.625
53.975 | 55.100
48.260
56.363 | 42.862
38.100
41.275 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 325 000
274 000
345 000 | 480 000
390 000
470 000 | 2 200
2 200
2 200 | 3 000
3 000
3 000 | 6559
757
842 | 6535
753
832 | 104
100
101 | 98
94
94 | 141
147
149 | 154
150
155 | 3.5 3.3
3.5 3.3
3.5 3.3 | | 0.40
0.34
0.30 | 1.8 | 0.82
0.97
1.1 | 3.4
2.79
3.76 | 1.67
2.1
1.74 | | 83.345 | 125.412
125.412 | 25.400
25.400 | 25.400
25.400 | 19.845
19.845 | 3.5
0.8 | 1.5
1.5 | 102 000
102 000 | 164 000
164 000 | 2 600
2 600 | 3 600
3 600 | 27690
27689 | 27620
27620 | 96
90 | 90
90 | 115
115 | 120
120 | 3.5 1.5
0.8 1.5 | | 0.42
0.42 | | | | 0.348 | C 234 C 235 # Bore Diameter 84.138 – 90.488 mm ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | Boundary D | | | | | | ad Ratings
N) | Limiting (| | Bearing | Numbers | , | Abutmei | nt and Fil
(mr | | | C | enters | Constant | | Load
tors | | Mass
(kg) | |--------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|---|---|-------------------------|-------------------------------|--------------------------|--------------------------|-------------------------------------|-------|-----------------|------------------------------|--------------------------|------------------------------|--------------------------------|---------------------------------| | d | D | T | В | С | 1 | Cup
Y
in. | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | d_{a} | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone \mathcal{V}_{a} max | . | nm)
a | e | Y_1 | Y_0 | | pprox.
CUP | | 84.138 | 136.525
146.050
171.450 | 30.162
41.275
49.212 | 29.769
41.275
46.038 | 22.225
31.750
31.750 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 130 000
207 000
257 000 | 192 000
296 000
310 000 | 2 600
2 400
2 000 | 3 400
3 200
2 800 | 498
664
9385 | 493
653
9321 | 98
99
111 | 91
93
98 | 122
131
147 | 130
139
164 | 3.5 | 3.3 | 3.2 | 0.44
0.41
0.76 | 1.5 | 0.74
0.81
0.43 | 1.04
1.79
3.11 | 0.55
0.891
1.51 | | 85.000 | 130.000
130.000
140.000
150.000 | 30.000
30.000
39.000
46.000 | 29.000
29.000
38.000
46.000 | 24.000
24.000
31.500
38.000 | 6.0
3.0
3.0
3.0 | 2.5
2.5
2.5
2.5 | 138 000
138 000
202 000
275 000 | 222 000
222 000
305 000
390 000 | 2 600
2 600
2 400
2 400 | 3 600
3 600
3 400
3 200 | ▲ JM 716648
▲ JM 716649
▲ JHM 516849
▲ JH 217249 | ▲ JM 716610
▲ JM 716610
▲ JHM 516810
▲ JH 217210 | 104
98
100
101 | 92
92
94
95 | 117
117
125
134 | 125
125
134
142 | 6
3
3
3 | 2.5 2 | 9.5 | 0.44
0.44
0.41
0.33 | 1.4
1.4
1.5
1.8 | 0.74
0.74
0.81
0.99 | 0.931
0.943
1.55
2.29 | 0.461
0.461
0.768
1.09 | | 85.026 | 150.089
150.089 | 44.450
44.450 | 46.672
46.672 | 36.512
36.512 | 3.5
5.0 | 3.3
3.3 | 265 000
265 000 | 370 000
370 000 | 2 400
2 400 | 3 200
3 200 | 749
749 S | 742
742 | 101
104 | 95
95 | 134
134 | 142
142 | 3.5
5 | | | 0.33
0.33 | 1.8
1.8 | 1.0
1.0 | 2.14
2.14 | 1.07
1.07 | | 85.725 | 133.350
136.525
142.138 | 30.162
30.162
42.862 | 29.769
29.769
42.862 | 22.225
22.225
34.133 | 3.5
3.5
4.8 | 3.3
3.3
3.3 | 130 000
130 000
221 000 | 192 000
192 000
360 000 | 2 600
2 600
2 400 | 3 400
3 400
3 400 | 497
497
HM 617049 | 492 A
493
HM 617010 | 99
99
106 | 93
93
95 | 120
122
125 | 128
130
137 | 3.5 | 3.3 2 | 8.7 | 0.44
0.44
0.43 | 1.4
1.4
1.4 | 0.74
0.74
0.76 | | 7 0.434
7 0.55
0.911 | | | 146.050
146.050
152.400 | 41.275
41.275
39.688 | 41.275
41.275
36.322 | 31.750
31.750
30.162 | 6.4
3.5
3.5 | 3.3
3.3
3.2 | 207 000
207 000
183 000 | 296 000
296 000
285 000 | 2 400
2 400
2 200 | 3 200
3 200
3 200 | 665 A
665
596 | 653
653
592 A | 107
102
102 | 95
95
96 | 131
131
135 | 139
139
144 | 3.5 | 3.3 | 3.2 | 0.41
0.41
0.44 | 1.5
1.5
1.4 | 0.81
0.81
0.75 | 1.71
1.72
1.85 | 0.891
0.891
1.06 | | | 161.925
168.275 | 47.625
41.275 | 48.260
41.275 | 38.100
30.162 | 3.5
3.5 | 3.3
3.3 | 274 000
223 000 | 390 000
345 000 | 2 200
2 000 | 3 000
2 800 | 758
677 | 752
672 | 103
105 | 97
99 | 144
149 | 150
160 | | | | 0.34
0.47 | 1.8
1.3 | 0.97
0.70 | 2.63
2.91 | 1.61
1.24 | | 87.312 | 190.500 | 57.150 | 57.531 | 46.038 | 8.0 | 3.3 | 390 000 | 520 000 | 1 900 | 2 600 | HH 221432 | HH 221410 | 118 | 103 | 171 | 179 | 8 | 3.3 | 2.3 | 0.33 | 1.8 | 0.99 | 5.51 | 2.24 | | 88.900 |
149.225
152.400
152.400 | 31.750
39.688
39.688 | 28.971
36.322
39.688 | 24.608
30.162
30.162 | 3.0
3.5
6.4 | 3.3
3.2
3.3 | 140 000
183 000
253 000 | 285 000 | 2 200
2 200
2 200 | 3 000
3 200
3 200 | 42350
593
HM 518445 | 42587
592 A
HM 518410 | 104
104
107 | 98
98
96 | 134
135
137 | 143
144
148 | | 3.2 | 37.1 | 0.49
0.44
0.40 | 1.2
1.4
1.5 | 0.67
0.75
0.82 | 1.39
1.73
2.11 | 0.711
1.06
0.776 | | | 161.925
161.925
161.925 | 47.625
47.625
53.975 | 48.260
48.260
55.100 | 38.100
38.100
42.862 | 3.5
7.0
3.5 | 3.3
3.3
3.3 | 274 000
274 000
325 000 | 390 000 | 2 200
2 200
2 200 | 3 000
3 000 | 759
766
6580 | 752
752
6535 | 106
113
109 | 99
99
102 | 144
144
141 | 150
150
154 | 7 | 3.3 | 5.6 | 0.34
0.34
0.40 | 1.8
1.8
1.5 | 0.97
0.97
0.82 | | | | | 168.275
168.275 | 47.625
53.975 | 48.260
56.363 | 38.100
41.275 | 3.5
3.5 | 3.3
3.3 | 274 000
345 000 | | 2 200
2 200 | 3 000
3 000 | 759
850 | 753
832 | 106
106 | 99
100 | 147
149 | 150
155 | | | | 0.34
0.30 | 1.8
2.0 | 0.97
1.1 | 2.47
3.39 | 2.1
1.74 | | | 190.500
190.500 | 57.150
57.150 | 57.531
57.531 | 44.450
46.038 | 8.0
8.0 | 3.3
3.3 | 355 000
390 000 | | 1 900
1 900 | 2 600
2 600 | 855
HH 221434 | 854
HH 221410 | 118
120 | 103
105 | 170
171 | 174
179 | 8 | | 1.8 | 0.33
0.33 | 1.8
1.8 | 0.99
0.99 | 4.99
5.41 | 2.55
2.24 | | 90.000 | 145.000
147.000
155.000 | 35.000
40.000
44.000 | 34.000
40.000
44.000 | 27.000
32.500
35.500 | 3.0
7.0
3.0 | 2.5
3.5
2.5 | 190 000
229 000
274 000 | 345 000 | 2 400
2 400
2 200 | 3 200
3 200
3 000 | ▲ JM 718149
*HM 218248
▲ JHM 318448 | ▲ JM 718110
**HM 218210
▲ JHM 318410 | 105
111
106 | 99
98
100 | 131
133
140 | 139
141
148 | 3
7
3 | 3.5 | 80.8 | 0.44
0.33
0.34 | 1.4
1.8
1.7 | 0.74
0.99
0.96 | 1.49
1.77
2.32 | 0.66
0.796
1.01 | | 90.488 | 161.925 | 47.625 | 48.260 | 38.100 | 3.5 | 3.3 | 274 000 | 390 000 | 2 200 | 3 000 | 760 | 752 | 107 | 101 | 144 | 150 | 3.5 | 3.3 | 35.6 | 0.34 | 1.8 | 0.97 | 2.38 | 1.61 | - **Notes** * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ** The maximum outside diameter is listed and its tolerance is negative (See Table 7.4.2 on Pages A136 and A137). - The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 236 C 237 **Boundary Dimensions** (mm) 46.038 26.000 28.000 32.000 26.195 6.4 3.3 2.3 2.3 3.5 3.3 3.0 2.5 3.0 2.5 57.150 32.000 36.000 41.000 36.512 57.531 30.000 35.000 40.000 36.116 #### Bore Diameter 92.075 - 100.012 mm Cone Cup **Basic Load Ratings** (N) Limiting Speeds (min⁻¹) 1 900 2 200 2 000 2 000 2 000 2 600 3 000 2 800 2 800 2 800 520 000 235 000 325 000 380 000 191 000 310 000 390 000 146 000 191 000 239 000 Bearing Numbers HH 221447 ▲ JLM 820048 ▲ JM 720249 52393 ▲ JHM 720249 Abutment and Fillet Dimensions (mm) #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of e, Y_1 , and Y_0 are Axial Load Factors Mass (kg) given in the table below. Eff. Load Constant 42.3 0.33 36.8 0.50 36.8 0.47 38.2 0.47 3.5 3.3 36.1 0.47 1.3 1.8 1.2 1.3 1.3 0.99 0.66 0.70 0.70 0.69 4.68 2.24 1.27 0.616 1.68 0.772 2.09 0.974 1.81 0.702 Centers (mm) Cone Cup | | d | D | T | В | С | <i>1</i> mi | r oup
in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | $d_{ m a}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | $rac{\mathcal{T}_a}{\max}$ | a | e | Y_1 | Y_0 | app
CONE | | |-----|---------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|--------------------------------------|------------------------------|------------------------------|--------------------------|----------------------|--------------|------------------------------| | 92. | 14 | 46.050
48.430
52.400 | 33.338
28.575
39.688 | 34.925
28.971
36.322 | 26.195
21.433
30.162 | 3.5
3.5
3.5 | 3.3
3.0
3.2 | 169 000
140 000
183 000 | 280 000
218 000
285 000 | 2 400
2 200
2 200 | 3 200
3 000
3 200 | 47890
42362
598 | 47820
42584
592 A | 107
107
107 | 101
101
101 | 131
134
135 | 140
142
144 | 3.5 3.3
3.5 3
3.5 3.2 | 32.3
31.8
37.1 | 0.45
0.49
0.44 | 1.3
1.2
1.4 | 0.74
0.67
0.75 | 1.29 | 0.664
0.553
1.06 | | | 16 | 52.400
68.275
90.500 | 39.688
41.275
57.150 | 36.322
41.275
57.531 | 30.162
30.162
44.450 | 6.4
3.5
8.0 | 3.2
3.3
3.3 | 183 000
223 000
355 000 | 285 000
345 000
500 000 | 2 200
2 000
1 900 | 3 200
2 800
2 600 | 598 A
681
857 | 592 A
672
854 | 113
110
121 | 101
104
106 | 135
149
170 | 144
160
174 | 6.4 3.2
3.5 3.3
8 3.3 | | 0.44
0.47
0.33 | 1.4
1.3
1.8 | | | 1.06
1.24
2.55 | | 93. | 14 | 48.430
49.225
52.400 | 28.575
31.750
39.688 | 28.971
28.971
36.322 | 21.433
24.608
30.162 | 3.0
3.0
3.5 | 3.0
3.3
3.2 | 140 000
140 000
183 000 | 218 000
218 000
285 000 | 2 200
2 200
2 200 | 3 000
3 000
3 200 | 42368
42368
597 | 42584
42587
592 A | 107
107
109 | 102
102
102 | 134
134
135 | 142
143
144 | 3 3
3 3.3
3.5 3.2 | 34.9 | 0.49
0.49
0.44 | 1.2
1.2
1.4 | 0.67
0.67
0.75 | 1.24 | 0.553
0.711
1.06 | | 95. | 000 15 | 50.000 | 35.000 | 34.000 | 27.000 | 3.0 | 2.5 | 183 000 | 285 000 | 2 200 | 3 200 | ▲ JM 719149 | ▲ JM 719113 | 109 | 104 | 135 | 143 | 3 2.5 | 33.4 | 0.44 | 1.4 | 0.75 | 1.46 | 0.765 | | 95. | 14 | 46.050
48.430
49.225 | 33.338
28.575
31.750 | 34.925
28.971
28.971 | 26.195
21.433
24.608 | 3.5
3.0
3.5 | 3.3
3.0
3.3 | 169 000
140 000
140 000 | 280 000
218 000
218 000 | 2 400
2 200
2 200 | 3 200
3 000
3 000 | 47896
42375
42376 | 47820
42584
42587 | 110
108
109 | 103
103
103 | 131
134
134 | 140
142
143 | 3.5 3.3
3 3
3.5 3.3 | 32.3
31.8
34.9 | 0.45
0.49
0.49 | 1.3
1.2
1.2 | 0.74
0.67
0.67 | 1.18 | 0.664
0.553
0.711 | | | 15 | 52.400
52.400
68.275 | 39.688
39.688
41.275 | 36.322
36.322
41.275 | 30.162
33.338
30.162 | 3.5
3.5
3.5 | 3.2
3.3
3.3 | 183 000
183 000
223 000 | 285 000
285 000
345 000 | 2 200
2 200
2 000 | 3 200
3 200
2 800 | 594
594
683 | 592 A
592
672 | 110
109
113 | 104
103
106 | 135
135
149 | 144
145
160 | 3.5 3.2
3.5 3.3
3.5 3.3 | 37.1
37.1
38.3 | 0.44
0.44
0.47 | 1.4
1.4
1.3 | 0.75
0.75
0.70 | 1.47 | 1.06
1.12
1.24 | | | 18
19 | 71.450
80.975
90.500
90.500 | 47.625
47.625
57.150
57.150 | 48.260
48.006
57.531
57.531 | 38.100
38.100
44.450
46.038 | 3.5
3.5
8.0
8.0 | 3.3
3.3
3.3
3.3 | 282 000
258 000
355 000
390 000 | 415 000
375 000
500 000
520 000 | 2 000
2 000
1 900
1 900 | 2 800
2 600
2 600
2 600 | 77375
776
864
HH 221440 | 77675
772
854
HH 221410 | 117
114
123
125 | 105
107
108
110 | 152
161
170
171 | 159
168
174
179 | 3.5 3.3
3.5 3.3
8 3.3
8 3.3 | 37.8
39.1
41.8
42.3 | 0.37
0.39
0.33
0.33 | 1.6
1.6
1.8
1.8 | 0.86
0.99 | 3.25
4.57 | 1.67
1.99
2.55
2.24 | | 96. | | 48.430
49.225 | 28.575
31.750 | 28.971
28.971 | 21.433
24.606 | 3.5
3.5 | 3.0
3.3 | 140 000
140 000 | 218 000
218 000 | 2 200
2 200 | 3 000
3 000 | 42381
42381 | 42584
42587 | 110
111 | 104
105 | 134
135 | 142
143 | 3.5 3
3.5 3.3 | 31.8
34.9 | 0.49
0.49 | 1.2
1.2 | 0.67
0.67 | | 0.553
0.711 | | 98. | 16 | 61.925
68.275
80.975 | 36.512
41.275
47.625 | 36.116
41.275
48.006 | 26.195
30.162
38.100 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 191 000
223 000
258 000 | 310 000
345 000
375 000 | 2 000
2 000
2 000 | 2 800
2 800
2 600 | 52387
685
779 | 52637
672
772 | 114
116
116 | 108
109
110 | 144
149
161 | 154
160
168 | 3.5 3.3
3.5 3.3
3.5 3.3 | 38.3 | 0.47
0.47
0.39 | 1.3
1.3
1.6 | | 2.32 | 0.942
1.24
1.99 | | | | 90.500
90.500 | 57.150
57.150 | 57.531
57.531 | 44.450
46.038 | 3.5
3.5 | 3.3
3.3 | 355 000
390 000 | 500 000
520 000 | 1 900
1 900 | 2 600
2 600 | 866
HH 221442 | 854
HH 221410 | 118
119 | 111
113 | 170
171 | 174
179 | 3.5 3.3
3.5 3.3 | 41.8
42.3 | | 1.8
1.8 | 0.99
0.99 | | 2.55
2.24 | 116 ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. 126 115 117 114 107 109 109 109 171 135 140 143 142 179 144 149 154 152 6.4 3.3 2.3 2.3 3 2.5 2.5 HH 221410
52618 ▲ JLM 820012 ▲ JM 720210 ▲ JHM 720210 99.982 100.000 100.012 190.500 150.000 155.000 160.000 157.162 # Bore Diameter 101.600 - 117.475 mm ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | | Dimensions
m) | | | | | d Ratings | Limiting S | | Bearing Numbers | | | Abutmei | nt and Fil
mr | | | Cente | ad Constant | | l Load
ctors | | lass
kg) | |--------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|--------------------------------------|--------------------------------------|-------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------------------|-------------|--------------------------|-----------------------------|-----------------------|------------------------------| | d | D | T | B | С | Cone
1
mi | r · | $C_{\rm r}$ | C_{0r} | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{ m b}$ | D_{a} | $D_{ m b}$ | Cone Cu $\gamma_{ m a}$ max. | ip (mm
a |) e | Y_1 | Y_0 | | prox.
CUP | | 101.600 | 157.162
161.925
168.275 | 36.512
36.512
41.275 | 36.116
36.116
41.275 | 26.195
26.195
30.162 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 191 000
191 000
223 000 | 310 000
310 000
345 000 | 2 000
2 000
2 000 | 2 800
2 800
2 800 | 52400
52400
687 | 52618
52637
672 | 117
117
118 | 111
111
112 | 142
144
149 | 152
154
160 | 3.5 3
3.5 3
3.5 3 | | 0.47 | 1.3
1.3
1.3 | 0.69
0.69
0.70 | 1.75
1.75
2.15 | 0.702
0.942
1.24 | | | 180.975
190.500
190.500
212.725 | 47.625
57.150
57.150
66.675 | 48.006
57.531
57.531
66.675 | 38.100
44.450
46.038
53.975 | 3.5
8.0
8.0
7.0 | 3.3
3.3
3.3
3.3 | 258 000
355 000
390 000
570 000 | 375 000
500 000
520 000
810 000 | 2 000
1 900
1 900
1 700 | 2 600
2 600
2 600
2 200 | 780
861
HH 221449
HH 224335 | 772
854
HH 221410
HH 224310 | 119
129
131
132 | 113
114
116
121 | 161
170
171
192 | 168
174
179
202 | 8 3
8 3 | .3 39.
.3 41.
.3 42.
.3 47. | 0.33 | 1.6
1.8
1.8
1.8 | 0.86
0.99
0.99
1.0 | | 1.99
2.55
2.24
3.06 | | 104.775 | 180.975
180.975
190.500 | 47.625
47.625
47.625 | 48.006
48.006
49.212 | 38.100
38.100
34.925 | 7.0
3.5
3.5 | 3.3
3.3
3.3 | 258 000
258 000
296 000 | 375 000
375 000
465 000 | 2 000
2 000
1 800 | 2 600
2 600
2 400 | 787
782
71412 | 772
772
71750 | 129
122
124 | 116
116
118 | 161
161
171 | 168
168
181 | 3.5 3 | .3 39.
.3 39.
.3 40. | | 1.6
1.6
1.4 | 0.86
0.86
0.79 | 2.66
2.68
4.0 | 1.99
1.99
1.71 | | 106.362 | 165.100 | 36.512 | 36.512 | 26.988 | 3.5 | 3.3 | 195 000 | 320 000 | 2 000 | 2 600 | 56418 | 56650 | 122 | 116 | 149 | 159 | 3.5 3 | .3 38. | 0.50 | 1.2 | 0.66 | 1.87 | 0.861 | | 107.950 | 158.750
159.987
161.925 | 23.020
34.925
34.925 | 21.438
34.925
34.925 | 15.875
26.988
26.988 | 3.5
3.5
3.5 | 3.3
3.3
3.3 | 102 000
164 000
164 000 | 165 000
315 000
280 000 | 2 000
2 000
2 000 | 2 800
2 800
2 800 | 37425
LM 522546
48190 | 37625
LM 522510
48120 | 122
122
122 | 115
116
116 | 143
146
146 | 152
154
156 | 3.5 3 | .3 37.
.3 33.
.3 38. | 0.40 | 0.99
1.5
1.2 | 0.54
0.82
0.65 | 0.886
1.65
1.59 | 0.488
0.784
0.83 | | | 165.100
190.500
212.725 | 36.512
47.625
66.675 | 36.512
49.212
66.675 | 26.988
34.925
53.975 | 3.5
3.5
8.0 | 3.3
3.3
3.3 | 195 000
296 000
570 000 | 320 000
465 000
810 000 | 2 000
1 800
1 700 | 2 600
2 400
2 200 | 56425
71425
HH 224340 | 56650
71750
HH 224310 | 123
126
139 | 117
120
126 | 149
171
192 | 159
181
202 | 3.5 3 | | | 1.2
1.4
1.8 | 0.66
0.79
1.0 | 1.8
3.79
7.58 | 0.861
1.71
3.06 | | 109.987 | 159.987
159.987 | 34.925
34.925 | 34.925
34.925 | 26.988
26.988 | 3.5
8.0 | 3.3
3.3 | 164 000
164 000 | 315 000
315 000 | 2 000
2 000 | 2 800
2 800 | LM 522549
LM 522548 | LM 522510
LM 522510 | 124
133 | 118
118 | 146
146 | 154
154 | 3.5 3
8 3 | .3 33.
.3 33. | | 1.5
1.5 | 0.82
0.82 | 1.55
1.53 | 0.784
0.784 | | 109.992 | 177.800 | 41.275 | 41.275 | 30.162 | 3.5 | 3.3 | 232 000 | 375 000 | 1 800 | 2 600 | 64433 | 64700 | 128 | 121 | 160 | 172 | 3.5 3 | .3 42. | 0.52 | 1.2 | 0.64 | 2.64 | 1.11 | | 110.000 | 165.000
180.000 | 35.000
47.000 | 35.000
46.000 | 26.500
38.000 | 3.0
3.0 | 2.5
2.5 | 195 000
310 000 | 320 000
490 000 | 2 000
1 900 | 2 600
2 600 | ▲ JM 822049
▲ JHM 522649 | ▲ JM 822010
▲ JHM 522610 | 124
127 | 119
122 | 149
162 | 159
172 | | .5 38.
.5 40. | | 1.2
1.5 | 0.66
0.81 | 1.64
3.12 | 0.842
1.51 | | 111.125 | 190.500 | 47.625 | 49.212 | 34.925 | 3.5 | 3.3 | 296 000 | 465 000 | 1 800 | 2 400 | 71437 | 71750 | 129 | 123 | 171 | 181 | 3.5 3 | .3 40. | 0.42 | 1.4 | 0.79 | 3.58 | 1.71 | | 114.300 | 152.400
177.800
180.000 | 21.433
41.275
34.925 | 21.433
41.275
31.750 | 16.670
30.162
25.400 | 1.5
3.5
3.5 | 1.5
3.3
0.8 | 89 500
232 000
174 000 | 178 000
375 000
254 000 | 2 000
1 800
1 800 | 2 800
2 600
2 400 | L 623149
64450
68450 | L 623110
64700
** 68709 | 123
131
130 | 121
125
123 | 143
160
165 | 148
172
172 | 3.5 3 | .5 27.
.3 42.
.8 40. | 0.52 | 1.5
1.2
1.2 | 0.80
0.64
0.66 | 0.725
2.39
1.95 | 0.344
1.11
1.0 | | | 190.500
212.725
212.725 | 47.625
66.675
66.675 | 49.212
66.675
66.675 | 34.925
53.975
53.975 | 3.5
7.0
7.0 | 3.3
3.3
3.3 | 296 000
475 000
570 000 | 465 000
700 000
810 000 | 1 800
1 700
1 700 | 2 400
2 400
2 200 | 71450
938
HH 224346 | 71750
932
HH 224310 | 132
141
143 | 125
128
131 | 171
187
192 | 181
193
202 | | .3 40.
.3 46.
.3 47. | 0.33 | 1.4
1.8
1.8 | 0.79
1.0
1.0 | 3.37
6.01
7.01 | 1.71
4.11
3.06 | | 115.087
117.475 | 190.500
180.975 | 47.625
34.925 | 49.212
31.750 | 34.925
25.400 | 3.5
3.5 | 3.3
3.3 | 296 000
174 000 | 465 000
254 000 | 1 800
1 800 | 2 400
2 400 | 71453
68462 | 71750
68712 | 133
132 | 126
125 | 171
163 | 181
172 | 3.5 3
3.5 3 | | | 1.4
1.2 | 0.79
0.66 | | 1.71
1.05 | - Notes ** The maximum outside diameter is listed and its tolerance is negative (See Table 7.4.2 on Pages A136 and A137). - ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 240 C 241 # Bore Diameter 120.000 - 165.100 mm ## Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-----------------------| | X | Y | X | Y | | 1 | 0 | 0.4 | <i>Y</i> ₁ | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0 F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | Boundary Dimensions (mm) | | | | | | Basic Load Ratings (N) | | Limiting Speeds
(min ⁻¹) | | Bearing I | Abutment and Fille
(mm) | | | |) | | | Constant | Axial Load
Factors | | Mass
(kg) | | | |--------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--|--|---|----------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|-------|------------------------------|-----------------------|--------------------------|----------------------|------------------------------|-------------------------------| | d | D | T | В | С | 1 | Cup
r
in. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | d_{a} | $d_{ m b}$ | $D_{\rm a}$ | $D_{ m b}$ | Cone ($\gamma_{ m a}$ max. | . , | nm)
a | e | Y_1 | Y_0 | | prox.
CUP | | 120.000 | 170.000
174.625 | 25.400
35.720 | 25.400
36.512 | 19.050
27.783 | 3.3
3.5 | 3.3
1.5 | 130 000
212 000 | 219 000
385 000 | 1 900
1 900 | 2 600
2 600 | ▲ JL 724348
* M 224748 | ▲ JL 724314
M 224710 | 132
135 | 127
129 | 156
163 | 163
168 | | | | 0.46
0.33 | 1.3
1.8 | 0.72
0.99 | 1.08
1.9 | 0.591
0.866 | | 120.650 | 182.562
206.375 | 39.688
47.625 | 38.100
47.625 | 33.338
34.925 | 3.5
3.3 | 3.3
3.3 | 228 000
320 000 | 445 000
530 000 | 1 800
1 600 | 2 400
2 200 | 48282
795 | 48220
792 | 136
139 | 133
134 | 168
186 |
176
198 | | | 34.2
15.7 | 0.31
0.46 | 2.0
1.3 | 1.1
0.72 | 2.56
4.44 | 1.14
1.9 | | 123.825
125.000 | 182.562
175.000 | 39.688
25.400 | 38.100
25.400 | 33.338
18.288 | 3.5
3.3 | 3.3
3.3 | 228 000
134 000 | 445 000
232 000 | 1 800
1 800 | 2 400
2 400 | 48286
▲ JL 725346 | 48220
▲ JL 725316 | 139
138 | 133
133 | 168
161 | 176
168 | | | 34.2
34.3 | 0.31
0.48 | 2.0
1.3 | 1.1
0.69 | 2.37
1.19 | 1.14
0.573 | | 127.000 | 165.895
182.562
196.850
215.900 | 18.258
39.688
46.038
47.625 | 17.462
38.100
46.038
47.625 | 13.495
33.338
38.100
34.925 | 1.5
3.5
3.5
3.5 | 1.5
3.3
3.3
3.3 | 84 500
228 000
315 000
287 000 | | 1 900
1 800
1 700
1 500 | 2 600
2 400
2 200
2 000 | LL 225749
48290
67388
74500 | LL 225710
48220
67322
74850 | 135
141
144
148 | 132
135
138
141 | 158
168
180
196 | 160
176
189
208 | 3.5
3.5 | 3.3 | 34.2 | | 1.8
2.0
1.7
1.2 | 1.1
0.96 | 2.19 | 0.288
1.14
1.46
1.99 | | 128.588
130.000 | 206.375
206.375 | 47.625
47.625 | 47.625
47.625 | 34.925
34.925 | 3.3
3.5 | 3.3
3.3 | 320 000
320 000 | 530 000
530 000 | 1 600
1 600 | 2 200
2 200 | 799
797 | 792
792 | 146
148 | 140
141 | 186
186 | 198
198 | | | | 0.46
0.46 | 1.3
1.3 | 0.72
0.72 | | 1.9
1.9 | | 130.175 | 203.200
206.375 | 46.038
47.625 | 46.038
47.625 | 38.100
34.925 | 3.5
3.5 | 3.3
3.3 | 315 000
320 000 | 560 000
530 000 | 1 700
1 600 | 2 200
2 200 | 67389
799 A | 67320
792 | 146
148 | 141
142 | 183
186 | 191
198 | | | 39.7
15.7 | 0.34
0.46 | 1.7
1.3 | 0.96
0.72 | 3.51
3.74 | 2.06
1.9 | | 133.350 | 177.008
190.500
196.850
215.900 | 25.400
39.688
46.038
47.625 | 26.195
39.688
46.038
47.625 | 20.638
33.338
38.100
34.925 | 1.5
3.5
3.5
3.5 | 1.5
3.3
3.3
3.3 | 124 000
240 000
315 000
287 000 | 258 000
485 000
560 000
495 000 | 1 800
1 700
1 700
1 500 | 2 400
2 200
2 200
2 000 | L 327249
48385
67390
74525 | L 327210
48320
67322
74850 | 143
148
149
152 | 141
142
143
146 | 167
177
180
196 | 171
184
189
208 | 3.5
3.5 | 3.3 | 29.5
35.9
39.7
48.4 | 0.32 | 1.7
1.9
1.7
1.2 | | 1.18
2.58
3.27
4.44 | 0.55
1.16
1.46
1.99 | | 136.525 | 190.500
217.488 | 39.688
47.625 | 39.688
47.625 | 33.338
34.925 | 3.5
3.5 | 3.3
3.3 | 216 000
287 000 | 440 000
495 000 | 1 700
1 500 | 2 200
2 000 | 48393
74537 | 48320
74856 | 151
155 | 144
148 | 177
197 | 184
210 | | | 35.9
18.4 | | 1.9
1.2 | 1.0
0.68 | 2.31
4.19 | 1.16
2.13 | | 139.700 | 187.325
215.900
254.000 | 28.575
47.625
66.675 | 29.370
47.625
66.675 | 23.020
34.925
47.625 | 1.5
3.5
7.0 | 1.5
3.3
3.3 | 153 000
287 000
515 000 | 305 000
495 000
830 000 | 1 700
1 500
1 300 | 2 200
2 000
1 800 | LM 328448
74550
99550 | LM 328410
74850
99100 | 149
158
170 | 147
151
156 | 176
196
227 | 182
208
238 | 3.5 | 3.3 | 81.7
18.4
55.3 | 0.49 | 1.7
1.2
1.5 | 0.93
0.68
0.81 | 1.59
3.93
9.99 | 0.67
1.99
3.83 | | 142.875 | 200.025 | 41.275 | 39.688 | 34.130 | 3.5 | 3.3 | 227 000 | 460 000 | 1 600 | 2 200 | 48685 | 48620 | 158 | 151 | 185 | 193 | | | 37.6 | | 1.8 | 0.98 | 2.63 | 1.19 | | 146.050 | 193.675
236.538
254.000 | 28.575
57.150
66.675 | 28.575
56.642
66.675 | 23.020
44.450
47.625 | 1.5
3.5
7.0 | 1.5
3.3
3.3 | 170 000
455 000
515 000 | 355 000
720 000
830 000 | 1 600
1 400
1 300 | 2 200
1 900
1 800 | 36690
HM 231140
99575 | 36620
HM 231110
99100 | 155
164
175 | 154
160
162 | 182
217
227 | 188
224
238 | 3.5 | 3.3 | 33.5
15.9
55.3 | | 1.6
1.9
1.5 | 0.90
1.0
0.81 | 1.64
6.07
9.24 | 0.725
2.93
3.83 | | 149.225
152.400 | 254.000
254.000 | 66.675
66.675 | 66.675
66.675 | 47.625
47.625 | 7.0
7.0 | 3.3
3.3 | 515 000
515 000 | 830 000
830 000 | 1 300
1 300 | 1 800
1 800 | 99587
99600 | 99100
99100 | 178
181 | 165
167 | 227
227 | 238
238 | | | 55.3
55.3 | | 1.5
1.5 | 0.81
0.81 | 8.86
8.46 | 3.83
3.83 | | 158.750
165.100 | 225.425
247.650 | 41.275
47.625 | 39.688
47.625 | 33.338
38.100 | 3.5
3.5 | 3.3
3.3 | 240 000
345 000 | 540 000
705 000 | 1 400
1 300 | 1 900
1 700 | 46780
67780 | 46720
67720 | 176
185 | 169
179 | 209
229 | 218
240 | | | 14.3 | 0.38
0.44 | 1.6
1.4 | 0.86
0.75 | 3.69
5.83 | 1.66
2.33 | - Notes * The maximum bore diameter is listed and its tolerance is negative (See Table 7.4.1 on Page A136). - ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. C 242 C 243 # Bore Diameter 170.000 - 206.375 mm #### Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | |---------------|--------------------------|---------------|-------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | | X | Y | X | Y | | 1 | 0 | 0.4 | Y_1 | #### Static Equivalent Load $P_0 = 0.5F_r + Y_0F_a$ When $F_r > 0.5F_r + Y_0F_a$, use $P_0 = F_r$ The values of \emph{e} , \emph{Y}_1 , and \emph{Y}_0 are given in the table below. | | | 7 | Dimensions
nm) | | Cono | Cun | Basic Loa | nd Ratings | Limiting S | | Bearing |) Numbers | | Abutmer | t and Fill
(mn | | | | Eff. Load
Centers | Constant | | Load | | ass
kg) | |-------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|-------------------|-------------------|-------------------------------|---------------------------------|-------------------------|-------------------------|--------------------------------------|--------------------------------------|-------------------------------|-------------------------------|-------------------|-------------------|---------------------------------|------------|----------------------|----------------------|-------------------|----------------------|---------------------|-----------------------| | d | D | T | В | С | | Cup
Y
in. | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | CONE | CUP | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m b}$ | D_{a} | $D_{ m b}$ | Cone (${m \gamma}_{ m a}$ max. | up | (mm)
a | e | Y_1 | Y_0 | ap
CONE | prox.
CUP | | 170.000 | 230.000
240.000 | 39.000
46.000 | 38.000
44.500 | 31.000
37.000 | 3.0
3.0 | 2.5
2.5 | 278 000
380 000 | 520 000
720 000 | 1 300
1 300 | 1 800
1 800 | ▲ JHM 534149
▲ JM 734449 | ▲ JHM 534110
▲ JM 734410 | 184
185 | 178
180 | 217
222 | 224
232 | | 2.5
2.5 | 43.2
50.5 | 0.38
0.44 | 1.6
1.4 | 0.86
0.75 | 3.1
4.42 | 1.3
2.02 | | 174.625 | 247.650 | 47.625 | 47.625 | 38.100 | 3.5 | 3.3 | 345 000 | 705 000 | 1 300 | 1 700 | 67787 | 67720 | 192 | 185 | 229 | 240 | 3.5 | 3.3 | 52.4 | 0.44 | 1.4 | 0.75 | 4.88 | 2.33 | | 177.800 | 227.012
247.650
260.350 | 30.162
47.625
53.975 | 30.162
47.625
53.975 | 23.020
38.100
41.275 | 1.5
3.5
3.5 | 1.5
3.3
3.3 | 181 000
345 000
455 000 | 415 000
705 000
835 000 | 1 300
1 300
1 200 | 1 800
1 700
1 700 | 36990
67790
M 236849 | 36920
67720
M 236810 | 189
194
195 | 186
188
192 | 214
229
241 | 221
240
249 | 1.5
3.5
3.5 | 3.3 | 42.9
52.4
47.5 | 0.44
0.44
0.33 | 1.4
1.4
1.8 | 0.75
0.75
0.99 | 2.1
4.56
6.49 | 0.907
2.33
2.86 | | 190.000
190.500
200.000 | 260.000
266.700
300.000 | 46.000
47.625
65.000 | 44.000
46.833
62.000 | 36.500
38.100
51.000 | 3.0
3.5
3.5 | 2.5
3.3
2.5 | 370 000
345 000
615 000 | 730 000
720 000
1 130 000 | 1 100
1 100
1 000 | 1 600
1 500
1 400 | ▲ JM 738249
67885
▲ JHM 840449 | ▲ JM 738210
67820
▲ JHM 840410 | 206
209
223 | 200
203
215 | 242
246
273 | 252
259
289 | | | 56.4
57.9
73.1 | 0.48
0.48
0.52 | 1.3
1.3
1.2 | 0.69
0.69
0.63 | 4.73
5.4
10.3 | 2.2
2.64
5.19 | | 203.200
206.375 | 282.575
282.575 | 46.038
46.038 | 46.038
46.038 | 36.512
36.512 | 3.5
3.5 | 3.3
3.3 | 365 000
365 000 | 800 000
800 000 | 1 000
1 000 | 1 400
1 400 | 67983
67985 | 67920
67920 | 222
224 | 216
219 | 260
260 | 275
275 | | | 61.9
61.9 | 0.51
0.51 | 1.2
1.2 | 0.65
0.65 | 6.03
5.66 | 2.82
2.82 | ▲ The tolerances are listed in Tables 2, 3 and 4 on Pages C184 and C185. # **■**DOUBLE-ROW TAPERED ROLLER BEARINGS # Bore Diameter 40 – 90 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ## Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | | | / Dimension
mm) | S | | | ad Ratings
N) | Limiting
(mi | | | Bearing Numbers | Abutmo | ent and F
(m | illet Dim
m) | ensions | Constant | , | Axial Loa
Factors | d | Mass
(kg) | |----------|--------------------------|----------------------|------------------------------|--------------------------|--------------------------|--|--|----------------------------------|----------------------------------|---
--|----------------------|--------------------------|--------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | <i>d</i> | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | C_{r} | $C_{0\mathrm{r}}$ | Grease | Oil | | bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | ${m \gamma}_{ m a}$ max. | ${m r}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 40 | 80 | 45 | 37.5 | 1.5 | 0.6 | 109 000 | 140 000 | 3 700 | 5 100 | | HR 40 KBE 42+L | 51 | 75 | 1.5 | 0.6 | 0.37 | 2.7 | 1.8 | 1.8 | 0.97 | | 45 | 85
85 | 47
55 | 37.5
43.5 | 1.5
1.5 | 0.6
0.6 | 117 000
143 000 | 159 000
204 000 | 3 400
3 400 | 4 700
4 700 | | HR 45 KBE 42+L
HR 45 KBE 52X+L | 56
56 | 81
81 | 1.5
1.5 | 0.6
0.6 | 0.40
0.40 | 2.5
2.5 | 1.7
1.7 | 1.6
1.6 | 1.08
1.31 | | 50 | 90
90
90
110 | 48
49
55
64 | 38.5
39.5
43.5
51.5 | 1.5
1.5
1.5
2.5 | 0.6
0.6
0.6
0.6 | 131 000
131 000
150 000
224 000 | 183 000
183 000
218 000
297 000 | 3 200
3 200
3 200
2 700 | 4 400
4 400
4 400
3 700 | 1 | HR 50 KBE 042+L
HR 50 KBE 42+L
HR 50 KBE 52X+L
HR 50 KBE 043+L | 61
61
61
65 | 87
87
87
104 | 1.5
1.5
1.5
2 | 0.6
0.6
0.6
0.6 | 0.42
0.42
0.42
0.35 | 2.4
2.4
2.4
2.9 | 1.6
1.6
1.6
2.0 | 1.6
1.6
1.6
1.9 | 1.20
1.22
1.39
2.77 | | 55 | 100
100
100
120 | 51
52
60
70 | 41.5
42.5
48.5
57 | 2
2
2
2.5 | 0.6
0.6
0.6
0.6 | 162 000
162 000
188 000
256 000 | 226 000
226 000
274 000
342 000 | 2 900
2 900
2 900
2 500 | 3 900
3 900
3 900
3 400 | 1 | HR 55 KBE 042+L
HR 55 KBE 1003+L
HR 55 KBE 52X+L
HR 55 KBE 43+L | 67
67
67
70 | 96
96
97
113 | 2
2
2
2 | 0.6
0.6
0.6
0.6 | 0.40
0.40
0.40
0.35 | 2.5
2.5
2.5
2.9 | 1.7
1.7
1.7
2.0 | 1.6
1.6
1.6
1.9 | 1.59
1.63
1.88
3.52 | | 60 | 110
110
130 | 53
66
74 | 43.5
54.5
59 | 2
2
3 | 0.6
0.6
1 | 178 000
225 000
298 000 | 246 000
335 000
405 000 | 2 700
2 700
2 300 | 3 600
3 600
3 200 | 1 | HR 60 KBE 042+L
HR 60 KBE 52X+L
HR 60 KBE 43+L | 72
72
78 | 105
106
122 | 2
2
2.5 | 0.6
0.6
1 | 0.40
0.40
0.35 | 2.5
2.5
2.9 | 1.7
1.7
2.0 | 1.6
1.6
1.9 | 2.03
2.52
4.40 | | 65 | 120
120
120
140 | 56
57
73
79 | 46.5
47.5
61.5
63 | 2
2
2
3 | 0.6
0.6
0.6
1 | 210 000
210 000
269 000
340 000 | 300 000
300 000
405 000
465 000 | 2 400
2 400
2 400
2 100 | 3 200
3 200
3 300
2 900 | 1 | HR 65 KBE 42+L
HR 65 KBE 1202+L
HR 65 KBE 52X+L
HR 65 KBE 43+L | 77
77
77
83 | 115
115
117
132 | 2
2
2
2.5 | 0.6
0.6
0.6
1 | 0.40
0.40
0.40
0.35 | 2.5
2.5
2.5
2.9 | 1.7
1.7
1.7
2.0 | 1.6
1.6
1.6
1.9 | 2.58
2.61
3.35
5.42 | | 70 | 125
125
125
150 | 57
59
74
83 | 46.5
48.5
61.5
67 | 2
2
2
3 | 0.6
0.6
0.6
1 | 227 000
227 000
270 000
390 000 | 325 000
325 000
410 000
535 000 | 2 300
2 300
2 300
2 000 | 3 100
3 100
3 100
2 700 | ļ | HR 70 KBE 042+L
HR 70 KBE 42+L
HR 70 KBE 52X+L
HR 70 KBE 43+L | 82
82
82
88 | 120
120
121
142 | 2
2
2
2.5 | 0.6
0.6
0.6
1 | 0.42
0.42
0.42
0.35 | 2.4
2.4
2.4
2.9 | 1.6
1.6
1.6
2.0 | 1.6
1.6
1.6
1.9 | 2.79
2.85
3.58
6.45 | | 75 | 130
130
160 | 62
74
87 | 51.5
61.5
69 | 2
2
3 | 0.6
0.6
1 | 245 000
283 000
435 000 | 365 000
440 000
600 000 | 2 200
2 200
1 900 | 3 000
3 000
2 500 | 1 | HR 75 KBE 42+L
HR 75 KBE 52X+L
HR 75 KBE 043+L | 87
87
93 | 126
127
151 | 2
2
2.5 | 0.6
0.6
1 | 0.44
0.44
0.35 | 2.3
2.3
2.9 | 1.6
1.6
2.0 | 1.5
1.5
1.9 | 3.15
3.73
7.66 | | 80 | 140
140
140
170 | 61
64
78
92 | 49
51.5
63.5
73 | 2.5
2.5
2.5
3 | 0.6
0.6
0.6
1 | 269 000
269 000
330 000
475 000 | 390 000
390 000
505 000
655 000 | 2 000
2 000
2 000
1 700 | 2 800
2 800
2 800
2 400 | ļ | HR 80 KBE 042+L
HR 80 KBE 42+L
HR 80 KBE 52X+L
HR 80 KBE 043+L | 95
95
95
98 | 134
134
136
161 | 2
2
2
2.5 | 0.6
0.6
0.6
1 | 0.42
0.42
0.42
0.35 | 2.4
2.4
2.4
2.9 | 1.6
1.6
1.6
2.0 | 1.6
1.6
1.6
1.9 | 3.70
3.70
4.59
9.02 | | 85 | 150
150
180 | 70
86
98 | 57
69
77 | 2.5
2.5
4 | 0.6
0.6
1 | 315 000
360 000
530 000 | 465 000
555 000
745 000 | 1 900
1 900
1 600 | 2 600
2 600
2 200 | 1 | HR 85 KBE 42+L
HR 85 KBE 52X+L
HR 85 KBE 043+L | 100
100
106 | 143
144
169 | 2
2
3 | 0.6
0.6
1 | 0.42
0.42
0.35 | 2.4
2.4
2.9 | 1.6
1.6
2.0 | 1.6
1.6
1.9 | 4.69
5.70
10.8 | | 90 | 160
160
160 | 71
74
94 | 58
61
77 | 2.5
2.5
2.5 | 0.6
0.6
0.6 | 345 000
345 000
440 000 | 510 000
510 000
700 000 | 1 800
1 800
1 800 | 2 400
2 400
2 400 | 1 | HR 90 KBE 042+L
HR 90 KBE 42+L
HR 90 KBE 52X+L | 105
105
105 | 152
152
154 | 2
2
2 | 0.6
0.6
0.6 | 0.42
0.42
0.42 | 2.4
2.4
2.4 | 1.6
1.6
1.6 | 1.6
1.6
1.6 | 5.53
5.71
7.26 | **Remark** For other double-row tapered roller bearings not listed above, please contact NSK. C 246 C 247 # **DOUBLE-ROW TAPERED ROLLER BEARINGS** # Bore Diameter 90 - 120 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ## Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | | | y Dimension
mm) | ns | | | oad Ratings
(N) | Limiting
(mir | | Descine Number | Abutmo | ent and F
(m | illet Dim
im) | ensions | Constant | A | Axial Load
Factors | | Mass
(kg) | |----------|--------------------------|-------------------------|----------------------|-------------------|---------------------|--|--|----------------------------------|----------------------------------|--|--------------------------|--------------------------|---------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | <i>d</i> | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | ${m \gamma}_{\rm a}$ max. | ${m \gamma}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 90 | 190
190 | 102
144 | 81
115 | 4
4 | 1
1 | 595 000
770 000 | 845 000
1 180 000 | 1 600
1 600 | 2 100
2 200 | HR 90 KBE 043+L
HR 90 KBE 1901+L | 111
111 | 178
179 | 3 | 1 | 0.35
0.35 | 2.9
2.9 | 2.0
2.0 | 1.9
1.9 | 12.7
17.9 | | 95 | 170
170
200 | 78
100
108 | 63
83
85 | 3
3
4 | 1
1
1 | 385 000
495 000
640 000 | 570 000
800 000
910 000 | 1 700
1 700
1 500 | 2 300
2 300
2 000 | HR 95 KBE 42+L
HR 95 KBE 52+L
HR 95 KBE 43+L | 113
113
116 | 161
163
187 | 2.5
2.5
3 | 1
1
1 | 0.42
0.42
0.35 | 2.4
2.4
2.9 | 1.6
1.6
2.0 | 1.6
1.6
1.9 | 6.75
8.60
14.7 | | 100 | 165
180
180 | 52
81
81 | 46
64
65 | 2.5
3
3 | 0.6
1
1 | 222 000
435 000
435 000 | 340 000
665 000
665 000 | 1 700
1 600
1 600 | 2 300
2 200
2 200 | 100 KBE 31+L
HR100 KBE 1805+L
HR100 KBE 042+L | 115
118
118 | 156
170
170 | 2
2.5
2.5 | 0.6
1
1 | 0.33
0.42
0.42 | 3.0
2.4
2.4 | 2.0
1.6
1.6 | 2.0
1.6
1.6 | 4.04
8.16
8.13 | | | 180
180
180 | 82
83
105 | 66
67
85 | 3
3
3 | 1
1
1 | 435 000
435 000
555 000 | 665 000
665 000
905 000 | 1 600
1 600
1 600 | 2 200
2 200
2 200 | HR100 KBE 1801+L
HR100 KBE 42+L
HR100 KBE 1802+L | 118
118
118 | 170
170
173 | 2.5
2.5
2.5 | 1
1
1 | 0.42
0.42
0.42 | 2.4
2.4
2.4 | 1.6
1.6
1.6 | 1.6
1.6
1.6 | 8.22
8.7
10.6 | | | 180
180
215 | 107
110
112 | 87
90
87 | 3
3
4 | 1
1
1 | 555 000
555 000
725 000 | 905 000
905 000
1 050 000 | 1 600
1 600
1 400 | 2 200
2 200
1 900 | HR100 KBE 52X+L
HR100 KBE 1804+L
HR100 KBE 043+L | 118
118
121 | 173
173
200 | 2.5
2.5
3 | 1
1
1 | 0.42
0.42
0.35 | 2.4
2.4
2.9 | 1.6
1.6
2.0 | 1.6
1.6
1.9 | 10.7
11
18.1 | | 105 | 190
190
190
225 | 88
117
115
116 | 70
96
95
91 | 3
3
3
4 | 1
1
1 | 480 000
620 000
620 000
780 000 | 735 000
1 020 000
1 020 000
1 130 000 | 1 500
1 500
1 500
1 300 | 2 000
2 000
2 000
1 800 | HR105 KBE 42X+L
HR105 KBE 1902+L
HR105 KBE 52+L
HR105 KBE 043+L | 123
123
123
126 | 179
182
182
209 | 2.5
2.5
2.5
3 | 1
1
1 | 0.42
0.42
0.42
0.35 |
2.4
2.4
2.4
2.9 | 1.6
1.6
1.6
2.0 | 1.6
1.6
1.6
1.9 | 9.76
13.4
13.1
20.4 | | 110 | 180
180
180 | 56
70
125 | 50
56
100 | 2.5
2.5
2.5 | 0.6
0.6
0.6 | 264 000
340 000
550 000 | 400 000
555 000
1 060 000 | 1 500
1 500
1 500 | 2 000
2 000
2 100 | 110 KBE 31+L
110 KBE 031+L
110 KBE 1802+L | 125
125
125 | 172
172
172 | 2
2
2 | 0.6
0.6
0.6 | 0.39
0.39
0.26 | 2.6
2.6
3.8 | 1.7
1.7
2.6 | 1.7
1.7
2.5 | 5.11
6.33
11.4 | | | 200
200
200 | 90
92
120 | 72
74
100 | 3
3
3 | 1
1
1 | 540 000
540 000
685 000 | 840 000
840 000
1 130 000 | 1 400
1 400
1 400 | 1 900
1 900
1 900 | HR110 KBE 42+L
HR110 KBE 42X+L
HR110 KBE 2001+L | 128
128
128 | 190
190
193 | 2.5
2.5
2.5 | 1
1
1 | 0.42
0.42
0.42 | 2.4
2.4
2.4 | 1.6
1.6
1.6 | 1.6
1.6
1.6 | 11.2
11.5
15.4 | | | 200
240 | 121
118 | 101
93 | 3
4 | 1
1.5 | 685 000
830 000 | 1 130 000
1 190 000 | 1 400
1 200 | 1 900
1 700 | HR110 KBE 52X+L
HR110 KBE 043+L | 128
131 | 193
223 | 2.5
3 | 1
1.5 | 0.42
0.35 | 2.4
2.9 | 1.6
2.0 | 1.6
1.9 | 15.2
23.6 | | 120 | 180
180
200 | 46
58
62 | 41
46
55 | 2.5
2.5
2.5 | 0.6
0.6
0.6 | 184 000
260 000
310 000 | 296 000
450 000
500 000 | 1 500
1 500
1 400 | 2 000
2 000
1 800 | 120 KBE 30+L
120 KBE 030+L
120 KBE 31+L | 135
135
135 | 172
172
190 | 2
2
2 | 0.6
0.6
0.6 | 0.40
0.39
0.39 | 2.5
2.6
2.6 | 1.7
1.7
1.7 | 1.6
1.7
1.7 | 3.75
4.64
7.35 | | | 200
200
215 | 78
100
97 | 62
84
78 | 2.5
2.5
3 | 0.6
0.6
1 | 415 000
515 000
575 000 | 690 000
885 000
900 000 | 1 400
1 400
1 300 | 1 900
1 800
1 800 | 120 KBE 031+L
120 KBE 2001+L
HR120 KBE 42X+L | 135
135
138 | 190
193
204 | 2
2
2.5 | 0.6
0.6
1 | 0.39
0.37
0.44 | 2.6
2.7
2.3 | 1.7
1.8
1.6 | 1.7
1.8
1.5 | 8.97
11.3
13.7 | | | 215
260
260 | 132
128
188 | 109
101
145 | 3
4
4 | 1
1
1 | 750 000
915 000
1 320 000 | 1 270 000
1 310 000
2 110 000 | 1 300
1 100
1 100 | 1 800
1 500
1 500 |
HR120 KBE 52X+L
HR120 KBE 43+L
HR120 KBE 2601+L | 138
141
141 | 207
240
242 | 2.5
3
3 | 1
1
1 | 0.44
0.35
0.35 | 2.3
2.9
2.9 | 1.6
2.0
2.0 | 1.5
1.9
1.9 | 18.8
29.4
44.6 | **Remark** For other double-row tapered roller bearings not listed above, please contact NSK. C 248 C 249 # **■**DOUBLE-ROW TAPERED ROLLER BEARINGS # Bore Diameter 125 – 150 mm #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ## Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | | | y Dimension
(mm) | S | | | ad Ratings | Limiting
(min | | Bearing Numbers | Abutm | ent and F
(m | Fillet Dim | ensions | Constant | A | Axial Loa
Factors | d | Mass
(kg) | |-----|--------------------------|--------------------------|-------------------------|-------------------|---------------------|--|--|--------------------------------|----------------------------------|---|--------------------------|--------------------------|---------------------------|---------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | d | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | ${m \gamma}_{\rm a}$ max. | ${m r}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 125 | 210 | 110 | 88 | 4 | 1 | 560 000 | 1 030 000 | 1 300 | 1 800 | 125 KBE 2101+L | 146 | 201 | 3 | 1 | 0.43 | 2.3 | 1.6 | 1.5 | 14.5 | | 130 | 230
230
280 | 98
100
137 | 78.5
80.5
107.5 | 4
4
5 | 1
1
1.5 | 640 000
640 000
940 000 | 1 010 000
1 010 000
1 350 000 | 1 200
1 200
1 000 | 1 600
1 600
1 400 | HR130 KBE 42+L
HR130 KBE2301+L
130 KBE 43+L | 151
151
157 | 220
220
258 | 3
3
4 | 1
1
1.5 | 0.44
0.44
0.36 | 2.3
2.3
2.8 | 1.6
1.6
1.9 | 1.5
1.5
1.8 | 15.8
15.9
35 | | | 230
230
230 | 145
145
150 | 115
117.5
120 | 4
4
4 | 1
1
1 | 905 000
905 000
905 000 | 1 580 000
1 580 000
1 580 000 | 1 200
1 200
1 200 | 1 700
1 700
1 700 | HR130 KBE 2302+L
HR130 KBE 52+L
HR130 KBE 2303+L | 151
151
151 | 221
222
221 | 3
3
3 | 1
1
1 | 0.44
0.44
0.44 | 2.3
2.3
2.3 | 1.6
1.6
1.6 | 1.5
1.5
1.5 | 24.1
23.8
24.2 | | 140 | 210
210
210 | 53
66
106 | 47
53
94 | 2.5
2.5
2.5 | 0.6
1
0.6 | 282 000
305 000
555 000 | 495 000
530 000
1 200 000 | 1 200
1 200
1 300 | 1 700
1 700
1 700 | 140 KBE 30+L
140 KBE 030+L
140 KBE2101+L | 155
155
155 | 202
202
202 | 2
2
2 | 0.6
1
0.6 | 0.39
0.40
0.33 | 2.6
2.5
3.0 | 1.7
1.7
2.0 | 1.7
1.6
2.0 | 6.02
7.02
12.3 | | | 225
225
225 | 68
84
85 | 61
68
68 | 3
3
3 | 1
1
1 | 400 000
490 000
490 000 | 630 000
850 000
850 000 | 1 200
1 200
1 200 | 1 600
1 600
1 600 | 140 KBE 31+L
140 KBE 031+L
140 KBE2201+L | 158
158
158 | 216
215
215 | 2.5
2.5
2.5 | 1
1
1 | 0.39
0.39
0.39 | 2.6
2.6
2.6 | 1.7
1.7
1.7 | 1.7
1.7
1.7 | 9.31
11.6
11.7 | | | 230
230
240 | 120
140
132 | 94
110
106 | 3
3
4 | 1
1
1.5 | 685 000
820 000
685 000 | 1 270 000
1 550 000
1 360 000 | 1 200
1 200
1 100 | 1 600
1 600
1 500 | 140 KBE 2301+L
140 KBE 2302+L
140 KBE 2401+L | 158
158
161 | 220
221
227 | 2.5
2.5
3 | 1
1
1.5 | 0.33
0.35
0.44 | 3.0
2.9
2.3 | 2.0
2.0
1.5 | 2.0
1.9
1.5 | 17.6
20.7
22.7 | | | 250
250
300 | 102
153
145 | 82.5
125.5
115.5 | 4
4
5 | 1
1
1.5 | 670 000
1 040 000
1 030 000 | 1 030 000
1 830 000
1 480 000 | 1 100
1 100
1 000 | 1 500
1 500
1 300 | HR140 KBE 42+L
HR140 KBE 52X+L
140 KBE 43+L | 161
161
167 | 237
241
275 | 3
3
4 | 1
1
1.5 | 0.44
0.44
0.36 | 2.3
2.3
2.8 | 1.6
1.6
1.9 | 1.5
1.5
1.8 | 18.9
29.6
42.6 | | 150 | 225
225
250 | 56
70
80 | 50
56
71 | 3
3
3 | 1
1
1 | 300 000
395 000
510 000 | 545 000
685 000
810 000 | 1 200
1 200
1 100 | 1 600
1 600
1 400 | 150 KBE 30+L
150 KBE 030+L
150 KBE 31+L | 168
168
168 | 213
215
240 | 2.5
2.5
2.5 | 1
1
1 | 0.35
0.35
0.40 | 2.9
2.9
2.5 | 2.0
2.0
1.7 | 1.9
1.9
1.6 | 7.41
8.70
14.2 | | | 250
250
260 | 100
115
150 | 80
95
115 | 3
3
4 | 1
1
1 | 630 000
745 000
815 000 | 1 090 000
1 320 000
1 520 000 | 1 100
1 100
1 100 | 1 400
1 500
1 400 | 150 KBE 031+L
150 KBE2502+L
150 KBE2601+L | 168
168
171 | 238
238
242 | 2.5
2.5
3 | 1
1
1 | 0.39
0.37
0.43 | 2.6
2.7
2.3 | 1.7
1.8
1.6 | 1.7
1.8
1.5 | 17.8
20.9
30.0 | | | 270
270
270
320 | 109
164
174
154 | 87
130
140
120 | 4
4
4
5 | 1
1
1
1.5 | 830 000
1 210 000
1 210 000
1 420 000 | 1 330 000
2 150 000
2 150 000
2 130 000 | 1 000
1 000
1 000
900 | 1 400
1 400
1 400
1 200 | HR150 KBE 42+L
HR150 KBE 52X+L
HR150 KBE 2701+L
HR150 KBE 43+L | 171
171
171
177 | 253
257
257
295 | 3
3
3
4 | 1
1
1
1.5 | 0.44
0.44
0.44
0.35 | 2.3
2.3
2.3
2.9 | 1.6
1.6
1.6
2.0 | 1.5
1.5
1.5
1.9 | 24.3
37.3
39.7
53.4 | **Remark** For other double-row tapered roller bearings not listed above, please contact NSK. C 250 C 251 # **DOUBLE-ROW TAPERED ROLLER BEARINGS** # Bore Diameter 160 – 200 mm #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | r _r ≦e | $F_{\rm a}/I$ | r > e | |---------------|-------------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ## Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | | | | y Dimensior
mm) | ıs | | | oad Ratings
(N) | Limiting
(mir | | Danis a Novela | Abutm | ent and F
(m | illet Dim
im) | ensions | Constant | , | Axial Loa
Factors | d | Mass
(kg) | |-----|--------------------------|--------------------------|--------------------------|------------------|--------------------------|--|--|------------------------------|----------------------------------|--|--------------------------|--------------------------|------------------------|--------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | d | D | B_2 | С | γ
min. | ${\pmb \gamma}_1$ min. | $C_{ m r}$ |
$C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | r a
max. | $m{r}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 160 | 240
240
240 | 60
75
110 | 53
60
90 | 3
3
3 | 1
1
1 | 355 000
395 000
650 000 | 580 000
710 000
1 290 000 | 1 100
1 100
1 100 | 1 500
1 500
1 500 | 160 KBE 30+L
160 KBE 030+L
160 KBE 2401+L | 178
178
178 | 231
230
232 | 2.5
2.5
2.5 | 1
1
1 | 0.37
0.40
0.38 | 2.7
2.5
2.6 | 1.8
1.7
1.8 | 1.8
1.6
1.7 | 8.56
10.5
16.2 | | | 270
270
270 | 86
108
140 | 76
86
120 | 3
3
3 | 1
1
1 | 540 000
775 000
990 000 | 885 000
1 380 000
1 880 000 | 1 000
1 000
1 000 | 1 300
1 300
1 300 | 160 KBE 31+L
160 KBE 031+L
160 KBE2701+L | 178
178
178 | 255
256
261 | 2.5
2.5
2.5 | 1
1
1 | 0.40
0.39
0.39 | 2.5
2.6
2.6 | 1.7
1.7
1.7 | 1.6
1.7
1.7 | 18.6
23.1
30.6 | | | 280
290
290
340 | 150
115
178
160 | 125
91
144
126 | 4
4
4
5 | 1
1
1
1.5 | 1 100 000
800 000
1 360 000
1 310 000 | 2 020 000
1 220 000
2 440 000
1 920 000 | 1 000
900
1 000
800 | 1 300
1 300
1 300
1 100 | 160 KBE 2801+L
160 KBE 42+L
HR160 KBE 52X+L
160 KBE 43+L | 181
181
181
187 | 266
275
277
314 | 3
3
4 | 1
1
1
1.5 | 0.32
0.43
0.44
0.36 | 3.2
2.3
2.3
2.8 | 2.1
1.6
1.6
1.9 | 2.1
1.5
1.5
1.8 | 35.9
28.2
47.3
60.4 | | 165 | 290 | 150 | 125 | 4 | 1 | 1 140 000 | 2 130 000 | 900 | 1 300 | 165 KBE 2901+L | 186 | 272 | 3 | 1 | 0.33 | 3.1 | 2.1 | 2.0 | 39.5 | | 170 | 250
260
260 | 85
67
84 | 65
60
67 | 3
3
3 | 1
1
1 | 435 000
400 000
575 000 | 845 000
700 000
1 030 000 | 1 000
1 000
1 000 | 1 400
1 300
1 300 | 170 KBE 2501+L
170 KBE 30+L
170 KBE 030+L | 188
188
188 | 241
248
249 | 2.5
2.5
2.5 | 1
1
1 | 0.44
0.40
0.39 | 2.3
2.5
2.6 | 1.5
1.7
1.7 | 1.5
1.6
1.7 | 12.3
11.8
14.4 | | | 280
280
280
310 | 88
110
150
192 | 78
88
130
152 | 3
3
5 | 1
1
1
1.5 | 630 000
820 000
1 110 000
1 590 000 | 1 040 000
1 450 000
2 160 000
2 910 000 | 900
900
1 000
900 | 1 300
1 300
1 300
1 200 | 170 KBE 31+L
170 KBE 031+L
170 KBE 2802+L
HR170 KBE 52X+L | 188
188
188
197 | 266
268
269
297 | 2.5
2.5
2.5
4 | 1
1
1
1.5 | 0.39
0.39
0.39
0.44 | 2.6
2.6
2.6
2.3 | 1.7
1.7
1.7
1.6 | 1.7
1.7
1.7
1.5 | 19.7
24.2
34.6
57.3 | | 180 | 280
280
300 | 74
93
96 | 66
74
85 | 3
3
4 | 1
1
1.5 | 455 000
655 000
725 000 | 810 000
1 220 000
1 210 000 | 900
900
900 | 1 300
1 200
1 200 | 180 KBE 30+L
180 KBE 030+L
180 KBE 31+L | 198
198
201 | 265
265
284 | 2.5
2.5
3 | 1
1
1.5 | 0.40
0.35
0.39 | 2.5
2.9
2.6 | 1.7
2.0
1.7 | 1.6
1.9
1.7 | 15.4
14.4
24.8 | | | 300
320
320
340 | 120
127
192
180 | 96
99
152
140 | 4
5
5
5 | 1.5
1.5
1.5
1.5 | 940 000
895 000
1 640 000
1 410 000 | 1 690 000
1 390 000
3 050 000
2 510 000 | 900
800
900
800 | 1 200
1 200
1 200
1 100 | 180 KBE 031+L
180 KBE 42+L
HR180 KBE 52X+L
180 KBE3401+L | 201
207
207
207 | 287
300
308
305 | 3
4
4
4 | 1.5
1.5
1.5
1.5 | 0.39
0.44
0.45
0.43 | 2.6
2.3
2.2
2.3 | 1.7
1.5
1.5
1.6 | 1.7
1.5
1.5
1.5 | 31.1
36.5
59.2
68.1 | | 190 | 290
290
320 | 75
94
104 | 67
75
92 | 3
3
4 | 1
1
1.5 | 490 000
670 000
800 000 | 845 000
1 230 000
1 380 000 | 900
900
800 | 1 200
1 200
1 100 | 190 KBE 30+L
190 KBE 030+L
190 KBE 31+L | 208
208
211 | 279
279
301 | 2.5
2.5
3 | 1
1
1.5 | 0.39
0.40
0.40 | 2.6
2.5
2.5 | 1.7
1.7
1.7 | 1.7
1.6
1.6 | 16.2
20.1
30.9 | | | 320
340
340 | 130
133
204 | 104
105
160 | 4
5
5 | 1.5
1.5
1.5 | 1 070 000
990 000
1 910 000 | 1 960 000
1 580 000
3 550 000 | 800
800
800 | 1 100
1 100
1 100 | 190 KBE 031+L
190 KBE 42+L
HR190 KBE 52X+L | 211
217
217 | 302
320
327 | 3
4
4 | 1.5
1.5
1.5 | 0.39
0.40
0.44 | 2.6
2.5
2.3 | 1.7
1.7
1.6 | 1.7
1.6
1.5 | 39.0
43.9
70.8 | | 200 | 310
320
330 | 152
146
180 | 123
110
140 | 3
5
5 | 1
1.5
1.5 | 1 300 000
990 000
1 390 000 | 2 740 000
2 120 000
2 730 000 | 800
800
800 | 1 100
1 100
1 100 | HR200 KBE 3101+L
200 KBE 3201+L
200 KBE 3301+L | 218
227
227 | 301
301
316 | 2.5
4
4 | 1
1.5
1.5 | 0.43
0.52
0.42 | 2.3
1.9
2.4 | 1.6
1.3
1.6 | 1.5
1.3
1.6 | 40.1
41.6
54.4 | | | 340
340
360
360 | 112
140
142
218 | 100
112
110
174 | 4
4
5
5 | 1.5
1.5
1.5
1.5 | 940 000
1 260 000
1 100 000
2 070 000 | 1 670 000
2 250 000
1 780 000
3 850 000 | 800
800
700
800 | 1 000
1 000
1 000
1 000 | 200 KBE 31+L
200 KBE 031+L
200 KBE 42+L
HR200 KBE 52+L | 221
221
227
227 | 321
324
338
344 | 3
3
4
4 | 1.5
1.5
1.5
1.5 | 0.40
0.39
0.40
0.41 | 2.5
2.6
2.5
2.5 | 1.7
1.7
1.7
1.7 | 1.6
1.7
1.6
1.6 | 38.8
47.0
52.6
88.3 | **Remark** For other double-row tapered roller bearings not listed above, please contact NSK. C 252 C 253 # **■**DOUBLE-ROW TAPERED ROLLER BEARINGS # Bore Diameter 206 – 260 mm # Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | # Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | | | y Dimensior
(mm) | IS | | | ad Ratings | Limiting
(mir | | Descriptor Novemberry | Abutm | ent and F
(m | illet Dim
im) | ensions | Constant | | xial Loa
Factors | d | Mass
(kg) | |----------|-------------------|-------------------|---------------------|------------------|---------------------|-------------------------------------|-------------------------------------|-------------------|-------------------------|---|-------------------|-------------------|-------------------------------|---------------------|----------------------|-------------------|---------------------|-------------------|----------------------| | <i>d</i> | D | B_2 | С | γ
min. | ${m \gamma}_1$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Grease | Oil | Bearing Numbers | $d_{ m a}$ min. | $D_{ m b}$ min. | $m{\gamma}_{\mathrm{a}}$ max. | ${m r}_{ m b}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 206 | 283 | 102 | 83 | 4 | 1.5 | 580 000 | 1 430 000 | 900 | 1 200 | 206 KBE 2801+L | 227 | 275 | 3 | 1.5 | 0.51 | 2.0 | 1.3 | 1.3 | 18.1 | | 210 | 355 | 116 | 103 | 4 | 1.5 | 905 000 | 1 520 000 | 700 | 1 000 | 210 KBE 31+L | 231 | 338 | 3 | 1.5 | 0.46 | 2.2 | 1.5 | 1.4 | 41.7 | | 220 | 300
340
340 | 110
90
113 | 88
80
90 | 3
4
4 | 1
1.5
1.5 | 730 000
695 000
920 000 | 1 710 000
1 280 000
1 830 000 | 800
700
700 | 1 100
1 000
1 000 | 220 KBE 3001+L
220 KBE 30+L
220 KBE 030+L | 238
241
241 | 292
324
327 | 2.5
3
3 | 1
1.5
1.5 | 0.37
0.40
0.40 | 2.7
2.5
2.5 | 1.8
1.7
1.7 | 1.8
1.6
1.6 | 21.2
27.9
34.7 | | | 370
370
400 | 120
150
158 | 107
120
122 | 5
5
5 | 1.5
1.5
1.5 | 1 110 000
1 460 000
1 390 000 | 1 940 000
2 760 000
2 300 000 | 700
700
600 | 1 000
1 000
900 | 220 KBE 31+L
220 KBE 031+L
220 KBE 42+L | 247
247
247 | 345
349
371 | 4
4
4 | 1.5
1.5
1.5 | 0.39
0.39
0.40 | 2.6
2.6
2.5 | 1.7
1.7
1.7 | 1.7
1.7
1.6 | 48.3
60.2
74.2 | | 240 | 360
360
400 | 92
115
128 | 82
92
114 | 4
4
5 | 1.5
1.5
1.5 | 780 000
1 020 000
1 180 000 | 1 490 000
2 040 000
2 190 000 | 700
700
600 | 900
900
900 | 240 KBE 30+L
240 KBE 030+L
240 KBE 31+L | 261
261
267 | 344
344
380 | 3
3
4 | 1.5
1.5
1.5 | 0.39
0.35
0.43 | 2.6
2.9
2.3 | 1.7
2.0
1.6 | 1.7
1.9
1.5 | 30.1
37.3
60.0 | | | 400
400 | 160
209 | 128
168 | 5
5 | 1.5
1.5 | 1 620 000
2 220 000 | 3 050 000
4 450 000 | 600
600 | 900
900 | 240 KBE 031+L
240 KBE 4003+L | 267
267 | 378
384 | 4
4 | 1.5
1.5 | 0.39
0.33 | 2.6
3.0 | 1.7
2.0 | 1.7
2.0 | 73.6
96.4 | | 250 | 380 | 98 | 87 | 4 | 1 | 795 000 | 1 460 000 | 600 | 900 | 250 KBE 3801+L | 271 | 365 | 3 | 1 | 0.40 | 2.5 | 1.7 | 1.6 | 35.5 | | 260 | 400
400
440 | 104
130
144 | 92
104
128 | 5
5
5 | 1.5
1.5
1.5 | 895 000
1 210 000
1 540 000 | 1 670 000
2 460 000
2 760 000 | 600
600
600 | 800
800
800 | 260 KBE 30+L
260 KBE 030+L
260 KBE 31+L | 287
287
287 | 379
382
416 | 4
4
4 | 1.5
1.5
1.5 | 0.40
0.40
0.39 | 2.5
2.5
2.6 | 1.7
1.7
1.7 | 1.6
1.6
1.7 | 43.4
54.1
82.5 | | | 440
440 | 172
180 | 145
144 | 5
5 | 1.5
1.5 | 1 870 000
2 110 000 | 3 500 000
4 150 000 | 600
600 | 800
800 | 260 KBE 4401+L
260 KBE 031+L | 287
287 | 414
416 | 4
4 | 1.5
1.5 | 0.38
0.39 | 2.6
2.6 | 1.8
1.7 | 1.7
1.7 |
98.1
104.0 | **Remark** For other double-row tapered roller bearings not listed above, please contact NSK. C 254 C 255 | INTRODUCTION | · C 258 | |---|---------| | TECHNICAL DATA | | | Free Space of Spherical Roller Bearings | · C 260 | | Measuring Bearing Clearance | · C 262 | | BEARING TABLES | | | Spherical Roller Bearings | | | Cylindrical Bores, Tapered Bores | | | Bore Diameter 20 – 1400 mm | · C 266 | # **DESIGN, TYPES, AND FEATURES** Shown in the figures, types EA, C, CD, CA, which are designed for high load capacity, are available. Types EA, C and CD have pressed steel cages, and type CA has machined brass cages. The EA type bearings listed here are classified as NSKHPS™ bearings, which offer particularly high load-carrying capacity, high limiting speeds, and are highly functional under high-temperature operating conditions of up to 200°C. An oil groove and holes are provided in the outer ring to supply lubricant and the bearing numbers are suffixed with E4. To use bearings with oil grooves and holes, it is recommended to provide an oil groove in the housing bore, since the depth of the groove in the bearing is limited. The number and dimensions of the oil groove and holes are shown in Tables 1 and 2. When bearings with a hole for a locking pin to prevent outer ring rotation are required, please inform NSK. # Formulation of Bearing Numbers Spherical Roller Bearings Bearing number example (1) Bearing series symbol 239, 230, 240, 231, 241, 222, 232, 213, 223 : Spherical Roller Bearings ②Bore number Bore number indicates bore diameter. Bore number X 5 (mm) 3 Internal design symbol EA, CA: High Load Capacity 4 Cage symbol M: Machined Brass Cage(for CA Design) Omitted: Pressed Steel Cage(for EA Design) 56Symbol for K: Tapered Bore of Inner Ring(Taper 1: 12) design of rings K30: Tapered Bore of Inner Ring(Taper 1:30) E4: Lubricating groove in outside surface and Holes in outer ring 7 Internal clearance symbol Omitted: CN clearance, C3: Clearance greater than CN, C4: Clearance greater than C3, C5: Clearance greater than C4 Omitted: ISO Normal, P6: ISO Class 6, P5: ISO Class 5, P4: ISO Class 4 ®Tolerance class symbol Special specification S11; Dimensional Stabiliging Treatment Working Temperature Lower than 200°C (Omitted for EA Design) symbol **®NSKHPS™** Symbol *H*: NSKHPS™ Symbol Tolerance Class : ISO Normal Table 1 Dimensions of Oil Grooves | ; | and Holes | 3 | Units : mm | | | | | |---------|-----------|-----------------|------------------|-------------|------|--|--| | Nominal | Width B | Oil Groove | Hole Diameter | Nominal Out | | | | | over | incl. | Width ${\it W}$ | $d_{ extsf{OH}}$ | (m | | | | | 18 | 30 | 5 | 2.5 | over | inc | | | | 30 | 40 | 6
7 | 3 | _ | 180 | | | | 40 | 50 | 7 | 4 | 180 | 250 | | | | 50 | 65 | 8 | 5 | 250 | 31 | | | | 65 | 80 | 10 | 6
8 | 315 | 400 | | | | 80 | 100 | 12 | 8 | 400 | 500 | | | | 100 | 120 | 15 | 10 | 500 | 630 | | | | 120 | 160 | 20 | 12 | 630 | 800 | | | | 160 | 200 | 25 | 15 | 800 | 1000 | | | | 200 | 250 | 30 | 20 | 1000 | 1250 | | | | 250 | 315 | 35 | 20 | 4050 | 400 | | | Table 2 Number of Oil Holes | | and Holes | 3 | Units : mm | | | | |------------|-------------|------------|------------------|------|-----------------|----------| | | Width B | Oil Groove | Hole Diameter | | er Ring Dia D | Number | | over | incl. | Width W | $d_{ extsf{OH}}$ | | | of Holes | | 18 | 30 | 5 | 2.5 | over | incl. | | | 30 | 40 | 6
7 | 3 | _ | 180 | 4 | | 40 | 50 | / | 4 | 180 | 250 | 6 | | 50 | 65 | 8 | 5 | 250 | 315 | 6 | | 65 | 80 | 10 | 6
8 | 315 | 400 | 6 | | 80 | 100 | 12 | | 400 | 500 | 6 | | 100 | 120 | 15 | 10 | 500 | 630 | 8 | | 120
160 | 160 | 20 | 12
15 | 630 | 800 | 8 | | | 200 | 25 | _ | 800 | 1000 | 8 | | 200 | 250 | 30 | 20 | 1000 | 1250 | 8 | | 250
315 | 315
400 | 35
40 | 20
25 | 1250 | 1600 | 8 | | 400 | | 40 | 25 | 1600 | 2000 | 8 | ## NSKHPS™ Spherical Roller Bearings **Features** Compared to the conventional bearing 1. Improved reliability Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. 2. High temperature dimensional stabilizing treatment comes standard High temperature dimensional stabilization of up to 200°C has been achieved through the application of NSK's proprietary material heat treatment technology. #### **TOLERANCES AND RUNNING ACCURACY** SPHERICAL ROLLER BEARINGS.......Table 7.2 (Pages A128 to A131) NSKHPS SPHERICAL ROLLER BEARINGS Tolerance for Dimensions : ISO Normal Running Accuracy: ISO Normal #### RECOMMENDED FITS SPHERICAL ROLLER BEARINGS...... Table 8.3 (Page A164) Table 8.5 (Page A165) #### INTERNAL CLEARANCES SPHERICAL ROLLER BEARINGS...... Table 8.16 (Page A172) **NSKHPS SPHERICAL ROLLER BEARINGS** INTERNAL CLEARANCE SYMBOL: CN. C3. C4 #### PERMISSIBLE MISALIGNMENT The permissible misalignment of spherical roller bearings varies depending on the size and load, but it is approximately 0.018 to 0.045 radian (1° to 2.5°) with normal loads. #### LIMITING SPEEDS (GREASE) The limiting speeds (grease) listed in the bearing tables should be adjusted depending on the bearing load condition. Also, higher speeds are attainable by making changes in the lubrication method, cage design, etc. Refer to page A098 for detailed information. # PRECAUTIONS FOR USE OF SPHERICAL ROLLER BEARINGS If the load on spherical roller bearings becomes too small during operation or if the ratio of axial and radial loads is larger than the value of 'e' (listed in the bearing tables), slippage occurs between the rollers and raceways, which may result in smearing. The higher this tendency becomes, especially for large spherical roller bearings. If very small bearing loads are expected, please contact NSK for selection of an appropriate bearing. ## **TECHNICAL DATA** # Free Space of Spherical Roller Bearings The spherical roller bearing has self-aligning ability and capacity to carry substantially large radial and bi-axial loads. For these reasons, this bearing is used widely in many applications. Application problems include a long span, which causes substantial deflection of the shaft, as well as installation errors and axial misalignment. These bearings may be exposed to a large radial or shock loads. By the way, this bearing is used in plumber Grease lubrication is common for spherical roller bearings because it simplifies the seal construction around the housing and makes maintenance and inspection easier. In this case, it is important to select a grease appropriate to the operating conditions and to fill the bearing with the proper amount of grease considering the housing internal space. As a reference, the bearing free space for conventional types plus four other types (EA, C, CD, and CA) is shown in Table 1. Under general operating conditions, it is appropriate to pack a large quantity of grease into the bearing internal space and to pack grease into the housing internal space other than the bearing itself, to the extent of 1/3 to 2/3 that of the free space. EA type C, CD type CA type Table 1 Free Space of Spherical Roller Bearing (EA, C, CD, and CA) Units: cm3 **BEARINGS TABLE** | Dogwing | Bearing Free Space | | | | | | | | | |---------------------|--------------------|-------------------------|-----------------------|-------|-------|--|--|--|--| | Bearing
Bore No. | | | Bearing Series | | | | | | | | | 230 | 231 | 222 | 232 | 223 | | | | | | 11 | _ | _ | 29 | _ | 78 | | | | | | 12 | _ | _ | 42 | _ | 96 | | | | | | 13 | _ | _ | 48 | _ | 113 | | | | | | 14 | _ | _ | 52 | _ | 139 | | | | | | 15 | _ | _ | 57 | _ | 170 | | | | | | 16 | _ | _ | 71 | _ | 206 | | | | | | 17 | _ | _ | 91 | _ | 234 | | | | | | 18 | _ | _ | 110 | 130 | 283 | | | | | | 19 | _ | _ | 135 | _ | 327 | | | | | | 20 | _ | _ | 169 | 203 | 410 | | | | | | 22 | 100 | 150 | 242 | 294 | 560 | | | | | | 24 | 109 | 228 | 297 | 340 | 700 | | | | | | 26 | 161 | 240 | 365 | 405 | 955 | | | | | | 28 | 170 | 292 | 400 | 530 | 1 230 | | | | | | 30 | 209 | 465 | 505 | 680 | 1 430 | | | | | | 32 | 254 | 575 | 680 | 850 | 1 710 | | | | | | 34 | 355 | 610 | 785 | 1 090 | 2 070 | | | | | | 36 | 465 | 785 | 810 | 1 120 | 2 460 | | | | | | 38 | 565 | 970 | 1 160 | 1 340 | 2 830 | | | | | | 40 | 715 | 1 160 | 1 400 | 1 640 | 2 900 | | | | | | 44 | 940 | 1 500 | 1 880 | 2 270 | 3 750 | | | | | | 48 | 48 1 030 | | 030 1 900 2 550 3 550 | | 4 700 | | | | | | 52 | 1 530 | 1 530 2 940 3 300 4 750 | | | 5 900 | | | | | | 56 | 1 820 | 3 150 | 3 400 | 4 950 | 7 250 | | | | | | 60 | 2 200 | 4 050 | 4 300 | 6 200 | 8 750 | | | | | **Remarks** 22211 to 22226, 22311 to 22324 are EA Type Bearings. 23122 to 23148, 23218 to 23244 are C Type Bearings. 23022 to 23036, 22228 to 22236 are CD Type Bearings. 23038 to 23060, 23152 to 23160, 22238 to 22260 23248 to 23260, and 22326 to 22360 are CA Type Bearing. # NSK # **Measurement of Bearing Clearance** For the bearing mounting, the measurement of internal bearing clearance is a most important task. Before handling the bearing and measuring the internal bearing clearance, be sure to wear thin rubber gloves. (If a bearing is touched by a bare hand, the touched part may rust.) When measuring the internal bearing clearance, pay careful attention so that the rollers are positioned correctly. #### 1. Measurement of Bearing Clearance To measure only internal bearing clearance, set the bearing standing upright (vertically) on a flat surface, while holding its outer ring with one hand. While paying attention not to incline the inner and outer rings, stabilize the rollers by turning the inner ring to the right and left by about one half to one full rotation. Adjust rollers until one randomly chosen roller of the double rows is positioned to be exactly at the top. Now, the internal clearance is measured with a thickness gauge. The measurement position and
measured point vary slightly depending on the size of the outer ring outside diameter. # 1.1 Bearing Outside Diameter Is Smaller Than 200 Insert the thickness gauge between rollers of 2 rows which have a roller positioned exactly at the top of the bearing and outer ring. Now, measure the internal clearance (Δ_r) . (Fig. 1) # 1.2 Bearing Outside Diameter Is Larger Than 200 Insert the thickness gauge between the rollers of the 2 rows, which each have been positioned to be exactly at the top, and outer ring and between 2 rows of bearing at symmetrical position relative to the bearing center, then measure the respective internal clearance of the bearing. (Fig. 2) For the internal bearing clearance (Δ_{z}), take that value measured between 2 rows of just top of bearing and outer ring as respectively Δ_{rT_1} and Δ_{rT_2} and that value measured just at top of the bearing as $$\Delta_{rT} = 1/2 (\Delta_{rT1} + \Delta_{rT2})$$ Among internal clearances between 2 rows of rollers that are symmetrical relative to the bearing center and outer ring, take that measurement between 2 rows of rollers of left side respectively as Δ_{rL1} and Δ_{rL2} . The internal clearance on the left side of the bearing is Δ_{rl} : $$\Delta_{rL} = 1/2 (\Delta_{rL1} + \Delta_{rL2})$$ Take that measurement between 2 rows of rollers of right side respectively as Δ_{rR1} and Δ_{rR2} . The internal clearance of the right side of the bearing is $$\Delta_{rR} = 1/2 \left(\Delta_{rR1} + \Delta_{rR2} \right)$$ The internal bearing clearance (Δ_r) is given by the following equation: $$\Delta_r = 1/2 \left(\Delta_{rT} + \Delta_{rL} + \Delta_{rR} \right)$$ #### 2. Measuring Bearing Clearance When Mounted on Shaft or Sleeve Basically, the measurement of the clearance is taken when the outer ring of bearing hangs down from rollers. At first, while holding the bearing up-right, rotate the outer ring in the clockwise and counter-clockwise directions by one half to one full rotation until both rows have a randomly chosen roller positioned exactly at the bottom. The clearance is measured with a thickness gauge but the measurement point varies slightly depending on the size of the outer ring outside diameter. # 2.1 Bearing Outside Diameter Is Smaller Than 200 Insert the thickness gauge between rollers of 2 rows of just at the bottom of the bearing and outer ring and measure the internal clearance (Δ_{rs}).(Fig. 3) # 2.2 Bearing Outside Diameter Is Larger Than 200 Insert the thickness gauge between rollers of 2 rows that are positioned just at the bottom of bearing and outer ring and between 2 rows of bearing rollers symmetrical relative to the bearing center, then, measure the respective internal clearance of the bearing. (Fig. 3) For the internal bearing clearance (Δ_r), take the measurement when the roller is positioned exactly at the bottom, since the bearing has 2 rows, two values must be measured. The bearing internal clearance is Δ_{rs1} and Δ_{rss} while that value measured at the exact bottom of the bearing is Δ_{rs} . $$\Delta_{rS} = 1/2 \left(\Delta_{rS1} + \Delta_{rS2} \right)$$ Among internal clearances between 2 rows of rollers symmetrical relative to the bearing center and outer ring, take that value measured between 2 rows of rollers of left side respectively as Δ_{rI1} and Δ_{rI2} and the internal clearance of left side of bearing as $$\Delta_{rL} = 1/2 (\Delta_{rL1} + \Delta_{rL2})$$ The internal clearances measured between 2 rows of rollers on the right side respectively as Δ_{rR1} and Δ_{rR2} . The internal clearance of right side of bearing is Δ_{rR} . $$\Delta_{rR} = 1/2 \left(\Delta_{rR1} + \Delta_{rR2} \right)$$ The internal bearing clearance (Δ) is given by the following equation: $$\Delta_r = 1/2 \left(\Delta_{rS} + \Delta_{rL} + \Delta_{rR} \right)$$ Fig. 3 Clearance Measurement Point **BEARINGS TABLE** #### 3. Temperature Equilibrium When Taking Measurements To ensure accurate bearing measurement of the internal clearance or dimensions, the temperature of the measurement instrument and that of the components to be measured must be brought to the same temperature. Especially, if the bearing is mounted by using an oil heating tank or induction heater, then measure the internal clearance only after a complete cool down. For example, if a bearing is brought from the warehouse to the measurement place, the temperature of the stored bearing may still be high, thus, if the clearance or dimension were measured wintout confirming the bearing temperature, the measured value may be wrong. For a large bearing with an outer ring outside diameter that is larger than 400 mm, if a clearance or dimension measurement is necessary, it is recommended to leave the unpacked bearing for about 24 hours on the surface plate, before making a clearance or dimension measurement. Put the end face of the bearing on a surface plate prior to measurement to ensure a measurement with both objects at the same temperature. # 4. Clearance Adjustment When Mounting Bearing on a Tapered Shaft or Sleeve Mount the bearing with its inner ring having a tapered bore to the tapered shaft or sleeve (adapter, removable sleeve). When pushing in the bearing to the tapered shaft or sleeve, the inner ring of bearing is widened resulting in increase of "interference" and reduction of internal clearance. It is important to give proper interference and internal clearance when mounting the bearing. Next, we show the reduction amount of the clearance to achieve the proper mounting. Mounting of spherical roller bearings having tapered bore Table 2 When mounting a bearing, each time the bearing is pushed further onto the tapered shaft or sleeve. measure the variation of internal clearance and repeat the above procedure until the clearance reduction amount to the specified value listed in the Table 2 is attained. This procedure is called "Clearance adjustment" and when the clearance reduction amount is attained, the clearance necessary for bearing running is secured. The confirmation of the clearance reduction amount by measurement with a thickness gauge is very important. Depending on the method of clearance adjustment, the measured value obtained with the thickness gauge may not be correct. Therefore, the following corrective procedure must be executed. 1. In case to heat When the temperatures of bearing and shaft are both at the same room temperature, measure again the clearance with the thickness gauge to confirm that the specified value is secured. 2. In case that a lock-washer is used as a turning stopper of the lock nut. Prior to bending the tooth of the lock-washer into cutout of lock nut, measure again the clearance with the thickness gauge to confirm that the specified value is secured. 3. In case a hydraulic nut is used After removal of the hydraulic nut, mount the lock nut and measure the clearance again to confirm that the specified value remains constant prior to stopping the turning. 4. In case an oil injection pump is used Drop to zero the pressure of high pressure oil fed from the oil injection pump so that there is no pressure on bearing or sleeve fitted part. Next. measure the clearance with the thickness gauge to confirm that the specified value remains secured. #### Radial Internal Clearance and Clearance Reduction Amount of the Bearing to be Mounted - When radial internal clearance is CN clearance (normal clearance) Perform the clearance adjustment while aiming at a middle value between minimum and maximum clearance reduction amount. - When radial internal clearance is C3 or C4 clearance Perform the clearance adjustment aiming at the # Internal Clearance Adjustment of Tapered-Bore Bearings maximum clearance reduction amount. Perform the adjustment by measuring the clearance reduction amount with the thickness - 1. For measurement position and measured point, refer to Section 2.(Page C262) of this manual. - 2. To mount a bearing on a tapered shaft, perform each time when the bearing is pushed in by the lock nut, end plate, end cap or hydraulic nut. - 3. When using an adapter sleeve, perform each time when the bearing is pushed in by the lock nut or hvdraulic nut. - 4. When using a removable sleeve, perform each time when the removable sleeve is pushed in by the lock nut or hydraulic nut. When measuring the clearance during those operations, as the outer ring of bearing is hanging down from of rollers, turn the outer ring to right and left by one half to one full rotation while keeping the bearing in its correct posture. Position one randomly chosen roller from each row of rollers to the exact bottom position. Then, insert the thickness gauge to an appropriate place depending on size of the outer ring outside diameter to measure the internal clearance. For the clearance adjustment, the measured value of each clearance measurement shall be recorded. Table 2 Mounting of Spherical Roller Bearings with Tapered Bores Units: mm | Bearing B | ore Diameter | Reduction | n in Radial | | Axial M | ovement | | Minimum Permissible | | | | | | |-----------|----------------|---------------|-------------|-------|---------|---------|-------|---------------------|-------------|-------|--|--|--| | d | (mm) | | rance | Tanor | 1 : 12 | Tanor | 1:30 | Res | dual Cleara | ance | | | | | over | incl. | min. | max. | min. | max. | min. | max. | CN | C3 | C4 | | | | | 30 | 40 | 0.025 | 0.030 | 0.40 | 0.45 | _ | _ | 0.010 | 0.025 | 0.035 | | | | | 40 | 50 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.015 | 0.030 | 0.045 | | | | | 50 | 65 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.025 | 0.035 | 0.060 | | | | | 65 | 80 | 0.040 | 0.045 | 0.60 | 0.70 | _ | _ | 0.030 | 0.040 | 0.075 | 80 | 100 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | 0.085 | | | | | 100 | 120 | 0.050 | 0.060 | 0.75 | 0.90 |
1.9 | 2.25 | 0.045 | 0.065 | 0.110 | | | | | 120 | 140 | 0.060 | 0.070 | 0.90 | 1.1 | 2.25 | 2.75 | 0.055 | 0.080 | 0.130 | 140 | 160 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | 0.150 | | | | | 160 | 180 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | 0.170 | | | | | 180 | 200 | 0.080 | 0.100 | 1.3 | 1.6 | 3.25 | 4.0 | 0.070 | 0.110 | 0.190 | 200 | 225 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | 0.210 | | | | | 225 | 250 | 0.100 | 0.120 | 1.6 | 1.9 | 4.0 | 4.75 | 0.090 | 0.140 | 0.230 | | | | | 250 | 280 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | 0.250 | | | | | 280 | 315 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | 0.280 | | | | | 315 | 355 | 0.120 | 0.150 | 2.2 | 2.4 | 5.5 | 6.75 | 0.110 | 0.180 | 0.280 | | | | | 355 | 400 | 0.140 | 0.170 | 2.4 | 3.0 | 6.0 | 7.5 | 0.120 | 0.180 | 0.330 | | | | | 333 | 400 | 0.150 | 0.130 | 2.4 | 3.0 | 0.0 | 7.5 | 0.130 | 0.200 | 0.550 | | | | | 400 | 450 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | 0.360 | | | | | 450 | 500 | 0.190 | 0.240 | 3.0 | 3.7 | 7.5 | 9.25 | 0.160 | 0.240 | 0.390 | | | | | 500 | 560 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | 0.410 | 560 | 630 | 0.230 | 0.300 | 3.7 | 4.8 | 9.25 | 12.0 | 0.200 | 0.310 | 0.460 | | | | | 630 | 710 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0.220 | 0.330 | 0.520 | | | | | 710 | 800 | 0.280 | 0.370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | 0.590 | 800 | 900 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.280 | 0.430 | 0.660 | | | | | 900 | 1000 | 0.340 | 0.460 | 5.5 | 7.4 | 14.0 | 18.5 | 0.310 | 0.470 | 0.730 | | | | | 1000 | 1120 | 0.370 | 0.500 | 5.9 | 8.0 | 15.0 | 20.0 | 0.360 | 0.530 | 0.800 | | | | | Damarka | The values for | uadiration is | | -1 -1 | | | NT -1 | | | | | | | Remarks The values for reduction in radial internal clearance are for bearings with CN clearance. For bearings with C3 or C4 Clearance, the maximum values listed should be used for the reduction in radial internal clearance. C 264 C 265 # SPHERICAL ROLLER BEARINGS Bore Diameter 20 - 55 mm Dynamic Equivalent Load P = XF + YF | 1 -21 | rilla | | | |---------------|------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. # Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | В | oundary [
(m | | ons | Basic Load | | | Speeds
(min ⁻¹) | | Bearing | Numbers | | Abutment | and Fillet D
(mm) | Dimension | S | Constant | | xial Lo | | Mass
(kg) | |----|-------------------|----------------|-------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------|---|--|----------------|----------------|----------------------|-----------------|---------------------------|----------------------|-------------------|-------------------|-------------------|----------------------| | d | D | B | γ
min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | ra
max. | $\max_{}$ | a
min. | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 20 | 52 | 15 | 1.1 | 29 300 | 26 900 | 10 000 | _ | 6 300 | 21304CDE4 | 21304CDKE4 | 27 | 28 | 45 | 42 | 1 | 0.31 | 3.2 | 2.1 | 2.1 | 0.17 | | 25 | 52
62 | 18
17 | 1
1.1 | 37 500
43 000 | 37 000
40 500 | 10 000
9 000 | _ | 7 100
5 300 | 22205CE4
21305CDE4 | 22205CKE4
21305CDKE4 | 31
32 | 31
34 | 46
55 | 45
51 | 1 | 0.35
0.29 | 2.9
3.4 | 1.9
2.3 | 1.9
2.3 | 0.17
0.26 | | 30 | 62
72 | 20
19 | 1
1.1 | 50 000
55 000 | 50 000
54 000 | 8 500
7 500 | | 6 000
4 500 | 22206CE4
21306CDE4 | 22206CKE4
21306CDKE4 | 36
37 | 37
40 | 56
65 | 54
59 | 1 | 0.33
0.28 | 3.1
3.6 | 2.1
2.4 | 2.0
2.3 | 0.27
0.39 | | 35 | 72
80 | 23
21 | 1.1
1.5 | 69 000
71 500 | 71 000
76 000 | 7 500
7 100 | = | 5 300
4 000 | 22207CE4
21307CDE4 | 22207CKE4
21307CDKE4 | 42
44 | 43
47 | 65
71 | 63
67 | 1
1.5 | 0.32
0.28 | 3.1
3.6 | 2.1
2.4 | 2.0
2.4 | 0.42
0.53 | | 40 | 80
90
90 | 23
23
33 | 1.1
1.5
1.5 | 113 000
118 000
170 000 | 99 500
111 000
153 000 | 7 100
6 700
5 600 | 12 000
11 000
9 000 | 6 700
6 000
5 300 | * 22208EAE4
* 21308EAE4
* 22308EAE4 | *22208EAKE4
*21308EAKE4
*22308EAKE4 | 47
49
49 | 49
54
52 | 73
81
81 | 70
75
77 | 1
1.5
1.5 | 0.28
0.25
0.35 | 3.6
3.9
2.8 | 2.4
2.7
1.9 | 2.4
2.6
1.9 | 0.50
0.73
0.98 | | 45 | 85
100
100 | 23
25
36 | 1.1
1.5
1.5 | 118 000
149 000
207 000 | 111 000
144 000
195 000 | 6 300
6 000
5 000 | 11 000
9 000
8 000 | 6 000
5 000
4 500 | *22209EAE4
*21309EAE4
*22309EAE4 | *22209EAKE4
*21309EAKE4
*22309EAKE4 | 52
54
54 | 54
65
59 | 78
91
91 | 75
89
86 | 1
1.5
1.5 | 0.25
0.23
0.34 | 3.9
4.3
2.9 | 2.7
2.9
2.0 | 2.6
2.8
1.9 | 0.55
0.96
1.34 | | 50 | 90
110
110 | 23
27
40 | 1.1
2
2 | 124 000
178 000
246 000 | 119 000
174 000
234 000 | 6 000
5 300
4 800 | 9 500
8 000
7 100 | 5 600
4 500
4 300 | *22210EAE4
*21310EAE4
*22310EAE4 | *22210EAKE4
*21310EAKE4
*22310EAKE4 | 57
60
60 | 60
72
64 | 83
100
100 | 81
98
93 | 1
2
2 | 0.24
0.23
0.35 | 4.3
4.4
2.8 | 2.9
3.0
1.9 | 2.8
2.9
1.9 | 0.61
1.21
1.78 | | 55 | 100
120
120 | 25
29
43 | 1.5
2
2 | 149 000
178 000
292 000 | 144 000
174 000
292 000 | 5 300
5 300
4 300 | 9 000
8 000
6 000 | 5 300
4 500
3 800 | *22211EAE4
*21311EAE4
*22311EAE4 | * 22211EAKE4
* 21311EAKE4
* 22311EAKE4 | 64
65
65 | 65
72
73 | 91
110
110 | 89
98
103 | 1.5
2
2 | 0.23
0.23
0.34 | 4.3
4.4
2.9 | 2.9
3.0
2.0 | 2.8
2.9
1.9 | 0.81
1.58
2.3 | **Note** (1) The suffix K represents bearings with tapered bores (taper 1:12). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. 2. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). 3. For the dimensions od adapters and withdrawal sleeves, refer to Pages C348 – C349, and C356. #### Bore Diameter 60 - 90 mm Abutment and Fillet Dimensions # Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + r_a$ | | | |--------------------|-------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ Constant The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. Mass Axial Load # Cylindrical Bore **Boundary Dimensions** Tapered Bore Basic Load Ratings Without an Oil Groove or Holes Speeds | D | B | | | (N) | | | | bearing Numbers | | | (mm) | | | | | | - 1 | (kg) | | |--------------------------|---|--|--|--
--|---|---|---|--|--------------------------|---|--|--------------------------|----------------------------|---|--------------------------|--------------------------------|--------------------------
--| | | D | | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | d
min. | a
max. | max. |) _a min. | r _a max. | e | Y_2 | Y_3 | Y_0 | approx. | | 95
110
130
130 | 26
28
31
46 | 1.1
1.5
2.1
2.1 | 98 500
178 000
238 000
340 000 | 141 000
174 000
244 000
340 000 | 4 800
5 300
4 800
4 000 | 8 000
6 700
5 600 | 3 600
4 800
3 800
3 600 | 23012CE4
*22212EAE4
*21312EAE4
*22312EAE4 | 23012CKE4
*22212EAKE4
*21312EAKE4
*22312EAKE4 | 67
69
72
72 | 68
72
87
79 | 88
101
118
118 | 85
98
117
111 | 1
1.5
2
2 | 0.26
0.23
0.22
0.34 | 3.9
4.4
4.5
3.0 | 2.6
3.0
3.0
2.0 | 2.5
2.9
3.0
1.9 | 0.68
1.1
1.98
2.89 | | 120 | 31 | 1.5 | 221 000 | 230 000 | 4 800 | 7 500 | 4 300 | *22213EAE4 | *22213EAKE4 | 74 | 80 | 111 | 107 | 1.5 | 0.24 | 4.2 | 2.8 | 2.7 | 1.51 | | 140 | 33 | 2.1 | 264 000 | 275 000 | 4 500 | 6 000 | 3 600 | *21313EAE4 | *21313EAKE4 | 77 | 94 | 128 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.45 | | 140 | 48 | 2.1 | 375 000 | 380 000 | 3 800 | 5 000 | 3 200 | *22313EAE4 | *22313EAKE4 | 77 | 84 | 128 | 119 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 3.52 | | 125 | 31 | 1.5 | 225 000 | 232 000 | 4 500 | 7 100 | 4 000 | * 22214EAE4 | *22214EAKE4 | 79 | 84 | 116 | 111 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 1.58 | | 150 | 35 | 2.1 | 310 000 | 325 000 | 4 300 | 5 600 | 3 200 | * 21314EAE4 | *21314EAKE4 | 82 | 101 | 138 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 3.0 | | 150 | 51 | 2.1 | 425 000 | 435 000 | 3 600 | 4 800 | 3 000 | * 22314EAE4 | *22314EAKE4 | 82 | 91 | 138 | 129 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 4.28 | | 130 | 31 | 1.5 | 238 000 | 244 000 | 4 300 | 6 700 | 4 000 | *22215EAE4 | *22215EAKE4 | 84 | 87 | 121 | 117 | 1.5 | 0.22 | 4.5 | 3.0 | 3.0 | 1.64 | | 160 | 37 | 2.1 | 310 000 | 325 000 | 4 000 | 5 600 | 3 200 | *21315EAE4 | *21315EAKE4 | 87 | 101 | 148 | 134 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 3.64 | | 160 | 55 | 2.1 | 485 000 | 505 000 | 3 400 | 4 300 | 2 800 | *22315EAE4 | *22315EAKE4 | 87 | 97 | 148 | 137 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 5.26 | | 140 | 33 | 2 | 264 000 | 275 000 | 4 000 | 6 000 | 3 600 | *22216EAE4 | *22216EAKE4 | 90 | 94 | 130 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.01 | | 170 | 39 | 2.1 | 355 000 | 375 000 | 3 800 | 4 800 | 3 000 | *21316EAE4 | *21316EAKE4 | 92 | 109 | 158 | 146 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 4.32 | | 170 | 58 | 2.1 | 540 000 | 565 000 | 3 200 | 3 800 | 2 600 | *22316EAE4 | *22316EAKE4 | 92 | 103 | 158 | 145 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 6.23 | | 150 | 36 | 2 | 310 000 | 325 000 | 4 000 | 5 600 | 3 400 | *22217EAE4 | *22217EAKE4 | 95 | 101 | 140 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.54 | | 180 | 41 | 3 | 360 000 | 395 000 | 3 800 | 5 000 | 3 000 | *21317EAE4 | *21317EAKE4 | 99 | 108 | 166 | 142 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | 5.2 | | 180 | 60 | 3 | 600 000 | 630 000 | 3 000 | 3 400 | 2 400 | *22317EAE4 | *22317EAKE4 | 99 | 110 | 166 | 155 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 7.23 | | 160
160
190
190 | 40
52.4
43
64 | 2
2
3
3 | 360 000
340 000
415 000
665 000 | 395 000
490 000
450 000
705 000 | 3 800
2 800
3 600
2 800 | 5 000
 | 3 200
1 800
2 800
2 400 | *22218EAE4
23218CE4
*21318EAE4
*22318EAE4 | *22218EAKE4
23218CKE4
*21318EAKE4
*22318EAKE4 | 100
100
104
104 | 108
105
115
115 | 150
150
176
176 | 142
138
152
163 | 2
2
2.5
2.5 | 0.24
0.32
0.24
0.33 | 4.3
3.2
4.3
3.1 | 2.9
2.1
2.9
2.1 | 2.8
2.1
2.8
2.0 | 3.3
4.51
6.1
8.56 | | | 110
130
130
120
140
140
125
150
150
130
160
170
170
150
180 | 110 28
130 31
130 46
120 31
140 33
140 48
125 31
150 35
150 51
130 31
160 37
160 55
140 33
170 39
170 58
150 36
180 41
180 60 | 95 | 95 26 1.1 98 500 110 28 1.5 178 000 130 31 2.1 238 000 130 46 2.1 340 000 120 31 1.5 221 000 140 33 2.1 264 000 140 48 2.1 375 000 150 35 2.1 310 000 150 35 2.1 310 000 150 51 2.1 425 000 130 31 1.5 238 000 160 37 2.1 310 000 160 37 2.1 310 000 160 55 2.1 485 000 170 39 2.1 355 000 170 58 2.1 540 000 150 36 2 310 000 180 41 3 360 000 180 41 3 360 000 160 | 95 26 1.1 98 500 141 000 110 28 1.5 178 000 174 000 130 31 2.1 238 000 244 000 130 46 2.1 340 000 340 000 120 31 1.5 221 000 230 000 140 33 2.1 264 000 275 000 140 48 2.1 375 000 380 000 150 35 2.1 310 000 325 000 150 35 2.1 310 000 325 000 150 37 2.1 310 000 325 000 160 37 2.1 310 000 325 000 160 37 2.1 310 000 325 000 170 39 2.1 355 000 375 000 170 39 2.1 355 000 375 000 180 41 3 360 000 395 000 180 41 3 36 | 95 26 1.1 98 500 141 000 4 800 110 28 1.5 178 000 174 000 5 300 130 31 2.1 238 000 244 000 4 800 130 46 2.1 340 000 340 000 4 800 140 33 2.1 264 000 275 000 4 500 140 48 2.1 375 000 380 000 3 800 125 31 1.5 225 000 232 000 4 500 150 35 2.1 310 000 325 000 4 300 150 51 2.1 425 000 435 000 3 600 130 31 1.5 238 000 244 000 4 300 160 37 2.1 310 000 325 000 4 000 160 37 2.1 310 000 325 000 4 000 170 39 2.1 355 000 375 000 3 800 170 58 | 95 26 1.1 98 500 141 000 4 800 — 110 28 1.5 178 000 174 000 5 300 8 000 130 31 2.1 238 000 244 000 4 800 6 700 130 46 2.1 340 000 340 000 4 000 5 600 120 31 1.5 221 000 230 000 4 500 6 000 140 33 2.1 264 000 275 000 4 500 6 000 140 48 2.1 375 000 380 000 3 800 5 000 125 31 1.5 225 000 232 000 4 500 7 100 150 35 2.1 310 000 325 000 4 300 5 600 150 51 2.1 425 000 435 000 3 600 4 800 160 37 2.1 310 000 325 000 4 000 5 600 160 55 2.1 485 000 | 95 26 1.1 98 500 141 000 4 800 — 3 600 110 28 1.5 178 000 174 000 5 300 8 000 4 800 130 31 2.1 238 000 244 000 4 800 6 700 3 800 130 46 2.1 340 000 340 000 4 000 5 600 3 600 140 33 2.1 264 000 275 000 4 500 6 000 3 600 140 48 2.1 375 000 380 000 4 500 5 000 3 200 140 48 2.1 375 000 232 000 4 500 5 600 3 200 150 51 2.1 425 000 435 000 3 600 4 800 5 600 3 200 150 51 2.1 425 000 435 000 3 600 4 800 3 200 160 55 2.1 310 000 325 000 4 000 5 600 3 200 170 58 2.1 540 000 565 000 3 200 3 800 5 000 3 200 170 58 2.1 540 000 565 000 3 200 3 800 5 000 3 200 170 58 2.1 540 000 565 000 3 200 3 800 5 000 3 200 170 58 2.1 540 000 565 000 3 200 3 200 3 800 5 000 3 200 170 58 2.1 540 000 565 000 3 200 3 800 5 000 3 200 170 58 2.1 540 000 565 000 3 200 3 800 5 000 3 200 170 58 2.1 540 000 565 000 3 200 3 800 5 000 3 200 180 41 3 3 360 000 325 000 3 800 5 000 3 200 180 41 3 3 360 000 325 000 3 800 5 000 3 200 180 41 3 3 360 000 325 000 3 800 5 000 3 200 3 800 5 000 3 200 180 41 3 3 360 000 325 000 3 800 5 000 3 200 3 800 5 000 3 200 180 41 3 3 360 000 325 000 3 800 5 000 3 200 3 800 5 000 3 200 180 60 3 600 000 335 000 3 800 5 000 3 200 180 60 3 600 000 630 000 3 800 5 000 3 200 180 60 3 600 000 335 000 3 800 5 000 3 200 180 60 3 3 400 000 4450 000 5 800 4500 2 800 | 95 | 95 | 95 26 1.1 98 500 141 000 4 800 — 3 600 23012CE4 23012CKE4 67 110 28 1.5 178 000 174 000 5 300 8 000 4 800 *22212EAE4 *22212EAKE4 69 130 31 2.1 238 000 244 000 4 800 6 700 3 800 *21312EAE4 *21312EAKE4 72 130 46 2.1 340 000 340 000 4 000 5 600 3 600 *22312EAE4 *22312EAKE4 72 130 31 1.5 221 000 230 000 4 800 7 500 4 300 *22312EAE4 *22312EAKE4 72 140 33 2.1 264 000 275 000 4 500 6 000 3 600 *21313EAE4 *22312EAKE4 77 140 48 2.1 375 000 380 000 3 800 5 000 3 200 *22313EAE4 *22313EAKE4 77 140 48 2.1 375 000 380 000 3 800 5 000 3 200 *22313EAE4 *22313EAKE4 77 140 48 2.1 310 000 325 000 4 300 5 600 3 200 *22313EAE4 *22313EAKE4 77 140 33 1.5 225 000 23 000 4 500 7 100 4 000 *22214EAE4 *22313EAKE4 77 140 48 2.1 310 000 325 000 4 300 5 600 3 200 *21313EAE4 *22313EAKE4 79 150 35 2.1 310 000 325 000 4 300 5 600 3 200 *21314EAE4 *22313EAKE4 82 150 51 2.1 425 000 435 000 3 600 4 800 3 000 *22314EAE4 *22313EAKE4 82 150 55 2.1 405 000 325 000 4 300 5 600 3 200 *22314EAE4 *22313EAKE4 82 160 55 2.1 405
000 505 000 3 400 4 300 2 800 *22315EAE4 *22315EAKE4 87 160 55 2.1 405 000 505 000 3 400 4 300 2 800 *22315EAE4 *22315EAKE4 87 160 55 2.1 405 000 505 000 3 800 4 800 3 000 *22315EAE4 *22315EAKE4 87 160 55 2.1 405 000 505 000 3 800 4 800 3 000 *22315EAE4 *22315EAKE4 87 160 55 2.1 540 000 505 000 3 800 4 800 3 000 *22315EAE4 *22315EAKE4 87 170 58 2.1 540 000 565 000 3 800 4 800 3 000 *2316EAE4 *22315EAKE4 92 150 36 2.1 540 000 565 000 3 800 5 000 3 800 \$200 *22315EAE4 *22315EAKE4 92 150 36 000 3 350 000 3 300 3 300 \$200 *22315EAE4 *22315EAKE4 92 150 36 000 3 300 300 300 300 \$200 \$23315EAE4 *22315EAKE4 99 180 400 400 400 400 400 400 400 400 400 4 | 95 26 1.1 98 500 141 000 4 800 — 3 600 23012CE4 2212EAE4 67 68 110 28 1.5 178 000 174 000 5 500 8 000 4 800 *2212EAE4 *22212EAE4 69 72 87 130 31 2.1 238 000 244 000 4 000 5 600 3 600 *22312EAE4 *21312EAEE4 72 87 130 46 2.1 340 000 340 000 4 000 5 600 3 600 *22312EAE4 *21312EAEE4 72 87 130 31 1.5 221 000 230 000 4 500 6 000 3 600 *22312EAE4 *21312EAEE4 72 79 140 33 2.1 264 000 275 000 4 500 5 000 3 200 *22313EAE4 *21313EAEE4 77 94 140 48 2.1 375 000 380 000 3 800 5 5000 3 200 *22313EAE4 *21313EAEE4 77 94 140 48 2.1 375 000 380 000 3 800 5 5000 3 200 *22313EAE4 *22313EAEE4 77 94 150 150 51 2.1 425 000 435 000 4 800 5 600 3 200 *22313EAE4 *21313EAEE4 82 101 150 51 2.1 425 000 435 000 3 800 4 800 3 200 *22313EAE4 *22313EAEE4 82 101 150 51 2.1 425 000 435 000 3 400 4 800 3 200 *22313EAE4 *22313EAEE4 82 101 160 57 2.1 310 000 325 000 4 000 5 600 3 200 *22313EAE4 *22313EAEE4 82 101 160 57 2.1 310 000 325 000 4 000 5 600 3 200 *22313EAE4 *22313EAEE4 82 101 160 37 2.1 310 000 325 000 4 000 5 600 3 200 *22313EAE4 *22313EAEE4 82 101 160 37 2.1 310 000 325 000 4 000 5 600 3 200 *22313EAEE4 *22313EAEE4 82 101 160 37 2.1 310 000 325 000 4 000 5 600 3 200 *22313EAEE4 *22313EAEE4 87 101 160 37 2.1 355 000 375 000 3 800 4 800 3 200 *22313EAEE4 *22313EAEE4 87 101 160 37 2.1 355 000 375 000 3 800 4 800 3 200 *22313EAEE4 *22313EAEE4 87 101 160 37 2.1 355 000 375 000 3 800 4 800 3 200 *22313EAEE4 *22313EAEE4 87 101 160 37 2.1 355 000 375 000 3 800 4 800 3 200 *22313EAEE4 *22313EAEE4 87 101 160 37 2.1 355 000 375 000 3 800 4 800 3 200 *22313EAEE4 *22313EAEE4 87 101 160 37 2.1 355 000 375 000 3 800 5 500 3 300 *22313EAEE4 822313EAEE4 92 103 180 60 3 600 000 600 000 600 000 3 600 4 800 3 200 *22313EAEE4 822313EAEE4 92 103 180 60 3 600 000 600 0 | 95 | 95 | 95 26 1.1 98 500 141 000 4 800 500 4800 4800 23012CE4 23012CRE4 67 68 88 85 1 110 28 1.5 178 000 174 000 5 300 800 4800 22212EA4 22312EAK4 69 772 101 99 1.5 120 31 2.1 288 000 24 000 4800 6700 3800 22312EA4 22312EAK4 72 79 118 111 2 12 12 12 12 12 12 12 12 12 12 12 | 95 | 95 26 1.1 98 500 141 000 4 800 | 15 | STATES S | Bearing Numbers **Note** (1) The suffix K represents bearings with tapered bores (taper 1:12). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads($> 0.10C_r$). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C349 – C350, and C356. #### Bore Diameter 95 - 110 mm Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + r_a$ | | | |--------------------|-------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. #### Cylindrical Bore Tapered Bore Without an Oil Groove or Holes | В | oundary [
(m | | ns | Basic Load | - | | Speeds
(min ⁻¹) | | Bearing | Numbers | | Abutment and Fillet Dimensions (mm) | | S | Constant | | xial Lo
Factor | | Mass
(kg) | | |-----|---------------------------------|------------------------|--------------------|--|--|----------------------------------|--------------------------------|----------------------------------|---|---|--------------------------|-------------------------------------|--------------------------|--------------------------|------------------------|------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------| | d | D | B | γ
min. | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | $d_{ m a}$ max. | \mathcal{L} max. |) _a min. | ${\it r}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 95 | 170
170
200 | 43
55.6
45 | 2.1
2.1
3 | 415 000
370 000
430 000 | 450 000
525 000
435 000 | 3 800
2 600
3 600 | 4 500
—
4 800 | 3 000
1 700
1 500 | *22219EAE4
23219CAME4
*21319CAME4 | *22219EAKE4
23219CAMKE4
*21319CAMKE4 | 107
107
109 | 115
—
— | 158
158
186 | 152
146
172 | 2
2
2.5 | 0.24
0.32
0.22 | 4.3
3.1
4.6 | 2.9
2.1
3.1 | 2.8
2.0
3.0 | 4.04
5.33
6.92 | | | 200
200 | 45
67 | 3 | 345 000
735 000 | 435 000
780 000 | 3 600
2 600 | 3 000 | 1 500
2 200 | 21319CE4
*22319EAE4 | 21319CKE4
*22319EAKE4 | 109
109 | 127
121 | 186
186 | 172
172 | 2.5
2.5 | 0.22
0.33 | 4.6
3.1 | 3.1
2.1 | 3.0
2.0 | 6.92
9.91 | | 100 | 150
150
165 | 37
50
52 | 1.5
1.5
2 | 212 000
276 000
345 000 | 335 000
470 000
530 000 | 3 200
2 800
2 800 | _
_
_ | 2 200
1 800
1 700 | 23020CDE4
24020CE4
23120CE4 | 23020CDKE4
24020CK30E4
23120CKE4 | 109
109
110 | 112
110
113 | 141
141
155 | 136
132
144 | 1.5
1.5
2 | 0.22
0.30
0.30 | 4.6
3.4
3.4 | 3.1
2.3
2.3 | 3.0
2.2
2.2 | 2.31
3.08
4.38 | | | 165
180
180 | 65
46
60.3 | 2
2.1
2.1 | 345 000
455 000
525 000 | 535 000
490 000
605 000 | 2 400
3 600
2 800 | 4 300
3 800 | 1 700
2 800
1 600 | 24120CAME4
*22220EAE4
*23220CAME4 | 24120CAMK30E4
*22220EAKE4
*23220CAMKE4 | 110
112
112 | 119
— | 155
168
168 | 143
160
155 | 2
2
2 | 0.35
0.24
0.32 | 2.9
4.3
3.2 | 1.9
2.9
2.1 | 1.9
2.8
2.1 | 5.42
4.84
6.6 | | | 180
215
215
215
215 | 60.3
47
47
73 | 2.1
3
3
3 | 420 000
495 000
395 000
750 000 | 605 000
485 000
485 000
785 000 | 2 800
3 400
3 400
2 600 | 4 500
 | 1 600
1 400
1 400
1 700 | 23220CE4
*21320CAME4
21320CE4
*22320CAME4(²) | 23220CKE4
* 21320CAMKE4
21320CKE4
* 22320CAMKE4(²) | 112
114
114
114 | 118
—
133
— | 168
201
201
201 | 155
184
184
184 | 2
2.5
2.5
2.5 | 0.32
0.21
0.21
0.33 | 3.2
4.7
4.7
3.0 | 2.1
3.2
3.2
2.0 | 2.1
3.1
3.1
2.0 | 6.6
8.46
8.46
12.7 | | 110 | 170
170
180 | 45
60
56 | 2
2
2 | 293 000
380 000
480 000 | 465 000
645 000
630 000 | 3 200
2 800
3 200 | 4 000 | 2 000
1 600
1 600 | 23022CDE4
24022CE4
*23122CAME4 | 23022CDKE4
24022CK30E4
*23122CAMKE4 | 120
120
120 | 124
121
— | 160
160
170 | 153
148
158 | 2
2
2 | 0.24
0.32
0.28 | 4.2
3.1
3.5 | 2.8
2.1
2.4 | 2.8
2.1
2.3 | 3.76
4.96
5.7 | | | 180
180
180 | 56
69
69 | 2
2
2 | 385 000
575 000
460 000 | 630 000
750 000
750 000 | 3 200
2 200
2 200 | 3 400 | 1 600
1 600
1 600 | 23122CE4
*24122CAME4
24122CE4 | 23122CKE4
*24122CAMK30E4
24122CK30E4 | 120
120
120 | 127
—
123 | 170
170
170 | 158
154
154 | 2
2
2 | 0.28
0.36
0.36 | 3.5
2.8
2.8 | 2.4
1.9
1.9 | 2.3
1.8
1.8 | 5.7
6.84
6.84 | | | 200
200
200 | 53
69.8
69.8 | 2.1
2.1
2.1 | 605 000
645 000
515 000 | 645 000
760 000
760 000 | 3 400
2 600
2 200 | 3 400
3 400
— | 2 600
1 500
1 500 | *22222EAE4
*23222CAME4
23222CE4 | *22222EAKE4
*23222CAMKE4
23222CKE4 | 122
122
122 | 129
—
130 | 188
188
188 | 178
170
170 | 2
2
2 | 0.25
0.34
0.34 | 4.0
3.0
3.0 | 2.7
2.0
2.0 | 2.6
1.9
1.9 | 6.99
9.54
9.54 | | | 240
240 | 50
80 | 3 | 565 000
925 000 | 545 000
980 000 | 3 000
2 200 | 4 300
3 000 | 1 300
1 500 | *21322CAME4
*22322CAME4(²) | *21322CAMKE4
*22322CAMKE4(²) | 124
124 | = | 226
226 | 206
206 | 2.5
2.5 | 0.22
0.33 | 4.6
3.1 | 3.1
2.1 | 3.0
2.0 | 11.2
17.6 | **Notes** (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). (2) EA is also available. Load rating of EA is around 10% higher than CAM's, please consult NSK. - **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. - 2. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. - The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). - 3. For the dimensions od
adapters and withdrawal sleeves, refer to Pages C351, and C357. # Bore Diameter 120 - 130 mm Abutment and Fillet Dimensions #### Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + I r_a$ | | | |--------------------|---------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | #### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ Constant The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. Mass Axial Load #### Cylindrical Bore **Boundary Dimensions** Tapered Bore Basic Load Ratings Without an Oil Groove or Holes Speeds | | ы | unuany 1
m) | nm) | UIIS | | V) | | (min ⁻¹) | | Dearing | Nullibers | | Abutillelit | (mm) | DIIIIGIISIOII | 5 | Constant | | Factors | au
S | (kg) | |---|-----|--|--|---|---|--|---|--|--|---|---|--|------------------|--|--|--|---|---|---|---|--| | | d | D | B | r | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference | Limiting | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | | d_{a} | |) _a . | $\boldsymbol{\gamma}_{\mathrm{a}}$ | e | Y_2 | Y_3 | Y_0 | approx. | | | 120 | 180
180
180 | 46
46
60 | min.
2
2
2 | 395 000
315 000
480 000 | 525 000
525 000
680 000 | 3 200
3 200
2 600 | 4 500
3 600 | 1 800
1 800
1 500 | *23024CAME4
23024CDE4
*24024CAME4 | *23024CAMKE4
23024CDKE4
*24024CAMK30E4 | min.
130
130
130 | 134
— | 170
170
170 | min.
163
163
158 | 2
2
2
2 | 0.22
0.22
0.32 | 4.5
4.5
3.2 | 3.0
3.0
2.1 | 2.9
2.9
2.1 | 4.11
4.11
5.33 | | | | 180
200
200 | 60
62
62 | 2
2
2 | 395 000
580 000
465 000 | 705 000
720 000
720 000 | 2 600
2 800
2 800 | 3 600 | 1 500
1 400
1 400 | 24024CE4
*23124CAME4
23124CE4 | 24024CK30E4
*23124CAMKE4
23124CKE4 | 130
130
130 | 131
—
138 | 170
190
190 | 158
175
175 | 2
2
2 | 0.32
0.29
0.29 | 3.2
3.5
3.5 | 2.1
2.4
2.4 | 2.1
2.3
2.3 | 5.33
7.85
7.85 | | | | 200
200
215 | 80
80
58 | 2
2
2.1 | 695 000
575 000
685 000 | 905 000
950 000
765 000 | 2 000
2 000
3 200 | 3 000 | 1 400
1 400
2 400 | *24124CAME4
24124CE4
*22224EAE4 | *24124CAMK30E4
24124CK30E4
*22224EAKE4 | 130
130
132 | —
136
142 | 190
190
203 | 171
171
190 | 2
2
2 | 0.37
0.37
0.25 | 2.7
2.7
3.9 | 1.8
1.8
2.7 | 1.8
1.8
2.6 | 10
10
8.8 | | | | 215
215
260 | 76
76
86 | 2.1
2.1
3 | 790 000
630 000
1060 000 | 970 000
970 000
1 120 000 | 2 200
2 000
1 900 | 3 000
—
2 800 | 1 300
1 300
1 400 | *23224CAME4
23224CE4
*22324CAME4(²) | * 23224CAMKE4
23224CKE4
* 22324CAMKE4(²) | 132
132
134 | 140
— | 203
203
246 | 182
182
222 | 2
2
2.5 | 0.34
0.34
0.32 | 2.9
2.9
3.1 | 2.0
2.0
2.1 | 1.9
1.9
2.0 | 12.1
12.1
22.2 | | | 130 | 200
200
200 | 52
52
69 | 2
2
2 | 500 000
400 000
620 000 | 655 000
655 000
865 000 | 3 000
3 000
2 200 | 3 800
—
3 200 | 1 700
1 700
1 400 | *23026CAME4
23026CDE4
*24026CAME4 | *23026CAMKE4
23026CDKE4
*24026CAMK30E4 | 140
140
140 | 147
— | 190
190
190 | 180
180
175 | 2
2
2 | 0.23
0.23
0.31 | 4.3
4.3
3.2 | 2.9
2.9
2.2 | 2.8
2.8
2.1 | 5.98
5.98
7.84 | | | | 200
210
210 | 69
64
64 | 2
2
2 | 495 000
630 000
505 000 | 865 000
825 000
825 000 | 2 200
2 600
2 600 | 3 400 | 1 400
1 300
1 300 | 24026CE4
*23126CAME4
23126CE4 | 24026CK30E4
*23126CAMKE4
23126CKE4 | 140
140
140 | 143
—
149 | 190
200
200 | 175
184
184 | 2
2
2 | 0.31
0.28
0.28 | 3.2
3.6
3.6 | 2.2
2.4
2.4 | 2.1
2.4
2.4 | 7.84
8.69
8.69 | | | | 210
210
230 | 80
80
64 | 2
2
3 | 735 000
590 000
820 000 | 1 010 000
1 010 000
940 000 | 1 800
1 800
2 800 | 2 800

2 600 | 1 300
1 300
2 200 | *24126CAME4
24126CE4
*22226EAE4 | *24126CAMK30E4
24126CK30E4
*22226EAKE4 | 140
140
144 | —
146
152 | 200
200
216 | 180
180
204 | 2
2
2.5 | 0.35
0.35
0.26 | 2.9
2.9
3.8 | 1.9
1.9
2.6 | 1.9
1.9
2.5 | 10.7
10.7
11 | | _ | | 230
230
280
280 | 80
80
93
93 | 3
3
4
4 | 875 000
700 000
1 240 000
995 000 | 1 080 000
1 080 000
1 350 000
1 350 000 | 2 000
2 000
1 800
1 800 | 2 800
 | 1 200
1 200
1 300
1 300 | *23226CAME4
23226CE4
*22326CAME4
22326CE4 | *23226CAMKE4
23226CKE4
*22326CAMKE4
22326CKE4 | 144
144
148
148 | 150
—
166 | 216
216
262
262 | 196
196
236
236 | 2.5
2.5
3
3 | 0.34
0.34
0.34
0.34 | 2.9
2.9
2.9
2.9 | 2.0
2.0
2.0
2.0 | 1.9
1.9
1.9
1.9 | 14.3
14.3
28.1
28.1 | | | 130 | 215
215
215
260
200
200
200
210
210
210
230
230
230
280 | 58
76
76
86
52
52
52
69
64
64
64
80
80
80
93 | 2.1
2.1
2.1
3
2
2
2
2
2
2
2
2
3 | 790 000
630 000
1060 000
500 000
400 000
620 000
495 000
630 000
505 000
735 000
590 000
820 000
875 000
700 000
1 240 000
995 000 | 765 000
970 000
970 000
1 120 000
655 000
655 000
865 000
825 000
825 000
1 010 000
1 010 000
940 000
1 080 000
1 350 000 | 3 200
2 200
2 000
1 900
3 000
2 200
2 600
2 600
2 800
1 800
2 800
2 000
1 800
1 800
1 800 | 3 000 3 000 2 800 3 800 3 200 2 800 2 800 2 800 2 600 ——————————————————————————————————— | 2 400 1 300 1 300 1 400 1 700 1 700 1 400 1 400 1 300 1 300 1 300 2 200 1 200 1 200 1 300 | * 22224EAE4 * 23224CAME4 23224CE4 *
22324CAME4(2) * 23026CAME4 23026CDE4 * 24026CAME4 24026CE4 * 23126CAME4 23126CE4 * 24126CAME4 24126CE4 * 22226EAE4 * 23226CAME4 23226CAME4 23226CAME4 23226CAME4 | *22224EAKE4 *23224CAMKE4 23224CKE4 *22324CAMKE4 23026CAMKE4 23026CDKE4 *24026CAMK30E4 24026CK30E4 *23126CAMK4 23126CKE4 *24126CAMK30E4 24126CK30E4 *22226EAKE4 *23226CAMKE4 23226CAMKE4 23226CAMKE4 23226CAMKE4 23226CAMKE4 | 132
132
134
140
140
140
140
140
140
140
144
144
14 | 142 | 203
203
203
246
190
190
200
200
200
216
216
216
262
262 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 90
82
82
82
80
80
75
75
75
75
84
84
80
96
96
96
36
36
36
36 | 90 2 82 2 82 2 82 2 2.5 80 2 80 2 75 2 84 2 84 2 84 2 80 2 64 2 80 2 80 2 80 3 80 3 80 3 80 3 80 3 80 3 80 3 | 90 2 0.25 82 2 0.34 82 2 0.34 22 2.5 0.32 80 2 0.23 80 2 0.23 75 2 0.31 75 2 0.31 75 2 0.31 84 2 0.28 84 2 0.28 80 2 0.35 80 2 0.35 04 2.5 0.26 96 2.5 0.34 96 2.5 0.34 36 3 0.34 36 3 0.34 | 90 2 0.25 3.9 82 2 0.34 2.9 82 2 0.34 2.9 22 2.5 0.32 3.1 80 2 0.23 4.3 80 2 0.23 4.3 75 2 0.31 3.2 75 2 0.31 3.2 75 2 0.31 3.2 84 2 0.28 3.6 84 2 0.28 3.6 80 2 0.35 2.9 04 2.5 0.26 3.8 96 2.5 0.34 2.9 96 2.5 0.34 2.9 36 3 0.34 2.9 | 90 2 0.25 3.9 2.7 82 2 0.34 2.9 2.0 82 2 0.34 2.9 2.0 22 2.5 0.32 3.1 2.1 80 2 0.23 4.3 2.9 80 2 0.23 4.3 2.9 75 2 0.31 3.2 2.2 84 2 0.28 3.6 2.4 84 2 0.28 3.6 2.4 80 2 0.35 2.9 1.9 90 2 0.35 2.9 1.9 04 2.5 0.26 3.8 2.6 96 2.5 0.34 2.9 2.0 36 3 0.34 2.9 2.0 36 3 0.34 2.9 2.0 36 3 0.34 2.9 2.0 | 90 2 0.25 3.9 2.7 2.6 82 2 0.34 2.9 2.0 1.9 82 2 0.34 2.9 2.0 1.9 22 2.5 0.32 3.1 2.1 2.0 80 2 0.23 4.3 2.9 2.8 80 2 0.23 4.3 2.9 2.8 80 2 0.23 4.3 2.9 2.8 75 2 0.31 3.2 2.2 2.1 75 2 0.31 3.2 2.2 2.1 75 2 0.31 3.2 2.2 2.1 84 2 0.28 3.6 2.4 2.4 84 2 0.28 3.6 2.4 2.4 80 2 0.35 2.9 1.9 1.9 90 2.5 0.26 3.8 2.6 2.5 96 < | Bearing **Notes** (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). Numbers - **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. - 2. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. - The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). - 3. For the dimensions od adapters and withdrawal sleeves, refer to Pages C351, and C357. ⁽²⁾ EA is also available. Load rating of EA is around 10% higher than CAM's, please consult NSK. Mass # SPHERICAL ROLLER BEARINGS #### Bore Diameter 140 - 150 mm Abutment and Fillet Dimensions #### Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + r_a$ | | | |--------------------|-------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ Constant The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. Axial Load #### Cylindrical Bore **Boundary Dimensions** Tapered Bore Basic Load Ratings Without an Oil Groove or Holes Speeds | | (mm) (N) | | | 1) | Th | (min ⁻¹) | | 3 | | | | (mm) | | | | | Factors | 3 | (kg) | | |-----|--------------------------|-----------------------|-------------------|--|--|----------------------------------|------------------------|----------------------------------|---|---|--------------------------|----------------------|--------------------------|--------------------------|------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | d | D | B | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | ra
max. | max. |) _a min. | r a
max. | e | Y_2 | Y_3 | Y_0 | approx. | | 140 | 210
210
210 | 53
53
69 | 2 2 2 | 525 000
420 000
635 000 | 715 000
715 000
905 000 | 2 800
2 800
2 200 | 3 800 | 1 600
1 600
1 300 | *23028CAME4
23028CDE4
*24028CAME4 | *23028CAMKE4
23028CDKE4
*24028CAMK30E4 | 150
150
150 | 157 | 200
200
200 | 190
190
186 | 2 2 2 | 0.22
0.22
0.29 | 4.5
4.5
3.4 | 3.0
3.0
2.3 | 2.9
2.9
2.2 | 6.49
6.49
8.37 | | | 210
225
225 | 69
68
68 | 2
2.1
2.1 | 525 000
725 000
580 000 | 945 000
945 000
945 000 | 2 200
2 400
2 400 | 3 200 | 1 300
1 200
1 200 | 24028CE4
*23128CAME4
23128CE4 | 24028CK30E4
*23128CAMKE4
23128CKE4 | 150
152
152 | 154
—
158 | 200
213
213 | 186
198
198 | 2
2
2 | 0.29
0.28
0.28 | 3.4
3.6
3.6 | 2.3
2.4
2.4 | 2.2
2.3
2.3 | 8.37
10.5
10.5 | | | 225
225
250 | 85
85
68 | 2.1
2.1
3 | 835 000
670 000
835 000 | 1 160 000
1 160 000
945 000 | 1 600
1 600
2 600 | 2 600
—
3 200 | 1 200
1 200
1 400 | *24128CAME4
24128CE4
*22228CAME4 | *24128CAMK30E4
24128CK30E4
*22228CAMKE4 | 152
152
154 |
156
 | 213
213
236 | 193
193
219 | 2
2
2.5 | 0.35
0.35
0.25 | 2.9
2.9
4.0 | 1.9
1.9
2.7 | 1.9
1.9
2.6 | 13
13
14.5 | | | 250
250
250 | 68
88
88 | 3
3 | 645 000
1 040 000
835 000 | 930 000
1 300 000
1 300 000 | 2 600
1 800
1 800 | 2 600 | 1 400
1 100
1 100 | 22228CDE4
*23228CAME4
23228CE4 | 22228CDKE4
*23228CAMKE4
23228CKE4 | 154
154
154 | 167
—
163 | 236
236
236 | 219
213
213 | 2.5
2.5
2.5 | 0.25
0.35
0.35 | 4.0
2.9
2.9 | 2.7
1.9
1.9 | 2.6
1.9
1.9 | 14.5
18.8
18.8 | | | 300
300 | 102
102 | 4
4 | 1 450 000
1 160 000 | 1 590 000
1 590 000 | 1 700
1 700 | 2 400
— | 1 200
1 200 | *22328CAME4
22328CE4 | *22328CAMKE4
22328CKE4 | 158
158 | _
177 | 282
282 | 253
253 | 3 | 0.35
0.35 | 2.9
2.9 | 1.9
1.9 | 1.9
1.9 | 35.4
35.4 | | 150 | 225
225
225 | 56
56
75 | 2.1
2.1
2.1 | 590 000
470 000
740 000 | 815 000
815 000
1 090 000 | 2 600
2 600
1 900 | 3 600
3 000 | 1 400
1 400
1 200 | *23030CAME4
23030CDE4
*24030CAME4 | *23030CAMKE4
23030CDKE4
*24030CAMK30E4 | 162
162
162 | 168
— | 213
213
213 | 203
203
198 | 2
2
2 | 0.22
0.22
0.30 | 4.6
4.6
3.4 | 3.1
3.1
2.3 | 3.0
3.0
2.2 | 7.9
7.9
10.5 | | | 225
250
250 | 75
80
80 | 2.1
2.1
2.1 | 590 000
905 000
725 000 | 1 090 000
1 180 000
1 180 000 | 1 900
2 200
2 200 | 2 800 | 1 200
1 100
1 100 | 24030CE4
*23130CAME4
23130CE4 | 24030CK30E4
*23130CAMKE4
23130CKE4 | 162
162
162 | 165
—
174 | 213
238
238 | 198
218
218 | 2
2
2 | 0.30
0.30
0.30 | 3.4
3.4
3.4 | 2.3
2.3
2.3 | 2.2
2.2
2.2 | 10.5
15.8
15.8 | | | 250
250
270 | 100
100
73 | 2.1
2.1
3 | 1 070 000
890 000
955 000 | 1 450 000
1 530 000
1 120 000 | 1 400
1 400
2 400 | 2 400
—
3 000 | 1 100
1 100
1 300 | *24130CAME4
24130CE4
*22230CAME4 | *24130CAMK30E4
24130CK30E4
*22230CAMKE4 | 162
162
164 | 169
— | 238
238
256 | 212
212
236 | 2
2
2.5 | 0.38
0.38
0.26 | 2.6
2.6
3.9 | 1.8
1.8
2.6 | 1.7
1.7
2.5 | 19.8
19.8
18.4 | | | 270
270
270
320 | 73
96
96
108 | 3
3
4 | 765 000
1 220 000
975 000
1 530 000 | 1 120 000
1 560 000
1 560 000
1 690 000 | 2 400
1 700
1 700
1 600 | 2 400
2 200 | 1 300
1 100
1 100
1 100 | 22230CDE4
*23230CAME4
23230CE4
*22330CAME4 | 22230CDKE4
*23230CAMKE4
23230CKE4
*22330CAMKE4 | 164
164
164
168 | 179
—
176
— | 256
256
256
302 | 236
230
230
270 | 2.5
2.5
2.5
3 | 0.26
0.35
0.35
0.35 | 3.9
2.9
2.9
2.9 | 2.6
1.9
1.9
1.9 | 2.5
1.9
1.9
1.9 | 18.4
24.2
24.2
41.5 | | Not | o (1) | The cuff | fiv K or K | 30 rangaanta has | ringe with tane | rad haras (tana | r 1:12 or 1:20\ | | | Pamarke 1 The hea | ringe done | tod by an | netorick (* | c) are NCK | UDCTM hoo | ringe and | l an ail | aroovo | and ho | loc are stands | Bearing Numbers **Note** (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). - **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. - 2. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. - The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C352, and C357 – C358. # Bore Diameter 160 - 170 mm Abutment and Fillet Dimensions # Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + r_a$ | | | |--------------------|-------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ Constant The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. Axial Load Mass | C۱ | /lind | rical | Bore | |----|-------|-------|------| | | | | | **Boundary Dimensions** Tapered Bore Basic Load Ratings Without an Oil Groove and Holes Speeds | | ounuary 1
m |
ım) | UIIS | Dasic Loa | √) | | (min ⁻¹) | | Dearing | Nullipers | | Abutillelit | (mm) | וווופוופוופווטווו | 3 | Constant | | Factors | | (kg) | |-----|-------------------|------------------|-------------------|-----------------------------------|-------------------------------------|-------------------------|------------------------|-------------------------|---|---|-------------------|-----------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|----------------------| | d | D | B | r | $C_{\rm r}$ | C_{0r} | Thermal
Reference | Limiting | • | Cylindrical Bore | Tapered Bore(1) | | ļ _a | |) _a | $r_{\rm a}$ | e | Y_2 | Y_3 | Y_0 | approx. | | | | | min. | | | Speed | Mechanical | Grease | | | min. | max. | max. | min. | max. | | | | | | | 160 | 220
240
240 | 45
60
60 | 2
2.1
2.1 | 450 000
675 000
540 000 | 675 000
955 000
955 000 | 3 000
2 400
2 400 | 3 200
3 200
— | 1 400
1 300
1 300 | *23932CAME4
*23032CAME4
23032CDE4 | *23932CAMKE4
*23032CAMKE4
23032CDKE4 | 170
172
172 |
179 | 210
228
228 | 203
216
216 | 2
2
2 | 0.18
0.22
0.22 | 5.6
4.5
4.5 | 3.8
3.0
3.0 | 3.7
2.9
2.9 | 4.97
9.66
9.66 | | | 240
240
270 | 80
80
86 | 2.1
2.1
2.1 | 845 000
680 000
1 070 000 | 1 260 000
1 260 000
1 400 000 | 1 800
1 800
2 000 | 2 8 <u>00</u>
2 600 | 1 100
1 100
1 000 | *24032CAME4
24032CE4
*23132CAME4 | * 24032CAMK30E4
24032CK30E4
* 23132CAMKE4 | 172
172
172 | 177
— | 228
228
258 | 212
212
234 | 2
2
2 | 0.30
0.30
0.30 | 3.4
3.4
3.4 | 2.3
2.3
2.3 | 2.2
2.2
2.2 | 12.7
12.7
20.3 | | | 270
270
270 | 86
109
109 | 2.1
2.1
2.1 | 855 000
1 240 000
1 040 000 | 1 400 000
1 670 000
1 760 000 | 2 000
1 300
1 300 | 2 200 | 1 000
1 000
1 000 | 23132CE4
*24132CAME4
24132CE4 | 23132CKE4
*24132CAMK30E4
24132CK30E4 | 172
172
172 | 185
—
179 | 258
258
258 | 234
229
229 | 2
2
2 | 0.30
0.39
0.39 | 3.4
2.6
2.6 | 2.3
1.7
1.7 | 2.2
1.7
1.7 | 20.3
25.4
25.4 | | | 290
290
290 | 80
80
104 | 3
3
3 | 1 140 000
910 000
1 370 000 | 1 320 000
1 320 000
1 770 000 | 2 200
2 200
1 500 | 2 800

2 200 | 1 200
1 200
1 000 | *22232CAME4
22232CDE4
*23232CAME4 | * 22232CAMKE4
22232CDKE4
* 23232CAMKE4 | 174
174
174 | 190
— | 276
276
276 | 255
255
245 | 2.5
2.5
2.5 | 0.26
0.26
0.34 | 3.8
3.8
2.9 | 2.6
2.6
2.0 | 2.5
2.5
1.9 | 23.1
23.1
30.5 | | | 290
340 | 104
114 | 3
4 | 1 100 000
1 700 000 | 1 770 000
1 900 000 | 1 500
1 400 | 2 200 | 1 000
1 100 | 23232CE4
*22332CAME4 | 23232CKE4
*22332CAMKE4 | 174
178 | 189
— | 276
322 | 245
287 | 2.5
3 | 0.34
0.35 | 2.9
2.9 | 2.0
1.9 | 1.9
1.9 | 30.5
49.3 | | 170 | 230
260
260 | 45
67
67 | 2
2.1
2.1 | 450 000
795 000
640 000 | 680 000
1 090 000
1 090 000 | 3 000
2 200
2 200 | 3 600
3 000
— | 1 400
1 200
1 200 | *23934CAME4
*23034CAME4
23034CDE4 | *23934CAMKE4
*23034CAMKE4
23034CDKE4 | 180
182
182 | _
191 | 220
248
248 | 213
233
233 | 2
2
2 | 0.17
0.23
0.23 | 5.8
4.3
4.3 | 3.9
2.9
2.9 | 3.8
2.8
2.8 | 5.38
13
13 | | | 260
260
280 | 90
90
88 | 2.1
2.1
2.1 | 1 030 000
825 000
1 180 000 | 1 520 000
1 520 000
1 570 000 | 1 600
1 600
1 800 | 2 4 <u>00</u>
2 600 | 1 000
1 000
1 000 | *24034CAME4
24034CE4
*23134CAME4 | *24034CAMK30E4
24034CK30E4
*23134CAMKE4 | 182
182
182 | 188
— | 248
248
268 | 228
228
245 | 2
2
2 | 0.31
0.31
0.29 | 3.2
3.2
3.5 | 2.2
2.2
2.3 | 2.1
2.1
2.3 | 17.3
17.3
21.8 | | | 280
280
280 | 88
109
109 | 2.1
2.1
2.1 | 940 000
1 280 000
1 080 000 | 1 570 000
1 770 000
1 860 000 | 1 800
1 200
1 200 | 2 200 | 1 000
1 000
1 000 | 23134CE4
*24134CAME4
24134CE4 | 23134CKE4
*24134CAMK30E4
24134CK30E4 | 182
182
182 | 194
—
190 | 268
268
268 | 245
239
239 | 2
2
2 | 0.29
0.37
0.37 | 3.5
2.7
2.7 | 2.3
1.8
1.8 | 2.3
1.8
1.8 | 21.8
26.6
26.6 | | | 310
310
310 | 86
86
110 | 4
4
4 | 1 240 000
990 000
1 500 000 | 1 500 000
1 500 000
1 910 000 | 2 000
2 000
1 400 | 2 600
2 200 | 1 100
1 100
900 | *22234CAME4
22234CDE4
*23234CAME4 | * 22234CAMKE4
22234CDKE4
* 23234CAMKE4 | 188
188
188 | 206
— | 292
292
292 | 270
270
261 | 3
3
3 | 0.26
0.26
0.34 | 3.8
3.8
2.9 | 2.6
2.6
2.0 | 2.5
2.5
1.9 | 28.8
28.8
36.4 | | | 310
360 | 110
120 | 4 4 | 1 200 000
1 970 000 | 1 910 000
2 110 000 | 1 400
1 300 | 2 000 | 900
1 000 | 23234CE4
*22334CAME4 | 23234CKE4
* 22334CAMKE4 | 188
188 | 201 | 292
342 | 261
304 | 3 | 0.34
0.35 | 2.9
2.9 | 2.0
1.9 | 1.9
1.9 | 36.4
57.9 | | | | 120 | 4 | 1 970 000 | | 1 300 | 2 000 | | | | 188 | | 342 | 304 | 3 | 0.35 | 2.9 | 1.9 | _ | | Bearing Numbers Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C352, and C358. #### Bore Diameter 180 – 190 mm #### Dynamic Equivalent Load $P - XF \perp VF$ | P = X | $\mathbf{r}_{r} + \mathbf{r} \mathbf{r}_{a}$ | | | |---------------|---|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | В | oundary
(m | Dimensionm) | ons | Basic Loa | • | | Speeds
(min ⁻¹) | | Bearing | Numbers | | Abutment | and Fillet I | Dimension | S | Constant | | xial Lo | | Mass
(kg) | |-----|-------------------|-------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------|--------------------------------|-------------------------|---|--|-------------------|-----------------|-------------------|---------------------|-------------------------|----------------------|-------------------|-------------------|-------------------|----------------------| | d | D | B | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | $d_{ m a}$ max. | max. | O _a min. | ${\pmb r}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 180 | 250
280
280 | 52
74
74 | 2
2.1
2.1 | 590 000
935 000
750 000 | 890 000
1 270 000
1 270 000 | 2 600
2 000
2 000 | 3 000
2 800
— | 1 200
1 200
1 200 | *23936CAME4
*23036CAME4
23036CDE4 | *23936CAMKE4
*23036CAMKE4
23036CDKE4 | 190
192
192 | _
202 | 240
268
268 | 230
249
249 | 2
2
2 | 0.18
0.24
0.24 | 5.5
4.2
4.2 | 3.7
2.8
2.8 | 3.6
2.8
2.8 | 7.64
17.1
17.1 | | | 280
280
300 | 100
100
96 | 2.1
2.1
3 | 1 210 000
965 000
1 320 000 | 1 750 000
1 750 000
1 760 000 | 1 500
1 500
1 700 | 2 200
—
2 200 | 950
950
900 | *24036CAME4
24036CE4
*23136CAME4 | *24036CAMK30E4
24036CK30E4
*23136CAMKE4 | 192
192
194 | 200 | 268
268
286 | 245
245
260 | 2
2
2.5 | 0.32
0.32
0.30 | 3.1
3.1
3.4 | 2.1
2.1
2.3 | 2.0
2.0
2.2 | 22.7
22.7
27.5 | | | 300
300
300 | 96
118
118 | 3
3
3 | 1 050 000
1 490 000
1 190 000 | 1 760 000
2 040 000
2 040 000 | 1 700
1 100
1 100 | 2 000 | 900
900
900 | 23136CE4
*24136CAME4
24136CE4 | 23136CKE4
* 24136CAMK30E4
24136CK30E4 | 194
194
194 | 206
—
202 | 286
286
286 | 260
255
255 | 2.5
2.5
2.5 | 0.30
0.37
0.37 | 3.4
2.7
2.7 | 2.3
1.8
1.8 | 2.2
1.8
1.8 | 27.5
33.1
33.1 | | | 320
320
320 | 86
86
112 | 4
4
4 | 1 280 000
1 020 000
1 620 000 | 1 540 000
1 540 000
2 110 000 | 2 000
2 000
1 300 | 2 600

2 000 | 1 100
1 100
850 | *22236CAME4
22236CDE4
*23236CAME4 | *22236CAMKE4
22236CDKE4
*23236CAMKE4 | 198
198
198 | 2 <u>12</u> | 302
302
302 | 278
278
274 | 3 3 | 0.26
0.26
0.33 | 3.9
3.9
3.0 | 2.6
2.6
2.0 | 2.6
2.6
2.0 | 30.2
30.2
38.9 | | | 320
380 | 112
126 | 4
4 | 1 300 000
2 170 000 | 2 110 000
2 340 000 | 1 300
1 200 | 2 000 | 850
950 | 23236CE4
*22336CAME4 | 23236CKE4
*22336CAMKE4 | 198
198 | 211
— | 302
362 | 274
322 | 3 | 0.33
0.34 | 3.0
2.9 | 2.0 | 2.0
1.9 | 38.9
67 | | 190 | 260
290
290 | 52
75
100 | 2
2.1
2.1 | 575 000
970 000
1 220 000 | 875 000
1 350
000
1 840 000 | 2 600
2 000
1 400 | 3 000
2 600
2 200 | 1 200
1 100
900 | *23938CAME4
*23038CAME4
*24038CAME4 | *23938CAMKE4
*23038CAMKE4
*24038CAMK30E4 | 200
202
202 | _
_
_ | 250
278
278 | 240
261
253 | 2
2
2 | 0.18
0.24
0.31 | 5.7
4.2
3.2 | 3.8
2.8
2.2 | 3.7
2.8
2.1 | 8.03
17.6
24 | | | 290
320
320 | 100
104
104 | 2.1
3
3 | 975 000
1 480 000
1 190 000 | 1 840 000
2 020 000
2 020 000 | 1 400
1 600
1 600 | 2 200
— | 900
850
850 | 24038CE4
*23138CAME4
23138CE4 | 24038CK30E4
* 23138CAMKE4
23138CKE4 | 202
204
204 | 210
—
219 | 278
306
306 | 253
276
276 | 2
2.5
2.5 | 0.31
0.31
0.31 | 3.2
3.3
3.3 | 2.2
2.2
2.2 | 2.1
2.2
2.2 | 24
34.5
34.5 | | | 320
320
340 | 128
128
92 | 3
3
4 | 1 710 000
1 370 000
1 420 000 | 2 330 000
2 330 000
1 730 000 | 1 000
1 000
1 800 | 1 900
—
2 400 | 850
850
1 000 | *24138CAME4
24138CE4
*22238CAME4 | *24138CAMK30E4
24138CK30E4
*22238CAMKE4 | 204
204
208 | 2 <u>11</u> | 306
306
322 | 269
269
296 | 2.5
2.5
3 | 0.40
0.40
0.26 | 2.5
2.5
3.8 | 1.7
1.7
2.6 | 1.6
1.6
2.5 | 41.5
41.5
35.5 | | | 340
340
400 | 120
120
132 | 4
4
5 | 1 800 000
1 440 000
2 370 000 | 2 350 000
2 350 000
2 590 000 | 1 200
1 200
1 200 | 1 900
1 900 | 800
800
900 | *23238CAME4
23238CE4
*22338CAME4 | * 23238CAMKE4
23238CKE4
* 22338CAMKE4 | 208
208
212 | 222
— | 322
322
378 | 288
288
338 | 3
3
4 | 0.35
0.35
0.34 | 2.9
2.9
2.9 | 1.9
1.9
2.0 | 1.9
1.9
1.9 | 47.6
47.6
77.6 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). - **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. - 2. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. - The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C352, and C358. #### Bore Diameter 200 – 220 mm Dynamic Equivalent Load | P = X | $F_{\rm r} + Y F_{\rm a}$ | | |---------------|---------------------------|--------------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/$ | | v | 17 | v | $\begin{array}{c|ccccc} X & Y & X & Y \\ \hline 1 & Y_3 & 0.67 & Y_2 \end{array}$ Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | В | oundary
(m | Dimensionm) | ons | Basic Loa | • | | Speeds
(min ⁻¹) | | Bearing | Numbers | | Abutment | and Fillet I | Dimension | S | Constant | | xial Lo
Factor | | Mass
(kg) | |-----|-------------------|-------------------|-------------------|-------------------------------------|-------------------------------------|-------------------------------|--------------------------------|-----------------------|---|--|-------------------|-----------------|-------------------|---------------------|------------------------|----------------------|-------------------|-------------------|-------------------|----------------------| | d | D | B | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | $d_{ m a}$ max. | max. | O _a min. | ${\it r}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 200 | 280
310
310 | 60
82
109 | 2.1
2.1
2.1 | 710 000
1 180 000
1 420 000 | 1 060 000
1 700 000
2 120 000 | 2 400
1 800
1 300 | 2 600
2 400
2 000 | 1 100
1 000
850 | *23940CAME4
*23040CAME4
*24040CAME4 | *23940CAMKE4
*23040CAMKE4
*24040CAMK30E4 | 212
212
212 | = | 268
298
298 | 258
279
271 | 2
2
2 | 0.20
0.25
0.32 | 5.1
4.0
3.1 | 3.4
2.7
2.1 | 3.3
2.6
2.0 | 11
22.6
30.4 | | | 310
340
340 | 109
112
112 | 2.1
3
3 | 1 140 000
1 700 000
1 360 000 | 2 120 000
2 330 000
2 330 000 | 1 300
1 500
1 500 | 2 000 | 850
800
800 | 24040CE4
*23140CAME4
23140CE4 | 24040CK30E4
*23140CAMKE4
23140CKE4 | 212
214
214 | 223
—
232 | 298
326
326 | 271
293
293 | 2
2.5
2.5 | 0.32
0.31
0.31 | 3.1
3.2
3.2 | 2.1
2.2
2.2 | 2.0
2.1
2.1 | 30.4
42.7
42.7 | | | 340
340
360 | 140
140
98 | 3
3
4 | 1 960 000
1 570 000
1 620 000 | 2 660 000
2 670 000
2 010 000 | 950
950
1 700 | 1 800
—
2 200 | 800
800
950 | *24140CAME4
24140CE4
*22240CAME4 | *24140CAMK30E4
24140CK30E4
*22240CAMKE4 | 214
214
218 | 226
— | 326
326
342 | 290
290
315 | 2.5
2.5
3 | 0.39
0.39
0.26 | 2.6
2.6
3.8 | 1.8
1.8
2.6 | 1.7
1.7
2.5 | 51.3
51.3
42.6 | | | 360
360
420 | 128
128
138 | 4
4
5 | 2 070 000
1 660 000
2 500 000 | 2 750 000
2 750 000
2 990 000 | 1 100
1 100
1 000 | 1 800
—
1 700 | 750
750
850 | *23240CAME4
23240CE4
*22340CAME4 | *23240CAMKE4
23240CKE4
*22340CAMKE4 | 218
218
222 | 237
— | 342
342
398 | 307
307
352 | 3
3
4 | 0.34
0.34
0.34 | 2.9
2.9
2.9 | 2.0
2.0
2.0 | 1.9
1.9
1.9 | 57.1
57.1
92.6 | | 220 | 300
340
340 | 60
90
118 | 2.1
3
3 | 785 000
1 360 000
1 640 000 | 1 240 000
1 980 000
2 490 000 | 2 200
1 600
1 200 | 2 600
2 200
1 900 | 1 000
950
750 | *23944CAME4
*23044CAME4
*24044CAME4 | *23944CAMKE4
*23044CAMKE4
*24044CAMK30E4 | 232
234
234 | | 288
326
326 | 278
302
296 | 2
2.5
2.5 | 0.18
0.24
0.31 | 5.7
4.1
3.2 | 3.8
2.8
2.1 | 3.7
2.7
2.1 | 12.2
29.7
40.5 | | | 340
370
370 | 118
120
120 | 3
4
4 | 1 360 000
1 960 000
1 570 000 | 2 600 000
2 710 000
2 710 000 | 1 200
1 300
1 300 | 1 800 | 750
710
710 | 24044CE4
*23144CAME4
23144CE4 | 24044CK30E4
*23144CAMKE4
23144CKE4 | 234
238
238 | 244
—
254 | 326
352
352 | 296
320
320 | 2.5
3
3 | 0.31
0.30
0.30 | 3.2
3.3
3.3 | 2.1
2.2
2.2 | 2.1
2.2
2.2 | 40.5
53
53 | | | 370
370
400 | 150
150
108 | 4
4
4 | 2 250 000
1 800 000
1 960 000 | 3 200 000
3 200 000
2 430 000 | 850
850
1 500 | 1 600
—
2 000 | 710
710
850 | *24144CAME4
24144CE4
*22244CAME4 | *24144CAMK30E4
24144CK30E4
*22244CAMKE4 | 238
238
238 |
248
 | 352
352
382 | 313
313
348 | 3
3
3 | 0.39
0.39
0.27 | 2.6
2.6
3.7 | 1.7
1.7
2.5 | 1.7
1.7
2.4 | 66.7
66.7
59 | | | 400
400
460 | 144
144
145 | 4
4
5 | 2 520 000
2 020 000
2 940 000 | 3 400 000
3 400 000
3 400 000 | 1 000
850
950 | 1 600
—
1 600 | 670
670
750 | *23244CAME4
23244CE4
*22344CAME4 | *23244CAMKE4
23244CKE4
*22344CAMKE4 | 238
238
242 | 260
— | 382
382
438 | 337
337
391 | 3
3
4 | 0.35
0.35
0.33 | 2.9
2.9
3.0 | 1.9
1.9
2.0 | 1.9
1.9
2.0 | 80.4
80.4
116 | **Note** (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads($> 0.10C_r$). 3. For the dimensions od adapters and withdrawal sleeves, refer to Pages C353, and C359. #### Bore Diameter 240 - 280 mm Abutment and Fillet Dimensions #### Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + r_a$ | | | |--------------------|-------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ Constant The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. Axial Load Mass # Cylindrical Bore **Boundary Dimensions** Tapered Bore Basic Load Ratings Without an Oil Groove and Holes Speeds | D | (mm) (N) | | • | <u></u> | (min ⁻¹) | | Dearing | Nullibels | | Abutillelli | (mm) | Dilliciisioi | 15 | Constant | | Factors | | (kg) | | | |-----|-------------------|-------------------|------------------|-------------------------------------|-------------------------------------|-------------------------------|-------------------------|-------------------|---|--|-------------------|-----------------|-------------------|---------------------|-------------------------------|----------------------|-------------------|-------------------|-------------------|----------------------| | d | D | B | γ
min. | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | $d_{ m a}$ max. | $\max_{} I$ | D _a min. | $m{\gamma}_{\mathrm{a}}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 240 | 320
360
360 | 60
92
118 | 2.1
3
3 | 795 000
1 450 000
1 730 000 | 1 300 000
2 140
000
2 730 000 | 1 900
1 500
1 100 | 2 600
2 200
1 800 | 950
850
710 | *23948CAME4
*23048CAME4
*24048CAME4 | *23948CAMKE4
*23048CAMKE4
*24048CAMK30E4 | 252
254
254 | _
_
_ | 308
346
346 | 298
324
317 | 2
2.5
2.5 | 0.17
0.24
0.29 | 6.0
4.2
3.4 | 4.0
2.8
2.3 | 3.9
2.7
2.2 | 13.3
32.6
43.4 | | | 360
400
400 | 118
128
128 | 3
4
4 | 1 390 000
2 230 000
1 790 000 | 2 730 000
3 100 000
3 100 000 | 1 100
1 200
1 200 | 1 700 | 710
670
670 | 24048CE4
*23148CAME4
23148CE4 | 24048CK30E4
*23148CAMKE4
23148CKE4 | 254
258
258 | 265
—
275 | 346
382
382 | 317
347
347 | 2.5
3
3 | 0.29
0.30
0.30 | 3.4
3.3
3.3 | 2.3
2.2
2.2 | 2.2
2.2
2.2 | 43.4
66.9
66.9 | | | 400
400
440 | 160
160
120 | 4
4
4 | 2 660 000
2 130 000
2 340 000 | 3 800 000
3 800 000
2 890 000 | 750
750
1 400 | 1 500
—
1 800 | 670
670
750 | *24148CAME4
24148CE4
*22248CAME4 | *24148CAMK30E4
24148CK30E4
*22248CAMKE4 | 258
258
258 | 268
— | 382
382
422 | 341
341
383 | 3
3
3 | 0.38
0.38
0.27 | 2.7
2.7
3.7 | 1.8
1.8
2.5 | 1.8
1.8
2.4 | 79.5
79.5
80.2 | | | 440
500 | 160
155 | 4
5 | 3 050 000
3 250 000 | 4 050 000
3 800 000 | 850
850 | 1 500
1 500 | 630
670 | *23248CAME4
*22348CAME4 | *23248CAMKE4
*22348CAMKE4 | 258
262 | _ | 422
478 | 372
423 | 3
4 | 0.37
0.32 | 2.7
3.2 | 1.8
2.1 | 1.8
2.1 | 106
147 | | 260 | 360
400
400 | 75
104
140 | 2.1
4
4 | 1 170 000
1 780 000
2 270 000 | 1 870 000
2 580 000
3 500 000 | 1 800
1 300
950 | 2 200
1 900
1 600 | 850
800
630 | *23952CAME4
*23052CAME4
*24052CAME4 | *23952CAMKE4
*23052CAMKE4
*24052CAMK30E4 | 272
278
278 | _
_
_ | 348
382
382 | 333
356
348 | 2
3
3 | 0.19
0.25
0.32 | 5.4
4.1
3.1 | 3.6
2.7
2.1 | 3.5
2.7
2.1 | 23
46.6
62.6 | | | 440
440
480 | 144
180
130 | 4
4
5 | 2 700 000
3 200 000
2 720 000 | 3 750 000
4 700 000
3 400 000 | 1 100
630
1 200 | 1 500
1 300
1 700 | 600
600
670 | *23152CAME4
*24152CAME4
*22252CAME4 | *23152CAMKE4
*24152CAMK30E4
*22252CAMKE4 | 278
278
282 | _
_
_ | 422
422
458 | 380
371
418 | 3
3
4 | 0.32
0.39
0.27 | 3.2
2.6
3.7 | 2.1
1.7
2.5 | 2.1
1.7
2.5 | 88.2
109
104 | | | 480
540 | 174
165 | 5
6 | 3 400 000
3 900 000 | 4 550 000
4 600 000 | 800
750 | 1 400
1 400 | 560
630 | *23252CAME4
*22352CAME4 | *23252CAMKE4
*22352CAMKE4 | 282
288 | _ | 458
512 | 406
462 | 4
5 | 0.37
0.32 | 2.7
3.2 | 1.8
2.1 | 1.8
2.1 | 137
180 | | 280 | 380
420
420 | 75
106
140 | 2.1
4
4 | 1 160 000
1 930 000
2 350 000 | 1 950 000
2 950 000
3 800 000 | 1 600
1 200
850 | 2 000
1 800
1 500 | 800
710
600 | *23956CAME4
*23056CAME4
*24056CAME4 | *23956CAMKE4
*23056CAMKE4
*24056CAMK30E4 | 292
298
298 | | 368
402
402 | 351
377
369 | 2
3
3 | 0.18
0.24
0.31 | 5.7
4.2
3.3 | 3.9
2.8
2.2 | 3.8
2.7
2.2 | 24.5
50.5
66.4 | | | 460
460
500 | 146
180
130 | 5
5
5 | 2 790 000
3 300 000
2 850 000 | 4 000 000
5 000 000
3 650 000 | 1 000
600
1 100 | 1 500
1 300
1 600 | 560
560
630 | *23156CAME4
*24156CAME4
*22256CAME4 | *23156CAMKE4
*24156CAMK30E4
*22256CAMKE4 | 302
302
302 | _
_
_ | 438
438
478 | 400
392
439 | 4
4
4 | 0.30
0.37
0.25 | 3.3
2.7
4.0 | 2.2
1.8
2.7 | 2.2
1.8
2.6 | 94.3
115
110 | | | 500
580 | 176
175 | 5
6 | 3 600 000
4 350 000 | 4 900 000
5 150 000 | 750
710 | 1 300
1 300 | 530
560 | *23256CAME4
*22356CAME4 | *23256CAMKE4
*22356CAMKE4 | 302
308 | = | 478
552 | 425
496 | 4
5 | 0.35
0.31 | 2.9
3.2 | 1.9
2.1 | 1.9
2.1 | 147
221 | Bearing Numbers Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. ^{2.} When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C353, and C359. #### Bore Diameter 300 – 380 mm Cylindrical Bore Tapered Bore Without an Oil Groove and Holes #### Dynamic Equivalent Load $P - XF \perp VF$ | P = X | $\mathbf{r}_{r} + \mathbf{r} \mathbf{r}_{a}$ | | | |---------------|---|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | В | , | Dimensionm) | ons | Basic Loa | ŭ | | Speeds
(min ⁻¹) | | Bearing | Numbers | , | Abutment | and Fillet
(mm) | Dimension | S | Constant | | xial Loa
Factors | | Mass
(kg) | |-----|--------------------------|--------------------------|------------------|--|--|-------------------------------|----------------------------------|--------------------------|--|--|--------------------------|------------------------|--------------------------|--------------------------|---------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | d | D | B | γ
min. | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | ļ _a
max. | $\max_{} L$ | O _a min. | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 300 | 420
460
460 | 90
118
160 | 3
4
4 | 1 540 000
2 400 000
2 890 000 | 2 490 000
3 700 000
4 600 000 | 1 500
1 100
800 | 1 800
1 600
1 400 | 710
670
530 | *23960CAME4
*23060CAME4
*24060CAME4 | *23960CAMKE4
*23060CAMKE4
*24060CAMK30E4 | 314
318
318 | = | 406
442
442 | 386
413
400 | 2.5
3
3 | 0.19
0.24
0.32 | 5.2
4.2
3.1 | 3.5
2.8
2.1 | 3.4
2.7
2.0 | 38.2
70.5
93.6 | | | 500
500
540
540 | 160
200
140
192 | 5
5
5 | 3 350 000
3 900 000
3 250 000
4 250 000 | 4 800 000
5 800 000
4 250 000
5 900 000 | 900
530
1 000
670 | 1 400
1 200
1 500
1 200 | 500
500
600
480 | *23160CAME4
*24160CAME4
*22260CAME4
*23260CAME4 | *23160CAMKE4
*24160CAMK30E4
*22260CAMKE4
*23260CAMKE4 | 322
322
322
322 | _
_
_ | 478
478
518
518 | 433
423
473
458 | 4
4
4
4 | 0.31
0.38
0.25
0.35 | 3.3
2.6
4.0
2.9 | 2.2
1.8
2.7
1.9 | 2.2
1.7
2.6
1.9 | 125
152
139
189 | | 320 | 440
480
480 | 90
121
160 | 3
4
4 | 1 620 000
2 450 000
3 050 000 | 2 750 000
3 850 000
5 050 000 | 1 400
1 000
710 | 1 700
1 600
1 300 | 670
630
500 | *23964CAME4
*23064CAME4
*24064CAME4 | *23964CAMKE4
*23064CAMKE4
*24064CAMK30E4 | 334
338
338 | = | 426
462
462 | 406
432
422 | 2.5
3
3 | 0.18
0.24
0.31 | 5.5
4.2
3.3 | 3.7
2.8
2.2 | 3.6
2.8
2.2 | 40.6
75.6
99.7 | | | 540
540
580
580 | 176
218
150
208 | 5
5
5
5 | 3 850 000
4 400 000
3 750 000
4 850 000 | 5 500 000
6 650 000
4 850 000
6 900 000 | 800
500
950
600 | 1 300
1 100
1 400
1 100 | 480
480
530
450 | *23164CAME4
*24164CAME4
*22264CAME4
*23264CAME4 | * 23164CAMKE4
* 24164CAMK30E4
* 22264CAMKE4
* 23264CAMKE4 | 342
342
342
342 | _
_
_ | 518
518
558
558 | 466
456
508
488 | 4
4
4
4 | 0.31
0.39
0.26
0.36 | 3.2
2.6
3.9
2.8 | 2.1
1.7
2.6
1.9 | 2.1
1.7
2.6
1.8 | 162
196
174
239 | | 340 | 460
520
520 | 90
133
180 | 3
5
5 | 1 670 000
2 850 000
3 650 000 | 2 840 000
4 400 000
6 050 000 | 1 300
950
670 | 1 700
1 500
1 200 | 630
560
480 | *23968CAME4
*23068CAME4
*24068CAME4 | *23968CAMKE4
*23068CAMKE4
*24068CAMK30E4 | 354
362
362 | _ | 446
498
498 | 427
465
454 | 2.5
4
4 | 0.18
0.24
0.32 | 5.7
4.2
3.2 | 3.8
2.8
2.1 | 3.7
2.8
2.1 | 42.4
101
135 | | | 580
580
620 | 190
243
224 | 5
5
6 | 4 500 000
5 300 000
4 400 000 | 6 600 000
7 900 000
7 800 000 | 710
450
480 | 1 200
1 000
— | 430
430
400 | *23168CAME4
*24168CAME4
23268CAME4 | *23168CAMKE4
*24168CAMK30E4
23268CAMKE4 | 362
362
368 | = | 558
558
592 | 499
489
521 | 4
4
5 | 0.31
0.40
0.36 | 3.2
2.5
2.8 | 2.1
1.7
1.9 | 2.1
1.7
1.8 | 206
257
295 | | 360 | 480
540
540 | 90
134
180 | 3
5
5 | 1 730 000
2 990 000
3 650 000 | 3 050 000
4 700 000
6 100 000 | 1 200
900
630 | 1 700
1 400
1 200 | 600
530
450 |
*23972CAME4
*23072CAME4
*24072CAME4 | *23972CAMKE4
*23072CAMKE4
*24072CAMK30E4 | 374
382
382 | = | 466
518
518 | 447
485
476 | 2.5
4
4 | 0.17
0.24
0.32 | 6.0
4.2
3.2 | 4.1
2.8
2.1 | 4.0
2.8
2.1 | 44.7
106
139 | | | 600
600
650 | 192
243
232 | 5
5
6 | 4 800 000
5 250 000
4 800 000 | 7 100 000
8 000 000
8 550 000 | 670
430
450 | 1 100
1 000
— | 400
400
380 | *23172CAME4
*24172CAME4
23272CAME4 | *23172CAMKE4
*24172CAMK30E4
23272CAMKE4 | 382
382
388 | = | 578
578
622 | 520
507
549 | 4
4
5 | 0.31
0.40
0.36 | 3.2
2.5
2.8 | 2.2
1.7
1.9 | 2.1
1.7
1.8 | 217
264
342 | | 380 | 520
560
560 | 106
135
180 | 4
5
5 | 2 340 000
3 150 000
3 850 000 | 4 100 000
5 100 000
6 600 000 | 1 100
850
600 | 1 500
1 400
1 200 | 530
530
430 | *23976CAME4
*23076CAME4
*24076CAME4 | *23976CAMKE4
*23076CAMKE4
*24076CAMK30E4 | 398
402
402 | = | 502
538
538 | 482
506
496 | 3
4
4 | 0.18
0.22
0.29 | 5.5
4.5
3.4 | 3.7
3.0
2.3 | 3.6
3.0
2.3 | 65.4
113
148 | | | 620
620
680 | 194
243
240 | 5
5
6 | 4 000 000
4 350 000
5 150 000 | 7 600 000
8 450 000
9 200 000 | 530
360
430 | _
_
_ | 400
400
360 | 23176CAME4
24176CAME4
23276CAME4 | 23176CAMKE4
24176CAMK30E4
23276CAMKE4 | 402
402
408 | = | 598
598
652 | 540
529
578 | 4
4
5 | 0.30
0.38
0.35 | 3.3
2.6
2.9 | 2.2
1.8
1.9 | 2.2
1.7
1.9 | 229
275
372 | | Not | o (1) | The cuff | fiv K or K | 20 rangaanta har | ringe with tane | rad haras (tana | r 1:12 or 1:20) | | | Remarks 1 The her | ringe dono | tod by an | actorick (s | k) ara NCV | UDCIM hos | ringe and | l an ail | aroovo | and ho | loc are etan | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. ^{2.} When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C354, and C360. #### Bore Diameter 400 - 460 mm # Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | |---------------|--------------------------|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | #### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. #### Cylindrical Bore Tapered Bore Without an Oil Groove and Holes | E | Soundary | Dimensi | ons | | ad Ratings | Speeds (min ⁻¹) Thermal | | (min ⁻¹) | | | Bearing | Numbers | / | Abutment | and Fillet | Dimension | S | Constant | | xial Loa
Factors | | Mass
(kg) | |-----|-------------------|-------------------|-------------------|-------------------------------------|--|-------------------------------------|-------------------------|----------------------|---|--|-------------------|-------------|-------------------|---------------------|---------------------------|----------------------|-------------------|-------------------|-------------------|---------------------|--|--------------| | d | D | В | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | d min. | a
max. | max. | O _a min. | ${m \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | | | 400 | 540
600
600 | 106
148
200 | 4
5
5 | 2 370 000
3 700 000
4 500 000 | 4 250 000
5 900 000
7 600 000 | 1 000
800
560 | 1 400
1 300
1 100 | 530
480
400 | *23980CAME4
*23080CAME4
*24080CAME4 | *23980CAMKE4
*23080CAMKE4
*24080CAMK30E4 | 418
422
422 | | 522
578
578 | 501
540
527 | 3
4
4 | 0.18
0.23
0.31 | 5.7
4.4
3.3 | 3.9
3.0
2.2 | 3.8
2.9
2.2 | 69.1
146
193 | | | | | 650
650
720 | 200
250
256 | 6
6
6 | 4 150 000
4 950 000
5 800 000 | 7 900 000
10 100 000
10 400 000 | 500
320
380 | _
_
_ | 380
380
340 | 23180CAME4
24180CAME4
23280CAME4 | 23180CAMKE4
24180CAMK30E4
23280CAMKE4 | 428
428
428 | | 622
622
692 | 569
551
610 | 5
5
5 | 0.29
0.37
0.36 | 3.4
2.7
2.8 | 2.3
1.8
1.9 | 2.3
1.8
1.9 | 257
316
449 | | | | 420 | 560
620
620 | 106
150
200 | 4
5
5 | 2 340 000
2 910 000
3 750 000 | 4 250 000
5 850 000
8 100 000 | 1 000
670
480 | 1 400
—
— | 500
450
380 | * 23984CAME4
23084CAME4
24084CAME4 | *23984CAMKE4
23084CAMKE4
24084CAMK30E4 | 438
442
442 | _
_
_ | 542
598
598 | 521
562
549 | 3
4
4 | 0.17
0.23
0.31 | 6.0
4.3
3.2 | 4.0
2.9
2.2 | 3.9
2.8
2.1 | 71.6
151
199 | | | | | 700
700
760 | 224
280
272 | 6
6
7.5 | 5 000 000
6 000 000
6 450 000 | 9 400 000
12 000 000
11 700 000 | 480
280
360 | _
_
_ | 340
340
320 | 23184CAME4
24184CAME4
23284CAME4 | 23184CAMKE4
24184CAMK30E4
23284CAMKE4 | 448
448
456 | _
_
_ | 672
672
724 | 607
598
644 | 5
5
6 | 0.31
0.38
0.35 | 3.3
2.6
2.9 | 2.2
1.8
1.9 | 2.2
1.7
1.9 | 341
421
534 | | | | 440 | 600
650
650 | 118
157
212 | 4
6
6 | 2 190 000
3 150 000
4 150 000 | 4 800 000
6 350 000
9 100 000 | 630
630
450 | _
_
_ | 450
430
360 | 23988CAME4
23088CAME4
24088CAME4 | 23988CAMKE4
23088CAMKE4
24088CAMK30E4 | 458
468
468 | _
_
_ | 582
622
622 | 555
587
576 | 3
5
5 | 0.18
0.23
0.31 | 5.7
4.3
3.2 | 3.9
2.9
2.1 | 3.8
2.8
2.1 | 96.3
173
237 | | | | | 720
720
790 | 226
280
280 | 6
6
7.5 | 5 300 000
6 000 000
6 900 000 | 10 300 000
12 100 000
12 800 000 | 430
280
340 | _
_
_ | 320
320
300 | 23188CAME4
24188CAME4
23288CAME4 | 23188CAMKE4
24188CAMK30E4
23288CAMKE4 | 468
468
476 | | 692
692
754 | 627
617
669 | 5
5
6 | 0.3
0.37
0.35 | 3.3
2.7
2.9 | 2.2
1.8
1.9 | 2.2
1.8
1.9 | 360
433
594 | | | | 460 | 620
680
680 | 118
163
218 | 4
6
6 | 2 220 000
3 450 000
4 500 000 | 4 950 000
7 100 000
9 950 000 | 600
600
430 | _
_
_ | 430
400
340 | 23992CAME4
23092CAME4
24092CAME4 | 23992CAMKE4
23092CAMKE4
24092CAMK30E4 | 478
488
488 | | 602
652
652 | 575
615
604 | 3
5
5 | 0.17
0.22
0.29 | 5.9
4.6
3.4 | 4.0
3.1
2.3 | 3.9
3.0
2.3 | 100
201
266 | | | | | 760
760
830 | 240
300
296 | 7.5
7.5
7.5 | 5 700 000
6 300 000
7 350 000 | 10 900 000
12 400 000
13 700 000 | 430
280
320 | _
_
_ | 300
300
280 | 23192CAME4
24192CAME4
23292CAME4 | 23192CAMKE4
24192CAMK30E4
23292CAMKE4 | 496
496
496 | _ | 724
724
794 | 661
646
702 | 6
6
6 | 0.31
0.39
0.36 | 3.3
2.6
2.8 | 2.2
1.7
1.9 | 2.2
1.7
1.8 | 423
512
691 | | | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). **Remarks** 1. The bearings denoted by an asterisk (*) are NSKHPS™ bearings and an oil groove and holes are standard for them. ^{2.} When making a selection of the recommended fit (Tolerance of shaft) on Page A164, in case of NSKHPS™ bearings, the conditions are different. The segmentations are: Light Loads($\leq 0.05C_r$); Normal Loads(0.05 to 0.10 C_r); and Heavy Loads(>0.10 C_r). ^{3.} For the dimensions od adapters and withdrawal sleeves, refer to Pages C354 – C355, and C360 – C361. #### Bore Diameter 480 – 560 mm Dynamic Equivalent Load $P - XF \perp VF$ | $\Gamma = \Lambda$ | $r_r + r_a$ | | | |--------------------|-------------|---------------|------------------| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/I$ | 7 _r > | | X | Y | X | | | 1 | Y_3 | 0.67 | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Cylindrical | Bore | |-------------|------| |-------------|------| Tapered Bore Without an Oil Groove and Holes | В | oundary
(n | Dimensi | ons | | d Ratings | | Speeds
(min ⁻¹) | | Bearing | Numbers | А | butment | and Fillet | Dimension | S | Constant | | xial Lo
Factor | | Mass
(kg) | |-----|---------------------|-------------------|-------------------|--------------------------------------|--|-------------------------------|--------------------------------|-------------------|--|---|----------------------|-------------|-------------------|---------------------|----------------------------|----------------------|-------------------|-------------------|-------------------|---------------------| | d | D | В | γ
min. | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | $d_{arepsilon}$ min. | max. | max. | D _a min. | γ _a max. | e | Y_2 | Y_3 | Y_0
 approx. | | 480 | 650
700
700 | 128
165
218 | 5
6
6 | 2 580 000
3 800 000
4 600 000 | 5 850 000
7 950 000
10 200 000 | 560
560
400 | _
_
_ | 400
400
320 | 23996CAME4
23096CAME4
24096CAME4 | 23996CAMKE4
23096CAMKE4
24096CAMK30E4 | 502
508
508 | | 628
672
672 | 602
633
625 | 4
5
5 | 0.18
0.22
0.30 | 5.7
4.6
3.4 | 3.8
3.1
2.3 | 3.7
3.0
2.2 | 121
211
270 | | | 790
790
870 | 248
308
310 | 7.5
7.5
7.5 | 6 050 000
7 150 000
7 850 000 | 11 700 000
14 600 000
14 400 000 | 400
240
300 | _
_
_ | 300
300
260 | 23196CAME4
24196CAME4
23296CAME4 | 23196CAMKE4
24196CAMK30E4
23296CAMKE4 | 516
516
516 | _
_
_ | 754
754
834 | 688
670
733 | 6
6
6 | 0.31
0.39
0.36 | 3.3
2.6
2.8 | 2.2
1.7
1.9 | 2.2
1.7
1.8 | 475
567
795 | | 500 | 670
720
720 | 128
167
218 | 5
6
6 | 2 460 000
3 750 000
4 450 000 | 5 550 000
8 100 000
9 900 000 | 560
530
400 | _
_
_ | 400
380
300 | 239/500CAME4
230/500CAME4
240/500CAME4 | 239/500CAMKE4
230/500CAMKE4
240/500CAMK30E4 | 522
528
528 | _ | 648
692
692 | 622
655
643 | 4
5
5 | 0.17
0.21
0.30 | 6.0
4.8
3.4 | 4.0
3.2
2.3 | 3.9
3.1
2.2 | 124
220
276 | | | 830
830
920 | 264
325
336 | 7.5
7.5
7.5 | 6 850 000
8 000 000
9 000 000 | 13 400 000
16 000 000
16 600 000 | 360
220
280 | _
_
_ | 280
280
260 | 231/500CAME4
241/500CAME4
232/500CAME4 | 231/500CAMKE4
241/500CAMK30E4
232/500CAMKE4 | 536
536
536 | = | 794
794
884 | 720
703
773 | 6
6
6 | 0.31
0.39
0.38 | 3.2
2.6
2.7 | 2.2
1.7
1.8 | 2.1
1.7
1.8 | 567
666
969 | | 530 | 710
780
780 | 136
185
250 | 5
6
6 | 2 930 000
4 400 000
5 400 000 | 6 800 000
9 200 000
11 800 000 | 500
500
360 | _
_
_ | 360
340
280 | 239/530CAME4
230/530CAME4
240/530CAME4 | 239/530CAMKE4
230/530CAMKE4
240/530CAMK30E4 | 552
558
558 | = | 688
752
752 | 659
706
690 | 4
5
5 | 0.17
0.22
0.31 | 6.0
4.6
3.3 | 4.0
3.1
2.2 | 3.9
3.0
2.2 | 149
298
390 | | | 870
870
980 | 272
335
355 | 7.5
7.5
9.5 | 7 150 000
8 500 000
10 100 000 | 14 100 000
17 500 000
18 800 000 | 340
200
260 | _
_
_ | 260
260
240 | 231/530CAME4
241/530CAME4
232/530CAME4 | 231/530CAMKE4
241/530CAMK30E4
232/530CAMKE4 | 566
566
574 | | 834
834
936 | 758
740
824 | 6
6
8 | 0.30
0.38
0.38 | 3.3
2.6
2.7 | 2.2
1.8
1.8 | 2.2
1.7
1.7 | 628
773
1 170 | | 560 | 750
820
820 | 140
195
258 | 5
6
6 | 3 100 000
5 000 000
5 950 000 | 7 250 000
10 700 000
13 300 000 | 480
450
340 | _
_
_ | 340
320
260 | 239/560CAME4
230/560CAME4
240/560CAME4 | 239/560CAMKE4
230/560CAMKE4
240/560CAMK30E4 | 582
588
588 | | 728
792
792 | 697
742
729 | 4
5
5 | 0.16
0.22
0.30 | 6.1
4.5
3.3 | 4.1
3.0
2.2 | 4.0
2.9
2.2 | 172
344
440 | | | 920
920
1 030 | 280
355
365 | 7.5
7.5
9.5 | 7 850 000
9 400 000
10 900 000 | 15 500 000
19 600 000
20 500 000 | 320
190
240 | _
_
_ | 240
240
220 | 231/560CAME4
241/560CAME4
232/560CAME4 | 231/560CAMKE4
241/560CAMK30E4
232/560CAMKE4 | 596
596
604 | = | 884
884
986 | 804
782
870 | 6
6
8 | 0.30
0.39
0.36 | 3.4
2.6
2.8 | 2.3
1.8
1.9 | 2.2
1.7
1.8 | 727
886
1 320 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). **Remark** For the dimensions od adapters and withdrawal sleeves, refer to Pages C355, and C361. #### Bore Diameter 600 – 750 mm Cylindrical Bore Tapered Bore # Dynamic Equivalent Load $P = XF_r + YF_s$ | P = X | $\mathbf{r}_{r} + \mathbf{r} \mathbf{r}_{a}$ | | | |---------------|---|---------------|-------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | Е | oundary
(m | Dimensionm) | ons | | nd Ratings | | Speeds
(min ⁻¹) | | Bearing | Numbers | | Abutment | and Fillet
(mm) | Dimension | s | Constant | | xial Loa
Factors | | Mass
(kg) | |-----|----------------------------------|--------------------------|-----------------------|--|--|-------------------------------|--------------------------------|--------------------------|--|--|--------------------------|-----------------|--------------------------------|----------------------------|------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|------------------------------| | d | D | B | γ
min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | min. | $l_{ m a}$ max. | $\max_{} I$ | O _a min. | ${\pmb \gamma}_{\rm a}$ max. | e | Y_2 | Y_3 | Y_0 | approx. | | 600 | 800
870
870 | 150
200
272 | 5
6
6 | 3 450 000
5 450 000
6 600 000 | 8 100 000
12 200 000
15 100 000 | 450
400
300 | | 320
300
240 | 239/600CAME4
230/600CAME4
240/600CAME4 | 239/600CAMKE4
230/600CAMKE4
240/600CAMK30E4 | 622
628
628 | = | 778
842
842 | 745
794
772 | 4
5
5 | 0.17
0.21
0.30 | 5.9
4.8
3.3 | 3.9
3.3
2.2 | 3.9
3.2
2.2 | 205
389
529 | | | 980
980
1 090 | 300
375
388 | 7.5
7.5
9.5 | 8 750 000
10 400 000
12 700 000 | 17 500 000
21 900 000
24 900 000 | 280
170
200 | _
_
_ | 220
220
200 | 231/600CAME4
241/600CAME4
232/600CAME4 | 231/600CAMKE4
241/600CAMK30E4
232/600CAMKE4 | 636
636
644 | | 944
944
1 046 | 856
836
923 | 6
6
8 | 0.30
0.39
0.36 | 3.4
2.6
2.8 | 2.3
1.8
1.9 | 2.2
1.7
1.8 | 898
1 050
1 590 | | 630 | 850
920
920 | 165
212
290 | 6
7.5
7.5 | 4 000 000
5 900 000
7 550 000 | 9 350 000
12 700 000
17 700 000 | 400
400
280 | _
_
_ | 300
280
220 | 239/630CAME4
230/630CAME4
240/630CAME4 | 239/630CAMKE4
230/630CAMKE4
240/630CAMK30E4 | 658
666
666 | _ | 822
884
884 | 786
835
815 | 5
6
6 | 0.18
0.22
0.30 | 5.6
4.7
3.3 | 3.8
3.1
2.2 | 3.7
3.1
2.2 | 259
468
637 | | | 1 030
1 030
1 150 | 315
400
412 | 7.5
7.5
12 | 9 600 000
11 300 000
13 400 000 | 19 400 000
23 900 000
25 600 000 | 260
160
200 | _
_
_ | 200
200
180 | 231/630CAME4
241/630CAME4
232/630CAME4 | 231/630CAMKE4
241/630CAMK30E4
232/630CAMKE4 | 666
666
684 | = | 994
994
1 096 | 900
876
970 | 6
6
10 | 0.30
0.38
0.36 | 3.4
2.7
2.8 | 2.3
1.8
1.9 | 2.2
1.7
1.8 | 1 040
1 250
1 850 | | 670 | 900
980
980 | 170
230
308 | 6
7.5
7.5 | 4 350 000
6 850 000
8 450 000 | 10 300 000
15 000 000
19 500 000 | 380
360
260 | _
_
_ | 260
240
200 | 239/670CAME4
230/670CAME4
240/670CAME4 | 239/670CAMKE4
230/670CAMKE4
240/670CAMK30E4 | 698
706
706 | = | 872
944
944 | 836
891
868 | 5
6
6 | 0.17
0.22
0.30 | 5.8
4.7
3.3 | 3.9
3.1
2.2 | 3.8
3.1
2.2 | 300
571
773 | | | 1 090
1 090
1 220 | 336
412
438 | 7.5
7.5
12 | 10 600 000
12 400 000
14 900 000 | 21 600 000
26 500 000
28 700 000 | 240
150
180 | _
_
_ | 190
190
170 | 231/670CAME4
241/670CAME4
232/670CAME4 | 231/670CAMKE4
241/670CAMK30E4
232/670CAMKE4 | 706
706
724 | = | 1 054
1 054
1 166 | 952
934
1 024 | 6
6
10 | 0.30
0.37
0.37 | 3.3
2.7
2.7 | 2.2
1.8
1.8 | 2.2
1.8
1.8 | 1 230
1 440
2 210 | | 710 | 950
1 030
1 030 | 180
236
315 | 6
7.5
7.5 | 4 800 000
7 100 000
8 850 000 | 11 700 000
15 800 000
20 700 000 | 360
340
240 | _
_
_ | 240
240
190 | 239/710CAME4
230/710CAME4
240/710CAME4 | 239/710CAMKE4
230/710CAMKE4
240/710CAMK30E4 | 738
746
746 | _ | 922
994
994 | 883
936
916 | 5
6
6 | 0.17
0.22
0.29 | 5.8
4.6
3.4 | 3.9
3.1
2.3 | 3.8
3.0
2.2 | 352
647
861 | | | 1 150
1 280 | 438
450 | 9.5
12 | 13 900 000
15 700 000 | 30 500 000
30 500 000 | 130
170 | | 170
160 | 241/710CAME4
232/710CAME4 | 241/710CAMK30E4
232/710CAMKE4 | 754
764 | _ | 1 106
1 226 | 981
1 080 | 8
10 | 0.38
0.36 | 2.6
2.8 | 1.8
1.9 | 1.7
1.8 | 1 730
2 470 | | 750 | 1 000
1 090
1 090
1 360 | 185
250
335
475 | 6
7.5
7.5
15 | 5 250 000
7 750 000
10 100 000
17 700 000 | 12 800 000
17 200 000
24 000 000
35 500 000 | 320
320
220
150 | _
_
_
_ | 220
220
180
140 | 239/750CAME4
230/750CAME4
240/750CAME4
232/750CAME4 | 239/750CAMKE4
230/750CAMKE4
240/750CAMK30E4
232/750CAMKE4 | 778
786
786
814 | _
_
_ | 972
1 054
1 054
1 296 | 931
990
969
1 148 | 5
6
6
12 | 0.17
0.22
0.29
0.36 |
6.0
4.6
3.4
2.8 | 4.1
3.1
2.3
1.9 | 4.0
3.0
2.2
1.8 | 398
768
1 030
2 980 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). # Bore Diameter 800 - 1400 mm Cylindrical Bore Tapered Bore # Dynamic Equivalent Load $P = XF_r + YF_o$ | P = X | $\mathbf{r}_{r} + \mathbf{r}_{a}$ | | | |---------------|-----------------------------------|---------------|-----| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > | | X | Y | X | | | 1 | Y_3 | 0.67 | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , \emph{Y}_{2} , \emph{Y}_{3} , and \emph{Y}_{0} are given in the table below. | E | Boundary
(n | Dimensi | ons | | ad Ratings
N) | | Speeds
(min ⁻¹) | | Bearing | Numbers | Abu | ıtment ar | nd Fillet Dime
(mm) | nsions | Constar | t A | Axial Lo
Factors | | Mass
(kg) | |-------|----------------------------------|--------------------------|-------------------------|---|--|-------------------------------|--------------------------------|--------------------------|---|--|----------------------------|------------|---|-------------------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------| | d | D | B | γ
min. | $C_{\rm r}$ | C_{0r} | Thermal
Reference
Speed | Limiting
Mechanical | Speeds
Grease | Cylindrical Bore | Tapered Bore(1) | $d_{ m a}$ min. | max. | $D_{ m a}$ max. | $oldsymbol{\gamma}_{ m a}$ nin. max | e | Y_2 | Y_3 | Y_0 | approx. | | 800 | 1 060
1 150
1 150 | 195
258
345 | 6
7.5
7.5 | 5 600 000
8 350 000
10 900 000 | 13 700 000
19 100 000
26 300 000 | 300
300
200 | | 220
200
160 | 239/800CAME4
230/800CAME4
240/800CAME4 | 239/800CAMKE4
230/800CAMKE4
240/800CAMK30E4 | 828
836
836 | - 1 | 1 032 90
1 114 1 00
1 114 1 00 | 15 6 | 0.17
0.21
0.27 | 6.0
4.7
3.7 | 4.0
3.2
2.5 | 3.9
3.1
2.5 | 462
870
1 130 | | | 1 280
1 420 | 375
488 | 9.5
15 | 13 800 000
20 300 000 | 29 200 000
41 000 000 | 190
130 | | 150
130 | 231/800CAME4
232/800CAME4 | 231/800CAMKE4
232/800CAMKE4 | 844
864 | | 1 236 1 12
1 356 1 2 | | 0.28
0.35 | 3.6
2.8 | 2.4
1.9 | 2.3
1.9 | 1 870
3 250 | | 850 | 1 120
1 220
1 220
1 500 | 200
272
365
515 | 6
7.5
7.5
15 | 6 100 000
9 300 000
11 600 000
22 300 000 | 15 200 000
21 400 000
28 300 000
45 500 000 | 280
280
190
120 | _
_
_
_ | 190
180
150
120 | 239/850CAME4
230/850CAME4
240/850CAME4
232/850CAME4 | 239/850CAMKE4
230/850CAMKE4
240/850CAMK30E4
232/850CAMKE4 | 878
886
886
914 | - 1
- 1 | 1 092 1 0-
1 184 1 1-
1 184 1 0-
1 436 1 2 | 09 6
93 6 | 0.16
0.21
0.28
0.35 | 6.2
4.8
3.6
2.8 | 4.2
3.2
2.4
1.9 | 4.1
3.1
2.4
1.9 | 523
1 020
1 350
3 890 | | 900 | 1 180
1 280
1 280
1 580 | 206
280
375
515 | 6
7.5
7.5
15 | 6 600 000
9 850 000
12 800 000
23 400 000 | 16 700 000
22 800 000
31 500 000
47 500 000 | 260
260
170
120 | _
_
_
_ | 180
160
140
110 | 239/900CAME4
230/900CAME4
240/900CAME4
232/900CAME4 | 239/900CAMKE4
230/900CAMKE4
240/900CAMK30E4
232/900CAMKE4 | 928
936
936
964 | — 1
— 1 | 1 152 | 6
17 6 | 0.16
0.20
0.28
0.33 | 6.4
4.9
3.6
3.0 | 4.3
3.3
2.4
2.0 | 4.2
3.2
2.4
2.0 | 591
1 160
1 520
4 300 | | 950 | 1 250
1 360
1 360
1 660 | 224
300
412
530 | 7.5
7.5
7.5
15 | 7 600 000
11 300 000
14 500 000
24 700 000 | 19 900 000
26 500 000
36 500 000
50 500 000 | 240
240
160
110 | _
_
_
_ | 160
150
120
100 | 239/950CAME4
230/950CAME4
240/950CAME4
232/950CAME4 | 239/950CAMKE4
230/950CAMKE4
240/950CAMK30E4
232/950CAMKE4 | 986
986
986
1 014 | - 1
- 1 | 1 214 1 10
1 324 1 20
1 324 1 2
1 596 1 4 | 11 6
19 6 | 0.16
0.21
0.28
0.32 | 6.3
4.8
3.6
3.1 | 4.2
3.2
2.4
2.1 | 4.1
3.2
2.3
2.1 | 732
1 400
1 880
4 800 | | 1 000 | 1 320
1 420
1 420 | 236
308
412 | 7.5
7.5
7.5 | 8 200 000
11 900 000
15 300 000 | 21 700 000
28 100 000
38 500 000 | 220
220
150 | | 150
140
110 | 239/1000CAME4
230/1000CAME4
240/1000CAME4 | 239/1000CAMKE4
230/1000CAMKE4
240/1000CAMK30E4 | 1 036
1 036
1 036 | — 1 | 1 284 1 2
1 384 1 2
1 384 1 2 | 98 6 | 0.16
0.20
0.27 | 6.4
4.9
3.7 | 4.3
3.3
2.5 | 4.2
3.2
2.4 | 881
1 560
2 010 | | 1 060 | 1 400
1 500
1 500 | 250
325
438 | 7.5
9.5
9.5 | 9 300 000
13 000 000
16 800 000 | 24 400 000
31 500 000
43 000 000 | 200
200
140 | | 130
120
100 | 239/1060CAME4
230/1060CAME4
240/1060CAME4 | 239/1060CAMKE4
230/1060CAMKE4
240/1060CAMK30E4 | 1 096
1 104
1 104 | | 1 364 1 30
1 456 1 30
1 456 1 30 | 88 | 0.16
0.21
0.28 | 6.1
4.9
3.6 | 4.1
3.3
2.4 | 4.0
3.2
2.4 | 1 030
1 790
2 410 | | 1 120 | 1 580
1 580 | 345
462 | 9.5
9.5 | 15 400 000
18 700 000 | 38 000 000
49 500 000 | 180
120 | | 110
95 | 230/1120CAME4
240/1120CAME4 | 230/1120CAMKE4
240/1120CAMK30E4 | 1 164
1 164 | | 1 536 1 4
1 536 1 4 | | 0.20
0.27 | 5.0
3.7 | 3.4
2.5 | 3.3
2.5 | 2 120
2 790 | | 1 180 | 1 660 | 475 | 9.5 | 20 200 000 | 52 500 000 | 120 | _ | 85 | 240/1180CAME4 | 240/1180CAMK30E4 | 1 224 | — 1 | 1 616 1 4 | 94 8 | 0.27 | 3.7 | 2.5 | 2.4 | 3 180 | | 1 250 | 1 750 | 500 | 9.5 | 21 000 000 | 59 500 000 | 110 | _ | 75 | 240/1250CAME4 | 240/1250CAMK30E4 | | | 1 706 1 5 | | 0.25 | 4.0 | 2.7 | 2.6 | 3 700 | | 1 320 | 1 850 | 530 | 12 | 22 600 000 | 63 500 000 | 100 | _ | 67
60 | 240/1320CAME4 | 240/1320CAMK30E4 | | | 1796 16 | | 0.26 | 3.9 | 2.6 | 2.6 | 4 400 | | 1 400 | 1 950 | 545 | 12 | 24 500 000 | 65 000 000 | 95 | _ | 60 | 240/1400CAME4 | 240/1400CAMK30E4 | 1 454 | <u> </u> | 1 896 1 7 | 37 10 | 0.25 | 4.0 | 2.7 | 2.6 | 4 900 | Note (1) The suffix K or K30 represents bearings with tapered bores (taper 1:12 or 1:30). | INTRODUCTION | C 296 | |--|-------| | BEARINGS TABLE | | | SINGLE-DIRECTION THRUST BALL BARINGS | | | With Flat Seat, Aligning Seat, or Aligning Seat Washer | | | Bore Diameter 10 – 360 mm ····· | C 298 | | DOUBLE-DIRECTION THRUST BALL BEARINGS | | | With Flat Seat, Aligning Seat, or Aligning Seat Washer | | | Rore Diameter 10 – 190 mm | C 306 | # **DESIGN, TYPES, AND FEATURES** #### THRUST BALL BEARINGS Thrust ball bearings are classified into those with flat seats or aligning seats depending on the shape of the outer ring seat (housing washer). They can sustain axial loads but no radial loads. The series of thrust ball bearings available are shown in Table 1. For Single-Direction Thrust Ball Bearings, pressed steel cages and machined brass cages are usually used as shown in Table 2. The cages in Double-Direction Thrust Ball Bearings are the same as those in Single-Direction Thrust Ball Bearings of the same diameter series. The basic load ratings listed in the bearing tables are based on the standard cage type shown in Table 2. If the type of cage is different for bearings with the same number, the number of balls may vary, in such a case, the load rating will differ from the one listed in the bearing tables. Table 1 Series of Thrust Ball **Bearings** | | W/Flat
Seat | W/Aligning
Seat | W/Aligning
Seat
Washer | |-----------|----------------|--------------------|------------------------------| | | 511 | _ | _ | | Single- | 512 | 532 | 532U | | Direction | 513 | 533 | 533U | | | 514 | 534 | 534U | | Double- | 522 | 542 | 542U | | Direction | 523 | 543 | 543U | | Direction | 524 | 544 | 544U | Table 2 Standard Cages for Thrust Ball **Bearings** | Pressed Steel | Machined Brass | |----------------|-----------------| | 51100 - 51152X | 51156X - 51172X | | 51200 - 51236X | 51238X - 51272X | | 51305 - 51336X | 51338X - 51340X | | 51405 - 51418X | 51420X - 51436X | | 53200 - 53236X | 53238X - 53272X | | 53305 - 53336X | 53338X - 53340X | | 53405 - 53418X | 53420X - 53436X | #### **TOLERANCES AND RUNNING ACCURACY** THRUST BALL BEARINGS Table 7.6 (Pages A140 to A142) #### RECOMMENDED FITS THRUST BALL BEARINGS ·····Table 8.4 (Pages A164) Table 8.6 (Pages A165) # MINIMUM AXIAL LOAD It is necessary to apply some axial load to thrust bearings to prevent slippage between the rolling elements and raceways. For more details, please refer to Page A198. C 296 C 297 # Bore Diameter 10 - 50 mm With Flat Seat With Aligning Seat With Aligning Seat Washer | | | Bounda | ry Dimensio | ons | | | ad Ratings
N) | | g Speeds | | Bearing N | lumbers | | | I | Dimensio
(mm) | | | | Abutme
Dimen | | | | Mass(kg)
approx. | | |----|-----------------------|----------------------|---------------------------|---------------------|------------------------|---------------------------------------|---|----------------------------------|----------------------------------|----------------------------------|--------------------------|---------------------------------|-----------------------|----------------------|---------------------|---------------------|------------------------|-----------------------|---------------------
----------------------|-----------------------|----------------------------|----------------------------------|------------------------------|---------------------------------| | d | D | T | T_3 | T_4 | γ
min. | $C_{\rm a}$ | C_{0a} | Grease | Oil | With
Flat
Seat | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | D_{a} max. | r _a max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 10 | 24
26 | 9
11 | —
11.6 | —
13 | 0.3
0.6 | 10 100
12 800 | 14 000
17 100 | 6 700
6 000 | 10 000
9 000 | 51100
51200 | 53200 |
53200 U | 24
26 | 11
12 | —
18 |
28 | —
3.5 | —
8.5 |
22 | 18
20 | 16
16 | 0.3
0.6 | 0.019
0.028 |
0.029 | 0.036 | | 12 | 26
28 | 9
11 | <u> </u> |
13 | 0.3
0.6 | 10 400
13 300 | 15 400
19 000 | 6 700
5 600 | 10 000
8 500 | 51101
51201 | |
53201 U | 26
28 | 13
14 |
20 | 30 |
3.5 | —
11.5 |
25 | 20
22 | 18
18 | 0.3
0.6 | 0.021
0.031 |
0.031 | 0.039 | | 15 | 28
32 | 9
12 |
13.3 |
15 | 0.3
0.6 | 10 600
16 700 | 16 800
24 800 | 6 300
5 000 | 9 500
7 500 | 51102
51202 | 53202 |
53202 U | 28
32 | 16
17 |
24 |
35 | <u> </u> |
12 |
28 | 23
25 | 20
22 | 0.3
0.6 | 0.023
0.043 |
0.048 |
0.059 | | 17 | 30
35 | 9
12 |
13.2 |
15 | 0.3
0.6 | 11 400
17 300 | 19 500
27 300 | 6 000
4 800 | 9 000
7 500 | 51103
51203 | |
53203 U | 30
35 | 18
19 |
26 | —
38 | <u> </u> |
16 |
32 | 25
28 | 22
24 | 0.3
0.6 | 0.025
0.050 |
0.055 | 0.069 | | 20 | 35
40 | 10
14 | —
14.7 |
17 | 0.3
0.6 | 15 100
22 500 | 26 600
37 500 | 5 300
4 300 | 8 000
6 300 | 51104
51204 |
53204 |
53204 U | 35
40 | 21
22 | <u> </u> | <u>-</u> |
5 |
18 | —
36 | 29
32 | 26
28 | 0.3
0.6 | 0.037
0.077 | 0.080 |
0.096 | | 25 | 42
47
52
60 | 11
15
18
24 | —
16.7
19.8
26.4 | —
19
22
29 | 0.6
0.6
1
1 | 19 700
28 000
36 000
56 000 | 37 000
50 500
61 500
89 500 | 4 800
3 800
3 200
2 600 | 7 100
5 600
5 000
4 000 | 51105
51205
51305
51405 | 53205
53305
53405 | 53205 U
53305 U
53405 U | 42
47
52
60 | 26
27
27
27 | —
36
38
42 | 50
55
62 | 5.5
6
8 | —
19
21
19 | 40
45
50 | 35
38
41
46 | 32
34
36
39 | 0.6
0.6
1 | 0.056
0.111
0.169
0.334 | —
0.123
0.182
0.353 | —
0.151
0.224
0.426 | | 30 | 47
52
60
70 | 11
16
21
28 |
17.8
22.6
30.1 | 20
25
33 | 0.6
0.6
1
1 | 20 600
29 500
43 000
73 000 | 42 000
58 000
78 500
126 000 | 4 300
3 400
2 800
2 200 | 6 700
5 300
4 300
3 400 | 51106
51206
51306
51406 | 53206
53306
53406 | 53206 U
53306 U
53406 U | 47
52
60
70 | 32
32
32
32 |
42
45
50 | —
55
62
75 |
5.5
7
9 | —
22
22
20 | 45
50
56 | 40
43
48
54 | 37
39
42
46 | 0.6
0.6
1 | 0.064
0.137
0.267
0.519 | —
0.154
0.28
0.535 |
0.183
0.336
0.666 | | 35 | 52
62
68
80 | 12
18
24
32 | —
19.9
25.6
34 | —
22
28
37 | 0.6
1
1
1.1 | 22 100
39 500
56 000
87 500 | 49 500
78 000
105 000
155 000 | 4 000
3 000
2 400
2 000 | 6 000
4 500
3 800
3 000 | 51107
51207
51307
51407 | 53207
53307
53407 | 53207 U
53307 U
53407 U | 52
62
68
80 | 37
37
37
37 | —
48
52
58 | —
65
72
85 | —
7
7.5
10 | 24
24
23 | —
50
56
64 | 45
51
55
62 | 42
46
48
53 | 0.6
1
1 | 0.081
0.21
0.386
0.769 | |
0.292
0.488
0.967 | | 40 | 60
68
78
90 | 13
19
26
36 | | 23
31
42 | 0.6
1
1
1.1 | 27 100
47 500
70 000
103 000 | 63 000
98 500
135 000
188 000 | 3 600
2 800
2 200
1 700 | 5 300
4 300
3 400
2 600 | 51108
51208
51308
51408 | 53208
53308
53408 | 53208 U
53308 U
53408 U | 60
68
78
90 | 42
42
42
42 | 55
60
65 | 72
82
95 | | —
28.5
28
26 | —
56
64
72 | 52
57
63
70 | 48
51
55
60 | 0.6
1
1 | 0.12
0.27
0.536
1.1 | 0.289
0.581
1.12 |
0.355
0.704
1.38 | | 45 | 65
73
85
100 | 14
20
28
39 |
21.3
30.1
42.4 | 24
33
46 | 0.6
1
1
1.1 | 28 100
48 000
80 500
128 000 | 69 000
105 000
163 000
246 000 | 3 400
2 600
2 000
1 600 | 5 000
4 000
3 000
2 400 | 51109
51209
51309
51409 | 53209
53309
53409 | 53209 U
53309 U
53409 U | 65
73
85
100 | 47
47
47
47 | —
60
65
72 | 78
90
105 | —
7.5
10
12.5 | 26
25
29 | 56
64
80 | 57
62
69
78 | 53
56
61
67 | 0.6
1
1 | 0.143
0.31
0.672
1.46 | 0.333
0.702
1.53 |
0.419
0.888
1.87 | | 50 | 70
78
95
110 | 14
22
31
43 | —
23.5
34.3
45.6 | 26
37
50 | 0.6
1
1.1
1.5 | 29 000
49 000
97 500
147 000 | 75 500
111 000
202 000
288 000 | 3 200
2 400
1 800
1 400 | 4 800
3 600
2 800
2 200 | 51110
51210
51310
51410 | 53210
53310
53410 | 53210 U
53310 U
53410 U | 70
78
95
110 | 52
52
52
52 |
62
72
80 | 82
100
115 | 7.5
11
14 | —
32.5
28
35 |
64
72
90 | 62
67
77
86 | 58
61
68
74 | 0.6
1
1
1.5 | 0.153
0.378
0.931
1.94 |
0.404
1.01
1.98 |
0.504
1.27
2.41 | C 298 C 299 # Bore Diameter 55 - 100 mm With Flat Seat With Aligning Seat With Aligning Seat Washer | | | Bounda | ry Dimensio | ns | | | nd Ratings | 1 | g Speeds
in ⁻¹) | | Bearing N | Numbers(1) | | | | Dimensi
(mm) | | | | Abutm
Dimen | | | | Mass(kg) approx. | | |-----|--------------------------|----------------------|---------------------------|---------------------|------------------------|---|--|----------------------------------|----------------------------------|------------------------------------|---------------------------|---------------------------------------|--------------------------|--------------------------|-------------------|------------------------|-------------------------|-----------------------|-------------------|--------------------------|--------------------------|----------------------------|--------------------------------|---------------------------|---------------------------------| | d | D | T | T_3 | T_4 | γ
min. | $C_{\rm a}$ | C_{0a} | Grease | Oil | With
Flat
Seat | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{ m a}$ max. | r _a max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 55 | 78
90
105
120 | 16
25
35
48 | —
27.3
39.3
50.5 | —
30
42
55 | 0.6
1
1.1
1.5 | 35 000
70 000
115 000
181 000 | 93 000
159 000
244 000
350 000 | 2 800
2 200
1 600
1 300 | 4 300
3 200
2 400
1 900 | 51111
51211
51311
51411 | 53211
53311
53411 | 53211 U
53311 U
53411 U | 78
90
105
120 | 57
57
57
57 | 72
80
88 | 95
110
125 | —
9
11.5
15.5 | 35
30
28 | 72
80
90 | 69
76
85
94 | 64
69
75
81 | 0.6
1
1
1.5 | 0.227
0.599
1.31
2.58 | 0.656
1.45
2.59 |
0.819
1.78
3.16 | | 60 | 85
95
110
130 | 17
26
35
51 | —
28
38.3
54 | —
31
42
58 | 1
1
1.1
1.5 | 41 500
71 500
119 000
202 000 | 113 000
169 000
263 000
395 000 | 2 600
2 000
1 600
1 200 | 4 000
3 000
2 400
1 800 | 51112
51212
51312
51412 | 53212
53312
53412 | 53212 U
53312 U
53412 U | 85
95
110
130 | 62
62
62
62 | 78
85
95 | 100
115
135 | —
9
11.5
16 | —
32.5
41
34 | 72
90
100 | 75
81
90
102 | 70
74
80
88 | 1
1
1
1.5 | 0.281
0.673
1.4
3.16 | —
0.731
1.51
3.2 | 0.897
1.83
3.91 | | 65 | 90
100
115
140 | 18
27
36
56 | —
28.7
39.4
60.2 | —
32
43
65 | 1
1
1.1
2 | 42 000
75 500
123 000
234 000 | 117 000
189 000
282 000
495 000 | 2 400
1 900
1 500
1 100 | 3 800
2 800
2 400
1 700 | 51113
51213
51313
51413 | 53213
53313
53413 | 53213 U
53313 U
53413 U | 90
100
115
140 | 67
67
67
68 | 82
90
100 | 105
120
145 | —
9
12.5
17.5 | —
40
38.5
40 | 80
90
112 | 80
86
95
110 | 75
79
85
95 | 1
1
1
2 | 0.324
0.756
1.54
4.1 | | | | 70 | 95
105
125
150 | 18
27
40
60 | —
28.8
44.2
63.6 | —
32
48
69 | 1
1
1.1
2 | 43 500
74 000
137 000
252 000 | 127 000
189 000
315 000
555 000 | 2 400
1 900
1 400
1 000 | 3 600
2 800
2 000
1 500 | 51114
51214
51314
51414 | 53214
53314
53414 | 53214 U
53314 U
53414 U | 95
105
125
150 | 72
72
72
73 | 88
98
110 | 110
130
155 | —
9
13
19.5 | —
38
43
34 | 80
100
112 | 85
91
103
118 | 80
84
92
102 | 1
1
1
2 |
0.346
0.793
2.0
5.05 | | 1.05
2.64
6.21 | | 75 | 100
110
135
160 | 19
27
44
65 | —
28.3
48.1
69 | —
32
52
75 | 1
1
1.5
2 | 43 500
78 000
159 000
254 000 | 131 000
209 000
365 000
560 000 | 2 200
1 800
1 300
950 | 3 400
2 800
1 900
1 400 | 51115
51215
51315
51415 | 53215
53315
53415 | 53215 U
53315 U
53415 U | 100
110
135
160 | 77
77
77
78 | 92
105
115 | —
115
140
165 | —
9.5
15
21 | —
49
37
42 | 90
100
125 | 90
96
111
125 | 85
89
99
110 | 1
1
1.5
2 | 0.389
0.845
2.6
6.15 | 1.27
2.8
6.23 | 1.11
3.42
7.58 | | 80 | 105
115
140
170 | 19
28
44
68 | —
29.5
47.6
72.2 | —
33
52
78 | 1
1
1.5
2.1 | 45 000
79 000
164 000
272 000 | 141 000
218 000
395 000
620 000 | 2 200
1 800
1 300
900 | 3 400
2 600
1 900
1 300 | 51116
51216
51316
51416 | 53216
53316
53416 | 53216 U
53316 U
53416 U | 105
115
140
170 | 82
82
82
83 | 98
110
125 | 120
145
175 |
10
15
22 | 46
50
36 | 90
112
125 | 95
101
116
133 | 90
94
104
117 | 1
1
1.5
2 | 0.417
0.931
2.74
7.21 | 1.01
2.94
7.33 | 1.23
3.55
8.9 | | 85 | 110
125
150
180 | 19
31
49
72 | —
33.1
53.1
77 | —
37
58
83 | 1
1
1.5
2.1 | 46 500
96 000
207 000
310 000 | 150 000
264 000
490 000
755 000 | 2 200
1 600
1 100
850 | 3 200
2 400
1 700
1 300 | 51117
51217
51317
51417 X | 53217
53317
53417 > | —
53217 U
53317 U
(53417 XU | 110
125
150
177 | 87
88
88
88 | 105
115
130 | 130
155
185 | —
11
17.5
23 | 52
43
47 | 100
112
140 | 100
109
124
141 | 95
101
111
124 | 1
1
1.5
2 | 0.44
1.22
3.57
8.51 | 1.35
3.78
8.72 | 1.63
4.67
10.4 | | 90 | 120
135
155
190 | 22
35
50
77 | —
38.5
54.6
81.2 | —
42
59
88 | 1
1.1
1.5
2.1 | 60 000
114 000
214 000
330 000 | 190 000
310 000
525 000
825 000 | 1 900
1 400
1 100
800 | 3 000
2 200
1 700
1 200 | 51118
51218
51318
51418 X | 53218
53318
53418) | —
53218 U
53318 U
(53418 XU | 120
135
155
187 | 92
93
93
93 | 110
120
140 | 140
160
195 | —
13.5
18
25.5 | 45
40
40 | 100
112
140 | 108
117
129
149 | 102
108
116
131 | 1
1
1.5
2 | 0.646
1.69
3.83
10.2 | -
1.89
4.11
10.3 | 2.38
5.09
12.4 | | 100 | 135
150
170
210 | 25
38
55
85 | —
40.9
59.2
90 | —
45
64
98 | 1
1.1
1.5
3 | 86 000
135 000
239 000
370 000 | 268 000
375 000
595 000
985 000 | 1 700
1 300
1 000
710 | 2 600
2 000
1 500
1 100 | 51120
51220
51320
51420 X | 53220
53320
53420 > | 53220 U
53320 U
53420 XU | 135
150
170
205 | 102
103
103
103 | 125
135
155 | 155
175
220 | —
14
18
27 | 52
46
50 | 112
125
160 | 121
130
142
165 | 114
120
128
145 | 1
1
1.5
2.5 | 0.96
2.25
4.98
14.8 |
2.49
5.31
15 | 3.03
6.37
18.1 | ## Bore Diameter 110 – 190 mm With Flat Seat With Aligning Seat With Aligning Seat Washer | | | Bounda | ry Dimensio | ons | | | ad Ratings | 1 | g Speeds
in ⁻¹) | • | Bearing N | Numbers(1) | | | I | Dimensi
(mm) | | | | | ent and | | | Mass(kg) | , | |----------|--------------------------|-----------------------|----------------------------|----------------------|----------------------|--|--|------------------------------|--------------------------------|--|--------------------------|---|-------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|------------------------|--------------------------|--------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------| | <i>d</i> | D | T | T_3 | T_4 | γ
min. | $C_{\rm a}$ | C_{0a} | Grease | Oil | With
Flat
Seat | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | D_{a} max. | γ _a
max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 110 | 145
160
190
230 | 25
38
63
95 | —
40.2
67.2
99.7 | —
45
72
109 | 1
1.1
2
3 | 88 000
136 000
282 000
415 000 | 288 000
395 000
755 000
1 150 000 | 1 700
1 300
900
630 | 2 400
1 900
1 300
950 | 51122
51222
51322 X
51422 X | | 53222 U
53322 XU
53322 XU
53422 XU | | 112
113
113
113 | —
135
150
170 | —
165
195
240 | —
14
20.5
29 | —
65
51
59 | —
125
140
180 | 131
140
158
181 | 124
130
142
159 | 1
1
2
2.5 | 1.04
2.42
7.19
20 |
2.65
7.55
20.5 | —
3.2
9.1
24.3 | | 120 | 155
170
210
250 | 25
39
70
102 | —
40.8
74.1
107.3 |
46
80
118 | 1
1.1
2.1
4 | 90 000
141 000
330 000
480 000 | 310 000
430 000
930 000
1 400 000 | 1 600
1 200
800
600 | 2 400
1 800
1 200
900 | 51124
51224
51324 X
51424 X | 53324) | | | 122
123
123
123 | 145
165
185 | 175
220
260 |
15
22
32 | 61
63
70 | 125
160
200 | 141
150
173
196 | 134
140
157
174 | 1
1
2
3 | 1.12
2.7
9.7
26.2 | | | | 130 | 170
190
225
270 | 30
45
75
110 | —
47.9
80.3
115.2 | 53
86
128 | 1
1.5
2.1
4 | 105 000
183 000
350 000
525 000 | 350 000
550 000
1 030 000
1 590 000 | 1 400
1 100
750
530 | 2 000
1 600
1 100
800 | 51126
51226 X
51326 X
51426 X | 53326) |
(53226 XU
(53326 XU
(53426 XU | 220 | 132
133
134
134 | 160
177
200 | 195
235
280 |
17
26
38 | —
67
53
58 | 140
160
200 | 154
166
186
212 | 146
154
169
188 | 1
1.5
2
3 | 1.68
3.95
12.1
32.3 |
4.35
12.7
32.4 | | | 140 | 180
200
240
280 | 31
46
80
112 | —
48.6
84.9
117 | 55
92
131 | 1
1.5
2.1
4 | 107 000
186 000
370 000
550 000 | 375 000
575 000
1 130 000
1 750 000 | 1 300
1 000
670
530 | 2 000
1 500
1 000
800 | 51128 X
51228 X
51328 X
51428 X | 53328) |
C 53228 XU
C 53328 XU
C 53428 XU | 235 | 142
143
144
144 | 170
190
206 | 210
250
290 |
17
26
38 | —
87
68
83 | 160
180
225 | 164
176
199
222 | 156
164
181
198 | 1
1.5
2
3 | 1.83
4.3
14.2
34.7 |
4.74
16.3
34.8 | | | 150 | 190
215
250
300 | 31
50
80
120 | 53.3
83.7
125.9 |
60
92
140 | 1
1.5
2.1
4 | 110 000
238 000
380 000
620 000 | 400 000
735 000
1 200 000
2 010 000 | 1 300
950
670
480 | 1 900
1 400
1 000
710 | 51130 X
51230 X
51330 X
51430 X | 53330) | —
(53230 XU
(53330 XU
(53430 XU | 245 | 152
153
154
154 | 180
200
225 | 225
260
310 |
20.5
26
41 | —
79
89.5
69 | 160
200
225 | 174
189
209
238 | 166
176
191
212 | 1
1.5
2
3 | 1.95
5.52
15
43.5 |
6.09
17.3
43.8 | 7.82
20.5
51.9 | | 160 | 200
225
270
320 | 31
51
87
130 | —
54.7
91.7
135.3 | 61
100
150 | 1
1.5
3
5 | 113 000
249 000
475 000
650 000 | 425 000
805 000
1 570 000
2 210 000 | 1 200
900
600
450 | 1 900
1 400
900
670 | 51132 X
51232 X
51332 X
51432 X | 53332) |
(53232 XU
(53332 XU
(53432 XU | 265 | 162
163
164
164 | 190
215
240 | 235
280
330 |
21
29
41.5 | —
74
77
84 | 160
200
250 | 184
199
225
254 | 176
186
205
226 | 1
1.5
2.5
4 | 2.07
6.04
19.6
52.7 |
6.78
22.3
52.9 | 8.7
26.7
62 | | 170 | 215
240
280
340 | 34
55
87
135 | —
58.7
91.3
141 | 65
100
156 | 1.1
1.5
3
5 | 135 000
280 000
465 000
715 000 | 510 000
915 000
1 570 000
2 480 000 | 1 100
850
600
430 | 1 700
1 300
900
630 | 51134 X
51234 X
51334 X
51434 X | 53334) |
(53234 XU
(53334 XU
(53434 XU | 275 | 172
173
174
174 | 200
220
255 | 250
290
350 |
21.5
29
46 | 91
105
74 | 180
225
250 | 197
212
235
269 | 188
198
215
241 | 1
1.5
2.5
4 | 2.72
7.41
20.3
61.2 | —
8.21
23.2
61.3 | —
10.5
28
73 | | 180 | 225
250
300
360 | 34
56
95
140 | —
58.2
99.3
148.3 | 66
109
164 | 1.1
1.5
3
5 | 136 000
284 000
480 000
750 000 | 530 000
955 000
1 680 000
2 730 000 | 1 100
800
560
400 | 1 700
1 200
850
600 | 51136 X
51236 X
51336 X
51436 X | 53336) |
< 53236 XU
< 53336 XU
< 53436 XU | 295 | 183
183
184
184 | —
210
240
270 | 260
310
370 | —
21.5
32
46.5 | 112
91
97 | 200
225
280 | 207
222
251
285 | 198
208
229
255 | 1
1.5
2.5
4
| 2.79
7.94
25.9
70.5 | —
8.57
29.2
72.1 | | | 190 | 240
270
320 | 37
62
105 | —
65.7
111 | —
73
121 | 1.1
2
4 | 172 000
320 000
550 000 | 655 000
1 110 000
1 960 000 | 1 000
750
500 | 1 600
1 100
750 | 51138 X
51238 X
51338 X | |
(53238 XU
(53338 XU | | 193
194
195 | 230
255 | 280
330 |
23
33 | 98
104 | 200
250 | 220
238
266 | 210
222
244 | 1
2
3 | 3.6
11.8
36.5 | —
12.9
38.1 |
15.7
44.7 | **Note** (1) The outside diameter d_1 of the shaft washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. # Bore Diameter 200 – 360 mm With Flat Seat With Aligning Seat With Aligning Seat Washer | | | Bounda | ry Dimensio | ons | | | oad Ratings
(N) | 1 | g Speeds
in ⁻¹) | | ŭ | lumbers(1) | | | | Dimensi
(mm) | | | | | nent and | | | Mass(kg) | | |-----|-------------------|-----------------|--------------------|----------------|------------------|-------------------------------|-----------------------------------|---------------------|--------------------------------|-------------------------------|--------------------------|---------------------------------|------------|-------------------|----------------|-----------------|--------------|----------------|------------|-------------------|---------------------------|---------------------------|----------------------|--------------------------|---------------------------------| | d | D | T | T_3 | T_4 | γ
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Grease | Oil | With
Flat
Seat | With
Aligning
Seat | With
Aligning
Seat Washer | d_1 | D_1 | D_2 | D_3 | b | A | R | $d_{ m a}$ min. | $D_{\rm a} \\ {\rm max.}$ | ${m \gamma}_{\rm a}$ max. | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 200 | 250
280
340 | 37
62
110 | —
65.3
118.4 | —
74
130 | 1.1
2
4 | 173 000
315 000
600 000 | 675 000
1 110 000
2 220 000 | 1 000
710
480 | 1 500
1 100
710 | 51140 X
51240 X
51340 X | | | | 203
204
205 |
240
270 |
290
350 |
23
38 | —
125
92 | 225
250 | 230
248
282 | 220
232
258 | 1
2
3 | 3.75
12.3
43.6 | —
13.4
46.2 | —
16.1
54.8 | | 220 | 270
300 | 37
63 | —
65.6 | —
75 | 1.1
2 | 179 000
325 000 | 740 000
1 210 000 | 950
670 | 1 500
1 000 | 51144 X
51244 X | 53244 X |
53244 XU | 267
297 | 223
224 |
260 | 310 |
25 | 118 |
225 | 250
268 | 240
252 | 1 2 | 4.09
13.6 | —
14.9 |
18 | | 240 | 300
340 | 45
78 | —
81.6 | 92 | 1.5
2.1 | 229 000
420 000 | 935 000
1 650 000 | 850
560 | 1 200
850 | 51148 X
51248 X | 53248 X |
53248 XU | 297
335 | 243
244 |
290 |
350 | 30 | 122 |
250 | 276
299 | 264
281 | 1.5
2 | 6.55
23.7 |
25.6 | 30.7 | | 260 | 320
360 | 45
79 | —
82.8 | 93 | 1.5
2.1 | 233 000
435 000 | 990 000
1 800 000 | 800
560 | 1 200
850 | 51152 X
51252 X | 53252 X |
53252 XU | 317
355 | 263
264 | 305 |
370 | 30 |
152 |
280 | 296
319 | 284
301 | 1.5
2 | 7.01
25.1 |
27.3 |
33.2 | | 280 | 350
380 | 53
80 | —
85 | 94 | 1.5
2.1 | 315 000
450 000 | 1 310 000
1 950 000 | 710
530 | 1 000
800 | 51156 X
51256 X | 53256 X |
53256 XU | 347
375 | 283
284 |
325 | 390 |
31 | 143 |
280 | 322
339 | 308
321 | 1.5
2 | 12
27.1 |
30.3 | _ 37 | | 300 | 380
420 | 62
95 |
100.5 | 112 | 2
3 | 360 000
540 000 | 1 560 000
2 410 000 | 600
450 | 900
670 | 51160 X
51260 X | 53260 X |
53260 XU | 376
415 | 304
304 | 360 | —
430 |
34 |
164 |
320 | 348
371 | 332
349 | 2
2.5 | 17.2
43.5 |
47.7 | —
56.1 | | 320 | 400
440 | 63
95 |
100.5 | 112 | 2 | 365 000
585 000 | 1 660 000
2 680 000 | 600
450 | 900
670 | 51164 X
51264 X | 53264 X |
53264 XU | 396
435 | 324
325 | 380 | —
450 |
36 |
157 |
320 | 368
391 | 352
369 | 2
2.5 | 18.6
45 | —
49.9 | —
59.4 | | 340 | 420
460 | 64
96 |
100.3 | 113 | 2
3 | 375 000
595 000 | 1 760 000
2 800 000 | 560
430 | 850
630 | 51168 X
51268 X | 53268 X |
53268 XU | 416
455 | 344
345 | 400 |
470 |
36 |
199 |
360 | 388
411 | 372
389 | 2
2.5 | 19.9
47.9 |
52.7 | <u> </u> | | 360 | 440
500 | 65
110 |
116.7 | 130 | 2
4 | 385 000
705 000 | 1 860 000
3 500 000 | 560
380 | 800
560 | 51172 X
51272 X | 53272 X |
53272 XU | 436
495 | 364
365 | 430 |
510 |
43 |
172 |
360 | 408
442 | 392
418 | 2 | 21.5
68.8 | —
76.3 | 90.9 | **Note** (1) The outside diameter d_1 of the shaft washers of all bearing numbers marked X is smaller than the outside diameter Dof the housing washers. # **DOUBLE-DIRECTION THRUST BALL BEARINGS** # Bore Diameter 10 – 55 mm | | | В | | Dimensi | ons | | | Basic Loa | nd Ratings | Limiting
(mi | | Bearin | g Numbers | | | | | | Dimensio
(mm) | ons | | | | | | nent an | d Fillet
(mm) | I | Mass(kg
approx. | | |-------|----------------------|-----------------|-----------------------|---------------------------|------------------------|----------------------|------------------------|---|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|-------------------------|----------------------|---------------------------------------|----------------|--------------------------|------------------------|----------------|-------------------------|--------------------------|------------------------|----------------|-------------------------|------------------------|------------------------------|------------------------------|---------------------------------| | d_2 | d | D | T_1 | T_5 | T_7 | γ
min. | ${m r}_1$ min. | $C_{\rm a}$ | C_{0a} | Grease | Oil | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | d_3 | D_1 | D_2 D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | | ${\pmb{\gamma}}_a$ max. | | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | | 10 | 15 | 32 | 22 | 24.6 | 28 | 0.6 | 0.3 | 16 700 | 24 800 | 4 800 | 7 100 | 52202 | 54202 | 54202 U | 32 | 17 | 24 35 | 13 | 5 14.8 | 16.5 | 5 | 4 | 10.5 | 28 | 24 | 0.6 | 0.3 | 0.081 | 0.090 | 0.113 | | 15 | 20
25 | 40
60 | 26
45 | 27.4
49.8 | 32
55 | 0.6
1 | 0.3
0.6 | 22 500
56 000 | 37 500
89 500 | 4 000
2 400 | 6 000
3 600 | 52204
52405 | 54204
54405 | 54204 U
54405 U | 40
60 | 22
27 | 30 42
42 62 | 16
28 | | 19
33 | 6
11 | 5
8 | 16
15 | 36
50 | | 0.6
1 | 0.3
0.6 | 0.148
0.641 | | 0.185
0.825 | | 20 | 25
25
30 | | 28
34
52 | 31.4
37.6
56.2 | 36
42
62 | 0.6
1
1 | 0.3
0.3
0.6 | 28 000
36 000
73 000 | 50 500
61 500
126 000 | 3 400
3 000
2 200 | 5 300
4 500
3 200 | 52205
52305
52406 | 54205
54305
54406 | 54205 U
54305 U
54406 U | 47
52
70 | 27
27
32 | 36 50
38 55
50 75 | 17
21
32 | 22.8 | 21.5
25
37 | 7
8
12 | 5.5
6
9 | 16.5
18
16 | 40
45
56 | 36
38
50 | 0.6
1
1 | 0.3
0.3
0.6 | | 0.35 | 0.293
0.434
1.27 | | 25 | 30
30
35 | 52
60
80 | 29
38
59 | 32.6
41.2
63 | 37
46
69 | 0.6
1
1.1 | 0.3
0.3
0.6 | 29 500
43 000
87 500 | 58 000
78 500
155 000 | 3 200
2 600
1 800 | 5 000
4 000
2 800 | 52206
52306
52407 | 54206
54306
54407 | 54206 U
54306 U
54407 U | 52
60
80 | 32
32
37 | 42 55
45 62
58 85 | | | 22
27.5
41.5 | | 5.5
7
10 | 20
19.5
18.5 | 45
50
64 | 42
45
58 | 0.6
1
1 | 0.3
0.3
0.6 | | 0.288
0.511
1.47 | | | 30 | 35
35
40 | 62
68
68 | 34
44
36 | 37.8
47.2
38.6 | 42
52
44 | 1
1
1 | 0.3
0.3
0.6 | 39 500
56 000
47 500 | 78 000
105 000
98 500 | 2 800
2 400
2 600 | 4 300
3 600
3 800 | 52207
52307
52208 | 54207
54307
54208 | 54207 U
54307 U
54208 U | 62
68
68 | 37
37
42 | 48 65
52 72
55 72 | | | 25
31
26.5 | 8
10
9 | 7
7.5
7 | 21
21
25 | 50
56
56 | 48
52
55 | 1
1
1 | 0.3
0.3
0.6 | 0.71 | | 0.915 | | | 40
40 | 78
90 | 49
65 | 54
69.4 | 59
77 | 1
1.1 | 0.6
0.6 | 70 000
103 000 | 135 000
188 000 | 2 000
1 700 | 3 000
2 400 | 52308
52408 | 54308
54408 | 54308 U
54408 U | 78
90 | 42
42 | 60 82
65 95 | 30
40 | 5 33
42.2 | 35.5
46 | 12
15 | 8.5
12 | 23.5
22 | 64
72 | 60
65 | 1
1 | 0.6
0.6 | 1.04
1.98 | 1.13
2.02 | 1.38
2.54 | | 35 | 45
45
45 | | 37
52
72 | 39.6
56.2
78.8 | 45
62
86 | 1
1
1.1 | 0.6
0.6
0.6 | 48 000
80 500
128 000 | 105 000
163 000
246 000 | 2 400
1 900
1 500 | 3 600
2 800
2 200 | 52209
52309
52409 | 54209
54309
54409 | 54209 U
54309 U
54409 U | 73
85
100 | 47
47
47 | 60 78
65 90
72 105 | 23
32
44 | | 27
37
51.5 | 12 | 7.5
10
12.5 | 23
21
23.5 | 56
64
80 | 60
65
72 | 1
1
1 | 0.6
0.6
0.6 | 0.606
1.28
2.71 | 0.652
1.34
2.85 | 0.823
1.71
3.53 | | 40 | 50
50
50 | 78
95
110 | 39
58
78 | 42
64.6
83.2 |
47
70
92 | 1
1.1
1.5 | 0.6
0.6
0.6 | 49 000
97 500
147 000 | 111 000
202 000
288 000 | 2 400
1 700
1 400 | 3 400
2 600
2 000 | 52210
52310
52410 | 54210
54310
54410 | 54210 U
54310 U
54410 U | 78
95
110 | 52
52
52 | 62 82
72 100
80 115 | | | 28
42
55 | 9
14
18 | | 30.5
23
30 | 64
72
90 | 62
72
80 | 1
1
1.5 | 0.6
0.6
0.6 | 0.697
1.78
3.51 | 0.75
1.94
3.59 | 0.949
2.46
4.45 | | 45 | 55
55
55 | | 45
64
87 | 49.6
72.6
92 | 55
78
101 | 1
1.1
1.5 | 0.6
0.6
0.6 | 70 000
115 000
181 000 | 159 000
244 000
350 000 | 2 000
1 500
1 200 | 3 000
2 400
1 800 | 52211
52311
52411 | 54211
54311
54411 | 54211 U
54311 U
54411 U | 90
105
120 | 57
57
57 | 72 95
80 110
88 125 | | 5 29.8
5 43.8
5 56 | 32.5
46.5
60.5 | 15 | | 32.5
25.5
22.5 | 72
80
90 | 72
80
88 | 1
1
1.5 | 0.6
0.6
0.6 | 1.11
2.43
4.66 | 1.22
2.7
4.68 | 1.55
3.35
5.82 | | 50 | 60
60
60
65 | 130 | 46
64
93
101 | 50
70.6
99
109.4 | 56
78
107
119 | 1
1.1
1.5
2 | 0.6
0.6
0.6
1 | 71 500
119 000
202 000
234 000 | 169 000
263 000
395 000
495 000 | 1 900
1 500
1 100
1 000 | 3 000
2 200
1 700
1 600 | 52212
52312
52412
52413 | 54212
54312
54412
54413 | 54212 U
54312 U
54412 U
54413 U | 95
110
130
140 | 62
62
62
68 | 78 100
85 115
95 135
100 145 | 57 | 5 42.8
60 | 33
46.5
64
71 | | 9
11.5
16
17.5 | 30.5
36.5
28
34 | 72
90
100
112 | | 1
1
1.5
2 | 0.6
0.6
0.6
1 | 1.22
2.59
5.74
7.41 | 1.33
2.82
5.82
7.66 | 1.66
3.45
7.24
9.47 | | 55 | 65
65
70 | 115 | 47
65
47 | 50.4
71.8
50.6 | 57
79
57 | 1
1.1
1 | 0.6
0.6
1 | 75 500
123 000
74 000 | 189 000
282 000
189 000 | 1 900
1 500
1 800 | 2 800
2 200
2 800 | 52213
52313
52214 | 54213
54313
54214 | | 100
115
105 | 67
67
72 | 82 105
90 120
88 110 | 40 | 5 30.2
43.4
5 30.3 | 33.5
47
33.5 | 10
15
10 | 9
12.5
9 | 38.5
34.5
36.5 | 80
90
80 | 82
90
88 | 1
1
1 | 0.6
0.6
1 | 1.34
2.8
1.44 | 1.45
3.06
1.59 | 1.81
3.8
1.95 | | | 70
70 | | 72
107 | 80.4
114.2 | 88
125 | 1.1
2 | 1
1 | 137 000
252 000 | 315 000
555 000 | 1 300
1 000 | 2 000
1 500 | 52314
52414 | 54314
54414 | 54314 U
54414 U | 125
150 | 72
73 | 98 130
110 155 | 44
65 | 48.2
5 69.1 | 52
74.5 | | 13
19.5 | 39
28.5 | 100
112 | 98
110 | 1 2 | 1 | 3.67
8.99 | 4.07
9.12 | 4.95
11.3 | # **DOUBLE-DIRECTION THRUST BALL BEARINGS** ## Bore Diameter 60 - 130 mm | | | Во | | Dimensi | ons | | | | ad Ratings | Limiting
(mi | • | Bearing | Numbers(1) | | | | | D | imensio
(mm) | ns | | | | | nent and | | | Mass(kg) | | |----------|----------------------|--------------------------|------------------------|----------------------------|------------------------|------------------------|--------------------|---|--|------------------------------|----------------------------------|-------------------------------|--------------------------------------|---|----------------------------|-------------------|---|-----------------------|------------------------------|----------------|---------------------------|-----------------|-------------------------------|-----------------------|-------------------------|--------------------|------------------------------|------------------------------|---------------------------------| | d_2 | d | D | T_1 | T_5 | T_7 | γ
min. | ${\cal Y}_1$ min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Grease | Oil | With
Flat Seat | With
t Aligning
Seat | With
Aligning
Seat Washer | d_3 | D_1 | D_2 D_3 | T_2 | T_6 | T_8 | B b | A_1 | R | D_{a} max. | ${\pmb{\gamma}}_a$ max. | $m{r}_{ m b}$ max. | With
Flat Seat | | With
Aligning
Seat Washer | | 60 | 75
75
75 | 110
135
160 | 47
79
115 | 49.6
87.2
123 | 57
95
135 | 1
1.5
2 | 1
1
1 | 78 000
159 000
254 000 | 209 000
365 000
560 000 | 1 800
1 200
900 | 2 600
1 800
1 400 | 52215
52315
52415 | 54215
54315
54415 | 54215 U
54315 U
54415 U | 110
135
160 | 77 | 92 115
105 140
115 165 | 48.5 | 29.8
52.6
74.5 | 56.5 | 10 9.
18 15
26 21 | 32.5 | 5 90
5 100
5 125 | | 1.5 | | 1.54
4.74
10.8 | 5.14 | | | 65 | 80
80
80
85 | 115
140
170
180 | 48
79
120
128 | 51
86.2
128.4
138 | 58
95
140
150 | 1
1.5
2.1
2.1 | 1
1
1
1.1 | 79 000
164 000
272 000
310 000 | 218 000
395 000
620 000
755 000 | 1 700
1 200
850
800 | 2 600
1 800
1 300
1 200 | | 54216
54316
54416
X 54417 X | 54216 U
54316 U
54416 U
54417 XU | 115
140
170
179.5 | 83 | 98 120
110 145
125 175
130 185 | 73.5 | 30.5
52.1
77.7
83.5 | 83.5 | | 30.5 | 90
5 112
5 125
5 140 | 125 | 2 | 1
1
1 | 1.66
4.99
12.6
15.4 | 1.78
5.39
12.8
15.8 | | | 70 | 85
85
90 | 125
150
190 | 55
87
135 | 59.2
95.2
143.4 | 67
105
157 | 1
1.5
2.1 | 1
1
1.1 | 96 000
207 000
330 000 | 264 000
490 000
825 000 | 1 500
1 100
750 | 2 200
1 600
1 100 | 52217
52317
52418) | | 54217 U
54317 U
54418 XU | 125
150
189.5 | 88 | 105 130
115 155
140 195 | 33.5
53
82.5 | 35.6
57.1
86.7 | 62 | 12 11
19 17.
30 25. | 5 39 | 5 100
112
5 140 | 115 | | 1
1
1 | 2.26
6.38
17.5 | 2.45
6.8
18.1 | 3.02
10.5
22.5 | | 75
80 | 90
90
100 | 135
155
210 | 62
88
150 | 69
97.2
160 | 76
106
176 | 1.1
1.5
3 | 1
1
1.1 | 114 000
214 000
370 000 | 310 000
525 000
985 000 | 1 400
1 100
670 | 2 000
1 600
1 000 | | 54218
54318
X 54420 X | 54218 U
54318 U
54420 XU | 135
155
209.5 | 93 | 110 140
120 160
155 220 | | 41.5
58.1
96.5 | 62.5 | 14 13.
19 18
33 27 | 36.5 | 100
5 112
5 160 | | 1.5 | 1 | 3.09
6.79
26.8 | | | | 85
90 | 100
100
110 | 150
170
230 | 67
97
166 | 72.8
105.4
— | 81
115
— | 1.1
1.5
3 | 1
1
1.1 | 135 000
239 000
415 000 | 375 000
595 000
1 150 000 | 1 300
950
600 | 1 900
1 500
900 | 52220
52320
52422 | | 54220 U
54320 U
— | 150
170
229 | | 125 155
135 175
— — | 41
59
101.5 | 43.9
63.2
— | 48
68
— | 15 14
21 18
37 — | 49
42
— | 112
125
— | 135 | 1
1.5
2.5 | | 4.08
8.82
35.6 | | | | 95 | 110
110
120 | | 67
110
177 | 71.4
118.4
— | 81
128
— | 1.1
2
4 | 1
1
1.5 | 136 000
282 000
515 000 | 395 000
755 000
1 540 000 | 1 200
850
560 | 1 800
1 300
850 | | 54222
X 54322 X
X — | 54222 U
54322 XU
— | 189.5 | | 135 165
150 195
— — | | 43.2
71.2
— | 48
76
— | 15 14
24 20.
40 — | 62
5 47
— | 125
140
— | | 2 | 1
1
1.5 | 4.39
12.7
47.6 | | 5.94
16.6
— | | 100 | 120
120
130 | 170
210
270 | | 71.6
131.2
— | 82
143
— | 1.1
2.1
4 | 1.1
1.1
1.5 | 141 000
330 000
525 000 | 430 000
930 000
1 590 000 | 1 200
750
530 | 1 800
1 100
800 | | 54224
X 54324 X
X — | 54224 U
54324 XU
— | 209.5 | | 145 175
165 220
— — | 75 | 43.3
79.1
— | | 15 15
27 22
42 — | 58.5
58
— | 5 125
160
— | | 2 | 1
1
1.5 | 4.92
17.6
57.8 | 5.4
16.4
— | 6.68
22.9
— | | 110 | 130
130
140 | 190
225
280 | 80
130
196 | 85.8
—
— | 96
— | 1.5
2.1
4 | 1.1
1.1
1.5 | 183 000
350 000
550 000 | 550 000
1 030 000
1 750 000 | 1 000
710
500 | 1 500
1 100
750 | 52226)
52326)
52428) | | 54226 XU
—
— | 224 | 133
134
144 | | 49
80
120 | 51.9
— | 57
—
— | 18 17
30 —
44 — | 63
— | 140
— | 160
169
198 | 2 | 1
1
1.5 | 7.43
21.5
62.4 | 8.24
— | 10.2
—
— | | 120 | 140
140
150 | 200
240
300 | 81
140
209 | 86.2
— | 99
— | 1.5
2.1
4 | 1.1
1.1
2 | 186 000
370 000
620 000 | 575 000
1 130 000
2 010 000 | 1 000
670
480 | 1 500
1 000
710 | 52228)
52328)
52430) | | 54228 XU
—
— | 199.5
239
299 | 143
144
153 | | 49.5
85.5
127.5 | _ | 58.5
—
— | 18 17
31 —
46 — | 83.8
— | 5 160
— | 181 | 2 | 1
1
2 | 8.01
24.8
77.8 | 8.87
— | 11.2
— | | 130 | 150
150
160 | 215
250
320 | 89
140
226 | 95.6
—
— | 109
— | 1.5
2.1
5 | 1.1
1.1
2 | 238 000
380 000
650 000 | 735 000
1 200 000
2 210 000 | 900
630
430 | 1 300
950
630 | 52230)
52330)
52432) | | 54230 XU
—
— | 249 | 153
154
164 | 180 225
— — | 85.5 | 57.8
—
— | 64.5
—
— | 20 20.
31 —
50 — | 5 74.5
— | 5 160
— | 191 | 2 | 1
1
2 | 10.4
30.3
93.6 | 11.5
— | 15
—
— | **Note** (1) The outside diameter d_3 of the central washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. # Bore Diameter 135 – 190 mm | | | В | | / Dimens
mm) | ions | | | | oad Ratings | Limiting
(mir | |
Bearing N | lumbers(1) | | | | | [| Dimensio
(mm) | ns | | | | | | ent and F
sions (m | | | ass(kg)
pprox. | | |-------|--------------------------|--------------------------|------------------------|--------------------------|----------------------|----------------------|----------------------|--|--|--------------------------|------------------------------|-------------------------------|--------------------------|---------------------------------|---------------------|--------------------------|----------------------------------|-------------------------|------------------------|----------------------|----------------|--------------|-----------------------|---------------|-----------------------|----------------------------------|-----|--------------------|------------------------|---------------------------------| | d_2 | d | D | T_1 | T_5 | T_7 | γ
min. | ${m r}_1$ min. | C_{a} | C_{0a} | Grease | Oil | With
Flat Seat | With
Aligning
Seat | With
Aligning
Seat Washer | d_3 | D_1 | D_2 D_3 | T_2 | T_6 | T_8 | В | b | A_1 | R | D_{a} max. | r _a in max. In | | With
lat Seat A | | With
Aligning
Seat Washer | | 135 | 170 | 340 | 236 | _ | _ | 5 | 2.1 | 715 000 | 2 480 000 | 400 | 600 | 52434 X | _ | _ | 339 | 174 | | 143 | _ | _ | 50 | _ | _ | _ | 240 | 4 2 | 2 1 | 10 | _ | _ | | 140 | 160
160
180 | 225
270
360 | 90
153
245 | 97.4
—
— | 110
— | 1.5
3
5 | 1.1
1.1
3 | 249 000
475 000
750 000 | 805 000
1 570 000
2 730 000 | 850
600
380 | 1 300
900
560 | 52232 X
52332 X
52436 X | | 54232 XU
—
— | 224.5
269
359 | 163
164
184 | 190 235
— — | 55
93
148.5 | 58.7
—
5 — | 65
—
— | 20
33
52 | 21
—
— | 70
—
— | 160
—
— | 205 | 1.5 1
2.5 1
4 2 | | 35.1 | 12.7
—
— | 16.5
— | | 150 | 170
170
180
180 | 240
280
250
300 | 97
153
98
165 | 104.4
—
102.4
— | 117
—
118
— | 1.5
3
1.5
3 | 1.1
1.1
2
2 | 280 000
465 000
284 000
480 000 | 915 000
1 570 000
955 000
1 680 000 | 800
560
800
530 | 1 200
850
1 200
800 | 52334 X | 54236 X | 54234 XU
 | 279 | 173
174
183
184 | 200 250
— —
210 260
— — | 59
93
59.5
101 | 62.7
—
61.7
— | 69
—
69.5
— | 33
21 | _ | 87
—
108.5
— | 200 | 215
210 | 1.5 1
2.5 1
1.5 2
2.5 2 | 2 | 40.8
14.8 | 15.2
—
16.1
— | 19.8
—
20.6
— | | 160 | 190
190 | 270
320 | 109
183 | 116.4
— | 131 | 2
4 | 2 | 320 000
550 000 | 1 110 000
1 960 000 | 710
480 | 1 100
710 | 52238 X
52338 X | 54238 X
— | 54238 XU
— | 269
319 | 194
195 | 230 280
— — | 66.5
111.5 | , , | 77.5
— | 24
40 | 23 | 93.5
— | | 230
244 | 2 2 3 | | 4.0 | 22.2
— | 29.8
— | | 170 | 200
200 | 280
340 | 109
192 | 115.6
— | 133 | 2
4 | 2 | 315 000
600 000 | 1 110 000
2 220 000 | 710
450 | 1 000
670 | 52240 X
52340 X | 54240 X
— | 54240 XU
— | 279
339 | 204
205 | 240 290
— — | 66.5
117 | 69.8
— | 78.5
— | 24
42 | 23 | 120.5
— | 225
— | 240
258 | 2 2 3 2 | | 70.4 | 23.2 | 30.6 | | 190 | 220 | 300 | 110 | 115.2 | 134 | 2 | 2 | 325 000 | 1 210 000 | 670 | 1 000 | 52244 X | 54244 X | 54244 XU | 299 | 224 | 260 310 | 67 | 69.6 | 79 | 24 | 25 | 114 | 225 | 260 | 2 2 | 2 | 25.2 | 27.8 | 34.1 | **Note** (1) The outside diameter d_3 of the central washers of all bearing numbers marked X is smaller than the outside diameter D of the housing washers. C 310 C 311 |--| | 9. | THRUST CYLINDRICAL ROLLER BEARINGS | | |----|------------------------------------|------| | | INTRODUCTION | C 31 | | | REARINGS TARI E | | THRUST CYLINDRICAL ROLLER BEARINGS C 312 C 313 # **DESIGN, TYPES, AND FEATURES** #### THRUST CYLINDRICAL ROLLER BEARINGS These are thrust bearings containing cylindrical rollers. They can sustain only axial loads, but they are suitable for heavy loads and have high axial rigidity. The cages are machined brass. # **TOLERANCES AND RUNNING ACCURACY** THRUST CYLINDRICAL ROLLER BEARINGS According to Table 7.6 (Pages A140 to A142) # RECOMMENDED FITS THRUST CYLINDRICAL ROLLER BEARINGS.....Table 8.4 (Pages A164) Table 8.6 (Pages A165) # **MINIMUM AXIAL LOAD** It is necessary to apply some axial load to thrust bearings to prevent slippage between the rolling elements and raceways. For more details, please contact NSK. C 315 C 314 # ■THRUST CYLINDRICAL ROLLER BEARINGS Bore Diameter 35 - 130 mm | | Boundary [
(m | | | | d Ratings | | g Speeds
nin ⁻¹) | Bearing Numbers | | | ensions
nm) | | | tment and
nensions (r | | Mass
(kg) | |----------|-------------------|----------------|------------------|-------------------------------|-------------------------------------|---------------------|---------------------------------|--|-------------------|-------------------|-----------------|---------------------|-------------------|--------------------------|----------------------------|---------------------| | d | D | T | γ
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Grease | Oil | bearing Numbers | d_1 | D_1 | $D_{ m w}$ | t | $d_{ m a}$ min. | $D_{ m a}$ max. | $oldsymbol{\gamma}_a$ max. | approx. | | 35
40 | 80
78 | 32
22 | 1.1
1 | 95 500
63 000 | 247 000
194 000 | 1 000
1 200 | 3 000
3 600 | 35 TMP 14
40 TMP 93 | 80
78 | 37
42 | 12
8 | 10
7 | 71
71 | 46
48 | 1
1 | 0.97
0.525 | | 45 | 65
85 | 14
24 | 0.6
1 | 33 000
71 000 | 100 000
233 000 | 1 700
1 100 | 5 000
3 400 | 45 TMP 11
45 TMP 93 | 65
85 | 47
47 | 6
8 | 4
8 | 60
78 | 49
53 | 0.6
1 | 0.144
0.665 | | 50 | 110
95 | 27
27 | 1.1
1.1 | 139 000
113 000 | 470 000
350 000 | 900
1 000 | 2 800
3 000 | 50 TMP 74
50 TMP 93 | 109
93 | 52
52 | 11
11 | 8 | 100
89 | 61
57 | 1
1 | 1.52
0.94 | | 55 | 105 | 30 | 1.1 | 134 000 | 450 000 | 900 | 2 600 | 55 TMP 93 | 105 | 55.2 | 11 | 9.5 | 98 | 63 | 1 | 1.28 | | 60 | 95
110 | 26
30 | 1
1.1 | 99 000
139 000 | 325 000
480 000 | 1 000
850 | 3 000
2 600 | 60 TMP 12
60 TMP 93 | 95
110 | 62
62 | 10
11 | 8
9.5 | 88
103 | 67
68 | 1
1 | 0.735
1.36 | | 65 | 100
115 | 27
30 | 1
1.1 | 110 000
145 000 | 325 000
515 000 | 950
850 | 2 800
2 600 | 65 TMP 12
65 TMP 93 | 100
115 | 67
65.2 | 12.5
11 | 7.25
9.5 | 93
108 | 71
73 | 1
1 | 0.805
1.44 | | 70 | 150
125 | 36
34 | 2
1.1 | 259 000
191 000 | 935 000
635 000 | 670
750 | 2 000
2 200 | 70 TMP 74
70 TMP 93 | 149
125 | 72
72 | 15
14 | 10.5
10 | 137
117 | 84
78 | 2
1 | 3.8
1.95 | | 75 | 100
135 | 19
36 | 1
1.5 | 63 500
209 000 | 221 000
735 000 | 1 100
710 | 3 400
2 200 | 75 TMP 11
75 TMP 93 | 100
135 | 77
77 | 8
14 | 5.5
11 | 96
125 | 79
84 | 1
1.5 | 0.41
2.42 | | 80 | 115
140 | 28
36 | 1
1.5 | 120 000
208 000 | 420 000
740 000 | 900
710 | 2 600
2 000 | 80 TMP 12
80 TMP 93 | 115
138 | 82
82 | 11
14 | 8.5
11 | 109
130 | 86
91 | 1
1.5 | 1.02
2.54 | | 85 | 110
125
150 | 19
31
39 | 1
1
1.5 | 75 000
151 000
257 000 | 298 000
485 000
995 000 | 1 100
800
630 | 3 200
2 400
1 900 | 85 TMP 11
85 TMP 12
85 TMP 93 | 110
125
148 | 87
88
87 | 7.5
14
14 | 5.75
8.5
12.5 | 105
118
140 | 89
92
95 | 1
1
1.5 | 0.46
1.36
3.2 | | 90 | 120
155 | 22
39 | 1
1.5 | 96 000
250 000 | 370 000
885 000 | 950
630 | 3 000
1 900 | 90 TMP 11
90 TMP 93 | 119
155 | 91.5
90.2 | 9
16 | 6.5
11.5 | 114
144 | 95
101 | 1
1.5 | 0.725
3.3 | | 100 | 170 | 42 | 1.5 | 292 000 | 1 110 000 | 560 | 1 700 | 100 TMP 93 | 170 | 103 | 16 | 13 | 159 | 110 | 1.5 | 4.25 | | 110 | 160
190 | 38
48 | 1.1
2 | 228 000
390 000 | 855 000
1 490 000 | 630
500 | 1 900
1 500 | 110 TMP 12
110 TMP 93 | 160
190 | 113
113 | 15
19 | 11.5
14.5 | 150
179 | 119
120 | 1
2 | 2.66
6.15 | | 120 | 170
210 | 39
54 | 1.1
2.1 | 233 000
505 000 | 895 000
1 930 000 | 600
450 | 1 800
1 400 | 120 TMP 12
120 TMP 93 | 170
210 | 123
123 | 15
22 | 12
16 | 160
199 | 129
129 | 1
2 | 2.93
8.55 | | 130 | 190
225
270 | 45
58
85 | 1.5
2.1
4 | 300 000
585 000
895 000 | 1 090 000
2 370 000
3 300 000 | 530
430
320 | 1 600
1 300
950 | 130 TMP 12
130 TMP 93
130 TMP 94 | 187
225
270 | 133
133
133 | 19
22
32 | 13
18
26.5 | 177
214
254 | 142
140
150 | 1.5
2
3 | 4.5
10.4
26.2 | **Remark** For cylindrical roller thrust bearings not listed adove, please contact NSK. # ■THRUST CYLINDRICAL ROLLER BEARINGS Bore Diameter 140 – 320 mm | | | Dimensions
im) | | | ad Ratings | - | Speeds
in ⁻¹) | Bearing Number | | | | ensions
mm) | | | tment and I
lensions (n | | Mass
(kg) | |-----|-------------------|-------------------|------------------|-------------------------------|-------------------------------------|-------------------|------------------------------|----------------|--|----------------------------|-------------------|----------------|----------------------|-------------------|----------------------------|------------------------------|----------------------| | d | D | T | γ
min. | $C_{\rm a}$ | C_{0a} | Grease | Oil | | boaring Numbers | $d_{\scriptscriptstyle 1}$ | D_1 | $D_{ m w}$ | t |
$d_{ m a}$ min. | D_{a} max. | $oldsymbol{\gamma}_{a}$ max. | approx. | | 140 | 200
240
280 | 46
60
85 | 2
2.1
4 | 285 000
610 000
990 000 | 1 120 000
2 360 000
3 800 000 | 500
400
300 | 1 500
1 200
900 | | 140 TMP 12
140 TMP 93
140 TMP 94 | 197
240
280 | 143
143
143 | 17
25
32 | 14.5
17.5
26.5 | 188
226
262 | 153
154
158 | 2
2
3 | 4.85
12.2
27.5 | | 150 | 215
250 | 50
60 | 2
2.1 | 375 000
635 000 | 1 500 000
2 510 000 | 480
400 | 1 400
1 200 | | 150 TMP 12
150 TMP 93 | 215
250 | 153
153 | 19
25 | 15.5
17.5 | 202
236 | 163
165 | 2 2 | 6.15
12.8 | | 160 | 200
270 | 31
67 | 1
3 | 173 000
745 000 | 815 000
3 150 000 | 630
360 | 1 900
1 100 | | 160 TMP 11
160 TMP 93 | 200
265 | 162
164 | 11
25 | 10
21 | 191
255 | 168
173 | 1
2.5 | 2.21
16.9 | | 170 | 240
280 | 55
67 | 1.5
3 | 485 000
800 000 | 1 960 000
3 500 000 | 430
340 | 1 300
1 000 | | 170 TMP 12
170 TMP 93 | 237
280 | 173
173 | 22
25 | 16.5
21 | 227
265 | 182
183 | 1.5
2.5 | 8.2
17.7 | | 180 | 300
360 | 73
109 | 3
5 | 1 000 000
1 640 000 | 4 000 000
6 200 000 | 320
240 | 950
710 | | 180 TMP 93
180 TMP 94 | 300
354 | 185
189 | 32
45 | 20.5
32 | 284
335 | 194
205 | 2.5
4 | 22.5
58.2 | | 190 | 270
320 | 62
78 | 3
4 | 705 000
1 080 000 | 2 630 000
4 500 000 | 360
300 | 1 100
900 | | 190 TMP 12
190 TMP 93 | 266
320 | 195
195 | 30
32 | 16
23 | 255
303 | 200
205 | 2.5
3 | 11.8
27.6 | | 200 | 250
340 | 37
85 | 1.1
4 | 365 000
1 180 000 | 1 690 000
5 150 000 | 500
280 | 1 500
800 | | 200 TMP 11
200 TMP 93 | 247
340 | 203
205 | 17
32 | 10
26.5 | 242
322 | 207
218 | 1
3 | 4.1
34.5 | | 220 | 270
300 | 37
63 | 1.1
2 | 385 000
770 000 | 1 860 000
3 100 000 | 480
340 | 1 500
1 000 | | 220 TMP 11
220 TMP 12 | 267
297 | 223
224 | 17
30 | 10
16.5 | 262
287 | 227
232 | 1
2 | 4.5
13.5 | | 240 | 300
340 | 45
78 | 1.5
2.1 | 435 000
965 000 | 2 160 000
4 100 000 | 400
280 | 1 200
850 | | 240 TMP 11
240 TMP 12 | 297
335 | 243
244 | 18
32 | 13.5
23 | 288
322 | 251
258 | 1.5
2 | 7.2
23.3 | | 260 | 320
360 | 45
79 | 1.5
2.1 | 460 000
995 000 | 2 350 000
4 350 000 | 400
280 | 1 200
850 | | 260 TMP 11
260 TMP 12 | 317
355 | 263
264 | 18
32 | 13.5
23.5 | 308
342 | 272
276 | 1.5
2 | 7.75
25.2 | | 280 | 350
380 | 53
80 | 1.5
2.1 | 545 000
1 050 000 | 2 800 000
4 750 000 | 340
260 | 1 000
800 | | 280 TMP 11
280 TMP 12 | 347
375 | 283
284 | 20
32 | 16.5
24 | 335
362 | 294
296 | 1.5
2 | 11.6
27.2 | | 300 | 380
420 | 62
95 | 2
3 | 795 000
1 390 000 | 4 000 000
6 250 000 | 300
220 | 900
670 | | 300 TMP 11
300 TMP 12 | 376
415 | 304
304 | 25
38 | 18.5
28.5 | 365
398 | 315
322 | 2
2.5 | 16.7
42 | | 320 | 400
440 | 63
95 | 2
3 | 820 000
1 420 000 | 4 250 000
6 550 000 | 300
220 | 900
670 | | 320 TMP 11
320 TMP 12 | 396
435 | 324
325 | 25
38 | 19
28.5 | 385
418 | 335
340 | 2
2.5 | 18
44.5 | **Remark** For cylindrical roller thrust bearings not listed adove, please contact NSK. # 10. THRUST TAPERED ROLLER BEARINGS | NTRODUCTION | C 32 | |---------------------------------|------| | BEARINGS TABLE | | | THRUST TAPERED ROLLER BEARINGS | | | Rore Diameter 101 600mm - 600mm | ር 30 | C 320 C 321 # **DESIGN, TYPES, AND FEATURES** ## THRUST TAPERED ROLLER BEARINGS These are thrust bearings containing tapered rollers. TT-type bearings, which have a rib on the housing washer, can accurately guide the shaft in the radial direction. TTF-type bearings, which have no rib on the housing washer, can tolerate some eccentricity during operation. Fig 1 TT, TTF Base Structure ## TOLERANCES AND RUNNING ACCURACY THRUST TAPERED ROLLER BEARINGS Table 7.7 (Page A144) ## RECOMMENDED FITS TABLE 8.4 (Page A164) Table 8.6 (Page A165) For inch design tapered roller thrust bearings, please contact NSK. # MINIMUM AXIAL LOAD It is necessary to apply some axial load to thrust bearings to prevent slippage between the rolling elements and raceways. For more details, please contact NSK. # **USAGE EXAMPLE** Typical structure of Heavy Duty Extruder is shown in Figure 2. Figure 2 Thrust Tapered Roller Bearing in Heavy Duty Extruder # BEARINGS TABLE **NSK** TT, TTF Types Bore Diameter 101.600 – 168.275 mm ■THRUST TAPERED ROLLER BEARINGS TT TTF | Boundary Dimensions (mm/inch) | | | | Basic Load Ratings
(kN) | | | Dimen
(mr | | Corner Radius
of Shaft | Mass
(kg) | | |-------------------------------|--------------------|------------------|-----------|----------------------------|-------------------|--|-------------------------|--------------|---------------------------|---------------------------------------|--------------| | d | D | T | γ
min. | C_{a} | $C_{0\mathrm{a}}$ | | Bearing Numbers | D_1 | d_1 | or Housing $oldsymbol{\gamma}_a$ max. | approx. | | 101.600
4.0000 | 215.900
8.5000 | 46.038
1.8125 | 3.3 | 710 | 2 900 | | *101TT2151 | 103.200 | 214.300 | 3.3 | 8.9 | | 111.760 4.4000 | 223.520
8.8000 | 55.880
2.2000 | 3.3 | 790 | 2 920 | | *111TT2251 | 113.300 | 221.900 | 3.3 | 11.2 | | 114.300 4.5000 | 250.825
9.8750 | 53.975
2.1250 | 4.0 | 970 | 4 100 | | *114TT2551 | 114.500 | 250.825 | 4.0 | 14.4 | | 127.000 5.0000 | 266.700
10.5000 | 58.738
2.3125 | 4.8 | 1 040 | 4 350 | | *127TT2551 | 128.600 | 265.100 | 4.8 | 17.3 | | | 266.700
10.5000 | 58.738
2.3125 | 4.8 | 1 030 | 4 500 | | *127TTF2651 | 128.600 | 265.100 | 4.8 | 17.3 | | 128.575 5.0620 | 265.100
10.4370 | 63.500
2.5000 | 6.4 | 1 040 | 4 350 | | *128TT2651 | 128.900 | 265.100 | 6.4 | 18.2 | | 130 | 250 | 70 | 2.1 | 1 100 | 4 100 | | 130TTF2501 | 130.3 | 250 | 2 | 17 | | 135
150 | 245
300 | 65
90 | 2.1
5 | 855
1 470 | 3 100
6 300 | | 135TT2401
150TTF3001 | 135.3
152 | 245
306 | 2
4 | 14.5
34.2 | | 152.400 6.0000 | 317.500
12.5000 | 69.850
2.7500 | 6.4 | 1 470 | 6 300 | | *152TTF3151 | 152.700 | 315.900 | 6.4 | 28.9 | | | 317.500
12.5000 | 69.850
2.7500 | 6.4 | 1 550 | 6 700 | | *152TT3152 | 152.400 | 317.500 | 6.4 | 28.9 | | 165.100 6.5000 | 311.150
12.2500 | 88.900
3.5000 | 6.4 | 1 560 | 5 250 | | *165TT3151 | 165.400 | 311.150 | 6.4 | 33 | | 168.275 6.6250 | 304.800
12.0000 | 69.850
2.7500 | 6.4 | 1 230 | 5 000 | | *168TTF3051 | 169.000 | 302.500 | 6.4 | 24.1 | * Bearings marked * are inch design. # **■**THRUST TAPERED ROLLER BEARINGS TT, TTF Types Bore Diameter 170 – 241.300 mm TT TTF | Boundary Dimensions (mm/inch) | | | Basic Lo | Rearing Numbers | Dimensions
(mm) | | Corner Radius
of Shaft | Mass
(kg) | | | | |-------------------------------|--------------------|-------------------|------------------|------------------|--------------------|--|---------------------------|--------------|---------|--|---------| | d | D | T | γ
min. | C_{a} | C_{0a} | | Bearing Numbers | D_1 | d_1 | or Housing $oldsymbol{\mathcal{T}}_a$ max. | approx. | | 170 | 320 | 100 | 5 | 1 650 | 5 550 | | 170TT3201 | 170.5 | 320 | 4 | 39.3 | | 174.625 6.8750 | 358.775
14.1250 | 82.550
3.2500 | 6.4 | 1 740 | 7 400 | | *174TT3551 | 174.625 | 358.775 | 6.4 | 43.3 | | | 358.775
14.1250 | 82.550
3.2500 | 6.4 | 1 740 | 7 400 | | *174TTF3551 | 174.625 | 358.775 | 6.4 | 43.3 | | 177.800 7.0000 | 368.300
14.5000 | 82.550
3.2500 | 8.0 | 1 900 | 8 250 | | *177TT3651 | 180.400 | 365.800 | 8.0 | 45.9 | | 203.200
8.0000 | 419.100
16.5000 | 92.075
3.6250 | 9.7 | 2 530 | 11 300 | | *203TT4151 | 205.600 | 416.700 | 9.7 | 66.1 | | | 419.100
16.5000 | 92.075
3.6250 | 9.7 | 2 530 | 11 300 | | *203TTF4153A | 203.200 | 419.100 | 9.7 | 66.1 | | | 419.100
16.5000 | 120.650
4.7500 | 9.7 | 2 530 | 11 300 | | *203TT4152 | 205.600 | 416.700 | 9.7 | 86.6 | | | 419.100
16.5000 | 120.650
4.7500 | 9.7 | 2 530 | 11 300 | | *203TTF4152 | 205.600 | 416.700 | 9.7 | 86.6 | | 206.375
8.1250 | 419.100
16.5000 | 120.370
4.7390 | C10 | 2 590 | 11 700 | | *206TT4151 | 206.375 | 419.100 | 6 | 85.5 | | 228.600
9.0000 | 482.600
19.0000 | 104.775
4.1250 | 11.2 | 3 350 | 16 400 | | *228TT4851 | 228.900 | 482.600 | 11.2 | 101 | | | 482.600
19.0000 | 104.775
4.1250 | 11.2 | 3 350 | 16 400 | | *228TTF4851 | 230.600 | 480.600 | 11.2 | 101 | | 234.950
9.2500 | 546.100
21.5000 | 127.000
5.0000 | 15.9 | 4 600 | 21 400 | | *234TT5451 | 237.000 | 544.000 | 15.9 | 165 | | 241 | 404 | 110 | 4 | 2 200 | 8 650 | | 241TTF4002 | 241 | 404 | 3 | 61.8 | | 241.300
9.5000 | 496.888
19.5625 | 129.000
5.0787 | C8 | 3 450 | 16 700 | | *241TT4952 | 241.300 | 496.888 | 5 | 130 | ote * Bearings marked * are inch design. # TT, TTF Types Bore Diameter 254.000 - 600 mm TT TTF TTF-1 | | Boundary Dimensions
(mm/inch) | | | | ad Ratings
kN) | | | nsions
im) | Corner Radius
of Shaft | Mass
(kg) | |---------------------------|----------------------------------|--------------------|------------------|-------------------------|---------------------------|--|-------------------|-------------------|--|----------------------| | <i>d</i> | D | T | r
min. | $C_{\rm a}$ | $C_{0\mathrm{a}}$ | Bearing Numbers | D_1 | d_1 | or Housing $oldsymbol{\mathcal{Y}}_a$ max. | approx. | | 254.000
10.0000 |
539.750
21.2500 | 117.475
4.6250 | 11.2 | 3 950 | 18 600 | *254TTF5351 | 254.000 | 539.750 | 11.2 | 142 | | 260 | 360 | 75 | 2.1 | 1 110 | 4 650 | 260TTF3601 | 260.3 | 360 | 2 | 24.8 | | 273.050 10.7500 | 552.450
21.7500 | 133.350
5.2500 | C8 | 4 400 | 20 700 | *273TT5551 | 273.050 | 552.450 | 5 | 164 | | 279.400
11.0000 | 603.250
23.7500 | 136.525
5.3750 | 11.2 | 5 400 | 25 200 | *279TT6051 | 279.700 | 603.250 | 11.2 | 208 | | 330
340
350 | 440
460
460 | 85
96
85 | 3
3
2 | 1 300
1 690
1 370 | 6 300
7 750
6 600 | 330TTF4401
340TTF4603
350TTF4602A(1) | 331
340
351 | 440
460
450 | 2.5
2.5
2 | 38.5
49.2
40.4 | | 360 | 470
600 | 85
120 | 4
4 | 1 440
3 700 | 6 950
20 100 | 360TTF4701
360TTF6201 | 360.4
366 | 470
620 | 3
3 | 41.4
148 | | 380 | 550 | 110 | 4 | 2 760 | 12 100 | 380TTF5501 | 381 | 550 | 3 | 92.9 | | 406.400
16.0000 | 711.200
28.0000 | 146.050
5.7500 | 9.7 | 5 900 | 28 600 | *406TT7151 | 406.800 | 711.200 | 9.7 | 266 | | | 838.200
33.0000 | 177.800
7.0000 | 12.7 | 8 950 | 46 500 | *406TT8351 | 406.800 | 837.800 | 12.7 | 510 | | 431.800
17.0000 | 863.600
34.0000 | 228.600
9.0000 | 10.4 | 15 100 | 69 500 | *431TTF8651 | 435.000 | 862.000 | 10.4 | 683 | | 440
450
460 | 600
570
580 | 105
100
90 | 4
3
3 | 2 720
2 170
1 890 | 13 900
10 500
9 550 | 440TTF6001
450TTF5701
460TTF5801 | 440
455
465 | 600
569
579 | 3
2.5
2.5 | 93.3
65.4
60 | | 500
508 | 630
730.25 | 82
120.65 | 3
6 | 2 020
4 900 | 11 600
26 100 | 500TTF6301
508TT7301 | 505
509 | 628
730.25 | 2.5
5 | 64.3
177 | | 508.000 20.0000 | 990.600
39.0000 | 196.850
7.7500 | 12.7 | 12 000 | 65 000 | *508TT9951 | 508.000 | 990.600 | 12.7 | 760 | | 558 | 780 | 120 | 9.5 | 4 800 | 25 500 | 558TT7801 | 558 | 780 | 8 | 190 | | 558.800 22.0000 | 1 066.800
42.0000 | 285.750
11.2500 | 10.4 | 21 100 | 94 500 | *558TTF1051 | 561.980 | 1 065.219 | 10.4 | 1 260 | | 560
600 | 670
710 | 85
86 | 3 | 1 950
1 900 | 10 700
10 700 | 560TTF6701
600TTF7101 | 565
604 | 668
710 | 2.5
2.5 | 61.4
66.2 | ⁽¹⁾ For this bearing, the dimensional symbols are defined by Figure TTF-1. # 11. THRUST SPHERICAL ROLLER BEARINGS | NTRODUCTIONC 332 | |---| | BEARINGS TABLE | | THRUST SPHERICAL ROLLER BEARINGS | | Bore Diameter 60mm – 500mm ······ C 334 | C 330 C 331 # **DESIGN, TYPES, AND FEATURES** ### THRUST SPHERICAL ROLLER BEARINGS These are thrust bearings containing convex rollers. They have a self-aligning capability and are free of any influence of mounting error or shaft deflection. Besides the original type, the E type with pressed cages for high load capacity is also available. Their bearing numbers are suffixed by E. For horizontal shaft or high speed application, machined brass cages are recommended. For details, contact NSK. Since there are several places where lubrication is difficult, such as the area between the roller heads and inner ring rib, the sliding surfaces between cage and guide sleeve, etc., oil lubrication should be used even at low speed. The cages in the original type are machined brass. # **TOLERANCES AND RUNNING ACCURACY** THRUST SPHERICAL ROLLER BEARINGSTable 7.8 (Pages A145) # RECOMMENDED FITS THRUST SPHERICAL ROLLER BEARINGSTable 8.4 (Pages A164) Table 8.6 (Pages A165) ## **DIMENSIONS RELATED TO MOUNTING** The dimensions related to mounting of thrust spherical roller bearings are listed in the Bearing Table. If the bearing load is heavy, it is necessary to design the shaft shoulder with ample strength in order to provide sufficient support for the shaft washer. ## PERMISSIBLE MISALIGNMENT The permissible misalignment of thrust spherical roller bearings varies depending on the size, but it is approximately 0.018 to 0.036 radian (1° to 2°) with average loads. ## MINIMUM AXIAL LOAD It is necessary to apply some axial load to thrust bearings to prevent slippage between the rolling elements and raceways. For more details, please refer to Page A198. # Bore Diameter 60 - 200 mm **Boundary Dimensions** Limiting Basic Load Ratings Dimensions Spacer Sleeve Dynamic Equivalent Load $P = 1.2F_{\rm r} + F_{\rm a}$ Static Equivalent Load $P_0 = 2.8F_r + F_a$ However, $F_{\rm r}/F_{\rm a} \leq$ 0.55 must be satisfied. Abutment and Fillet Mass | | (m | m) | | Dasic Load | - | Speeds | Bearing | | | | | | ons (mm) | | | ons (mr | | (kg) | | | | |----------|-------------------|-----------------|-------------------|-----------------------------------|-------------------------------------|-----------------------------|-------------------------------|--|-----------------------|---------------------|------------------|----------------------|----------------|-------------------|------------------|------------------|-----------------------|-----------------------|-------------------|---------------------------------------|---------------------| | d | D | T | r
min. | $C_{\rm a}$ | C_{0a} | (min ⁻¹)
Oil | Numbers | | d_1 | D_1 | B,B_1 | B_2 | С | A | $d_{ m S1}$ max. | $d_{ m S2}$ max. | $d_{ m a}^{(1)}$ min. | D_{a} max. | $D_{ m b}$ min. | $oldsymbol{\gamma}_{\mathrm{a}}$ max. | approx. | | 60
65 | 130
140 | 42
45 | 1.5
2 | 330 000
405 000 | 885 000
1 100 000 | 2 600
2 400 | 29412 E
29413 E | | 114.5
121.5 | 89
93 | 27
29.5 | 38
40.5 | 20
22 | 38
42 | 67
72 | 67
72 | | 108
115 | 133
143 | 1.5
2 | 2.55
3.2 | | 70
75 | 150
160 | 48
51 | 2 2 | 450 000
515 000 | 1 240 000
1 430 000 | 2 400
2 200 | 29414 E
29415 E | | 131.5
138 | 102
107 | 31
33.5 | 43
46 | 24
25 | 44
47 | 78
83 | 78
83 | 105
115 | 125
132 | 153
163 | 2 | 3.9
4.65 | | 80
85 | 170
150
180 | 54
39
58 | 2.1
1.5
2.1 | 575 000
330 000
630 000 | 1 600 000
1 040 000
1 760 000 | 2 000
2 400
1 900 | 29416 E
29317 E
29417 E | | 148
134.5
156.5 | 114.5
112
124 | 35
24.5
37 | 48.5
35.5
51.5 | 27
19
28 | 50
50
54 | 89
91
95 | 89
91
95 | 115 | 140
135
150 | 173
153
183 | 2
1.5
2 | 5.55
2.7
6.55 | | 90 | 155
190 | 39
60 | 1.5
2.1 | 350 000
695 000 | 1 080 000
1 950 000 | 2 200
1 800 | 29318 E
29418 E | | 139.5
165.5 | 118
129.5 | 24.5
39 | 35
54.5 | 19
29 | 52
56 | 97
100 | 97
100 | | 140
157 | 158
193 | 1.5
2 | 2.83
7.55 | | 100 | 170
210 | 42
67 | 1.5
3 | 410 000
840 000 | 1 280 000
2 400 000 | 2 000
1 600 | 29320 E
29420 E | | 152
185 | 128
144 | 26.2
43 | 38
59.5 | 20.8
33 | 58
62 | 107
111 | 107
111 | | 150
175 | 173
214 | 1.5
2.5 | 3.6
10.3 | | 110 | 190
230 | 48
73 | 2
3 | 530 000
1 010 000 | 1 710 000
2 930 000 | 1 800
1 500 | 29322 E
29422 E | | 169.5
200 | 142.5
157 | 30.3
47 | 43.5
64.5 | 24
36 | 64
69 | 117
121 | 117
129 | | 165
190 | 193
234 | 2
2.5 | 5.25
13.3 | | 120 | 210
250 | 54
78 | 2.1
4 | 645 000
1 160 000 | 2 100 000
3 400 000 | 1 600
1 400 | 29324 E
29424 E | | 187.5
215 | 156.5
171 | 34
50.5 | 48.5
69.5 | 27
38 | 70
74 | 130
132 | 130
142 | | 180
205 | 214
254 | 2 | 7.3
16.6 | | 130 | 225
270 | 58
85 | 2.1
4 | 740 000
1 330 000 | 2 450 000
3 900 000 | 1 500
1 200 | 29326 E
29426 E | | 203.5
235 | 168.5
185 | 37
54 | 53.5
74.5 | 28
42 | 76
81 | 141
143 | 143
153 | | 195
225 | 229
275 | 2 | 8.95
21.1 | | 140 | 240
280 | 60
85 | 2.1
4 | 840 000
1 370 000 | 2 810 000
4 200 000 | 1 400
1 200 | 29328 E
29428 E | | 216.5
244.5 | 179
195.5 | 38.5
54 | 54
74.5 | 30
42 | 82
86 | 148
153 | 154
162 | | 205
235 | 244
285 | 2 | 10.4
22.2 | | 150 | 250
300 | 60
90 | 2.1
4 | 870 000
1 580 000 | 2 900 000
4 900 000 | 1 400
1 100 | 29330 E
29430 E | | 224
266 | 190
209 | 38
58 | 54.5
81 | 29
44 | 87
92 | 158
164 | 163
175 | | 215
250 | 254
306 | 2 | 10.8
27.3 | | 160 | 270
320 | 67
95 | 3
5 | 1 010 000
1 740 000 | 3 400 000
5 400 000 | 1 300
1 100 | 29332 E
29432 E | | 243
278 | 203
224.5 | 42
60.5 | 60
84.5 | 33
46 | 92
99 | 169
175 | 176
189 | | 235
265 | 275
326 | 2.5
4 | 14.3
32.1 | | 170 | 280
340 | 67
103 | 3
5 | 1 050 000
1 680 000 | 3 500 000
5 800 000 | 1 200
1 000 | 29334 E
29434 | | 252
310 | 214.5
243 | 42.2
37 | 60.5
99 | 32
50 | 96
104 | 178
— | 188
— | | 245
285 | 285
— | 2.5
4 | 14.8
43.5 | | 180 | 300
360 | 73
109 | 3
5 | 1 230 000
1 870 000 | 4 200 000
6 500 000 | 1 100
900 | 29336 E
29436 | | 270
330 | 227
255 | 46
39 | 65.5
105 | 36
52 | 103
110 | 189
— | 195
— | | 260
300 | 306 | 2.5
4 | 19
52 | | 190 | 320
380 | 78
115 | 4
5 | 1 370 000
2 100 000 | 4 700 000
7 450 000 | 1 100
850 | 29338 E
29438 | | 288.5
345 | 244
271 | 49
41 | 69
111 | 38
55 | 110
117 | 200 | 211
— | | 275
320 | 326
— | 3
4 | 23
60 | | 200 | 280
340
400 | 48
85
122 | 2
4
5 | 540 000
1 570 000
2 290 000 | 2 310 000
5 450 000
8 150 000 | 1 500
1 000
800 | 29240
29340 E
29440 | | 266
306.5
365 | 236
257
280 | 15
53.5
43 | 46
75
117 | 24
41
59 | 108
116
122 | 211
— | 224
— | 265 | 255
295
335 | 346 | 2
3
4 | 8.55
28.5
69 | **Note** (1) For heavy load applications, a d_a value should be chosen which is large enough
to support the shaft washer rib. C 334 C 335 # **THRUST SPHERICAL ROLLER BEARINGS** **Boundary Dimensions** # Bore Diameter 220 – 420 mm Basic Load Ratings Dimensions Dynamic Equivalent Load $P = 1.2F_{\rm r} + F_{\rm a}$ Static Equivalent Load $P_0 = 2.8F_r + F_a$ However, $F_{\rm r}/F_{\rm a}\!\leq\!0.55$ must be satisfied. Mass Abutment and Fillet | | (m | m) | | 1) | ۷) | Speeds | Bearing | ng (mm) Dimensions (mm) | | | | (kg) | | | | | | | |----------|--------------------------|-------------------------|----------------------|--|---|-----------------------------|-------------------------------------|-------------------------|--------------------------|--------------------------|----------------------|-------------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------|--------------------------| | <i>d</i> | D | T | γ
min. | C_{a} | C_{0a} | (min ⁻¹)
Oil | Numbers | | d_1 | D_1 | B_1 | B_2 | С | A | $d_{ m a}^{(1)}$ min. | D_{a} max. | r a
max. | approx. | | 220 | 300
360
420 | 48
85
122 | 2
4
6 | 560 000
1 340 000
2 350 000 | 2 500 000
5 200 000
8 650 000 | 1 400
950
800 | 29244
29344
29444 | | 285
335
385 | 254
280
308 | 15
29
43 | 46
81
117 | 24
41
58 | 117
125
132 | 260
285
310 | 275
315
355 | 2
3
5 | 9.2
33
74 | | 240 | 340
380
440 | 60
85
122 | 2.1
4
6 | 800 000
1 360 000
2 420 000 | 3 450 000
5 400 000
9 100 000 | 1 200
950
750 | 29248
29348
29448 | | 325
355
405 | 283
300
326 | 19
29
43 | 57
81
117 | 30
41
59 | 130
135
142 | 285
300
330 | 305
330
375 | 2
3
5 | 16.5
35.5
79 | | 260 | 360
420
480 | 60
95
132 | 2.1
5
6 | 855 000
1 700 000
2 820 000 | 3 850 000
6 800 000
10 700 000 | 1 200
800
710 | 29252
29352
29452 | | 345
390
445 | 302
329
357 | 19
32
48 | 57
91
127 | 30
45
64 | 139
148
154 | 305
330
360 | 325
365
405 | 2
4
5 | 18
48.5
105 | | 280 | 380
440
520
520 | 60
95
145
145 | 2.1
5
6
6 | 885 000
1 830 000
3 400 000
3 950 000 | 4 100 000
7 650 000
13 100 000
14 900 000 | 1 100
800
630
630 | 29256
29356
29456
29456 EM | | 365
410
480
480 | 323
348
384
380 | 19
32
52
52 | 57
91
140
140 | 30
46
68
70 | 150
158
166
166 | 325
350
390
410 | 345
390
440
445 | 2
4
5
5 | 19
52.5
132
134 | | 300 | 420
480
540 | 73
109
145 | 3
5
6 | 1 160 000
2 190 000
3 500 000 | 5 150 000
9 100 000
13 700 000 | 950
710
630 | 29260
29360
29460 | | 400
450
500 | 353
379
402 | 21
37
52 | 69
105
140 | 38
50
70 | 162
168
175 | 355
380
410 | 380
420
460 | 2.5
4
5 | 30
74
140 | | 320 | 440
500
580 | 73
109
155 | 3
5
7.5 | 1 190 000
2 230 000
3 650 000 | 5 450 000
9 400 000
14 600 000 | 950
670
560 | 29264
29364
29464 | | 420
470
555 | 372
399
436 | 21
37
55 | 69
105
149 | 38
53
75 | 172
180
191 | 375
400
435 | 400
440
495 | 2.5
4
6 | 32.5
77
175 | | 340 | 460
540
620 | 73
122
170 | 3
5
7.5 | 1 230 000
2 640 000
4 400 000 | 5 750 000
11 200 000
17 400 000 | 900
630
530 | 29268
29368
29468 | | 440
510
590 | 395
428
462 | 21
41
61 | 69
117
164 | 37
59
82 | 183
192
201 | 395
430
465 | 420
470
530 | 2.5
4
6 | 33.5
103
218 | | 360 | 500
560
640
640 | 85
122
170
170 | 4
5
7.5
7.5 | 1 550 000
2 670 000
4 200 000
5 450 000 | 7 300 000
11 500 000
17 200 000
20 400 000 | 800
600
500
500 | 29272
29372
29472
29472 EM | | 480
525
610
580 | 423
448
480
474 | 25
41
61
61 | 81
117
164
164 | 44
59
82
83 | 194
202
210
210 | 420
450
485
495 | 455
495
550
550 | 3
4
6
6 | 51
107
228
220 | | 380 | 520
600
670 | 85
132
175 | 4
6
7.5 | 1 620 000
3 300 000
4 800 000 | 7 800 000
14 500 000
19 500 000 | 800
560
480 | 29276
29376
29476 | | 496
568
640 | 441
477
504 | 27
44
63 | 81
127
168 | 42
63
85 | 202
216
230 | 440
480
510 | 475
525
575 | 3
5
6 | 52
140
254 | | 400 | 540
620
710 | 85
132
185 | 4
6
7.5 | 1 640 000
3 250 000
5 400 000 | 8 000 000
14 500 000
22 100 000 | 750
530
450 | 29280
29380
29480 | | 517
590
680 | 460
494
536 | 27
44
67 | 81
127
178 | 42
64
89 | 212
225
236 | 460
500
540 | 490
550
610 | 3
5
6 | 55
150
306 | | 420 | 580
650
730 | 95
140
185 | 5
6
7.5 | 2 010 000
3 500 000
5 650 000 | 9 800 000
15 700 000
23 500 000 | 670
500
450 | 29284
29384
29484 | | 553
620
700 | 489
520
556 | 30
48
67 | 91
135
178 | 46
68
89 | 225
235
244 | 490
525
560 | 525
575
630 | 4
5
6 | 72
170
323 | Limiting **Note** (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. C 336 C 337 Bore Diameter 440 – 500 mm Dynamic Equivalent Load $P = 1.2F_{\rm r} + F_{\rm a}$ Static Equivalent Load $P_0 = 2.8F_r + F_a$ However, $F_r/F_a \le 0.55$ must be satisfied. | | Boundary Dimensions (mm) | | | Basic Load Ratings
(N) | | Limiting Speeds Bearing | | | | Dimer
(m | | | | Abut
Dim | Mass
(kg) | | | |-----|--------------------------|-------------------------|----------------------|--|--|-----------------------------|-------------------------------------|--------------------------|--------------------------|----------------------|-------------------------|------------------------|--------------------------|--------------------------|--------------------------|--------------------|-------------------------| | d | D | T | γ
min. | $C_{\rm a}$ | C_{0a} | (min ⁻¹)
Oil | Numbers | d_1 | D_1 | B_1 | B_2 | С | A | $d_{ m a}^{(1)}$ min. | D_{a} max. | r a
max. | approx. | | 440 | 600
680
780
780 | 95
145
206
206 | 5
6
9.5
9.5 | 2 030 000
3 750 000
6 550 000
8 000 000 | 10 100 000
16 700 000
27 200 000
31 500 000 | 670
480
400
400 | 29288
29388
29488
29488 EM | 575
645
745
710 | 508
548
588
577 | 30
49
74
74 | 91
140
199
199 | 49
70
100
101 | 235
245
260
257 | 510
550
595
605 | 545
600
670
675 | 4
5
8 | 77
190
407
402 | | 460 | 620
710
800 | 95
150
206 | 5
6
9.5 | 2 060 000
4 100 000
6 750 000 | 10 300 000
18 400 000
28 600 000 | 670
450
380 | 29292
29392
29492 | 592
666
765 | 530
567
608 | 30
51
74 | 91
144
199 | 46
72
100 | 245
257
272 | 530
575
615 | 570
630
690 | 4
5
8 | 80
210
420 | | 480 | 650
730
850 | 103
150
224 | 5
6
9.5 | 2 370 000
4 150 000
7 200 000 | 12 100 000
19 000 000
31 000 000 | 600
450
360 | 29296
29396
29496 | 624
690
810 | 556
590
638 | 33
51
81 | 99
144
216 | 55
72
108 | 259
270
280 | 555
595
645 | 595
650
730 | 4
5
8 | 97
215
545 | | 500 | 670
750
870 | 103
150
224 | 5
6
9.5 | 2 390 000
4 350 000
7 850 000 | 12 400 000
20 400 000
33 000 000 | 600
450
340 | 292/500
293/500
294/500 | 645
715
830 | 574
611
661 | 33
51
81 | 99
144
216 | 55
74
107 | 268
280
290 | 575
615
670 | 615
670
750 | 4
5
8 | 100
220
560 | **Note** (1) For heavy load applications, a d_a value should be chosen which is large enough to support the shaft washer rib. C 338 C 339 # 12. NEEDLE ROLLER BEARINGS # **DESIGN AND TYPES** For needle roller bearings, there are many designs and types bearings. Specified catalog, NSK Needle Roller Bearings CAT.No.E1419 lists bearings shown in Table 1. For details, please refer individual specified catalog. For bearing selection, please contact NSK. Table 1 Types of Needle Roller Bearings | Cage &
Needle Roller
Assemblies | FWJ FBN, FBNP WJC WJ FWJC | |---|--| | Drawn Cup
Needle Roller
Bearings | FJ, FJH FJL MFJ, MFJH MFJL J,JH MJ, MJH MJ, MJH F, FH MF, MFH YH B, BH M, MH YH FJT, FJTT FJP IR MFJLT MFJLT MFJLT MFJLT MFJLT | | Solid Needle
Roller Bearings | RNA 48 RNA 49 RNA 59 RNA 69 HJ RNAF RNATT | | Thrust Needle
Roller Bearings
Thurst raceway
washers | FNTA | | Needle Rollers | A Type F Type P Type (Pleas refer to 8350 page) T Type C M Type M Type | | Cam Followers Roller Followers | FCR FCJS FYCJS FYCJS FYCJS YCR YCRS | | Needle Roller
Bearings For
Universal Joints | ZY NSA NSA | | Drawn Cup
Roller Clutches | RC FC RCB FCB | C 340 C 341 # 13. BALL BEARING UNITS # **DESIGN, TYPES** For ball bearing units, there are many designs and types. Please refer to specified Catalog below, for more detailed information. Specified Catalog Ball
Bearing Units CAT.No. E1154 Ball Bearing Units Steel Series CAT.No. E1232 Ball Bearing Units with Ductile Cast Iron Housing CAT.No. E1233 Triple-Sealed Bearings for Ball Bearing Units CAT.No. E1234 Ball Bearings Units Stainless Series CAT.No. E1235 Ball Bearing Units Hand book CAT.No. E1155 C 342 C 343 # 14. PLUMMER BLOCKS # **DESIGN, TYPES AND FEATURES** There are numerous types and sizes of plummer blocks. SN 5B SN 6B SN 30B SN 31B SN 2B SN 3B SN 2BC SN 3BC SD 30S SD 31S SD 5 SD 6 SD 2 SD3 SD 2C SD 3C $V \cdot C$ These are the most common type. Models SN30 and SN31 are for medium loads. SN 5 SN 6 SN 30 SN 31 SN 2 SN 3 SN 2C SN 3C SG 5 SD31TS SD32TS For types SN2C and SN3C, the bore diameters on the two sides are different. Dustproof plummer blocks have a combination of oil seals, labyrinth seals, and oil groove seals, therefore, they are suitable for environments with much dust and other foreign matter. they are suitable for high speed applications. These are provided with labyrinth seals, so These have the same dimensions as those of types SN5 and SN6. To increase the bearing box strength, no material is removed from the top or bottom of the base, so mounting holes can be drilled anywhere. These are large and made for heavy loads. The standard ones have double seals and four mounting bolt holes. For types SD2C and SD3C, the bore diameters on the two sides are different. Single-piece plummer blocks (integrated type roller bearing unit)have higher rigidity and precision than split type plummer blocks. C 345 # 15. ACCESSORIES FOR ROLLING BEARINGS | ADAPTERS FOR ROLLING BEARINGS | Shaft Diameter 17 – 470mm····· | C 34 | |-------------------------------|--------------------------------|------| | WITHDRAWAL SLEEVES | onar Diameter 17 47 onni | 0 04 | | FOR ROLLING BEARINGS | Shaft Diameter 35 – 480mm | C 35 | | NUTS FOR ROLLING BEARIN | VGS | C 36 | | STOPPERS FOR ROLLING B | EARINGS | C 36 | | LOCK-WASHERS FOR ROLL | ING BEARINGS | C 36 | # Shaft Diameter 45 - 60 mm | Shaft | Nominal
Bearing | N | | Dimen: | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |-----------------------|----------------------|--|----------------------|----------------------|------------------|-------------|---------------------------------------|---|----------------------|----------------------|---------------------|----------------------------------| | Diameter (mm) d_1 | Bore Dia. (mm) | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 17 | 20
20
20
20 | 1204K + H 204X
2204K + H 304X
1304K + H 304X
2304K + H2304X | 24
28
28
31 | 32
32
32
32 | 7
7
7
7 | _
_
_ | A 204X
A 304X
A 304X
A 2304X | 14
14
14
14 | 39
39
39
39 | 23
24
24
24 | 5
5
8
5 | 0.045
0.045
0.045
0.050 | | 20 | 25
25
25 | 1205K + H 205X
2205K + H 305X
1305K + H 305X | 26
29
29 | 38
38
38 | 8
8
8 | _ | A 205X
A 305X
A 305X | 15
15
15 | 45
45
45 | 28
29
29 | 5
5
6 | 0.065
0.075
0.075 | | | 25
25 | 21305C DKE4 + H 305X
2305K + H2305X | 29
35 | 38
38 | 8 | _ | A 305X
A2305X | 15
15 | 45
45 | 29
29 | 6
5 | 0.075
0.090 | | 25 | 30
30
30 | 1206K + H 206X
2206K + H 306X
1306K + H 306X | 27
31
31 | 45
45
45 | 8
8
8 | _ | A 206X
A 306X
A 306X | 15
15
15 | 50
50
50 | 33
34
34 | 5
5
6 | 0.10
0.11
0.11 | | | 30
30 | 21306C DKE4 + H 306X
2306K + H2306X | 31
38 | 45
45 | 8 | _ | A 306X
A2306X | 15
15 | 50
50 | 34
35 | 6
5 | 0.11
0.125 | | 30 | 35
35
35 | 1207K + H 207X
2207K + H 307X
1307K + H 307X | 29
35
35 | 52
52
52 | 9
9
9 | _ | A 207X
A 307X
A 307X | 17
17
17 | 58
58
58 | 38
39
39 | 5
5
7 | 0.125
0.145
0.145 | | | 35
35 | 21307C DKE4 + H 307X
2307K + H2307X | 35
43 | 52
52 | 9
9 | _ | A 307X
A2307X | 17
17 | 58
58 | 39
40 | 7
5 | 0.145
0.16 | | 35 | 40
40
40 | 1208K + H 208X
2208K + H 308X
1308K + H 308X | 31
36
36 | 58
58
58 | 10
10
10 | _ | A 208X
A 308X
A 308X | 17
17
17 | 65
65
65 | 44
44
44 | 5
5
5 | 0.175
0.19
0.19 | | | 40
40
40 | 21308E AKE4 + H 308X
2308K + H2308X
22308E AKE4 + H2308X | 36
46
46 | 58
58
58 | 10
10
10 | _ | A 308X
A 2308X
A 2308X | 17
17
17 | 65
65
65 | 44
45
45 | 5
5
5 | 0.19
0.225
0.225 | | 40 | 45
45
45 | 1209K + H 209X
2209K + H 309X
1309K + H 309X | 33
39
39 | 65
65
65 | 11
11
11 | _ | A 209X
A 309X
A 309X | 17
17
17 | 72
72
72 | 49
49
49 | 5
8
5 | 0.225
0.26
0.26 | | | 45
45
45 | 21309E AKE4 + H 309X
2309K + H2309X
22309E AKE4 + H2309X | 39
50
50 | 65
65
65 | 11
11
11 | _ | A 309X
A2309X
A2309X | 17
17
17 | 72
72
72 | 49
50
50 | 5
5
5 | 0.26
0.30
0.30 | | Shaft | Nominal
Bearing | | | Dimens
(mr | | | Adapter | Abu | tment D | | ons | Mass
(kg) | |---------------------|----------------------|---|----------------------|----------------------|----------------------|-------------|--------------------------------------|---|----------------------|----------------------|--------------------------|------------------------------| | Diameter (mm) d_1 | Bore Dia. (mm) | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop {\rm min.}$ | $d_{ m e}$ min. | $_{\min .}^{\textit{b}}$ | approx. | | 45 | 50
50
50 | 1210K + H 210X
2210K + H 310X
1310K + H 310X | 35
42
42 | 70
70
70 | 12
12
12 | _ | A 210X
A 310X
A 310X | 19
19
19 | 76
76
76 | 53
54
54 | 5
10
5 | 0.275
0.30
0.30 | | | 50
50
50 | 21310E AKE4 + H 310X
2310K + H2310X
22310E AKE4 + H2310X | 42
55
55 | 70
70
70 | 12
12
12 | _
_
_ | A 310X
A2310X
A2310X | 19
19
19 | 76
76
76 | 54
56
56 | 5
5
5 | 0.30
0.35
0.35 | | 50 | 55
55
55 | 1211K + H 211X
2211K + H 311X
22211E AKE4 + H 311X | 37
45
45 | 75
75
75 | 12
12
12 | _
_
_ | A 211X
A 311X
A 311X | 19
19
19 | 85
85
85 | 60
60
60 | 6
11
11 | 0.305
0.35
0.35 | | | 55
55
55
55 | 1311K + H 311X
21311E AKE4 + H 311X
2311K + H2311X
22311E AKE4 + H2311X | 45
45
59
59 | 75
75
75
75 | 12
12
12
12 | _
_
_ | A 311X
A 311X
A2311X
A2311X | 19
19
19
19 | 85
85
85
85 | 60
60
61
61 | 6
6
6 | 0.35
0.35
0.40
0.40 | | 55 | 60
60
60 | 1212K + H 212X
2212K + H 312X
22212E AKE4 + H 312X | 38
47
47 | 80
80
80 | 13
13
13 | _ | A 212X
A 312X
A 312X | 20
20
20 | 90
90
90 | 64
65
65 | 5
9
9 | 0.365
0.40
0.40 | | | 60
60
60 | 1312K + H 312X
21312E AKE4 + H 312X
2312K + H2312X
22312E AKE4 + H2312X | 47
47
62
62 | 80
80
80
80 | 13
13
13
13 | _
_
_ | A 312X
A 312X
A2312X
A2312X | 20
20
20
20 | 90
90
90
90 | 65
65
66
66 | 5
5
5
5 | 0.40
0.40
0.45
0.45 | | 60 | 65
65
65 | 1213K + H 213X
2213K + H 313X
22213E AKE4 + H 313X | 40
50
50 | 85
85
85 | 14
14
14 | _ | A 213X
A 313X
A 313X | 21
21
21 | 96
96
96 | 70
70
70 | 5
8
8 | 0.40
0.45
0.45 | | | 65
65
65
65 | 1313K + H 313X
21313E AKE4 + H 313X
2313K + H2313X
22313E AKE4 + H2313X | 50
50
65
65 | 85
85
85
85 | 14
14
14
14 | _
_
_ | A 313X
A 313X
A2313X
A2313X | 21
21
21
21 | 96
96
96
96 | 70
70
72
72 | 5
5
5
5 | 0.45
0.45
0.55
0.55 | | | 70
70
70 | 22214E AKE4 + H 314X
21314E AKE4 + H 314X
22314E AKE4 + H2314X | 52
52
68 | 92
92
92 | 14
14
14 | _ | A 314X
A 314X
A2314X | 21
21
21 | 96
96
96 | 70
70
72 | 8
5
5 | 0.65
0.65
0.80 | **Remark** The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. **Remark** The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. # Shaft Diameter 65 - 80 mm | Shaft | Nominal
Bearing | | | Dimens
(mr | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |-----------------------|----------------------|--|----------------------|--------------------------|----------------------|-------------|--|--------------------------|--------------------------|----------------------|---------------|------------------------------| | Diameter (mm) d_1 | Bore Dia. (mm) | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 |
B_5 | Sleeve
Numbers | $\underset{\rm min.}{A}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $b_{ m min.}$ | approx. | | 65 | 75
75
75 | 1215K + H 215X
2215K + H 315X
22215E AKE4 + H 315X | 43
55
55 | 98
98
98 | 15
15
15 | _ | A 215X
A 315X
A 315X | 23
23
23 | 110
110
110 | 80
80
80 | 5
12
12 | 0.70
0.85
0.85 | | | 75
75
75
75 | 1315K + H 315X
21315E AKE4 + H 315X
2315K + H2315X
22315E AKE4 + H2315X | 55
55
73
73 | 98
98
98
98 | 15
15
15
15 | | A 315X
A 315X
A 2315X
A 2315X | 23
23
23
23 | 110
110
110
110 | 80
80
82
82 | 5
5
5 | 0.85
0.85
1.05
1.05 | | 70 | 80
80
80 | 1216K + H 216X
2216K + H 316X
22216E AKE4 + H 316X | 46
59
59 | 105
105
105 | 17
17
17 | _ | A 216X
A 316X
A 316X | 25
25
25 | 120
120
120 | 85
86
86 | 5
12
12 | 0.85
1.05
1.05 | | | 80
80
80
80 | 1316K + H 316X
21316E AKE4 + H 316X
2316K + H2316X
22316E AKE4 + H2316X | 59
59
78
78 | 105
105
105
105 | 17
17
17
17 | _
_
_ | A 316X
A 316X
A2316X
A2316X | 25
25
25
25 | 120
120
120
120 | 86
86
87
87 | 5
5
5 | 1.05
1.05
1.3
1.3 | | 75 | 85
85
85 | 1217K + H 217X
2217K + H 317X
22217E AKE4 + H 317X | 50
63
63 | 110
110
110 | 18
18
18 | _ | A 217X
A 317X
A 317X | 27
27
27 | 128
128
128 | 90
91
91 | 6
12
12 | 1.0
1.2
1.2 | | | 85
85
85
85 | 1317K + H 317X
21317E AKE4 + H 317X
2317K + H2317X
22317E AKE4 + H2317X | 63
63
82
82 | 110
110
110
110 | 18
18
18
18 | _
_
_ | A 317X
A 317X
A2317X
A2317X | 27
27
27
27 | 128
128
128
128 | 91
91
94
94 | 6
6
6 | 1.2
1.2
1.45
1.45 | | 80 | 90
90
90 | 1218K + H 218X
2218K + H 318X
22218E AKE4 + H 318X | 52
65
65 | 120
120
120 | 18
18
18 | _ | A 218X
A 318X
A 318X | 28
28
28 | 139
139
139 | 95
96
96 | 6
10
10 | 1.15
1.4
1.4 | | | 90
90
90 | 1318K + H 318X
21318E AKE4 + H 318X
2318K + H2318X | 65
65
86 | 120
120
120 | 18
18
18 | | A 318X
A 318X
A2318X | 28
28
28 | 139
139
139 | 96
96
99 | 6
6
6 | 1.4
1.4
1.7 | | | 90
90 | 23218C KE4 + H2318X
22318E AKE4 + H2318X | 86
86 | 120
120 | 18
18 | _ | A2318X
A2318X | 28
28 | 139
139 | 99
99 | 6
6 | 1.7
1.7 | | Shaft | Nominal
Bearing | Nominal Numbers | | Dimen
(mr | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |---------------------|----------------------|---|----------------------|--------------------------|----------------------|-------------|--------------------------------------|---|--------------------------|--------------------------|--------------------------|----------------------------| | Diameter (mm) d_1 | (mm)
d | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop {\rm min.}$ | $d_{ m e}$ min. | $_{\min .}^{\textit{b}}$ | approx. | | 85 | 95
95
95 | 1219K + H 219X
2219K + H 319X
22219E AKE4 + H 319X | 55
68
68 | 125
125
125 | 19
19
19 | _ | A 219X
A 319X
A 319X | 29
29
29 | 145
145
145 | 101
102
102 | 7
9
9 | 1.35
1.55
1.55 | | | 95
95
95
95 | 1319K + H 319X
21319C KE4 + H 319X
2319K + H2319X
22319E AKE4 + H2319X | 68
68
90
90 | 125
125
125
125 | 19
19
19
19 | _
_
_ | A 319X
A 319X
A2319X
A2319X | 29
29
29
29 | 145
145
145
145 | 102
102
105
105 | 7
7
7
7 | 1.55
1.55
1.9
1.9 | | 90 | 100
100
100 | 1220K + H 220X
2220K + H 320X
22220E AKE4 + H 320X | 58
71
71 | 130
130
130 | 20
20
20 | _ | A 220X
A 320X
A 320X | 30
30
30 | 150
150
150 | 106
107
107 | 7
8
8 | 1.45
1.7
1.7 | | | 100
100
100 | 1320K + H 320X
21320C KE4 + H 320X
2320K + H2320X | 71
71
97 | 130
130
130 | 20
20
20 | _ | A 320X
A 320X
A 2320X | 30
30
30 | 150
150
150 | 107
107
110 | 7
7
7 | 1.7
1.7
2.15 | | | 100
100 | 23220C KE4 + H2320X
22320E AKE4 + H2320X | 97
97 | 130
130 | 20
20 | _ | A2320X
A2320X | 30
30 | 150
150 | 110
110 | 7
7 | 2.15
2.15 | | 100 | 110
110
110 | 23122C KE4 + H3122X
1222K + H 222X
2222K + H 322X | 81
63
77 | 145
145
145 | 21
21
21 | _ | A3122X
A 222X
A 322X | 32
32
32 | 170
170
170 | 117
116
117 | 7
7
6 | 2.25
1.95
2.3 | | | 110
110
110 | 22222E AKE4 + H 322X
1322K + H 322X
2322K + H2322X | 77
77
105 | 145
145
145 | 21
21
21 | _ | A 322X
A 322X
A 2322X | 32
32
32 | 170
170
170 | 117
117
121 | 6
9
7 | 2.3
2.3
2.75 | | | 110
110 | 23222C KE4 + H2322X
22322E AKE4 + H2322X | 105
105 | 145
145 | 21
21 | _ | A2322X
A2322X | 32
32 | 170
170 | 121
121 | 17
7 | 2.75
2.75 | | 110 | 120
120
120 | 23024C DKE4 + H3024
23124C KE4 + H3124
22224E AKE4 + H3124 | 72
88
88 | 145
155
155 | 22
22
22 | _ | A 3024
A 3124
A 3124 | 33
33
33 | 180
180
180 | 127
128
128 | 7
7
11 | 1.95
2.65
2.65 | | | 120
120 | 23224C KE4 + H2324
22324E AKE4 + H2324 | 112
112 | 155
155 | 22
22 | _ | A 2324
A 2324 | 33
33 | 180
180 | 131
131 | 17
7 | 3.2
3.2 | | 115 | 130
130
130 | 23026C DKE4 + H3026
23126C KE4 + H3126
22226E AKE4 + H3126 | 80
92
92 | 155
165
165 | 23
23
23 | _ | A 3026
A 3126
A 3126 | 34
34
34 | 190
190
190 | 137
138
138 | 8
8
8 | 2.85
3.65
3.65 | | | 130
130 | 23226C KE4 + H2326
22326C KE4 + H2326 | 121
121 | 165
165 | 23
23 | _ | A 2326
A 2326 | 34
34 | 190
190 | 142
142 | 21
8 | 4.6
4.6 | Remark The suffix X represents adapter sleeves having narrow slits, for which washers with straight tabs should be used. C 350 C 351 Shaft Diameter 180 – 260 mm # Shaft Diameter 125 – 170 mm | Shaft | Nominal
Bearing | | | Dimen: | | | Adapter | Abu | tment D
(mr | | ons | Mass
(kg) | |-----------------------|--------------------|--|-------------------|-------------------|----------------|-------|----------------------------|---|-------------------|-------------------|---------------------|----------------------| | Diameter (mm) d_1 | Bore Dia. (mm) | Nominal Numbers Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Sleeve
Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | K
min. | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 125 | 140
140
140 | 23028C DKE4 + H3028
23128C KE4 + H3128
22228C DKE4 + H3128 | 82
97
97 | 165
180
180 | 24
24
24 | _ | A 3028
A 3128
A 3128 | 36
36
36 | 205
205
205 | 147
149
149 | 8
8
8 | 3.15
4.35
4.35 | | | 140
140 | 23228C KE4 + H2328
22328C KE4 + H2328 | 131
131 | 180
180 | 24
24 | _ | A 2328
A 2328 | 36
36 | 205
205 | 152
152 | 22
8 | 5.55
5.55 | | 135 | 150
150
150 | 23030C DKE4 + H3030
23130C KE4 + H3130
22230C DKE4 + H3130 | 87
111
111 | 180
195
195 | 26
26
26 | _ | A 3030
A 3130
A 3130 | 37
37
37 | 220
220
220 | 158
160
160 | 8
8
15 | 3.9
5.5
5.5 | | | 150
150 | 23230C KE4 + H2330
22330C AKE4 + H2330 | 139
139 | 195
195 | 26
26 | _ | A 2330
A 2330 | 37
37 | 220
220 | 163
163 | 20
8 | 6.6
6.6 | | 140 | 160
160
160 | 23932C AKE4 + H3932
23032C DKE4 + H3032
23132C KE4 + H3132 | 78
93
119 | 190
190
210 | 28
28
28 | _ | A 3932
A 3032
A 3132 | 39
39
39 | 205
230
230 | 168
168
170 | 8
8
8 | 4.64
5.2
7.65 | | | 160
160
160 | 22232C DKE4 + H3132
23232C KE4 + H2332
22332C AKE4 + H2332 | 119
147
147 | 210
210
210 | 28
28
28 | _ | A 3132
A 2332
A 2332 | 39
39
39 | 230
230
230 | 170
174
174 | 14
18
8 | 7.65
9.15
9.15 | | 150 | 170
170
170 | 23934B CAKE4 + H3934
23034C DKE4 + H3034
23134C KE4 + H3134 | 79
101
122 | 200
200
220 | 29
29
29 | _ | A 3934
A 3034
A 3134 | 40
40
40 | 215
250
250 | 179
179
180 | 8
8
8 | 5.07
6.0
8.4 | | | 170
170
170 | 22234C DKE4 + H3134
23234C KE4 + H2334
22334C AKE4 + H2334 | 122
154
154 | 220
220
220 | 29
29
29 | _ | A 3134
A 2334
A 2334 | 40
40
40 | 250
250
250 | 180
185
185 | 10
18
8 | 8.4
10
10 | | 160 | 180
180
180 | 23936C AKE4 + H3936
23036C DKE4 + H3036
23136C KE4 + H3136 | 87
109
131 | 210
210
230 | 30
30
30 | _ | A 3936
A 3036
A 3136 |
41
41
41 | 230
260
260 | 189
189
191 | 8
8
8 | 5.87
6.85
9.5 | | | 180
180
180 | 22236C DKE4 + H3136
23236C KE4 + H2336
22336C AKE4 + H2336 | 131
161
161 | 230
230
230 | 30
30
30 | _ | A 3136
A 2336
A 2336 | 41
41
41 | 260
260
260 | 191
195
195 | 18
22
8 | 9.5
11.5
11.5 | | 170 | 190
190
190 | 23938C AKE4 + H3938
23038C AKE4 + H3038
23138C KE4 + H3138 | 89
112
141 | 220
220
240 | 31
31
31 | _ | A 3938
A 3038
A 3138 | 43
43
43 | 240
270
270 | 199
199
202 | 9
9
9 | 6.35
7.45
11 | | | 190
190
190 | 22238C AKE4 + H3138
23238C KE4 + H2338
22338C AKE4 + H2338 | 141
169
169 | 240
240
240 | 31
31
31 | | A 3138
A 2338
A 2338 | 43
43
43 | 270
270
270 | 202
206
206 | 21
21
9 | 11
12.5
12.5 | | Shaft
Diameter | Nominal
Bearing | Nominal Numbers | | Dimen
(mr | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | |-------------------|--------------------|---|-------------------|-------------------|----------------|-------|----------------------------|---|-------------------|-------------------|--------------------------|------------------| | d_1 | (mm)
<i>d</i> | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $_{\min .}^{K}$ | $d_{ m e}$ min. | $_{\min .}^{\textit{b}}$ | approx. | | 180 | 200
200
200 | 23940C AKE4 + H3940
23040C AKE4 + H3040
23140C KE4 + H3140 | 98
120
150 | 240
240
250 | 32
32
32 | = | A 3940
A 3040
A 3140 | 46
46
46 | 260
280
280 | 210
210
212 | 10
10
10 | 8.0
9.2
12 | | | 200
200
200 | 22240C AKE4 + H3140
23240C KE4 + H2340
22340C AKE4 + H2340 | 150
176
176 | 250
250
250 | 32
32
32 | _ | A3140
A2340
A2340 | 46
46
46 | 280
280
280 | 212
216
216 | 24
20
10 | 12
14
14 | | 200 | 220 | 23944C AKE4 + H3944 | 96 | 260 | 30 | 41 | A3944 | 55 | 280 | 231 | 10 | 8.32 | | | 220 | 23044C AKE4 + H3044 | 128 | 260 | 30 | 41 | A3044 | 55 | 320 | 231 | 12 | 10.5 | | | 220 | 23144C KE4 + H3144 | 158 | 280 | 32 | 44 | A3144 | 55 | 320 | 233 | 10 | 14.5 | | | 220 | 22244C AKE4 + H3144 | 158 | 280 | 32 | 44 | A3144 | 55 | 320 | 233 | 22 | 14.5 | | | 220 | 23244C KE4 + H2344 | 183 | 280 | 32 | 44 | A2344 | 55 | 320 | 236 | 11 | 16.5 | | | 220 | 22344C AKE4 + H2344 | 183 | 280 | 32 | 44 | A2344 | 55 | 320 | 236 | 10 | 16.5 | | 220 | 240 | 23948C AKE4 + H3948 | 101 | 290 | 34 | 46 | A3948 | 60 | 300 | 251 | 11 | 11.2 | | | 240 | 23048C AKE4 + H3048 | 133 | 290 | 34 | 46 | A3048 | 60 | 340 | 251 | 11 | 13 | | | 240 | 23148C KE4 + H3148 | 169 | 300 | 34 | 46 | A3148 | 60 | 340 | 254 | 11 | 17.5 | | | 240 | 22248C AKE4 + H3148 | 169 | 300 | 34 | 46 | A 3148 | 60 | 340 | 254 | 19 | 17.5 | | | 240 | 23248C AKE4 + H2348 | 196 | 300 | 34 | 46 | A 2348 | 60 | 340 | 257 | 6 | 19.5 | | | 240 | 22348C AKE4 + H2348 | 196 | 300 | 34 | 46 | A 2348 | 60 | 340 | 257 | 11 | 19.5 | | 240 | 260 | 23952C AKE4 + H3952 | 116 | 310 | 34 | 46 | A 3952 | 60 | 330 | 272 | 11 | 13.4 | | | 260 | 23052C AKE4 + H3052 | 147 | 310 | 34 | 46 | A 3052 | 60 | 370 | 272 | 13 | 15.5 | | | 260 | 23152C AKE4 + H3152 | 187 | 330 | 36 | 49 | A 3152 | 60 | 370 | 276 | 11 | 22 | | | 260 | 22252C AKE4 + H3152 | 187 | 330 | 36 | 49 | A 3152 | 60 | 370 | 276 | 25 | 22 | | | 260 | 23252C AKE4 + H2352 | 208 | 330 | 36 | 49 | A 2352 | 60 | 370 | 278 | 2 | 24 | | | 260 | 22352C AKE4 + H2352 | 208 | 330 | 36 | 49 | A 2352 | 60 | 370 | 278 | 11 | 24 | | 260 | 280 | 23956C AKE4 + H3956 | 121 | 330 | 38 | 50 | A3956 | 65 | 350 | 292 | 12 | 15.5 | | | 280 | 23056C AKE4 + H3056 | 152 | 330 | 38 | 50 | A3056 | 65 | 390 | 292 | 12 | 17.5 | | | 280 | 23156C AKE4 + H3156 | 192 | 350 | 38 | 51 | A3156 | 65 | 390 | 296 | 12 | 24.5 | | | 280 | 22256C AKE4 + H3156 | 192 | 350 | 38 | 51 | A3156 | 65 | 390 | 296 | 28 | 24.5 | | | 280 | 23256C AKE4 + H2356 | 221 | 350 | 38 | 51 | A2356 | 65 | 390 | 299 | 11 | 28 | | | 280 | 22356C AKE4 + H2356 | 221 | 350 | 38 | 51 | A2356 | 65 | 390 | 299 | 12 | 28 | $\phi d_1 \phi d_2$ C 353 C 352 # Shaft Diameter 280 - 410 mm | Shaft | Nominal
Bearing | Nominal Numbers | | Dimens
(mr | | | Adapter
Sleeve | Abu | tment D | | ons | Mass
(kg) | |-----------------------|--------------------------|--|--------------------------|--------------------------|----------------------|----------------------|----------------------------------|---|--------------------------|--------------------------|----------------------|----------------------------| | Diameter (mm) d_1 | Bore Dia. (mm) | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $b \atop { m min.}$ | approx. | | 280 | 300 | 23960C AKE4 + H3960 | 140 | 360 | 42 | 54 | A3960 | 69 | 380 | 313 | 12 | 20.7 | | | 300 | 23060C AKE4 + H3060 | 168 | 360 | 42 | 54 | A3060 | 69 | 430 | 313 | 12 | 23 | | | 300 | 23160C AKE4 + H3160 | 208 | 380 | 40 | 53 | A3160 | 69 | 430 | 317 | 12 | 30 | | | 300 | 22260C AKE4 + H3160 | 208 | 380 | 40 | 53 | A3160 | 69 | 430 | 317 | 32 | 30 | | | 300 | 23260C AKE4 + H3260 | 240 | 380 | 40 | 53 | A3260 | 69 | 430 | 321 | 12 | 34 | | 300 | 320 | 23964C AKE4 + H3964 | 140 | 380 | 42 | 55 | A3964 | 72 | 400 | 334 | 13 | 21.8 | | | 320 | 23064C AKE4 + H3064 | 171 | 380 | 42 | 55 | A3064 | 72 | 450 | 334 | 13 | 24.5 | | | 320 | 23164C AKE4 + H3164 | 226 | 400 | 42 | 56 | A3164 | 72 | 450 | 339 | 13 | 35 | | | 320 | 22264C AKE4 + H3164 | 226 | 400 | 42 | 56 | A3164 | 72 | 450 | 339 | 39 | 35 | | | 320 | 23264C AKE4 + H3264 | 258 | 400 | 42 | 56 | A3264 | 72 | 450 | 343 | 13 | 39.5 | | 320 | 340 | 23968C AKE4 + H3968 | 144 | 400 | 45 | 58 | A3968 | 75 | 430 | 354 | 14 | 24.6 | | | 340 | 23068C AKE4 + H3068 | 187 | 400 | 45 | 58 | A3068 | 75 | 490 | 355 | 14 | 28.5 | | | 340 | 23168C AKE4 + H3168 | 254 | 440 | 55 | 72 | A3168 | 75 | 490 | 360 | 14 | 49.5 | | | 340 | 23268C AKE4 + H3268 | 288 | 440 | 55 | 72 | A3268 | 75 | 490 | 364 | 14 | 54.5 | | 340 | 360 | 23972C AKE4 + H3972 | 144 | 420 | 45 | 58 | A3972 | 75 | 450 | 374 | 14 | 25.7 | | | 360 | 23072C AKE4 + H3072 | 188 | 420 | 45 | 58 | A3072 | 75 | 510 | 375 | 14 | 30.5 | | | 360 | 23172C AKE4 + H3172 | 259 | 460 | 58 | 75 | A3172 | 75 | 510 | 380 | 14 | 54 | | | 360 | 23272C AKE4 + H3272 | 299 | 460 | 58 | 75 | A3272 | 75 | 510 | 385 | 14 | 60.5 | | 360 | 380 | 23976C AKE4 + H3976 | 164 | 450 | 48 | 62 | A3976 | 82 | 480 | 396 | 15 | 31.9 | | | 380 | 23076C AKE4 + H3076 | 193 | 450 | 48 | 62 | A3076 | 82 | 540 | 396 | 15 | 36 | | | 380 | 23176C AKE4 + H3176 | 264 | 490 | 60 | 77 | A3176 | 82 | 540 | 401 | 15 | 61.5 | | | 380 | 23276C AKE4 + H3276 | 310 | 490 | 60 | 77 | A3276 | 82 | 540 | 405 | 15 | 69.5 | | 380 | 400
400
400
400 | 23980C AKE4 + H3980
23080C AKE4 + H3080
23180C AKE4 + H3180
23280C AKE4 + H3280 | 168
210
272
328 | 470
470
520
520 | 52
52
62
62 | 66
66
82
82 | A3980
A3080
A3180
A3280 | 86
86
86 | 500
580
580
580 | 417
417
421
427 | 15
15
15
15 | 35.2
41.5
70.5
81 | | 400 | 420
420
420
420 | 23984C AKE4 + H3984
23084C AKE4 + H3084
23184C AKE4 + H3184
23284C AKE4 + H3284 | 168
212
304
352 | 490
490
540
540 | 52
52
70
70 | 66
66
90
90 | A3984
A3084
A3184
A3284 | 86
86
86 | 520
600
600
600 | 437
437
443
448 | 16
16
16
16 | 36.6
43.5
84
94 | | 410 | 440 | 23988C AKE4 + H3988 | 189 | 520 | 60 | 77 | A3988 | 99 | 550 | 458 | 17 | 58.6 | | | 440 | 23088C AKE4 + H3088 | 228 | 520 | 60 | 77 | A3088 | 99 | 620 | 458 | 17 | 65 | | | 440 | 23188C AKE4 + H3188 | 307 | 560 | 70 | 90 | A3188 | 99 | 620 | 464 | 17 | 104 | | | 440 | 23288C AKE4 + H3288 | 361 | 560 | 70 | 90 | A3288 | 99 | 620 | 469 | 17 | 118 | | Shaft | Nominal
Bearing
Bore Dia. | Nominal Numbers | Dimensions (mm) | | | Adapter
Sleeve | Abu | tment D
(mr | | ons | Mass
(kg) | | |-----------------|---------------------------------|----------------------------|-----------------|-------|-------|-------------------|----------|---|---------------------|-----------------|--------------------------|---------| | Diameter (mm) | (mm)
d | Applicable Bearings | B_1 | d_2 | B_2 | B_5 | Numbers | $\begin{array}{c} A \\ \text{min.} \end{array}$ | $K \atop { m min.}$ | $d_{ m e}$ min. | $_{\min .}^{\textit{b}}$ | approx. | | 430 | 460 | 23992C AKE4 + H3992 | 189 | 540 | 60 | 77 | A 3992 | 99 | 570 | 478 | 17 | 62 | | | 460 | 23092C AKE4 + H3092 | 234 | 540 | 60 | 77 | A 3092 | 99 | 650 | 478 | 17 | 69.5 | | | 460 | 23192C AKE4 + H3192 | 326 | 580 | 75 | 95 | A 3192 | 99 | 650 | 485 | 17 | 116 | | | 460 | 23292C AKE4 + H3292 | 382 | 580 | 75 | 95 | A 3292 | 99 | 650 | 491 | 17 | 132 | | 450 | 480 | 23996C AKE4 + H3996 | 200 | 560 | 60 | 77 | A 3996 | 99 | 600 | 499 | 18 |
67.5 | | | 480 | 23096C AKE4 + H3096 | 237 | 560 | 60 | 77 | A 3096 | 99 | 690 | 499 | 18 | 73.5 | | | 480 | 23196C AKE4 + H3196 | 335 | 620 | 75 | 95 | A 3196 | 99 | 690 | 505 | 18 | 133 | | | 480 | 23296C AKE4 + H3296 | 397 | 620 | 75 | 95 | A 3296 | 99 | 690 | 512 | 18 | 152 | | 470 | 500 | 239/500C AKE4 + H39/500 | 208 | 580 | 68 | 85 | A 39/500 | 109 | 620 | 519 | 18 | 74.6 | | | 500 | 230/500C AKE4 + H30/500 | 247 | 580 | 68 | 85 | A 30/500 | 109 | 700 | 519 | 18 | 82 | | | 500 | 231/500C AKE4 + H31/500 | 356 | 630 | 80 | 100 | A 31/500 | 109 | 700 | 527 | 18 | 143 | | | 500 | 232/500C AKE4 + H32/500 | 428 | 630 | 80 | 100 | A 32/500 | 109 | 700 | 534 | 18 | 166 | C 354 C 355 Shaft Diameter 90 – 135 mm # **■**WITHDRAWAL SLEEVES FOR ROLLING BEARINGS Shaft Diameter 35 - 85 mm | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | | Mass
(kg) | |-----------------------|----------------------|--|--|----------------------|-------------------|----------------------|-------------------------------| | Diameter (mm) d_1 | Bore Dia. | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 35
40 | 40
40
45
45 | 21308EAKE4 + AH 308
22308EAKE4 + AH 2308
21309EAKE4 + AH 309
22309EAKE4 + AH 2309 | M 45 × 1.5
M 45 × 1.5
M 50 × 1.5
M 50 × 1.5 | 29
40
31
44 | 6
7
6
7 | 32
43
34
47 | 0.09
0.13
0.11
0.165 | | 45 | 50 | 21310EAKE4 + AHX 310 | M 55 × 2 | 35 | 7 | 38 | 0.16 | | | 50 | 22310EAKE4 + AHX 2310 | M 55 × 2 | 50 | 9 | 53 | 0.235 | | 50 | 55 | 22211EAKE4 + AHX 311 | M 60 × 2 | 37 | 7 | 40 | 0.19 | | | 55 | 21311EAKE4 + AHX 311 | M 60 × 2 | 37 | 7 | 40 | 0.19 | | | 55 | 22311EAKE4 + AHX 2311 | M 60 × 2 | 54 | 10 | 57 | 0.285 | | 55 | 60 | 22212EAKE4 + AHX 312 | M 65 × 2 | 40 | 8 | 43 | 0.215 | | | 60 | 21312EAKE4 + AHX 312 | M 65 × 2 | 40 | 8 | 43 | 0.215 | | | 60 | 22312EAKE4 + AHX 2312 | M 65 × 2 | 58 | 11 | 61 | 0.34 | | 60 | 65 | 22213EAKE4 + AH 313 | M 75 × 2 | 42 | 8 | 45 | 0.255 | | | 65 | 21313EAKE4 + AH 313 | M 75 × 2 | 42 | 8 | 45 | 0.255 | | | 65 | 22313EAKE4 + AH 2313 | M 75 × 2 | 61 | 12 | 64 | 0.395 | | 65 | 70 | 22214EAKE4 + AH 314 | M 80 × 2 | 43 | 8 | 47 | 0.28 | | | 70 | 21314EAKE4 + AH 314 | M 80 × 2 | 43 | 8 | 47 | 0.28 | | | 70 | 22314EAKE4 + AHX 2314 | M 80 × 2 | 64 | 12 | 68 | 0.53 | | 70 | 75 | 22215EAKE4 + AH 315 | M 85 × 2 | 45 | 8 | 49 | 0.315 | | | 75 | 21315EAKE4 + AH 315 | M 85 × 2 | 45 | 8 | 49 | 0.315 | | | 75 | 22315EAKE4 + AHX 2315 | M 85 × 2 | 68 | 12 | 72 | 0.605 | | 75 | 80 | 22216EAKE4 + AH 316 | M 90 × 2 | 48 | 8 | 52 | 0.365 | | | 80 | 21316EAKE4 + AH 316 | M 90 × 2 | 48 | 8 | 52 | 0.365 | | | 80 | 22316EAKE4 + AHX 2316 | M 90 × 2 | 71 | 12 | 75 | 0.665 | | 80 | 85 | 22217EAKE4 + AHX 317 | M 95 × 2 | 52 | 9 | 56 | 0.48 | | | 85 | 21317EAKE4 + AHX 317 | M 95 × 2 | 52 | 9 | 56 | 0.48 | | | 85 | 22317EAKE4 + AHX 2317 | M 95 × 2 | 74 | 13 | 78 | 0.745 | | 85 | 90 | 22218EAKE4 + AHX 318 | M 100 x 2 | 53 | 9 | 57 | 0.52 | | | 90 | 21318EAKE4 + AHX 318 | M 100 x 2 | 53 | 9 | 57 | 0.52 | | | 90 | 23218CKE4 + AHX 3218 | M 100 x 2 | 63 | 10 | 67 | 0.58 | | | 90 | 22318EAKE4 + AHX 2318 | M 100 x 2 | 79 | 14 | 83 | 0.845 | | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | | Mass
(kg) | |----------------|------------------------|--------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 90 | 95 | 22219EAKE4 + AHX 319 | M 105 × 2 | 57 | 10 | 61 | 0.595 | | | 95 | 21319CKE4 + AHX 319 | M 105 × 2 | 57 | 10 | 61 | 0.595 | | | 95 | 22319EAKE4 + AHX 2319 | M 105 × 2 | 85 | 16 | 89 | 0.89 | | 95 | 100 | 21320CKE4 + AHX 3120 | M 110 × 2 | 64 | 11 | 68 | 0.70 | | | 100 | 22220EAKE4 + AHX 320 | M 110 × 2 | 59 | 10 | 63 | 0.66 | | | 100 | 21320CKE4 + AHX 320 | M 110 × 2 | 59 | 10 | 63 | 0.66 | | | 100 | 23220CKE4 + AHX 3220 | M 110 × 2 | 73 | 11 | 77 | 0.77 | | | 100 | 22320EAKE4 + AHX 2320 | M 110 × 2 | 90 | 16 | 94 | 1.0 | | 105 | 110 | 23122CKE4 + AHX 3122 | M 120 × 2 | 68 | 11 | 72 | 0.76 | | | 110 | 22222EAKE4 + AHX 3122 | M 120 × 2 | 68 | 11 | 72 | 0.76 | | | 110 | 24122CK30E4 + AH 24122 | M 115 × 2 | 82 | 13 | 91 | 0.73 | | | 110 | 23222CKE4 + AHX 3222 | M 125 × 2 | 82 | 11 | 86 | 1.04 | | | 110 | 22322EAKE4 + AHX 2322 | M 125 × 2 | 98 | 16 | 102 | 1.35 | | 115 | 120 | 23024C DKE4 + AHX 3024 | M 130 × 2 | 60 | 13 | 64 | 0.75 | | | 120 | 24024C K30E4 + AH 24024 | M 125 × 2 | 73 | 13 | 82 | 0.70 | | | 120 | 23124C KE4 + AHX 3124 | M 130 × 2 | 75 | 12 | 79 | 0.95 | | | 120 | 22224EAKE4 + AHX 3124 | M 130 × 2 | 75 | 12 | 79 | 0.95 | | | 120 | 24124CK30E4 + AH 24124 | M 130 × 2 | 93 | 13 | 102 | 1.02 | | | 120 | 23224CKE4 + AHX 3224 | M 135 × 2 | 90 | 13 | 94 | 1.3 | | | 120 | 22324EAKE4 + AHX 2324 | M 135 × 2 | 105 | 17 | 109 | 1.6 | | 125 | 130 | 23026C DKE4 + AHX 3026 | M 140 × 2 | 67 | 14 | 71 | 0.95 | | | 130 | 24026C K30E4 + AH 24026 | M 135 × 2 | 83 | 14 | 93 | 0.89 | | | 130 | 23126C KE4 + AHX 3126 | M 140 × 2 | 78 | 12 | 82 | 1.08 | | | 130 | 22226E AKE4 + AHX 3126 | M 140 × 2 | 78 | 12 | 82 | 1.08 | | | 130 | 24126C K30E4 + AH 24126 | M 140 × 2 | 94 | 14 | 104 | 1.14 | | | 130 | 23226C KE4 + AHX 3226 | M 145 × 2 | 98 | 15 | 102 | 1.58 | | | 130 | 22326C KE4 + AHX 2326 | M 145 × 2 | 115 | 19 | 119 | 1.97 | | 135 | 140 | 23028C DKE4 + AHX 3028 | M 150 x 2 | 68 | 14 | 73 | 1.01 | | | 140 | 24028C K30E4 + AH 24028 | M 145 x 2 | 83 | 14 | 93 | 0.96 | | | 140 | 23128C KE4 + AHX 3128 | M 150 x 2 | 83 | 14 | 88 | 1.28 | | | 140 | 22228CDKE4 + AHX 3128 | M 150 × 2 | 83 | 14 | 88 | 1.28 | | | 140 | 24128CK30E4 + AH 24128 | M 150 × 2 | 99 | 14 | 109 | 1.3 | | | 140 | 23228CKE4 + AHX 3228 | M 155 × 3 | 104 | 15 | 109 | 1.84 | | | 140 | 22328CKE4 + AHX 2328 | M 155 × 3 | 125 | 20 | 130 | 2.33 | C 357 C 356 Shaft Diameter 190 – 260 mm # **■**WITHDRAWAL SLEEVES FOR ROLLING BEARINGS Shaft Diameter 145 – 180 mm | Shaft | Nominal
Bearing | | Screw Thread | С | imensions
(mm) | | Mass
(kg) | |-----------------------|------------------------|-------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 145 | 150 | 23030CDKE4 + AHX 3030 | M 160 × 3 | 72 | 15 | 77 | 1.15 | | | 150 | 24030CK30E4 + AH 24030 | M 155 × 3 | 90 | 15 | 101 | 1.11 | | | 150 | 23130CKE4 + AHX 3130 | M 165 × 3 | 96 | 15 | 101 | 1.79 | | | 150 | 22230C DKE4 + AHX 3130 | M 165 × 3 | 96 | 15 | 101 | 1.79 | | | 150 | 24130C K30E4 + AH 24130 | M 160 × 3 | 115 | 15 | 126 | 1.63 | | | 150 | 23230C KE4 + AHX 3230 | M 165 × 3 | 114 | 17 | 119 | 2.22 | | | 150 | 22330C AKE4 + AHX 2330 | M 165 × 3 | 135 | 24 | 140 | 2.82 | | 150 | 160 | 23032CDKE4 + AH 3032 | M 170 × 3 | 77 | 16 | 82 | 2.05 | | | 160 | 24032CK30E4 + AH 24032 | M 170 × 3 | 95 | 15 | 106 | 2.28 | | | 160 | 23132CKE4 + AH 3132 | M 180 × 3 | 103 | 16 | 108 | 3.2 | | | 160 | 22232C DKE4 + AH 3132 | M 180 × 3 | 103 | 16 | 108 | 3.2 | | | 160 | 24132C K30E4 + AH 24132 | M 170 × 3 | 124 | 15 | 135 | 3.03 | | | 160 | 23232C KE4 + AH 3232 | M 180 × 3 | 124 | 20 | 130 | 4.1 | | | 160 | 22332C AKE4 + AH 2332 | M 180 × 3 | 140 | 24 | 146 | 4.7 | | 160 | 170 | 23034C DKE4 + AH 3034 | M 180 × 3 | 85 | 17 | 90 | 2.45 | | | 170 | 24034C K30E4 + AH 24034 | M 180 × 3 | 106 | 16 | 117 | 2.74 | | | 170 | 23134C KE4 + AH 3134 | M 190 × 3 | 104 | 16 | 109 | 3.4 | | | 170 | 22234C DKE4 + AH 3134 | M 190 × 3 | 104 | 16 | 109 | 3.4 | | | 170 | 24134C K30E4 + AH 24134 | M 180 × 3 | 125 | 16 | 136 | 3.26 | | | 170 | 23234C KE4 + AH 3234 | M 190 × 3 | 134 | 24 | 140 | 4.8 | | | 170 | 22334C AKE4 + AH 2334 | M 190 × 3 | 146 | 24 | 152 | 5.25 | | 170 | 180 | 23036C DKE4 + AH 3036 | M 190 × 3 | 92 | 17 | 98 | 2.8 | | | 180 | 24036C K30E4 + AH 24036 | M 190 × 3 | 116 | 16 | 127 | 3.19 | | | 180 | 23136C KE4 + AH 3136 | M 200 × 3 | 116 | 19 | 122 | 4.2 | | | 180 | 24136CK30E4 + AH 24136 | M 190 × 3 | 134 | 16 | 145 | 3.74 | | | 180 | 22236CDKE4 + AH 2236 | M 200 × 3 | 105 | 17 | 110 | 3.75 | | | 180 | 23236CKE4 + AH 3236 | M 200 × 3 | 140 | 24 | 146 | 5.3 | | | 180 | 22336CAKE4 + AH 2336 | M 200 × 3 | 154 | 26 | 160 | 5.85 | | 180 | 190 | 23038CAKE4 + AH 3038 | Tr 205 × 4 | 96 | 18 | 102 | 3.35 | | | 190 | 24038CK30E4 + AH 24038 | M 200 × 3 | 118 | 18 | 131 | 3.47 | | | 190 | 23138CKE4 + AH 3138 | Tr 210 × 4 | 125 | 20 | 131 | 4.9 | | | 190 | 24138C K30E4 + AH 24138 | M 200 × 3 | 146 | 18 | 159 | 4.38 | | | 190 | 22238C AKE4 + AH 2238 | Tr 210 × 4 | 112 | 18 | 117 | 4.25 | | | 190 | 23238C KE4 + AH 3238 | Tr 210 × 4 | 145 | 25 | 152 | 5.9 | | | 190 | 22338C AKE4 + AH 2338 | Tr 210 × 4 | 160 | 26 | 167 | 6.65 | | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | | Mass
(kg) | |-----------------------|--------------------------|---|--|--------------------------|----------------------|--------------------------|-----------------------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 190 | 200 | 23040CAKE4 + AH 3040 | Tr 215 × 4 | 102 | 19 | 108 |
3.8 | | | 200 | 24040CK30E4 + AH 24040 | Tr 210 × 4 | 127 | 18 | 140 | 3.92 | | | 200 | 23140CKE4 + AH 3140 | Tr 220 × 4 | 134 | 21 | 140 | 5.5 | | | 200 | 24140CK30E4 + AH 24140 | Tr 210 × 4 | 158 | 18 | 171 | 5.0 | | | 200 | 22240CAKE4 + AH 2240 | Tr 220 × 4 | 118 | 19 | 123 | 4.7 | | | 200 | 23240CKE4 + AH 3240 | Tr 220 × 4 | 153 | 25 | 160 | 6.7 | | | 200 | 22340CAKE4 + AH 2340 | Tr 220 × 4 | 170 | 30 | 177 | 7.55 | | 200 | 220 | 23044CAKE4 + AH 3044 | Tr 235 × 4 | 111 | 20 | 117 | 7.4 | | | 220 | 24044CK30E4 + AH 24044 | Tr 230 × 4 | 138 | 20 | 152 | 8.23 | | | 220 | 23144CKE4 + AH 3144 | Tr 240 × 4 | 145 | 23 | 151 | 10.5 | | | 220
220
220
220 | 24144CK30E4 + AH 24144 22244CAKE4 + AH 2244 23244CKE4 + AH 2344 22344CAKE4 + AH 2344 | Tr 230 × 4
Tr 240 × 4
Tr 240 × 4
Tr 240 × 4 | 170
130
181
181 | 20
20
30
30 | 184
136
189
189 | 10.3
9.1
13.5
13.5 | | 220 | 240 | 23048C AKE4 + AH 3048 | Tr 260 × 4 | 116 | 21 | 123 | 8.75 | | | 240 | 24048C K30E4 + AH 24048 | Tr 250 × 4 | 138 | 20 | 153 | 9.0 | | | 240 | 23148C KE4 + AH 3148 | Tr 260 × 4 | 154 | 25 | 161 | 12 | | | 240
240
240
240 | 24148CK30E4 + AH 24148 22248CAKE4 + AH 2248 23248CAKE4 + AH 2348 22348CAKE4 + AH 2348 | Tr 260 × 4
Tr 260 × 4
Tr 260 × 4
Tr 260 × 4 | 180
144
189
189 | 20
21
30
30 | 195
150
197
197 | 12.6
11
15.5
15.5 | | 240 | 260 | 23052CAKE4 + AH 3052 | Tr 280 × 4 | 128 | 23 | 135 | 10.5 | | | 260 | 24052CAK30E4 + AH 24052 | Tr 270 × 4 | 162 | 22 | 178 | 11.7 | | | 260 | 23152CAKE4 + AH 3152 | Tr 290 × 4 | 172 | 26 | 179 | 16 | | | 260 | 24152CAK30E4 + AH 24152 | Tr 280 × 4 | 202 | 22 | 218 | 15.5 | | | 260 | 22252CAKE4 + AH 2252 | Tr 290 × 4 | 155 | 23 | 161 | 14 | | | 260 | 23252CAKE4 + AH 2352 | Tr 290 × 4 | 205 | 30 | 213 | 19.5 | | | 260 | 22352CAKE4 + AH 2352 | Tr 290 × 4 | 205 | 30 | 213 | 19.5 | | 260 | 280 | 23056C AKE4 + AH 3056 | Tr 300 × 4 | 131 | 24 | 139 | 12 | | | 280 | 24056C AK30E4 + AH 24056 | Tr 290 × 4 | 162 | 22 | 179 | 12.6 | | | 280 | 23156C AKE4 + AH 3156 | Tr 310 × 5 | 175 | 28 | 183 | 17.5 | | | 280 | 24156C AK30E4 + AH 24156 | Tr 300 × 4 | 202 | 22 | 219 | 16.8 | | | 280 | 22256C AKE4 + AH 2256 | Tr 310 × 5 | 155 | 24 | 163 | 15 | | | 280 | 23256C AKE4 + AH 2356 | Tr 310 × 5 | 212 | 30 | 220 | 21.5 | | | 280 | 22356C AKE4 + AH 2356 | Tr 310 × 5 | 212 | 30 | 220 | 21.5 | C 358 C 359 Shaft Diameter 400 – 480 mm # **■**WITHDRAWAL SLEEVES FOR ROLLING BEARINGS Shaft Diameter 280 - 380 mm | Shaft | Nominal
Bearing | | Screw Thread | D | imensions | | Mass
(kg) | |-----------------------|------------------------|-------------------------------------|--------------|-------|-----------|-------|--------------| | Diameter (mm) d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 280 | 300 | 23060CAKE4 + AH 3060 | Tr 320 × 5 | 145 | 26 | 153 | 14.5 | | | 300 | 24060CAK30E4 + AH 24060 | Tr 310 × 5 | 184 | 24 | 202 | 15.5 | | | 300 | 23160CAKE4 + AH 3160 | Tr 330 × 5 | 192 | 30 | 200 | 21 | | | 300 | 24160CAK30E4 + AH 24160 | Tr 320 × 5 | 224 | 24 | 242 | 20.3 | | | 300 | 22260CAKE4 + AH 2260 | Tr 330 × 5 | 170 | 26 | 178 | 18 | | | 300 | 23260CAKE4 + AH 3260 | Tr 330 × 5 | 228 | 34 | 236 | 20 | | 300 | 320 | 23064CAKE4 + AH 3064 | Tr 345 × 5 | 149 | 27 | 157 | 16 | | | 320 | 24064CAK30E4 + AH 24064 | Tr 330 × 5 | 184 | 24 | 202 | 16.4 | | | 320 | 23164CAKE4 + AH 3164 | Tr 350 × 5 | 209 | 31 | 217 | 24.5 | | | 320 | 24164CAK30E4 + AH 24164 | Tr 340 × 5 | 242 | 24 | 260 | 23.5 | | | 320 | 23264CAKE4 + AH 3264 | Tr 350 × 5 | 246 | 36 | 254 | 25 | | 320 | 340 | 23068CAKE4 + AH 3068 | Tr 365 × 5 | 162 | 28 | 171 | 19.5 | | | 340 | 24068CAK30E4 + AH 24068 | Tr 360 × 5 | 206 | 26 | 225 | 21.2 | | | 340 | 23168CAKE4 + AH 3168 | Tr 370 × 5 | 225 | 33 | 234 | 29 | | | 340 | 24168CAK30E4 + AH 24168 | Tr 360 × 5 | 269 | 26 | 288 | 28.3 | | | 340 | 23268CAKE4 + AH 3268 | Tr 370 × 5 | 264 | 38 | 273 | 35.5 | | 340 | 360 | 23072CAKE4 + AH 3072 | Tr 385 × 5 | 167 | 30 | 176 | 21 | | | 360 | 24072CAK30E4 + AH 24072 | Tr 380 × 5 | 206 | 26 | 226 | 22.5 | | | 360 | 23172CAKE4 + AH 3172 | Tr 400 × 5 | 229 | 35 | 238 | 33 | | | 360 | 24172CAK30E4 + AH 24172 | Tr 380 × 5 | 269 | 26 | 289 | 30 | | | 360 | 23272CAKE4 + AH 3272 | Tr 400 × 5 | 274 | 40 | 283 | 41.5 | | 360 | 380 | 23076CAKE4 + AH 3076 | Tr 410 × 5 | 170 | 31 | 180 | 23.5 | | | 380 | 24076CAK30E4 + AH 24076 | Tr 400 × 5 | 208 | 28 | 228 | 24.1 | | | 380 | 23176CAKE4 + AH 3176 | Tr 420 × 5 | 232 | 36 | 242 | 35.5 | | | 380 | 24176CAK30E4 + AH 24176 | Tr 400 × 5 | 271 | 28 | 291 | 32.1 | | | 380 | 23276CAKE4 + AH 3276 | Tr 420 × 5 | 284 | 42 | 294 | 45.5 | | 380 | 400 | 23080CAKE4 + AH 3080 | Tr 430 × 5 | 183 | 33 | 193 | 27.5 | | | 400 | 24080CAK30E4 + AH 24080 | Tr 420 × 5 | 228 | 28 | 248 | 28 | | | 400 | 23180CAKE4 + AH 3180 | Tr 440 × 5 | 240 | 38 | 250 | 39.5 | | | 400 | 24180CAK30E4 + AH 24180 | Tr 420 × 5 | 278 | 28 | 298 | 34.8 | | | 400 | 23280CAKE4 + AH 3280 | Tr 440 × 5 | 302 | 44 | 312 | 51.5 | | Shaft | Nominal
Bearing | | Screw Thread | D | imensions
(mm) | 3 | Mass
(kg) | |----------------|------------------------|-------------------------------------|--------------|-------|-------------------|-------|--------------| | Diameter d_1 | Bore Dia.
(mm)
d | Nominal Numbers Applicable Bearings | G | B_3 | G_1 | B_4 | approx. | | 400 | 420 | 23084CAKE4 + AH 3084 | Tr 450 × 5 | 186 | 34 | 196 | 29 | | | 420 | 24084CAK30E4 + AH 24084 | Tr 440 × 5 | 230 | 30 | 252 | 29.8 | | | 420 | 23184CAKE4 + AH 3184 | Tr 460 × 5 | 266 | 40 | 276 | 46.5 | | | 420 | 24184CAK30E4 + AH 24184 | Tr 440 × 5 | 310 | 30 | 332 | 41.4 | | | 420 | 23284CAKE4 + AH 3284 | Tr 460 × 5 | 321 | 46 | 331 | 59 | | 420 | 440 | 23088CAKE4 + AHX 3088 | Tr 470 × 5 | 194 | 35 | 205 | 42 | | | 440 | 24088CAK30E4 + AH 24088 | Tr 460 × 5 | 242 | 30 | 264 | 33 | | | 440 | 23188CAKE4 + AHX 3188 | Tr 480 × 5 | 270 | 42 | 281 | 50 | | | 440 | 24188CAK30E4 + AH 24188 | Tr 460 × 5 | 310 | 30 | 332 | 43.5 | | | 440 | 23288CAKE4 + AHX 3288 | Tr 480 × 5 | 330 | 48 | 341 | 64 | | 440 | 460 | 23092CAKE4 + AHX 3092 | Tr 490 × 5 | 202 | 37 | 213 | 46 | | | 460 | 24092CAK30E4 + AH 24092 | Tr 480 × 5 | 250 | 32 | 273 | 35.9 | | | 460 | 23192CAKE4 + AHX 3192 | Tr 510 × 6 | 285 | 43 | 296 | 58 | | | 460 | 24192CAK30E4 + AH 24192 | Tr 480 × 5 | 332 | 32 | 355 | 49.7 | | | 460 | 23292CAKE4 + AHX 3292 | Tr 510 × 6 | 349 | 50 | 360 | 74.5 | | 460 | 480 | 23096CAKE4 + AHX 3096 | Tr 520 × 6 | 205 | 38 | 217 | 51 | | | 480 | 24096CAK30E4 + AH 24096 | Tr 500 × 5 | 250 | 32 | 273 | 37.5 | | | 480 | 23196CAKE4 + AHX 3196 | Tr 530 × 6 | 295 | 45 | 307 | 63 | | | 480 | 24196CAK30E4 + AH 24196 | Tr 500 × 5 | 340 | 32 | 363 | 53 | | | 480 | 23296CAKE4 + AHX 3296 | Tr 530 × 6 | 364 | 52 | 376 | 82 | | 480 | 500 | 230/500CAKE4 + AHX 30/500 | Tr 540 × 6 | 209 | 40 | 221 | 54.5 | | | 500 | 240/500CAK30E4 + AH 240/500 | Tr 530 × 6 | 253 | 35 | 276 | 41.9 | | | 500 | 231/500CAKE4 + AHX 31/500 | Tr 550 × 6 | 313 | 47 | 325 | 71 | | | 500 | 241/500CAK30E4 + AH 241/500 | Tr 530 × 6 | 360 | 35 | 383 | 61.2 | | | 500 | 232/500CAKE4 + AHX 32/500 | Tr 550 × 6 | 393 | 54 | 405 | 94.5 | C 361 C 360 (For Adapters and Shafts) Nut with Washer | | | Nut With Wallion | | | Uni | its:mm | | |-----|---------------|------------------|------|-------------|-----------|--------|--| | | | Nut Series AN | | | Reference | | | | nal | Screw Threads | Basic Dimensions | Mass | Adapter (1) | Machar | Choft | | | | | | | | | | Reference | | | | | | | |-------------------------|----------------------------|----------------|----------------|----------------|-------------|--------------------|----------------------|-------------|-------------------|-------------------------|--|-------------------------------|----------------| | Nominal
Numbers | Screw Threads G | d_2 | d_1 | g
g | asic Di b | mensio
<i>h</i> | ns d_3 | В | r
max. | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Washer
Numbers | Shaft
Dia. | | AN 02
AN 03
AN 04 | M 15×1
M 17×1
M 20×1 | 25
28
32 | 21
24
26 | 21
24
28 | 4
4
4 | 2
2
2 | 15.5
17.5
20.5 | 5
5
6 | 0.4
0.4
0.4 | 0.010
0.013
0.019 | —
04 | AW 02 X
AW 03 X
AW 04 X | 15
17
20 | | AN 05 | M 25×1.5 | 38 | 32 | 34 | 5 | 2 | 25.8 | 7 | 0.4 | 0.025 | 05 | AW 05 X | 25 | | AN 06 | M 30×1.5 | 45 | 38 | 41 | 5 | 2 | 30.8 | 7 | 0.4 | 0.043 | 06 | AW 06 X | 30 | | AN 07 | M 35×1.5 | 52 | 44 | 48 | 5 | 2 | 35.8 | 8 | 0.4 | 0.053 | 07 | AW 07 X | 35 | | AN 08 | M 40×1.5 | 58 | 50 | 53 | 6 | 2.5 | 40.8 | 9 | 0.5 | 0.085 | 08 | AW 08 X | 40 | | AN 09 | M 45×1.5 | 65 | 56 | 60 | 6 | 2.5 | 45.8 | 10 | 0.5 | 0.119 | 09 | AW 09 X | 45 | | AN 10 | M 50×1.5 | 70 | 61 | 65 | 6 | 2.5 | 50.8 | 11 | 0.5 | 0.148 | 10 | AW 10 X | 50 | | AN 11 | M 55×2 | 75 | 67 | 69 | 7 | 3 3 3 | 56 | 11 | 0.5 | 0.158 | 11 | AW 11 X | 55 | | AN 12 | M 60×2 | 80 | 73 | 74 | 7 | | 61 | 11 | 0.5 | 0.174 | 12 | AW 12 X | 60 | | AN 13 | M 65×2 | 85 | 79 | 79 | 7 | | 66 | 12 | 0.5 | 0.203 | 13 | AW 13 X | 65 | | AN 14 | M 70×2 | 92 | 85 | 85 | 8 | 3.5 | 71 | 12 | 0.5 | 0.242 | 14 | AW 14 X | 70 | | AN 15 | M 75×2 | 98 | 90 | 91 | 8 | 3.5 | 76 | 13 | 0.5 | 0.287 | 15 | AW 15 X | 75 | | AN 16 | M 80×2 | 105 | 95 | 98 | 8 | 3.5 | 81 | 15 | 0.6 | 0.395 | 16 | AW 16 X | 80 | | AN
17 | M 85×2 | 110 | 102 | 103 | 8 | 3.5 | 86 | 16 | 0.6 | 0.45 | 17 | AW 17 X | 85 | | AN 18 | M 90×2 | 120 | 108 | 112 | 10 | 4 | 91 | 16 | 0.6 | 0.555 | 18 | AW 18 X | 90 | | AN 19 | M 95×2 | 125 | 113 | 117 | 10 | 4 | 96 | 17 | 0.6 | 0.66 | 19 | AW 19 X | 95 | | AN 20 | M 100×2 | 130 | 120 | 122 | 10 | 4 | 101 | 18 | 0.6 | 0.70 | 20 | AW 20 X | 100 | | AN 21 | M 105×2 | 140 | 126 | 130 | 12 | 5 | 106 | 18 | 0.7 | 0.845 | 21 | AW 21 X | 105 | | AN 22 | M 110×2 | 145 | 133 | 135 | 12 | 5 | 111 | 19 | 0.7 | 0.965 | 22 | AW 22 X | 110 | | AN 23 | M 115×2 | 150 | 137 | 140 | 12 | 5 | 116 | 19 | 0.7 | 1.01 | | AW 23 | 115 | | AN 24 | M 120×2 | 155 | 138 | 145 | 12 | 5 | 121 | 20 | 0.7 | 1.08 | 24 | AW 24 | 120 | | AN 25 | M 125×2 | 160 | 148 | 150 | 12 | 5 | 126 | 21 | 0.7 | 1.19 | | AW 25 | 125 | **Note** (1) Applicable to adapter sleeve Series A31, A2, A3, and A23. **Remark** The basic design and dimensions of screw threads are in accordance with JIS B 0205. Nut with Washer Units: mm | | | | | Nut | Series | AN | | | | | | Reference | | |-------------------------|-------------------------------|-------------------|-------------------|-------------------|-----------------|----------------|---------------------|----------------|-------------------|-------------------------|--|-------------------|-----------------| | Nominal
Numbers | Screw Threads G | d_2 | d_1 | g
g | asic Di b | mensio $\it h$ | ns d_3 | В | r
max. | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Washer
Numbers | Shaft
Dia. | | AN 26 | M 130×2 | 165 | 149 | 155 | 12 | 5 | 131 | 21 | 0.7 | 1.25 | 26 | AW 26 | 130 | | AN 27 | M 135×2 | 175 | 160 | 163 | 14 | 6 | 136 | 22 | 0.7 | 1.55 | — | AW 27 | 135 | | AN 28 | M 140×2 | 180 | 160 | 168 | 14 | 6 | 141 | 22 | 0.7 | 1.56 | 28 | AW 28 | 140 | | AN 29
AN 30
AN 31 | M 145×2
M 150×2
M 155×3 | 190
195
200 | 172
171
182 | 178
183
186 | 14
14
16 | 6
6
7 | 146
151
156.5 | 24
24
25 | 0.7
0.7
0.7 | 2.0
2.03
2.21 | | AW 29
AW 30 | 145
150
— | | AN 32 | M 160×3 | 210 | 182 | 196 | 16 | 7 | 161.5 | 25 | 0.7 | 2.59 | 32 | AW 32 | 160 | | AN 33 | M 165×3 | 210 | 193 | 196 | 16 | 7 | 166.5 | 26 | 0.7 | 2.43 | — | — | — | | AN 34 | M 170×3 | 220 | 193 | 206 | 16 | 7 | 171.5 | 26 | 0.7 | 2.8 | 34 | AW 34 | 170 | | AN 36 | M 180×3 | 230 | 203 | 214 | 18 | 8 | 181.5 | 27 | 0.7 | 3.05 | 36 | AW 36 | 180 | | AN 38 | M 190×3 | 240 | 214 | 224 | 18 | 8 | 191.5 | 28 | 0.7 | 3.4 | 38 | AW 38 | 190 | | AN 40 | M 200×3 | 250 | 226 | 234 | 18 | 8 | 201.5 | 29 | 0.7 | 3.7 | 40 | AW 40 | 200 | | | | | | Nut | Series <i>i</i> | ANL | | | | | | | | | ANL 24 | M 120×2 | 145 | 133 | 135 | 12 | 5 | 121 | 20 | 0.7 | 0.78 | 24 | AWL 24 | 120 | | ANL 26 | M 130×2 | 155 | 143 | 145 | 12 | 5 | 131 | 21 | 0.7 | 0.88 | 26 | AWL 26 | 130 | | ANL 28 | M 140×2 | 165 | 151 | 153 | 14 | 6 | 141 | 22 | 0.7 | 0.99 | 28 | AWL 28 | 140 | | ANL 30 | M 150×2 | 180 | 164 | 168 | 14 | 6 | 151 | 24 | 0.7 | 1.38 | 30 | AWL 30 | 150 | | ANL 32 | M 160×3 | 190 | 174 | 176 | 16 | 7 | 161.5 | 25 | 0.7 | 1.56 | 32 | AWL 32 | 160 | | ANL 34 | M 170×3 | 200 | 184 | 186 | 16 | 7 | 171.5 | 26 | 0.7 | 1.72 | 34 | AWL 34 | 170 | | ANL 36 | M 180×3 | 210 | 192 | 194 | 18 | 8 | 181.5 | 27 | 0.7 | 1.95 | 36 | AWL 36 | 180 | | ANL 38 | M 190×3 | 220 | 202 | 204 | 18 | 8 | 191.5 | 28 | 0.7 | 2.08 | 38 | AWL 38 | 190 | | ANL 40 | M 200×3 | 240 | 218 | 224 | 18 | 8 | 201.5 | 29 | 0.7 | 2.98 | 40 | AWL 40 | 200 | Note (1) Series AN is applicable to adapter sleeve Series A31 and A23. Series ANL is applicable to adapter sleeve Series A30. Remark The basic design and dimensions of screw threads are in accordance with JIS B 0205. # (For Adapters and Shafts) Nut with Stopper | | | Units : mr | | | | | | | | | | | | | | : mm | | | | |----------------|-----------------|----------------------------------|-------------------|-------------------|-------------------|----------------|------------------|-------------------------|----------------|-------------------|----------------|--------|-------------------------------|-------------------|-------------------------|--|----------------|-----------------|-------------------| | | | | | | | | | Nut Serie | s AN | | | | | | | R | eferer | се | | | Nom
Numl | | Screw Threads G | d_2 | d_1 | Bas
g | sic Di | mens
<i>h</i> | sions d_3 | В | r
max. | l | | pped Holes
ew Threads (S) | d_4 | Mass
(kg)
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Stop
Num | | Shaft
Dia. | | AN
AN
AN | 44
48
52 | | 280
300
330 | | 260
280
306 | 20
20
24 | 10
10
12 | 222
242
262 | 32
34
36 | 0.8
0.8
0.8 | 15
15
18 | M
M | 8×1.25
8×1.25
10×1.5 | 238
258
281 | 5.2
5.95
8.05 | 44
48
52 | AL
AL
AL | 44
44
52 | 220
240
260 | | AN
AN
AN | 60 | Tr 280×4
Tr 300×4
Tr 320×5 | 350
380
400 | | 326
356
376 | 24
24
24 | 12
12
12 | 282
302
322.5 | 38
40
42 | 0.8
0.8
0.8 | 18
18
18 | M | 10×1.5
10×1.5
10×1.5 | 301
326
345 | 9.05
11.8
13.1 | 56
60
64 | AL
AL
AL | 52
60
64 | 280
300
320 | | AN
AN
AN | 72 | Tr 340×5
Tr 360×5
Tr 380×5 | 440
460
490 | 420 | 410
430
454 | 28
28
32 | 15
15
18 | 342.5
362.5
382.5 | 55
58
60 | 1
1
1 | 21
21
21 | M | 12×1.75
12×1.75
12×1.75 | 372
392
414 | 23.1
25.1
31 | 68
72
76 | AL
AL
AL | 68
68
76 | 340
360
380 | | AN
AN
AN | 84 | Tr 400×5
Tr 420×5
Tr 440×5 | 520
540
560 | 490 | 484
504
520 | 32 | 18
18
20 | 402.5
422.5
442.5 | 70 | 1
1
1 | 27
27
27 | M | 16×2
16×2
16×2 | 439
459
477 | | 80
84
88 | AL
AL
AL | 80
80
88 | 400
420
440 | | AN
AN
AN | 92
96
100 | Tr 480×5 | 580
620
630 | 540
560
580 | 540
580
584 | 36
36
40 | 20
20
23 | 462.5
482.5
502.5 | 75
75
80 | 1
1
1 | 27
27
27 | M | 16×2
16×2
16×2 | 497
527
539 | 50.5
62
63.5 | 92
96
/500 | AL
AL
AL | 88
96
100 | 460
480
500 | | AN 100 | Tr 500×5 | 630 | 580 | 584 | 40 | 23 | 502.5 | 80 | 1 | 27 | М | 16×2 | 539 | 63.5 | /500 | AL 100 | 500 | |------------------|--|------------|--------------------------|--------------------------|----------|---------------------|--------------------------|-----|--------------------------|----------------|-------------|-----------------------------------|-------------------|----------------------------|----------------------|--------------------------------------|--------------------------| | | | | | | | Nu | t Series <i>i</i> | ANL | | | | | | | | | | | ANL 48
ANL 52 | Tr 220×4
Tr 240×4
Tr 260×4
Tr 280×4 | 290
310 | 242
270
290
310 | 242
270
290
310 | 20
20 | 9
10
10
10 | 222
242
262
282 | | 0.8
0.8
0.8
0.8 | | M
M
M | 6×1
8×1.25
8×1.25
8×1.25 | 273 | 3.1
5.15
5.65
6.8 | 44
48
52
56 | ALL 44
ALL 48
ALL 48
ALL 56 | 220
240
260
280 | | ANL 64 | Tr 300×4
Tr 320×5
Tr 340×5 | 380 | 336
356
376 | 336
356
376 | 24 | 12
12
12 | 302
322.5
342.5 | 42 | 0.8
0.8
1 | 15
15
15 | M
M
M | 8×1.25
8×1.25
8×1.25 | | 9.6
9.95
11.7 | 60
64
68 | ALL 60
ALL 64
ALL 64 | 300
320
340 | | ANL 76 | Tr 360×5
Tr 380×5
Tr 400×5 | 450 | 394
422
442 | 422 | 28 | 13
14
14 | 362.5
382.5
402.5 | 48 | | 15
18
18 | Μ | 8×1.25
10×1.5
10×1.5 | 374
398
418 | 12
14.9
16.9 | 72
76
80 | ALL 72
ALL 76
ALL 76 | 360
380
400 | | ANL 88 | Tr 420×5
Tr 440×5
Tr 460×5 | 520 | 462
490
510 | 462
490
510 | 32 | 14
15
15 | 422.5
442.5
462.5 | 60 | 1
1
1 | 18
21
21 | Μ | 10×1.5
12×1.75
12×1.75 | 438
462
482 | 17.4
26.2
28 | 84
88
92 | ALL 84
ALL 88
ALL 88 | 420
440
460 | | | Tr 480×5
Tr 500×5 | 560
580 | 530
550 | 530
550 | | 15
15 | 482.5
502.5 | | 1
1 | 21
21 | | 12×1.75
12×1.75 | | 29.5
33.5 | 96
/500 | ALL 96
ALL 96 | 480
500 | (1) Series AN is applicable to adapter sleeve Series A31, A32 and A23. Series ANL is applicable to adapter sleeve Series Note **Remarks** 1. The basic design and dimensions of screw threads are in accordance with JIS B 0216. 2. The basic design and dimensions of threads in tapped holes are in accordance with JIS $B\ 0205$. # (For Withdrawal Sleeves) Unite : mm | | | | | | | | | | | | | | | l | Units : mm | |--------------------------|----------------------------------|-------------------|------------|-------------------|----------------|----------------|-------------------------|----------------|-------------------|----------------------|----------------|--------------------------|-------------------------------|---------------------------------|-------------------------------| | | | | | Nut | Serie | s HN | | | | | | | Refer | ence | | | Nominal | Screw | | | Bas | ic Dir | nens | ions | | | Mass | | W | ithdrawal Sle | eeve Numbers | | | Numbers | Threads G | d_2 | d_1 | g | b | h | d_3 | В | γ
max. | (kg)
approx. | A | AH 31 | AH 22 | AH 32 | AH 23 | | HN 42
HN 44
HN 48 | Tr 210×4
Tr 220×4
Tr 240×4 | 270
280
300 | | 250
260
280 | 20 | 10
10
10 | 222 | | 0.8
0.8
0.8 | 4.75
5.35
6.2 | AH
AH
AH | 3138
3140
3144 | AH 2238
AH 2240
AH 2244 | AH 3238
AH 3240 | AH 2338
AH 2340
AH 2344 | | HN 52
HN 58
HN 62 | Tr 260×4
Tr 290×4
Tr 310×5 |
330
370
390 | | 306
346
366 | 24 | | 262
292
312.5 | 40 | 0.8
0.8
0.8 | 8.55
11.8
13.4 | AH
AH
AH | 3148
3152
3156 | AH 2248
AH 2252
AH 2256 | _
_
_ | AH 2348
AH 2352
AH 2356 | | HN 66
HN 70
HN 74 | Tr 330×5
Tr 350×5
Tr 370×5 | 420
450
470 | 410 | 390
420
440 | 28 | 15
15
15 | 332.5
352.5
372.5 | 52
55
58 | 1
1
1 | 20.4
25.2
28.2 | AH
AH
AH | 3160
3164
3168 | AH 2260
AH 2264 | AH 3260
AH 3264
AH 3268 | _
_
_ | | HN 80
HN 84
HN 88 | Tr 400×5
Tr 420×5
Tr 440×5 | 520
540
560 | 490 | 484
504
520 | 32 | 18 | 402.5
422.5
442.5 | 62
70
70 | 1
1
1 | 40
46.9
48.5 | AH
AH
AH | 3172
3176
3180 | | AH 3272
AH 3276
AH 3280 | _ | | HN 92
HN 96
HN 102 | Tr 460×5
Tr 480×5
Tr 510×6 | 580
620
650 | 560 | 540
580
604 | 36
36
40 | | 462.5
482.5
513 | 75
75
80 | 1
1
1 | 55
67
75 | AH | 3184
X 3188
X 3192 | | AH 3284
AHX 3288
AHX 3292 | _ | | HN 106
HN 110 | Tr 530×6
Tr 550×6 | 670
700 | | 624
654 | | | 533
553 | 80
80 | 1 | 78
92.5 | | X 3196
X 31/500 | _ | AHX 3296
AHX 32/500 | _ | | | | | | Nut S | Series | s HN | L | | | | А | H 30 | AH 2 | | | | HNL41
HNL43
HNL47 | Tr 205×4
Tr 215×4
Tr 235×4 | 250
260
280 | 242 | 234
242
262 | 20 | 8
9
9 | 207
217
237 | 30 | 0.8
0.8
0.8 | 3.45
3.7
4.6 | AH | 3038
3040
3044 | AH 238
AH 240
AH 244 | | | | HNL52
HNL56
HNL60 | Tr 260×4
Tr 280×4
Tr 300×4 | 310
330
360 | 310 | 290
310
336 | 24 | 10
10
12 | 262
282
302 | 38 | 0.8
0.8
0.8 | 5.8
6.7
9.6 | AH | 3048
3052
3056 | AH 248
AH 252
AH 256 | | | | HNL64
HNL69
HNL73 | Tr 320×5
Tr 345×5
Tr 365×5 | 380
410
430 | 384 | 356
384
404 | 28 | 13 | 322.5
347.5
367.5 | 42
45
48 | 1
1
1 | 10.3
11.5
14.2 | AH | 3060
3064
3068 | _ | | | | HNL77
HNL82
HNL86 | Tr 385×5
Tr 410×5
Tr 430×5 | 450
480
500 | 452 | 422
452
472 | 32
32 | 14 | 387.5
412.5
432.5 | 48
52
52 | 1
1
1 | 15
19
19.8 | АН | 3072
3076
3080 | _ | | | | HNL90
HNL94
HNL98 | Tr 450×5
Tr 470×5
Tr 490×5 | 520
540
580 | | 490
510
550 | 32
32
36 | | 452.5
472.5
492.5 | 60
60
60 | 1
1
1 | 23.8
25
34 | AH | 3084
X 3088
X 3092 | | | | | HNL 104
HNL 108 | | 600
630 | 570
590 | 570
590 | | 15
20 | 523
543 | 68
68 | 1 | 37
43.5 | | X 3096
X 30/500 | | | | - **Remarks** 1. The basic design and dimensions of screw threads are in accordance with JIS B 0216. - 2. The number of notches in the nut may be bigger than that shown in the above figure. C 365 C 364 (Combination of Withdrawal Sleeves and Nuts) | | | | | | | | | Units : mn | |--------------------|-------|----|-------|------------|----------|-------|--------------------------|-----------------| | | | | | Stopper Se | eries AL | | | Reference | | Nominal
Numbers | | | Basic | Dimensions | 3 | | Mass (kg)
per 100 pcs | Nut Numbers | | | t_1 | S | L_2 | s_1 | i | L_3 | approx. | Wat Wallibold | | AL 44 | 4 | 20 | 12 | 9 | 22.5 | 30.5 | 2.6 | AN 44, AN 48 | | AL 52 | 4 | 24 | 12 | 12 | 25.5 | 33.5 | 3.4 | AN 52, AN 56 | | AL 60 | 4 | 24 | 12 | 12 | 30.5 | 38.5 | 3.8 | AN 60 | | AL 64 | 5 | 24 | 15 | 12 | 31 | 41 | 5.35 | AN 64 | | AL 68 | 5 | 28 | 15 | 14 | 38 | 48 | 6.65 | AN 68, AN 72 | | AL 76 | 5 | 32 | 15 | 14 | 40 | 50 | 7.95 | AN 76 | | AL 80 | 5 | 32 | 15 | 18 | 45 | 55 | 8.2 | AN 80, AN 84 | | AL 88 | 5 | 36 | 15 | 18 | 43 | 53 | 9.0 | AN 88, AN 92 | | AL 96 | 5 | 36 | 15 | 18 | 53 | 63 | 10.4 | AN 96 | | AL 100 | 5 | 40 | 15 | 18 | 45 | 55 | 10.5 | AN 100 | | | | | | Stopper Se | ries ALL | | | | | ALL 44 | 4 | 20 | 12 | 7 | 13.5 | 21.5 | 2.12 | ANL 44 | | ALL 48 | 4 | 20 | 12 | 9 | 17.5 | 25.5 | 2.29 | ANL 48, ANL 52 | | ALL 56 | 4 | 24 | 12 | 9 | 17.5 | 25.5 | 2.92 | ANL 56 | | ALL 60 | 4 | 24 | 12 | 9 | 20.5 | 28.5 | 3.15 | ANL 60 | | ALL 64 | 5 | 24 | 15 | 9 | 21 | 31 | 4.55 | ANL 64, ANL 68 | | ALL 72 | 5 | 28 | 15 | 9 | 20 | 30 | 5.05 | ANL 72 | | ALL 76 | 5 | 28 | 15 | 12 | 24 | 34 | 5.3 | ANL 76, ANL 80 | | ALL 84 | 5 | 32 | 15 | 12 | 24 | 34 | 6.1 | ANL 84 | | ALL 88 | 5 | 32 | 15 | 14 | 28 | 38 | 6.45 | ANL 88, ANL 92 | | ALL 96 | 5 | 36 | 15 | 14 | 28 | 38 | 7.3 | ANL 96, ANL 100 | | Nominal
Numbers | | | Witho | Irawal Sleeve Nu | mbers | | | |-------------------------|---------------------------|--------------------------|----------------------------|------------------|--------------------------|-------------------------------|--------------------------------| | | AH 30 | AH 31 | AH 2 | AH 22 | AH 32 | AH 3 | AH 23 | | AN 09
AN 10
AN 11 | _
_
_ | | AH 208
AH 209
AH 210 | | | AH 308
AH 309
AHX 310 | AH 2308
AH 2309
AHX 2310 | | AN 12
AN 13
AN 14 | _
_
_ | | AH 211
AH 212
— | | | AHX 311
AHX 312 | AHX 2311
AHX 2312
— | | AN 15
AN 16
AN 17 | = | | AH 213
AH 214
AH 215 | | | AH 313
AH 314
AH 315 | | | AN 18
AN 19
AN 20 | _
_
_ | | AH 216
AH 217
AH 218 | | _ | AH 316
AHX 317
AHX 318 | AHX 2317 | | AN 21
AN 22
AN 23 | _
_
_ | | AH 219
AH 220
AH 221 | | AHX 3220 | AHX 319
AHX 320
AHX 321 | AHX 2319
AHX 2320
— | | AN 24
AN 25
AN 26 | _ | _ | AH 222
—
AH 224 | | AHX 3222 | AHX 322
AHX 324 | AHX 2322
— | | AN 27
AN 28
AN 29 | AHX 3026 | AHX 3126 | AH 226 | | AHX 3224
AHX 3226 | AHX 326 | AHX 2324
AHX 2326 | | AN 30
AN 31
AN 32 | AHX 3028
—
AHX 3030 | AHX 3128
—
— | AH 228
—
AH 230 | | AHX 3228 | AHX 328
—
— | AHX 2328 | | AN 33
AN 34
AN 36 | AH 3032 | AHX 3130
—
AH 3132 | —
AH 232
AH 234 | | AHX 3230
—
AH 3232 | AHX 330
—
AH 332 | _ | | AN 38
AN 40 | AH 3036
— | AH 3134
AH 3136 | AH 236
— | AH 2236 | AH 3234
AH 3236 | AH 334
— | AH 2334
AH 2336 | Reference C 366 C 367 Bent-Tab Straight-Tab | - 1 | Ini: | ts. | • | mm | |-----|------|-----|---|----| | | | | | | | | | | | | | Nomina | al Numbers | | | | L | .ock-w | asher S | Series A | W | | | | F | Reference | | |----------|--------------|-------|-------|-------|-------------|--------|-------------|----------|----------|--------------|-----------------|-------------------------------------|--|----------------|---------------| | Bent-Tab | Straight-Tab | d_3 | M | f_1 | Basic B_1 | Dimen | sions d_4 | d_5 | Ben
Y | it-Tab B_2 | No. of
Teeth | Mass (kg)
per 100 pcs
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Nut
Numbers | Shaft
Dia. | | AW 02 | AW 02 X | 15 | 13.5 | 4 | 1 | 4 | 21 | 28 | 1 | 2.5 | 13 | 0.253 | <u></u> | AN 02 | 15 | | AW 03 | AW 03 X | 17 | 15.5 | 4 | 1 | 4 | 24 | 32 | 1 | 2.5 | 13 | 0.315 | | AN 03 | 17 | | AW 04 | AW 04 X | 20 | 18.5 | 4 | 1 | 4 | 26 | 36 | 1 | 2.5 | 13 | 0.35 | | AN 04 | 20 | | AW 05 | AW 05 X | 25 | 23 | 5 | 1.2 | 5 | 32 | 42 | 1 | 2.5 | 13 | 0.64 | 05 | AN 05 | 25 | | AW 06 | AW 06 X | 30 | 27.5 | 5 | 1.2 | 5 | 38 | 49 | 1 | 2.5 | 13 | 0.78 | 06 | AN 06 | 30 | | AW 07 | AW 07 X | 35 | 32.5 | 6 | 1.2 | 5 | 44 | 57 | 1 | 2.5 | 15 | 1.04 | 07 | AN 07 | 35 | | AW 08 | AW 08 X | 40 | 37.5 | 6 | 1.2 | 6 | 50 | 62 | 1 | 2.5 | 15 | 1.23 | 08 | AN 08 | 40 | | AW 09 | AW 09 X | 45 | 42.5 | 6 | 1.2 | 6 | 56 | 69 | 1 | 2.5 | 17 | 1.52 | 09 | AN 09 | 45 | | AW 10 | AW 10 X | 50 | 47.5 | 6 | 1.2 | 6 | 61 | 74 | 1 | 2.5 | 17 | 1.6 | 10 | AN 10 | 50 | | AW 11 | AW 11 X | 55 | 52.5 | 8 | 1.2 | 7 | 67 | 81 | 1 | 4 | 17 | 1.96 | 11 | AN 11 | 55 | | AW 12 | AW 12 X | 60 | 57.5 | 8 | 1.5 | 7 | 73 | 86 | 1.2 | 4 | 17 | 2.53 | 12 | AN 12 | 60 | | AW 13 | AW 13 X | 65 | 62.5 | 8 | 1.5 | 7 | 79 | 92 | 1.2 | 4 | 19 | 2.9 | 13 | AN 13 | 65 | | AW 14 | AW 14 X | 70 | 66.5 | 8 | 1.5 | 8 | 85 | 98 | 1.2 | 4 | 19 | 3.35 | 14 | AN 14 | 70 | | AW 15 | AW 15 X | 75 | 71.5 | 8 | 1.5 | 8 | 90 | 104 | 1.2 | 4 | 19 | 3.55 | 15 | AN 15 | 75 | | AW 16 | AW 16 X | 80 | 76.5 | 10 | 1.8 | 8 | 95 | 112 | 1.2 | 4 | 19 | 4.65 | 16 | AN 16 | 80 | | AW 17 | AW 17 X | 85 | 81.5 | 10 | 1.8 | 8 | 102 | 119 | 1.2 | 4 | 19 | 5.25 | 17 | AN 17 | 85 | | AW 18 | AW 18 X | 90 | 86.5 | 10 | 1.8 | 10 | 108 | 126 | 1.2 | 4 | 19 | 6.25 | 18 | AN 18 | 90 | | AW 19 | AW 19 X | 95 | 91.5 | 10 | 1.8 | 10 | 113 | 133 | 1.2 | 4 | 19 | 6.7 | 19 | AN 19 | 95 | | AW 20 | AW 20 X | 100 | 96.5 | 12 | 1.8 | 10 | 120 | 142 | 1.2 | 6 | 19 | 7.65 | 20 | AN 20 | 100 | | AW 21 | AW 21 X | 105 | 100.5 | 12 | 1.8 | 12 | 126 | 145 | 1.2 | 6 | 19 | 8.25 | 21 | AN 21 | 105 | | AW 22 | AW 22 X | 110 | 105.5 | 12 | 1.8 | 12 | 133 | 154 | 1.2 | 6 | 19 | 9.4 | 22 | AN 22 | 110 | | AW 23 | AW 23 X | 115 | 110.5 | 12 | 2 | 12 | 137 | 159 | 1.5 | 6 | 19 | 10.8 | | AN 23 | 115 | | AW 24 | AW 24 X | 120 | 115 | 14 | 2 | 12 | 138 | 164 | 1.5 | 6 | 19 | 10.5 | | AN 24 | 120 | | AW 25 | AW 25 X | 125 | 120 | 14 | 2 | 12 | 148 | 170 | 1.5 | 6 | 19 | 11.8 | | AN 25 | 125 | Remark Lock-washers with straight tabs shall be used with adapter sleeves having narrow slits, and for those having wide slits, either type of lock-washer may be used. Straight-Tab Bent-Tab Units: mm | Nomina | ıl Numbers | | | | L | .ock-w | asher S | Series A | W | | | | F | Reference | | |-------------------------|-------------------------------|-------------------|---------------------|----------------|---------------|----------------|-------------------|-------------------|-------------------|-------------|-----------------|-------------------------------------|--|-------------------------|-------------------| | Bent-Tab | Straight-Tab | d_3 | M | f_1 | Basic B_1 | Dimen | sions d_4 | d_5 |
Ben
Y | t-Tab B_2 | No. of
Teeth | Mass (kg)
per 100 pcs
approx. | Adapter (¹)
Sleeve Bore
Dia. Numbers | Nut
Numbers | Shaft
Dia. | | AW 26 | AW 26 X | 130 | 125 | 14 | 2 | 12 | 149 | 175 | 1.5 | 6 | 19 | 11.3 | 26 | AN 26 | 130 | | AW 27 | AW 27 X | 135 | 130 | 14 | 2 | 14 | 160 | 185 | 1.5 | 6 | 19 | 14.4 | — | AN 27 | 135 | | AW 28 | AW 28 X | 140 | 135 | 16 | 2 | 14 | 160 | 192 | 1.5 | 8 | 19 | 14.2 | 28 | AN 28 | 140 | | AW 29
AW 30
AW 31 | AW 29 X
AW 30 X
AW 31 X | 145
150
155 | 140
145
147.5 | 16
16
16 | 2
2
2.5 | 14
14
16 | 172
171
182 | 202
205
212 | 1.5
1.5
1.5 | 8
8
8 | 19
19
19 | 16.8
15.9
20.9 | 30
— | AN 29
AN 30
AN 31 | 145
150
155 | | AW 32 | AW 32 X | 160 | 154 | 18 | 2.5 | 16 | 182 | 217 | 1.5 | 8 | 19 | 22.2 | 32 | AN 32 | 160 | | AW 33 | AW 33 X | 165 | 157.5 | 18 | 2.5 | 16 | 193 | 222 | 1.5 | 8 | 19 | 24.1 | — | AN 33 | 165 | | AW 34 | AW 34 X | 170 | 164 | 18 | 2.5 | 16 | 193 | 232 | 1.5 | 8 | 19 | 24.7 | 34 | AN 34 | 170 | | AW 36 | AW 36 X | 180 | 174 | 20 | 2.5 | 18 | 203 | 242 | 1.5 | 8 | 19 | 26.8 | 36 | AN 36 | 180 | | AW 38 | AW 38 X | 190 | 184 | 20 | 2.5 | 18 | 214 | 252 | 1.5 | 8 | 19 | 27.8 | 38 | AN 38 | 190 | | AW 40 | AW 40 X | 200 | 194 | 20 | 2.5 | 18 | 226 | 262 | 1.5 | 8 | 19 | 29.3 | 40 | AN 40 | 200 | | | | | | | | Wash | ner Seri | es AWL | | | | | | | | | AWL 24 | AWL 24 X | 120 | 115 | 14 | 2 | 12 | 133 | 155 | 1.5 | 6 | 19 | 7.7 | 24 | ANL 24 | 120 | | AWL 26 | AWL 26 X | 130 | 125 | 14 | 2 | 12 | 143 | 165 | 1.5 | 6 | 19 | 8.7 | 26 | ANL 26 | 130 | | AWL 28 | AWL 28 X | 140 | 135 | 16 | 2 | 14 | 151 | 175 | 1.5 | 8 | 19 | 10.9 | 28 | ANL 28 | 140 | | AWL 30 | AWL 30 X | 150 | 145 | 16 | 2 | 14 | 164 | 190 | 1.5 | 8 | 19 | 11.3 | 30 | ANL 30 | 150 | | AWL 32 | AWL 32 X | 160 | 154 | 18 | 2.5 | 16 | 174 | 200 | 1.5 | 8 | 19 | 16.2 | 32 | ANL 32 | 160 | | AWL 34 | AWL 34 X | 170 | 164 | 18 | 2.5 | 16 | 184 | 210 | 1.5 | 8 | 19 | 19 | 34 | ANL 34 | 170 | | AWL 36 | AWL 36 X | 180 | 174 | 20 | 2.5 | 18 | 192 | 220 | 1.5 | 8 | 19 | 18 | 36 | ANL 36 | 180 | | AWL 38 | AWL 38 X | 190 | 184 | 20 | 2.5 | 18 | 202 | 230 | 1.5 | 8 | 19 | 20.5 | 38 | ANL 38 | 190 | | AWL 40 | AWL 40 X | 200 | 194 | 20 | 2.5 | 18 | 218 | 250 | 1.5 | 8 | 19 | 21.4 | 40 | ANL 40 | 200 | (1) Series AW is applicable to adapter sleeve Series A31 and A23. Series AWL is applicable to adapter sleeve Series A30. Remark Lock-washers with straight tabs shall be used with adapter sleeves having narrow slits, and for those having wide slits, either type of lock-washer may be used. # **INDUSTRY SOLUTIONS** # Part D # **INDUSTRY SOLUTIONS** | 1. | AIR TURBINE BEARINGS FUR DE | ENTAL HANDPIEGES D 004 | |------------|-----------------------------|------------------------| | 2. | PUMPS & COMPRESSORS | D 010 | | 3. | AGRICULTURAL MACHINERY | D 026 | | 4. | CONSTRUCTION MACHINERY | D 034 | | 5 . | MINING MACHINERY | D 040 | | 6. | RAILWAY ROLLING STOCK | D 048 | | 7. | PAPERMAKING MACHINES | D 066 | | 8. | WIND POWER INDUSTRY | D 086 | | 9. | STEEL INDUSTRY | D 094 | Wind Power Industry # **Air Turbine Bearings for Dental Handpieces** NSK Bearings: Ten Times Higher Corrosion Resistance Improves Bearing Replacement Cycle | Α | Product | Line that | Matches | Specific | Applications | |---|----------------|-----------|----------------|-----------------|---------------------| |---|----------------|-----------|----------------|-----------------|---------------------| | Outstanding Features of Dental Handpiece Bearings | 06 | |---|----| | Formulation of Bearings for Numbers D 00 | 07 | | Line-up | 30 | Mining Machinery Railway Rolling Stock # **Outstanding Features of Dental Handpiece Bearings** This bearing series has been developed to cover the wide range of sizes and shapes used in the air-turbine market (43 types in total) # · Bearing-type Deep groove type Angular type Integral angular type Integral + shield angular type # Shape Smooth type Groove type Special type # Long Life and High Corrosion Resistance ES1 Stainless Steel Bearing NSK has developed a high corrosion resistant material called ES1 that is highly suitable for manufacturing dental handpiece bearings. ES1 has made it possible to improve the life of bearings significantly and assure highly effective sterilization with no cross-contamination. The use of ES1 has improved the bearing material, and as a result, the bearing has far superior corrosion resistance than the conventional SUS440C stainless steel bearings. The electrical and chemical verification result of our anodic polarization measurement confirms that the current density (corrosion rate) in the passive state range of ES1 bearing is about one-tenth lower than conventional stainless steel bearings, which proves that ES1 has superior corrosion resistance. # **Ultra-high Speed Rotation** To maintain ultra-high speed rotation and long rolling life of air turbine bearings, it is particularly necessary to produce a high precision cage based on the optimal design. NSK makes continuous efforts to optimize the design and improve the precision of cage parts for ultra-high speed rotation. As a result, we have been successful in maintaining a stable number of revolutions even at 500,000rpm. # **Formulation of Bearings for Numbers** Please use the following example product code of an NSK standard dental handpiece bearing (Smooth type 100 series) as a guide to select a bearing according to requirements such as bearing width, material, and lubricant to be used. (1) B3Z100X: Model name indicating basic bearing number for air turbine (2) -H-20SN34: Ceramic ball (-H-26: Optional stainless steel ball) (3) T52C: Torlon® polyamide-imide cage C, J, P, etc.: Cage type Single shield (4) ZS: (5) CG9: RIC 0.008mm to 0.010mm (Recommended by NSK) Special tolerance class (ABEC7+ID: ABEC9) (6) 7A: (7) U438: Special specification for air turbine (8) CF1X: Special oil (Food grade) or BF7N: Special grease # Importance of a Perfect Fitting To get optimal performance out of air turbine bearings, the bearings must be correctly fitted on the shaft and in the housing. To provide this optimal performance, Class ABEC9 tolerance (from -0.0025mm to 0mm) is used for the inner ring bore of NSK bearings. NSK can supply bearings with two classifications of ring bore diameter tolerance (from -0.0025 to -0.00125, and from -0.00125 to 0mm). This choice of tolerance makes it easy to stabilize the bearing fitting on the shaft. A stable fitting reduces air turbine vibrations, noises, and irregularities in the revolutions per minute, thereby assuring long life. Shaft material: Martensitic stainless steel (SUS400 family) (Please contact NSK to use bearings for shafts made of stainless steel other than martensitic stainless steel.) D 006 Railway Rolling Stock Railway Rolling Stock Wind Power Industry Steel Industry Line-up ■ A Product Line that Matches Specific Applications | Bearing Series | Width | Deep Groove | Angular Con | tact Bearing | | Integral | Bearing | | |-----------------------------|--------------------------|-------------------|------------------------|------------------------|--------------------|--------------------|--------------------|-------------------| | | Width | Bearing | Inner Ring Counterbore | Outer Ring Counterbore | Inner Ring (| Counterbore | Outer Ring (| Counterbore | | 100 Series
(Smooth type) | 2.380mm (0.0937") | | | | | | | | | Width | | B3Z- 100X | BH3Z- 101X | BH3Z- 102X | BH3Z- 103X | | BH3Z- 104X | | | 6.380mm | 2.779mm (0.1094") | | | | | | | | | 9 19 | | B3Z- 100 | BH3Z- 101A | BH3Z- 102A | BH3Z- 103A | BH3Z- 103B | BH3Z- 104A | BH3Z- 104 | | 150 Series
(Groove type) | 2.380mm (0.0937") | | | | | | | | | Width | | B3Z- 150X | BH3Z- 151X | BH3Z- 152X | BH3Z- 153X | | BH3Z- 154X | | | y6.350mm | 2.779mm (0.1094") | | | | | | | | | | | B3Z- 150 | BH3Z- 151A | BH3Z- 152A | BH3Z- 153A | BH3Z- 153B | BH3Z- 154A | BH3Z- 154 | | 200 Series
(Flange type) | 2.380mm (0.0937") | | | | | | | | | | | FBC3Z-200X | FBH3Z- 201X | FBH3Z- 202X | FBH3Z- 203X | | FBH3Z- 204X | | | e6.550mm
e3.175mm | 2.779mm (0.1094") | | | | | | | | | | | FBC3Z- 200 | FBH3Z- 201A | FBH3Z- 202A | FBH3Z- 203A | FBH3Z- 203B | FBH3Z- 204A | FBH3Z- 204 | | 250 Series | 2.779mm (0.1094") | | | | | | | | | ф6.3 | | FBC3Z- 250 | FBH3Z- 251A | FBH3Z- 252A | FBH3Z- 253A | FBH3Z- 253B | FBH3Z- 254A | FBH3Z- 254 | # **Standard Specifications** - · Ceramic ball bearings - To maximize bearing performance, NSK has adopted ABEC9(P2) grade tolerance for the inner ring bore diameter. The tolerance of other parts is ABEC7(P4) grade. - NSK can supply bearings with two classifications of the inner ring bore diameter tolerance (from -0.0025 to -0.00125, and from -0.00125 to 0mm). - NSK can manufacture bearings with custom laser markings upon request. - NSK uses the high-safety low-viscosity lubricating oil CF1 as standard specification. Bearings with BF7 grease are also available. # **Optional Specifications** - Stainless steel ball bearings are also available. - Bearings with different widths for the outer ring and inner ring are also available. # **Preload Stabilization** Stabilization of preloading using a spring is extremely important for air turbine bearings. There are three management points ((1) to (3) below) for this task. For optimal performance of bearings, the bearing assembly height at the time of preloading is absolutely important. NSK can verify the design setting value of the bearing
assembly height at your company to assure stable preloading. D 008 # **Bearings for Pumps & Compressors** NSK high performance rolling element bearings for pumps and compressors deliver reliable and energy efficient operation with long life. # **Bearings for Pumps** A Product Line that Matches Specific Applications # **Bearings Table** | NSKHPS™ / High Load Capacity Single-Row
Angular Contact Ball Bearings | |---| | Bore Diameter 20 – 120 mm D 015 | | High Load Capacity Double-Row Angular Contact Ball Bearings Bore Diameter 25 – 65 mm | | High Load Capacity Deep Groove Ball Bearings (Open Type) Bore Diameter 15 – 60 mm | | Creep-Free Bearings™ Bore Diameter 10 – 45 mm | # **Bearings for Compressors** A Product Line that Matches Specific Applications # **Bearings Table** | High Load Capacity Cylindrical Roller Bearings (L-PPS Cage) Bore Diameter 20 – 100 mm | |--| | NSKHPS™ Angular Contact Ball Bearings (L-PPS Cage) Bore Diameter 12 – 80 mm D 024 | | High-Speed Cylindrical Roller Bearings Bore Diameter 25 – 50 mm | | High-Speed Angular Contact Ball Bearings Bore Diameter 20 – 50 mm | Agricultural Machinery Railway Rolling Stock ■ A Product Line that Matches Specific Applications Advanced machined brass cage provide strength and endurance. Optimized internal geometries allow efficient lubricant flow through the bearing. **Pumps for Petroleum and Chemicals** # **Features of Bearings for Pumps** # NSKHPS™ / High Load Capacity Single-Row Angular Contact **Ball Bearings** - High load capacity angular contact ball bearings, adopting machined brass cages. - Improved bearing life up to 90% longer than conventional bearings reduces maintenance frequency and improves # **High Load Capacity Double-Row Angular Contact Ball Bearings** - High load capacity double-row angular contact ball bearings have advanced internal bearing geometry. - Improved bearing life up to 50% longer than conventional bearings reduces maintenance frequency and improves reliability. # **High Load Capacity Deep Groove** Ball Bearings (Open Type) - Open-type high load capacity deep groove ball bearings have advanced internal bearing geometry. - Improved bearing life up to 70% longer than conventional bearings reduces maintenance frequency and improves reliability. # Creep-Free Bearings™ - Outer ring creep prevention is significantly improved with O-ring tension in the housing. - Standard principal dimensions are maintained to eliminate the head for re-machining housings. Suitable as a bearing on the free side of motor-integrated pumps. D 013 D 012 Railway Rolling Stock INDUSTRY SOLUTIONS **NSK** Features of Bearings for Pumps # NSKHPS™ / High Load Capacity Single-Row Angular Contact Ball Bearings - Petroleum and Chemical industry (API standards*1, etc.) - Paper and Pulp industry (ANSI standards², etc.) - *1 Standards related to petroleum specified by the American Petroleum Institute - *2 Standards of industrial products in the U.S. specified by the American National Standards Institute High load capacity and outstanding lubrication performance. Enables reduced pump size and extended maintenance intervals. - Bearing life: 90% longer - Maximum rotational speed: 20% faster - Universal arrangement as standard - 40° contact angle Axial Internal Clearance in Combined ACBBs | (Meas | ured C | learan | ice) | U | Init: µm | |-------|-----------------------|--------|------|------|----------| | | nal bore
er d (mm) | Cf | ΝB | G | A | | Over | Incl. | Min. | Max. | Min. | Max. | | 12 | 18 | 17 | 25 | | | | 18 | 30 | 20 | 28 | -2 | 6 | | 30 | 50 | 24 | 32 | | | | E0. | 90 | 20 | 41 | 2 | 0 | | Bearing Number | |---| | Example: 7310 B EA MR SU GA | | Contact angle symbol: 40° | | Internal symbol: High load capacity | | Cage symbol: Machined cage | | Arrangement symbol: Universal arrangement (single unit) | | Internal clearance symbol | | | | Bounda | ry Dimensio | ns (mm) | | Basic Load | Ratings (N) | Limiting Sp | eeds (min ⁻¹) | |---------------------|----------|------------|-------------|-----------------|------------------------------|--------------------|-------------------|----------------|---------------------------| | Bearing Numbers | d | D | В | γ (min.) | $oldsymbol{\gamma}_1$ (min.) | $C_{\rm r}$ | C_{0r} | Grease | Oil | | *7304BEA | 20 | 52 | 15 | 1.1 | 0.6 | 19 800 | 10 500 | 13 000 | 18 000 | | *7305BEA | 25 | 62 | 17 | 1.1 | 0.6 | 27 200 | 14 900 | 10 000 | 15 000 | | *7206BEA | 30 | 62 | 16 | 1 | 0.6 | 23 700 | 14 300 | 10 000 | 14 000 | | *7306BEA | 30 | 72 | 19 | 1.1 | 0.6 | 36 500 | 20 600 | 9 000 | 13 000 | | *7207BEA | 35 | 72 | 17 | 1.1 | 0.6 | 32 500 | 19 600 | 8 500 | 12 000 | | *7307BEA | 35 | 80 | 21 | 1.5 | 1 | 40 500 | 24 400 | 8 000 | 11 000 | | *7208BEA | 40 | 80 | 18 | 1.1 | 0.6 | 38 500 | 24 500 | 7 500 | 11 000 | | *7308BEA | 40 | 90 | 23 | 1.5 | 1 | 53 000 | 33 000 | 7 100 | 10 000 | | *7209BEA | 45 | 85 | 19 | 1.1 | 0.6 | 40 500 | 27 100 | 7 100 | 10 000 | | *7309BEA | 45 | 100 | 25 | 1.5 | 1 | 62 500 | 39 500 | 6 300 | 9 000 | | *7210BEA | 50 | 90 | 20 | 1.1 | 0.6 | 42 000 | 29 700 | 6 300 | 9 500 | | *7310BEA | 50 | 110 | 27 | 2 | 1 | 78 000 | 50 500 | 5 600 | 8 000 | | *7211BEA | 55 | 100 | 21 | 1.5 | 1 | 51 500 | 37 000 | 6 000 | 8 500 | | *7311BEA | 55 | 120 | 29 | 2 | 1 | 89 000 | 58 500 | 5 000 | 7 500 | | *7212BEA | 60 | 110 | 22 | 1.5 | 1 | 61 500 | 45 000 | 5 300 | 7 500 | | *7312BEA | 60 | 130 | 31 | 2.1 | 1.1 | 102 000 | 68 500 | 4 800 | 6 700 | | *7213BEA | 65 | 120 | 23 | 1.5 | 1 | 70 000 | 53 500 | 4 800 | 7 100 | | *7313BEA | 65 | 140 | 33 | 2.1 | 1.1 | 114 000 | 77 000 | 4 300 | 6 300 | | *7214BEA | 70 | 125 | 24 | 1.5 | 1 | 75 500 | 58 500 | 4 500 | 6 700 | | *7314BEA | 70 | 150 | 35 | 2.1 | 1.1 | 124 000 | 87 500 | 4 000 | 6 000 | | *7215BEA | 75 | 130 | 25 | 1.5 | 1 | 78 500 | 63 500 | 4 300 | 6 300 | | *7315BEA | 75 | 160 | 37 | 2.1 | 1.1 | 134 000 | 98 500 | 3 800 | 5 600 | | *7216BEA | 80 | 140 | 26 | 2 | 1 | 87 500 | 70 000 | 4 000 | 6 000 | | *7316BEA | 80 | 170 | 39 | 2.1 | 1.1 | 144 000 | 110 000 | 3 600 | 5 300 | | 7217BEA | 85 | 150 | 28 | 2 | 1 | 96 000 | 81 500 | 3 800 | 5 600 | | 7317BEA | 85 | 180 | 41 | 3 | 1.1
1 | 157 000 | 133 000 | 3 400
3 600 | 5 000 | | 7218BEA
7318BEA | 90
90 | 160
190 | 30
43 | 2
3 | 1.1 | 109 000
169 000 | 93 500
146 000 | 3 200 | 5 300
4 500 | | 7318BEA
7219BEA | 95 | 170 | 43
32 | 2.1 | 1.1 | 123 000 | 107 000 | 3 400 | 5 000 | | 7219BEA
7319BEA | 95 | 200 | 32
45 | 3 | 1.1 | 180 000 | 160 000 | 3 000 | 4 500 | | 73 19BEA
7220BEA | 100 | 180 | 34 | 2.1 | 1.1 | 136 000 | 122 000 | 3 200 | 4 500 | | 7220BEA
7320BEA | 100 | 215 | 47 | 3 | 1.1 | 202 000 | 187 000 | 2 800 | 4 000 | | 7320BEA
7221BEA | 105 | 190 | 36 | 2.1 | 1.1 | 148 000 | 133 000 | 3 000 | 4 500 | | 7221BEA
7321BEA | 105 | 225 | 49 | 3 | 1.1 | 213 000 | 203 000 | 2 600 | 4 000 | | 7321BEA
7222BEA | 110 | 200 | 38 | 2.1 | 1.1 | 154 000 | 144 000 | 2 800 | 4 300 | | 7322BEA | 110 | 240 | 50 | 3 | 1.1 | 226 000 | 226 000 | 2 600 | 3 800 | | 7322BEA
7224BEA | 120 | 215 | 40 | 2.1 | 1.1 | 179 000 | 177 000 | 2 600 | 3 800 | | 7324BEA | 120 | 260 | 55 | 3 | 1.1 | 238 000 | 250 000 | 2 200 | 3 400 | | | | | | | | 1 | | | | ## Remarks *NSKHPS™ angular contact ball bearings with running accuracy to ISO tolerance class 5 and dimensional accuracy to ISO tolerance No asterisk refers to high load capacity angular contact ball bearings with running accuracy P6 and dimensional accuracy P6. D 014 D 015 # Features of Bearings for Pumps # **High Load Capacity Double-Row Angular Contact Ball Bearings** - Paper and Pulp industry (ANSI standards, etc.)Water/Sewage and Irrigation, etc. Improved bearing life and thrust load capacity. Enables reduced pump size and extended maintenance intervals. - Bearing life: 50% longer - Thrust load capacity: Twice as high as conventional bearings - Improved installation with advanced lead in chamfer - Class P6 as standard | Decring Numbers | Во | oundary Dimensions (n | Basic Load | Basic Load Ratings (N) | | | |-----------------|----|-----------------------|------------|------------------------|----------------------------|--| | Bearing Numbers | d | D | В | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | | 3305F | 25 | 62 | 25.4 | 30 500 | 20 500 | | | 3306F | 30 | 72 | 30.2 | 39 500 | 27 300 | | | 3307F | 35 | 80 | 34.9 | 49 500 | 35 000 | | | 3308F | 40 | 90 | 36.5 | 60 500 | 44 000 | | | 3309F | 45 | 100 | 39.7 | 66 500 | 49 500 | | | 3310F | 50 | 110 | 44.4 | 85 500 | 64 500 | | | 3311F | 55 | 120 | 49.2 | 106 000 | 82 000 | | | 3312F | 60 | 130 | 54 | 122 000 | 95 500 | | | 3313F | 65 | 140 | 58.7 | 138 000 | 109 000 | | # High Load Capacity Deep Groove Ball Bearings (Open Type) - Petroleum and Chemical industry (API standards, etc.) - Paper and Pulp industry (ANSI standards, etc.) - Semi-conductor and Liquid Crystal Panel (vacuum pumps) High load capacity. Enables reduced pump size and extended maintenance intervals. • Bearing life: 70% longer INDUSTRY SOLUTIONS | Danis - Norskans | | Boundary Dim | Basic Load | Ratings (N) | | | |------------------|----|--------------|------------|---------------|----------------------|----------------------------| | Bearing Numbers | d | D | B | $m{r}$ (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | HR 6202 | 15 | 35 | 11 | 0.6 | 8 550 | 3 950 | | HR 6302 | 15 | 42 | 13 | 1.0 | 13 300 | 5 900 | | HR 6203 | 17 | 40 | 12 | 0.6 | 11 300 | 5 350 | | HR 6303 | 17 | 47 | 14 | 1.0 | 15 600 | 7 100 | | HR 6304 | 20 | 52 | 15 | 1.1 | 18 200 | 9 050 | | HR 6205 | 25 | 52 | 15 | 1.0 | 15 300 | 8 100 | | HR 6305 | 25 | 62 | 17 | 1.1 | 23 700 | 12 200 | | HR 6206 | 30 | 62 | 16 | 1.0 | 23 300 | 12 800 | | HR 6306 |
30 | 72 | 19 | 1.1 | 29 800 | 15 800 | | HR 6207 | 35 | 72 | 17 | 1.1 | 28 300 | 16 000 | | HR 6307 | 35 | 80 | 21 | 1.5 | 39 500 | 21 500 | | HR 6208 | 40 | 80 | 18 | 1.1 | 32 500 | 19 900 | | HR 6308 | 40 | 90 | 23 | 1.5 | 47 000 | 26 200 | | HR 6209 | 45 | 85 | 19 | 1.1 | 36 500 | 22 600 | | HR 6309 | 45 | 100 | 25 | 1.5 | 57 000 | 34 500 | | HR 6210 | 50 | 90 | 20 | 1.1 | 39 000 | 25 800 | | HR 6310 | 50 | 110 | 27 | 2.0 | 66 500 | 40 500 | | HR 6211 | 55 | 100 | 21 | 1.5 | 48 000 | 32 000 | | HR 6311 | 55 | 120 | 29 | 2.0 | 78 000 | 46 000 | | HR 6212 | 60 | 110 | 22 | 1.5 | 58 000 | 38 000 | D 016 D 017 NSK Railway Rolling Stock Wind Power Industry **■**Features of Bearings for Pumps Creep-Free Bearings™ • Water/Sewage and Irrigation, etc. Outer ring creep prevention is significantly improved with O-ring tension in the housing. Standard principal dimensions are maintained to eliminate the need for re-machining housings, providing a convenient solution to reduce costs. | Danis Marchan | | Boundary Dim | ensions (mm) | | Basic Load | Ratings (N) | |-----------------|----|--------------|--------------|-----------------|----------------------|----------------------------| | Bearing Numbers | d | D | В | γ (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | 6000 | 10 | 26 | 8 | 0.3 | 4 550 | 1 970 | | 6200 | 10 | 30 | 9 | 0.6 | 5 100 | 2 390 | | 6300 | 10 | 35 | 11 | 0.6 | 8 100 | 3 450 | | 6001 | 12 | 28 | 8 | 0.3 | 5 100 | 2 370 | | 6201 | 12 | 32 | 10 | 0.6 | 6 800 | 3 050 | | 6301 | 12 | 37 | 12 | 1.0 | 9 700 | 4 200 | | 6002 | 15 | 32 | 9 | 0.3 | 5 600 | 2 830 | | 6202 | 15 | 35 | 11 | 0.6 | 7 650 | 3 750 | | 6302 | 15 | 42 | 13 | 1.0 | 11 400 | 5 450 | | 6003 | 17 | 35 | 10 | 0.3 | 6 000 | 3 250 | | 6203 | 17 | 40 | 12 | 0.6 | 9 550 | 4 800 | | 6303 | 17 | 47 | 14 | 1.0 | 13 600 | 6 650 | | 6004 | 20 | 42 | 12 | 0.6 | 9 400 | 5 000 | | 6204 | 20 | 47 | 14 | 1.0 | 12 800 | 6 600 | | 6304 | 20 | 52 | 15 | 1.1 | 15 900 | 7 900 | | 6005 | 25 | 47 | 12 | 0.6 | 10 100 | 5 850 | | 6205 | 25 | 52 | 15 | 1.0 | 14 000 | 7 850 | | 6305 | 25 | 62 | 17 | 1.1 | 20 600 | 11 200 | | 6006 | 30 | 55 | 13 | 1.0 | 13 200 | 8 300 | | 6206 | 30 | 62 | 16 | 1.0 | 19 500 | 11 300 | | 6306 | 30 | 72 | 19 | 1.1 | 26 700 | 15 000 | | 6007 | 35 | 62 | 14 | 1.0 | 16 000 | 10 300 | | 6207 | 35 | 72 | 17 | 1.1 | 25 700 | 15 300 | | 6307 | 35 | 80 | 21 | 1.5 | 33 500 | 19 200 | | 6008 | 40 | 68 | 15 | 1.0 | 16 800 | 11 500 | | 6208 | 40 | 80 | 18 | 1.1 | 29 100 | 17 900 | | 6308 | 40 | 90 | 23 | 1.5 | 40 500 | 24 000 | | 6009 | 45 | 75 | 16 | 1.0 | 20 900 | 15 200 | | 6209 | 45 | 85 | 19 | 1.1 | 31 500 | 20 400 | | 6309 | 45 | 100 | 25 | 1.5 | 53 000 | 32 000 | D 018 Railway Rolling Stock Railway Rolling Stock D 021 # Compressors ■ A Product Line that Matches Specific Applications L-PPS (Linear-Polyphenylene Sulfide) cages are chemically stable and resist wear better than steel or brass. Optimized internal geometries allow efficient lubricant flow through the bearing. #### **Features of Bearings for Compressors** ### High Load Capacity Cylindrical Roller Bearings (L-PPS cage) - High load capacity cylindrical roller bearings, adopting high performance L-PPS plastic cages. Heat-resistant L-PPS plastic cage delivers chemical - stability that ensures strength with little to no deterioration, even in compressor oil, refrigeration machine oil, or ammonia refrigerant, while also providing excellent abrasion resistance. ### NSKHPS™ Angular Contact Ball Bearings (L-PPS cage) - High load capacity angular contact ball bearings, adopting high performance L-PPS plastic cages. - Improved bearing life up to 90% longer than conventional bearings reduces maintenance frequency and improves reliability. #### **High-Speed Cylindrical Roller Bearings** - High-speed cylindrical roller bearings, adopting outerring guided machined brass cages. - Class P5 tolerances as standard bearing precision ensure stable performance at high speeds. #### **High-Speed Angular Contact Ball Bearings** - High-speed angular contact ball bearings, adopting outer-ring guided machined brass cages. - Class P5 tolerances as standard bearing precision ensures stable performance at high speeds. **Example 2** Features of Bearings for compressors #### High Load Capacity Cylindrical Roller Bearings (L-PPS Cage) • Refrigeration and air conditioning screw Air and gas screw compressors Outstanding load capacity and lubrication performance—allowing for reduced compressor size and extended maintenance intervals. | Decring Numbers | | Bound | ary Dimensio | ns (mm) | | Basic Load | Ratings (N) | |-----------------|----|-------|--------------|-----------------|------------------------|----------------------|----------------------------| | Bearing Numbers | d | D | В | γ (min.) | \mathcal{Y}_1 (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | NU (NJ) 204ET7 | 20 | 47 | 14 | 1 | 0.6 | 25 700 | 22 600 | | NU (NJ) 304ET7 | 20 | 52 | 15 | 1.1 | 0.6 | 31 500 | 26 900 | | NU (NJ) 2204ET7 | 20 | 47 | 18 | 1 | 0.6 | 30 500 | 28 300 | | NU (NJ) 2304ET7 | 20 | 52 | 21 | 1.1 | 0.6 | 42 000 | 39 000 | | NU (NJ) 205ET7 | 25 | 52 | 15 | 1 | 0.6 | 29 300 | 27 700 | | NU (NJ) 305ET7 | 25 | 62 | 17 | 1.1 | 1.1 | 41 500 | 37 500 | | NU (NJ) 2205ET7 | 25 | 52 | 18 | 1. | 0.6 | 35 000 | 34 500 | | NU (NJ) 2305ET7 | 25 | 62 | 24 | 1.1 | 1.1 | 57 000 | 56 000 | | NU (NJ) 206ET7 | 30 | 62 | 16 | 1 | 0.6 | 39 000 | 37 500 | | NU (NJ) 306ET7 | 30 | 72 | 19 | 1.1 | 1.1 | 53 000 | 50 000 | | NU (NJ) 2206ET7 | 30 | 62 | 20 | 1 | 0.6 | 49 000 | 50 000 | | NU (NJ) 2306ET7 | 30 | 72 | 27 | 1.1 | 1.1 | 74 500 | 77 500 | | NU (NJ) 207ET7 | 35 | 72 | 17 | 1.1 | 0.6 | 50 500 | 50 000 | | NU (NJ) 307ET7 | 35 | 80 | 21 | 1.5 | 1.1 | 66 500 | 65 500 | | NU (NJ) 2207ET7 | 35 | 72 | 23 | 1.1 | 0.6 | 61 500 | 65 000 | | NU (NJ) 2307ET7 | 35 | 80 | 31 | 1.5 | 1.1 | 93 000 | 101 000 | | NU (NJ) 208ET7 | 40 | 80 | 18 | 1.1 | 1.1 | 55 500 | 55 500 | | NU (NJ) 308ET7 | 40 | 90 | 23 | 1.5 | 1.5 | 83 000 | 81 500 | | NU (NJ) 2208ET7 | 40 | 80 | 23 | 1.1 | 1.1 | 72 500 | 77 500 | | NU (NJ) 2308ET7 | 40 | 90 | 33 | 1.5 | 1.5 | 114 000 | 122 000 | | NU (NJ) 209ET7 | 45 | 85 | 19 | 1.1 | 1.1 | 63 000 | 66 500 | | NU (NJ) 309ET7 | 45 | 100 | 25 | 1.5 | 1.5 | 97 500 | 98 500 | | NU (NJ) 2209ET7 | 45 | 85 | 23 | 1.1 | 1.1 | 76 000 | 84 500 | | NU (NJ) 2309ET7 | 45 | 100 | 36 | 1.5 | 1.5 | 137 000 | 153 000 | | NU (NJ) 210ET7 | 50 | 90 | 20 | 1.1 | 1.1 | 69 000 | 76 500 | | NU (NJ) 310ET7 | 50 | 110 | 27 | 2 | 2 | 110 000 | 113 000 | | NU (NJ) 2210ET7 | 50 | 90 | 23 | 1.1 | 1.1 | 86 500 | 97 000 | | NU (NJ) 2310ET7 | 50 | 110 | 40 | 2 | 2 | 163 000 | 187 000 | | NU (NJ) 211ET7 | 55 | 100 | 21 | 1.5 | 1.1 | 86 500 | 98 500 | | NU (NJ) 311ET7 | 55 | 120 | 29 | 2 | 2 | 137 000 | 143 000 | | NU (NJ) 2211ET7 | 55 | 100 | 25 | 1.5 | 1.1 | 101 000 | 122 000 | | Radial internal clearance Unit: µm | | | | | | | | | | |------------------------------------|---------------------------------------|--|--|--|--|--|--|--|--| | Nominal bore diameter d (mm) | | | Non-
interchangeable
CC clearance | | | | | | | | Incl. | Min. | Max. | Min. | Max. | | | | | | | 24 | 20 | 45 | 20 | 30 | | | | | | | 30 | 20 | 45 | 25 | 35 | | | | | | | 40 | 25 | 50 | 25 | 40 | | | | | | | 50 | 30 | 60 | 30 | 45 | | | | | | | 65 | 40 | 70 | 35 | 50 | | | | | | | 80 | 40 | 75 | 40 | 60 | | | | | | | 100 | 50 | 85 | 45 | 70 | | | | | | | | al bore r d (mm) Incl. 24 30 40 50 65 | al bore Intercha r d (mm) Intercha CN cle Incl. Min. 24 20 30 20 40 25 50 30 65 40 80 40 | al bore Interchangeable of d (mm) Interchangeable CN clearance Incl. Min. Max. 24 20 45 30 20 45 40 25 50 50 30 60 65 40 70 80 40 75 | al bore of d (mm) Interchangeable CN clearance Not interchangeable CC clearance Incl. Min. Max. Min. 24 20 45 20 30 20 45 25 40 25 50 25 50 30 60 30 65 40 70 35 80 40 75 40 | | | | | | | Danis Novebour | | Bounda | ary Dimensio | ns (mm) | ' | Basic Load | Ratings (N) | |-----------------|-----|--------|--------------|-----------------|--------------------------|----------------------|----------------------------| | Bearing Numbers | d | D | В | 𝒯 (min.) | $ m \emph{Y}_{1}$ (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | NU (NJ) 2311ET7 | 55 | 120 | 43 | 2 | 2 | 201 000 | 233 000 | | NU (NJ) 212ET7 | 60 | 110 | 22 | 1.5 | 1.5 | 97 500 | 107 000 | | NU (NJ) 312ET7 | 60 | 130 | 31 | 2.1 | 2.1 | 150 000 | 157 000 | | NU (NJ) 2212ET7 | 60 | 110 | 28 | 1.5 | 1.5 | 131 000 | 157 000 | | NU (NJ) 2312ET7 | 60 | 130 | 46 | 2.1 | 2.1 | 222 000 | 262 000 | | NU (NJ) 213ET7 | 65 | 120 | 23 | 1.5 | 1.5 | 108 000 | 119 000 | | NU (NJ) 313ET7 | 65 | 140 | 33 | 2.1 | 2.1 | 181 000 | 191 000 | | NU (NJ) 2213ET7 | 65 | 120 | 31 | 1.5 | 1.5 | 149 000 | 181 000 | | NU (NJ) 2313ET7 | 65 | 140 | 48 | 2.1 | 2.1 | 233 000 | 265 000 | | NU (NJ) 214ET7 | 70 | 125 | 24 | 1.5 | 1.5 | 119 000 | 137 000 | | NU (NJ) 314ET7 | 70 | 150 | 35 | 2.1 | 2.1 | 205 000 | 222 000 | | NU (NJ) 2214ET7 | 70 | 125 | 31 | 1.5 | 1.5 | 156 000 | 194 000 | | NU (NJ) 2314ET7 | 70 | 150 | 51 | 2.1 | 2.1 | 274 000 | 325 000 | | NU (NJ) 215ET7 | 75 | 130 | 25 | 1.5 | 1.5 | 130 000 | 156 000 | | NU (NJ) 315ET7 | 75 | 160 | 37 | 2.1 | 2.1 | 240 000 | 263 000 | | NU (NJ) 2215ET7 | 75 | 130 | 31 | 1.5 | 1.5 | 162 000 | 207 000 | | NU (NJ) 2315ET7 |
75 | 160 | 55 | 2.1 | 2.1 | 330 000 | 395 000 | | NU (NJ) 216ET7 | 80 | 140 | 26 | 2 | 2 | 139 000 | 167 000 | | NU (NJ) 316ET7 | 80 | 170 | 39 | 2.1 | 2.1 | 256 000 | 282 000 | | NU (NJ) 2216ET7 | 80 | 140 | 33 | 2 | 2 | 186 000 | 243 000 | | NU (NJ) 2316ET7 | 80 | 170 | 58 | 2.1 | 2.1 | 355 000 | 430 000 | | NU (NJ) 217ET7 | 85 | 150 | 28 | 2 | 2 | 167 000 | 199 000 | | NU (NJ) 2217ET7 | 85 | 150 | 36 | 2 | 2 | 217 000 | 279 000 | | NU (NJ) 2317ET7 | 85 | 180 | 60 | 3 | 3 | 395 000 | 485 000 | | NU (NJ) 218ET7 | 90 | 160 | 30 | 2 | 2 | 182 000 | 217 000 | | NU (NJ) 2218ET7 | 90 | 160 | 40 | 2 | 2 | 242 000 | 315 000 | | NU (NJ) 2318ET7 | 90 | 190 | 64 | 3 | 3 | 435 000 | 535 000 | | NU (NJ) 220ET7 | 100 | 180 | 34 | 2.1 | 2.1 | 310 000 | 305 000 | | NU (NJ) 320ET7 | 100 | 215 | 47 | 3 | 3 | 380 000 | 425 000 | | NU (NJ) 2220ET7 | 100 | 180 | 46 | 2.1 | 2.1 | 335 000 | 445 000 | | NU (NJ) 2320ET7 | 100 | 215 | 73 | 3 | 3 | 570 000 | 715 000 | Features of Bearings for compressors #### NSKHPS™ Angular Contact Ball Bearings (L-PPS Cage) • Refrigeration and air conditioning screw compressors Air and gas screw compressors Outstanding load capacity and lubrication performance—allowing for reduced compressor size and extended maintenance intervals. - Bearing life: up to 90% longer - Maximum rotational speed: up to 20% faster - Universal arrangement as standard - 40° contact angle | Axial i | nterna | l clear | ance | ι | Jnit: μm | |------------------------------|--------|---------|------|------|----------| | Nominal bore diameter d (mm) | | CI | ΝB | G | A | | Over | Incl. | Min. | Max. | Min. | Max. | | 12 | 18 | 17 | 25 | | | | 18 | 30 | 20 | 28 | -2 | 6 | | 30 | 50 | 24 | 32 | | | | 50 | 80 | 29 | 41 | -3 | 9 | | Bearing Nu | ımber | | | | | | |---|-----------------------|--|--|--|--|--| | Example: | 7310 B EA T7 SU CNB | | | | | | | Basic number | | | | | | | | Contact angle | symbol: 40° | | | | | | | Internal symbo | l: High load capacity | | | | | | | Cage symbol: | L-PPS cage | | | | | | | Arrangement symbol: Universal arrangement (single unit) | | | | | | | | Internal clearar | nce symbol | | | | | | | Bearing Numbers | | Bounda | ry Dimensio | ons (mm) | | Basic Load I | Ratings (N) | Maximum Rotational
Speed (min ⁻¹) | |-----------------|----|--------|-------------|----------|----------------|----------------------|----------------------------|--| | | d | D | В | γ (min.) | $ ho_1$ (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | Oil | | 7201BEA | 12 | 32 | 10 | 0.6 | 0.3 | 8 150 | 3 750 | 30 000 | | 7301BEA | 12 | 37 | 12 | 1 | 0.6 | 11 100 | 4 950 | 26 000 | | 7202BEA | 15 | 35 | 11 | 0.6 | 0.3 | 9 800 | 4 800 | 26 000 | | 7302BEA | 15 | 42 | 13 | 1 | 0.6 | 14 300 | 6 900 | 22 000 | | 7203BEA | 17 | 40 | 12 | 0.6 | 0.3 | 11 600 | 6 100 | 22 000 | | 7303BEA | 17 | 47 | 14 | 1 | 0.6 | 16 800 | 8 300 | 20 000 | | 7204BEA | 20 | 47 | 14 | 1 | 0.6 | 15 600 | 8 150 | 19 000 | | 7304BEA | 20 | 52 | 15 | 1.1 | 0.6 | 19 800 | 10 500 | 18 000 | | 7205BEA | 25 | 52 | 15 | 1 | 0.6 | 17 600 | 10 200 | 17 000 | | 7305BEA | 25 | 62 | 17 | 1.1 | 0.6 | 27 200 | 14 900 | 15 000 | | 7206BEA | 30 | 62 | 16 | 1 | 0.6 | 23 700 | 14 300 | 14 000 | | 7306BEA | 30 | 72 | 19 | 1.1 | 0.6 | 36 500 | 20 600 | 13 000 | | 7207BEA | 35 | 72 | 17 | 1.1 | 0.6 | 32 500 | 19 600 | 12 000 | | 7307BEA | 35 | 80 | 21 | 1.5 | 1 | 40 500 | 24 400 | 11 000 | | 7208BEA | 40 | 80 | 18 | 1.1 | 0.6 | 38 500 | 24 500 | 11 000 | | 7308BEA | 40 | 90 | 23 | 1.5 | 1 | 53 000 | 33 000 | 10 000 | | 7209BEA | 45 | 85 | 19 | 1.1 | 0.6 | 40 500 | 27 100 | 10 000 | | 7309BEA | 45 | 100 | 25 | 1.5 | 1 | 62 500 | 39 500 | 9 000 | | 7210BEA | 50 | 90 | 20 | 1.1 | 0.6 | 42 000 | 29 700 | 9 500 | | 7310BEA | 50 | 110 | 27 | 2 | 1 | 78 000 | 50 500 | 8 000 | | 7211BEA | 55 | 100 | 21 | 1.5 | 1 | 51 500 | 37 000 | 8 500 | | 7311BEA | 55 | 120 | 29 | 2 | 1 | 89 000 | 58 500 | 7 500 | | 7212BEA | 60 | 110 | 22 | 1.5 | 1 | 61 500 | 45 000 | 7 500 | | 7312BEA | 60 | 130 | 31 | 2.1 | 1.1 | 102 000 | 68 500 | 6 700 | | 7213BEA | 65 | 120 | 23 | 1.5 | 1 | 70 000 | 53 500 | 7 100 | | 7313BEA | 65 | 140 | 33 | 2.1 | 1.1 | 114 000 | 77 000 | 6 300 | | 7214BEA | 70 | 125 | 24 | 1.5 | 1 | 75 500 | 58 500 | 6 700 | | 7314BEA | 70 | 150 | 35 | 2.1 | 1.1 | 124 000 | 87 500 | 6 000 | | 7215BEA | 75 | 130 | 25 | 1.5 | 1 | 78 500 | 63 500 | 6 300 | | 7216BEA | 80 | 140 | 26 | 2 | 1 | 87 500 | 70 000 | 6 000 | #### **High-Speed Cylindrical Roller Bearings** • Air (oil-free) screw compressors High-speed cylindrical roller bearings, adopting outer-ring guided machined brass cages. d_mn: 1 300 000 (See Remarks 1 & 2) Bearing accuracy of more than Class P5 as standard. INDUSTRY SOLUTIONS | Danis - Noveles | | Bound | Basic Load | Ratings (N) | | | | |-----------------|----|-------|------------|-------------|------------------------|----------------------|----------------------------| | Bearing Numbers | d | D | В | | \mathcal{Y}_1 (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | NU205EMM | 25 | 52 | 15 | 1 | 0.6 | 29 300 | 27 700 | | NU206EMM | 30 | 62 | 16 | 1 | 0.6 | 39 000 | 37 500 | | NU207EMM | 35 | 72 | 17 | 1.1 | 0.6 | 50 500 | 50 000 | | NU208EMM | 40 | 80 | 18 | 1.1 | 1.1 | 55 500 | 55 500 | | NU209EMM | 45 | 85 | 19 | 1.1 | 1.1 | 63 000 | 66 500 | | NU210EMM | 50 | 90 | 20 | 1.1 | 1.1 | 69 000 | 76 500 | Remarks 1: Under general forced-lubrication condition 2: Contact NSK for maximum rotational speed, which can vary according to service conditions, and lubricating system. #### **High-Speed Angular Contact Ball Bearings** • Air (oil-free) screw compressors High-speed angular contact bearings, adopting outer-ring guided machined brass cages. d_mn: 1 300 000 (See Remarks 1 & 2) Bearing accuracy of more than Class P5 as standard. | Decrine Numbers | | Bound | ary Dimensio | ns (mm) | | Basic Load Ratings (N) | | |-----------------|----|-------|--------------|-----------------|------------------------|------------------------|----------------------------| | Bearing Numbers | d | D | В | 𝒯 (min.) | \mathcal{Y}_1 (min.) | $C_{ m r}$ (dynamic) | $C_{0\mathrm{r}}$ (static) | | 20BA02A | 20 | 47 | 14 | 1 | 0.6 | 13 600 | 7 550 | | 25BA02A | 25 | 52 | 15 | 1 | 0.6 | 15 400 | 9 500 | | 30BA03B | 30 | 72 | 19 | 1.5 | 0.6 | 31 500 | 19 000 | | 35BA03B | 35 | 80 | 21 | 1.5 | 0.6 | 39 000 | 24 000 | | 40BA02A | 40 | 80 | 18 | 1.5 | 0.6 | 34 500 | 24 100 | | 45BA03A2 | 45 | 100 | 25 | 1.5 | 1 | 60 000 | 40 000 | | 50BA03A1 | 50 | 110 | 27 | 1 | 2.5 | 70 000 | 47 500 | Remarks 1: Under general forced-lubrication condition 2: Contact NSK for maximum rotational speed, which can vary according to service conditions, and lubricating system. D 024 D 025 ## Bearings for Agricultural Machinery NSK's high-performance bearings provide high reliability and efficiency for agricultural implements and machinery. #### A Product Line that Matches Specific Applications #### **Bearings Table** | Sealed Deep Groove Ball Bearings TM Series | D 032 | |--|-------| |--|-------| Line-up ■ A Product Line that Matches Specific Applications Transmission/Differential Gear/Propeller Shaft Needle Roller Bearings Contact Ball Bearings Thrust Ball Bearings Long-Life Pinion Shaft with Cage and Rollers HR Series Tapered Roller Bearings Deep Groove Ball Bearings TM Series Sealed Deep Groove Ball Bearings Chassis Wheel/Steering **Implements** Agril Disc Hub UR Bearing (Special Carbonitriding Heat-Treatment Technology) Roller Bearings Hub Unit Bearings (HUB I) Hi-TF Bearings Stock Wind Power Industry #### A Product Line that Matches Specific Applications #### High-Performance Standard for Industial Machinery NSKHPS™ Deep Groove Ball Bearings/Cylindrical Roller Bearings/Spherical Roller Bearings Series **Features** NSKHPS™ Deep Groove Ball Bearings The new standard that defi nes the concept of standard bearings - NSKHPS™ Improved reliability Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. As a result, the NSKHPS™ bearings contribute to reducing maintenance cost and facilitate the downscaling of related equipment. New product line-up The standard dimensions are the same as for the standardsize bearings. NSK has expanded the line-up of NSKHPS™ bearings focusing on a wide range of sizes offering a high degree of versatility for various general-purpose applications For the NSKHPS™ DGBBs dimensions table, please refer to Pages C020 to C035. Please refer to Page D038 for detailed information of NSKHPS™ CRBs and SRBs #### High-Load Bearings (Tapered Roller Bearings/Deep Groove Ball Bearings) HR Series The HR series of high-load bearings provides excellent performance in diverse applications. #### **Features** Higher load-carrying capacity and longer operating life. #### Tapered roller bearings Optimal cage design allows increased size and number of rollers. #### Deep groove ball bearings The standard dimensions are the same as for the standard-size bearings and feature designs with optimized ball diameter and quantity. #### **UR Bearing** Achieve long life by special carbonitriding heat treatment(UR) to through harden bearing steel. #### Features - Over 2 times bearing life to standard bearings under harsh and contaminated lubrication conditions. - Additional longer life is available by the combination with High Capacity Standard Series. - UR heat treatment is available to various types of bearing, because it is applied to through harden bearing steel, most popular material for rolling bearings #### Sealed Deep Groove Ball Bearings TM Series The TM series delivers longer operating life under environments contaminated with foreign particles by incorporating a special seal
that prevents the entry of foreign particles and has been especially effective in agricultural machinery and automobile transmission systems. #### **Features** - Seal lip structure prevents entry of foreign matter while allowing entry of oil. - Lower torque than conventional contact seal bearings. - Sealed-in grease with a high affinity for gear oil to aid initial lubrication. **Bearing Series** TM302-TM314 / TM203-TM214 Major dimensions are the same as the Series 62 and Series 63 of deep groove ball bearings #### Long-Life Pinion Shaft with Cage and Rollers These bearings have improved durability and reliability and achieve long service life under harsh operating conditions, such as continuous operation for long periods of time, by utilizing a pinion shaft with a cage and rollers as a single assembly. #### **Features** Special heat treatment and improved raceway surfaces extend service life by more than twofold. #### Pinion shaft - · Raceway polished to a mirror-smooth finish to ensure a sufficiently thick oil film. - · Special heat treatment applied to pinion shaft as a measure against contaminated-lubricant conditions. #### Cage and rollers - · Roller running surface polished to a mirror-smooth finish to ensure a sufficiently - · Special heat treatment applied to rollers as a measure against contaminatedlubricant conditions. Comparison of life test results for conventional and newly developed bearing Newly product Corresponding size: Inscribed circle diameter up to 32 mm #### HST Long-Life, High-Reliability Cage-Equipped Thrust Ball Bearings for Agricultural Machinery Contributing to the Long Life and High Reliability of Agricultural Machinery by Increasing the Life of Bearings. #### **Features** Achieve the twice or more life compared with conventional bearings by adopting the Iona-life. - Long-life Technology - Uses EP steel, which is strong against sub-surface fatigue, For the inner and outer ring. Adopts a special heat treatment, which is resistant to surface fatigue, for the inner and outer ring and balls. - High-reliability Cage Improves the reliability of cage by utilizing a plastic cage which is resistant to cage load. D 030 INDUSTRY SOLUTIONS | Design Numbers | Во | oundary Dimensions (m | Basic Load | Ratings (N) | | |-----------------|----|-----------------------|------------|-------------|----------| | Bearing Numbers | d | D | B | $C_{\rm r}$ | C_{0r} | | TM203 | 17 | 40 | 12 | 9 550 | 4 800 | | TM303 | 17 | 47 | 14 | 13 600 | 6 650 | | TM204 | 20 | 47 | 14 | 12 800 | 6 600 | | TM304 | 20 | 52 | 15 | 15 900 | 7 900 | | TM2/22 | 22 | 50 | 14 | 12 900 | 6 800 | | TM3/22 | 22 | 56 | 16 | 18 400 | 9 250 | | TM205 | 25 | 52 | 15 | 14 000 | 7 850 | | TM305 | 25 | 62 | 17 | 20 600 | 11 200 | | TM2/28 | 28 | 58 | 16 | 16 600 | 9 500 | | TM3/28 | 28 | 68 | 18 | 26 700 | 14 000 | | TM206 | 30 | 62 | 16 | 19 500 | 11 300 | | TM306 | 30 | 72 | 19 | 26 700 | 15 000 | | TM2/32 | 32 | 65 | 17 | 20 700 | 11 600 | | TM3/32 | 32 | 75 | 20 | 29 400 | 17 000 | | TM207 | 35 | 72 | 17 | 25 700 | 15 300 | | TM307 | 35 | 80 | 21 | 33 500 | 19 200 | | TM208 | 40 | 80 | 18 | 29 100 | 17 800 | | TM308 | 40 | 90 | 23 | 40 500 | 24 000 | | TM209 | 45 | 85 | 19 | 31 500 | 20 400 | | TM309 | 45 | 100 | 25 | 53 000 | 32 000 | | TM210 | 50 | 90 | 20 | 35 000 | 23 200 | | TM310 | 50 | 110 | 27 | 62 000 | 38 500 | | TM211 | 55 | 100 | 21 | 43 500 | 29 300 | | TM311 | 55 | 120 | 29 | 71 500 | 44 500 | | TM212 | 60 | 110 | 22 | 52 500 | 36 000 | | TM312 | 60 | 130 | 31 | 82 000 | 52 000 | | TM213 | 65 | 120 | 23 | 57 500 | 40 000 | | TM313 | 65 | 140 | 33 | 92 500 | 60 000 | | TM214 | 70 | 125 | 24 | 62 000 | 44 000 | | TM314 | 70 | 150 | 35 | 104 000 | 68 000 | Note Maximum continuous operating temperature for standard nitrile rubber seals is 110°C. Wind Power Industry # Bearings for Construction Machinery Long service life under harsh conditions—tough bearings reflect NSK's accumulated technological prowess. #### A Product Line that Matches Specific Applications Line-up D 036 Long-Life Pinion Shaft with a Cage and Rollers ■ A Product Line that Matches Specific Applications Line-up Railway Rolling Stock Wind Power Industry NSKHPS™ Spherical Roller Bearings Hi-TF Bearings Sealed Deep Groove Ball Bearings TM Series Series Tapered Roller Bearings HR NSKHPS™ Cylindrical Roller Bearings #### A Product Line that Matches Specific Applications #### **NSKHPS™** Spherical Roller Bearings Features Compared to the conventional bearing: 1. Improved reliability Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. 2. High temperature dimensional stabilizing treatment comes standard High temperature dimensional stabilization of up to 200°C has been achieved through the application of NSK's proprietary material heat treatment technology. #### **NSKHPS™** Cylindrical Roller Bearings Features Compared to the conventional bearing: 1. Improved reliability Bearing life has increased by a maximum of 60% compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. 2. Wide-range product line-up NSK has offerd the wide-range line-up of NSKHPS bearings with four types of cages focusing on a wide range of sizes offering a high degree of versatility for various generalpurpose applications. - · Pressed steel cage with high cost perfomance - · Highly reliable machined brass cage - · Polyamide resin cage that excels in heat resistance and chemical resistance #### Sealed Deep Groove Ball Bearings TM Series The TM series delivers longer operating life under environments contaminated with foreign particles by incorporating a special seal that prevents the entry of foreign particles and has been especially effective in agricultural machinery and automobile transmission systems. #### Features - Seal lip structure prevents entry of foreign matter while allowing entry of oil. - Lower torque than conventional contact seal bearings. - Sealed-in grease with a high affinity for gear oil to aid initial lubrication. **Bearing Series** TM302-TM314 / TM203-TM214 Major dimensions are the same as the Series 62 and Series 63 of deep groove ball bearings. #### **Tapered Roller Bearings HR Series** The HR series of high-load capacity, standard-size tapered roller bearings offer highload capacity for boosting the performance in diverse applications. #### **Features** number of rollers #### Long-Life Pinion Shaft with Cage and Rollers These bearings have improved durability and reliability and achieve long service life under harsh operating conditions, such as continuous operation for long periods of time, by utilizing a pinion shaft with a cage and rollers as a single assembly. #### **Features** Pinion shaft - · Raceway polished to a mirror-smooth finish to ensure a sufficiently thick oil film. - · Special heat treatment applied to pinion shaft as a measure against contaminated-lubricant conditions. Cage and rollers - · Roller running surface polished to a mirror-smooth finish to ensure a sufficiently thick oil film. - Special heat treatment applied to rollers as a measure against contaminated-lubricant conditions. Comparison of life test results for conventional and newly developed bearing #### **Hi-TF Bearings** Bearings manufactured from NSK's Hi-TF material have been specifically designed for outstanding toughness under harsh operating conditions, surpassing even NSK's earlier TF bearings. Hi-TF bearings incorporating this new material and a new heattreatment technology provide long service life under contaminated lubrication conditions with superior resistance to wear, seizure, and heat. Hi-TF bearings are capable of handling the foreseeable needs of the future as well as meeting today's requirements. Achieves longer bearing life even under harsh conditions with excellent resistance to wear, seizure, and heat INDUSTRY SOLUTIONS Corresponding size: Inscribed circle diameter up to 32 mm D 038 D 039 ### **Bearings for Mining Machinery** Tough bearings offer longer service life under demanding mining conditions through NSK's wealth of outstanding technologies. #### A Product Line that Matches Specific Applications #### **Bearings Table** | Super Long-Life Spherical Roller Bearings fo | r | |--|-------| | Vibrating Equipment CA-VS3, CA-VS4 Series | D 046 | Bearings for Mining Machinery EMM-VS Series of Cylindrical Roller Bearings for Vibrating Equipment D 047 Pumps & Compressors Agricultural Machinery Railway Rolling Stock Wind Power Industry #### Jaw Crusher Work material is crushed between two opposing jaw plates. One plate opens and stationary jaw plate. #### Cone Crusher Material is fed into the crusher cavity and processed by the eccentric rotating action of the inner cone against the outer cone. Work can be reduced to a diameter ranging from 50 mm to 100 mm. #### Vibrating Screen The vibrating screen consists of a case with a shaft and housing installed inside, with springs supporting the case. The swing and rotation of the shaft is produced by the attached unbalanced weight, which generates vibration. This vibration sifts the material set on the screen on the top of the case. #### Impact Crusher As indicated by its name, this machine crushes ore through impact, and steadily through sharp, repeated impact with a rapidly spinning hammer, steel plate, or stick. NSKHPS™ Spherical Roller NSKHPS™ Cylindrical Roller Super Long-Life Spherical Roller Bearings for Vibrating Equipment CA-VS3,CA-VS4 **Bearings for Mining Machinery** EMM-VS Series of Cylindrical Roller Bearings for Vivrating Equipment **Plummer Block** Hi-TF Bearings Wind Power Industry #### A Product Line that Matches Specific Applications #### **NSKHPS™** Spherical Roller Bearings Features Compared to the conventional bearing: 1. Improved reliability
Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. 2. High temperature dimentional stabilizing treatment comes standard High temperature dimensional stabilization of up to 200°C has been achieved through the application of NSK's proprietary material heat treatment technology. #### **NSKHPS™** Cylindrical Roller Bearings Features Compared to the conventional bearing 1. Improved reliability Bearing life has increased by a maximum of 60% compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. 2. Wide-range product line-up NSK has offerd the wide-range line-up of NSKHPS bearings with four types of cages focusing on a wide range of sizes offering a high degree of versatility for various generalpurpose applications. - · Pressed steel cage with high cost perfomance - · Highly reliable machined brass cage - · Polyamide resin cage that excels in heat resistance and chemical resistance #### Full Complement Cylindrical Roller Bearings for Crane Sheaves This cylindrical roller bearing incorporates seals to prevent the entry of foreign matter. #### Features - Improved seal: Contact seal increases resistance to entry of foreign matter or water. - High load capacity: Larger radial load and axial load capacity compared to conventional sheave bearings. - Corrosion resistance: Phosphate surface treatment improves resistance to rust. - Easier grease replenishment: Sealed bearing includes inner ring holes to facilitate grease replenishment. - Fewer mounted components: With snap rings for the outer ring, fewer components are required around the bearing, making for a more cost-effective sheave. #### **Spherical Roller Bearings CA-VS Series** The CA series is a standard-size bearing with a machined brass cage, tough and wear-resistant capabilities, and is ideal for applications operating under heavy or shock load conditions. NSK offers the U15 and VS units specifically for vibrating screens, feeders, and other vibrating applications. #### **Features** #### **Bearings for Mining Machinery EMM-VS Series of** Cylindrical Roller Bearings for Vibrating Equipment #### **Hi-TF Bearings** · Outer-ring-guided one-piece cage Bearings manufactured from NSK's Hi-TF material have been specifically designed for outstanding toughness under harsh operating conditions, surpassing even NSK's earlier TF bearings. Hi-TF bearings incorporating this new material and a new heat-treatment technology provide long service life under contaminated lubrication conditions with superior resistance to wear, seizure, and heat. Hi-TF bearings are capable of handling the foreseeable needs of the future as well as meeting today's requirements. **Features** Achieves longer bearing life even under harsh conditions with excellent resistance to wear, seizure, and heat #### **Plummer Block** Plummer block housings can be used with high-capacity spherical roller bearings or self-aligning ball bearings. They are manufactured from high-strength cast iron as standard but are also available in cast steel or spheroidal graphite cast iron. way Stock D 044 #### Super Long-Life Spherical Roller Bearings for Vibrating Equipment CA-VS3, CA-VS4 Series #### **Dimensional Tolerance and Radial Clearance** NSK's -VS3, VS4 specifications stabilize the load distribution by controlling the internal clearance and the dimensional tolerance of the bearing. - VS3,VS4 series has succeeded to U15 specification (special tolerance for vibrating equipment) that has been adopted to spherical roller bearing CA-VS series. However to clarify the simplification of the suffix and the difference between new series and conventional series, suffix U15 is omitted. - Number symbols (3 and 4) of VS3 and VS4 mean bearing internal clearance "C3U15 and C4U15" - The dimensional tolerance bearing is set at 1/2 relative to the outer diameter tolerance and the internal diameter tolerance. - The radial internal clearance is set at 2/3 relative to the standard. | Danier North | Basic Load | Ratings (kN) | | Boundary
diameter | y Dimensi | ons (mm)
diameter | | | learance
cal Bore) | |-------------------------|-------------|-------------------|-----------|----------------------|-----------|----------------------|-----------------------|------------|-----------------------| | Bearing Numbers | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | d
(mm) | tolerance
(µm) | D (mm) | tolerance
(µm) | $B \atop (\text{mm})$ | VS3(µm) | VS4(μm) | | 22308CAME4-VS() | 152 | 129 | 40 | | 90 | | 33 | 50 to 60 | 65 to 80 | | 22309CAME4-VS() | 185 | 167 | 45 | 0
-7 | 100 | | 36 | 60 to 75 | 85 to 100 | | 22310CAME4-VS() | 232 | 211 | 50 | , | 110 | _ | 40 | | | | 22311CAME4-VS() | 261 | 241 | 55 | | 120 | -5
-13 | 43 | 75 to 90 | 100 to 120 | | 22312CAME4-VS() | 305 | 288 | 60 | | 130 | | 46 | | | | 22313CAME4-VS() | 330 | 315 | 65 | 0 | 140 | | 48 | | | | 22314CAME4-VS() | 380 | 370 | 70 | -9 | 150 | | 51 | 90 to 110 | 120 to 145 | | 22315CAME4-VS() | 425 | 415 | 75 | | 160 | -5 | 55 | | | | 22316CAME4-VS() | 485 | 480 | 80 | | 170 | -5
-18 | 58 | | | | 22317CAME4-VS() | 520 | 510 | 85 | | 180 | | 60 | 110 to 135 | 150 to 180 | | 22318CAME4-VS() | 605 | 595 | 90 | | 190 | | 64 | | | | 22319CAME4-VS() | 655 | 675 | 95 | 0 | 200 | | 67 | | | | 22320CAME4-VS() | 750 | 785 | 100 | -12 | 215 | -10 | 73 | | | | 22322CAME4-VS() | 925 | 980 | 110 | | 240 | -23 | 80 | 135 to 160 | 180 to 210 | | 22324CAME4-VS() | 1 060 | 1 120 | 120 | | 260 | | 86 | | | | 22326CAME4-VS() | 1 240 | 1 350 | 130 | | 280 | | 93 | 160 to 190 | 205 to 240 | | 22328CAME4-VS() | 1 450 | 1 590 | 140 | | 300 | | 102 | | | | 22330CAME4-VS() | 1 530 | 1 690 | 150 | 0 | 320 | | 108 | 190 to 220 | 240 to 280 | | 22332CAME4-VS() | 1 700 | 1 900 | 160 | -15 | 340 | | 114 | | | | 22334CAME4-VS() | 1 970 | 2 110 | 170 | | 360 | -13 | 120 | 200 to 240 | 260 to 310 | | 22336CAME4-VS() | 2 170 | 2 340 | 180 | | 380 | -28 | 126 | | | | 22338CAME4-VS () | 2 370 | 2 590 | 190 | -18 | 400 | | 132 | 220 to 260 | 285 to 340 | Remark VS(): Replace parentheses and indicate "VS3" or "VS4" when ordering #### Bearings for Mining Machinery EMM-VS Series of Cylindrical Roller Bearings for Vibrating Equipment | | | | Bou | ndary Dim | nensions (r | mm) | | Basic Load | Ratings (N) | |----------------|-----------------|-----|-----|-----------|-------------|---------------------|------------|-------------|-------------| | Bearing I | Bearing Numbers | | D | В | γ
min. | ${m \gamma}_1$ min. | $F_{ m w}$ | $C_{\rm r}$ | C_{0r} | | NU2308EMMC3-VS | NU2308EMMC4-VS | 40 | 90 | 33 | 1.5 | 1.5 | 52 | 114 000 | 122 000 | | NU2309EMMC3-VS | NU2309EMMC4-VS | 45 | 100 | 36 | 1.5 | 1.5 | 58.5 | 137 000 | 153 000 | | NU2310EMMC3-VS | NU2310EMMC4-VS | 50 | 110 | 40 | 2 | 2 | 65 | 163 000 | 187 000 | | NU2311EMMC3-VS | NU2311EMMC4-VS | 55 | 120 | 43 | 2 | 2 | 70.5 | 201 000 | 233 000 | | NU2312EMMC3-VS | NU2312EMMC4-VS | 60 | 130 | 46 | 2 | 2 | 77 | 222 000 | 262 000 | | NU2313EMMC3-VS | NU2313EMMC4-VS | 65 | 140 | 48 | 2.1 | 2.1 | 82.5 | 233 000 | 265 000 | | NU2314EMMC3-VS | NU2314EMMC4-VS | 70 | 150 | 51 | 2.1 | 2.1 | 89 | 274 000 | 325 000 | | NU2315EMMC3-VS | NU2315EMMC4-VS | 75 | 160 | 55 | 2.1 | 2.1 | 95 | 330 000 | 395 000 | | NU2316EMMC3-VS | NU2316EMMC4-VS | 80 | 170 | 58 | 2.1 | 2.1 | 101 | 355 000 | 430 000 | | NU2317EMMC3-VS | NU2317EMMC4-VS | 85 | 180 | 60 | 3 | 3 | 108 | 395 000 | 485 000 | | NU2318EMMC3-VS | NU2318EMMC4-VS | 90 | 190 | 64 | 3 | 3 | 113.5 | 435 000 | 535 000 | | NU2319EMMC3-VS | NU2319EMMC4-VS | 95 | 200 | 67 | 3 | 3 | 121.5 | 460 000 | 585 000 | | NU2320EMMC3-VS | NU2320EMMC4-VS | 100 | 215 | 73 | 3 | 3 | 127.5 | 570 000 | 715 000 | | NU2322EMMC3-VS | NU2322EMMC4-VS | 110 | 240 | 80 | 3 | 3 | 143 | 675 000 | 880 000 | | NU2324EMMC3-VS | NU2324EMMC4-VS | 120 | 260 | 86 | 3 | 3 | 154 | 795 000 | 1 030 000 | Wind Power Industry Steel Industry # Bearings for Railway Rolling Stock #### A Product Line that Matches Specific Applications #### **Bearings Table** | Axle Bearings | D 052 | |-------------------------|-------| | Gear Box Bearings | D 062 | | Traction Motor Bearings | D 064 | INDUSTRY SOLUTIONS | NSK These bearings must have high reliability, as they are one of the most important parts used in rolling stock. There are three bearing types typically used in rolling stock; axle bearings, which carry the heavy weight of rolling stock on the shafts; traction motor bearings, which support the main shaft of the traction motor; and gearbox bearings, which transmit drive power from the traction motor to the axle shaft. NSK supplies these specifically designed bearings for each application. #### **Axle Bearings** - · NSK has developed high-speed, lightweight, and lowmaintenance axle bearings. - -Sealed-Clean Rotating End Cap Tapered Roller Bearings with Grease Lubrication - -Sealed-Clean Rotating End Cap Cylindrical Roller Bearings with Grease Lubrication - -Open-Type Cylindrical Roller Bearings (With oil bath or Grease Lubrication) - -Open-Type Tapered Roller Bearing (With oil bath Lubrication) - NSK offers axle bearings with sensors to provide higher - NSK is certified by the AAR (Association of American Railways). Please ask NSK in detail. #### **Gear Box Bearings** - NSK bearings have higher seizure resistance under highspeed rotation due to our special designs. - A high-toughness cage can be used in severe condition. #### **Traction Motor Bearings** - Designed for high-speed, inverter-controlled Traction Motors by adopting a dimension-stabilizing treatment. Application of long-life grease is recommended. - NSK has two solutions to prevent electric current penetration (electrolytic corrosion) through the bearing. -Ceramic Insulated Bearings - -PPS Molded Bearing - High-capacity bearings are used in large traction motors in electric train
locomotives. D 050 D 051 Pumps & Compressors Railway Rolling Stock Wind Power Industry **Axle Bearings** #### Sealed-Clean Rotating End Cap Tapered Roller Bearing | D : N I | | | | Dimensions (mm) | | | | Pacia Dynamia Load Pating (N) | Pagin Static Load Dating (N) | | |-----------------|-----|-----|-------|-----------------|-------|-------|-------|-------------------------------|------------------------------|--| | Bearing Numbers | d | D | D T | | d_1 | E | F | Basic Dynamic Load Rating (N) | Basic Static Load Rating (N) | | | J-908 | 90 | 154 | 90 | 80 | 110 | 55 | 80 | 297 000 | 480 000 | | | J-318 | 110 | 175 | 130 | 125 | 155 | 105 | 135 | 470 000 | 940 000 | | | J-910 | 110 | 188 | 150 | 145 | 150 | 100 | 120 | 605 000 | 1 110 000 | | | J-901 | 110 | 190 | 150 | 145 | 150 | 100 | 120 | 605 000 | 1 110 000 | | | J-905 | 110 | 195 | 150 | 145 | 150 | 100 | 120 | 650 000 | 1 180 000 | | | J-909 | 110 | 205 | 140 | 130 | 150 | 85 | 105 | 745 000 | 1 270 000 | | | J-902 | 110 | 220 | 145 | 144 | 155 | 112 | 110 | 690 000 | 1 090 000 | | | J-900 | 115 | 210 | 150 | 145 | 144 | 98 | 117 | 710 000 | 1 250 000 | | | J-319 | 120 | 195 | 142 | 136 | 155 | 113 | 135 | 645 000 | 1 290 000 | | | J-904 | 120 | 220 | 145 | 145 | 155 | 120 | 117 | 750 000 | 1 250 000 | | | J-355 | 120 | 220 | 155 | 155 | 150 | 125 | 100 | 845 000 | 1 530 000 | | | J-907A | 120 | 220 | 155 | 150 | 149 | 146.5 | 117 | 780 000 | 1 310 000 | | | J-320 | 130 | 208 | 152 | 146 | 165 | 115 | 139 | 660 000 | 1 350 000 | | | J-913 | 130 | 220 | 155 | 155 | 160 | 168 | 100 | 765 000 | 1 410 000 | | | J-920 | 130 | 220 | 155 | 155 | 171 | 115 | 140.7 | 820 000 | 1 550 000 | | | J-934 | 130 | 230 | 160 | 150 | 149 | 146.5 | 117 | 915 000 | 1 670 000 | | | J-937 | 130 | 230 | 160 | 150 | 160 | 149 | 117 | 915 000 | 1 670 000 | | | J-936B | 130 | 240 | 165 | 160 | 160 | 203.5 | 117 | 1 040 000 | 1 800 000 | | | J-943 | 130 | 240 | 160 | 160 | 160 | 90 | 101 | 1 040 000 | 1 800 000 | | | J-921C | 150 | 250 | 185 | 179.5 | 185 | 122 | 133 | 915 000 | 1 700 000 | | | J-942 | 185 | 280 | 160 | 155 | 225 | _ | 115.5 | 915 000 | 1 900 000 | | Wind Power Industry **Axle Bearings** #### Sealed-Clean Rotating End Cap Tapered Roller Bearing AAR No.22 | Class | Journal Size | Unit Number | Bearing Numbers | | | | Basic Dynamic
Load Rating | Basic Static
Load Rating | | | | |-------|--------------|-------------|-----------------------|--|------------------------------------|--------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------|------------------------| | Olass | Journal Size | Onit Number | bearing Numbers | $d_{\scriptscriptstyle 1}$ (bearing) maxmin. | $oldsymbol{d}_2$ (axle)
maxmin. | mm(upper line) / $\frac{1}{1}$ | T | В | d_3 | N (lbf) | N (lbf) | | В | 4 1/4 X 8 | J-371 | HM120848R HM120817XDR | 101.625-101.600
4.001-4.000 | 101.702-101.676
4.0040-4.0030 | 165.100
6 1/2 | 114.300
4 1/2 | 106.362
4 3/16 | 127.000
5 | 415 000
(93 000) | 775 000
(174 000) | | С | 5 X 9 | J-372 | HM124646R HM124618XDR | 119.087-119.062
4.6885-4.6875 | 119.164-119.139
4.6915-4.6905 | 195.262
7 11/16 | 142.875
5 5/8 | 136.525
5 3/8 | 149.225
5 7/8 | 585 000
(132 000) | 1 140 000
(255 000) | | D | 5 1/2 X 10 | J-373 | HM127446R HM127415XDR | 131.775-131.750
5.1880-5.1870 | 131.864-131.839
5.1915-5.1905 | 207.962
8 3/16 | 152.600
6 | 146.050
5 3/4 | 161.925
6 3/8 | 635 000
(143 000) | 1 250 000
(282 000) | | Е | 6 X 11 | J-374 | HM129848R HM129814XDR | 144.475-144.450
5.6880-5.6870 | 144.564-144.539
5.6915-5.6905 | 220.662
8 11/16 | 163.512
6 7/16 | 155.575
6 1/8 | 178.613-178.562
7.032-7.030 | 665 000
(149 000) | 1 350 000
(305 000) | | F | 6 1/2 X12 | J-375 | HM133444R HM133416XDR | 157.175-157.150
6.1880-6.1870 | 157.264-157.239
6.1915-6.1905 | 252.412
9 15/16 | 184.150
7 1/4 | 177.800
<mark>7</mark> | 191.313-191.262
7.532-7.530 | 905 000
(204 000) | 1 840 000
(415 000) | | G | 7 X 12 | J-376 | HM136948R HM136916XDR | 177.812-177.787
7.0005-6.9995 | 177.902-177.876
7.0040-7.0030 | 276.225
10 7/8 | 185.725
7.312 | 180.075
7 1/8 | 203.251-203.200
8.002-8.000 | 1 010 000
(227 000) | 2 170 000
(485 000) | #### Sealed-Clean Rotating End Cap Cylindrical Roller Bearing | | | | | Dimension | ns (mm) | | | | Basic Dynamic | Basic Static | |-----------------|-----|-----|-----|-----------|---------|-------|-----|-----|--------------------|--------------------| | Bearing Numbers | d | D | T | В | J | E | F | G | Load Rating
(N) | Load Rating
(N) | | J-580A | 100 | 195 | 150 | 175 | 130 | _ | 120 | 105 | 670 000 | 1 040 000 | | J-447B | 110 | 220 | 160 | 154 | 170 | _ | 135 | 140 | 875 000 | 1 370 000 | | J-577 | 110 | 220 | 170 | 182 | 140 | 210 | 128 | 112 | 875 000 | 1 370 000 | | J-504 | 120 | 195 | 140 | 134 | 155 | 176 | 135 | 132 | 545 000 | 915 000 | | 120JRF11 | 120 | 215 | 146 | 146 | _ | _ | _ | _ | 830 000 | 1 350 000 | | J-809 | 120 | 220 | 145 | 145 | 155 | 171 | 145 | 117 | 700 000 | 1 120 000 | | J-805 | 120 | 220 | 155 | 157 | 150 | 190 | 113 | 100 | 765 000 | 1 250 000 | | J-806 | 120 | 220 | 160 | 172 | 160 | 200 | 128 | 112 | 765 000 | 1 250 000 | | J-810A | 120 | 220 | 160 | 185.5 | 145 | _ | 128 | 104 | 765 000 | 1 250 000 | | J-811 | 120 | 220 | 160 | 204 | 150 | 242 | 128 | 112 | 815 000 | 1 320 000 | | J-817 | 120 | 220 | 175 | 175 | 144 | 197 | 118 | 113 | 850 000 | 1 430 000 | | J-605 | 120 | 220 | 175 | 182 | 140 | 210 | 128 | 112 | 850 000 | 1 430 000 | | J-803 | 120 | 220 | 175 | 182 | 150 | 210 | 128 | 112 | 850 000 | 1 430 000 | | J-594 | 120 | 230 | 150 | 142 | 155 | 171 | 145 | 113 | 830 000 | 1 290 000 | | J-574 | 120 | 240 | 160 | 162 | 168 | 193 | 158 | 113 | 935 000 | 1 420 000 | | J-574A | 120 | 240 | 160 | 162 | 168 | 196 | 120 | 125 | 935 000 | 1 420 000 | | J-480B | 120 | 240 | 160 | 164 | 150 | 197 | 128 | 112 | 935 000 | 1 450 000 | | J-556B | 120 | 240 | 170 | 180 | 168 | 218 | 130 | 125 | 1 020 000 | 1 580 000 | | J-802 | 120 | 240 | 170 | 182 | 150 | 205 | 128 | 112 | 1 020 000 | 1 580 000 | | J130-20DR | 130 | 220 | 124 | 124 | _ | _ | _ | _ | 805 000 | 1 320 000 | | J-814 | 130 | 230 | 160 | 185.5 | 155 | _ | 128 | 104 | 800 000 | 1 340 000 | | J-816 | 130 | 240 | 160 | 160 | 160 | 188 | 100 | 112 | 825 000 | 1 310 000 | | J-807 | 130 | 240 | 160 | 160 | 160 | 188 | 118 | 112 | 825 000 | 1 310 000 | | J-801 | 130 | 240 | 160 | 160 | 165 | 188 | 116 | 105 | 825 000 | 1 310 000 | | J-589 | 130 | 240 | 160 | 160 | 170 | 188 | 131 | 116 | 825 000 | 1 310 000 | | J-567 | 130 | 250 | 170 | 170 | 165 | 208 | 95 | 135 | 1 030 000 | 1 610 000 | | J-578 | 130 | 260 | 175 | 182 | 160 | 212.5 | 128 | 112 | 1 030 000 | 1 610 000 | | J-555 | 130 | 260 | 180 | 182 | 160 | 215 | 128 | 112 | 1 030 000 | 1 610 000 | | 160JRT02 | 160 | 280 | 159 | 180 | _ | _ | _ | _ | 1 060 000 | 1 730 000 | | D | 056 | |---|-----| Mining Machinery Railway Rolling Stock Papermaking Machines Wind Power Industry Steel Industry Air Turbine Dental Handpieces INDUSTRY SOLUTIONS **NSK** #### **Open Type Cylindrical Roller Bearings** | Bearing Numbers | | Dimensi | ons (mm) | Basic Dynamic Load Rating | Basic Dynamic Load Rating Basic Static Load Rating | | | |-----------------|-----|---------|-----------------|---------------------------|--|-----------|--| | bearing Numbers | d | D | T | B | (N) | (N) | | | 85JRJ02 | 85 | 150 | 120.0 | 125 | 365 000 | 585 000 | | | 90JRJ01 | 90 | 160 | 118.5 | 130 | 355 000 | 530 000 | | | 110JRJ01 | 110 | 200 | 150.0 | 160 | 625 000 | 995 000 | | | 2J110-2 | 110 | 220 | 180.0
(80x2) | 190 | 875 000 | 1 370 000 | | | 120JRJ01 | 120 | 220 | 180.0 | 183 | 850 000 | 1 430 000 | | | 2J120-1 | 120 | 240 | 180.0
(80x2) | 190 | 935 000 | 1 450 000 | | | 2J120-3M | 120 | 240 | 180.0
(80x2) | 180 | 935 000 | 1 450 000 | | | Bearing Numbers | | Dimensio | ons (mm) | Basic Dynamic Load Rating | Basic Static Load Rating | | |----------------------|------------|------------|-------------|---------------------------|--------------------------|------------------------| | bearing Numbers | d | D | T | B | (N) | (N) | | 2J110-1
120JRJ02A | 110
120 | 225
240 | 70×2
160 | 150
180 | 935 000
935 000 | 1 430 000
1 450 000 | | Pooring Number | | Dimensio | ns (mm) | Basic Dynamic Load Rating | Basic Static Load Rating | | |----------------|-----|----------|---------|---------------------------|--------------------------|-----------| | Bearing Number | d | D | T | B | (N) | (N) | | JC14 | 130 | 260 | 160 | 160 | 1 140 000 | 1 840 000 | | Pagring Numbers | | Dimensio | ons (mm) | | Basic Dynamic Load Rating | Basic Static Load Rating | |-----------------|-----|----------|----------|-------|---------------------------|--------------------------| | Bearing Numbers | d | D | T | В | (N) | (N) | | 95JRT02 | 95 | 170 | 115 | 125 | 440 000 | 685 000 | | 95JRT01 | 95 | 190 | 125 | 130 | 800 000 | 1 340 000 | | 20100-1 | 100 | 200 | 170 | 170 | 650 000 | 1 030 000 | | 20110-1 | 110 | 220 | 180 | 185 | 875 000 | 1 370 000 | | 120JRT04 | 120 | 220 | 160 | 165 | 810 000 | 1 340 000 | | 20120-11 | 120 | 220 | 180 | 183 | 850 000 | 1 430 000 | | JC34 | 120 | 230 | 165 | 170 | 945 000 | 1 460 000 | | 120JRT01 | 120 | 240 | 180 | 185 | 935 000 | 1 450 000 | | 20120-4 | 120 | 240 | 180 | 185 | 935 000 | 1 450 000 | | JC38A | 125 | 235 | 165 | 170 | 945 000 | 1 470 000 | | JC39A | 125 | 236 | 165 | 175.5 | 960 000 | 1 500 000 | | 130JRT08 | 130 | 235 | 165 | 170 | 895 000 | 1 520 000 | | 20130-7 | 130 | 240 | 180 | 185 | 915 000 | 1 490 000 | | 130JRT01 | 130 | 260 | 180 | 185 | 1 030 000 | 1 610 000 | | 20130-6 | 130 | 260 | 180 | 185 | 1 030 000 | 1 610 000 | | JC37A | 130 | 265 | 166 | 166 | 1 140 000 |
1 700 000 | | 20140-1 | 140 | 250 | 155 | 160 | 865 000 | 1 480 000 | | 170JRT01 | 170 | 340 | 230 | 230 | 1 660 000 | 2 760 000 | | Pagring Numbers | | Dimensio | ons (mm) | Basic Dynamic Load Rating | Basic Static Load Rating | | |-----------------|------------|------------|------------|---------------------------|--------------------------|------------------------| | Bearing Numbers | d | D | T | B | (N) | (N) | | JC27X
JC400K | 120
120 | 230
230 | 150
150 | 177
177 | 935 000
885 000 | 1 440 000
1 340 000 | | Bearing Number | | Dimensi | ons (mm) | | Basic Dynamic Load Rating Basic Static Load Ratin | | | |--------------------------|-----|---------|---------------|-----|---|-----------|--| | bearing Number | d | D | T | B | (N) | (N) | | | J130-5/U130-
5DB+KL38 | 130 | 240 | 198
(80×2) | 204 | 880 000 | 1 450 000 | | #### **Open Type Cylindrical Roller Bearing** | Bearing Numbers | | Dimensi | ions (mm) | | Basic Dynamic Load Rating | Basic Static Load Rating | |------------------|-----|---------|-----------------|-----------------|---------------------------|--------------------------| | bearing Numbers | d | D | T | В | (N) | (N) | | J110-2/U110-4DB | 110 | 215 | 73 × 2 | 73 × 2 | 800 000 | 1 240 000 | | 42724T/152724T | 120 | 240 | 80×2 | 80×2 | 910 000 | 1 400 000 | | J120-1C/U120-2C | 120 | 240 | 80×2 | 80×2 | 960 000 | 1 500 000 | | J120-1D/U120-2D | 120 | 240 | 80×2 | 80×2 | 960 000 | 1 500 000 | | 42726TT/152726TT | 130 | 250 | 80×2 | 80×2 | 1 030 000 | 1 610 000 | | J130-3/U130-4 | 130 | 250 | 80×2 | 80×2 | 1 030 000 | 1 610 000 | | JC130M | 130 | 250 | 160 | 160 | 1 030 000 | 1 610 000 | | J130-18/U130-16 | 130 | 220 | 62×2 | 62×2 | 785 000 | 1 340 000 | | J130-16/U130-14 | 130 | 220 | 73×2 | 73×2 | 860 000 | 1 510 000 | | J150-5/U150-2 | 150 | 270 | 160
(80 × 2) | 160
(80 × 2) | 1 020 000 | 1 700 000 | #### **Open Type Tapered Roller Bearing** | Bearing Numbers | | Dimensio | ns (mm) | | Basic Dynamic Load Rating | Basic Static Load Rating | |-----------------|-----|----------|---------|-----|---------------------------|--------------------------| | bearing Numbers | d | D | T | В | (N) | (N) | | 110KBE2201+L | 110 | 220 | 115 | 145 | 820 000 | 1 350 000 | | 120KBE2001+L | 120 | 200 | 84 | 100 | 515 000 | 865 000 | | 120KBE52X+L | 120 | 215 | 109 | 132 | 720 000 | 1 170 000 | | JT21 | 120 | 220 | 130 | 155 | 860 000 | 1 480 000 | | JT21A | 120 | 220 | 130 | 155 | 860 000 | 1 480 000 | | JT21B | 120 | 220 | 130 | 155 | 860 000 | 1 480 000 | | 130KBE2302+L | 130 | 230 | 115 | 145 | 850 000 | 1 480 000 | | 140KBE2302+L | 140 | 230 | 110 | 140 | 820 000 | 1 550 000 | | 140KBE2701+L | 140 | 270 | 95 | 120 | 870 000 | 1 440 000 | | 150KBE2502+L | 150 | 250 | 95 | 115 | 745 000 | 1 320 000 | | 160KBE2701A+L | 160 | 270 | 120 | 140 | 860 000 | 1 510 000 | | 170KBE2802A+L | 170 | 280 | 130 | 150 | 1 110 000 | 2 160 000 | | 180KBE3401+L | 180 | 340 | 140 | 180 | 1 410 000 | 2 510 000 | **Tapered Roller Bearings** | Descripe a Newskawa | | Din | nensions (m | m) | | Basic Dynamic Load | Basic Static Load | A 1: +: (1) | |------------------------------|---------|---------|-------------|----------|--------|--------------------|-------------------|----------------| | Bearing Numbers | d | D | T | В | С | Rating (N) | Rating (N) | Application(1) | | QT30 | 60 | 130 | 33.5 | 31 | 22 | 127 000 | 139 000 | Gear (P) | | 30312DQWAP6 | 60 | 130 | 33.5 | 31 | 22 | 127 000 | 139 000 | Gear (P) | | 30313DQWAP6U1 | 65 | 140 | 36 | 33 | 23 | 147 000 | 163 000 | Gear (P) | | QT9 | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | QT9A | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | QT9B-2 | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | QT9F | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | QT9J | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | R70-25 | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | 30314DAQWAP6A | 70 | 150 | 38 | 35 | 25 | 165 000 | 185 000 | Gear (P) | | 30314QWAP6 | 70 | 150 | 38 | 35 | 30 | 194 000 | 218 000 | Gear (P) | | QT31 | 70 | 150 | 40 | 37 | 27 | 172 000 | 198 000 | Gear (P) | | QT7A | 75 | 160 | 40 | 37 | 27 | 189 000 | 224 000 | Gear (P) | | 30315DXQWAP6 | 75 | 160 | 40 | 37 | 26 | 189 000 | 224 000 | Gear (P) | | 30315QWAP6 | 75 | 160 | 40 | 37 | 31 | 209 000 | 233 000 | Gear (P) | | R80-1 | 80 | 170 | 42.5 | 39 | 28 | 196 000 | 222 000 | Gear (P) | | QT4A | 80 | 170 | 42.5 | 39 | 28 | 208 000 | 241 000 | Gear (P) | | 30316QWAP6 | 80 | 170 | 42.5 | 39 | 33 | 235 000 | 265 000 | Gear (P) | | 30317DQWAP6A | 85 | 180 | 44.5 | 41 | 29 | 233 000 | 269 000 | Gear (P) | | 30317QWAP6A | 85 | 180 | 44.5 | 41 | 34 | 262 000 | 300 000 | Gear (P) | | QT18 | 85 | 180 | 45.5 | 42 | 29 | 244 000 | 285 000 | Gear (P) | | 30328QWAP6 | 140 | 300 | 67.75 | 62 | 53 | 600 000 | 740 000 | Gear (G) | | QT1(2) | 190 | 280 | 49 | 46 | 36.5 | 605 000 | 1 240 000 | Gear (G) | | QT29 (³) | 193.675 | 282.575 | 50.800 | 47.625 | 36.512 | 360 000 | 600 000 | Gear (G) | | QT26 | 195 | 280 | 58 | 60 | 41 | 410 000 | 780 000 | Gear (G) | | QT25 | 200 | 280 | 51 | 48 | 41 | 410 000 | 780 000 | Gear (G) | | 32940QSA | 200 | 280 | 51 | 48 | 41 | 410 000 | 780 000 | Gear (G) | | QT13(²) | 200 | 290 | 49 | 46 | 36.5 | 625 000 | 1 330 000 | Gear (G) | | QT27 | 200 | 290 | 55 | 60 | 41 | 410 000 | 790 000 | Gear (G) | | QT34A | 202 | 290 | 58 | 60 | 41 | 435 000 | 855 000 | Gear (G) | | QT33 | 205 | 283 | 51 | 48 | 41 | 415 000 | 795 000 | Gear (G) | | QT38 | 205 | 310 | 60 | 60 | 47 | 545 000 | 1 020 000 | Gear (G) | | R205-1 | 205 | 310 | 60 | 60 | 47 | 545 000 | 1 020 000 | Gear (G) | | R205-4 | 205 | 310 | 60 | 60 | 47 | 545 000 | 1 020 000 | Gear (G) | | QT5 | 210 | 320 | 70 | 66 | 56 | 665 000 | 1 180 000 | Gear (G) | | QT35
R215-3 | 215 | 315 | 65
65 | 70
70 | 49 | 595 000 | 1 130 000 | Gear (G) | | R215-3
ΩT32 | 215 | 315 | 65
65 | | 49 | 595 000 | 1 130 000 | Gear (G) | | | 218 | 315 | 65
51 | 70 | 49 | 595 000 | 1 130 000 | Gear (G) | | 32944QWASA | 220 | 300 | 51 | 48 | 41 | 425 000 | 855 000 | Gear (G) | | 32052Q | 260 | 400 | 87 | 82 | 71 | 1 130 000 | 2 020 000 | Gear (G) | Notes (1) Gear (P): Pinion-Side Bearing of Gear Unit, Gear (G): Gear-Side Bearing of Gear Unit (2) Double-Row Configuration (3) Sizes have been converted to millimeters from inches. D 062 Steel Industry Wind Power Industry #### **Bearings for Electric Car Traction Motors** | | Loaded Side, Cylindrical | | Din | nensions (n | nm) | | Non-Loaded Side, | Dir | mensions (m | m) | | |---|--------------------------------|----|-------|-------------|------------|-----------------|------------------|----------|-------------|----------|---| | | Roller Bearings | d | D | B | $d_{ m r}$ | γ (min.) | Ball Bearings | d | D | B | _ | | | NU210E (¹) | 50 | 90 | 20 | 59.5 | 1.1 | 6016 | 80 | 125 | 22 | | | | NU212 | 60 | 110 | 22 | 73.5 | 1.5 | 6310 | 50 | 110 | 27 | | | | NU312 | 60 | 130 | 31 | 77.0 | 2.1 | 6310 | 50 | 110 | 27 | | | | NU213 | 65 | 120 | 23 | 79.6 | 1.5 | 6310 | 50 | 110 | 27 | | | | NU313 | 65 | 140 | 33 | 83.5 | 2.1 | 6311 | 55 | 120 | 29 | | | | NU214 | 70 | 125 | 24 | 84.5 | 1.5 | 6310 | 50 | 110 | 27 | | | | | | | | | | 6311 | 55 | 120 | 29 | | | | NU314 | 70 | 150 | 35 | 90.0 | 2.1 | 6311 | 55 | 120 | 29 | | | | NU215 | 75 | 130 | 25 | 88.5 | 1.5 | 6311 | 55 | 120 | 29 | | | | | 7- | 400 | 0.7 | 05.5 | 0.4 | 6312 | 60 | 130 | 31 | | | | NU315 | 75 | 160 | 37 | 95.5 | 2.1 | 6311 | 55 | 120 | 29 | | | • | | | | | | | 6312
6314 | 60
70 | 130
150 | 31
35 | | | | NU415 | 75 | 190 | 45 | 104.5 | 3.0 | 6313 | 65 | 140 | 33 | | | | NU216 | 80 | 140 | 26 | 95.3 | 2.0 | 6312 | 60 | 130 | 31 | | | | NU316 | 80 | 170 | 39 | 103.0 | 2.1 | 6312 | 60 | 130 | 31 | | | | NU416 | 80 | 200 | 48 | 110.0 | 3.0 | 6313 | 65 | 140 | 33 | | | | NU217 | 85 | 150 | 28 | 101.8 | 2.0 | 6217 | 85 | 150 | 28 | | | | NU218 | 90 | 160 | 30 | 107.0 | 2.0 | 6218 | 90 | 160 | 30 | | | | NU219 | 95 | 170 | 32 | 113.5 | 2.1 | 6219 | 95 | 170 | 32 | | | | | | . 7 0 | 32 | | | 52.10 | 50 | . 7 0 | 02 | | Note (1) E: High-Capacity #### **Bearings for Electric Locomotive Trains Traction Motors** 2xx Series (Free End-Bearings) | d | Boundar
D | y Dimensio B | ns (mm) $d_{ m r}$ | γ (min.) | Basic Numbers | Internal Design(1) | Basic Dynamic
Load Rating (N) | Basic Static
Load Rating (N) | |-----|--------------|----------------|--------------------|----------|---------------|--------------------|----------------------------------|---------------------------------| | 120 | 215 | 40 | 143.5 | 2.1 | NU224 | E | 320 000 | 395 000 | | 130 | 230 | 40 | 153.5 | 3.0 | NU226 | E | 345 000 | 425 000 | Note (1) E: High-Capacity #### 3xx Series (Free End-Bearings) | | Boundar | y Dimensio | ns (mm) | | Basic Numbers | Internal Design(1) | Basic Dynamic | Basic Static | |-----|---------|------------|------------|-----------------|-----------------|-----------------------|-----------------|-----------------| | d | D | B | $d_{ m r}$ | γ (min.) | Dasic Nullibers | iliterilai Desigii() | Load Rating (N) | Load Rating (N) | | 90 | 190 | 43 | 113.5 | 3 | NU318 | Е | 315 000 | 355 000 | | 100 | 215 | 47 | 127.5 | 3 | NU320 | E | 380 000 | 425 000 | | 110 | 240 | 50 | 143.0 | 3 | NU322 | E | 425 000 | 485 000 | | 120 | 260 | 55 | 154.0 | 3 | NU324 | E | 530 000 | 610 000 | | 130 | 280 | 58 | 165.0 | 4 | NU326 | В | 655 000 | 795 000 | | | | | 167.0 | | | E | 615 000 | 735 000 | | 140 | 300 | 62 | 180.0 | 4 | NU328 | E | 665 000 | 795 000 | | | | | 178.0 | | | F | 705 000 | 860 000 | | 150 | 320 | 65 | 193.0 | 4 | NU330 | E | 760 000 | 920 000 | | | | | 193.0 | | | EA | 715 000 | 855 000 | | | | | 190.5 | | | J | 800 000 | 985 000 | | | | | 190.0 | | | L |
790 000 | 970 000 | | 160 | 340 | 68 | 204.0 | 4 | NU332 | E | 860 000 | 1 050 000 | | 180 | 380 | 75 | 231.0 | 4 | NU336 | Е | 985 000 | 1 230 000 | Note (1) E, EA: High-Capacity Type B, F, J, L: Specific Types, respectively #### 3xx Series (NH Type, NUP Type) | | | | Dimensio | ns (mm) | | | | Basic | Internal | Basic Dynamic
Load Rating | Basic Static
Load Rating | |-------------------|-----|----|------------|---------|---------|------------|-----------------|----------|-----------|------------------------------|-----------------------------| | d , $d_{\rm t}$ | D | B | $d_{ m r}$ | D_{t} | B_{t} | $b_{ m t}$ | γ (min.) | Numbers | Design(1) | (N) | (N) | | 80 | 170 | 39 | 101.0 | 111.8 | 17.0 | 11.0 | 2.1 | NH316 | Е | 256 000 | 282 000 | | 90 | 190 | 43 | 115.0 | 125.0 | 21.0 | 12.0 | 3.0 | NH318 | _ | 240 000 | 265 000 | | | | | 113.5 | 124.2 | 18.5 | | | 14113 10 | E | 315 000 | 355 000 | | 90 | 190 | 43 | 115.0 | 125.0 | _ | _ | 3.0 | NUP318 | В | 240 000 | 265 000 | | | | | 113.5 | 124.2 | | | | 1401316 | E | 315 000 | 355 000 | | 100 | 215 | 47 | 129.5 | 140.5 | 22.5 | 13.0 | 3.0 | | Α | 310 000 | 355 000 | | | | | 129.5 | 140.5 | 22.5 | | | NH320 | В | 310 000 | 355 000 | | | | | 127.5 | 139.0 | 20.5 | | | | E | 380 000 | 425 000 | | 110 | 240 | 50 | 143.0 | 155.0 | 22.0 | 14.0 | 3.0 | NH322 | E | 425 000 | 485 000 | | 120 | 260 | 55 | 154.0 | 168.5 | 23.5 | 14.0 | 3.0 | NH324 | _ | 475 000 | 550 000 | | 130 | 280 | 58 | 167.0 | 182.0 | 24.0 | 14.0 | 4.0 | NH326 | _ | 560 000 | 665 000 | | | | | | 181.0 | | | | 1411320 | E | 615 000 | 735 000 | | 140 | 300 | 62 | 180.0 | 196.0 | 26.0 | 15.0 | 4.0 | NH328 | _ | 615 000 | 745 000 | **Note** (1) E:High-Capacity Type A,B:Specific Types, respectively Steel Industry ### **Bearings for Papermaking Machines** Excellent durability under high-temperature conditions including moisture and dust laden environments, resulting in longer life, higher limiting speed and dramatically enhanced productivity. | A | Product | Line | that | Matches | Specific | Applications | |---|----------------|------|------|----------------|-----------------|---------------------| |---|----------------|------|------|----------------|-----------------|---------------------| The Papermaking Process and Bearing Specifications D 068 #### **Bearings Table** | Spherical Roller Bearings TL Series | D 076 | |-------------------------------------|-------| | Molded-Oil™ Bearings | D 082 | | Triple Ring Bearings | D 084 | #### The Papermaking Process and Bearing Specifications #### Molded-Oil™ Bearings Excellent performance in environments exposed to moisture or paper dust, without oil leakage. Molded oil using an optimized molding method with optimal composition provides higher speed operation, is easy to handle, and safe for the environment. Major applications: raw material conveyors, carrier rope sheaves, suction rolls #### **Triple Ring Bearings** Uniquely structured bearing for ease of use and no creep while offering high precision and long Major applications: press rolls, breaker #### **Smear-Resistant Spherical Roller Bearings** The anti-smearing performance of the new product compared to conventional products by applying a DLC coating to Major application: Inner side bearings for suction rolls #### **Spherical Roller Bearings** CA Series Superior radial load capacity and alignment, featuring high load capacity and excellent strength; equipped with a machined cage. This product lineup includes high running accuracy to ISO tolerance class 5. Major applications: large diameter rolls such as suction rolls, press rolls. drum rolls. #### **Spherical Roller Bearings** TL Series Ideal for high temperature equipment, with resistance to inner ring fracture. Tough, long-life TL bearings boost productivity and lower costs. Major applications: Press Roll, Drying PV Roll, Calernder Roll Deep Groove Ball Bearings for **High-Speed Expander Rolls** Special bearings that suppress friction torque and surface damage such as Steel Mining Machinery Railway Rolling Stock Steel Industry #### ■ A Product Line that Matches Specific Applications #### **High Performance Standard Bearings for Industrial Machinery** NSKHPS™, redefining the standard. Continually developing products with greater strength and higher accuracy, NSK's new NSKHPS™ fully incorporate the advantages of NSK's world-class design, materials, and manufacturing technologies, setting a new standard for bearings. #### NSKHPS™ Spherical Roller Bearings #### **Features** #### 1. Improved reliability Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by optimization of the bearing's internal design and improved processing technology. As a result, the NSKHPSTM bearings contribute to reducing maintenance costs and facilitate the downscaling of related equipment. #### 2. High temperature dimensional stabilizing treatment comes standard High-temperature dimensional stabilization of up to 200°C has been achieved through the application of NSK's proprietary material heat treatment technology. As a result, this series of bearing can be used in a wide range of applications. #### 3. Wide range line-up Even the giant large size depends on line-up, one for paper making machines It became applicable to the wide roll size. Bearing No. Pages C266 to C287 #### NSKHPS™ Cylindrical Roller Bearings #### **Features** #### 1. Improved reliability Bearing life has increased by a maximum of 60% compared with that of conventional bearings by the optimization of the bearing's internal design and improvement of processing technology. #### 2. Wide-range product line-up NSK has offerd the wide-range line-up of NSKHPS bearings with four types of cages focusing on a wide range of sizes offering a high degree of versatility for various generalpurpose applications. - · Pressed steel cage with high cost perfomance - · Highly reliable machined brass cage - · Polyamide resin cage that excels in heat resistance and chemical resistance Bearing No. Pages C132 to C147 #### **Spherical Roller Bearings TL Series** Dryer rolls are generally used under high-temperature conditions, which can lead to fracturing of the bearing inner ring, and in the worst case, result in work stoppage. NSK's solution is the TL (Tough and Long-life) bearing, which features sufficient strength to resist inner ring fractures, superior dimensional stability under high temperature conditions, and long life due to superior hardness. All these characteristics mean improved productivity. <Applications> It's used for all except for Drying/Calernder Roll and large size bearing for press rolls. Bearing No. Pages D076 to D081 #### **Features** #### Enhanced inner ring strength Adoption of a special steel and surface hardening heat treatment, developed by NSK, dramatically enhance inner ring strength against increasing hoop stress caused by rising shaft temperature. #### Longer life Increased hardness of raceway surface provides longer life when foreign debris is present than that of other bearings. #### **Dimensional** stability under high temperatures Dimensional stability under high temperatures is adopted as a standard specification. (Max. 200°C) D 070 Steel Industry ■ A Product Line that Matches Specific Applications #### Molded-Oil™ Bearings Molded-Oil™ bearings are lubricated with NSK's own oil-impregnated material, Molded-Oil™ consists of lubricating oil and polyolefin resin that has an affinity for oil. Oil slowly seeping from this material provides ample lubrication to the bearing for extended periods. | Bearing No. | Pages D082 and D083 | |-------------|---------------------| | CAT. No. | E1216 | #### **Features** **Excellent** performance in . water- and dustenvironments The bearings are designed to prevent liquids such as water, which can wash out the lubricating oil, and dust from getting inside the bearings. Sealed types can be used in environments exposed to water and dust. *Water and dust dramatically accelerate bearing water and dust transactionly accelerate beam damage. In order to realize stable operation, water and dust from getting in the bearing. composition and molding methods enable high-speed operation Optimization of composition and molding method of Molded-Oil™ improves strength and enables high-speed operation. Packing with Molded-Oil™ after providing the bearing surface with Low torque special treatment realizes smooth rotation of rolling elements. The bearings are lubricated by minute quantities of oil exuded by Molded-Oil™, which consequently minimizes oil leakage. Material processing equipment (conveyers, agitators), paper mill line equipment (support for wire part rolls), maintenance facilities (carrier rope sheave pulley), and carrier line equipment Be aware that this bearing has certain restrictions in regards to ambient operating temperatures and limiting speeds (d_mn). Refer to the NSK Molded-Oil™ Bearings catalog (Cat. No. E1216) for details. Furthermore, handling precautions for maintaining the excellent, long-term lubricating capacity of the Molded-Oil™ bearings are listed on page 3 of the same catalog. #### **Smear-Resistant Spherical Roller Bearings** The newly developed smear-resistant spherical roller bearing is treated with NSK's originally developed DLC* coating (NSK DLC coating) on the rolling contact surface of the rollers which could excel the durability. *DLC: Hard coating mainly consisting of carbon (diamond-like carbon) The phenomenon of smearing—or micro-seizing—caused by slippage between the raceway surface of the inner and outer rings and the roller surface may occur in bearings used in lightload areas inside papermaking machinery and areas with poor lubrication conditions. NSK drastically improved the anti-smearing performance of the new product compared to conventional products by applying a DLC coating to the rolling elements. #### Inner bore dimensions ranging from 80mm
to 240mm <Applications> - · Inner side bearings for suction rolls in press process parts - · Bearings for soft calendar rolls in calendar process parts #### **Features** NSK independently developed a DLC coating for bearings. The coating follows the base metal's elastic deformation even better than before, since its elastic modulus is close to that of the substrate base metal. Further, the adhesion between the coating and base metal was improved, making it less likely to come off, even under high surface pressure.(Fig 1) #### Conventional DLC coating #### **NSK DLC coating** Fia. 1 #### Twin-disk test Two disk test pieces Driven side Drive side Loading Fig. 2 A rolling-contact test was conducted under boundary lubrication conditions in addition to sliding contact conditions in which the speeds of two disk test pieces are set differently.(Flg2) Railv Rolling way Stock Wind Pow Industry INDUSTRY SOLUTIONS Pumps & Compressors Agricultural Machinery Railway Rolling Stock Wind Power Industry Railway Rolling Stock #### ■ A Product Line that Matches Specific Applications #### **Triple Ring Bearings** Combination tapered roller bearings have typically been used for the outside of controlled crown rolls (CCR) and spherical roller bearings for the inside. Switching to high-precision, high load capacity triple ring bearings prevents creep, facilitates easier mounting, and extends operating life. Bearing No. Page D084 #### **Features** High-load capacity design **Long life** es vacuum melted, carburized stee **High precision** **Optimal inner ring** design for lubrication Lubrication hole and groove provided on inner and outer rings Finite element analysis of housing design for triple ring bearings. Bearing load distribution is minimized by finite element method (FEM) analysis, thereby contributing to optimal structural design of the housing for paper machine manufacturers. Maximum principle stress distribution #### **Deep Groove Ball Bearings** Deep Groove Ball Bearings are characterized by high performance and quality, displaying NSK's technological excellence. This top of the line design includes special bearings for highspeed expander rolls with low friction torque that minimize surface damage such as smearing, maintenance-free sealed ball bearings with high-performance seals, and silent ball bearings suitable for motors and pumps. #### **Bearing Numbers** #### **Spherical Roller Bearings TL Series** #### Molded-Oil™ Bearings #### **Triple Ring Bearings** **■**Spherical Roller Bearings TL Series Bore Diameter 40 - 160 mm #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $F_{\rm a}/F$ | r _r ≤e | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | |---------------|-------------------|---------------------------|-----------------------|--|--|--| | X | Y | X | Y | | | | | 1 | Y_3 | 0.67 | <i>Y</i> ₂ | | | | #### Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | Boundary D | | | | | d Ratings | _ | Bearing | Numbers | | Abutment | and Fillet D | imensions | | Constant | | Axial Load | | Mass | |-----|------------|--------|------|-----------|----------|----------------|-------------|------------------|-----------------|------|-------------|--------------|----------------|-------------|----------|-------|---------------|-------|---------| | d | D (m | m) B | r | C_r (kN | C_{0r} | $C_{ m r}$ {kg | f} C_{0r} | Cylindrical Bore | Tapered Bore(1) | | $l_{\rm a}$ | (mm) |) _a | $r_{\rm a}$ | e | Y_2 | Factors Y_3 | Y_0 | (kg) | | | | | min. | | 01 | | 01 | | | min. | max. | max. | min. | max. | | | | | approx. | | 40 | 90 | 33 | 1.5 | 122 | 129 | 12 400 | 13 200 | TL22308CAME4 | TL22308CAMKE4 | 49 | _ | 81 | 77 | 1.5 | 0.38 | 2.6 | 1.8 | 1.7 | 1.0 | | 55 | 120 | 43 | 2 | 209 | 241 | 21 300 | 24 600 | TL22311CAME4 | TL22311CAMKE4 | 65 | | 110 | 103 | 2 | 0.36 | 2.8 | 1.9 | 1.8 | 2.3 | | 60 | 130 | 46 | 2.1 | 246 | 288 | 25 100 | 29 400 | TL22312CAME4 | TL22312CAMKE4 | 72 | — | 118 | 111 | 2 2 | 0.36 | 2.8 | 1.9 | 1.9 | 2.9 | | 65 | 140 | 48 | 2.1 | 375 | 380 | 38 000 | 38 500 | TL22313EAE4 | TL22313EAKE4 | 77 | 84 | 128 | 119 | | 0.33 | 3.0 | 2.0 | 2.0 | 3.5 | | 70 | 150 | 51 | 2.1 | 425 | 435 | 43 500 | 44 000 | TL22314EAE4 | TL22314EAKE4 | 82 | 91 | 138 | 129 | 2 2 | 0.33 | 3.0 | 2.0 | 2.0 | 4.3 | | 75 | 130 | 31 | 2.1 | 340 | 415 | 34 500 | 42 000 | TL22315CAME4 | TL22215CAMKE4 | 87 | — | 148 | 134 | | 0.35 | 2.9 | 2.0 | 1.9 | 3.6 | | 80 | 170 | 58 | 2.1 | 390 | 480 | 39 500 | 48 500 | TL22316CAME4 | TL22316CAMKE4 | 92 | _ | 158 | 145 | 2 | 0.35 | 2.9 | 2.0 | 1.9 | 6.2 | | 90 | 190 | 64 | 3 | 665 | 705 | 68 000 | 72 000 | TL22318EAE4 | TL22318EAKE4 | 104 | 115 | 176 | 163 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 8.6 | | 95 | 200 | 67 | | 525 | 675 | 53 500 | 68 500 | TL22319CAME4 | TL22319CAMKE4 | 109 | — | 186 | 172 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | 9.9 | | 100 | 215 | 73 | 3 | 860 | 930 | 88 000 | 94 500 | TL22320EAE4 | TL22320EAKE4 | 114 | 130 | 201 | 184 | 2.5 | 0.33 | 3.0 | 2.0 | 2.0 | 12.7 | | 110 | 170 | 45 | 2 | 293 | 465 | 29 900 | 47 500 | TL23022CDE4 | TL23022CDKE4 | 120 | 124 | 160 | 153 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 3.76 | | | 200 | 69.8 | 2.1 | 515 | 760 | 52 500 | 77 500 | TL23222CE4 | TL23222CKE4 | 122 | 130 | 188 | 170 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 9.54 | | | 240 | 80 | 3 | 1 030 | 1 120 | 105 000 | 115 000 | TL22322EAE4 | TL22322EAKE4 | 124 | 145 | 226 | 206 | 2.5 | 0.30 | 3.1 | 2.1 | 2.0 | 17.6 | | 120 | 260 | 86 | 3 | 1 190 | 1 320 | 122 000 | 134 000 | TL22324EAE4 | TL22324EAKE4 | 134 | 157 | 246 | 222 | 2.5 | 0.32 | 3.1 | 2.1 | 2.0 | 22.2 | | 130 | 280 | 93 | 4 | 995 | 1 350 | 101 000 | 137 000 | TL22326CAME4 | TL22326CAMKE4 | 148 | _ | 262 | 236 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 27.8 | | 140 | 210 | 53 | 2 | 420 | 715 | 43 000 | 73 000 | TL23028CDE4 | TL23028CDKE4 | 150 | 157 | 200 | 190 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 6.49 | | | 250 | 68 | 3 | 645 | 930 | 65 500 | 95 000 | TL22228CDE4 | TL22228CDKE4 | 154 | 167 | 236 | 219 | 2.5 | 0.25 | 4.0 | 2.7 | 2.6 | 14.5 | | | 250 | 88 | 3 | 835 | 1 300 | 85 000 | 133 000 | TL23228CE4 | TL23228CKE4 | 154 | 163 | 236 | 213 | 2.5 | 0.25 | 2.9 | 1.9 | 1.9 | 18.8 | | 150 | 225 | 56 | 2.1 | 470 | 815 | 48 000 | 83 000 | TL23030CDE4 | TL2303CDKE4 | 162 | 168 | 213 | 203 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 7.9 | | | 225 | 56 | 2.1 | 470 | 815 | 48 000 | 83 000 | TL23030CAME4 | TL23030CAMKE4 | 162 | — | 213 | 203 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 7.9 | | | 250 | 80 | 2.1 | 725 | 1 180 | 74 000 | 121 000 | TL23130CAME4 | TL23130CAMKE4 | 162 | — | 238 | 218 | 2 | 0.3 | 3.4 | 2.3 | 2.2 | 15.8 | | | 270 | 73 | 3 | 765 | 1 120 | 78 000 | 114 000 | TL22230CDE4 | TL22230CDKE4 | 164 | 179 | 256 | 236 | 2.5 | 0.26 | 3.9 | 2.6 | 2.5 | 18.4 | | | 320 | 108 | 4 | 1 220 | 1 690 | 125 000 | 172 000 | TL22330CAME4 | TL22330CAMKE4 | 168 | — | 302 | 270 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 41.5 | | 160 | 240 | 60 | 2.1 | 540 | 955 | 55 000 | 97 500 | TL23032CDE4 | TL23032CDKE4 | 172 | 179 | 228 | 216 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 9.66 | | | 290 | 80 | 3 | 910 | 1 320 | 93 000 | 135 000 | TL22232CDE4 | TL22232CDKE4 | 174 | 190 | 276 | 255 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 23.1 | | | 290 | 104 | 3 | 1 100 | 1 770 | 112 000 | 180 000 | TL23232CE4 | TL23232CKE4 | 174 | 189 | 276 | 245 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 30.5 | **Note** (1) The suffix K represents bearings with tapered bores. (taper 1:12) Remark The suffix E4 indicates that the bearing has an oil groove and holes. INDUSTRY SOLUTIONS **■**Spherical Roller Bearings TL Series Bore Diameter 170 - 260 mm Dynamic Equivalent Load |) | $=XF_{r}$ | $+YF_a$ | | |---|-----------|---------|--| | | | | | | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | Boundary D | imensions | | | | d Ratings | | Bearing | Numbers | | Abutment | | Dimensions | | Constant | | Axial Load | | Mass | |-----|--------------------------|------------------------|----------------------|--------------------------------|----------------------------------|---|--|--|--|----------------------------------|-----------------|--------------------------|--------------------------|-----------------------|------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------| | d | (mn
D | n)
B | γ
min. | $C_{ m r}$ (kN | C_{0r} | $C_{ m r}$ {kg | $C_{0\mathrm{r}}$ | Cylindrical Bore | Tapered Bore(1) | | d _a | | O _a min. | $r_{\rm a}$ | e | Y_2 | Factors Y_3 | Y_0 | (kg) | | 170 | 230
260
280
360 | 45
67
88
120 | 2
2.1
2.1
4 | 350
640
940
1 580 | 660
1 090
1 570
2 110 | 35 500
65 000
96 000
161 000 | 67 500
112 000
160 000
215 000 | TL23934BCAME4
TL23034CDE4
TL23134CAME4
TL22334CAME4 | TL23934BCAMKE4
TL23034CDKE4
TL23134CAMKE4
TL22334CAMKE4 | min.
180
182
182
188 | max. — 191 — — | 220
248
268
342 | 213
233
245
304 | 2
2
2
2
3 | 0.17
0.23
0.29
0.35 | 5.8
4.3
3.5
2.9 | 3.9
2.9
2.3
1.9 | 3.8
2.9
2.3
1.9 | 5.38
13
21
57.9 | | 180 | 280
320 | 74
112 | 2.1
4 | 750
1 300 | 1 270
2 110 | 76 000
133 000 | 129 000
215 000 | TL23036CDE4
TL23236CAME4 | TL23036CDKE4
TL23236CAMKE4 | 192
198 | 202
— | 268
302 | 249
274 | 2 | 0.24
0.35 | 4.2
2.9 | 2.8
1.9 | 2.8
1.9 | 17.1
38.5 | | 190 | 290
320
340 | 75
104
92 | 2.1
3
4 | 775
1 190
1 140 | 1 350
2 020
1 730 | 79 000
121
000
116 000 | 138 000
206 000
176 000 | TL23038CAME4
TL23138CAME4
TL22238CAME4 | TL23038CAMKE4
TL23138CAMKE4
TL22238CAMKE4 | 202
204
208 | _
_
_ | 278
306
322 | 261
276
296 | 2
3.5
3 | 0.24
0.31
0.26 | 4.2
3.2
3.8 | 2.8
2.2
2.6 | 2.8
2.1
2.5 | 17.6
34
35.5 | | | 340
400 | 120
132 | 4
5 | 1 440
1 890 | 2 350
2 590 | 147 000
193 000 | 240 000
264 000 | TL23238CAME4
TL22338CAME4 | TL23238CAMKE4
TL22338CAMKE4 | 208
212 | _ | 322
378 | 288
338 | 3
4 | 0.35
0.34 | 2.9
2.9 | 1.9
2.0 | 1.9
1.9 | 46.5
77.6 | | 200 | 310
340
360
360 | 82
112
98
128 | 2.1
3
4
4 | 940
1 360
1 300
1 660 | 1 700
2 330
2 010
2 750 | 96 000
139 000
133 000
169 000 | 174 000
238 000
204 000
281 000 | TL23040CAME4
TL23140CAME4
TL22240CAME4
TL23240CAME4 | TL23040CAMKE4
TL23140CAMKE4
TL22240CAMKE4
TL23240CAMKE4 | 212
214
218
218 | _
_
_ | 298
326
342
342 | 279
293
315
307 | 2
2.5
3
3 | 0.25
0.32
0.26
0.35 | 4.0
3.2
3.8
2.9 | 2.7
2.1
2.6
1.9 | 2.6
2.1
2.5
1.9 | 22.6
41.5
42.6
57 | | 220 | 340
370
400 | 90
120
108 | 3
4
4 | 1 090
1 570
1 570 | 1 980
2 710
2 430 | 111 000
160 000
160 000 | 202 000
276 000
247 000 | TL23044CAME4
TL23144CAME4
TL22244CAME4 | TL23044CAMKE4
TL23144CAMKE4
TL22244CAMKE4 | 234
238
238 | | 326
352
382 | 302
320
348 | 2.5
3
3 | 0.24
0.31
0.27 | 4.1
3.2
3.7 | 2.8
2.2
2.5 | 2.7
2.1
2.4 | 29.7
52
59 | | | 400
460 | 144
145 | 4
5 | 2 520
2 350 | 3 400
3 400 | 257 000
240 000 | 350 000
345 000 | TL23244CAME4
TL22344CAME4 | TL23244CAMKE4
TL22344CAMKE4 | 238
242 | _ | 382
438 | 337
391 | 3
4 | 0.36
0.33 | 2.8
3.0 | 1.9
2.0 | 1.8
2.0 | 79.5
116 | | 240 | 320
350
400
500 | 60
92
128
155 | 2.1
3
4
5 | 635
1 160
1 790
2 600 | 1 300
2 140
3 100
3 800 | 65 000
118 000
182 000
265 000 | 133 000
218 000
320 000
385 000 | TL23948CAME4
TL23048CAME4
TL23148CAME4
TL22348CAME4 | TL23948CAMKE4
TL23048CAMKE4
TL23148CAMKE4
TL22348CAMKE4 | 252
254
258
262 | | 308
346
382
478 | 298
324
347
423 | 2
2.5
3
4 | 0.17
0.24
0.31
0.32 | 6.0
4.2
3.3
3.2 | 4.0
2.8
2.2
2.1 | 3.9
2.7
2.2
2.1 | 13.3
32.6
64.5
147 | | 250 | 350
400 | 75
104 | 2.1
4 | 930
1 430 | 1 870
2 580 | 95 000
145 000 | 191 000
263 000 | TL23952CAME4
TL23052CAME4 | TL23952CAMKE4
TL23052CAMKE4 | 272
278 | _ | 348
382 | 333
356 | 2 | 0.19
0.25 | 5.4
4.1 | 3.6
2.7 | 3.5
2.7 | 23
46.6 | | 260 | 440 | 144 | 4 | 2 160 | 3 750 | 221 000 | 385 000 | TL23152CAME4 | TL23152CAMKE4 | 278 | _ | 422 | 380 | 3 | 0.32 | 3.2 | 2.1 | 2.1 | 88.2 | **Note** (1) The suffix K represents bearings with tapered bores. (taper 1:12) **Remark** The suffix E4 indicates that the bearing has an oil groove and holes. **■**Spherical Roller Bearings TL Series Bore Diameter 280 - 500 mm Dynamic Equivalent Load | $P = XF_r + YF_a$ | | |------------------------------|--| | $F_{\rm a}/F_{\rm r} \leq e$ | | | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | | Boundary D | | | Basic Load Ratings (kN) {kgf} | | | . f) | Bearing Numbers | | | Abutment and Fillet Dimensions | | | | | | Axial Load | | Mass | |------------|--------------------------|-------------------------|--------------------|----------------------------------|----------------------------------|--|--|--|--|--------------------------|--------------------------------|--------------------------|--------------------------|-----------------------|------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------| | d | D (m) | 11)
B | r | $C_{\rm r}$ | C_{0r} | $C_{ m r}$ | C_{0r} | Cylindrical Bore | Tapered Bore(1) | C | $l_{ m a}$ | (mm)
<i>1</i> | D _a | γ_{a} | e | Y_2 | Factors Y_3 | Y_0 | (kg) | | | | | min. | | | | | | | min. | max. | max. | min. | max. | | | | | approx. | | 280 | 380
420
460
500 | 75
106
146
176 | 2.1
4
5
5 | 925
1 540
2 230
2 880 | 1 950
2 950
4 000
4 900 | 94 500
157 000
228 000
294 000 | 199 000
300 000
410 000
500 000 | TL23956CAME4
TL23056CAME4
TL23156CAME4
TL23256CAME4 | TL23956CAMKE4
TL23056CAMKE4
TL23156CAMKE4
TL23256CAMKE4 | 292
298
302
302 | | 368
402
438
478 | 351
377
400
425 | 2
3
4
4 | 0.18
0.24
0.3
0.35 | 5.7
4.2
3.3
2.9 | 3.9
2.8
2.2
1.9 | 3.8
2.7
2.2
1.9 | 24.5
50.5
94.3
147 | | 300 | 420
460
500
540 | 90
118
160
192 | 3
4
5
5 | 1 230
1 920
2 670
3 400 | 2 490
3 700
4 800
5 900 | 125 000
196 000
273 000
350 000 | 254 000
375 000
490 000
600 000 | TL23960CAME4
TL23060CAME4
TL23160CAME4
TL23260CAME4 | TL23960CAMKE4
TL23060CAMKE4
TL23160CAMKE4
TL23260CAMKE4 | 314
318
322
322 | | 406
442
478
518 | 386
413
433
458 | 2.5
3
4
4 | 0.19
0.24
0.31
0.35 | 5.2
4.2
3.3
2.9 | 3.5
2.8
2.2
1.9 | 3.4
2.7
2.2
1.9 | 38.2
70.5
125
189 | | 320 | 540 | 176 | 5 | 3 050 | 5 500 | 315 000 | 560 000 | TL23164CAME4 | TL23164CAMKE4 | 342 | _ | 518 | 466 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 162 | | 340 | 520
580 | 133
190 | 5
5 | 2 280
3 600 | 4 400
6 600 | 232 000
370 000 | 445 000
670 000 | TL23068CAME4
TL23168CAME4 | TL23068CAMKE4
TL23168CAMKE4 | 362
362 | _ | 458
558 | 465
499 | 4
4 | 0.24
0.31 | 4.2
3.2 | 2.8
2.1 | 2.8
2.1 | 101
206 | | 360
380 | 540
520 | 134
106 | 4
4 | 2 390
1 870 | 4 700
4 100 | 244 000
190 000 | 480 000
420 000 | TL23072CAME4
TL23976CAME4 | TL23072CAMKE4
TL23976CAMKE4 | 382
398 | _ | 518
502 | 485
482 | 4
3 | 0.24
0.18 | 4.2
5.5 | 2.8
3.7 | 2.8
3.6 | 106
65.4 | | 400
420 | 600
560 | 148
106 | 5
4 | 2 970
1 870 | 5 900
4 250 | 305 000
191 000 | 605 000
430 000 | TL23080CAME4
TL23984CAME4 | TL23080CAMKE4
TL23984CAMKE4 | 422
438 | _ | 578
542 | 540
521 | 4
3 | 0.23
0.17 | 4.4
6.0 | 3.0
4.0 | 2.9
3.9 | 146
71.6 | | 440
460 | 650
620 | 157
118 | 6
4 | 3 150
2 220 | 6 350
4 950 | 320 000
227 000 | 645 000
505 000 | TL23088CAME4
TL23992CAME4 | TL23088CAMKE4
TL23992CAMKE4 | 468
478 | _ | 622
602 | 587
573 | 5
3 | 0.23
0.17 | 4.3
5.9 | 2.9
4.0 | 2.8
3.9 | 173
100 | | 500 | 670 | 128 | 5 | 2 460 | 5 550 | 250 000 | 565 000 | TL239/500CAME4 | TL239/500CAMKE4 | 522 | _ | 648 | 622 | 4 | 0.17 | 6.0 | 4.0 | 3.9 | 124 | **Note** (1) The suffix K represents bearings with tapered bores. (taper 1:12) Remark The suffix E4 indicates that the bearing has an oil groove and holes. INDUSTRY SOLUTIONS **■**Molded-Oil™ Bearings Bore Diameter 35 - 160 mm Cylindrical Bore #### Dynamic Equivalent Load | $P = XF_r + YF_a$ | | |------------------------------|--| | $F_{\cdot}/F_{\cdot} \leq e$ | | | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/I$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | _ | Boundary | | 1S | , | Basic Lo | ad Ratings | af) | Bearing Numbers | Ab | utment and | | Dimens | sions | | Constant | | Axial Load
Factors | | Mass | |-----|-------------------|----------------|-------------------|-------------------|-------------------|----------------------------|----------------------------|---|----------------|-----------------|----------------|-------------|-------------------|---------------------------------------|----------------------|-------------------|-----------------------|-------------------|----------------------| | d | $D^{(1)}$ | nm)
B | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | gf} $C_{0\mathrm{r}}$ | Cylindrical Bore | min. | $d_{ m a}$ max. | (m | $D_{\rm a}$ | min. | $oldsymbol{\gamma}_{\mathrm{a}}$ max. | e | Y_2 | Y_3 | Y_0 | (kg) approx. | | 35 | 80 | 21 | 1.5 | 71 | 76 | 7 250 | 7 750 | 21307L12CAM | 44 | | 7 | | 67 | 1.5 | 0.29 | 3.5 | 2.3 | 2.3 | 0.52 | | 40 | 90
90 | 23
33 | 1.5
1.5 | 82
122 | 93
129 | 8 350
12 400 | 9 500
13 200 | 21308L11ACAM
22308L11CAM | 49
49 | _ | 8 | 1
1 | 80
77 | 1.5
1.5 | 0.25
0.38 | 4.0
2.6 | 2.7
1.8 | 2.6
1.7 | 0.72
1.00 | | 45 | 85
100 | 23
36 | 1.1
1.5 | 778
148 | 88
167 | 7 950
15 100 | 9 000
17 100 | 22209L11CAM
22309L12CAM | 52
54 | _ | 7
9 | 8 | 75
85 | 1
1.5 | 0.28
0.36 | 3.6
2.8 | 2.4
1.9 | 2.4
1.8 | 0.57
1.24 | | 50 | 90 | 23 | 1.1 | 82 | 93 | 8 350 | 9 500 | 22210L11CAM | 57 | _ | 8 | 3 | 80 | 1 | 0.25 | 4.0 | 2.7 | 2.6 | 0.67 | | 55 | 120 | 43 | 2 | 209 | 241 | 21 300 | 24 600 | 22311L12CAM | 65 | _ | 11 | 0 | 103 | 2 | 0.36 | 2.8 | 1.9 | 1.8 | 2.30 | | 60 |
110 | 28 | 1.5 | 127 | 154 | 12 900 | 15 700 | 22212L12CAM | 69 | _ | 10 | 1 | 97 | 1.5 | 0.25 | 4.0 | 2.7 | 2.6 | 1.13 | | 65 | 120
140
140 | 31
48
48 | 1.5
2.1
2.1 | 152
265
265 | 190
315
315 | 15 500
27 000
27 000 | 19 300
32 500
32 500 | 22213L11CAM
22313L11CAM
22313L12CAM | 74
77
77 | = | 11
12
12 | 8 | 106
117
117 | 1.5
2
2 | 0.26
0.35
0.35 | 3.9
2.9
2.9 | 2.6
1.9
1.9 | 2.6
1.9
1.9 | 1.46
3.56
3.56 | | 70 | 125 | 31 | 1.5 | 163 | 205 | 16 600 | 20 900 | 22214L11CAM | 79 | _ | 11 | 6 | 111 | 1.5 | 0.25 | 4.0 | 2.7 | 2.7 | 1.46 | | 75 | 160 | 55 | 2.1 | 340 | 415 | 34 500 | 42 000 | 22315L12CAM | 87 | _ | 14 | .8 | 135 | 2 | 0.35 | 2.9 | 2.0 | 1.9 | 5.26 | | 80 | 140 | 33 | 2 | 181 | 232 | 18 500 | 23 700 | 22216L11CAM | 90 | _ | 13 | 0 | 124 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 2.14 | | 85 | 150 | 36 | 2 | 215 | 276 | 21 900 | 28 200 | 22217L12CAM | 95 | _ | 14 | .0 | 134 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 2.60 | | 90 | 160 | 40 | 2 | 256 | 340 | 26 200 | 34 500 | 22218L12CAM | 100 | _ | 15 | 0 | 142 | 2 | 0.25 | 4.1 | 2.7 | 2.7 | 3.44 | | 95 | 170 | 43 | 2.1 | 296 | 395 | 30 000 | 40 000 | 22219L12CAM | 107 | _ | 15 | 8 | 150 | 2 | 0.25 | 4.1 | 2.7 | 2.7 | 3.87 | | 100 | 165
215 | 52
73 | 2
3 | 345
600 | 530
785 | 35 500
61 500 | 54 000
80 000 | 23120L11CAM
22320L11CAM | 110
114 | = | 15
20 | | 144
183 | 2
2.5 | 0.30
0.35 | 3.4
2.9 | 2.3
1.9 | 2.2
1.9 | 4.14
12.7 | | 110 | 200 | 53 | 2.1 | 425 | 585 | 43 500 | 59 500 | 22222L12CAM | 122 | _ | 18 | 8 | 176 | 2 | 0.24 | 4.2 | 2.8 | 2.7 | 7.23 | | 120 | 180
200 | 46
62 | 2
2 | 315
465 | 525
720 | 32 000
47 500 | 53 500
73 500 | 23024L11CAM
23124L12CAM | 130
130 | = | 17
19 | | 163
175 | 2 2 | 0.22
0.29 | 4.5
3.5 | 3.0
2.4 | 2.9
2.3 | 4.15
7.94 | | 130 | 230 | 64 | 3 | 565 | 815 | 57 500 | 83 000 | 22226L11CAM | 144 | _ | 21 | 6 | 203 | 2.5 | 0.26 | 3.9 | 2.6 | 2.6 | 11.0 | | 160 | 220 | 45 | 2 | 360 | 675 | 37 000 | 69 000 | 23932L11CAM | 170 | _ | 21 | 0 | 203 | 2 | 0.18 | 5.6 | 3.8 | 3.7 | 4.97 | **Remark** The above table lists examples of available bearing numbers for the Molded -Oil™ bearing. Agricultural Machinery Railway Rolling Stock Papermaking Machines Wind Power Industry **■**Triple Ring Bearings | Dessins Numbers | | Bour | ndary dimensions (| mm) | , | Mass | |-----------------|-----|------|--------------------|------------|-------|-------| | Bearing Numbers | d | D | $B_{ m i}$ | $B_{ m e}$ | В | (kg) | | 2SL180-2 UPA | 180 | 480 | 140 | 160 | 215.9 | 175 | | 2SL200-2 UPA | 200 | 520 | 160 | 180 | 241.3 | 230 | | 2SL220-2 UPA | 220 | 600 | 180 | 200 | 279.4 | 330 | | 2SL240-2 UPA | 240 | 620 | 200 | 200 | 279.4 | 410 | | 2SL260-2 UPA | 260 | 680 | 218 | 218 | 317.5 | 490 | | 2SL280-2 UPA | 280 | 720 | 218 | 218 | 317.5 | 525 | | 2SL300-2 UPA | 300 | 780 | 243 | 250 | 342.9 | 735 | | 2SL320-2 UPA | 320 | 820 | 258 | 258 | 368.3 | 840 | | 2SL340-2 UPA | 340 | 870 | 280 | 272 | 393.7 | 1 050 | | 2SL380-3 UPA | 380 | 980 | 240 | 308 | 431.8 | 1 370 | | 2PSL180-1 UPA | 180 | 460 | 153 | 118 | 160 | 127 | | 2PSL240-1 UPA | 240 | 600 | 205 | 160 | 225 | 285 | # Bearings for Wind Power Industry NSK high performance and high quality bearings enable stable operation in the growing wind power industry. #### A Product Line that Matches Specific Applications Mining Machinery Railway Rolling Stock Wind Power Industry Railway Rolling Stock A Perspective View of A Nacell ■ A Product Line that Matches Specific Applications NSK Pumps & Compressor Railway Rolling Stock Mining Machinery ## A Product Line that Matches Specific Applications Features of Bearings for the Wind Power Industry ### **Spherical Roller Bearings-CA** Series CA series bearings are double-row self-aligning spherical roller bearings with a machined-brass cage that have high load capacity, superior durability, and are resistance to The CA series is especially suitable for applications with heavy load or shock conditions. Application: Main shaft ## **Full-Complement Cylindrical Roller Bearings** NCF Series(Single-Row), NNCF(Double-Row) Cageless-full-complement cylindrical roller bearings have the maximum possible number of rollers and can sustain much heavier loads than cylindrical roller bearings of the same size with cages. ■ Application: Planetary carrier(NCF).Planetary gear(NNCF) # High Load Capacity Cylindrical Roller Bearings-XM Series By increasing the number of rollers, NSK has reduced the surface pressure exerted on the contact area between the rollers and rings, thereby increasing load capacity and extending the life of the bearing. Application: Gear Box ### **High-Load Capacity Tapered** Roller Bearings-HR Series HR Series bearings are tapered roller bearings capable of taking combined heavy radial loads and axial loads in one direction. The HR series features tapered rollers guided by larger rollers for superior high-load ratings. ■ Application : Gear Box ### Four-Point Contact Ball **Bearings-QJ Series** The inner ring is split radially into two pieces. Their design allows one bearing to sustain significant axial loads in either direction-with high axial load capacity. This type is suitable for carrying pure axial loads or combined loads where the axial load is high. ■ Application : Gear Box intermediate-speed shaft, high-speed shaft ### **Ceramic-Coated Insulated** Bearings An insulation layer is formed on the outer ring surface. The boundary dimensions are identical to a standard bearing, therefore enabing easy replacement without any changes. Application : Generator ### Super-TF™ Bearings Super-TF bearings were developed with innovative materials and heat treatment technology for increased durability under harsh conditions. They combine long service life with good resistance to wear and seizure, even under contaminated lubrication, to achieve outstanding cost performance. ## **AWS-TF™** Bearings AWS-TF bearings were developed with a combination of special heat treatment technology and materials. They provide excellent resistance to flaking, including white structure flaking. Wind Power Industry Steel Industry Mining Machinery **Examples Product Symbol** NSK INDUSTRY SOLUTIONS STF 240 /600 CA g M E4 U303 Material Symbol Special Control Symbol Bearing Series Symbol External Features Symbol (Type Symbol + Width Symbol + Cage Symbol Diameter Symbol) Bearing Bore (Bore Number) Internal Design Symbol : Spherical Roller Bearing Width Series 4 Diameter Series 0 /600 : Bearing Bore 600mm : High-Capacity Design STF~q : Long-Life Steel : Machined Brass Cage : Lubricating Groove in Outside Surface and Holes in Outer Ring : Special Process Control for Wind Turbine Bearings NNCF50: NNCF Type Full-Complement Cylindrical Roller Bearing Width Series 5 Diameter Series 0 : Bearing Bore 220mm /S/ : Black Oxide Coating : Without Cage : Controlled Size Variation Arrangement : Special Process Control for Wind Turbine Bearings : NU Type Cylindrical Roller Bearing Width Series 2 Diameter Series 3 26 : Bearing Bore 130mm Ε : High Capacity Design AWS~g : Long Life Steel, Specialized to Prevent White Structure Flaking : High-Capacity Machined Brass Cage : Special Process Control for Wind Turbine Bearings HR/HR: High-Capacity Design 303/313: Tapered Roller Bearing Width Series 0/1 Diameter Series 3 : Bearing Bore 130mm J/J : Conform to ISO DF : Face-to-Face Arrangement : Bearings with Outer Ring Spacer : Special Process Control for Wind Turbine Bearings : Four-Point Contact Ball Bearing Diameter Series 3 QJ3 28 : Bearing Bore 140mm M : Machined Brass Cage : Notch in Outer Ring U303 : Special Process Control for Wind Turbine Bearings : Single-Row Deep Groove Ball Bearing Diameter Series 3 30 : Bearing Bore 150mm HD2 : Ceramic-Insulated Coating on Outer Ring : Ball Guide Machined Brass Cage X26 : Dimensional Stabilizing Treatment : Special Process Control for Wind Turbine Bearings Wind Power Industry # **Bearings for Steel Industry** NSK high performance bearings help to maximize uptime and to reduce maintenance costs for steel manufacturers | Bearings for Sintering Equipment | |---| | Sealed-Clean Bearings for Pallet Wheels-AR Series for Inboard Rollers-2J,2M Series | | Bearings for BOFs and Converters | | Ultra-Large Split Bearings for BOFs and Converter Trunnions | | Bearings for Continuous Casting Machines | | SWR™ Bearings (Spherical Roller Bearings) -SWR Series
Cylindrical Roller Bearings with Aligning Rings
(for Free End) -RUB Series | | Split Cylindrical Roller Bearings
(for Segmented Rolls) –RNPH/PCR Series | | Bearings for Rolling Mills (for Roll Necks) D 12 | | Extra-Capacity Sealed-Clean™ | | Four-Row Tapered Roller Bearings–KVS Series | | Super-TF™ Bearings-STF Series
Water-TF™ Bearings-WTF Series | | Four-Row Cylindrical Roller Bearings-STF-RV Series | Notes (*1): Photo courtesy of NIPPON STEEL & SUMITOMO METAL CORPORATION KASHIMA WORKS pamphlet. Backing Bearings for Multi-Roll Rolling Cluster Mills D 166 (*2): Photo courtesy of Nippon Steel & Sumikin Stainless Steel Corporation. Super-TF™ Backing Bearings-STF Series Papermaking Machines Wind Power Industry INDUSTRY SOLUTIONS A complete product line for all steel mill processes delivers improved productivity and lowered maintenance costs, with long life and highly reliable bearings. ## **Bearings for Sintering Equipment** Sealed-Clean Bearings for Pallet Wheels / Sealed-Clean Bearings for Inboard Rollers Scale (sintered particles) 1. Operating conditions Wheel • Stable machinery operation through higher reliability and longer operating life 2. Problems Problem 1 Typical problems of bearings for sintering equipment Premature failure of bearings for pallet wheels and bearings for inboard rollers (plain
bearings) Poor lubrication Benefits @ Cleaner areas adjacent to equipment Inboard roller Conventional structure Reduced maintenance costs ### 3. Countermeasures Sealed-Clean Bearings for Pallet Wheels-AR Series - · Optimum crowning of the roller raceway surface enabling resistance to unbalanced load of wheels - · High sealing performance (featuring a special contact - · Packing of grease with excellent heat and pressure - Easier handling (one-piece design with fastening ring adopted for the inner ring) Newly developed structure ### Sealed-Clean Bearings for Inboard Rollers-2J. 2M Series - Higher load capacity (by outer ring thickness design with high strength and full-complement roller type) - Improvement of axial load capacity - · High sealing performance (featuring a special contact - · Packing of grease with excellent heat and pressure resistance - Easier handling (one-piece design with fastening ring adopted for the inner ring) ### Unbalanced Load (Inboard bearings) · Premature wear and flaking Seizure damage · Fracture of ouder rings Sintering equipment (Inboard bearings) If the bearing life extends 2.5 times on average as a result of using the newly developed structure for bearings for pallet wheels/inboard rollers for pallet dollies, the total maintenance cost reduction effect is estimated to be 25% to 35% ## **■**Bearings for Sintering Equipment ## Sealed-Clean Bearings for Pallet Wheels-AR Series | Bearing Numbers | | | Boundary D |)imensions(m | ım) | | Basic Load | Ratings(kN) | |-----------------|-----|-----|------------|--------------|----------------|----------------------|------------|-------------| | | d | D | B_2 | C | γ (min) | $ m \emph{r}_1(min)$ | Cr | C_{0r} | | AR80-24 | 80 | 150 | 67 | 67 | 2.5 | 1 | 269 | 390 | | AR90-25 | 90 | 160 | 74 | 74 | 2.5 | 0.5 | 240 | 435 | | AR90-26 | 90 | 160 | 80 | 80 | 2.5 | 0.5 | 240 | 435 | | AR90-27 | 90 | 160 | 78 | 78 | 2.5 | 0.5 | 240 | 435 | | AR90-32A | 90 | 160 | 100 | 100 | 2.5 | _ | 440 | 850 | | AR100-29 | 100 | 180 | 98 | 100 | 2.5 | 1 | 350 | 675 | | AR100-30 | 100 | 180 | 100 | 100 | 2.5 | 1 | 350 | 675 | | AR100-38 | 100 | 180 | 100 | 100 | 3 | 0.5 | 525 | 835 | | AR100-39 | 100 | 180 | 98 | 100 | 3 | 0.5 | 525 | 835 | | AR100-40 | 100 | 180 | 98 | 100 | 3 | 0.5 | 525 | 835 | | AR100-44 | 100 | 180 | 91 | 91 | 3 | 0.5 | 435 | 665 | | AR110-28 | 110 | 180 | 86 | 86 | 3 | 0.5 | 330 | 660 | | AR110-29 | 110 | 200 | 92 | 100 | 2.5 | 1 | 415 | 805 | | AR110-39 | 110 | 200 | 100 | 100 | 3 | 1 | 570 | 950 | | AR110-50A | 110 | 200 | 90 | 90 | 3 | 0.5 | 500 | 780 | **Remark** Other bearings are available. Please contact NSK for additional information. ## Sealed-Clean Bearings for Inboard Rollers-2J, 2M Series Fig. 2 | Bearing Numbers | | Bound | dary Dimensio | ons(mm) | | Basic Load | Ratings(kN) | Fig. | |-----------------|--------------------|-------|---------------|---------|----------------|-------------|-------------|------| | bearing Numbers | d | D | B_2 | C | ∤ (min) | $C_{\rm r}$ | C_{0r} | rig. | | 2J100-2 | 100 | 200 | 120 | 119 | 2.1 | 315 | 910 | 1 | | 2J120-9A | 120 | 210 | 120 | 120 | 2.5 | 610 | 1 080 | 1 | | 2J120-14 | 120 | 210 | 132 | 132 | 2.1 | 530 | 1 320 | 1 | | 2M120-17 | 120 | 210 | 132 | 132 | 2.1 | 425 | 1 390 | 2 | | 2M140-(5) | 140 | 250 | 116 | 110 | 2 | 395 | 1 030 | 2 | | 2M140-() | 140 | 250 | 130 | 130 | 4 | 485 | 1 460 | 2 | | 2J140-2 | 140 | 250 | 130 | 130 | 4 | 770 | 1 420 | 1 | | 2M150-() | 150 | 320 | 120 | 120 | 5 | 615 | 1 350 | 2 | | 2M158-3 | 158 | 250 | 140 | 140 | 5 | 570 | 1 850 | 2 | | 2J160Z-1 | 160.11 | 250 | 130 | 130 | 2.5 | 670 | 1 540 | 1 | | 2M160Z-13 | 160.11 | 250 | 150 | 150 | 2.5 | 595 | 1 980 | 2 | | 2J160Z-5 | 160.11 250 155 150 | | 2.1 | 610 | 1 | | | | Remark Other bearings are available. Please contact NSK for additional information. D 103 ## **Bearings for BOFs and Converters** Ultra-Large Split Bearings for BOFs and Converter Trunnions - Bearings can be replaced without removing the bull gear, thus reducing maintenance costs - Benefits @ Reduction of maintenance costs by shortening length of time for bearing replacement work - 3 Reduction of production loss, which would affect subsequent processes ## 1. Operating conditions ### 2. Problems Typical problems of bearings for BOFs and converters Inboard bearings cannot be replaced without removing the bull gear time-consuming, requiring high maintenance costs In addition, sudden bearing replacement due to an unexpected failure causes large production loss in the subsequent processes 3. Countermeasures (3) roller and cage assembly and (4) fastening ring · Seal sliding surface integrated by a fastening ring · Bearing Structure Bearing No. Pages D104 and D105 ### Maintenance cost reduction effect Result of the comparison of time required for bearing replacement work | Bearing type | Comparison of time required for bearing replacement work in field test | | | | | | | | | | | |---|--|--|--------|---------------------------------------|--|--|--|--|--|--|--| | Conventional structure (one-piece type) | | | | | | | | | | | | | Newly developed structure (split type) | 0.65 | | 0.35 ← | Period shortening | | | | | | | | - The bearing replacement period represents the actual result for bearings with bore diameter of 1 200 mm to - In the case above, the bearing with the newly developed structure reduced the time needed for bearing replacement work by approximately 35%, and thereby significantly reduced maintenance cost. (*1): Photo courtesy of NIPPON STEEL & SUMITOMO METAL CORPORATION KASHIMA WORKS pamphlet. ## **Ultra-Large Split Bearings for BOFs and Converter Trunnions** Fig. 1 Fig. 2 Clamp Ring with Tangential Seal Surface | Bearing Numbers | | | | Boundar | y Dimension | ns (mm) | | | | Basic Load | Ratings (kN) | Fig. | |-----------------|-------|-------|-----|---------|-------------|---------|------------------|------------------|-----------------|------------|--------------|--------| | Doaring Numbers | d | D | B | b | b_1 | d_1 | D_{u} | γ_1 (min) | $\gamma_2(min)$ | $C_{ m r}$ | C_{0r} | l rig. | | 750SLPT1051 | 750 | 1 000 | 250 | 355 | _ | 905 | 914.4 | 6 | 7.5 | 6 800 | 18 300 | 1 | | SL850-7 | 850 | 1 120 | 272 | 385 | _ | 1 015 | 1 025 | 6 | 6 | 8 000 | 21 600 | 1 | | 900SLPT1251 | 900 | 1 250 | 285 | 410 | _ | 1 100 | 1 142 | 7.5 | 19 | 9 850 | 24 200 | 1 | | 950SLPT1451 | 950 | 1 400 | 300 | 520 | 600 | 1 182 | 1 265 | 7.5 | 28 | 12 300 | 27 900 | 2 | | SL1120-3 | 1 120 | 1 580 | 320 | 632.5 | 697.5 | 1 400 | 1 445 | 9.5 | 30 | 13 200 | 32 000 | 2 | | *1200SLPT1751 | 1 200 | 1 700 | 410 | 780 | 780 | 1 470 | 1 536 | 9.5 | 31 | 17 300 | 43 500 | 2* | | 1200SLPT1752 | 1 200 | 1 700 | 410 | 660 | 730 | 1 470 | 1 536 | 9.5 | 19 | 17 300 | 43 500 | 2 | | 1320SLPT1851 | 1 320 | 1 850 | 530 | 815 | 814 | 1 600 | 1 670 | 12 | 31 | 22 500 | 63 500 | 2 | | *1400SLPT1951 | 1 400 | 1 900 | 530 | 880 | 880 | 1 680 | 1 710 | 12 | 31 | 22 800 | 65 000 | 2* | | *1400SLPT1953 | 1 400 | 1 900 | 530 | 810 | 860 | 1 680 | 1 710 | 12 | 31 | 22 800 | 65 000 | 2* | **Remarks** 1. The shapes of bearings marked * are not exactly the same as shown in Fig. 2. ^{2.} Other bearings are available. Please contact NSK for additional information. INDUSTRY SOLUTIONS | NSK ## **Bearings for Continuous Casting Machines** **Bearings for Guide Rolls** - Improved bearing durability prevents unexpected accidents - **9** Roll segment is replaced less frequently, thus reducing maintenance costs 3. Countermeasures ## Features SWR™ Bearings (Spherical Roller Bearings) –SWR Series - · Improved wear resistance → Three times compared to AISI 52100 bearing steel - · Improved flaking life property → Five times compared to AISI 52100 bearing stee - · Improved toughness of material core (prevention of crack damage) → Five times compared to AISI 52100 bearing steel ### Microstructure (TEM) **SWR** ## Cylindrical Roller Bearings with Aligning Rings (for free end) –RUB Series - · Adoption of cylindrical roller bearing type to prevent wear problems caused by sliding and addition of selfaligning function - · Smooth relief of roll expansion - · Type: Easy handling cage type, Full-complement type with higher load capacity Bearing No. Pages D116 to D123 ## Split Cylindrical Roller Bearings (for segmented rolls) -RNPH/PCR Series - Adoption of cylindrical roller bearing type to prevent wear problems caused by sliding and addition of self-aligning function - · Full-complement, higher load capacity design - · Multi-functional seal and high rigidity plummer block unit Bearing No. Pages D124 to D127 Note (*1): Photo courtesy of NIPPON STEEL & SUMITOMO METAL CORPORATION KASHIMA WORKS pamphlet. # SWR $^{\text{TM}}$ Bearings (Spherical Roller Bearings) –SWR Series Bore Diameter 40 – 100 mm **■**Bearings for Continuous Casting Machines ## Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | | | | | | | |---------------|--------------------------|---------------------------|-------|--|--|--|--|--|--| | $F_{\rm a}/I$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | | | | X | Y | X | Y | | | | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | В | oundary l | Dimensio | ns | | Basic Loa | ad Ratings | | | | Abutment | : | and Fillet I | Dimension | IS | Constant Axial Load Factor | | | actors | Mass | |-----|-----------|----------|------|------------------|-----------|-------------|----------|-----------------|----------|----------------------------|---|--------------|-----------|-------------|------------------------------|-------|-------|--------|---------| | | (m | ım) | | (kľ | N) | {k | gf} | D : N ! | | | | | (mm) | | | | | | (kg) | | d | D | B | r | C_{r} | C_{0r} | $C_{\rm r}$ |
C_{0r} | Bearing Numbers | | $d_{\scriptscriptstyle a}$ | | L |), | $r_{\rm a}$ | | | | | | | | | | min. | | 01 | • | 01 | | min. | max. | | max. | min. | max. | e | Y_2 | Y_3 | Y_0 | approx. | | 40 | 80 | 23 | 1.1 | 90.5 | 99.5 | 9 200 | 10 100 | 22208SWREAE4 | 47 | 49 | | 73 | 70 | 1 | 0.28 | 3.6 | 2.4 | 2.4 | 0.5 | | 40 | 90 | 33 | 1.5 | 136 | 153 | 13 900 | 15 600 | 22308SWRCAME4 | 49 | _ | | 81 | 77 | 1.5 | 0.38 | 2.6 | 1.8 | 1.7 | 1.0 | | 50 | 90 | 23 | 1.1 | 99 | 119 | 10 100 | 12 100 | 22210SWREAE4 | 57 | 60 | | 83 | 81 | 1 | 0.24 | 4.3 | 2.9 | 2.8 | 0.61 | | 00 | 00 | 20 | | 00 | 110 | 10 100 | 12 100 | ELE TOOTTILEALT | 0, | 00 | | 00 | 01 | | 0.21 | 1.0 | 2.0 | 2.0 | | | 55 | 100 | 25 | 1.5 | 119 | 144 | 12 100 | 14 600 | 22211SWREAE4 | 64 | 65 | | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 0.81 | | | 120 | 29 | 2 | 142 | 174 | 14 500 | 17 800 | 21311SWREAE4 | 65 | 72 | | 110 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 1.58 | | 60 | 95 | 26 | 1.1 | 98.5 | 141 | 10 000 | 14 400 | 23012SWRCE4 | 67 | 68 | | 88 | 85 | 1 | 0.26 | 3.9 | 2.6 | 2.5 | 0.68 | | | 110 | 28 | 1.5 | 142 | 174 | 14 500 | 17 800 | 22212SWREAE4 | 69 | 72 | | 101 | 98 | 1.5 | 0.23 | 4.4 | 3.0 | 2.9 | 1.1 | | | 110 | 28 | 1.5 | 178 | 154 | 18 100 | 15 700 | 22212SWRCAME4 | 69 | _ | | 101 | 97 | 1.5 | 0.25 | 4.0 | 2.7 | 2.6 | 1.17 | | | 130 | 31 | 2.1 | 190 | 244 | 19 400 | 24 900 | 21312SWREAE4 | 72 | 87 | | 118 | 117 | 2 | 0.22 | 4.5 | 3.0 | 3.0 | 1.98 | | | 130 | 46 | 2.1 | 246 | 288 | 25 100 | 29 400 | 22312SWRCAME4 | 72 | _ | | 118 | 111 | 2 | 0.36 | 2.8 | 1.9 | 1.9 | 2.9 | | 65 | 120 | 31 | 1.5 | 152 | 190 | 15 500 | 19 300 | 22213SWRCAME4 | 74 | _ | | 111 | 106 | 1.5 | 0.26 | 3.9 | 2.6 | 2.6 | 1.57 | | 00 | 140 | 48 | 2.1 | 265 | 315 | 27 000 | 32 500 | 22313SWRCAME4 | 77 | _ | | 128 | 117 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 3.56 | | 70 | 125 | 31 | 1.5 | 225 | 232 | 22 900 | 23 600 | 22214SWREAE4 | 79 | 84 | | 116 | 111 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | 1.58 | | 70 | 125 | 31 | 1.5 | 163 | 205 | 16 600 | 20 900 | 22214SWRCAME4 | 79
79 | -
- | | 116 | 111 | 1.5 | 0.25 | 4.0 | 2.9 | 2.7 | 1.64 | 75 | 130 | 31 | 1.5 | 238 | 244 | 24 200 | 24 900 | 22215SWREAE4 | 84 | 87 | | 121 | 117 | 1.5 | 0.22 | 4.5 | 3.0 | 3.0 | 1.64 | | 80 | 140 | 33 | 2 | 264 | 275 | 27 000 | 28 000 | 22216SWREAE4 | 90 | 94 | | 130 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.01 | | | 170 | 39 | 2.1 | 355 | 375 | 36 000 | 38 000 | 21316SWREAE4 | 92 | 109 | | 158 | 146 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | 4.32 | | | 170 | 58 | 2.1 | 390 | 480 | 39 500 | 48 500 | 22316SWRCAME4 | 92 | _ | | 158 | 145 | 2 | 0.35 | 2.9 | 2.0 | 1.9 | 6.2 | | 85 | 150 | 36 | 2 | 310 | 325 | 320 | 33 500 | 22217SWREAE4 | 95 | 101 | | 140 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 2.54 | | 90 | 160 | 40 | 2 | 360 | 395 | 37 000 | 40 000 | 22218SWREAE4 | 100 | 108 | | 150 | 142 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 3.3 | | 50 | 160 | 52.4 | 2 | 340 | 490 | 34 500 | 50 000 | 23218SWRCE4 | 100 | 105 | | 150 | 138 | 2 | 0.24 | 3.2 | 2.1 | 2.1 | 4.51 | | | 190 | 64 | 3 | 665 | 705 | 68 000 | 72 000 | 22318SWREAE4 | 104 | 115 | | 176 | 163 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 8.56 | | 95 | 170 | 43 | 2.1 | 296 | 395 | 30 000 | 40 000 | 22219SWRCAME4 | 107 | _ | | 158 | 150 | 2 | 0.25 | 4.1 | 2.7 | 2.7 | 4.19 | | 100 | 150 | 37 | 1.5 | 212 | 335 | 21 600 | 34 500 | 23020SWRCDE4 | 109 | 112 | | 141 | 136 | 1.5 | 0.22 | 4.6 | 3.1 | 3.0 | 2.31 | | .00 | 150 | 50 | 1.5 | 276 | 470 | 28 100 | 48 000 | 24020SWRCE4 | 109 | 110 | | 141 | 132 | 1.5 | 0.22 | 3.4 | 2.3 | 2.2 | 3.08 | | | 165 | 65 | 2 | 345 | 535 | 35 500 | 54 000 | 24120SWRCAME4 | 110 | 113 | | 155 | 144 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 4.38 | | | 180 | 46 | 2.1 | 455 | 490 | 46 500 | 50 000 | 22220SWREAE4 | 112 | 119 | | 168 | 160 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | 4.84 | ## **■**Bearings for Continuous Casting Machines # SWR™ Bearings (Spherical Roller Bearings) –SWR Series Bore Diameter 110 – 140 mm ## Dynamic Equivalent Load | P = X | $F_{\rm r} + YF_{\rm a}$ | | | | | | | | | |---------------|--------------------------|---------------------------|-------|--|--|--|--|--|--| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r}{>}e$ | | | | | | | | | X | Y | X | Y | | | | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | | | | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of e, Y_2 , Y_3 , and Y_0 are given in the table below. | В | oundary I | Dimensio | ns | | Basic Lo | ad Ratings | | | | Abutment | and | d Fillet D | Dimension | S | Constant | nt Axial Load Factors | | | Mass | |-----|-----------|----------|------|-------------|----------|------------|----------|-----------------|------|-------------------------------|-----|------------|-----------|-------------|----------|-----------------------|-------|-------|---------| | | (m | m) | | (| kN) | {k | (gf} | Bearing Numbers | | | | | (mm) | | | | | | (kg) | | d | D | B | r | $C_{\rm r}$ | C_{0r} | $C_{ m r}$ | C_{0r} | bearing Numbers | | $d_{\scriptscriptstyle m a}$ | | D | a | $r_{\rm a}$ | | | | | | | | | | min. | | | | | | min. | max. | | max. | min. | max. | e | Y_2 | Y_3 | Y_0 | approx. | | 110 | 170 | 45 | 2 | 293 | 465 | 29 900 | 47 500 | 23022SWRCDE4 | 120 | 124 | | 160 | 153 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 3.76 | | | 170 | 45 | 2 | 293 | 465 | 30 900 | 47 500 | 23022SWRCAME4 | 120 | _ | | 160 | 153 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 3.74 | | | 170 | 60 | 2 | 380 | 645 | 38 500 | 66 000 | 24022SWRCE4 | 120 | 121 | | 160 | 148 | 2 | 0.32 | 3.1 | 2.1 | 2.1 | 4.96 | | | 180 | 56 | 2 | 480 | 630 | 49 000 | 64 000 | 23122SWRCAME4 | 120 | _ | | 170 | 158 | 2 | 0.28 | 3.5 | 2.4 | 2.3 | 5.67 | | | 180 | 69 | 2 | 460 | 750 | 47 000 | 76 500 | 24122SWRCE4 | 120 | 123 | | 170 | 154 | 2 | 0.36 | 2.8 | 1.9 | 1.8 | 6.84 | | | 200 | 53 | 2.1 | 605 | 645 | 61 500 | 66 000 | 22222SWREAE4 | 122 | 129 | | 188 | 178 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | 6.99 | | | 200 | 53 | 2.1 | 425 | 585 | 43 500 | 59 500 | 22222SWRCAME4 | 122 | _ | | 188 | 176 | 2 | 0.24 | 4.2 | 2.8 | 2.7 | 7.26 | | | 200 | 69.8 | 2.1 | 645 | 760 | 65 000 | 77 500 | 23222SWRCAME4 | 122 | | | 188 | 170 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 9.58 | | | 240 | 80 | 3 | 1030 | 1120 | 10 500 | 115 000 | 22322SWREAE4 | 124 | 145 | | 226 | 206 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 17.6 | | 120 | 180 | 46 | 2 | 315 | 525 | 32 000 | 53 500 | 23024SWRCDE4 | 130 | 134 | | 170 | 163 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 4.11 | | | 180 | 46 | 2 | 395 | 525 | 40 000 | 53 500 | 23024SWRCAME4 | 130 | _ | | 170 | 163 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 4.11 | | | 180 | 60 | 2 | 395 | 705 | 40 500 | 72 000 | 24024SWRCE4 | 130 | 131 | | 170 | 158 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 5.33 | | | 180 | 60 | 2 | 480 | 680 | 49 000 | 69 000 | 24024SWRCAME4 | 130 | 131 | | 170 | 158 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | 5.33 | | | 200 | 80 | 2 | 575 | 950 | 58 500 | 96 500 | 24124SWRCE4 | 130 | 136 | | 190 | 171 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 10 | | | 200 | 80 | 2 | 695 | 905 | 70 500 | 92 000 | 24124SWRCAME4 | 130 | _ | | 190 | 171 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 9.86 | | | 215 | 58 | 2.1 | 490 | 690 | 50 000 | 70 000 | 22224SWRCAME4 | 132 | _ | | 203 | 189 | 2 | 0.25 | 4.1 | 2.7 | 2.7 | 9.05 | | | 215 | 76 | 2.1 | 790 | 970 | 80 500 | 99 000 | 23224SWRCAME4 | 132 | _ | | 203 | 182 | 2 | 0.34 | 2.9 | 2.0 | 1.9 | 12 | | | 260 | 86 | 3 | 845 | 1 120 | 80 600 | 115 000 | 22324SWRCAME4 | 134 | _ | | 246 | 219 | 2.5 | 0.35 | 2.9 | 2.0 | 1.9 | 22.3 | | 130 | 200 | 52 | 2 | 400 | 655 | 40 500 | 67 000 | 23026SWRCDE4 | 140 | 147 | | 190 | 180 | 2 | 0.23 | 4.3 | 2.9 | 2.9 | 5.98 | | | 200 | 69 | 2 | 495 | 865 | 50 500 | 88 000 | 24026SWRCE4 | 140 | 143 | | 190 | 175 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 7.84 | | | 200 | 69 | 2 | 620 | 865 | 60 300 | 88 000 | 24026SWRCAME4 | 140 | _ | | 190 | 175 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 7.83 | | | 210 | 80 | 2 | 590 | 1 010 | 60 000 | 103 000 | 24126SWRCE4 | 140 | 146 | | 200 | 180 | 2 | 0.35 | 2.9 | 1.9 | 1.9 | 10.7 | | | 210 | 80 | 2 | 590 | 1 010 | 60 000 | 103 000 | 24126SWRCAME4 | 140 | _ | | 200 | 180 | 2 | 0.37 | 2.7 | 1.8 | 1.8 | 10.6 | | | 230 | 64 | 3 | 820 | 940 | 83 500 | 96 000 | 22226SWREAE4 | 144 | 152 | | 216 | 204 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 11 | | | 230 | 64 | 3 | 565 | 815 | 57 500 | 83 000 | 22226SWRCAME4 | 144 | _ | | 216 | 203 | 2.5 | 0.26 | 3.9 | 2.6 | 2.6 | 11.3 | | | 230 | 80 | 3 | 875 | 1 080 | 89 500 | 110 000 | 23226SWRCAME4 | 144 | _ | | 216 | 196 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 14.3 | | 140 | 210 | 53 | 2 | 420 | 715 | 43 000 | 73 000 | 23028SWRCDE4 | 150 | 157 | | 200 | 190 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 6.49 | | | 210 | 69 | 2 | 525 | 945 | 53 500 | 96 500 | 24028SWRCE4 | 150 | 154 | | 200 | 186 | 2 | 0.29 | 3.4 | 2.3 | 2.2 | 8.37 | | | 210 | 69 | 2 | 635 | 905 | 64 500 | 92 500 | 24028SWRCAME4 | 150 | _ | | 200 | 186 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | 8.32 | SWR™ Bearings (Spherical Roller Bearings) –SWR Series Bore Diameter 140 – 180 mm Dynamic Equivalent Load | $P = XF_r + YF_a$ | | | | | | | | |-------------------|------------|---|--|--|--|--|--| | $F_{\rm a}/I$ | $r \leq e$ | i | | | | | | | 17 | ٠, | | | | | | | $F_{\rm a}/F_{\rm r} > e$ X Y_3 0.67 Y_2 Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | | Boundary I | Dimensio | ns | | Basic Lo | oad Ratings | | | | Abutment | an | d Fillet [| Dimension | ıs | Constant | Axial | Load F | actors | Mass | |-----|--------------------------|------------------------|----------------------|----------------------------------|----------------------------------|--|--|---|--------------------------|-------------------------------|----|--------------------------|--------------------------|------------------------|------------------------------|--------------------------|--------------------------
--------------------------|------------------------------| | | , | nm) | | (| kN) | Ü | (gf} | D : N . | | | | | (mm) | - | | | | | (kg) | | d | D | B | r | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | | $d_{\scriptscriptstyle m a}$ | | L |) _a | $r_{\rm a}$ | | | | | | | | | | min. | | | | | | min. | max. | | max. | min. | max. | e | Y_2 | Y_3 | Y_0 | approx. | | 140 | 225
225
225 | 68
85
85 | 2.1
2.1
2.1 | 725
670
835 | 945
1 160
1 160 | 73 500
68 500
85 500 | 96 500
118 000
118 000 | 23128SWRCAME4
24128SWRCE4
24128SWRCAME4 | 152
152
152 | —
156
— | | 213
213
213 | 198
193
192 | 2
2
2 | 0.28
0.35
0.37 | 3.6
2.9
2.7 | 2.4
1.9
1.8 | 2.3
1.9
1.8 | 10.5
13
12.9 | | | 250
250
250 | 68
68
88 | 3
3
3 | 645
835
835 | 930
945
1 300 | 65 500
85 500
85 000 | 95 000
96 500
133 000 | 22228SWRCDE4
22228SWRCAME4
23228SWRCAME4 | 154
154
154 | 167
—
— | | 236
236
236 | 219
221
213 | 2.5
2.5
2.5 | 0.25
0.26
0.35 | 4.0
3.9
2.9 | 2.7
2.6
2.0 | 2.6
2.5
1.9 | 14.5
14.2
18.8 | | 150 | 225
225
225 | 56
75
75 | 2.1
2.1
2.1 | 470
590
740 | 815
1 090
1 090 | 48 000
60 500
75 500 | 83 000
111 000
111 000 | 23030SWRCDE4
24030SWRCE4
24030SWRCAME4 | 162
162
162 | 168
165
— | | 213
213
213 | 203
198
198 | 2
2
2 | 0.22
0.30
0.30 | 4.6
3.4
3.4 | 3.1
2.3
2.3 | 3.0
2.2
2.2 | 7.9
10.5
10.4 | | | 250
250
270
270 | 80
100
73
96 | 2.1
2.1
3
3 | 725
890
765
975 | 1 180
1 530
1 120
1 560 | 74 000
91 000
78 000
99 500 | 121 000
156 000
114 000
159 000 | 23130SWRCE4
24130SWRCE4
22230SWRCDE4
23230SWRCE4 | 162
162
164
164 | 174
169
179
176 | | 238
238
256
256 | 218
212
236
230 | 2
2
2.5
2.5 | 0.30
0.38
0.26
0.35 | 3.4
2.6
3.9
2.9 | 2.3
1.8
2.6
1.9 | 2.2
1.7
2.5
1.9 | 15.8
19.8
18.4
24.2 | | 160 | 240
240
240 | 60
80
80 | 2.1
2.1
2.1 | 540
680
845 | 955
1 260
1 260 | 55 000
69 000
86 500 | 97 500
128 000
128 000 | 23032SWRCDE4
24032SWRCE4
24032SWRCAE3 | 172
172
172 | 179
177
— | | 228
228
228 | 216
212
212 | 2
2
2 | 0.22
0.30
0.30 | 4.5
3.4
3.4 | 3.0
2.3
2.3 | 2.9
2.2
2.2 | 9.66
12.7
12.3 | | | 270
290
290 | 109
80
80 | 2.1
3
3 | 1 040
910
1 140 | 1 760
1 320
1 320 | 106 000
93 000
116 000 | 179 000
135 000
135 000 | 24132SWRCE4
22232SWRCDE4
22232SWRCAME4 | 172
174
174 | 179
190
— | | 258
276
276 | 229
255
255 | 2
2.5
2.5 | 0.39
0.26
0.26 | 2.6
3.8
3.8 | 1.7
2.6
2.6 | 1.7
2.5
2.5 | 25.4
23.1
23.1 | | 170 | 260
260
280 | 67
90
88 | 2.1
2.1
2.1 | 640
825
940 | 1 090
1 520
1 570 | 65 000
84 000
96 000 | 112 000
155 000
160 000 | 23034SWRCDE4
24034SWRCE4
23134SWRCAME4 | 182
182
182 | 191
188
— | | 248
248
268 | 233
228
245 | 2
2
2 | 0.23
0.31
0.29 | 4.3
3.2
3.5 | 2.9
2.2
2.3 | 2.8
2.1
2.3 | 13
17.3
21.6 | | | 280
310
310 | 109
86
110 | 2.1
4
4 | 1 080
990
1 200 | 1 860
1 500
1 910 | 110 000
101 000
122 000 | 190 000
153 000
195 000 | 24134SWRCE4
22234SWRCDE4
23234SWRCE4 | 182
188
188 | 190
206
201 | | 268
292
292 | 239
270
261 | 2
3
3 | 0.37
0.26
0.34 | 2.7
3.8
2.9 | 1.8
2.6
2.0 | 1.8
2.5
1.9 | 26.6
28.8
36.4 | | 180 | 280
280
280 | 74
100
100 | 2.1
2.1
2.1 | 750
965
1 210 | 1 270
1 750
1 750 | 76 000
98 500
123 000 | 129 000
178 000
178 000 | 23036SWRCDE4
24036SWRCE4
24036SWRCAME4 | 192
192
192 | 202
200
— | | 26
268
268 | 249
245
245 | 2
2
2 | 0.24
0.32
0.32 | 4.2
3.1
3.1 | 2.8
2.1
2.1 | 2.8
2.0
2.0 | 17.1
22.7
22.5 | | | 300
300
300
320 | 96
118
118
86 | 3
3
3
4 | 1 320
1 190
1 490
1 020 | 1 760
2 040
2 040
1 540 | 134 000
121 000
152 000
104 000 | 180 000
208 000
208 000
157 000 | 23136SWRCAME4
24136SWRCE4
24136SWRCAME4
22236SWRCDE4 | 194
194
194
198 | 202
—
212 | | 286
286
286
302 | 260
255
255
278 | 2.5
2.5
2.5
3 | 0.31
0.37
0.37
0.26 | 3.3
2.7
2.7
3.9 | 2.2
1.8
1.8
2.6 | 2.2
1.8
1.8
2.6 | 27.4
33.1
33
30.2 | D 112 D 113 Railway Rolling Stock # SWR™ Bearings (Spherical Roller Bearings) –SWR Series Bore Diameter 190 – 240 mm | Ilallic Equivalent Luau | | |-------------------------|--| | $P = XF_r + YF_a$ | | | | | | $F_{\rm a}/F$ | r _r ≦e | $F_{\rm a}/I$ | r > e | |---------------|-----------------------|---------------|-----------------------| | X | Y | X | Y | | 1 | <i>Y</i> ₃ | 0.67 | <i>Y</i> ₂ | Static Equivalent Load $P_0 = F_r + Y_0 F_a$ The values of \emph{e} , $\emph{Y}_{\emph{2}}$, $\emph{Y}_{\emph{3}}$, and $\emph{Y}_{\emph{0}}$ are given in the table below. | В | Boundary I | Dimensioi
m) | ns | , | Basic Lo
kN) | ad Ratings | :gf} | | | Abutment | and Fillet | Dimensioı
(mm) | ns | Constant | Axial | Load Fa | actors | Mass
(kg) | |-----|-------------|-----------------|------------|----------------|-----------------|--------------------|--------------------|--------------------------------|------------|------------------|------------|-------------------|-----------------------|--------------|------------|------------|------------|--------------| | d | $D^{(iii)}$ | B | r | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | Bearing Numbers | | d_{a} | I |) _a | γ_{a} | | | | | (kg) | | | | | min. | | | | | | min. | max. | max. | min. | max. | e | Y_2 | Y_3 | Y_0 | approx | | 190 | 290 | 75 | 2.1 | 970 | 1 350 | 99 000 | 138 000 | 23038SWRCAME4 | 202 | _ | 278 | 261 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 17.6 | | | 290
290 | 100
100 | 2.1
2.1 | 975
1 220 | 1 840
1 840 | 99 500
124 000 | 188 000
188 000 | 24038SWRCE4
24038SWRCAME4 | 202
202 | 210 | 278
278 | 253
253 | 2 | 0.31 0.32 | 3.2 | 3.2
2.1 | 2.1 | 24
23.8 | | | 290 | 100 | 2.1 | 1 220 | 1 040 | 124 000 | 100 000 | 240303 W N CAIVIE4 | 202 | _ | 270 | 203 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | 23.0 | | | 320 | 128 | 3 | 1 370 | 2 330 | 140 000 | 238 000 | 24138SWRCE4 | 204 | 211 | 306 | 269 | 2.5 | 0.4 | 2.5 | 1.7 | 1.6 | 41.5 | | | 320
340 | 128
92 | 3
4 | 1 710
1 140 | 2 330
1 730 | 175 000
116 000 | 238 000
176 000 | 24138SWRCAME4
22238SWRCAME4 | 204
208 | _ | 306
322 | 269
296 | 2.5
3 | 0.38
0.26 | 2.6
3.8 | 1.8
2.6 | 1.7
2.5 | 40.9
35.5 | | | 340 | 120 | 4 | 1 440 | 2 350 | 147 000 | 240 000 | 23238SWRCE4 | 208 |
222 | 322 | 288 | 3 | 0.26 | 2.9 | 1.9 | 1.9 | 47.6 | | | 0.1.0 | 0.0 | 0.4 | 4.400 | 4 700 | 400.000 | 474.000 | | 040 | | 200 | 070 | • | 0.05 | | | | | | 200 | 310
310 | 82
109 | 2.1
2.1 | 1 180
1 140 | 1 700
2 120 | 120 000
116 000 | 174 000
216 000 | 23040SWRCAME4
24040SWRCE4 | 212
212 |
223 | 298
298 | 279
271 | 2
2 | 0.25 | 4.0
3.1 | 2.7
2.1 | 2.6
2.0 | 22.6
30.4 | | | 310 | 109 | 2.1 | 1 420 | 2 120 | 145 000 | 216 000 | 24040SWRCAME4 | 212 | _ | 298 | 271 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 30.2 | | | 240 | 1.10 | 3 | 1 570 | 0.070 | 100 000 | 070 000 | 24140SWRCE4 | 214 | 000 | 220 | 200 | 0.5 | 0.00 | 0.0 | 1.0 | 1 7 | 51.3 | | | 340
340 | 140
140 | 3 | 1 570
1 960 | 2 670
2 660 | 160 000
199 000 | 272 000
271 000 | 24140SWRCE4
24140SWRCAME4 | 214 | 226 | 326
326 | 290
290 | 2.5
2.5 | 0.39 | 2.6
2.5 | 1.8
1.7 | 1.7
1.7 | 50.8 | | | 360 | 98 | 4 | 1 300 | 2 010 | 133 000 | 204 000 | 22240SWRCAME4 | 218 | _ | 342 | 315 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 42.6 | | 220 | 340 | 90 | 3 | 1 360 | 1 980 | 139 000 | 202 000 | 23044SWRCAME4 | 234 | _ | 326 | 302 | 2.5 | 0.24 | 4.1 | 2.8 | 2.7 | 29.7 | | 220 | 340 | 118 | 3 | 1 640 | 2 490 | 168 000 | 265 000 | 24044SWRCE4 | 234 | 244 | 326 | 296 | 2.5 | 0.24 | 3.2 | 2.1 | 2.1 | 40.5 | | | 340 | 118 | 3 | 1 310 | 2 490 | 134 000 | 254 000 | 24044SWRCAME4 | 234 | _ | 326 | 296 | 2.5 | 0.32 | 3.2 | 2.1 | 2.1 | 39 | | | 370 | 150 | 4 | 1 800 | 3 200 | 183 000 | 325 000 | 24144SWRCE4 | 238 | 248 | 352 | 313 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | 66.7 | | | 370 | 150 | 4 | 1 800 | 3 200 | 183 000 | 325 000 | 24144SWRCAME4 | 238 | _ | 352 | 313 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | 64.3 | | | 400 | 108 | 4 | 1 570 | 2 430 | 160 000 | 247 000 | 22244SWRCAME4 | 238 | _ | 382 | 348 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | 59 | | | 400 | 144 | 4 | 2 010 | 3 400 | 206 000 | 350 000 | 23244SWRCE4 | 238 | 260 | 382 | 337 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 80.4 | | 240 | 360 | 118 | 3 | 1 730 | 2 730 | 176 000 | 278 000 | 24048SWRCAME4 | 254 | _ | 346 | 317 | 2.5 | 0.30 | 3.3 | 2.2 | 2.2 | 42.2 | | | 400 | 160 | 4 | 2 660 | 3 800 | 272 000 | 385 000 | 24148SWRCAME4 | 258 | _ | 382 | 341 | 3 | 0.38 | 2.7 | 1.8 | 1.8 | 79.6 | Cylindrical Roller Bearings with Aligning Rings(for Free End)–RUB Series Bore Diameter 90 – 240 mm With Cage | | | , | Dimensions | | | | d Ratings | | Abutment | | imensions | |--------|------------|----------|------------|------------------|----------------------------|-------------|----------------------|----------------------------|-----------------|----------------------|-----------------| | d | D | B (m | nm)
b | γ
min. | $oldsymbol{\gamma}_1$ min. | $C_{\rm r}$ | N) $C_{0\mathrm{r}}$ | Bearing Numbers | $d_{ m a}$
min. | (mm) $d_{ m a}$ max. | $D_{ m a}$ min. | | 90 | 160 | 56 | 50 | 1.1 | 2 | 220 | 335 | 90RUB1601P | 99 | 105 | 143 | | | 170 | 68 | 52.4 | 2 | 2 | 270 | 375 | 90RUB1702P | 99 | 106 | 153 | | | 190 | 64 | 64 | 3 | 3 | 340 | 490 | 90RUB1908P | 103 | 109 | 166 | | 100 | 165 | 52 | 52 | 2 | 1.1 | 221 | 385 | 100RUB31AP | 106.5 | 113 | 147 | | | 165 | 58 | 52 | 2 | 1.1 | 221 | 385 | 100RUB1602P | 106.5 | 113 | 147 | | | 180 | 46 | 46 | 2.1 | 2.1 | 251 | 375 | 100RUB22P | 111 | 117 | 163 | | | 215 | 73 | 73 | 3 | 1.5 | 435 | 595 | 100RUB23P | 108 | 125 | 190 | | 110 | 170 | 75 | 45 | 1.1 | 1.1 | 191 | 325 | 110RUB1701P | 116.5 | 121 | 155 | | 120 | 180 | 46 | 46 | 2.5 | 2.5 | 215 | 415 | 120RUB30P | 132 | 133 | 165 | | | 180 | 76 | 46 | 2 | 2 | 215 | 415 | 120RUB1801P | 129 | 133 | 166 | | | 200 | 80 | 80 | 2 | 2 | 370 | 680 | 120RUB41P | 129 | 136 | 174 | | 124.96 | 255 | 133 | 66 | 2.1 | 5 | 430 | 590 | 125RUB2502P | 144.96 | 154 | 229 | | 130 | 200
230 | 79
90 | 52
90 | 2 | 2
3 | 261
540 | 440
930 | 130RUB2001P
130RUB2301P | 139
143 | 144
149 | 184
200 | | 140 | 250 | 68 | 68 | 3 | 3 | 480 | 740 | 140RUB22P | 153 | 161 | 227 | | 150 | 250 | 100 | 100 | 2.1 | 2.1 | 540 | 1 040 | 150RUB41P | 161 | 169 | 219 | | | 270 | 130 | 96 | 3 | 3 | 690 | 1 210 | 150RUB2702P | 163 | 172 | 236 | | 180 | 280 | 100 | 100 | 2.1 | 2.1 | 635 | 1 300 | 180RUB40P | 191 | 200 | 250 | | | 300 | 136 | 96 | 3 | 3 | 630 | 1 250 | 180RUB3002P | 193 | 203 | 260 | | | 300 | 158 | 118 | 3 | 3 | 755 | 1 460 | 180RUB3001P | 193 | 203 | 260 | | | 320 | 140 | 112 | 4 | 4 | 950 | 1 690 | 180RUB3201P | 196 | 207 | 279 | | 200 | 310 | 82 | 82 | 2.5 | 2.5 | 635 | 1 210 | 200RUB30P | 213 | 222 | 286 | | | 310 | 109 | 109 | 2.1 | 2.1 | 770 | 1 540 | 200RUB40P | 211 | 222 | 280 | | | 340 | 140 | 140 | 3 | 3 | 1 080 | 2 200 | 200RUB41P | 213 | 229 | 295 | | 220 | 380 | 120 | 120 | 4 | 4 | 1 090 | 1 950 | 220RUB3801P | 236 | 251 | 341 | | | 400 | 108 | 108 | 4 | 4 | 1 040 | 1 770 | 220RUB22E1P | 236 | 255 | 358 | | 240 | 400 | 150 | 128 | 4 | 4 | 1 260 | 2 500 | 240RUB4001P | 256 | 269 | 362 | **■**Bearings for Continuous Casting Machines Cylindrical Roller Bearings with Aligning Rings(for Free End)–RUB Series Bore Diameter 50 – 110 mm Full-Complement | | | Boundary D | | | | Basic Load | o . | | Abutment | and Fillet D | imensions | |-----|-----------|------------|----------------|-----------|---------------------------------|-----------------|-------------------|------------------------|-----------------|----------------------|-----------------| | d | D | B (mi | m)
<i>b</i> | γ
min. | $oldsymbol{\mathcal{T}}_1$ min. | $C_{\rm r}$ (kN | $C_{0\mathrm{r}}$ | Bearing Numbers | $d_{ m a}$ min. | (mm) $d_{ m a}$ max. | $D_{ m a}$ min. | | 50 | 90
110 | 23
40 | 23
40 | 1.5 | 1.5 | 69.5
140 | 104
295 | 50RUB22PV
50RUB23PV | 57
59 | 58
70 | 80
94 | | 55 | 90 | 32 | 32 | 1.1 | 1.1 | 82 | 195 | 55RUB9001PV | 61.5 | 62.5 | 80 | | | 100 | 25 | 25 | 1.5 | 1.5 | 88 | 121 | 55RUB22APV | 62 | 63 | 90 | | 65 | 120 | 31 | 31 | 1.5 | 1.5 | 131 | 200 | 65RUB22PV | 73 | 75 | 107 | | | 140 | 48 | 48 | 2.1 | 2.1 | 221 | 440 | 65RUB23PV | 76 | 85 | 121 | | 70 | 125 | 31 | 31 | 1.5 | 1.5 | 127 | 213 | 70RUB22APV | 78 | 85 | 113 | | 75 | 130 | 31 | 31 | 1.5 | 1.5 | 151 | 248 | 75RUB22APV | 83 | 85 | 118 | | 85 | 150 | 65 | 65 | 2.5 | 2.5 | 286 | 595 | 85RUB1501P | 97 | 98 | 130 | | 90 | 150 | 72 | 60 | 1.5 | 1 | 262 | 575 | 90RUB1501PV | 95 | 101 | 131 | | | 190 | 64 | 64 | 3 | 1.5 | 415 | 780 | 90RUB23APV | 98 | 116 | 168 | | 100 | 150 | 50 | 50 | 2 | 2 | 230 | 530 | 100RUB40PV | 108 | 109 | 134 | | | 150 | 66 | 50 | 2 | 2 | 230 | 530 | 100RUB1501PV | 108 | 109 | 134 | | | 165 | 52 | 52 | 2 | 2 | 272 | 550 | 100RUB31PV | 109 | 113 | 147 | | | 180 | 46 | 46 | 2.1 | 2.1 | 277 | 545 | 100RUB22APV | 111 | 123 | 164 | | | 180 | 60.3 | 60.3 | 2.1 | 2.1 | 360 | 650 | 100RUB32PV | 111 | 116 | 160 | | 103 | 180 | 60 | 60 | 2 | 2 | 330 | 790 | 103RUB1801PV | 112 | 132 | 163 | | 110 | 170 | 45 | 45 | 2 | 2 | 246 | 565 | 110RUB30A1PV | 119 | 123 | 155 | | | 170 | 60 | 60 | 2 | 2 | 300 | 735 | 110RUB40PV | 119 | 123 | 151 | | | 180 | 56 | 56 | 2.5 | 2.5 | 335 | 670 | 110RUB31A1PV | 123 | 124 | 161 | | | 180 | 69 | 69 | 2 | 2 | 385 | 835 | 110RUB41A2PV | 119 | 123 | 157 | | | 200 | 53 | 53 | 2.5 | 2.1 | 380 | 625 | 110RUB22APV | 121 | 130 | 180 | **■**Bearings for Continuous Casting Machines Cylindrical Roller Bearings with Aligning Rings(for Free End)–RUB Series Bore Diameter 120 – 160 mm Full-Complement | | | Boundary D | | | | | ad Ratings
kN) | | Abutment | and Fillet D | imensions | |----------|------------|------------|----------|-----------|---------------------|-------------|-------------------|----------------------------|-----------------|-----------------|-----------------| | <i>d</i> | D | В (| <i>b</i> | γ
min. | ${m \gamma}_1$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | $d_{ m a}$ min. | $d_{ m a}$ max. | $D_{ m a}$ min. | | 120 | 180 | 46 | 46 | 2 | 2 | 275 | 625 | 120RUB30B2PV | 129 | 132 | 165 | | | 180 | 60 | 60 | 2 | 2 | 330 | 790 | 120RUB40A2PV | 129 | 132 | 163 | | | 180 | 80 | 60 | 2 | 2 | 330 | 790 | 120RUB1803PV | 129 | 132 | 163 | | | 200 | 80 | 80 | 2.5 | 2.5 | 470 | 1 040 | 20RUB41A1PV | 133 | 137 | 174 | | | 225 | 58 | 58 | 2.5 | 2.5 | 460 | 690 | 120RUB2201APV | 133 | 138 | 204 | | 130 | 200 | 69 | 69 | 2 | 2 | 410 | 955 | 130RUB40A1PV | 139 | 143 | 180 | | | 210 | 64 | 64 | 2 | 2 | 415 | 865 | 130RUB31APV | 139 | 144 | 189 | | | 210 | 80 | 80 | 2 | 2 | 510 | 1 130 | 130RUB41A2PV | 139 | 144 | 184 | | | 230
230 | 64
80 | 64
80 | 3 | 3 | 495
585 | 840
1 090 | 130RUB22APV
130RUB32APV | 143
143 | 151
146 | 208
204 | | 140 | 210 | 53 | 53 | 2 | 2 | 365 | 885 | 140RUB30A2PV | 149 | 155 | 194 | | | 210 | 69 | 69 | 2 | 2 | 420 | 990 | 140RUB40APV | 149 | 152 | 190 | | | 225 | 68 | 68 | 2.1 | 2.1 | 485 | 1 000 | 140RUB31APV | 151 | 156 | 203 | | | 225 | 85 | 85 | 2.1 | 2.1 | 575 | 1 310 | 140RUB41A1PV | 151 | 156 | 200 | | | 250 | 68 | 68 | 3 | 3 | 510 | 1 110 | 140RUB22APV | 153 | 172 | 227 | | | 250 | 88 | 88 | 3 | 3 | 670 | 1 500 | 140RUB32PV | 153 | 170 | 221 | | 150 | 225 | 56 | 56 | 2.5 | 2.5 | 390 | 840 | 150RUB30APV | 163 | 166 | 208 | | | 225 | 75 | 75 | 2.1 | 2.1 | 485 | 1 210 | 150RUB40A1PV | 161 | 165 | 203 | | | 225 | 92 | 75 | 2.1 | 2.1 | 465 | 1 160 | 150RUB2201PV | 161 | 164 | 203 | | | 250 | 80 | 80 | 2.1 | 2.1 | 595 | 1 290 | 150RUB31APV | 161 | 170 | 221 | | | 250 | 100 | 100 | 2.1 | 2.1 | 710 | 1 620 | 150RUB41APV | 161 | 170 | 219 | | | 270 | 96 | 96 | 3 | 3 | 815 | 1 640 | 150RUB32APV | 163 | 174 | 236 | | 160 | 240 | 80 | 80 | 2.1 | 2.1 | 530 | 1 330 | 160RUB40A1PV | 171 | 176 | 217 | | | 240 | 85 | 80 | 2.1 | 2.1 | 530 | 1 330 | 160RUB2402PV | 171 | 176 | 217 | | | 270 | 109 | 109 | 2.1 | 2.1 | 855 | 1 830 | 160RUB41AE2PV | 171 | 181 | 237 | Cylindrical Roller Bearings with Aligning Rings(for Free End)–RUB Series Bore Diameter 170 – 240 mm Full-Complement | | | , | Dimensions | | | | ad Ratings | | Abutment | t and Fillet D | imensions | |-----|-----|-----|------------|------|-------|-------------|-------------------|-----------------|-------------------------------|-------------------------------|------------------| | | | • | m) | | | , | (N) | Bearing Numbers | | (mm) | | | d | D | B | b | r | r_1 | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Boaring Namboro | $d_{\scriptscriptstyle m a}$ | $d_{\scriptscriptstyle m a}$ | D_{a} | | | | | | min. | min. | | | | min. | max. | min. | | 170 | 260 | 67 | 67 | 2.1 | 2.1 | 555 | 1 130 | 170RUB30APV | 181 | 188 | 239 | | | 260 | 90 | 90 | 2.1 | 2.1 | 655 | 1 580 | 170RUB40A1PV | 181 | 188 | 233 | | | 310 | 110 | 110 | 4 | 4 | 1 060 | 2 090 | 170RUB32APV | 186 | 195 | 273 | | 180 | 280 | 100 | 100 | 2.5 | 2.5 | 785 | 1 870 | 180RUB40APV | 193 | 198 | 250 | | | 300 | 118 | 118 | 3 | 3 | 940 | 2 120 | 180RUB41APV | 193 | 202 | 260 | | | 320 | 112 | 112 | 4 | 4 | 1 090 | 2 190 | 180RUB32APV | 196 | 204 | 279 | | 190 | 290 | 100 | 100 | 2.1 | 2.1 | 850 | 2 100 | 190RUB40A1PV | 201 | 210 | 260 | | | 320 | 104 | 104 | 3 | 3 | 1 050 | 2 240 | 190RUB31APV | 203 | 214 | 286 | | | 340 | 120 | 120 | 4 | 4 | 1 210 | 2 430 | 190RUB32APV | 206 | 218 | 297 | | 200 | 310 | 109 | 109 | 2.1 | 2.1 | 1 030 | 2 550 | 200RUB40A1PV | 211 | 219 | 280 | | | 340 | 112 | 112 | 3 | 3 | 1 160 | 2 470 | 200RUB31APV | 213 | 230 | 305 | | | 340 | 140 | 140 | 3 | 3 | 1 340 | 3 100 | 200RUB41APV | 213 | 230 | 295 | | 220 | 340 | 90 | 90 | 3 | 3 | 905 | 2 020 | 220RUB30PV | 233 | 243 | 313 | | | 340 | 118 | 118 | 3 | 3 | 1 110 | 2 630 | 220RUB40APV | 233 | 243 | 308 | | | 340 | 135 | 118 | 3 | 3 | 1 010 | 2 670 | 220RUB3401PV | 233 | 247 | 308 | | | 370 | 150 | 150 | 4 | 4 | 1 510 | 3 500 | 220RUB41APV | 236 | 248 | 322 | | 240 | 400 | 128 | 128 | 4 | 4 | 1 540 | 3 400 | 240RUB31APV | 256 | 271 | 362 | Railway Rolling Stock Wind Power Industry ## Split Cylindrical Roller Bearings (for Segmented Rolls)-RNPH Series | Fig. | 1 | |------|---| |------|---| | Bearing Numbers | | Boundary Dim | ensions (mm) | | | Basic Load | Ratings (kN) | Roll Diameter (mm) | Fig. | |-----------------|-----|--------------|--------------|------------|-----|-------------|-------------------|----------------------|------| | | d | D | $B_{ m i}$ | $B_{ m e}$ | r | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Hon Blameter (IIIII) | rig. | | 100RNPH1801 | 100 | 185 | 169 | 74 | 15 | 475 | 950 | 225 | 2 | | 110RNPH1801 | 110 | 180 | 137 | 49 | 15 | 272 | 570 | 230 | 2 | | 110RNPH1803 | 110 | 185 | 154 | 76 | 20 | 450 | 1 070 | 230 | 2 | | 110RNPH2001 | 110 | 200 | 179 | 80 | 20 | 535 | 1 090 | 250 | 2 | | 115RNPH2001 | 115 | 205 | 202 | 98 | 15 | 625 | 1 460 | 240 | 2 | | 120RNPH1901 | 120 | 195 | 157 | 66 | 20 | 410 | 950 | 250 | 2 | | 120RNPH2001 | 120 | 205 | 179 | 80 | 20 | 560 | 1 220 | 255 | 2 | | 130RNP2001 | 130 | 205 | 139 | 60 | 20 | 455 | 1 030 |
270 | 1 | | 130RNP2101 | 130 | 215 | 174 | 75 | 20 | 540 | 1 190 | 280 | 1 | | 130RNPH2105 | 130 | 215 | 143 | 60 | 20 | 460 | 975 | 250 | 2 | | 130RNPH2107 | 130 | 215 | 174 | 75 | 20 | 550 | 1 230 | 250 | 2 | | 130RNPH2201 | 130 | 225 | 189 | 90 | 20 | 670 | 1 460 | 280 | 2 | | 130RNPH2202 | 130 | 220 | 186 | 79 | 20 | 555 | 1 370 | 280 | 2 | | 135RNPH2101 | 135 | 215 | 183 | 84 | 20 | 570 | 1 350 | 250 | 2 | | 135RNPH2102 | 135 | 210 | 183 | 84 | 20 | 515 | 1 350 | 250 | 2 | | 140RNPH2102 | 140 | 215 | 162 | 60 | 20 | 415 | 950 | 270 | 2 | | 140RNPH2103 | 140 | 215 | 189 | 74 | 2.5 | 490 | 1 170 | 265 | 2 | | 140RNPH2302 | 140 | 235 | 194 | 84 | 20 | 665 | 1 530 | 285 | 2 | | 140RNP2401 | 140 | 245 | 184 | 85 | 20 | 710 | 1 510 | 310 | 1 | | 145RNPH2201 | 145 | 225 | 179 | 76 | 20 | 560 | 1 340 | 280 | 2 | | 145RNPH2303 | 145 | 232 | 196 | 84 | 20 | 630 | 1 440 | 280 | 2 | | 145RNPH2401 | 145 | 240 | 208 | 89 | 20 | 765 | 1 780 | 295 | 2 | | 150RNPH2303 | 150 | 230 | 199 | 78 | 2.5 | 555 | 1 340 | 280 | 2 | | 150RNPH2401 | 150 | 245 | 159 | 80 | 20 | 680 | 1 550 | 280 | 2 | | 150RNPH2403 | 150 | 240 | 195 | 84 | 18 | 690 | 1 630 | 290 | 2 | | 150RNPH2503 | 150 | 250 | 169 | 70 | 20 | 640 | 1 500 | 300 | 2 | | 150RNPH2505 | 150 | 250 | 208 | 89 | 20 | 780 | 1 840 | 295 | 2 | | 150RNPH2601 | 150 | 265 | 187 | 98 | 20 | 900 | 1 950 | 320 | 2 | | 150RNPH2702 | 150 | 275 | 199 | 100 | 20 | 945 | 1 970 | 330 | 2 | | 155RNPH2401 | 155 | 245 | 199 | 88 | 20 | 740 | 1 720 | 300 | 2 | | 160RNPH2502 | 160 | 255 | 199 | 90 | 20 | 735 | 1 730 | 310 | 2 | | 160RNPH2504 | 160 | 255 | 189 | 86 | 20 | 745 | 1 780 | 305 | 2 | | 160RNPH2601 | 160 | 265 | 200 | 82 | 20 | 745 | 1 700 | 320 | 2 | | 160RNPH2703 | 160 | 275 | 214 | 100 | 25 | 945 | 2 190 | 325 | 2 | | 170RNPH2601 | 170 | 265 | 214 | 100 | 20 | 880 | 2 050 | 330 | 2 | | 180RNPH2901 | 180 | 290 | 214 | 85 | 20 | 880 | 2 050 | 335 | 2 | **Remark** Other bearings are available. Please contact NSK for additional information. D 124 D 125 Railway Rolling Stock ## Plummer Units for Split Cylindrical Roller Bearings-PCR Series | | Obet Diseases (| | | | D-: 1 / | Dii () | | | | | | |-----------------|--------------------|-----|-----|-------|---------|-----------------|----------------|-----|-------|-------|-------------| | Bearing Numbers | Shaft Diameter(mm) | | | | _ | Dimensions (mm) | | _ | _ | | | | | d | L | A | H | h_1 | H_2 | ℓ ₁ | J | J_1 | N_1 | S_1 | | 100PCR2201 | 100 | 235 | 152 | 132 | 10 | 234.5 | 9 | 165 | 100 | 4 | M20 | | 110PCR2301 | 110 | 230 | 120 | 160 | 10 | 265 | 9.5 | 140 | _ | 2 | M30 | | 110PCR2303 | 110 | 230 | 135 | 180 | 10 | 285 | 10 | 170 | _ | 2 | M30 | | 110PCR2502 | 110 | 250 | 156 | 150 | 11.5 | 263.5 | 12 | | _ | 1 | M36 | | 115PCR2401 | 115 | 245 | 183 | 190 | 10 | 300 | 10 | 150 | _ | 2 | M24 | | 120PCR2501 | 120 | 250 | 142 | 165 | 11.5 | 278.5 | 9 | 190 | 90 | 4 | M24 | | 120PCR2502 | 120 | 255 | 162 | 230 | 10 | 347.5 | 9 | 205 | 100 | 4 | M24 | | 130PCR2701 | 130 | 265 | 118 | 190 | 11.5 | 313.5 | 11 | 195 | 65 | 4 | M30 | | 130PCR2801 | 130 | 280 | 156 | 160 | 10 | 290 | 9.5 | 200 | 100 | 4 | M24 | | 130PCR2705 | 130 | 270 | 132 | 197 | 9 | 313 | 6 | 220 | 93 | 4 | 3/4-10UNC | | 130PCR2604 | 130 | 265 | 175 | 145 | 10 | 260 | 7.5 | 210 | 120 | 4 | M16 | | 130PCR2802 | 130 | 280 | 172 | 180 | 11.5 | 308.5 | 9 | 220 | 110 | 4 | M30 | | 130PCR2603 | 130 | 265 | 171 | 175 | 12.5 | 295 | 8 | 230 | 90 | 4 | M20 | | 135PCR2701 | 135 | 270 | 160 | 160 | 10 | 275 | 12 | 180 | 130 | 4 | M20 | | 135PCR2502 | 135 | 250 | 160 | 160 | 10 | 275 | 12 | 150 | 130 | 4 | M20 | | 140PCR2701 | 140 | 270 | 145 | 180 | 10 | 305 | 9.5 | 170 | _ | 2 | M30 | | 140PCR2601 | 140 | 265 | 174 | 175 | 7.5 | 300 | 8 | 230 | 130 | 4 | M20 | | 140PCR2804 | 140 | 285 | 179 | 175 | 12.5 | 305 | 8 | 250 | 97.5 | 4 | M20 | | 140PCR3101 | 140 | 310 | 166 | 175 | 10 | 320 | 9.5 | 220 | 110 | 4 | M24 | | 145PCR2801 | 145 | 280 | 162 | 250 | 10 | 380 | 9 | 220 | 100 | 4 | M30 | | 145PCR2804 | 145 | 280 | 183 | 260 | 10 | 390 | 7 | 220 | 123 | 4 | M30 | | 145PCR2901 | 145 | 295 | 195 | 270 | 10 | 407.5 | 7 | 230 | 130 | 4 | M30 | | 150PCR2801 | 150 | 280 | 184 | 175 | 10 | 305 | 8 | 230 | 140 | 4 | M20 | | 150PCR280 | 150 | 330 | 144 | 310 | 10 | 440 | 8 | 350 | 260 | 4 | φ 33 | | 150PCR3004 | 150 | 305 | 180 | 205.5 | 14.5 | 336 | 8 | 230 | 120 | 4 | M24 | | 150PCR3003 | 150 | 300 | 150 | 180 | 10 | 320 | 10 | 195 | 90 | 4 | M30 | | 150PCR2901 | 150 | 295 | 193 | 310 | 10 | 447.5 | 8 | 215 | 126 | 4 | M30 | | 150PCR3203 | 150 | 320 | 168 | 220 | 15 | 365 | 10 | 240 | 90 | 4 | M36 | | 150PCR3301 | 150 | 330 | 182 | 220 | 11.5 | 373.5 | 9 | 260 | 110 | 4 | M36 | | 155PCR3001 | 155 | 300 | 182 | 260 | 10 | 400 | 9 | 240 | 110 | 4 | M30 | | 160PCR3101 | 160 | 310 | 178 | 185 | 16.5 | 323.5 | 11 | 150 | _ | 2 | M30 | | 160PCR3002 | 160 | 305 | 174 | 217 | 12.5 | 357 | 8 | 255 | 135 | 4 | 3/4-10UNC | | 160PCR3302 | 160 | 330 | 185 | 225 | 20 | 365 | 8 | 250 | 130 | 4 | M24 | | 160PCR3401 | 160 | 340 | 199 | 200 | 15.5 | 347 | 8 | 290 | 130 | 4 | M20 | | 170PCR3301 | 170 | 320 | 194 | 290.5 | 10 | 445.5 | 10.5 | 260 | 340 | 4 | φ 26 | | 180PCR3301 | 180 | 335 | 150 | 217.5 | 10 | 375 | 10 | 240 | 82 | 4 | M30 | Remark Other bearings are available. Please contact NSK for additional information. way Stock ## **Bearings for Rolling Mills** Four-Row Tapered Roller Bearings for Roll Necks - Higher reliability and longer operating life prevent unexpected accidents - Benefits @ Bearing seal requires less cleaning of work environment and reduces grease consumption - Reduced maintenance costs INDUSTRY SOLUTIONS ### 3. Countermeasures ### Design measures ### Features Extra-Capacity Sealed-Clean™ Four-Row Tapered Roller Bearings-KVS Series - · Higher load capacity: increased by 15%~35% compared to conventional sealed bearings - · Adoption of Super-TF™ steel as standard - · Controlled negative pressure during rolling to prevent water infiltration - · Improved sealing through usage of heat- and wear-resistant sealing materials - · Easier handling of seals ### ■ Material measures 1 ### Features Super-TF™ Bearings-STF Series - Adoption of Super-TF™ material - · Control of the retained austenite reduces concentration of stress resulting from dents caused by infiltration of debris | | Comparison of | Comparison of actual life extension in field test | | | | | | |-----------------------------|---------------|---|--|-----|--|--|--| | Conventional sealed bearing | 1 | | | for | | | | | KVS Bearing | 2 | 2 | | | | | | uper-TF™ steel is used as standard r KVS type and KVE. ### Material measures 2 ### Features Water-TF™ Bearings-WTF Series - · Adoption of super-clean steel with optimum alloy balance controls development and progress of cracks at early flaking stage caused by water infiltration - Control of the retained austenite reduces concentration of stress resulting from dents caused by infiltration of debris Water-TF™ steel is used as a special purpose bearing series for KVS type and KVE. (*1): Photo courtesy of NIPPON STEEL & SUMITOMO METAL CORPORATION KASHIMA WORKS pamphlet. D 131 D 130 # Sealed Four-Row Tapered Roller Bearings(STF/WTF Series) Figures of Typical Four-Row Tapered Roller Bearings **■**Bearings for Rolling Mills Basic Design of Two Seal Type (KVE) Figure 1 | | Variations of Bearing in Figure 1 | |-----|---| | 1-1 | Oil holes in cup spacers | | 1-2 | Without intermediate bore seal (for dry rolling) | | 1-3 | Without intermediate bore seal, with holes in cup spacers | | 1-4 | With cone spacer, with intermediate bore seal | | 1-5 | For vertical roll (special cup spacers) | Basic Design of Four Seal Type (KVE) Figure 2 | | Variations of Bearing in Figure 2 | |-----|-----------------------------------| | 2-1 | Oil holes in cup spacers | | 2-2 | Clearance between cone faces | | | | | | | | | | | | | Basic Design of Two Seal Type (KVS) Figure 3 | | Variations of Bearing in Figure 3 | |-----|-----------------------------------| | 3-1 | Oil holes in cup spacers | | | | | | | | | | | | | | | | ## **■**Bearings for Rolling Mills ## Sealed Four-Row Tapered Roller Bearings (STF/WTF Series) Bore Diameter 101.600 – 250 mm ### Dynamic Equivalent Load | $P = XF_r + YF_a$ | | |------------------------------|--| | $F_{\rm a}/F_{\rm r} \leq e$ | | | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | | | |---------------|------------|---------------|-----------------------|--|--| | X | Y | X | Y | | | | 1 | Y_3 | 0.67 | <i>Y</i> ₂ | | | ### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ Where $Y_0 = Y_3$ The values of e, Y_2 , and Y_3 are given in the table below. | | Boundary Dimensions | | | | | | | ad Ratings | | Descine No. | Descriptor Number | | | Axial | | Mass | |---------------------------------|--|--|--|---------------------------------------|---|---|---|---|---|--|--|----------------------------------|--|---|---|---| | | | (mm/inch) |
 | | (ki | , | {k | • | Bearing Numbers | Bearing Numbers | Figure(1) | Constant | Fac | tors | (kg) | | d | D | B_4 | C_4 | r_1 | r | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | C_{0r} | STF Series | WTF Series | • () | | 17 | 17 | | | | | | | min. | min. | | | | | | | | e | Y_2 | Y_3 | approx. | | 101.600
4.000 | 200.025
7.8750 | 320.000
12.5984 | 320.000
12.5984 | 1.0 | 3.0 | 1 450 | 2 420 | 148 000 | 247 000 | *STF101KVE2051Eg | | 1-2 | 0.36 | 2.8 | 1.9 | 47.8 | | 150
170
187.325
7.3750 | 210
240
269.875
10.6250 | 240
175
230.000
9.0551 | 240
175
230.000
9.0551 | 1
2.5
2.0 | 2.5
2.5
3.3 | 990
1 020
1 460 | 2 270
2 000
3 200 | 101 000
103 000
149 000 | 231 000
204 000
325 000 | STF150KVE2101Eg
STF170KVS2401Eg
*STF187KVE2651Eg | | 1-1
3
1-1 | 0.32
0.32
0.29 | 3.2
3.2
3.4 | 2.1
2.1
2.3 | 26.1
23
43.6 | | 215.900
8.5000 | 288.925
11.3750 | 177.800
7.0000 | 177.800
7.0000 | 0.8 | 3.3 | 1 070 | 2 350 | 109 000 | 239 000 | *STF215KVS2851Eg | *WTF215KVS2851Eg | 3 | 0.49 | 2.1 | 1.4 | 38 | | 216.103
8.5080 | 330.2
13.0000 | 263.525
10.3750 | 269.875
10.6250 | 1.5 | 3.3 | 2 290 | 4 550 | 233 000 | 465 000 | *STF216KVS3351Eg | *WTF216KVS3351Eg | 3 | 0.46 | 2.2 | 1.5 | 77 | | 225
228.600
9.0000 | 295
295
300
320
330
320
400.050
15.7500 | 315
335
270
290
260
230
296.875
11.6880 | 315
335
270
290
260
230
296.875
11.6880 | 1
1
2.5
1.5
4
1
3.3 | 2.5
2.5
2.5
2.5
3
2
3.3 | 1 410
1 410
1 650
1 970
2 330
1 510
2 410 | 3 450
3 450
4 000
4 500
4 800
3 300
4 250 | 144 000
144 000
168 000
201 000
237 000
154 000
246 000 | 350 000
350 000
410 000
460 000
490 000
335 000
435 000 | STF220KVE2902Eg
STF220KVE2901Eg
STF220KVE3001Eg
STF220KVS3201Eg
STF220KVS3301Eg
STF225KVE3201Eg
*STF225KVE4052Eg | WTF220KVE2902Eg
WTF220KVE2901Eg
WTF220KVE3001Eg
WTF220KVS3201Eg
WTF220KVS3301Eg
WTF225KVE3201Eg
*WTF228KVE4052Eg | 2-1
2-1
1-2
1
3
1 | 0.40
0.40
0.41
0.33
0.40
0.41
0.46 | 2.5
2.5
2.5
3.0
2.5
2.4
2.2 | 1.7
1.7
1.7
2.0
1.7
1.6
1.5 | 61.2
65
56.5
78.7
76
59.9
161 | | 234.950
9.2500 | 327.025
12.8750 | 196.850
7.7500 | 196.850
7.7500 | 1.5 | 3.3 | 1 550 | 3 200 | 158 000 | 325 000 | *STF234KVS3251Eg | *WTF234KVS3251Eg | 3 | 0.46 | 2.2 | 1.5 | 49 | | 244.475
9.6250 | 320
338
338
327.025
12.8750 | 250
248
290
193.680
7.6250 | 250
248
290
193.680
7.6250 | 3
2
2
1.5 | 3
3
3
3 | 1 510
1 820
2 120
1 370 | 3 700
4 000
5 000
3 300 | 154 000
185 000
216 000
148 000 | 375 000
405 000
510 000
325 000 | STF240KVE3202Eg
STF240KVE3301Eg
STF240KVE3302Eg
*STF244KVS3251Eg | WTF240KVE3202Eg
WTF240KVE3301Eg
WTF240KVE3302Eg
*WTF244KVS3251Eg | 1
1
1
3 | 0.33
0.43
0.42
0.40 | 3.0
2.3
2.4
2.5 | 2.0
1.6
1.6
1.7 | 56.3
70.6
82.6
43 | | 245
250 | 345
365
365 | 310
270
270 | 310
270
270 | 2
2.5
2.5 | 3
3
3 | 2 700
2 210
2 210 | 6 650
4 650
4 650 | 275 000
225 000
225 000 | 680 000
475 000
475 000 | STF245KVS3402Eg
STF250KVE3601AEg
STF250KVE3601Eg | WTF245KVS3402Eg
WTF250KVE3601AEg
WTF250KVE3601Eg | 3
1
1-1 | 0.40
0.33
0.33 | 2.5
3.0
3.0 | 1.7
2.0
2.0 | 85
96
96 | **Remark** The bearings denoted by an asterisk (*) are inch design Note (1) Refer to pages D130 and D131. | SIRY | TIONS | |------|-------| | 2 | SOLU | | | | **■**Bearings for Rolling Mills ## Sealed Four-Row Tapered Roller Bearings (STF/WTF Series) Bore Diameter 254.000 – 304.902 mm ### Dynamic Equivalent Load | $P = XF_r + YF_a$ | | | | | | | | | | |-------------------|------------|---------------------------|-------|--|--|--|--|--|--| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | | | | X | Y | X | Y | | | | | | | | 1 | Y_3 | 0.67 | Y_2 | | | | | | | ### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ Where $Y_0 = Y_3$ The values of e, Y_2 , and Y_3 are given in the table below. | Boundary Dimensions | | | | | Basic Load Ratings | | | | | | | | Axial Load | | Mass | | |---|--|--|--|---|---|---|---|---|---|--|--|---------------------------------------|--|---|--|--| | | | (mm/inch) | | | | , | kN) | | gf} | Bearing Numbers | Bearing Numbers | Figure(1) | Constant | Fac | tors | (kg) | | d | D | B_4 | C_4 | $m{r}_1$ min. | | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | STF Series | WTF Series | 19217() | e | Y_2 | Y_3 | approx. | | 254.000
10.0000 | 358.775
14.1250 | 269.875
10.6250 | 269.875
10.6250 | 1.5 | 3.3 | 2 420 | 5 500 | 247 000 | 560 000 | *STF254KVS3552Eg | *WTF254KVS3552Eg | 3 | 0.40 | 2.5 | 1.7 | 86 | | 260 | 365
365 | 340
340 | 340
340 | 2.7
2.5 | 4 4 | 2 960
2 960 | 7 350
7 350 | 300 000
300 000 | 750 000
750 000 | STF260KVS3601Eg
STF260KVS3651Eg | WTF260KVS3601Eg
WTF260KVS3651Eg | 3 | 0.40
0.40 | 2.5
2.5 | 1.7
1.7 | 110
110 | | 260.350
10.2500 | 422.275
16.6250 | 314.325
12.3750 | 317.500
12.5000 | 6.4 | 3.3 | 3 600 | 7 050 | 370 000 | 720 000 | *STF260KVS4251Eg | *WTF260KVS4251Eg | 3 | 0.33 | 3.0 | 2.0 | 170 | | 266.700
10.5000 | 355.600
14.0000 | 230.188
9.0625 | 228.600
9.0000 | 1.5 | 3.3 | 1 960 | 4 600 | 200 000 | 470 000 | *STF266KVS3551Eg | *WTF266KVS3551Eg | 3 | 0.35 | 2.9 | 1.9 | 62 | | 276.225
10.8750 | 393.700
15.5000 | 269.875
10.6251 | 269.875
10.6251 | 1.5 | 3.3 | 2 720 | 6 100 | 277 000 | 620 000 | *STF276KVS3952Eg | *WTF276KVS3952Eg | 3 | 0.45 | 2.2 | 1.5 | 105 | | 279.400
11.0000 | 393.700
15.5000 | 269.875
10.6250 | 269.875
10.6250 | 1.5 | 6.4 | 2 720 | 6 100 | 277 000 | 620 000 | *STF279KVS3952Eg | *WTF279KVS3952Eg | 3 | 0.45 | 2.2 | 1.5 | 102 | | | 393.700
15.5000 | 270.630
10.6547 | 269.875
10.6250 | 1.5 | 6.4 | 2 290 | 5 150 | 233 000 | 525 000 | *STF279KVE3951Eg | *WTF279KVE3951Eg | 1 | 0.41 | 2.5 | 1.7 | 105 | | 279.4
280
290
304.648
11.9940 | 393.7
410
380
395
395
410
412
400
438.048
17.2460 | 320
420
290
340
340
268
340
346
280.990
11.6260 | 320
420
290
340
340
268
340
346
279.400
11.0000 | 1.5
1
1.5
1.5
1.5
1.5
3
3
3.3 | 6.4
6.4
3
2.5
2.5
6.4
3
4
3.3 | 3 100
3 300
2 230
2 950
2 950
2 330
3 300
3 250
3 100 | 7 350
7 400
5 350
7 050
7 050
4 600
7 400
8 400
6 750 | 315 000
335 000
227 000
300 000
300 000
237 000
335 000
330 000
315 000 | 745 000
755 000
545 000
720 000
720 000
470 000
755 000
855 000
690 000 | STF279KVS3954Eg
STF279KVE4101Eg
STF280KVE3801Eg
STF280KVE3901Eg
STF280KVE3902Eg
STF280KVE4101Eg
STF280KVE4102Eg
STF290KVS4001Eg
*STF304KVS4351Eg | WTF279KVS3954Eg
WTF279KVE4101Eg
WTF280KVE3801Eg
WTF280KVE3901Eg
WTF280KVE3902Eg
WTF280KVE4101Eg
WTF280KVE4102Eg
WTF290KVS4001Eg
*WTF304KVS4351Eg | 2
1-4
1
1
1-4
1-1
3 | 0.40
0.42
0.37
0.40
0.40
0.33
0.42
0.40
0.45 | 2.5
2.4
2.7
2.5
2.5
3.0
2.4
2.5
2.2 | 1.7
1.6
1.8
1.7
1.7
2.0
1.6
1.7 | 120
190
96.2
133
133
121
156
112
132 | | | 438.048
17.2460 | 281.740
11.0921 | 279.400
11.0000 | 3.3 | 3.3 | 2 630 | 5 600 | 268 000 | 570 000 | *STF304KVE4351Eg | *WTF304KVE4351Eg | 1-2 | 0.47 | 2.1 | 1.4 | 140 | | 304.8
12.0000 | 419.100
16.5000 | 269.875
10.6250 | 269.875
10.6250 | 1.5 | 6.4 | 2 850 | 6 550 | 291 000 | 665 000 | *STF304KVS4151Eg | *WTF304KVS4151Eg | 3 | 0.33 | 3.0 | 2.0 | 111 | | 304.902
12.0040 | 412.648
16.2460 | 266.700
10.5000 | 266.700
10.5000 | 1.5 | 3.3 | 2 760 | 6 500 | 281 000 | 665 000 | *STF304KVS4152Eg | *WTF304KVS4152Eg | 3 | 0.33 | 3.0 | 2.0 | 100 | Remark The bearings denoted by an asterisk (*) are inch design. Note (1) Refer to pages D130 and D131. Sealed Four-Row Tapered Roller Bearings (STF/WTF Series) Bore Diameter 310 – 482.600 mm **■**Bearings for Rolling Mills ### Dynamic Equivalent Load | $P = XF_r + YF_a$ | | | | | | | | | | |-------------------|------------|---------------------------|-----------------------|--|--|--|--|--|--
 | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F_{\rm r} > e$ | | | | | | | | | X | Y | X | Y | | | | | | | | 1 | Y_3 | 0.67 | <i>Y</i> ₂ | | | | | | | ### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ Where $Y_0 = Y_3$ The values of e, Y_2 , and Y_3 are given in the table below. | Boundary Dimensions | | | | | Basic Lo | ad Ratings | - | | | | | Axial Load | | Mass | | | |---------------------------|---------------------------|---------------------------|---------------------------|------------|-----------|----------------|------------------|--------------------|------------------------|-------------------------------------|-------------------------------------|------------|--------------|------------|------------|------------| | | | (mm/inch) | | | | , | (N) | | kgf} | Bearing Numbers | Bearing Numbers | Figure(1) | Constant | Fact | tors | (kg) | | d | D | B_4 | C_4 | r_1 min. | γ
min. | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | STF Series | WTF Series | 3(,) | e | Y_2 | Y_3 | approx. | | 310 | 430
430 | 310
350 | 310
350 | 3
2.7 | 3
3 | 3 350
3 700 | 8 200
9 550 | 345 000
375 000 | 835 000
970 000 | STF310KVS4301Eg
STF310KVS4302Eg | WTF310KVS4301Eg
WTF310KVS4302Eg | 3 | 0.46
0.46 | 2.2 2.2 | 1.5
1.5 | 140
155 | | 317.500
12.5000 | 422.275
16.6250 | 269.875
10.6250 | 269.875
10.6250 | 1.5 | 3.3 | 2 740 | 6 750 | 279 000 | 690 000 | *STF317KVS4251Eg | *WTF317KVS4251Eg | 3 | 0.34 | 3.0 | 2.0 | 100 | | | 447.675
17.6250 | 367.000
14.4488 | 367.000
14.4488 | 2.5 | 3.0 | 3 450 | 8 100 | 350 000 | 825 000 | *STF317KVE4451Eg | *WTF317KVE4451Eg | 1 | 0.46 | 2.2 | 1.5 | 184 | | 343.052
13.5060 | 457.098
17.9960 | 254.000
10.0000 | 254.000
10.0000 | 1.5 | 3.3 | 2 430 | 6 700 | 289 000 | 685 000 | *STF343KVS4551Eg | *WTF343KVS4551Eg | 3 | 0.45 | 2.2 | 1.5 | 110 | | | 457.098
17.9960 | 299.000
11.7717 | 299.000
11.7717 | 1.5 | 3.3 | 2 830 | 6 950 | 289 000 | 705 000 | *STF343KVE4561Eg | *WTF343KVE4561Eg | 1 | 0.46 | 2.2 | 1.5 | 137 | | 355.600
14.0000 | 457.200
18.0000 | 252.412
9.9375 | 252.412
9.9375 | 1.5 | 3.3 | 2 650 | 6 750 | 270 000 | 685 000 | *STF355KVS4551Eg | *WTF355KVS4551Eg | 3 | 0.32 | 3.2 | 2.1 | 98 | | 395
406.400
16.0000 | 545
546.100
21.5000 | 360
288.925
11.3750 | 360
288.925
11.3750 | 2.5
1.5 | 5
6.4 | 3 600
3 950 | 9 050
9 450 | 365 000
400 000 | 920 000
965 000 | STF395KVE5401Eg
*STF406KVS5451Eg | WTF395KVE5401Eg
*WTF406KVS5451Eg | 1-1
3 | 0.47
0.48 | 2.1
2.1 | 1.4
1.4 | 255
184 | | | 546.100
21.5000 | 346.000
13.6221 | 346.000
13.6221 | 0.5 | 6.4 | 2 560 | 5 800 | 261 000 | 590 000 | *STF406KVE5454Eg | *WTF406KVE5454Eg | 2-1 | 0.47 | 2.1 | 1.4 | 231 | | 420 | 590 | 395 | 375 | 2.5 | 5 | 3 550 | 8 200 | 365 000 | 835 000 | STF420KVE5901Eg | WTF420KVE5901Eg | 1-1 | 0.80 | 1.3 | 8.0 | 332 | | 440 | 590
620 | 510
454 | 510
454 | 4 | 4
6 | 5 450
6 500 | 14 300
15 700 | 555 000
665 000 | 1 460 000
1 600 000 | STF440KVE5901Eg
STF440KVE6201Eg | WTF440KVE5901Eg
WTF440KVE6201Eg | 2-1
1-1 | 0.38
0.33 | 2.7
3.0 | 1.8
2.0 | 396
435 | | 450 | 595 | 368 | 368 | 4 | 5 | 5 550 | 15 000 | 565 000 | 1 520 000 | STF450KVS5901Eg | WTF450KVS5901Eg | 3 | 0.33 | 3.0 | 2.0 | 272 | | 457.200
18.0000 | 596.900
23.5000 | 276.225
10.8750 | 279.400
11.0000 | 1.5 | 3.3 | 4 000 | 9 850 | 405 000 | 1 010 000 | *STF457KVS5951Eg | *WTF457KVS5951Eg | 3 | 0.47 | 2.2 | 1.4 | 206 | | 460 | 590 | 470 | 470 | 2.5 | 5 | 4 900 | 14 100 | 500 000 | 1 440 000 | STF460KVE5901Eg | WTF460KVE5901Eg | 1-1 | 0.28 | 3.6 | 2.4 | 322 | | 480 | 615
678 | 435
574 | 435
574 | 3 | 5
5 | 4 650
8 400 | 12 800
21 500 | 470 000
860 000 | 1 310 000
2 190 000 | STF480KVE6101AEg
STF480KVE6702Eg | WTF480KVE6101AEg
WTF480KVE6702Eg | 2-2
2-1 | 0.32
0.34 | 3.2
3.0 | 2.1
2.0 | 323
662 | | 482.600
19.0000 | 615.950
24.2500 | 330.200
13.0000 | 330.200
13.0000 | 4.3 | 6.4 | 4 900 | 13 500 | 500 000 | 1 370 000 | *STF482KVS6151Eg | *WTF482KVS6151Eg | 3 | 0.33 | 3.1 | 2.1 | 235 | Remark The bearings denoted by an asterisk (*) are inch design. Note (1) Refer to pages D130 and D131. **■**Bearings for Rolling Mills ## Sealed Four-Row Tapered Roller Bearings (STF/WTF Series) Bore Diameter 482.600 – 825.5 mm ### Dynamic Equivalent Load | P = | $XF_{\rm r}$ | $+YF_a$ | |-----|--------------|---------| |-----|--------------|---------| | $F_{\rm a}/F$ | $r \leq e$ | $F_{\rm a}/F$ | r > e | |---------------|------------|---------------|-------| | X | Y | X | Y | | 1 | Y_3 | 0.67 | Y_2 | ### Static Equivalent Load $P_0 = F_{\rm r} + Y_0 F_{\rm a}$ Where $Y_0 = Y_3$ The values of e, Y_2 , and Y_3 are given in the table below. | | Во | undary Dimens | ions | | | | Basic Lo | oad Ratings | = | | | | | Axial | Load | Mass | |--------------------|--------------------|--------------------|--------------------|---------------------|-----|-------------|----------|-------------|-----------|-------------------|-------------------|-----------|----------|-------|-------|---------| | | | (mm/inch) | | | | , | kN) | | gf} | Bearing Numbers | Bearing Numbers | Figure(1) | Constant | Fac | tors | (kg) | | d | D | B_4 | C_4 | ${m \gamma}_1$ min. | | $C_{\rm r}$ | C_{0r} | $C_{\rm r}$ | C_{0r} | STF Series | WTF Series | riguro() | e | Y_2 | Y_3 | approx. | | | 615.950
24.2500 | 330.200
13.0000 | 330.200
13.0000 | 4.3 | 6.4 | 3 650 | 9 650 | 370 000 | 985 000 | *STF482KVE6152Eg | *WTF482KVE6152Eg | 1 | 0.37 | 2.7 | 1.8 | 243 | | | 615.950
24.2500 | 419.100
16.5000 | 402.050
15.8287 | 2.3 | 6.4 | 4 700 | 13 600 | 480 000 | 1 380 000 | *STF482KVE6155Eg | *WTF482KVE6155Eg | 1 | 0.38 | 2.7 | 1.8 | 302 | | | 647.700
25.5000 | 417.512
16.4375 | 417.512
16.4375 | 3.3 | 6.4 | 5 500 | 13 800 | 560 000 | 1 410 000 | *STF482KVE6453Eg | *WTF482KVE6453Eg | 1-5 | 0.37 | 2.7 | 1.8 | 392 | | 488.950
19.2500 | 622.300
24.5000 | 365.125
14.3750 | 365.125
14.3750 | 3.8 | 6.4 | 3 450 | 8 950 | 350 000 | 915 000 | *STF488KVE6251Eg | *WTF488KVE6251Eg | 2 | 0.29 | 3.5 | 2.3 | 272 | | 490 | 625 | 435 | 435 | 3 | 5 | 4 550 | 12 500 | 465 000 | 1 280 000 | STF490KVE6201AEg | WTF490KVE6201AEg | 2-2 | 0.32 | 3.2 | 2.1 | 329 | | 509.948
20.0767 | 654.924
25.7844 | 377.000
14.8425 | 379.000
14.9213 | 1.5 | 6.4 | 4 800 | 13 000 | 490 000 | 1 330 000 | *STF509KVE6554Eg | *WTF509KVE6554Eg | 1 | 0.41 | 2.4 | 1.6 | 321 | | 520 | 735 | 535 | 535 | 5 | 6 | 8 800 | 22 700 | 900 000 | 2 310 000 | STF520KVE7301Eg | WTF520KVE7301Eg | 1-1 | 0.33 | 3.0 | 2.0 | 726 | | 558.800
22.0000 | 736.600
29.0000 | 540.000
21.2598 | 540.000
21.2598 | 3.3 | 6.4 | 8 950 | 25 300 | 910 000 | 2 580 000 | *STF558KVE7351Eg | *WTF558KVE7351Eg | 1-3 | 0.35 | 2.9 | 1.9 | 625 | | 595.312
23.4375 | 844.550
33.2500 | 615.950
24.2500 | 615.950
24.2500 | 1.5 | 6.4 | 12 600 | 33 000 | 1 290 000 | 3 350 000 | *STF595KVE8451Eg | *WTF595KVE8451Eg | 1 | 0.33 | 3.0 | 2.0 | 1 110 | | | 844.550
33.2500 | 615.950
24.2500 | 615.950
24.2500 | 3.3 | 6.4 | 10 900 | 27 200 | 1 110 000 | 2 780 000 | *STF595KVE8452Eg | *WTF595KVE8452Eg | 4 | 0.35 | 2.9 | 1.9 | 1 110 | | 609.600
24.0000 | 787.400
31.0000 | 361.950
14.2500 | 361.950
14.2500 | 1.5 | 6.4 | 5 450 | 14 400 | 555 000 | 1 470 000 | *STF609KVE7851Eg | *WTF609KVE7851Eg | 1 | 0.42 | 2.4 | 1.6 | 452 | | 711.200
28.0000 | 914.400
36.0000 | 387.350
15.2500 | 317.500
12.5000 | 3.3 | 6.4 | 6 400 | 19 300 | 655 000 | 1 970 000 | *STF711KVE9152AEg | *WTF711KVE9152AEg | 1 | 0.38 | 2.6 | 1.8 | 585 | | | 914.400
36.0000 | 410.000
16.1417 | 410.000
16.1417 | 3.3 | 6.4 | 7 000 | 20 100 | 715 000 | 2 050 000 | *STF711KVE9153Eg | *WTF711KVE9153Eg | 1-1 | 0.44 | 2.3 | 1.5 | 681 | | | 914.400
36.0000 | 425.450
16.7500 | 387.350
15.2500 | 8.0 | 6.4 | 6 400 | 19 300 | 655 000 | 1 970 000 | *STF711KVE9155Eg | *WTF711KVE9155Eg | 1 | 0.38 | 2.6 | 1.8 | 675 | | 785 | 1 015 | 700 | 700 | 4 | 6 | 13 500 | 41 000 | 1 380 000 | 4 150 000 | STF785KVE1001Eg | WTF785KVE1001Eg | 2-1 | 0.40 | 2.5 | 1.7 | 1 460 | | 825.5 | 1 160 | 565 | 565 | 5 | 6 | 13 900 | 33 500 | 1 420 000 | 3 400 000 | STF825KVE1101Eg | WTF825KVE1101Eg | 1 | 0.40 | 2.5 | 1.7 | 1 890 | ## **Bearings for Rolling Mills** Four-Row Cylindrical Roller Bearings for Roll Necks - Higher reliability and longer operating life prevent unexpected accidents - Benefits @ Reduced maintenance costs - 3 Smoother rolling of bearings for backup rolls improves plate making precision INDUSTRY SOLUTIONS 3. Countermeasures Pumps & Compressors Agricultural Machinery Railway Rolling Stock Wind Power Industry Mining Machinery **■**Bearings for Rolling Mills Four-Row Cylindrical Roller Bearings Figures of Typical Four-Row Cylindrical Roller Bearings # Four-Row Cylindrical Roller Bearings Bore Diameter 100 – 160 mm **■**Bearings for Rolling Mills | | | Bou | ındary Dimensi
(mm) | ons | | | | ad Ratings
:N) | Decring Numbers | Fig- | Abuti | ment and Fill
(mm | | ons | Mass
(kg) | |----------|--------------------------|--------------------------|--------------------------|------------------------------|-----------------------|----------------------------|------------------------------|----------------------------------|--|------------------|--------------------------|--------------------------|-------------------------------|-------------------------|------------------------------| | <i>d</i> | D | В | C_2 | $F_{ m w}$ | $ extcolor{r}_1$ min. | $\emph{\textbf{r}}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{ m a}$ | D_{a} | $m{\gamma}_{\mathrm{a}}$ max. | $m{\gamma}_{ m b}$ max. | approx. | | 100 | 140 | 104 | 104 | 111 | 1.5 | 1.1 | 400 |
820 | HTF100RV1401g | 3 | 110 | 130 | 1.5 | 1 | 4.8 | | 110 | 160
170 | 120
120 | 120
120 | 124
127 | 1.1
2 | 1.1
2 | 560
615 | 1 080
1 100 | HTF110RV1601g
HTF110RV1701g | 3
1 | 119
122 | 150
157 | 1
2 | 1
2 | 7.9
9.9 | | 120 | 165
180
215 | 87
105
174 | 87
105
174 | 134.5
136
147 | 1.1
2
2.1 | 1.1
2
2.1 | 365
530
1 060 | 725
880
1 600 | HTF120RV1601g
HTF120RV1801g
HTF120RV2101g | 1
1
1 | 130
132
134 | 155
167
199 | 1
2
2 | 1
2
2 | 5.4
8.9
26.6 | | 127 | 174.625
203.2 | 150.812
127 | 150.812
127 | 139.5
147.5 | 1.5
2 | 2
1.5 | 735
705 | 1 580
1 110 | HTF127RV1722g
HTF127RV2001g | 1 | 138
139 | 163
190 | 1.5
2 | 1.5
2 | 10.5
15.4 | | 130 | 200
200 | 125
104 | 125
104 | 149
149 | 2
2 | 2 2 | 700
570 | 1 190
950 | STF130RV2001g
STF130RV2003g | 1 | 142
142 | 187
187 | 2 2 | 2 | 14
11.7 | | 140 | 210 | 116 | 116 | 160 | 2 | 2 | 640 | 1 130 | STF140RV2101g | 1 | 152 | 196 | 2 | 2 | 13.9 | | 145 | 210
225 | 155
156 | 155
156 | 166
169 | 1.5
2 | 1.5
2 | 925
975 | 1 920
1 820 | STF145RV2101g
STF145RV2201g | 1
1 | 157
158 | 197
211 | 1.5
2 | 1.5
2 | 17.8
23 | | 150 | 220
225
225 | 150
150
136 | 150
150
136 | 168
168.5
168.776 | 2
1.5
2.1 | 2
2.1
2.1 | 900
970
820 | 1 700
1 810
1 460 | STF150RV2201g
STF150RV2203g
STF150RV2204g | 1
1
1 | 163
162
165 | 206
209
209 | 2
1.5
2 | 2
2
2 | 20
20.8
18.6 | | | 230
230 | 130
156 | 130
156 | 174
174 | 2.1
2 | 2.1
2 | 845
965 | 1 520
1 810 | STF150RV2301g
STF150RV2302g | 1
1 | 165
163 | 214
216 | 2 2 | 2 2 | 19.6
23.6 | | 159.99 | 220 | 180 | 180 | 176 | 2 | 2 | 1 050 | 2 410 | STF159RV2201g | 2 | 173 | 206 | 2 | 2 | 20.6 | | 160 | 230
230
230 | 130
168
168 | 130
168
168 | 178
179
180 | 2
2
2 | 2
2
2 | 780
900
1 040 | 1 340
2 050
2 200 | STF160RV2301g
STF160RV2307g
STF160RV2302g | 1
1
1 | 173
173
173 | 216
216
216 | 2
2
2 | 2
2
2 | 16.4
23.0
22.7 | | | 230
240
240
240 | 180
120
170
145 | 180
120
170
145 | 178
183
183
180.016 | 2
2.1
2
2.1 | 2
2.1
2
2.1 | 1 080
745
1 080
920 | 2 280
1 320
2 050
1 600 | STF160RV2303g
STF160RV2401g
STF160RV2402g
STF160RV2403g | 2
1
1
1 | 173
175
173
175 | 216
224
226
224 | 2
2
2
2 | 2
2
2
2 | 24.2
18.8
26.6
22.3 | Note (1) Refer to pages D142 and D143. **■**Bearings for Rolling Mills # Four-Row Cylindrical Roller Bearings Bore Diameter 165.1 – 200 mm | | | В | oundary Dimen
(mm) | sions | | | | nd Ratings
N) | D : N . | Fig- | Abutr | ment and Fill
(mm | | ons | Mass
(kg) | |-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------|----------------------------------|----------------------------------|--|------------------|--------------------------|--------------------------|---------------------------------------|----------------------|------------------------------| | d | D | В | C_2 | $F_{ m w}$ | $ au_1$ min. | $ extbf{ extit{r}}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | d_{a} | D_{a} | $oldsymbol{\gamma}_{\mathrm{a}}$ max. | $ m \emph{r}_b$ max. | approx. | | 165.1 | 225.45 | 168.3 | 168.3 | 180.975 | 1.5 | 2.5 | 1 010 | 2 220 | STF165RV2221g | 5 | 177 | 209 | 1.5 | 2 | 19.4 | | 170 | 230
240 | 120
160 | 120
160 | 187
190 | 2
2 | 2 2 | 755
1 000 | 1 610
2 130 | STF170RV2301g
STF170RV2402g | 1 1 | 183
183 | 216
226 | 2
2 | 2 2 | 14
22.8 | | | 250
250
255
260 | 168
170
180
150 | 168
170
180
150 | 192
192
193
195 | 2.1
2.1
2.1
2.1 | 2.1
2.1
2.1
2.1 | 1 210
1 210
1 310
1 030 | 2 320
2 320
2 500
1 840 | STF170RV2501g
STF170RV2502g
STF170RV2503g
STF170RV2602g | 1
1
1
1 | 185
185
185
185 | 234
234
239
244 | 2
2
2
2 | 2
2
2
2 | 27.4
27.7
31.5
28.2 | | 180 | 250
260
265 | 156
168
180 | 156
168
180 | 200
202
204 | 2
2.1
2.1 | 2
2.1
2.1 | 1 020
1 150
1 340 | 2 230
2 300
2 690 | STF180RV2501g
STF180RV2601g
STF180RV2602g | 1
1
1 | 193
195
195 | 236
244
248 | 2
2
2 | 2
2
2 | 23.4
29.2
33.7 | | | 265
280 | 180
180 | 180
180 | 203
205.085 | 2.1
2.1 | 2.1
2.1 | 1 230
1 410 | 2 420
2 490 | STF180RV2603g
STF180RV2802g | 1 3 | 195
195 | 248
263 | 2 2 | 2 2 | 33.4
40.9 | | 190 | 260
270
270 | 168
200
170 | 168
200
170 | 212
212
213 | 2
2.1
2.1 | 2
2.1
2.1 | 1 140
1 470
1 290 | 2 600
3 100
2 610 | STF190RV2601g
STF190RV2701g
STF190RV2702g | 1
1
1 | 203
206
206 | 245
253
253 | 2
2
2 | 2
2
2 | 26.6
36
30.4 | | | 270
280 | 170
200 | 170
200 | 212
214 | 2
2.1 | 2
2.1 | 1 290
1 480 | 2 610
2 920 | STF190RV2703g
STF190RV2801g | 1 1 | 203
206 | 255
263 | 2 2 | 2 2 | 30.6
41.3 | | 200 | 250
270
270 | 200
170
200 | 200
170
200 | 215
222
222.25 | 1
2.1
2.1 | 1
2.1
2.1 | 900
1 120
1 330 | 2 500
2 590
3 250 | STF200RV2521g
STF200RV2702g
STF200RV2703g | SP
1
SP | 210
216
216 | 240
253
253 | 1
2
2 | 1
2
2 | 22.3
27.9
34.4 | | | 280
280
280 | 200
200
190 | 200
200
190 | 224
222
223 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 1 410
1 410
1 350 | 3 200
3 200
3 050 | STF200RV2801g
STF200RV2802g
STF200RV2803g | 1
1
1 | 216
216
216 | 263
263
263 | 2
2
2 | 2
2
2 | 38.3
38.6
36.4 | | | 280
280
290 | 170
200
192 | 170
200
192 | 223
222
226 | 2.1
2.1
2.1 | 2.1
2.1
2.1 | 1 150
1 500
1 420 | 2 460
3 200
3 000 | STF200RV2804g
STF200RV2808g
STF200RV2901g | 1
1
1 | 216
216
216 | 263
263
273 | 2
2
2 | 2
2
2 | 32.3
37.8
42.3 | | | 310
320 | 230
216 | 230
216 | 229
231 | 2.1
3 | 2.1
3 | 1 840
2 120 | 3 500
3 900 | STF200RV3102g
STF200RV3231g | 1 4 | 216
218 | 293
300 | 2
4 | 2
4 | 63.7
69.9 | Notes (1) Refer to pages D142 and D143. The letter "SP" indicates special design. Please consult with NSK for detailed specification. # **■**Bearings for Rolling Mills # Four-Row Cylindrical Roller Bearings Bore Diameter 210 – 260 mm | | , | Воц | ındary Dimensi
(mm) | ons | | | | d Ratings
N) | | Fig- | Abuti | ment and Fill
(mm | | ons | Mass
(kg) | |---------|------------|------------|------------------------|------------|----------------------------|----------------|----------------|-------------------|--------------------------------|---------|-------------------------------|----------------------|---------------------------------|------------------------|--------------| | d | D | В | C_2 | $F_{ m w}$ | $oldsymbol{\gamma}_1$ min. | ${m r}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{\scriptscriptstyle m a}$ | $D_{\rm a}$ | $oldsymbol{\gamma}_{ m a}$ max. | $\emph{r}_{ m b}$ max. | approx. | | 210 | 290
300 | 192
210 | 192
210 | 236
234 | 2.1
2 | 2.1
2 | 1 400
1 750 | 3 350
3 600 | STF210RV2901g
STF210RV3001g | 1
1 | 226
224 | 273
285 | 2 2 | 2 2 | 39
47.4 | | 219.954 | 310 | 183 | 183 | 244.5 | 1.5 | 1 | 1 480 | 3 150 | STF219RV3131g | 4 | 233 | 298 | 1.5 | 1 | 45.3 | | 220 | 310 | 192 | 192 | 247 | 2.1 | 2.1 | 1 540 | 3 450 | STF220RV3101g | 1 | 236 | 293 | 2 | 2 | 46.1 | | | 310 | 225 | 225 | 245 | 2.1 | 2.1 | 1 740 | 3 900 | STF220RV3102g | 1 | 236 | 293 | 2 | 2 | 52.9 | | | 310 | 192 | 192 | 246 | 2.1 | 2.1 | 1 540 | 3 450 | STF220RV3103g | 1 | 236 | 293 | 2 | 2 | 46.2 | | | 310 | 192 | 192 | 246 | 2.1 | 2.1 | 1 660 | 3 550 | STF220RV3106g | 1 | 236 | 293 | 2 | 2 | 46.0 | | | 310 | 225 | 225 | 244 | 2.1 | 2.1 | 1 900 | 4 100 | STF220RV3107g | 1 | 236 | 293 | 2 | 2 | 53.0 | | | 320 | 210 | 210 | 248 | 2.1 | 2.1 | 1 790 | 3 650 | STF220RV3201g | 1 | 236 | 302 | 2 | 2 | 56 | | | 320
320 | 210
210 | 210
210 | 249
246 | 2.1
2.1 | 2.1
2.1 | 1 850
1 900 | 3 600
3 750 | STF220RV3202g
STF220RV3203g | 1
SP | 236
236 | 302
302 | 2 2 | 2 2 | 54.9
57 | | 222.25 | 320.675 | 241.3 | 241.3 | 251 | 2.1 | 2.1 | 1 990 | 4 350 | STF222RV3201g | 2 | 238 | 303 | 2 | 2 | 65 | | 230 | 330 | 206 | 206 | 260 | 2.1 | 2.1 | 1 760 | 3 900 | STF230RV3301g | 1 | 246 | 312 | 2 | 2 | 58.2 | | | 330 | 206 | 206 | 258 | 2.1 | 2.1 | 1 870 | 3 950 | STF230RV3302g | 1 | 246 | 312 | 2 | 2 | 57.3 | | | 340 | 260 | 260 | 261 | 3 | 3 | 2 390 | 5 100 | STF230RV3401g | 1 | 248 | 320 | 2.5 | 2.5 | 81 | | | 365 | 250 | 250 | 266 | 3 | 3 | 2 310 | 4 300 | STF230RV3601g | 5 | 248 | 344 | 2.5 | 2.5 | 98.3 | | 240 | 330 | 220 | 220 | 270 | 3 | 3 | 1 770 | 4 400 | STF240RV3301g | 1 | 259 | 310 | 2.5 | 2.5 | 57.7 | | | 330 | 220 | 220 | 264 | 3 | 3 | 1 840 | 4 100 | STF240RV3304g | 3 | 259 | 310 | 2.5 | 2.5 | 55.1 | | | 340 | 220 | 220 | 268 | 3 | 3 | 1 890 | 3 900 | STF240RV3403g | 1 | 259 | 320 | 2.5 | 2.5 | 61.7 | | | 360 | 220 | 220 | 272 | 3 | 3 | 2 250 | 4 350 | STF240RV3601g | 2 | 259 | 340 | 2.5 | 2.5 | 77.8 | | 250 | 340 | 230 | 230 | 276 | 4 | 4 | 2 030 | 4 750 | STF250RV3401g | 1 | 272 | 317 | 3 | 3 | 60.3 | | | 350 | 220 | 220 | 278 | 3 | 3 | 1 930 | 4 200 | STF250RV3501g | 1 |
269 | 330 | 2.5 | 2.5 | 64.8 | | 259.948 | 368 | 218 | 218 | 290 | 2.1 | 1.1 | 2 010 | 4 350 | STF259RV3631g | 4 | 277 | 354 | 2 | 1 | 76.7 | | 260 | 355 | 260 | 260 | 286 | 2.1 | 2.1 | 2 090 | 5 000 | STF260RV3521g | 5 | 277 | 337 | 2 | 2 | 74.5 | | | 370 | 220 | 220 | 292 | 3 | 3 | 2 050 | 4 450 | STF260RV3701g | 1 | 279 | 349 | 2.5 | 2.5 | 76 | | | 370 | 220 | 220 | 290 | 3 | 3 | 2 220 | 4 450 | STF260RV3704g | 1 | 279 | 349 | 2.5 | 2.5 | 73.5 | | | 370 | 260 | 260 | 290 | 3 | 3 | 2 720 | 5 950 | STF260RV3721g | 1 | 279 | 349 | 2.5 | 2.5 | 89.3 | | | 380 | 280 | 280 | 294 | 3 | 3 | 2 820 | 6 250 | STF260RV3801g | 1 | 279 | 359 | 2.5 | 2.5 | 107 | | | 400 | 290 | 290 | 296 | 4 | 4 | 3 250 | 6 350 | STF260RV4001g | 1 | 282 | 376 | 3 | 3 | 133 | Notes (1) Refer to pages D142 and D143. The letter "SP" indicates special design. Please consult with NSK for detailed specification. Four-Row Cylindrical Roller Bearings Bore Diameter 270 – 330 mm **■**Bearings for Rolling Mills | | | Boo | undary Dimens
(mm) | ions | | | | ad Ratings | | Fig- | Abut | ment and Fill
(mm | | ons | Mass
(kg) | |-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------|----------------------------------|----------------------------------|---|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------| | d | D | B | C_2 | $F_{ m w}$ | ${m \gamma}_1$ min. | ${m \gamma}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{ m a}$ | D_{a} | $m{\gamma}_{ m a}$ max. | $ m \emph{r}_b$ max. | approx. | | 270 | 380 | 230 | 230 | 298 | 2.1 | 2.1 | 2 330 | 5 050 | STF270RV3801g | 1 | 287 | 361 | 2 | 2 | 83 | | 280 | 390
390
390 | 220
240
275 | 220
240
275 | 312
312
308 | 3
3
3 | 3
3
1.1 | 2 120
2 360
2 860 | 4 800
5 500
6 450 | STF280RV3901g
STF280RV3902g
STF280RV3903g | 1
1
1 | 299
299
299 | 369
369
375 | 2.5
2.5
2.5 | 2.5
2.5
1 | 80.9
88.5
100 | | | 390
390
390
400 | 220
275
275
285 | 220
275
275
285 | 312
308
308
316 | 3
Spec.
Spec.
3 | 3
1.1
3
3 | 2 280
2 860
2 860
3 000 | 5 100
6 450
6 450
6 950 | STF280RV3907Ag
STF280RV3911Ag
STF280RV3921Ag
STF280RV4021g | SP | 299
298
298
299 | 369
375
369
379 | 2.5
2
2
2.5 | 2.5
1
2.5
2.5 | 81.6
99.5
99.2
117 | | 290 | 390
410
410
420 | 234
240
240
300 | 234
240
240
300 | 320
320
321
327 | 3
3
3
3 | 3
3
3 | 2 270
2 570
2 600
3 300 | 5 600
5 450
5 250
7 500 | STF290RV3901g
STF290RV4101g
STF290RV4102g
STF290RV4201g | 1
1
1
1 | 310
310
310
310 | 369
389
389
398 | 2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5 | 79.7
99
97.1
138 | | 300 | 400
420
420 | 300
240
300 | 300
240
300 | 328
332
332 | 2
3
3 | 2
3
3 | 2 720
2 670
3 200 | 6 900
5 750
7 200 | STF300RV4021g
STF300RV4201g
STF300RV4204Ag | 5
1
3 | 316
320
320 | 383
398
398 | 2
2.5
2.5 | 2
2.5
2.5 | 103
101
127 | | | 420
420 | 300
300 | 300
300 | 332
332 | Spec.
2 | 1.5
2 | 3 550
3 200 | 8 350
7 200 | STF300RV4216g
STF300RV4221g | SP
5 | 319
316 | 403
402 | 2 2 | 1.5
2 | 132
128 | | 310 | 420
430 | 300
240 | 300
240 | 338
344.5 | 3 | 3
3 | 3 300
2 610 | 8 050
5 950 | STF310RV4201g
STF310RV4301g | 1 1 | 330
330 | 398
408 | 2.5
2.5 | 2.5
2.5 | 119
107 | | 320 | 440
450
450 | 240
240
240 | 240
240
240 | 351
358
355 | 4
3
3 | 4
3
3 | 2 490
2 760
2 710 | 5 350
6 150
5 750 | STF320RV4401g
STF320RV4501g
STF320RV4502g | 1
1
1 | 343
340
340 | 415
428
428 | 3
2.5
2.5 | 3
2.5
2.5 | 104
120
117 | | | 460
460
480 | 340
240
350 | 340
240
350 | 360
364
364 | 3
3
4 | 3
3
1.5 | 3 850
2 820
4 850 | 8 700
6 100
10 500 | STF320RV4601g
STF320RV4621g
STF320RV4811g | 3
5
8 | 340
340
343 | 438
438
462 | 2.5
2.5
3 | 2.5
2.5
1.5 | 184
131
232 | | 330 | 430
440
460
460 | 230
200
340
340 | 230
200
340
340 | 358
360
365
365 | 3
3
4
4 | 3
3
4
2.5 | 2 340
2 160
3 550
4 150 | 5 850
4 750
8 650
9 750 | STF330RV4301g
STF330RV4401g
STF330RV4601g
STF330RV4611g | 1
3
1
SP | 350
350
353
353 | 408
418
435
439 | 2.5
2.5
3 | 2.5
2.5
3
2 | 86.3
83.8
174
172 | Notes (1) Refer to pages D142 and D143. The letter "SP" indicates special design. Please consult with NSK for detailed specification. **■**Bearings for Rolling Mills # Four-Row Cylindrical Roller Bearings Bore Diameter 340 – 400 mm | | | Во | undary Dimens
(mm) | ions | | | | ad Ratings
(N) | Decring Numbers | Fig- | Abutı | ment and Fill
(mm | | ons | Mass
(kg) | |-----|------------|------------|-----------------------|------------|---------------|----------------|----------------|-------------------|---------------------------------|--------|-------------------------------------|----------------------|-------------------------------|----------------------|--------------| | d | D | В | C_2 | $F_{ m w}$ | $m{r}_1$ min. | ${m r}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{\scriptscriptstyle \mathrm{a}}$ | D_{a} | $m{\gamma}_{\mathrm{a}}$ max. | $ m \emph{r}_b$ max. | approx. | | 340 | 450 | 250 | 250 | 371 | 3 | 3 | 2 720 | 6 750 | STF340RV4501g | 1 | 361 | 428 | 2.5 | 2.5 | 108 | | | 450 | 250 | 250 | 368 | 3 | 3 | 2 720 | 6 750 | STF340RV4502g | 3 | 361 | 428 | 2.5 | 2.5 | 108 | | | 480 | 350 | 350 | 378 | 4 | 4 | 4 050 | 9 400 | STF340RV4801g | 1 | 364 | 454 | 3 | 3 | 198 | | | 480
490 | 350
300 | 350
300 | 378
379 | Spec.
5 | 1.5
5 | 4 600
3 750 | 11 100
8 200 | STF340RV4812Eg
STF340RV4901g | 1 1 | 355
368 | 462
460 | 2.9
4 | 1.5
4 | 208
186 | | 345 | 480 | 350 | 350 | 376 | 3 | 3 | 4 400 | 10 300 | STF345RV4821g | 6 | 366 | 457 | 2.5 | 2.5 | 190 | | 350 | 500 | 380 | 380 | 389 | 5 | 5 | 4 850 | 11 100 | STF350RV5021g | 6 | 378 | 470 | 4 | 4 | 237 | | 360 | 480 | 290 | 290 | 394 | 3 | 3 | 3 250 | 8 300 | STF360RV4801g | 1 | 381 | 457 | 2.5 | 2.5 | 146 | | | 500 | 250 | 250 | 394 | 3 | 3 | 3 450 | 7 250 | STF360RV5022g | 5 | 381 | 477 | 2.5 | 2.5 | 146 | | | 510 | 370 | 370 | 400 | 4 | 4 | 4 500 | 10 100 | STF360RV5101g | 1 | 384 | 484 | 3 | 3 | 234 | | 370 | 480 | 250 | 250 | 401 | 3 | 3 | 2 830 | 7 350 | STF370RV4801g | 1 | 391 | 457 | 2.5 | 2.5 | 116 | | | 520 | 380 | 380 | 409 | 4 | 2 | 6 000 | 14 400 | STF370RV5211g | SP | 394 | 500 | 3 | 2 | 263 | | | 520 | 380 | 380 | 409 | Spec. | 1.5 | 5 600 | 13 300 | STF370RV5212g | SP | 393 | 501 | 3 | 1.5 | 252 | | | 540 | 400 | 400 | 415 | 4 | 4 | 5 250 | 12 000 | STF370RV5401g | 1 | 394 | 513 | 3 | 3 | 311 | | 380 | 500 | 290 | 290 | 414 | 3 | 3 | 3 350 | 8 800 | STF380RV5001g | 1 | 401 | 477 | 2.5 | 2.5 | 153 | | | 520 | 290 | 290 | 418 | 4 | 4 | 3 750 | 8 850 | STF380RV5201g | 1 | 404 | 493 | 3 | 3 | 181 | | | 520 | 280 | 280 | 417 | 4 | 4 | 3 650 | 8 450 | STF380RV5202g | 1 | 404 | 493 | 3 | 3 | 174 | | | 540 | 340 | 340 | 424 | 5 | 5 | 4 700 | 10 900 | STF380RV5431g | 4 | 408 | 509 | 4 | 4 | 259 | | | 540 | 400 | 400 | 424 | 5 | 5 | 5 050 | 12 000 | STF380RV5401g | 3 | 408 | 509 | 4 | 4 | 280 | | | 540 | 400 | 400 | 422 | 5 | 2 | 6 000 | 14 400 | STF380RV5411g | 8 | 408 | 520 | 4 | 2 | 305 | | | 540 | 400 | 400 | 424 | 5 | 2 | 5 750 | 13 800 | STF380RV5412g | SP | 408 | 520 | 4 | 2 | 294 | | 390 | 510 | 290 | 290 | 424 | 3 | 3 | 3 400 | 9 000 | STF390RV5101g | 1 | 412 | 487 | 2.5 | 2.5 | 156 | | | 550 | 400 | 400 | 434 | 5 | 5 | 5 150 | 12 400 | STF390RV5521g | 6 | 419 | 519 | 4 | 4 | 303 | | 400 | 520 | 250 | 250 | 432 | 4 | 4 | 3 000 | 7 700 | STF400RV5202g | 3 | 425 | 493 | 3 | 3 | 136 | | | 550 | 300 | 300 | 441 | 4 | 4 | 4 150 | 9 750 | STF400RV5501g | 1 | 425 | 523 | 3 | 3 | 212 | | | 560 | 400 | 400 | 446 | 5 | 5 | 5 650 | 13 600 | STF400RV5612g | 8 | 429 | 529 | 4 | 4 | 308 | | | 560 | 410 | 410 | 445 | 5 | 2 | 6 550 | 16 500 | STF400RV5613g | 8M | 429 | 539 | 4 | 2 | 315 | | | 560 | 400 | 400 | 446 | 5 | 5 | 4 750 | 11 300 | STF400RV5621g | 6 | 429 | 529 | 4 | 4 | 304 | | | 560 | 410 | 410 | 445 | 5 | 2 | 6 550 | 16 500 | STF400RV5611g | 8 | 429 | 539 | 4 | 2 | 315 | Notes (1) Refer to pages D142 and D143. The letter "M" indicates bearing for oil mist lubrication. The letter "SP" indicates special design. Please consult with NSK for detailed specification. **■**Bearings for Rolling Mills ## Four-Row Cylindrical Roller Bearings Bore Diameter 406.4 – 500 mm | | | Воц | indary Dimensi
(mm) | ions | | | | ad Ratings
(N) | | Fig- | Abuti | ment and Fill
(mm | | ons | Mass
(kg) | |-------|--------------------------|--------------------------|--------------------------|--------------------------|------------------|-----------------------|----------------------------------|-------------------------------------|--|------------------|--------------------------|--------------------------|---------------------------------------|---------------------------------|--------------------------| | d | D | В | C_2 | $F_{ m w}$ | $m{ au}_1$ min. | $ extcolor{r}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | d_{a} | D_{a} | $oldsymbol{\gamma}_{\mathrm{a}}$ max. |
$oldsymbol{\gamma}_{ m b}$ max. | approx. | | 406.4 | 609.6 | 304.8 | 304.8 | 460 | 5 | 5 | 4 650 | 9 150 | STF406RV6001g | 1 | 435 | 577 | 4 | 4 | 307 | | 410 | 600 | 440 | 440 | 460 | 5 | 5 | 7 350 | 16 600 | STF410RV6011g | 8 | 439 | 568 | 4 | 4 | 438 | | 420 | 560
560
600
600 | 280
400
440
440 | 280
400
440
440 | 457
458
470
465 | 4
4
5
5 | 4
4
2
5 | 3 800
4 950
7 100
7 300 | 9 250
13 000
17 200
17 200 | STF420RV5601g
STF420RV5602g
STF420RV6011g
STF420RV6012g | 1
6
8
8 | 445
445
449
449 | 533
533
579
568 | 3
3
4
4 | 3
3
4
4 | 190
270
419
402 | | 430 | 591
591 | 420
420 | 420
420 | 476
476 | 4
4 | 4
4 | 6 350
5 200 | 16 100
13 400 | STF430RV5911g
STF430RV5921g | 8
5 | 455
455 | 563
563 | 3 | 3
3 | 347
347 | | 440 | 620
620
620 | 450
450
450 | 450
450
450 | 487
487
490 | 5
Spec.
4 | 5
3
4 | 7 350
8 100
7 450 | 17 800
19 700
19 000 | STF440RV6213g
STF440RV6215g
STF440RV6221g | 8
8
5 | 470
466
466 | 588
594
591 | 4
3
3 | 4
2.5
3 | 430
433
430 | | 450 | 630 | 450 | 450 | 500 | 4 | 4 | 6 950 | 17 500 | STF450RV6321g | 5 | 476 | 601 | 3 | 3 | 440 | | 460 | 620
620
620 | 400
400
460 | 400
400
460 | 506
502
502 | 4
4
4 | 4
4
4 | 5 500
6 400
7 100 | 14 700
16 600
19 100 | STF460RV6201g
STF460RV6211g
STF460RV6212g | 1
8
8M | 486
486
486 | 591
591
591 | 3
3
3 | 3
3
3 | 347
358
412 | | | 650
650
670 | 470
470
500 | 470
470
500 | 509
509
522 | 6
4
6 | 3
3
6 | 8 400
8 600
8 900 | 20 900
21 200
22 700 | STF460RV6511g
STF460RV6513g
STF460RV6721g | 8
8
7 | 496
486
496 | 624
624
631 | 5
3
5 | 2.5
2.5
5 | 514
501
596 | | 470 | 660 | 470 | 470 | 519 | 4 | 4 | 8 450 | 20 800 | STF470RV6611g | 8 | 496 | 631 | 3 | 3 | 505 | | 480 | 680
680
680 | 420
500
500 | 420
500
500 | 528
532
534 | Spec.
4
5 | 3
3
5 | 8 350
9 400
9 000 | 19 000
23 500
23 100 | STF480RV6814g
STF480RV6815g
STF480RV6801g | 8
8
7 | 508
506
510 | 653
653
646 | 3.5
3
4 | 2.5
2.5
4 | 490
586
610 | | | 680
700 | 500
400 | 500
400 | 534
538 | 5
6 | 5
6 | 9 000
7 650 | 23 100
17 400 | STF480RV6811g
STF480RV7031g | 8 9 | 510
517 | 646
660 | 4
5 | 4
5 | 610
538 | | 500 | 670
670
680 | 450
450
420 | 450
450
405 | 540
540
550 | Spec.
5
5 | 4
5
5 | 7 750
8 300
6 700 | 20 000
22 300
17 600 | STF500RV6713g
STF500RV6712Eg
STF500RV6812g | 8
SP
8 | 529
531
531 | 640
637
646 | 3.5
4
4 | 3
4
4 | 446
464
451 | Notes (1) Refer to pages D142 and D143. The letter "M" indicates bearing for oil mist lubrication. The letter "SP" indicates special design. Please consult with NSK for detailed specification. **■**Bearings for Rolling Mills ## Four-Row Cylindrical Roller Bearings Bore Diameter 500 – 610 mm | | | Воц | ındary Dimensi | ons | | | Basic Loa | nd Ratings | | | Abutr | ment and Fill | et Dimensio | ons | Mass | |---------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|-----------------------|--|--|--|---------------------|---------------------------------|---------------------------------|--------------------------|-------------------------|---| | | | | (mm) | | | | , | N) | Bearing Numbers | Fig- | | (mm | 1) | | (kg) | | d | D | В | C_2 | $F_{ m w}$ | $ m \emph{\emph{r}}_1$ min. | ${m r}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Boaring Namboro | ure(1) | $d_{ m a}$ | D_{a} | $m{r}_{\mathrm{a}}$ max. | $ m \emph{r}_b$ max. | approx. | | 500 | 690
690
700 | 510
510
515 | 510
510
515 | 550
552
554 | 5
5
5 | 5
5
5 | 8 850
9 000
9 100 | 23 900
24 600
23 800 | STF500RV6913g
STF500RV6921g
STF500RV7021g | 8M
7
7 | 531
531
531 | 656
656
666 | 4
4
4 | 4
4
4 | 480
580
622 | | | 710
720
720 | 480
530
530 | 480
530
530 | 558
560
568 | 5
6
6 | 5
6
6 | 8 500
9 950
10 100 | 21 200
25 300
25 900 | STF500RV7111g
STF500RV7211g
STF500RV7214g | 8
8
8M | 531
537
537 | 676
680
680 | 4
5
5 | 4
5
5 | 632
782
722 | | 510 | 670
680 | 320
500 | 320
500 | 554
560 | 5
5 | 5
5 | 4 950
8 950 | 12 700
25 700 | STF510RV6701g
STF510RV6811g | 1 8 | 541
541 | 637
646 | 4
4 | 4
4 | 298
514 | | 520 | 735
735 | 535
535 | 535
535 | 574.5
574.5 | 5
5 | 5
5 | 10 400
10 800 | 26 300
27 500 | STF520RV7331g
STF520RV7311g | 9
8M | 551
551 | 700
700 | 4
4 | 4
4 | 750
733 | | 530 | 780
780 | 570
570 | 570
570 | 601
595 | 6
6 | 6
6 | 11 800
11 800 | 29 200
29 200 | STF530RV7811g
STF530RV7813g | 8M
8 | 568
568 | 738
738 | 5
5 | 5
5 | 960
960 | | 536.176 | 762.03
762.03 | 558.8
558.8 | 558.8
558.8 | 600
598 | 5
Spec. | 5
4 | 10 800
11 600 | 28 800
30 000 | STF536RV7631g
STF536RV7612Eg | 9
SP | 568
568 | 727
731 | 4
5.8 | 4
3 | 849
849 | | 550 | 740
740 | 510
510 | 510
510 | 602
600 | 5
Spec. | 5
2 | 9 150
10 100 | 25 700
27 600 | STF550RV7411Ag
STF550RV7413g | 8M
8 | 582
580 | 705
716 | 4
3.5 | 4
2 | 648
632 | | 560 | 800
820 | 600
600 | 600
600 | 620
625 | 6
Spec. | 6
6 | 12 400
14 100 | 31 500
34 000 | STF560RV8011g
STF560RV8211g | 8 8 | 598
595 | 758
778 | 5
4.5 | 5
5 | 1 020
1 100 | | 570 | 815
815 | 594
594 | 594
594 | 628
628 | 6
6 | 6
6 | 13 200
13 700 | 32 000
33 500 | STF570RV8113g
STF570RV8111g | 8 8 | 608
608 | 773
773 | 5
5 | 5
5 | 1 010
960 | | 571.1 | 812.97 | 594 | 594 | 636 | 6 | 5 | 13 200 | 34 500 | STF571RV8111g | 8 | 610 | 777 | 5 | 4 | 947 | | 600 | 820
850
870
870
870 | 575
600
640
640
640 | 575
600
640
640
640 | 660
664
682
672
669 | Spec.
5
7.5
7.5
5 | 3
5
4
4
5 | 12 900
14 600
15 700
15 700
15 700 | 35 500
37 500
40 000
40 000
40 000 | STF600RV8212Eg
STF600RV8511g
STF600RV8711g
STF600RV8713g
STF600RV8714g | SP
8M
8M
8 | 629
633
645
645
633 | 790
813
836
836
833 | 5.5
4
6
6
4 | 2.5
4
3
3
4 | 931
1 110
1 320
1 320
1 310 | | 610 | 850
870 | 570
660 | 570
660 | 670
680 | 6
6 | 5
6 | 12 600
15 400 | 33 000
41 500 | STF610RV8511g
STF610RV8711g | 8 8 | 649
649 | 813
827 | 5
5 | 4
5 | 1 040
1 330 | Notes (1) Refer to pages D142 and D143. The letter "M" indicates bearing for oil mist lubrication. The letter "SP" indicates special design. Please consult with NSK for detailed specification. D 156 **■**Bearings for Rolling Mills # Four-Row Cylindrical Roller Bearings Bore Diameter 628 – 750 mm | | | Во | undary Dimens
(mm) | sions | | | | nd Ratings
N) | | Fig- | Abuti | ment and Fill
(mm | | ons | Mass
(kg) | |-------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------|---------------------------|--------------------------------------|--------------------------------------|--|--------|-------------------------------|--------------------------|--------------------------|----------------------|----------------------------------| | d | D | В | C_2 | $F_{ m w}$ | $ eals_1$ min. | $ extbf{\emph{r}}_2$ min. | $C_{ m r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{\scriptscriptstyle m a}$ | D_{a} | ${m \gamma}_{ m a}$ max. | $ m \emph{r}_b$ max. | approx. | | 628 | 922 | 600 | 600 | 702 | 6 | 5 | 15 600 | 37 000 | STF628RV92119 | , 8 | 668 | 883 | 5 | 4 | 1 390 | | 634.5 | 901.87
901.87 | 674
674 | 674
674 | 705
705 | 7.5
5 | 4
4 | 16 200
17 000 | 43 500
44 500 | STF634RV9031g
STF634RV9011g | | 680
668 | 868
868 | 6
4 | 3
3 | 1 440
1 410 | | 640 | 870
880 | 610
600 | 610
600 | 697
700 | 6
6 | 3
6 | 14 200
14 200 | 40 000
38 000 | STF640RV8711g
STF640RV8812g | | 680
680 | 839
836 | 5
5 | 2.5
5 | 1 100
1 110 | | 650 | 900
920
920 | 650
670
690 | 650
670
690 | 710
723
723 | Spec.
7.5
7.5 | 5
7.5
7.5 | 16 000
16 200
16 600 | 42 000
44 000
45 000 | STF650RV9011g
STF650RV9212g
STF650RV9211g | 8 | 688
696
696 | 862
870
870 | 4.5
6
6 | 4
6
6 | 1 280
1 470
1 520 | | 660 | 930 | 660 | 660 | 728 | 6 | 6 | 17 000 | 44 000 | STF660RV93119 | 8 | 700 | 885 | 5 | 5 | 1 440 | | 680 | 980 | 640 | 640 | 760 | Spec. | 4 | 17 500 | 43 500 | STF680RV98119 | 8 | 727 | 944 | 6 | 3 | 1 630 | | 690 | 960
980
980 | 670
715
750 | 670
715
750 | 760
767.5
766 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 17 400
17 900
19 200 | 47 000
48 000
53 000 | STF690RV96110
STF690RV98310
STF690RV98320 | 9 | 737
737
737 | 909
929
929 | 6
6
6 | 6
6
6 | 1 520
1 790
1 880 | | | 980
980 | 750
750 | 750
750 | 766
766 | 7.5
7.5 | 7.5
7.5 | 19 200
19
200 | 53 000
53 000 | STF690RV9812
STF690RV9813 | | 737
737 | 929
929 | 6
6 | 6
6 | 1 880
1 860 | | 700 | 930
930
980
980 | 620
620
700
700 | 620
620
700
700 | 763
763
774
774 | 6
6
6 | 6
6
6 | 12 900
14 800
18 000
17 800 | 38 000
43 000
48 500
49 000 | STF700RV93110
STF700RV93130
STF700RV98130
STF700RV98210 | 8 | 741
741
741
741 | 885
885
934
934 | 5
5
5 | 5
5
5
5 | 1 200
1 180
1 680
1 720 | | 710 | 1000 | 715 | 715 | 787.5 | 7.5 | 7.5 | 18 700 | 50 500 | STF710RV10119 | 8 | 757 | 948 | 6 | 6 | 1 840 | | 725 | 1000
1000
1000 | 700
700
700 | 700
700
700 | 796
790
796 | 6
Spec.
6 | 6
4
6 | 18 200
19 000
17 700 | 51 000
51 500
49 500 | STF725RV10110
STF725RV10120
STF725RV10210 | 8 | 767
763
767 | 954
964
954 | 5
4.5
5 | 5
3
5 | 1 670
1 700
1 670 | | 730 | 960
1030 | 620
750 | 620
750 | 790
809 | 6
6 | 3
6 | 15 000
20 700 | 44 500
56 500 | STF730RV9611g
STF730RV1011g | | 772
772 | 928
983 | 5
5 | 2.5
5 | 1 250
2 050 | | 750 | 1000
1000 | 670
670 | 670
670 | 813
813 | 6
Spec. | 6
3 | 16 800
17 500 | 49 500
50 000 | STF750RV1011g
STF750RV1013g | | 792
798 | 954
967 | 5
6 | 5
2.5 | 1 520
1 490 | Notes (1) Refer to pages D142 and D143. The letter "M" indicates bearing for oil mist lubrication. D 158 # Four-Row Cylindrical Roller Bearings Bore Diameter 755 – 850 mm | | - | Вог | undary Dimension (mm) | ons | | | | nd Ratings
N) | | Fig- | Abu | ment and Fill
(mm | | ons | Mass
(kg) | |---------|----------------------------------|--------------------------|--------------------------|--------------------------|-------------------|---------------------------|--------------------------------------|--------------------------------------|--|------------------|-------------------------------|----------------------------------|----------------------------|----------------------|----------------------------------| | d | D | В | C_2 | $F_{ m w}$ | \emph{r}_1 min. | $ extbf{\emph{r}}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{\scriptscriptstyle m a}$ | D_{a} | $oldsymbol{r}_{ m a}$ max. | $ m \emph{r}_b$ max. | approx. | | 755 | 1 070 | 750 | 750 | 837 | 7.5 | 7.5 | 21 700 | 58 500 | STF755RV1011g | 8 | 803 | 1 017 | 6 | 6 | 2 230 | | 760 | 1 030
1 030
1 080 | 750
750
805 | 750
750
790 | 834
828
845 | 7.5
7.5
6 | 7.5
7.5
6 | 18 200
20 800
22 200 | 53 500
60 000
61 000 | STF760RV1031g
STF760RV1012g
STF760RV1032Ag | 9
8M
9M | 808
808
802 | 978
978
1 032 | 6
6
5 | 6
6
5 | 1 880
1 850
2 430 | | 761.425 | 1 079.602
1 079.602 | 787.4
787.4 | 787.4
787.4 | 846
845 | Spec.
7.5 | 7.5
7.5 | 23 900
22 200 | 65 500
61 000 | STF761RV1012g
STF761RV1032g | 8 9 | 807
810 | 1 026
1 026 | 5.5
6 | 6
6 | 2 390
2 390 | | 770 | 1 075 | 770 | 770 | 847 | 7.5 | 7.5 | 23 100 | 63 500 | STF770RV1011g | 8M | 819 | 1 022 | 6 | 6 | 2 220 | | 780 | 1 070 | 780 | 780 | 853 | 6 | 6 | 22 800 | 64 500 | STF780RV1013g | 8 | 823 | 1 023 | 5 | 5 | 2 140 | | 800 | 1 080
1 080
1 080
1 080 | 700
700
750
750 | 700
700
750
750 | 878
878
880
880 | 6
6
6 | 3
3
6
6 | 19 100
19 600
19 200
18 700 | 56 000
58 000
56 500
56 500 | STF800RV1013g
STF800RV1011g
STF800RV1012g
STF800RV1032g | 8
8
8
9 | 843
843
843
843 | 1 045
1 045
1 032
1 032 | 5
5
5
5 | 2.5
2.5
5
5 | 1 920
1 910
2 050
2 050 | | 820 | 1 100
1 100
1 130 | 745
745
650 | 720
720
650 | 892
892
891 | 6
6
Spec. | 3
6
6 | 19 700
20 100
20 300 | 58 500
59 000
53 000 | STF820RV1132g
STF820RV1119g
STF820RV11112g | SP
8M
8 | 863
863
867 | 1 065
1 052
1 081 | 5
5
5.5 | 2.5
5
5 | 2 000
1 990
2 000 | | | 1 130
1 130
1 160 | 800
825
840 | 800
800
840 | 903
903
911 | 7.5
7.5
7.5 | 7.5
7.5
7.5 | 22 900
22 900
25 600 | 66 500
66 500
72 000 | STF820RV1117g
STF820RV1134g
STF820RV1111Ag | 8M
SP
8 | 870
870
870 | 1 076
1 076
1 105 | 6
6
6 | 6
6
6 | 2 510
2 530
2 900 | | 840 | 1 160 | 840 | 840 | 920 | 2 | 7.5 | 24 900 | 71 000 | STF840RV1111g | 8M | 866 | 1 105 | 2 | 6 | 2 790 | | 850 | 1 150
1 150
1 180 | 840
840
650 | 840
840
650 | 928
928
945 | 7.5
7.5
7.5 | 4
8
7.5 | 23 300
25 600
19 600 | 68 500
77 500
53 000 | STF850RV1114g
STF850RV1115g
STF850RV1133g | 8
8
9 | 900
900
900 | 1 111
1 093
1 125 | 6
6
6 | 3
6.5
6 | 2 610
2 600
2 260 | | | 1 180
1 180 | 850
875 | 850
850 | 940
940 | 7.5
7.5 | 7.5
7.5 | 24 600
24 600 | 72 000
72 000 | STF850RV1111g
STF850RV1112Ag | 8M
8M | 900
900 | 1 125
1 125 | 6
6 | 6
6 | 2 850
2 880 | Notes (1) Refer to pages D142 and D143. The letter "M" indicates bearing for oil mist lubrication. The letter "SP" indicates special design. Please consult with NSK for detailed specification. **■**Bearings for Rolling Mills Four-Row Cylindrical Roller Bearings Bore Diameter 860 – 1348.95 mm Railway Rolling Stock Wind Power Industry | - | | Во | undary Dimens
(mm) | ions | | | | nd Ratings
N) | | Fig- | Abuti | ment and Fille | | ons | Mass
(kg) | |-------------------|-------------------------|-------------------|-----------------------|---------------------|-----------------------|---------------------|----------------------------|----------------------------|---|--------------|-------------------|-------------------------|---------------------------------|----------------------|-------------------------| | d | D | В | C_2 | $F_{ m w}$ | $ extcolor{r}_1$ min. | ${m \gamma}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{ m a}$ | D_{a} | $oldsymbol{\gamma}_{ m a}$ max. | $ m \emph{r}_b$ max. | approx. | | 860 | 1 130
1 160 | 670
735 | 670
710 | 934
940 | 6
7.5 | 6
4 | 18 400
20 400 | 56 500
60 000 | STF860RV1132g
STF860RV1133g | 9 | 904
910 | 1 081
1 121 | 5
6 | 5
3 | 1 780
2 200 | | 865
870
880 | 1 180
1 145
1 230 | 750
705
850 | 750
685
850 | 945.3
940
970 | Spec.
9.5
7.5 | 7.5
6
7.5 | 23 800
20 500
29 100 | 67 000
61 000
81 000 | STF865RV1111g
STF870RV1111g
STF880RV1211g | 8
8
8 | 915
929
931 | 1 125
1 096
1 174 | 6
8
6 | 6
5
6 | 2 480
1 970
3 240 | | 900 | 1 220
1 220
1 230 | 810
840
895 | 800
840
870 | 981
989
985 | 7.5
7.5
7.7 | 6
4
7.5 | 25 900
26 800
25 800 | 74 500
80 000
76 000 | STF900RV1216g
STF900RV1212g
STF900RV1211g | 8
8
8M | 951
951
951 | 1 170
1 179
1 174 | 6
6
6 | 5
3
6 | 2 790
2 950
3 200 | | | 1 280
1 280 | 930
930 | 930
930 | 1 000
1 000 | 7.5
7.5 | 7.5
7.5 | 32 000
33 000 | 89 500
93 000 | STF900RV1213g
STF900RV1217g | 8 | 951
951 | 1 223
1 223 | 6
6 | 6
6 | 3 990
4 010 | | 920 | 1 280 | 865 | 865 | 1 015 | 7.5 | 7.5 | 28 000 | 80 000 | STF920RV1211Ag | 8M | 972 | 1 223 | 6 | 6 | 3 510 | | 950 | 1 330
1 360 | 950
1 000 | 950
1 000 | 1 053
1 075 | Spec.
9.5 | 9
5 | 33 500
37 500 | 97 000
108 000 | STF950RV1314g
STF950RV1311g | 8 | 1 008
1 010 | 1 266
1 313 | 7.5
8 | 7.5
4 | 4 240
4 910 | | 1 120 | 1 580 | 1 150 | 1 150 | 1 255 | 9.5 | 9.5 | 43 500 | 134 500 | STF1120RV1511g | 8 | 1 184 | 1 509 | 8 | 8 | 7 400 | | 1 270 | 1 602 | 850 | 850 | 1 350 | 7.5 | 7.5 | 32 000 | 103 000 | STF1270RV1612g | SP | 1 329 | 1 538 | 6 | 6 | 4 130 | | 1 300 | 1 655 | 890 | 880 | 1 391 | 7.5 | 7.5 | 34 000 | 110 500 | STF1300RV1612g | SP | 1 359 | 1 590 | 6 | 6 | 4 710 | | 1 348.95 | 1 745 | 1 010 | 1 000 | 1 466 | 11.4 | 7.5 | 42 500 | 134 000 | STF1348RV1711g | SP | 1 423 | 1 678 | 9.5 | 6 | 6 240 | Notes (1) Refer to pages D142 and D143. The letter "M" indicates bearing for oil mist lubrication. The letter "SP" indicates special design. Please consult with NSK for detailed specification. D 162 **■**Bearings for Rolling Mills #### Four-Row Cylindrical Roller Bearings Bore Diameter 110.417 – 633.333 mm | | Boundary Dimensions
(mm) | | | | | | Basic Load Ratings
(kN) | | | Fig- | | Abutment a | nd Fillet Dir
(mm) | nensions | | Mass
(kg) | |---------|-----------------------------|------------|------------|--------------|---------------------|---------------------|----------------------------|-------------------|----------------------------------|----------|------------|-------------------|-----------------------|----------------------|-----------------|--------------| | d | D | B | C_2 | $F_{ m w}$ | ${m \gamma}_1$ min. | ${m \gamma}_2$ min. | $C_{\rm r}$ | $C_{0\mathrm{r}}$ | Bearing Numbers | ure(1) | $d_{ m a}$ | $d_{1\mathrm{a}}$ | D_{a} | $ m \emph{r}_a$ max. | $r_{ m b}$ max. | approx. | | 110.417 | 180 | 115 | 115 | 136 | 1 | 1 | 490 | 840 | STF120RVK1801g | 10 | 118 | 128 | 171 | 1 | 1 | 10 | | 151.5 | 230 | 168 | 168 | 180 | 1 | 1 | 1 040 | 2 170 | STF165RVK2331g | 11 | 160 | 174 | 220 | 1 | 1 | 23.5 | | 179.75 | 260 | 175 | 168 | 212 | 1.1 | 2 | 1 140 | 2 600 | STF193RVK2602g | 10 | 190 | 205 | 245 | 1 | 2 | 25.1 | | 180 | 260 | 175 | 168 | 212 | 1.1 | 2 | 1 140 | 2 600 | STF194RVK2602g | 10 | 191 | 206 | 245 | 1 | 2 | 25 | | 181.5 | 260 | 168 | 168 | 209 | 1 | 2 | 1 140 | 2 600 |
STF195RVK2602g | 10 | 191 | 205 | 245 | 1 | 2 | 24.2 | | 235.367 | 360 | 268 | 268 | 278 | 1.5 | 1.5 | 2 770 | 6 000 | STF257RVK3631g | 11 | 249 | 272 | 344 | 1.5 | 1.5 | 92.9 | | 266.25 | 400 | 285 | 285 | 312 | 2 | 2 | 3 200 | 7 500 | STF290RVK4031g | 11 | 281 | 305 | 383 | 2 | 2 | 118 | | 356.667 | 550
550 | 400
400 | 400
400 | 434
431.9 | 5
3 | 5
2.5 | 5 450
5 450 | 13 300
13 300 | STF390RVK5531g
STF390RVK5532g | 12
12 | 385
378 | 419
412 | 519
527 | 4
2.5 | 4
2 | 328
328 | | 412.335 | 650 | 488 | 488 | 494.5 | 3 | 4 | 8 900 | 21 100 | STF453RVK6521g | SP | 434 | 476 | 621 | 2.5 | 3 | 603 | | 485 | 740 | 540 | 540 | 580 | 5 | 5 | 10 100 | 26 800 | STF530RVK7431g | 13 | 516 | 561 | 705 | 4 | 4 | 823 | | 633.333 | 960 | 680 | 680 | 745.8 | 7.5 | 7.5 | 18 100 | 47 000 | STF690RVK9632g | 13 | 679 | 737 | 909 | 6 | 6 | 1 720 | Notes (1) Refer to pages D142 and D143. The letter "SP" indicates special design. Please consult with NSK for detailed specification. #### Backing Bearings for Multi-Roll Rolling **Cluster Mills** - Higher reliability and longer operating life prevent unexpected accident - Benefits @ Reduce maintenance cost - **3** Somoother rolling of backing bearing's roll Improves plate making precision. INDUSTRY SOLUTIONS 3. Countermeasures D 166 Figures of Typical Backing Bearings for Multi-Roll Rolling Mills **■**Backing Bearings for Multi-Roll Rolling Cluster Mills Bore Diameter 31.75 - 120 mm | | | Boundary I | Dimensions | | | Basic Load | ١ | 1 011111001010 | | | Outer Ring E | dae Bevel | | dial Thickness | Mass | |-------------------|--------------------------|-----------------------|-----------------------|--------------------------|------------------|--------------------------|--------------------------|--------------------------|---|------------------------|----------------|----------------------------------|----------------------------------|---|-----------------------------| | d | D | B (m | nm)
C | r_1 | r_2 | $C_{ m r}$ (kl) | $C_{0r}(^1)$ | Radial Load Pu
(kN) | Bearing Numbers | Figure(²) | | Ü | VV | hen Delivered
(mm) | (kg) | | | | | | min. | | | | approx. | | | a | f | | Н | approx. | | 31.75
50 | 76.2
120 | 46.23
80 | 45.85
80 | 1
1.5 | 0.8
1.5 | 94.5
257 | 174
385 | 91.8
147 | 2S31Z-5
2U50-4
*2U50-4g3 | 6
9 | 6.5 |
0.042 | 22.2
34.976 | 0 to +0.010
±0.010 | 1.3
5.2 | | | 120 | 85 | 85 | 1 | 1.5 | 305 | 435 | 113 | *2050-493
2U50-6
*2U50-693 | 9 | 6.5 | 0.042 | 34.984 | ±0.010 | 5.3 | | 55 | 120 | 26 | 26 | 1.6 | 1.6 | 74.5 | 142 | 90.2 | S55-2 | 5 | _ | _ | 32.5 | -0.025 to -0.010 | 1.7 | | | 120 | 52.2 | 52 | 1.6 | 1.6 | 159 | 375 | 185 | *S55-2g5
S55-1
S55-1g5 | 5 | 7 | 0.041 | 32.485 | -0.010 to +0.005 | 3.4 | | | 120 | 52.2 | 52 | 1 | 1 | 186 | 298 | 115 | 2L55-1 | 4 | 5 | 0.036 | 32.5 | 0 to +0.010 | 3.2 | | 60 | 160 | 95 | 95 | 1.1 | 1.5 | 400 | 590 | 290 | 2U60-4 | 9 | 6.5 | 0.042 | 49.984 | ±0.010 | 11.5 | | 62
70
90 | 155
155
160
220 | 90
110
90
95 | 90
110
90
95 | 1.5
1.5
1.1
1.1 | 1
1
1
2 | 355
405
410
590 | 530
620
745
880 | 247
297
303
347 | 2U62-1
3U62-1
3PL70-1
2U90-18
*STF2U90-18q4 | 10
2
1
8 | 6
6
6 | 0.036
0.036
0.035
0.105 | 46.484
46.484
45
64.982 | ±0.010
-0.048 to -0.018 | 9.9
12.1
10.7
20.8 | | | 220.02
220
220 | 96
120
122 | 94
119
119 | 1.5
1
1 | 1.5
3
3 | 520
685
685 | 730
1 020
1 020 | 333
411
410 | *5172090-18g4
2U90-13
2U90-11
2U90-17 | 8
8
8SP | 8
21
21 | 0.047
0.086
0.086 | 65
65
65 | -0.010 to 0
-0.015 to 0
-0.015 to 0 | 20.5
26.0
27.0 | | | 220
220
230 | 120
130
100 | 120
130
100 | 1
1
2.5 | 2
2
2 | 675
680
645 | 1 260
1 090
990 | 494
499
322 | 3U90-1
3U90-4
2U90-9 | 2
2SP
10SP | 6
6
12 | 0.105
0.105
0.07 | 64.98
64.982
69.98 | 0 to +0.010
±0.010
±0.010 | 27.2
28.7
24.4 | | 100 | 225
225 | 80
120 | 80
119 | 2 2 | 1.5
3 | 535
550 | 925
1 000 | 366
586 | 2PL100-3
2U100-14
*2U100-14q3 | 3
8 | 7.6
12 | 0.045
0.07 | 62.47
62.5 | 0 to +0.010
±0.010 | 18.4
27.2 | | | 225 | 120 | 120 | 2 | 2 | 715 | 1 350 | 542 | 3PL100-1A | 1 | 8 | 0.093 | 62.47 | 0 to +0.010 | 27.5 | | 100
110
115 | 260
280
260 | 130
165
140 | 130
165
140 | 2
2.5
1.1 | 2
2
2 | 950
1 120
940 | 1 580
1 880
1 660 | 617
818
613 | 2U100-15
3U110-4
3U115-3 | 10SP
2
2 | 12
12
12 | 0.07
0.072
0.209 | 79.97
84.965
72.47 | | 41.5
60.2
42.1 | | 120 | 280
300
350 | 165
160
165 | 165
160
165 | 2.5
2
2.5 | 2
2
2 | 1 190
1 180
1 370 | 2 060
1 960
2 220 | 802
847
1 140 | 2U120-15
3U120-4
2U120-14 | 9
2SP
9 | 12
12
12 | 0.072
0.07
0.072 | 79.965
89.966
114.965 | ±0.010 | 58.0
66.7
98.5 | Notes (1)Cr and Cor of basic load ratings is not the limiting load. Cor is for reference. (2)Refer to pages D168 and D169. The letter "SP" indicate a special design. Remarks Outer rings are used for back-up roll, it must be use less than permissible radial Load(Pu) Bearings marked * are special material design. Bearing number of "STF" is adopted Super-TF™ material. Please consult with NSK for selection and usage of bearings. Bore Diameter 130 - 180 mm | | | Boundary [| | | | 1 | d Ratings
N) | Permissible
Radial Load Pu | | Fig- | Outer R | ing Edge Bevel | | al Thickness
en Delivered | Mass
(kg) | |---------|----------------------|--------------------------------|-------------------------------|-----------------------|--------------------|----------------------------------|----------------------------------|--------------------------------|--|---------------------|------------------------|---------------------------------|------------------------------|--------------------------------------|---------------------------| | d | D | B (m | m)
C | $oldsymbol{r}_1$ min. | r_2 | $C_{\rm r}$ | $C_{0r}(^1)$ | (kN)
approx. | Bearing Numbers | ure(² | a | (mm) | | (mm) H | approx. | | 130 | 300 | 132 | 129 | 2 | 4 | 1 040 | 1 580 | 590 | 2U130-32
*2U130-32g2 | 8SF | 28.2 | 0.082 | 85 | -0.015 to 0 | 52.3 | | | 300.02
300 | 150
160 | 149
159.5 | 2 2 | 4
1.1 | 1 100
1 470 | 1 850
2 670 | 732
799 | *STF2U130-32g3
2U130-34
3PL130-2C | 9SF
1 | 25
9 | 0.145
0.209 | 85.01
84.95 | -0.015 to 0
0 to +0.010 | 60.9
66.6 | | | 300
300 | 172.64
172.64 | 172.64
172.64 | 2 2 | 4
4 | 1 580
1 580 | 2 930
2 930 | 862
862 | *3PL130-2Cg2
3PL130-1C
3PL130-1F | 1
1SF | 10
10 | 0.131
0.131 | 84.95
84.95 | 0 to +0.010
0 to +0.010 | 71.8
72 | | | 300.02
300
300 | 172.64 | 172.64
172.64
172.644 | 2
2
2 | 3
4
4 | 1 580
1 580
1 370 | 2 930
2 930
2 440 | 862
862
854 | *3PL130-1Fg2
*STF3PL130-1Fg3
3PL130-1Y
3PL130-7B
2U130-26 | 1
1
9 | 25.4
25
12.7 | 0.148
0.087
0.2 | 84.95 | -0.010 to 0
0 to +0.010
±0.010 | 72.1
72
69.1 | | | 300 | | 172.644
172.644 | 3 | 4 4 2 | 1 240 | 2 150 | 854
808
800 | 2U130-26
2U130-36
*2U130-36g2
2U130-16B | 11 | 25 | 0.2
0.15
0.05 | | ±0.010
±0.010 | 68.8 | | 179.984 | 300
350 | 172.64
175
224
224.25 | 171.6
175
220.66
220 | 2
2.5
3
3 | 4
2
3.3
4 | 1 320
1 450
1 950
2 250 | 2 300
2 410
3 550
4 250 | 866
1 230
1 460
1 570 | 3U130-2
2U130-29B
2U179Z-3
2U179Z-14 | 12
9
11
11 | 10
12
15.9
60 | 0.131
0.10
0.093
0.175 | 84.95
109.965 | 0 to +0.010
±0.010
-0.015 to 0 | 69.4
102
168
161 | | 180 | 406.42 | 171.04
171.04
171.04 | 171.04
171.04
171.04 | 2.1
2.1
0.6 | 4
4
1 | 2 060
2 060
1 900 | 3 800
3 800
3 300 | 1 220
1 220
1 150 | *STF2U179Z-14gA5
3PL180-3B
3PL180-3E
2U180-3
*STF2U180-3q3 | 1
1
9 | 25
25
25 | 0.145
0.145
0.145 | 113.155
113.155
113.16 | -0.010 to 0
±0.005
-0.010 to 0 | 129
129
125 | | | 406.42 | 171.04
171.04
171.04 | 170
170
171.04 | 2
2
3 | 3
3
4 | 1 650
1 650
1 560 | 2 850
2 850
2 660 | 1 220
1 220
1 150 | 2U180-5
2U180-5A
2U180-7
*STF2U180-7g3 | 8
8
8 | 25
36.5
25 | 0.145
0.212
0.25 | 113.2
113.2
113.155 | -0.015 to 0
-0.015 to 0
±0.010 | 124
124
123 | | | 406.42
406.4 | 176
217 | 170
217 | 2
2.1 | 3
1.5 | 1 650
2 550 | 2 850
5 000 | 1 220
1 560 | 2U180-8
3PL180-1B
*3PL180-1Bg2 | 8 | 25
10 | 0.145
0.058 | 113.2
113.16 | -0.015 to 0
-0.012 to 0 | 128
164 | | | 406.4
406.4 | 224
224 | 220
220 | 2.1 | 1.5
1.5 | 2 050 | 3 750
3 750 | 1 580
1 580 | 3U180-2
*3U180-2g2
3U180-3 | 12
12 | 10 | 0.058
0.058 | 113.16
113.205 | -0.012 to 0
-0.015 to 0 | 162
162 | | | 406.42 | 224 | 224 | 2.1 | 1.5 | 2 610 | 5 150 | 1 610
1 510 | 3PL180-2A
*3PL180-2Ag2
2U180-4 | 1 | 10 | 0.058 | | -0.012 to 0 | 169 | | | -1 | | | | | | | | *STF2U180-4g3 | | | | | | | **Notes** (1) Cr and Cor of basic load ratings is not the limiting load. Cor is for reference. (2) Refer to pages D168 and D169. The letter "SP" indicate a special design. Remarks Outer rings are used for back-up roll, it must be use less than permissible radial Load(Pu) Bearings marked * are special material design. Bearing number of "STF" is adopted Super-TF™ material.
Please consult with NSK for selection and usage of bearings. #### **APPENDICES** | Appendix Table 1 | 1 | Conversion Table from | |-------------------|---|--| | | | SI (International Units) System E 002 | | Appendix Table 2 | 2 | $N\!-\!kgf$ Force Conversion Table $\!$ | | Appendix Table 3 | 3 | $kg\!-\!lb$ Mass Conversion Table $\!$ | | Appendix Table 4 | 4 | $^{\circ}C^{\circ}F$ Temperature Conversion Table $\cdots\!$ | | Appendix Table 5 | 5 | $\textbf{Viscosity Conversion Table} \\ \\ \texttt{E} \ \texttt{007}$ | | Appendix Table 6 | 6 | $inch-mm \ \textbf{Conversion Table} \\ \texttt{E} \ \texttt{008}$ | | Appendix Table 7 | 7 | $\textbf{Hardness Conversion Table} \\ \cdots \\ \textbf{E 010}$ | | Appendix Table 8 | 8 | Physical and Mechanical Properties of | | | | Materials E 011 | | Appendix Table 9 | 9 | Tolerances for Shaft Diameters $\cdots\cdots\cdots$ E 012 | | Appendix Table 10 | 0 | Tolerances for Housing Bore Diameters \cdots E $\rm 014$ | | Appendix Table 11 | 1 | Values of Standard Tolerance Grades $IT\cdot\cdot$ E 016 | | Appendix Table 12 | 2 | Speed Factor f_n E 018 | | Appendix Table 13 | 3 | Fatigue Life Factor $f_{ m h}$ and | | | | Fatigue Life $L\!-\!L_h$ E 019 | | Appendix Table 14 | 4 | Index of Inch Design Tapered Roller | | | | Bearings E 020 | #### Appendix Table 1 Conversion Table from SI (International Units) System #### Comparison of SI, CGS, and Engineering Units | Units
Unit System | Length | ı Mass | Time | Temp. | Acceleration | Force | Stress | Pressure | Energy | Power | |----------------------------|--------|------------------|------|-------|------------------|-------|---------------------|---------------------|--------------|---------| | SI | m | kg | s | K, °C | m/s ² | N | Pa | Pa | J | W | | CGS System | cm | g | s | °C | Gal | dyn | dyn/cm ² | dyn/cm ² | erg | erg/s | | Engineering
Unit System | m | $kgf\cdot s^2/m$ | s | °C | m/s ² | kgf | kgf/m² | kgf/m² | $kgf\cdot m$ | kgf·m/s | #### **Conversion Factors from SI Units** | Parameter | SI Units | | Units other than S | I | Conversion Factors | |-------------------|-----------------------------|------------------|--|------------------|--| | raidilielei | Names of Units | Symbols | Name of Units | Symbols | from SI Units | | Angle | Radian | rad | Degree
Minute
Second | o
,
″ | 180/π
10 800/π
648 000/π | | Length | Meter | m | Micron
Angstrom | μ
Å | 10 ⁶
10 ¹⁰ | | Area | Square meter | m ² | Are
Hectare | a
ha | 10 ⁻²
10 ⁻⁴ | | Volume | Cubic meter | m ³ | Liter
Deciliter | l, L
dl, dL | 10 ³
10 ⁴ | | Time | Second | s | Minute
Hour
Day | min
h
d | 1/60
1/3 600
1/86 400 | | Frequency | Hertz | Hz | Cycle | s^{-1} | 1 | | Speed of Rotation | Revolution per second | s ⁻¹ | Revolution per miunte | rpm | 60 | | Speed | Meter per second | m/s | Kilometer per hour
Knot | km/h
kn | 3 600/1 000
3 600/1 852 | | Acceleration | Meter per second per second | m/s ² | Gal
g | Gal
G | 10 ²
1/9.806 65 | | Mass | Kilogram | kg | Ton | t | 10-3 | | Force | Newton | N | Kilogram-force
Ton-force
Dyne | kgf
tf
dyn | 1/9.806 65
1/ (9.806 65×10 ³)
10 ⁵ | | Torque or Moment | Newton · meter | N⋅m | Kilogram-force meter | $kgf \cdot m$ | 1/9.806 65 | | Stress | Pascal | Pa
(N/m²) | Kilogram-force per square centimeter
Kilogram-force per square millimeter | | 1/ (9.806 65×10 ⁴)
1/ (9.806 65×10 ⁶) | #### Prefixes Used In SI System | Multiples | Prefix | Symbols | Multiples | Prefix | Symbols | |------------------|--------|---------|-------------------|--------|---------| | 10 ¹⁸ | Exa | E | 10-1 | Deci | d | | 10 ¹⁵ | Peta | P | 10-2 | Centi | c | | 10 ¹² | Tera | T | 10-3 | Milli | m | | 10 ⁹ | Giga | G | 10-6 | Micro | μ | | 10 ⁶ | Mega | M | 10-9 | Nano | n | | 10 ³ | Kilo | k | 10-12 | Pico | p | | 10 ² | Hecto | h | 10 ⁻¹⁵ | Femto | f | | 10 | Deca | da | 10 ⁻¹⁸ | Ato | a | #### Conversion Factors from SI Units (Continued) | | | | s irom 31 omis (continueu) | | | |---|-------------------------------------|--------------|--|---|--| | Parameter | SI Units | | Units other than S | I | Conversion Factors | | T didinotoi | Names of Units | Symbols | Names of Units | Units | from SI Units | | Pressure | Pascal
(Newton per square meter) | Pa
(N/m²) | Kilogram-force per square meter
Water Column
Mercury Column
Torr
Bar
Atmosphere | kgf/m²
mH ₂ O
mmHg
Torr
bar
atm | 1/9.806 65
1/(9.806 65×10³)
760/(1.013 25×10⁵)
760/(1.013 25×10⁵)
10⁻⁵
1/(1.013 25×10⁵) | | Energy | Joule
(Newton · meter) | J
(N·m) | Erg
Calorie (International)
Kilogram-force meter
Kilowatt hour
French horse power hour | $\begin{array}{c} erg \\ cal_{IT} \\ kgf \cdot m \\ kW \cdot h \\ PS \cdot h \end{array}$ | 10 ⁷ 1/4.186 8 1/9.806 65 1/(3.6×10 ⁶) ≈ 3.776 72×10 ⁻⁷ | | Work | Watt
(Joule per second) | W
(J/s) | Kilogram-force meter per second
Kilocalorie per hour
French horse power | kgf·m/s
kcal/h
PS | 1/9.806 65
1/1.163
≈ 1/735.498 8 | | Viscosity, Viscosity Index | Pascal second | Pa·s | Poise | P | 10 | | Kinematic Viscosity,
Kinematic Viscosity Index | Square meter per second | m²/s | Stokes
Centistokes | St
cSt | 10 ⁴
10 ⁶ | | Temperature | Kelvin, Degree celsius | K, °C | Degree | °C | (See note (1)) | | Electric Current,
Magnetomotive Force | Ampere | A | Ampere | A | 1 | | Voltage, Electromotive Force | Volt | V | (Watts per ampere) | (W/A) | 1 | | Magnetic Field Strength | Ampere per meter | A/m | Oersted | Oe | $4\pi/10^3$ | | Magnetic Flux
Density | Tesla | Т | Gauss
Gamma | Gs
γ | 10 ⁴
10 ⁹ | | Electrical Resistance | Ohm | Ω | (Volts per ampere) | (V/A) | 1 | **Note** (1) The conversion from TK into θ °C is θ =T—273.15 but for a temperature difference, it is ΔT = $\Delta \theta$. However, ΔT and $\Delta \theta$ represent temperature differences measured using the Kelvin and Celsius scales respectively. **Remarks** The names and symbols in () are equivalent to those directly above them or on their left. Example of conversion 1N=1/9.806 65kgf E 002 #### Appendix Table 2 N-kgf Force Conversion Table #### Appendix Table 3 kg-lb Mass Conversion Table [Method of using this table] For example, to convert 10N into kgf, read the figure in the right kgf column adjacent to the 10 in the center column in the 1st block. This means that 10N is 1.0197kgf. To convert 10kgf into N, read the figure in the left N column of the same row, which indicates that the answer is 98.066N. 1 N=0.1019716 kgf 1 kgf=9.80665 N [Method of using this table] For example, to convert 10kg into lb, read the figure in the right lb column adjacent to the 10 in the center column in the 1st block. This means that 10kg is 22.046lb. To convert 10lb into kg, read the figure in the left kg column of the same row, which indicates that the answer is 4.536kg. 1 kg=2.2046226 lb 1 lb=0.45359237 kg | N | | kgf | N | | kgf | N | | kgf | • | kg | | lb | | kg | | lb | • | kg | | lb | |--------------------------------------|----------------|----------------------------|----------------------------|----------------|----------------------------|----------------------------|----------------|----------------------------|---|----------------------------|----------------|----------------------------|---|----------------------------|----------------|----------------------------|---|----------------------------|----------------|----------------------------| | | | 1181 | | | | | | 1181 | | 118 | | | _ | **8 | | 15 | _ | **8 | | | | 9.8066
19.613 | 1
2
3 | 0.1020
0.2039 | 333.43
343.23
353.04 | 34
35
36 | 3.4670
3.5690 | 657.05
666.85 | 67
68
69 | 6.8321
6.9341 | | 0.454
0.907 | 1
2
3 | 2.205
4.409 | | 15.422
15.876 | 34
35
36 | 74.957
77.162 | | 30.391
30.844 | 67
68
69 | 147.71
149.91 | | 29.420
39.227
49.033 | 3
4
5 | 0.3059
0.4079
0.5099 | 353.04
362.85
372.65 | 36
37
38 | 3.6710
3.7729
3.8749 | 676.66
686.47
696.27 | 69
70
71 | 7.0360
7.1380
7.2400 | | 1.361
1.814
2.268 | 3
4
5 | 6.614
8.818
11.023 | | 16.329
16.783
17.237 | 36
37
38 | 79.366
81.571
83.776 | | 31.298
31.751
32.205 | 69
70
71 | 152.12
154.32
156.53 | | | 5 | 0.5099 | 372.00 | 36 | 3.0749 | 090.27 | / 1 | 7.2400 | | 2.200 | 5 | 11.025 | | | 30 | 83.770 | | 32.205 | <i>,</i> , | 150.55 | | 58.840
68.647
78.453 | 6 7 | 0.6118
0.7138 | 382.46
392.27 | 39
40 | 3.9769
4.0789 | 706.08
715.89 | 72
73 | 7.3420
7.4439 | | 2.722
3.175 | 6 | 13.228
15.432 | | 17.690
18.144
18.597 | 39
40 | 85.980
88.185 | | 32.659
33.112
33.566 | 72
73 | 158.73
160.94 | | 78.453
88.260
98.066 | 8
9
10 | 0.8158
0.9177
1.0197 | 402.07
411.88
421.69 | 41
42
43 | 4.1808
4.2828
4.3848 | 725.69
735.50
745.31 | 74
75
76 | 7.5459
7.6479
7.7498 | | 3.629
4.082
4.536 | 8
9
10 | 17.637
19.842
22.046 | |
18.597
19.051
19.504 | 41
42
43 | 90.390
92.594
94.799 | | 33.566
34.019
34.473 | 74
75
76 | 163.14
165.35
167.55 | | | 10 | | | 43 | | | 70 | | | | 10 | | | | 43 | | | | 70 | | | 107.87
117.68 | 11
12 | 1.1217
1.2237 | 431.49
441.30 | 44
45 | 4.4868
4.5887 | 755.11
764.92 | 77
78 | 7.8518
7.9538 | | 4.990
5.443 | 11
12 | 24.251
26.455 | | 19.958
20.412 | 44
45 | 97.003
99.208 | | 34.927
35.380 | 77
78 | 169.76
171.96 | | 127.49
137.29
147.10 | 13
14
15 | 1.3256
1.4276
1.5296 | 451.11
460.91
470.72 | 46
47
48 | 4.6907
4.7927
4.8946 | 774.73
784.53
794.34 | 79
80
81 | 8.0558
8.1577
8.2597 | | 5.897
6.350
6.804 | 13
14
15 | 28.660
30.865
33.069 | | 20.865
21.319
21.772 | 46
47
48 | 101.41
103.62
105.82 | | 35.834
36.287
36.741 | 79
80
81 | 174.17
176.37
178.57 | | | 13 | 1.5250 | 470.72 | 40 | 4.0540 | | 01 | | | | 13 | | | | 40 | | | 30.741 | 01 | | | 156.91
166.71 | 16
17 | 1.6315
1.7335 | 480.53
490.33 | 49
50 | 4.9966
5.0986 | 804.15
813.95 | 82
83 | 8.3617
8.4636 | | 7.257
7.711 | 16
17 | 35.274
37.479 | | 22.226
22.680 | 49
50 | 108.03
110.23 | | 37.195
37.648 | 82
83 | 180.78
182.98 | | 166.71
176.52
186.33
196.13 | 18
19
20 | 1.8355
1.9375
2.0394 | 500.14
509.95
519.75 | 51
52
53 | 5.2006
5.3025
5.4045 | 823.76
833.57
843.37 | 84
85
86 | 8.5656
8.6676
8.7696 | | 8.165
8.618
9.072 | 18
19
20 | 39.683
41.888
44.092 | | 23.133
23.587
24.040 | 51
52
53 | 112.44
114.64
116.84 | | 38.102
38.555
39.009 | 84
85
86 | 185.19
187.39
189.60 | | | | | | | | | 00 | | | | 20 | | | | 30 | | | | | | | 205.94
215.75 | 21 | 2.1414
2.2434 | 529.56
539.37 | 54
55 | 5.5065
5.6084 | 853.18
862.99 | 87
88 | 8.8715
8.9735 | | 9.525
9.979 | 21 | 46.297
48.502 | | 24.494
24.948 | 54
55 | 119.05
121.25 | | 39.463
39.916 | 87
88 | 191.80
194.01 | | 225.55
235.36
245.17 | 23
24
25 | 2.3453
2.4473
2.5493 | 549.17
558.98
568.79 | 56
57
58 | 5.7104
5.8124
5.9144 | 872.79
882.60
892.41 | 89
90
91 | 9.0755
9.1774
9.2794 | | 10.433
10.886
11.340 | 23
24
25 | 50.706
52.911
55.116 | | 25.401
25.855
26.308 | 56
57
58 | 123.46
125.66
127.87 | | 40.370
40.823
41.277 | 89
90
91 | 196.21
198.42
200.62 | 254.97
264.78 | 26
27 | 2.6513
2.7532 | 578.59
588.40 | 59
60 | 6.0163
6.1183 | 902.21
912.02 | 92
93 | 9.3814
9.4834 | | 11.793
12.247 | 26
27 | 57.320
59.525 | | 26.762
27.216 | 59
60 | 130.07
132.28 | | 41.730
42.184 | 92
93 | 202.83
205.03 | | 274.59
284.39
294.20 | 28
29
30 | 2.8552
2.9572
3.0591 | 598.21
608.01
617.82 | 61
62
63 | 6.2203
6.3222
6.4242 | 921.83
931.63
941.44 | 94
95
96 | 9.5853
9.6873
9.7893 | | 12.701
13.154
13.608 | 28
29
30 | 61.729
63.934
66.139 | | 27.669
28.123
28.576 | 61
62
63 | 134.48
136.69
138.89 | | 42.638
43.091
43.545 | 94
95
96 | 207.23
209.44
211.64 | 304.01
313.81 | 31
32 | 3.1611
3.2631 | 627.63
637.43 | 64
65 | 6.5262
6.6282 | 951.25
961.05 | 97
98 | 9.8912
9.9932 | | 14.061
14.515 | 31
32 | 68.343
70.548 | | 29.030
29.484 | 64
65 | 141.10
143.30 | | 43.998
44.452 | 97
98 | 213.85
216.05 | | 323.62 | 33 | 3.3651 | 647.24 | 66 | 6.7301 | 970.86 | 99 | 10.095 | | 14.969 | 33 | 72.753 | - | 29.937 | 66 | 145.51 | | 44.906 | 99 | 218.26 | #### Appendix Table 5 Viscosity Conversion Table #### Appendix Table 4 $\,^{\circ}\text{C-}^{\circ}\text{F}$ Temperature Conversion Table [Method of using this table] For example, to convert 38°C into ${}^\circ F$, read the figure in the right ${}^\circ F$ column adjacent to the 38 in the center column in the 2nd block. This means that 38°C is 100.4°F. To convert 38°F into °C, read the figure in the left °C column of the same row, which indicates that the answer is 3.3° C. $$C = \frac{5}{9}(F - 32)$$ $F = 32 + \frac{9}{2}C$ | | | | | | | _ | | | | | | | |---|--------------------------------------|--|--------------------------------------|----------------------------|---|---|--------------------------------------|---------------------------------|---|---|------------------------------------|--------------------------------------| | °C | | °F | °C | | °F | | °C | | °F | °C | | °F | | -73.3
-62.2
-51.1
-40.0
-34.4 | -100
- 80
- 60
- 40
- 30 | -148.0
-112.0
- 76.0
- 40.0
- 22.0 | 0.0
0.6
1.1
1.7
2.2 | 32
33
34
35
36 | 89.6
91.4
93.2
95.0
96.8 | • | 21.7
22.2
22.8
23.3
23.9 | 71
72
73
74
75 | 159.8
161.6
163.4
165.2
167.0 | 43.3
46.1
48.9
51.7
54.4 | 110
115
120
125
130 | 230
239
248
257
266 | | -28.9
-23.3
-17.8
-17.2
-16.7 | - 20
- 10
0
1
2 | - 4.0
14.0
32.0
33.8
35.6 | 2.8
3.3
3.9
4.4
5.0 | 37
38
39
40
41 | 98.6
100.4
102.2
104.0
105.8 | | 24.4
25.0
25.6
26.1
26.7 | 76
77
78
79
80 | 168.8
170.6
172.4
174.2
176.0 | 57.2
60.0
65.6
71.1
76.7 | 135
140
150
160
170 | 275
284
302
320
338 | | -16.1
-15.6
-15.0
-14.4
-13.9 | 3
4
5
6
7 | 37.4
39.2
41.0
42.8
44.6 | 5.6
6.1
6.7
7.2
7.8 | 42
43
44
45
46 | 107.6
109.4
111.2
113.0
114.8 | | 27.2
27.8
28.3
28.9
29.4 | 81
82
83
84
85 | 177.8
179.6
181.4
183.2
185.0 | 82.2
87.8
93.3
98.9
104.4 | 180
190
200
210
220 | 356
374
392
410
428 | | -13.3
-12.8
-12.2
-11.7
-11.1 | 8
9
10
11
12 | 46.4
48.2
50.0
51.8
53.6 | 8.3
8.9
9.4
10.0
10.6 | 47
48
49
50
51 | 116.6
118.4
120.2
122.0
123.8 | | 30.0
30.6
31.1
31.7
32.2 | 86
87
88
89
90 | 186.8
188.6
190.4
192.2
194.0 | 110.0
115.6
121.1
148.9
176.7 | 230
240
250
300
350 | 446
464
482
572
662 | | -10.6
-10.0
- 9.4
- 8.9
- 8.3 | 13
14
15
16
17 | 55.4
57.2
59.0
60.8
62.6 | 11.1
11.7
12.2
12.8
13.3 | 52
53
54
55
56 | 125.6
127.4
129.2
131.0
132.8 | | 32.8
33.3
33.9
34.4
35.0 | 91
92
93
94
95 | 195.8
197.6
199.4
201.2
203.0 | 204
232
260
288
316 | 400
450
500
550
600 | 752
842
932
1022
1112 | | - 7.8
- 7.2
- 6.7
- 6.1
- 5.6 | 18
19
20
21
22 | 64.4
66.2
68.0
69.8
71.6 | 13.9
14.4
15.0
15.6
16.1 | 57
58
59
60
61 | 134.6
136.4
138.2
140.0
141.8 | | 35.6
36.1
36.7
37.2
37.8 | 96
97
98
99
100 | 204.8
206.6
208.4
210.2
212.0 | 343
371
399
427
454 | 650
700
750
800
850 | 1202
1292
1382
1472
1562 | | - 5.0
- 4.4
- 3.9
- 3.3
- 2.8 | 23
24
25
26
27 | 73.4
75.2
77.0
78.8
80.6 | 16.7
17.2
17.8
18.3
18.9 | 62
63
64
65
66 | 143.6
145.4
147.2
149.0
150.8 | | 38.3
38.9
39.4
40.0
40.6 | 101
102
103
104
105 | 213.8
215.6
217.4
219.2
221.0 | 482
510
538
593
649 | 900
950
1000
1100
1200 | 1652
1742
1832
2012
2192 | | - 2.2
- 1.7
- 1.1
- 0.6 | 28
29
30
31 | 82.4
84.2
86.0
87.8 | 19.4
20.0
20.6
21.1 | 67
68
69
70 | 152.6
154.4
156.2
158.0 | | 41.1
41.7
42.2
42.8 | 106
107
108
109 | 222.8
224.6
226.4
228.2 | 704
760
816
871 | 1300
1400
1500
1600 | 2372
2552
2732
2912 | | Kinematic
Viscosity | | bolt
ersal
(sec) | Redv | Type
wood
sec) | Engler
E (degree) | Kinematic
Viscosity | Say
Univ
SUS | | No.1 Redw
R (s | ood | Engler
E (degree) | |------------------------|-------|------------------------|------|----------------------|----------------------|------------------------|--------------------|-------|-------------------|-------|----------------------| | mm ² /s | 100°F | 210°F | 50°C | 100°C | | mm ² /s | 100°F | 210°F | 50°C | 100°C | | | 2 | 32.6 | 32.8 | 30.8 | 31.2 | 1.14 | 35 | 163 | 164 | 144 | 147 | 4.70 | | 3 | 36.0 | 36.3 | 33.3 | 33.7 | 1.22 | 36 | 168 | 170 | 148 | 151 | 4.83 | | 4 | 39.1 | 39.4 | 35.9 | 36.5 | 1.31 | 37 | 172 | 173 | 153 | 155 | 4.96 | | 5 | 42.3 | 42.6 | 38.5 | 39.1 | 1.40 | 38 | 177 | 178 | 156 | 159 | 5.08 | | 6 | 45.5 | 45.8 | 41.1 | 41.7 | 1.48 | 39 | 181 | 183 | 160 | 164 | 5.21 | | 7 | 48.7 | 49.0 | 43.7 | 44.3 | 1.56 | 40 | 186 | 187 | 164 | 168 | 5.34 | | 8 | 52.0 | 52.4 | 46.3 | 47.0 | 1.65 | 41 | 190 | 192 | 168 | 172 | 5.47 | | 9 | 55.4 | 55.8 | 49.1 | 50.0 | 1.75 | 42 | 195 | 196 | 172 | 176 | 5.59 | | 10 | 58.8 | 59.2 | 52.1 | 52.9 | 1.84 | 43 | 199 | 201 | 176 | 180 | 5.72 | | 11 | 62.3 | 62.7 | 55.1 | 56.0 | 1.93 | 44 | 204 | 205 | 180 | 185 | 5.85 | | 12 | 65.9 | 66.4 | 58.2 | 59.1 | 2.02 | 45 | 208 | 210 | 184 | 189 | 5.98 | | 13 | 69.6 | 70.1 | 61.4 | 62.3 | 2.12 | 46 | 213 | 215 | 188 | 193 | 6.11 | | 14 | 73.4 | 73.9 | 64.7 | 65.6 | 2.22 |
47 | 218 | 219 | 193 | 197 | 6.24 | | 15 | 77.2 | 77.7 | 68.0 | 69.1 | 2.32 | 48 | 222 | 224 | 197 | 202 | 6.37 | | 16 | 81.1 | 81.7 | 71.5 | 72.6 | 2.43 | 49 | 227 | 228 | 201 | 206 | 6.50 | | 17 | 85.1 | 85.7 | 75.0 | 76.1 | 2.54 | 50 | 231 | 233 | 205 | 210 | 6.63 | | 18 | 89.2 | 89.8 | 78.6 | 79.7 | 2.64 | 55 | 254 | 256 | 225 | 231 | 7.24 | | 19 | 93.3 | 94.0 | 82.1 | 83.6 | 2.76 | 60 | 277 | 279 | 245 | 252 | 7.90 | | 20 | 97.5 | 98.2 | 85.8 | 87.4 | 2.87 | 65 | 300 | 302 | 266 | 273 | 8.55 | | 21 | 102 | 102 | 89.5 | 91.3 | 2.98 | 70 | 323 | 326 | 286 | 294 | 9.21 | | 22 | 106 | 107 | 93.3 | 95.1 | 3.10 | 75 | 346 | 349 | 306 | 315 | 9.89 | | 23 | 110 | 111 | 97.1 | 98.9 | 3.22 | 80 | 371 | 373 | 326 | 336 | 10.5 | | 24 | 115 | 115 | 101 | 103 | 3.34 | 85 | 394 | 397 | 347 | 357 | 11.2 | | 25 | 119 | 120 | 105 | 107 | 3.46 | 90 | 417 | 420 | 367 | 378 | 11.8 | | 26 | 123 | 124 | 109 | 111 | 3.58 | 95 | 440 | 443 | 387 | 399 | 12.5 | | 27 | 128 | 129 | 112 | 115 | 3.70 | 100 | 464 | 467 | 408 | 420 | 13.2 | | 28 | 132 | 133 | 116 | 119 | 3.82 | 120 | 556 | 560 | 490 | 504 | 15.8 | | 29 | 137 | 138 | 120 | 123 | 3.95 | 140 | 649 | 653 | 571 | 588 | 18.4 | | 30 | 141 | 142 | 124 | 127 | 4.07 | 160 | 742 | 747 | 653 | 672 | 21.1 | | 31 | 145 | 146 | 128 | 131 | 4.20 | 180 | 834 | 840 | 734 | 757 | 23.7 | | 32 | 150 | 150 | 132 | 135 | 4.32 | 200 | 927 | 933 | 816 | 841 | 26.3 | | 33 | 154 | 155 | 136 | 139 | 4.45 | 250 | 1 159 | 1 167 | 1 020 | 1 051 | 32.9 | | 34 | 159 | 160 | 140 | 143 | 4.57 | 300 | 1 391 | 1 400 | 1 224 | 1 241 | 39.5 | **Remark** 1mm²/s=1cSt | Appendix Table 6 inch - mm Conversion Tab | |---| |---| 1"=25.4 mm | | | | | | | | | | | . 20 | . 111111 | |--|---|---|---|---|---|---|---|---|---|--|--| | inch | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | Fraction Decimal | | | | | | mm | | | | | | | 0 0.000000 | 0.000 | 25.400 | 50.800 51.197 51.594 51.991 | 76.200 | 101.600 | 127.000 | 152.400 | 177.800 | 203.200 | 228.600 | 254.000 | | 1/64 0.015625 | 0.397 | 25.797 | | 76.597 | 101.997 | 127.397 | 152.797 | 178.197 | 203.597 | 228.997 | 254.397 | | 1/32 0.031250 | 0.794 | 26.194 | | 76.994 | 102.394 | 127.794 | 153.194 | 178.594 | 203.994 | 229.394 | 254.794 | | 3/64 0.046875 | 1.191 | 26.591 | | 77.391 | 102.791 | 128.191 | 153.591 | 178.991 | 204.391 | 229.791 | 255.191 | | 1/16 0.062500 5/64 0.078125 3/32 0.093750 7/64 0.109375 | 1.588
1.984
2.381
2.778 | 26.988
27.384
27.781
28.178 | 52.388 52.784 53.181 53.578 | 77.788
78.184
78.581
78.978 | 103.188
103.584
103.981
104.378 | 128.588
128.984
129.381
129.778 | 153.988
154.384
154.781
155.178 | 179.388 179.784 180.181 180.578 | 204.788
205.184
205.581
205.978 | 230.188
230.584
230.981
231.378 | 255.588 255.984 256.381 256.778 | | 1/8 0.125000 9/64 0.140625 5/32 0.156250 11/64 0.171875 | 3.175 | 28.575 | 53.975 | 79.375 | 104.775 | 130.175 | 155.575 | 180.975 | 206.375 | 231.775 | 257.175 | | | 3.572 | 28.972 | 54.372 | 79.772 | 105.172 | 130.572 | 155.972 | 181.372 | 206.772 | 232.172 | 257.572 | | | 3.969 | 29.369 | 54.769 | 80.169 | 105.569 | 130.969 | 156.369 | 181.769 | 207.169 | 232.569 | 257.969 | | | 4.366 | 29.766 | 55.166 | 80.566 | 105.966 | 131.366 | 156.766 | 182.166 | 207.566 | 232.966 | 258.366 | | 3/16 0.187500 13/64 0.203125 7/32 0.218750 15/64 0.234375 | 4.762
5.159
5.556
5.953 | 30.162
30.559
30.956
31.353 | 55.562 55.959 56.356 56.753 | 80.962
81.359
81.756
82.153 | 106.362
106.759
107.156
107.553 | 131.762
132.159
132.556
132.953 | 157.162
157.559
157.956
158.353 | 182.562
182.959
183.356
183.753 | 207.962
208.359
208.756
209.153 | 233.362
233.759
234.156
234.553 | 258.762
259.159
259.556
259.953 | | 1/4 0.250000 | 6.350 | 31.750 | 57.150 57.547 57.944 58.341 | 82.550 | 107.950 | 133.350 | 158.750 | 184.150 | 209.550 | 234.950 | 260.350 | | 17/64 0.265625 | 6.747 | 32.147 | | 82.947 | 108.347 | 133.747 | 159.147 | 184.547 | 209.947 | 235.347 | 260.747 | | 9/32 0.281250 | 7.144 | 32.544 | | 83.344 | 108.744 | 134.144 | 159.544 | 184.944 | 210.344 | 235.744 | 261.144 | | 19/64 0.296875 | 7.541 | 32.941 | | 83.741 | 109.141 | 134.541 | 159.941 | 185.341 | 210.741 | 236.141 | 261.541 | | 5/16 0.312500 21/64 0.328125 11/32 0.343750 23/64 0.359375 | 7.938
8.334
8.731
9.128 | 33.338
33.734
34.131
34.528 | 58.738 59.134 59.531 59.928 | 84.138
84.534
84.931
85.328 | 109.538
109.934
110.331
110.728 | 134.938
135.334
135.731
136.128 | 160.338
160.734
161.131
161.528 | 185.738
186.134
186.531
186.928 | 211.138 211.534 211.931 212.328 | 236.538
236.934
237.331
237.728 | 261.938
262.334
262.731
263.128 | | 3/8 0.375000 25/64 0.390625 13/32 0.406250 27/64 0.421875 | 9.525
9.922
10.319
10.716 | 34.925
35.322
35.719
36.116 | 60.325
60.722
61.119
61.516 | 85.725
86.122
86.519
86.916 | 111.125
111.522
111.919
112.316 | 136.525
136.922
137.319
137.716 | 161.925
162.322
162.719
163.116 | 187.325
187.722
188.119
188.516 | 212.725
213.122
213.519
213.916 | 238.125
238.522
238.919
239.316 | 263.525 263.922 264.319 264.716 | | 7/16 0.437500 29/64 0.453125 15/32 0.468750 31/64 0.484375 | 11.112
11.509
11.906
12.303 | 36.512
36.909
37.306
37.703 | 61.912 62.309 62.706 63.103 | 87.312
87.709
88.106
88.503 | 112.712
113.109
113.506
113.903 | 138.112
138.509
138.906
139.303 | 163.512
163.909
164.306
164.703 | 188.912
189.309
189.706
190.103 | 214.312
214.709
215.106
215.503 | 239.712
240.109
240.506
240.903 | 265.112
265.509
265.906
266.303 | | 1/2 0.500000 33/64 0.515625 17/32 0.531250 35/64 0.546875 | 12.700 | 38.100 | 63.500 | 88.900 | 114.300 | 139.700 | 165.100 | 190.500 | 215.900 | 241.300 | 266.700 | | | 13.097 | 38.497 | 63.897 | 89.297 | 114.697 | 140.097 | 165.497 | 190.897 | 216.297 | 241.697 | 267.097 | | | 13.494 | 38.894 | 64.294 | 89.694 | 115.094 | 140.494 | 165.894 | 191.294 | 216.694 | 242.094 | 267.494 | | | 13.891 | 39.291 | 64.691 | 90.091 | 115.491 | 140.891 | 166.291 | 191.691 | 217.091 | 242.491 | 267.891 | | 9/16 0.562500 37/64 0.578125 19/32 0.593750 39/64 0.609375 | 14.288 | 39.688 | 65.088 | 90.488 | 115.888 | 141.288 | 166.688 | 192.088 | 217.488 | 242.888 | 268.288 | | | 14.684 | 40.084 | 65.484 | 90.884 | 116.284 | 141.684 | 167.084 | 192.484 | 217.884 | 243.284 | 268.684 | | | 15.081 | 40.481 | 65.881 | 91.281 | 116.681 | 142.081 | 167.481 | 192.881 | 218.281 | 243.681 | 269.081 | | | 15.478 | 40.878 | 66.278 | 91.678 | 117.078 | 142.478 | 167.878 | 193.278 | 218.678 | 244.078 | 269.478 | | 5/8 0.625000 41/64 0.640625 21/32 0.656250 43/64 0.671875 | 15.875 | 41.275 | 66.675 | 92.075 | 117.475 | 142.875 | 168.275 | 193.675 | 219.075 | 244.475 | 269.875 | | | 16.272 | 41.672 | 67.072 | 92.472 | 117.872 | 143.272 | 168.672 | 194.072 | 219.472 | 244.872 | 270.272 | | | 16.669 | 42.069 | 67.469 | 92.869 | 118.269 | 143.669 | 169.069 | 194.469 | 219.869 | 245.269 | 270.669 | | | 17.066 | 42.466 | 67.866 | 93.266 | 118.666 | 144.066 | 169.466 | 194.866 | 220.266 | 245.666 | 271.066 | | 11/16 0.687500 45/64 0.703125 23/32 0.718750 47/64 0.734375 | 17.462 | 42.862 | 68.262 | 93.662 | 119.062 | 144.462 | 169.862 | 195.262 | 220.662 | 246.062 | 271.462 | | | 17.859 | 43.259 | 68.659 | 94.059 | 119.459 | 144.859 | 170.259 | 195.659 | 221.059 | 246.459 | 271.859 | | | 18.256 | 43.656 | 69.056 | 94.456 | 119.856 | 145.256 | 170.656 | 196.056 | 221.456 | 246.856 | 272.256 | | | 18.653 | 44.053 | 69.453 | 94.853 | 120.253 | 145.653 | 171.053 | 196.453 | 221.853 | 247.253 | 272.653 | | 3/4 0.750000 49/64 0.765625 25/32 0.781250 51/64 0.796875 | 19.050 | 44.450 | 69.850 | 95.250 | 120.650 | 146.050 | 171.450 | 196.850 | 222.250 | 247.650 | 273.050 | | | 19.447 | 44.847 | 70.247 | 95.647 | 121.047 | 146.447 | 171.847 | 197.247 | 222.647 | 248.047 | 273.447 | | | 19.844 | 45.244 | 70.644 | 96.044 | 121.444 | 146.844 | 172.244 | 197.644 | 223.044 | 248.444 | 273.844 | | | 20.241 | 45.641 | 71.041 | 96.441 | 121.841 | 147.241 | 172.641 | 198.041 | 223.441 | 248.841 | 274.241 | | 13/16 0.812500 53/64 0.828125 27/32 0.843750 55/64 0.859375 | 20.638 | 46.038 | 71.438 | 96.838 | 122.238 | 147.638 | 173.038 | 198.438 | 223.838 | 249.238 | 274.638 | | | 21.034 | 46.434 | 71.834 | 97.234 | 122.634 | 148.034 | 173.434 | 198.834 | 224.234 | 249.634 | 275.034 | | | 21.431 | 46.831 | 72.231 | 97.631 | 123.031 | 148.431 | 173.831 | 199.231 | 224.631 | 250.031 | 275.431 | | | 21.828 | 47.228 | 72.628 | 98.028 | 123.428 | 148.828 | 174.228 | 199.628 | 225.028 | 250.428 | 275.828 | | 7/8
0.875000 57/64 0.890625 29/32 0.906250 59/64 0.921875 | 22.225 | 47.625 | 73.025 | 98.425 | 123.825 | 149.225 | 174.625 | 200.025 | 225.425 | 250.825 | 276.225 | | | 22.622 | 48.022 | 73.422 | 98.822 | 124.222 | 149.622 | 175.022 | 200.422 | 225.822 | 251.222 | 276.622 | | | 23.019 | 48.419 | 73.819 | 99.219 | 124.619 | 150.019 | 175.419 | 200.819 | 226.219 | 251.619 | 277.019 | | | 23.416 | 48.816 | 74.216 | 99.616 | 125.016 | 150.416 | 175.816 | 201.216 | 226.616 | 252.016 | 277.416 | | 15/16 0.937500 61/64 0.953125 31/32 0.968750 63/64 0.984375 | 23.812
24.209
24.606
25.003 | 49.212
49.609
50.006
50.403 | 74.612
75.009
75.406
75.803 | 100.012
100.409
100.806
101.203 | 125.412
125.809
126.206
126.603 | 150.812
151.209
151.606
152.003 | 176.212
176.609
177.006
177.403 | 201.612
202.009
202.406
202.803 | 227.012
227.409
227.806
228.203 | 252.412 252.809 253.206 253.603 | 277.812
278.209
278.606
279.003 | | 1 =Z3.4 IIIII | .4 mm | =25. | ۱″ | 1 | |---------------|-------|------|----|---| |---------------|-------|------|----|---| | in | ch | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |-------------------------------------|--------------------------------------|---|---|---|---|---|---|---|---|---|---| | Fraction | n Decimal | | | | | m | m | | | | _ | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 279.400
280.988
282.575
284.162 | 304.800
306.388
307.975
309.562 | 330.200
331.788
333.375
334.962 | 355.600
357.188
358.775
360.362 | 381.000
382.588
384.175
385.762 | 406.400
407.988
409.575
411.162 | 431.800
433.388
434.975
436.562 | 457.200
458.788
460.375
461.962 | 482.600
484.188
485.775
487.362 | 508.000
509.588
511.175
512.762 | | 1/4
5/16
3/8
7/16 | 0.2500 0.3125 0.3750 0.4375 | 285.750
287.338
288.925
290.512 | 311.150
312.738
314.325
315.912 | 336.550
338.138
339.725
341.312 | 361.950
363.538
365.125
366.712 | 387.350
388.938
390.525
392.112 | 412.750
414.338
415.925
417.512 | 438.150
439.738
441.325
442.912 | 463.550
465.138
466.725
468.312 | 488.950
490.538
492.125
493.712 | 514.350 515.938 517.525 519.112 | | 1/2
9/16
5/8
11/16 | 0.5000 0.5625 0.6250 0.6875 | 292.100
293.688
295.275
296.862 | 317.500
319.088
320.675
322.262 | 342.900
344.488
346.075
347.662 | 368.300
369.888
371.475
373.062 | 393.700
395.288
396.875
398.462 | 419.100
420.688
422.275
423.862 | 444.500
446.088
447.675
449.262 | 469.900
471.488
473.075
474.662 | 495.300
496.888
498.475
500.062 | 520.700
522.288
523.875
525.462 | | 3/4
13/16
7/8
15/16 | 0.7500 0.8125 0.8750 0.9375 | 298.450
300.038
301.625
303.212 | 323.850
325.438
327.025
328.612 | 349.250
350.838
352.425
354.012 | 374.650
376.238
377.825
379.412 | 400.050
401.638
403.225
404.812 | 425.450
427.038
428.625
430.212 | 450.850
452.438
454.025
455.612 | 476.250
477.838
479.425
481.012 | 501.650
503.238
504.825
506.412 | 527.050 528.638 530.225 531.812 | 1"=25.4 mm | in | ch | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |-------------------------------------|---|--|--|---|---|---|---|---|---|---|---| | Fraction | Decimal | | | | | m | m | | | | | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 533.400 534.988 536.575 538.162 | 558.800 560.388 561.975 563.562 | 584.200 585.788 587.375 588.962 | 609.600
611.188
612.775
614.362 | 635.000
636.588
638.175
639.762 | 660.400
661.988
663.575
665.162 | 685.800
687.388
688.975
690.562 | 711.200
712.788
714.375
715.962 | 736.600
738.188
739.775
741.362 | 762.000 763.588 765.175 766.762 | | 1/4 5/16 3/8 7/16 | 0.2500 0.3125 0.3750 0.4375 | 539.750 541.338 542.925 544.512 | 565.150 566.738 568.325 569.912 | 590.550 592.138 593.725 595.312 | 615.950 617.538 619.125 620.712 | 641.350 642.938 644.525 646.112 | 666.750
668.338
669.925
671.512 | 692.150
693.738
695.325
696.912 | 717.550
719.138
720.725
722.312 | 742.950
744.538
746.125
747.712 | 768.350 769.938 771.525 773.112 | | 1/2
9/16
5/8
11/16 | 0.5000 0.5625 0.6250 0.6875 | 546.100 547.688 549.275 550.862 | 571.500 573.088 574.675 576.262 | 596.900 598.488 600.075 601.662 | 622.300 623.888 625.475 627.062 | 647.700 649.288 650.875 652.462 | 673.100 674.688 676.275 677.862 | 698.500
700.088
701.675
703.262 | 723.900
725.488
727.075
728.662 | 749.300
750.888
752.475
754.062 | 774.700
776.288
777.875
779.462 | | 3/4
13/16
7/8
15/16 | 0.7500
0.8125
0.8750
0.9375 | 552.450 554.038 555.625 557.212 | 577.850 579.438 581.025 582.612 | 603.250
604.838
606.425
608.012 | 628.650
630.238
631.825
633.412 | 654.050
655.638
657.225
658.812 | 679.450
681.038
682.625
684.212 | 704.850
706.438
708.025
709.612 | 730.250
731.838
733.425
735.012 | 755.650
757.238
758.825
760.412 | 781.050
782.638
784.225
785.812 | 1"=25.4 mm | in | ch | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |-------------------------------------|--------------------------------------|---|---|---|---|---|---|---|---|---|---| | Fraction | Decimal | | | | | m | m | | | | | | 0
1/16
1/8
3/16 | 0.0000
0.0625
0.1250
0.1875 | 787.400 788.988 790.575 792.162 | 812.800
814.388
815.975
817.562 | 838.200
839.788
841.375
842.962 | 863.600
865.188
866.775
868.362 | 889.000
890.588
892.175
893.762 | 914.400
915.988
917.575
919.162 | 939.800
941.388
942.975
944.562 | 965.200
966.788
968.375
969.962 | 990.600
992.188
993.775
995.362 | 1016.000
1017.588
1019.175
1020.762 | | 1/4 5/16 3/8 7/16 | 0.2500 0.3125 0.3750 0.4375 | 793.750 795.338 796.925 798.512 | 819.150
820.738
822.325
823.912 | 844.550
846.138
847.725
849.312 | 869.950
871.538
873.125
874.712 | 895.350
896.938
898.525
900.112 | 920.750
922.338
923.925
925.512 | 946.150
947.738
949.325
950.912 | 971.550
973.138
974.725
976.312 | 996.950
998.538
1000.125
1001.712 | 1022.350
1023.938
1025.525
1027.112 | | 1/2
9/16
5/8
11/16 | 0.5000 0.5625 0.6250 0.6875 | 800.100
801.688
803.275
804.862 | 825.500
827.088
828.675
830.262 | 850.900
852.488
854.075
855.662 | 876.300
877.888
879.475
881.062 | 901.700
903.288
904.875
906.462 | 927.100
928.688
930.275
931.862 | 952.500
954.088
955.675
957.262 | 977.900
979.488
981.075
982.662 | 1003.300
1004.888
1006.475
1008.062 | 1028.700
1030.288
1031.875
1033.462 | | 3/4
13/16
7/8
15/16 | 0.7500 0.8125 0.8750 0.9375 | 806.450
808.038
809.625
811.212 | 831.850
833.438
835.025
836.612 | 857.250
858.838
860.425
862.012 | 882.650
884.238
885.825
887.412 | 908.050
909.638
911.225
912.812 | 933.450
935.038
936.625
938.212 | 958.850
960.438
962.025
963.621 | 984.250
985.838
987.425
989.012 | 1009.650
1011.238
1012.825
1014.412 | 1035.050
1036.638
1038.225
1039.812 | E 008 #### Appendix Table 7 Hardness Conversion Table (Reference) |
Rockwell
C Scale Hardness
(1 471N)
{150kgf} | Vickers
Hardness | Brinell H
Standard Ball | lardness
Tungsten
Carbide Ball | Rockwell
A Scale
Load ^{588.4} N
{60kgf}
Brale Indenter | Hardness B Scale Load ^{980.7N} {100kgf} 1.588 mmBall (1/16in) | Shore Hardness | |--|--|--|--|---|--|----------------------------------| | 68
67
66
65
64 | 940
900
865
832
800 | | —
—
739
722 | 85.6
85.0
84.5
83.9
83.4 | | 97
95
92
91
88 | | 63
62
61
60
59 | 772
746
720
697
674 | | 705
688
670
654
634 | 82.8
82.3
81.8
81.2
80.7 | | 87
85
83
81
80 | | 58
57
56
55
54 | 653
633
613
595
577 | | 615
595
577
560
543 | 80.1
79.6
79.0
78.5
78.0 | | 78
76
75
74
72 | | 53
52
51
50
49 | 560
544
528
513
498 | 500
487
475
464 | 525
512
496
481
469 | 77.4
76.8
76.3
75.9
75.2 | | 71
69
68
67
66 | | 48
47
46
45
44 | 484
471
458
446
434 | 451
442
432
421
409 | 455
443
432
421
409 | 74.7
74.1
73.6
73.1
72.5 | | 64
63
62
60
58 | | 43
42
41
40
39 | 423
412
402
392
382 | 400
390
381
371
362 | 400
390
381
371
362 | 72.0
71.5
70.9
70.4
69.9 | | 57
56
55
54
52 | | 38
37
36
35
34 | 372
363
354
345
336 | 353
344
336
327
319 | 353
344
336
327
319 | 69.4
68.9
68.4
67.9
67.4 | (109.0)
(108.5)
(108.0) | 51
50
49
48
47 | | 33
32
31
30
29 | 327
318
310
302
294 | 311
301
294
286
279 | 311
301
294
286
279 | 66.8
66.3
65.8
65.3
64.7 | (107.5)
(107.0)
(106.0)
(105.5)
(104.5) | 46
44
43
42
41 | | 28
27
26
25
24 | 286
279
272
266
260 | 271
264
258
253
247 | 271
264
258
253
247 | 64.3
63.8
63.3
62.8
62.4 | (104.0)
(103.0)
(102.5)
(101.5)
(101.0) | 41
40
38
38
37 | | 23
22
21
20 | 254
248
243
238 | 243
237
231
226 | 243
237
231
226 | 62.0
61.5
61.0
60.5 | 100.0
99.0
98.5
97.8 | 36
35
35
34 | | (18)
(16)
(14)
(12) | 230
222
213
204 | 219
212
203
194 | 219
212
203
194 | _
_
_ | 96.7
95.5
93.9
92.3 | 33
32
31
29 | | (10)
(8)
(6)
(4)
(2)
(0) | 196
188
180
173
166
160 | 187
179
171
165
158
152 | 187
179
171
165
158
152 | _
_
_
_ | 90.7
89.5
87.1
85.5
83.5
81.7 | 28
27
26
25
24
24 | #### Appendix Table 8 Physical and Mechanical Properties of Materials | I | Materials | Specific Gravity | Coefficient of
Linear Expansion
(0° to 100°C)
(K ⁻¹) | Hardness
(Brinell) | Young's
modulus
(MPa)
{kgf/mm²} | Tensile Strength
(MPa)
{kgf/mm²} | Yield Point
(MPa)
{kgf/mm²} | Elongation (%) | |------------|------------------------------------|------------------|---|-----------------------|--|--|-----------------------------------|----------------------| | Bearing | Steel (hardened) | 7.83 | 12.5×10⁻ ⁶ | 650 to 740 | 208 000
{21 200} | 1 570 to 1 960
{160 to 200} | _ | _ | | | tic Stainless Steel
SUS 440C | 7.68 | 10.1×10 ⁻⁶ | 580 | 200 000
{20 400} | 1 960
{200} | 1 860
{190} | _ | | Mild Steel | (C=0.12 to 0.20%) | 7.86 | 11.6×10 ⁻⁶ | 100 to 130 | 206 000
{21 000} | 373 to 471
{38 to 48} | 216 to 294
{22 to 30} | 24 to 36 | | Hard Stee | el (C=0.3 to 0.5%) | 7.84 | 11.3×10 ⁻⁶ | 160 to 200 | 206 000
{21 000} | 539 to 686
{55 to 70} | 333 to 451
{34 to 46} | 14 to 26 | | | ic Stainless Steel
SUS 304 | 8.03 | 16.3×10 ⁻⁶ | 150 | 193 000
{19 700} | 588
{60} | 245
{25} | 60 | | Cast Iron | Gray Iron
FC200 | 7.3 | 10.4×10 ⁻⁶ | 223 | 98 100
{10 000} | More than
200
{20} | _ | _ | | ouot iron | Spheroidal graphite Iron
FCD400 | 7.0 | 11.7×10 ⁻⁶ | Less than
201 | 169 000
{17 200} | More than
400
{41} | _ | More than 12 | | Aluminu | ım | 2.69 | 23.7×10 ⁻⁶ | 15 to 26 | 70 600
{7 200} | 78
{8} | 34
{3.5} | 35 | | Zinc | | 7.14 | 31×10 ⁻⁶ | 30 to 60 | 92 200
{9 400} | 147
{15} | _ | 30 to 40 | | Copper | | 8.93 | 16.2×10 ⁻⁶ | 50 | 123 000
{12 500} | 196
{20} | 69
{7} | 15 to 20 | | Brass | (Annealed) (Machined) | 8.5 | 19.1×10 ⁻⁶ | 45
85 to 130 | 103 000
{10 500} | 294 to 343
{30 to 35}
363 to 539
{37 to 55} | _ | 65 to 75
15 to 50 | Remark The hardness of hardened bearing steel and martensitic stainless steel is usually expressed using the Rockwell C Scale, but for comparison, it is converted into Brinell hardness. #### Appendix Table 9 Tolerances | Dian
Classifica
over | neter
tion (mm)
incl. | (Normal) | d6 | e6 | f6 | g5 | g6 | h5 | h6 | h7 | h8 | h9 | h10 | js5 | js6 | |----------------------------|-----------------------------|------------|--------------|----------------|--------------|--------------|---------------------|------------|-----------|-------------------|----------------|--------------|-------------------|--------|--------| | 3 | 6 | 0
- 8 | - 30
- 38 | - 20
- 28 | - 10
- 18 | - 4
- 9 | - 4
- 12 | 0 - 5 | 0
- 8 | 0
- 12 | 0
- 18 | 0
30 | 0
- 48 | ± 2.5 | ± 4 | | 6 | 10 | _ 0
_ 8 | - 40
- 49 | - 25
- 34 | - 13
- 22 | - 5
- 11 | - 12
- 5
- 14 | - 5
- 6 | 0
9 | 0
- 15 | 0
- 22 | - 30
- 36 | - 48
0
- 58 | ± 3 | ± 4.5 | | 10 | 18 | _ 0
_ 8 | - 50
- 61 | - 32
- 43 | - 16
- 27 | - 6
- 14 | - 6
- 17 | 0
- 8 | 0
-11 | 0
- 18 | 0
- 27 | 0
- 43 | 0
- 70 | ± 4 | ± 5.5 | | 18 | 30 | 0
- 10 | - 65
- 78 | - 40
- 53 | - 20
- 33 | - 7
- 16 | - 7
- 20 | _ 0
_ 9 | 0
-13 | 0
- 21 | 0
- 33 | 0
- 52 | 0
- 84 | ± 4.5 | ± 6.5 | | 30 | 50 | 0
- 12 | - 80
- 96 | - 50
- 66 | - 25
- 41 | - 9
- 20 | | 0
-11 | 0
-16 | 0
- 25 | 0
- 39 | 0
- 62 | 0
100 | ± 5.5 | ± 8 | | 50 | 80 | 0
- 15 | -100
-119 | - 60
- 79 | - 30
- 49 | - 10
- 23 | - 10
- 29 | 0
-13 | 0
- 19 | - 30 | - 46 | 0
- 74 | 0
120 | ± 6.5 | ± 9.5 | | 80 | 120 | 0
20 | -120
-142 | - 72
- 94 | - 36
- 58 | - 12
- 27 | - 12
- 34 | 0
15 | 0
-22 | 0
- 35 | 0
- 54 | 0
- 87 | 0
-140 | ± 7.5 | ± 11 | | 120 | 180 | 0
- 25 | -145
-170 | - 85
-110 | - 43
- 68 | - 14
- 32 | - 14
- 39 | 0
18 | 0
-25 | - ⁰ 40 | - 63 | | 0
-160 | ± 9 | ± 12.5 | | 180 | 250 | - 30 | -170
-199 | -100
-129 | - 50
- 79 | - 15
- 35 | - 15
- 44 | 0
-20 | 0
-29 | 0
- 46 | - ⁰ | 0
115 | 0
185 | ± 10 | ± 14.5 | | 250 | 315 | 0
- 35 | -190
-222 | -110
-142 | - 56
- 88 | - 17
- 40 | - 17
- 49 | 0
-23 | 0
-32 | 0
- 52 | - 81 | 0
-130 | 0
210 | ± 11.5 | ± 16 | | 315 | 400 | - 40 | -210
-246 | - 125
- 161 | - 62
- 98 | - 18
- 43 | - 18
- 54 | 0
-25 | 0
-36 | 0
- 57 | - 89 | 0
140 | 0
-230 | ± 12.5 | ± 18 | | 400 | 500 | 0
- 45 | -230
-270 | 135
175 | - 68
-108 | - 20
- 47 | - 20
- 60 | 0
-27 | 0
40 | - 63 | - 97 | 0
-155 | 0
-250 | ± 13.5 | ± 20 | | 500 | 630 | - 50 | -260
-304 | -145
-189 | - 76
-120 | _ | - 22
- 66 | _ | 0
44 | - ⁰ | 0
110 | 0
-175 | 0
-280 | _ | ± 22 | | 630 | 800 | 0
- 75 | -290
-340 | -160
-210 | - 80
-130 | _ | - 24
- 74 | _ | 0
-50 | - 80 | 0
125 | 0
200 | 0
320 | _ | ± 25 | | 800 | 1 000 | 0
100 | -320
-376 | -170
-226 | - 86
-142 | _ | - 26
- 82 | _ | 0
-56 | - 90 | 0
-140 | 0
-230 | _360 | _ | ± 28 | | 1 000 | 1 250 | 0
-125 | -350
-416 | - 195
- 261 | - 98
-164 | _ | - 28
- 94 | _ | 0
-66 | 0
-105 | 0
-165 | 0
-260 | 0
-420 | _ | ± 33 | | 1 250 | 1 600 | 0
-160 | -390
-468 | -220
-298 | -110
-188 | _ | - 30
-108 | _ | 0
- 78 | 0
-125 | 0
195 | 0
-310 | 0
-500 | | ± 39 | | 1 600 | 2 000 | 0
-200 | -430
-522 | -240
-332 | -120
-212 | _ | - 32
-124 | _ | 0
-92 | 0
-150 | 0
-230 | 0
-370 | 0
600 | _ | ± 46 | #### for Shaft Diameters Units : µm | j5 | j6 | j7 | k5 | k6 | k7 | m5 | m6 | n6 | р6 | r6 | r7 | Diameter C
(m | lassification
nm) | |------------|-----------------|--------------|------------|-------------|-------------|--------------|--------------|--------------|---------------|-------------------------|-------------------------|------------------|----------------------| | | | | | | | | | | | | | over | incl. | | + 3 - 2 | + 6
- 2 | + 8
- 4 | + 6
+ 1 | + 9
+ 1 | + 13
+ 1 | + 9
+ 4 | + 12
+ 4 | + 16
+ 8 | + 20
+ 12 | + 23
+ 15 | + 27
+ 15 | 3 | 6 | | + 4 | + 7
— 2 | + 10
— 5 | + 7
+ 1 | + 10
+ 1 | + 16
+ 1 | + 12
+ 6 | + 15
+ 6 | + 19
+ 10 | + 24
+ 15 | + 28
+ 19 | + 34
+ 19 | 6 | 10 | | + 5
- 3 | + 8
- 3 | + 12
6 | + 9 + 1 | + 12
+ 1 | + 19
+ 1 | + 15
+ 7 | + 18
+ 7 | + 23
+ 12 | + 29
+ 18 | + 34
+ 23 | + 41
+ 23 | 10 | 18 | | + 5
- 4 | + 9
- 4 | + 13
— 8 | + 11 + 2 | + 15
+ 2 | + 23
+ 2 | + 17
+ 8 |
+ 21
+ 8 | + 28
+ 15 | + 35
+ 22 | + 41
+ 28 | + 49
+ 28 | 18 | 30 | | + 6
- 5 | + 11
- 5 | + 15
10 | + 13 + 2 | + 18 + 2 | + 27
+ 2 | + 20
+ 9 | + 25
+ 9 | + 33
+ 17 | + 42
+ 26 | + 50
+ 34 | + 59
+ 34 | 30 | 50 | | + 6 | + 12
- 7 | + 18 | + 15 | + 21 | + 32 | + 24 | + 30 | + 39 | + 51 | + 60
+ 41 | + 71
+ 41 | 50 | 65 | | - 7 | – 7 | -12 | + 2 | + 2 | + 2 | + 11 | + 11 | + 20 | + 32 | + 62
+ 43 | + 73
+ 43 | 65 | 80 | | + 6 | + 13 | + 20 | + 18 | + 25 | + 38 | + 28 | + 35 | + 45 | + 59 | + 73
+ 51 | + 86
+ 51 | 80 | 100 | | - 9 | - 9 | — 15 | + 3 | + 3 | + 3 | + 13 | + 13 | + 23 | + 37 | + 76
+ 54 | + 89
+ 54 | 100 | 120 | | | | | | | 40 | | | | | + 88
+ 63 | + 103 + 63 | 120 | 140 | | + 7
-11 | + 14
11 | + 22
18 | + 21 + 3 | + 28
+ 3 | + 43
+ 3 | + 33
+ 15 | + 40
+ 15 | + 52
+ 27 | + 68 + 43 | + 90
+ 65
+ 93 | + 105
+ 65
+ 108 | 140 | 160 | | | | | | | | | | | | + 68 | + 68 | 160 | 180 | | + 7 | + 16 | + 25 | + 24 | + 33 | + 50 | + 37 | + 46 | + 60 | + 79 | + 106
+ 77
+ 109 | + 123
+ 77
+ 126 | 180 | 200 | | -13 | - 13 | -21 | + 4 | + 4 | + 4 | + 17 | + 17 | + 31 | + 50 | + 80 | + 80 | 200 | 225 | | | | | | | | | | | | + 84 + 126 | + 84 | 225 | 250 | | + 7
-16 | ± 16 | ± 26 | + 27 | + 36
+ 4 | + 56
+ 4 | + 43
+ 20 | + 52
+ 20 | + 66
+ 34 | + 88
+ 56 | + 94 | + 94 | 250 | 280 | | | | | | | | | | | | + 98
+ 144 | + 98
+ 165 | 280 | 315 | | + 7
-18 | ± 18 | + 29
28 | + 29 + 4 | + 40
+ 4 | + 61
+ 4 | + 46
+ 21 | + 57
+ 21 | + 73
+ 37 | + 98
+ 62 | + 108
+ 150 | + 108
+ 171 | 315 | 355
400 | | | | | | | | | | | | + 114
+ 166 | + 114 | 400 | 450 | | + 7
-20 | ± 20 | + 31
- 32 | + 32 + 5 | + 45
+ 5 | + 68
+ 5 | + 50
+ 23 | + 63
+ 23 | + 80
+ 40 | + 108
+ 68 | + 126 | + 126 | 450 | 500 | | | | | | 4.4 | 70 | | 70 | 00 | 400 | + 132 | + 132 | 500 | 560 | | - | _ | _ | - | + 44 | + 70
0 | _ | + 70
+ 26 | + 88 + 44 | + 122
+ 78 | + 150
+ 199
+ 155 | + 150
+ 225
+ 155 | 560 | 630 | | | | | | + 50 | + 80 | | + 80 | + 100 | + 138 | + 225
+ 175 | + 255
+ 175 | 630 | 710 | | - | _ | _ | - | 0 | 0 | _ | + 30 | + 50 | + 88 | + 235
+ 185 | + 265
+ 185 | 710 | 800 | | | | | | + 56 | + 90 | | + 90 | + 112 | + 156 | + 266
+ 210 | + 300
+ 210 | 800 | 900 | | _ | _ | _ | _ | 0 | 0 | _ | + 34 | + 56 | + 100 | + 276
+ 220 | + 310
+ 220 | 900 | 1 000 | | | | | | + 66 | + 105 | | + 106 | + 132 | + 186 | + 316
+ 250 | + 355
+ 250 | 1 000 | 1 120 | | | | | | 0 | 0 | | + 40 | + 66 | + 120 | + 326
+ 260 | + 365
+ 260 | 1 120 | 1 250 | | | _ | _ | | + 78 | + 125 | | + 126 | + 156 | + 218 | + 378
+ 300 | + 425
+ 300 | 1 250 | 1 400 | | | | | | 0 | 0 | | + 48 | + 78 | + 140 | + 408
+ 330 | + 455
+ 330 | 1 400 | 1 600 | | _ | _ | _ | _ | + 92 | + 150 | _ | + 150 | + 184 | + 262 | + 462
+ 370 | + 520
+ 370 | 1 600 | 1 800 | | | | | | 0 | 0 | | + 58 | + 92 | + 170 | + 492
+ 400 | + 550
+ 400 | 1 800 | 2 000 | #### Appendix Table 10 | | meter
ation (mm)
incl. | Single Plane
Mean O.D.
Deviation
(Normal)
ΔD_{mp} | E6 | F6 | F7 | G6 | G7 | Н6 | Н7 | Н8 | J6 J7 | | JS6 | JS7 | |------------|------------------------------|--|----------------|----------------|----------------|---------------|---------------|-----------|------------|------------|-----------|-----------|--------|--------| | 10 | 18 | - 8 | + 43
+ 32 | + 27
+ 16 | + 34
+ 16 | + 17
+ 6 | + 24
+ 6 | + 11 | + 18 | + 27 | + 6 + | | : 5.5 | ± 9 | | 18 | 30 | _ 0
_ 9 | + 53
+ 40 | + 33 + 20 | + 41
+ 20 | + 20
+ 7 | + 28
+ 7 | + 13 | + 21 | + 33 | + 8 + | | : 6.5 | ± 10.5 | | 30 | 50 | 0
- 11 | + 66
+ 50 | + 41
+ 25 | + 50
+ 25 | + 25
+ 9 | + 34 + 9 | + 16
0 | + 25 | + 39 | +10 + 6 - | | : 8 | ± 12.5 | | 50 | 80 | 0
- 13 | + 79
+ 60 | + 49
+ 30 | + 60
+ 30 | + 29
+ 10 | + 40
+ 10 | + 19 | + 30 | + 46 | + 13 + 1 | | 9.5 | ± 15 | | 80 | 120 | 0
- 15 | + 94
+ 72 | + 58
+ 36 | + 71
+ 36 | + 34
+ 12 | + 47
+ 12 | + 22 | + 35 | + 54 | +16 +2 | | : 11 | ± 17.5 | | 120
150 | 150
180 | 0
- 18
0
- 25 | + 110
+ 85 | + 68
+ 43 | + 83
+ 43 | + 39
+ 14 | + 54
+ 14 | + 25 | + 40 | + 63 | + 18 + 2 | | 12.5 | ± 20 | | 180 | 250 | - 30 | + 129
+ 100 | + 79
+ 50 | + 96
+ 50 | + 44
+ 15 | + 61
+ 15 | + 29 | + 46 | + 72 | + 22 + 3 | 80
6 ± | : 14.5 | ± 23 | | 250 | 315 | 0
- 35 | + 142
+ 110 | + 88
+ 56 | + 108
+ 56 | + 49
+ 17 | + 69
+ 17 | + 32 | + 52 | + 81 | + 25 + 3 | | : 16 | ± 26 | | 315 | 400 | 0
- 40 | + 161
+ 125 | + 98
+ 62 | + 119
+ 62 | + 54
+ 18 | + 75
+ 18 | + 36 | + 57
0 | + 89 | +29 +3 | 19
8 ± | : 18 | ± 28.5 | | 400 | 500 | 0
- 45 | + 175
+ 135 | + 108
+ 68 | + 131
+ 68 | + 60
+ 20 | + 83
+ 20 | + 40 | + 63 | + 97 | +33 +4 | | : 20 | ± 31.5 | | 500 | 630 | 0
- 50 | + 189
+ 145 | + 120
+ 76 | + 146
+ 76 | + 66
+ 22 | + 92
+ 22 | + 44 | + 70 | + 110 | | - ± | : 22 | ± 35 | | 630 | 800 | 0
- 75 | + 210
+ 160 | + 130
+ 80 | + 160
+ 80 | + 74
+ 24 | + 104
+ 24 | + 50
0 | + 80 | + 125
0 | | - ± | : 25 | ± 40 | | 800 | 1 000 | 0
-100 | + 226
+ 170 | + 142
+ 86 | + 176
+ 86 | + 82
+ 26 | + 116
+ 26 | + 56
0 | + 90 | + 140 | | - ± | : 28 | ± 45 | | 1 000 | 1 250 | 0
125 | + 261
+ 195 | + 164
+ 98 | + 203
+ 98 | + 94
+ 28 | + 133
+ 28 | + 66 | + 105
0 | + 165
0 | | - ± | : 33 | ± 52.5 | | 1 250 | 1 600 | 0
-160 | + 298
+ 220 | + 188
+ 110 | + 235
+ 110 | + 108
+ 30 | + 155
+ 30 | + 78
0 | + 125
0 | + 195
0 | | - ± | : 39 | ± 62.5 | | 1 600 | 2 000 | 0
-200 | + 332
+ 240 | + 212
+ 120 | + 270
+ 120 | + 124
+ 32 | + 182
+ 32 | + 92 | + 150
0 | + 230 | | - ± | : 46 | ± 75 | | 2 000 | 2 500 | 0
-250 | + 370
+ 260 | + 240
+ 130 | + 305
+ 130 | + 144
+ 34 | + 209
+ 34 | + 110 | + 175
0 | + 280 | | - ± | : 55 | ± 87.5 | #### **Tolerances for Housing Bore Diameters** Units : µm | K5 | K6 | K7 | M5 | MC | MZ | NE | N6 | N7 | P6 | P7 | | lassification
m) | |------------|-------------|----------------|------------|---------------|----------------|------------|--------------|--------------|--------------|--------------|-------|---------------------| | KS | Ko | Κ/ | M3 | M6 | M7 | N5 | INO | IN / | го | Гί | over | incl. | | + 2 - 6 | + 2
- 9 | + 6
- 12 | - 4
-12 | - 4
- 15 | - 18 | - 9
-17 | - 9
- 20 | - 5
- 23 | - 15
- 26 | - 11
- 29 | 10 | 18 | | + 1 - 8 | + 2
- 11 | + 6
- 15 | - 5
-14 | - 4
- 17 | 0
- 21 | -12
-21 | - 11
- 24 | - 7
- 28 | - 18
- 31 | - 14
- 35 | 18 | 30 | | + 2
- 9 | + 3
- 13 | + 7
- 18 | - 5
-16 | - 4
- 20 | 0
- 25 | -13
-24 | - 12
- 28 | - 8
- 33 | - 21
- 37 | - 17
- 42 | 30 | 50 | | + 3
-10 | + 4
- 15 | + 9
- 21 | - 6
-19 | - 5
- 24 | - 30 | -15
-28 | - 14
- 33 | - 9
- 39 | - 26
- 45 | - 21
- 51 | 50 | 80 | | + 2
-13 | + 4
- 18 | + 10
- 25 | - 8
-23 | - 6
- 28 | 0
- 35 | -18
-33 | - 16
- 38 | - 10
- 45 | - 30
- 52 | - 24
- 59 | 80 | 120 | | + 3
-15 | + 4
- 21 | + 12
- 28 | - 9
-27 | - 8
- 33 | 0
- 40 | -21
-39 | - 20
- 45 | - 12
- 52 | - 36
- 61 | - 28
- 68 | 120 | 180 | | + 2
-18 | + 5
- 24 | + 13
- 33 | -11
-31 | - 8
- 37 | 0
- 46 | -25
-45 | - 22
- 51 | - 14
- 60 | - 41
- 70 | - 33
- 79 | 180 | 250 | | + 3
-20 | + 5
- 27 | + 16
- 36 | -13
-36 | - 9
- 41 | 0
- 52 | -27
-50 | - 25
- 57 | - 14
- 66 | - 47
- 79 | - 36
- 88 | 250 | 315 | | + 3
-22 | + 7
- 29 | + 17
— 40 | -14
-39 | - 10
- 46 | - ⁰ | -30
-55 | - 26
- 62 | - 16
- 73 | - 51
- 87 | - 41
- 98 | 315 | 400 | | + 2
-25 | + 8
- 32 | + 18
- 45 | -16
-43 | - 10
- 50 | 0
- 63 | -33
-60 | - 27
- 67 | - 17
- 80 | - 55
- 95 | - 45
-108 | 400 | 500 | | _ | 0
- 44 | - ⁰ | _ | - 26
- 70 | - 26
- 96 | _ | - 44
- 88 | - 44
-114 | - 78
-122 | - 78
-148 | 500 | 630 | | _ | 0
- 50 | 0
- 80 | _ | - 30
- 80 | - 30
-110 | _ | - 50
-100 | - 50
-130 | - 88
-138 | - 88
-168 | 630 | 800 | | _ | 0
- 56 | 0
- 90 | _ | - 34
- 90 | - 34
-124 | _ | - 56
-112 | - 56
-146 | -100
-156 | -100
-190 | 800 | 1 000 | | _ | 0
- 66 | 0
105 | _ | - 40
-106 | - 40
-145 | _ | - 66
-132 | - 66
-171 | -120
-186 | -120
-225 | 1 000 | 1 250 | | _ | 0
- 78 | 0
125 | _ | - 48
-126 | - 48
-173 | _ | - 78
-156 | - 78
-203 | -140
-218 | -140
-265 | 1 250 | 1 600 | | _ | 0
- 92 | 0
-150 | _ | - 58
-150 | - 58
-208 | _ | - 92
-184 | - 92
-242 | -170
-262 | -170
-320 | 1 600 | 2 000 | | _ | 0
110 | 0
175 | _ | - 68
- 178 | - 68
-243 | _ | -110
-220 | -110
-285 | -195
-305 | 195
370 | 2 000 | 2 500 | E 014 #### Appendix Table 11 Values of | Basic | : Size | | | | | | | | | | | Standard | |-------|--------|-----|-----|-----|-----|-----|------------|-----|-----|-----|------|----------| | (m | nm) | IT1 | IT2 | IT3 | IT4 | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | | over | incl. | | | | | Tol | erances (μ | m) | | | | | | _ | 3 | 0.8 | 1.2 | 2 | 3 | 4 | 6 | 10 | 14 | 25 | 40 | 60 | | 3 | 6 | 1 | 1.5 | 2.5 | 4 | 5 | 8 | 12 | 18 | 30 | 48 | 75 | | 6 | 10 | 1 | 1.5 | 2.5 | 4 | 6 | 9 | 15 | 22 | 36 | 58 | 90 | | 10 | 18 | 1.2 | 2 | 3 | 5 | 8 | 11 | 18 | 27 | 43 | 70 | 110 | | 18 | 30 | 1.5 | 2.5 | 4 | 6 | 9 | 13 | 21 | 33 | 52 | 84 | 130 | | 30 | 50 | 1.5 |
2.5 | 4 | 7 | 11 | 16 | 25 | 39 | 62 | 100 | 160 | | 50 | 80 | 2 | 3 | 5 | 8 | 13 | 19 | 30 | 46 | 74 | 120 | 190 | | 80 | 120 | 2.5 | 4 | 6 | 10 | 15 | 22 | 35 | 54 | 87 | 140 | 220 | | 120 | 180 | 3.5 | 5 | 8 | 12 | 18 | 25 | 40 | 63 | 100 | 160 | 250 | | 180 | 250 | 4.5 | 7 | 10 | 14 | 20 | 29 | 46 | 72 | 115 | 185 | 290 | | 250 | 315 | 6 | 8 | 12 | 16 | 23 | 32 | 52 | 81 | 130 | 210 | 320 | | 315 | 400 | 7 | 9 | 13 | 18 | 25 | 36 | 57 | 89 | 140 | 230 | 360 | | 400 | 500 | 8 | 10 | 15 | 20 | 27 | 40 | 63 | 97 | 155 | 250 | 400 | | 500 | 630 | 9 | 11 | 16 | 22 | 32 | 44 | 70 | 110 | 175 | 280 | 440 | | 630 | 800 | 10 | 13 | 18 | 25 | 36 | 50 | 80 | 125 | 200 | 320 | 500 | | 800 | 1 000 | 11 | 15 | 21 | 28 | 40 | 56 | 90 | 140 | 230 | 360 | 560 | | 1 000 | 1 250 | 13 | 18 | 24 | 33 | 47 | 66 | 105 | 165 | 260 | 420 | 660 | | 1 250 | 1 600 | 15 | 21 | 29 | 39 | 55 | 78 | 125 | 195 | 310 | 500 | 780 | | 1 600 | 2 000 | 18 | 25 | 35 | 46 | 65 | 92 | 150 | 230 | 370 | 600 | 920 | | 2 000 | 2 500 | 22 | 30 | 41 | 55 | 78 | 110 | 175 | 280 | 440 | 700 | 1 100 | | 2 500 | 3 150 | 26 | 36 | 50 | 68 | 96 | 135 | 210 | 330 | 540 | 860 | 1 350 | #### $\textbf{Remarks} \quad \textbf{1.} \quad \textbf{Standard tolerance grades IT} \textbf{14 to IT} \textbf{18 shall not be used for basic sizes less than or equal to 1 } \textbf{mm}.$ #### Standard Tolerance Grades IT | Grades | | | | | | | | | | | | | |--------|-----------------|------|------|-------|-------|-------|-------|-------|--|--|--|--| | IT12 | IT13 | IT18 | (n | nm) | | | | | | | | | | | Tolerances (mm) | | | | | | | | | | | | | 0.10 | 0.14 | 0.25 | 0.40 | 0.60 | 1.00 | 1.40 | _ | 3 | | | | | | 0.12 | 0.18 | 0.30 | 0.48 | 0.75 | 1.20 | 1.80 | 3 | 6 | | | | | | 0.15 | 0.22 | 0.36 | 0.58 | 0.90 | 1.50 | 2.20 | 6 | 10 | | | | | | 0.18 | 0.27 | 0.43 | 0.70 | 1.10 | 1.80 | 2.70 | 10 | 18 | | | | | | 0.21 | 0.33 | 0.52 | 0.84 | 1.30 | 2.10 | 3.30 | 18 | 30 | | | | | | 0.25 | 0.39 | 0.62 | 1.00 | 1.60 | 2.50 | 3.90 | 30 | 50 | | | | | | 0.30 | 0.46 | 0.74 | 1.20 | 1.90 | 3.00 | 4.60 | 50 | 80 | | | | | | 0.35 | 0.54 | 0.87 | 1.40 | 2.20 | 3.50 | 5.40 | 80 | 120 | | | | | | 0.40 | 0.63 | 1.00 | 1.60 | 2.50 | 4.00 | 6.30 | 120 | 180 | | | | | | 0.46 | 0.72 | 1.15 | 1.85 | 2.90 | 4.60 | 7.20 | 180 | 250 | | | | | | 0.52 | 0.81 | 1.30 | 2.10 | 3.20 | 5.20 | 8.10 | 250 | 315 | | | | | | 0.57 | 0.89 | 1.40 | 2.30 | 3.60 | 5.70 | 8.90 | 315 | 400 | | | | | | 0.63 | 0.97 | 1.55 | 2.50 | 4.00 | 6.30 | 9.70 | 400 | 500 | | | | | | 0.70 | 1.10 | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 500 | 630 | | | | | | 0.80 | 1.25 | 2.00 | 3.20 | 5.00 | 8.00 | 12.50 | 630 | 800 | | | | | | 0.90 | 1.40 | 2.30 | 3.60 | 5.60 | 9.00 | 14.00 | 800 | 1 000 | | | | | | 1.05 | 1.65 | 2.60 | 4.20 | 6.60 | 10.50 | 16.50 | 1 000 | 1 250 | | | | | | 1.25 | 1.95 | 3.10 | 5.00 | 7.80 | 12.50 | 19.50 | 1 250 | 1 600 | | | | | | 1.50 | 2.30 | 3.70 | 6.00 | 9.20 | 15.00 | 23.00 | 1 600 | 2 000 | | | | | | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 17.50 | 28.00 | 2 000 | 2 500 | | | | | | 2.10 | 3.30 | 5.40 | 8.60 | 13.50 | 21.00 | 33.00 | 2 500 | 3 150 | | | | | ^{2.} Values for standard tolerance grades IT1 to IT5 for basic sizes over 500 mm are included for experimental use. #### Appedix Table 12 Speed Factor $f_{ m n}$ Appendix Table 13 Fatigue Life Factor $f_{ m h}$ and Fatigue Life $L\!-\!L_{ m h}$ Ball Bearings $f_{ m n}$ = (0.03 $\it n$) $^{-1/3}$ Roller Bearings $f_{ m n}$ = (0.03 n) $^{-3/10}$ Ball Bearings L=(C / P) 3 $L_{ m h}$ =500 $f_{ m h}{}^3$ | Speed | 1 | | Speed | Speed F | actor $f_{\rm n}$ | • | Speed | Speed F | actor f_n | |-------------------------------|---------------|-----------------|-------------------------------|---------------|-------------------|---|-------------------------------|---------------|-----------------| | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | _ | <i>n</i> (min ⁻¹) | Ball Bearings | Roller Bearings | | 10 | 1.49 | 1.44 | 180 | 0.570 | 0.603 | | 3 000 | 0.223 | 0.259 | | 11 | 1.45 | 1.39 | 190 | 0.560 | 0.593 | | 3 200 | 0.218 | 0.254 | | 12 | 1.41 | 1.36 | 200 | 0.550 | 0.584 | | 3 400 | 0.214 | 0.250 | | 13 | 1.37 | 1.33 | 220 | 0.533 | 0.568 | | 3 600 | 0.210 | 0.245 | | 14 | 1.34 | 1.30 | 240 | 0.518 | 0.553 | | 3 800 | 0.206 | 0.242 | | 15 | 1.30 | 1.27 | 260 | 0.504 | 0.540 | | 4 000 | 0.203 | 0.238 | | 16 | 1.28 | 1.25 | 280 | 0.492 | 0.528 | | 4 200 | 0.199 | 0.234 | | 17 | 1.25 | 1.22 | 300 | 0.481 | 0.517 | | 4 400 | 0.196 | 0.231 | | 18 | 1.23 | 1.20 | 320 | 0.471 | 0.507 | | 4 600 | 0.194 | 0.228 | | 19 | 1.21 | 1.18 | 340 | 0.461 | 0.498 | | 4 800 | 0.191 | 0.225 | | 20 | 1.19 | 1.17 | 360 | 0.452 | 0.490 | | 5 000 | 0.188 | 0.222 | | 21 | 1.17 | 1.15 | 380 | 0.444 | 0.482 | | 5 200 | 0.186 | 0.220 | | 22 | 1.15 | 1.13 | 400 | 0.437 | 0.475 | | 5 400 | 0.183 | 0.217 | | 23 | 1.13 | 1.12 | 420 | 0.430 | 0.468 | | 5 600 | 0.181 | 0.215 | | 24 | 1.12 | 1.10 | 440 | 0.423 | 0.461 | | 5 800 | 0.179 | 0.213 | | 25 | 1.10 | 1.09 | 460 | 0.417 | 0.455 | | 6 000 | 0.177 | 0.211 | | 26 | 1.09 | 1.08 | 480 | 0.411 | 0.449 | | 6 200 | 0.175 | 0.209 | | 27 | 1.07 | 1.07 | 500 | 0.405 | 0.444 | | 6 400 | 0.173 | 0.207 | | 28 | 1.06 | 1.05 | 550 | 0.393 | 0.431 | | 6 600 | 0.172 | 0.205 | | 29 | 1.05 | 1.04 | 600 | 0.382 | 0.420 | | 6 800 | 0.170 | 0.203 | | 30 | 1.04 | 1.03 | 650 | 0.372 | 0.410 | | 7 000 | 0.168 | 0.201 | | 31 | 1.02 | 1.02 | 700 | 0.362 | 0.401 | | 7 200 | 0.167 | 0.199 | | 32 | 1.01 | 1.01 | 750 | 0.354 | 0.393 | | 7 400 | 0.165 | 0.198 | | 33.3 | 1.00 | 1.00 | 800 | 0.347 | 0.385 | | 7 600 | 0.164 | 0.196 | | 34 | 0.993 | 0.994 | 850 | 0.340 | 0.378 | | 7 800 | 0.162 | 0.195 | | 36 | 0.975 | 0.977 | 900 | 0.333 | 0.372 | | 8 000 | 0.161 | 0.193 | | 38 | 0.957 | 0.961 | 950 | 0.327 | 0.366 | | 8 500 | 0.158 | 0.190 | | 40 | 0.941 | 0.947 | 1 000 | 0.322 | 0.360 | | 9 000 | 0.155 | 0.186 | | 42 | 0.926 | 0.933 | 1 050 | 0.317 | 0.355 | | 9 500 | 0.152 | 0.183 | | 44 | 0.912 | 0.920 | 1 100 | 0.312 | 0.350 | | 10 000 | 0.149 | 0.181 | | 46 | 0.898 | 0.908 | 1 150 | 0.307 | 0.346 | | 11 000 | 0.145 | 0.176 | | 48 | 0.886 | 0.896 | 1 200 | 0.303 | 0.341 | | 12 000 | 0.141 | 0.171 | | 50 | 0.874 | 0.885 | 1 250 | 0.299 | 0.337 | | 13 000 | 0.137 | 0.167 | | 55 | 0.846 | 0.861 | 1 300 | 0.295 | 0.333 | | 14 000 | 0.134 | 0.163 | | 60 | 0.822 | 0.838 | 1 400 | 0.288 | 0.326 | | 15 000 | 0.130 | 0.160 | | 65 | 0.800 | 0.818 | 1 500 | 0.281 | 0.319 | | 16 000 | 0.128 | 0.157 | | 70 | 0.781 | 0.800 | 1 600 | 0.275 | 0.313 | | 17 000 | 0.125 | 0.154 | | 75 | 0.763 | 0.784 | 1 700 | 0.270 | 0.307 | | 18 000 | 0.123 | 0.151 | | 80 | 0.747 | 0.769 | 1 800 | 0.265 | 0.302 | | 19 000 | 0.121 | 0.149 | | 85 | 0.732 | 0.755 | 1 900 | 0.260 | 0.297 | | 20 000 | 0.119 | 0.147 | | 90 | 0.718 | 0.742 | 2 000 | 0.255 | 0.293 | | 22 000 | 0.115 | 0.143 | | 95 | 0.705 | 0.730 | 2 100 | 0.251 | 0.289 | | 24 000 | 0.112 | 0.139 | | 100 | 0.693 | 0.719 | 2 200 | 0.247 | 0.285 | | 26 000 | 0.109 | 0.136 | | 110 | 0.672 | 0.699 | 2 300 | 0.244 | 0.281 | | 28 000 | 0.106 | 0.133 | | 120 | 0.652 | 0.681 | 2 400 | 0.240 | 0.277 | | 30 000 | 0.104 | 0.130 | | 130 | 0.635 | 0.665 | 2 500 | 0.237 | 0.274 | _ | 32 000 | 0.101 | 0.127 | | 140 | 0.620 | 0.650 | 2 600 | 0.234 | 0.271 | | 34 000 | 0.099 | 0.125 | | 150 | 0.606 | 0.637 | 2 700 | 0.231 | 0.268 | | 36 000 | 0.097 | 0.123 | | 160 | 0.593 | 0.625 | 2 800 | 0.228 | 0.265 | | 38 000 | 0.096 | 0.121 | | 170 | 0.581 | 0.613 | 2 900 | 0.226 | 0.262 | | 40 000 | 0.094 | 0.119 | | | | | | | | Roller B | earings $L=(C$ | | $=500 f_{\rm h}^{10}$ | |--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|---|--|---|--| | | Ball Bear | ing Life | Roller Bea | aring Life | | Ball Bea | | | aring Life | | C/P or $f_{\rm h}$ | L | $L_{ m h}$ | L | $L_{ m h}$ | C/P or $f_{\rm h}$ | L | $L_{ m h}$ | L | $L_{\rm h}$ | | | (10 ⁶ rev) | (h) | (10 ⁶ rev) | (h) | | (10 ⁶ rev) | (h) | (10 ⁶ rev) | (h) | | 0.70 | 0.34 | 172 | 0.30 | 152 | 3.45 | 41.1 | 20 500 | 62.0 | 31 000 | | 0.75 | 0.42 | 211 | 0.38 | 192 | 3.50 | 42.9 | 21 400 | 65.1 | 32 500 | | 0.80 | 0.51 | 256 | 0.48 | 238 | 3.55 | 44.7 | 22 400 | 68.2 | 34 100 | | 0.85 | 0.61 | 307 | 0.58 | 291 | 3.60 | 46.7 | 23 300 | 71.5 | 35 800 | | 0.90 | 0.73 | 365 | 0.70 | 352 | 3.65 | 48.6 | 24 300 | 74.9 | 37 400 | | 0.95 | 0.86 | 429 | 0.84 | 421 | 3.70 | 50.7 | 25 300 | 78.3 | 39 200 | | 1.00 | 1.00 | 500 | 1.00 | 500 | 3.75 | 52.7 | 26 400 | 81.9 | 41 000 | | 1.05 | 1.16 | 579 | 1.18 | 588 | 3.80 | 54.9 | 27 400 | 85.6 | 42 800 | | 1.10 | 1.33 | 665 | 1.37 | 687 | 3.85 | 57.1 | 28 500 | 89.4 | 44 700 | | 1.15 | 1.52 | 760 | 1.59 | 797 | 3.90 | 59.3 | 29 700 | 93.4 | 46 700 | | 1.20 | 1.73 | 864 | 1.84 | 918 | 3.95 | 61.6 | 30 800 | 97.4 | 48 700 | | 1.25 | 1.95 | 977 | 2.10 | 1 050 | 4.00 | 64.0 | 32 000 | 102 | 50 800 | | 1.30 | 2.20 | 1 100 | 2.40 | 1 200 | 4.05 | 66.4 | 33 200 | 106 | 52 900 | | 1.35 | 2.46 | 1 230 | 2.72 | 1 360 | 4.10 | 68.9 | 34 500 | 110 | 55 200 | | 1.40 | 2.74 | 1 370 | 3.07 | 1 530 | 4.15 | 71.5 | 35 700 | 115 | 57 400 | | 1.45 | 3.05 | 1 520 | 3.45 | 1 730 | 4.20 | 74.1 | 37 000 | 120 | 59 800 | | 1.50 | 3.38 | 1 690 | 3.86 | 1 930 | 4.25 | 76.8 | 38 400 | 124 | 62 200 | | 1.55 | 3.72 | 1 860 | 4.31 | 2 150 | 4.30 | 79.5 | 39 800 | 129 | 64 600 | | 1.60 | 4.10 | 2 050 | 4.79 | 2 400 | 4.35 | 82.3 | 41 200 | 134 | 67 200 | | 1.65 | 4.49 | 2 250 | 5.31 | 2 650 | 4.40 | 85.2 | 42 600 | 140 | 69 800 | | 1.70 | 4.91 | 2 460 | 5.86 | 2 930 | 4.45 | 88.1 | 44 100 | 145 | 72 500 | |
1.75 | 5.36 | 2 680 | 6.46 | 3 230 | 4.50 | 91.1 | 45 600 | 150 | 75 200 | | 1.80 | 5.83 | 2 920 | 7.09 | 3 550 | 4.55 | 94.2 | 47 100 | 156 | 78 000 | | 1.85 | 6.33 | 3 170 | 7.77 | 3 890 | 4.60 | 97.3 | 48 700 | 162 | 80 900 | | 1.90 | 6.86 | 3 430 | 8.50 | 4 250 | 4.65 | 101 | 50 300 | 168 | 83 900 | | 1.95 | 7.41 | 3 710 | 9.26 | 4 630 | 4.70 | 104 | 51 900 | 174 | 87 000 | | 2.00 | 8.00 | 4 000 | 10.1 | 5 040 | 4.75 | 107 | 53 600 | 180 | 90 100 | | 2.05 | 8.62 | 4 310 | 10.9 | 5 470 | 4.80 | 111 | 55 300 | 187 | 93 300 | | 2.10 | 9.26 | 4 630 | 11.9 | 5 930 | 4.85 | 114 | 57 000 | 193 | 96 600 | | 2.15 | 9.94 | 4 970 | 12.8 | 6 410 | 4.90 | 118 | 58 800 | 200 | 99 900 | | 2.20 | 10.6 | 5 320 | 13.8 | 6 920 | 4.95 | 121 | 60 600 | 207 | 103 000 | | 2.25 | 11.4 | 5 700 | 14.9 | 7 460 | 5.00 | 125 | 62 500 | 214 | 107 000 | | 2.30 | 12.2 | 6 080 | 16.1 | 8 030 | 5.10 | 133 | 66 300 | 228 | 114 000 | | 2.35 | 13.0 | 6 490 | 17.3 | 8 630 | 5.20 | 141 | 70 300 | 244 | 122 000 | | 2.40 | 13.8 | 6 910 | 18.5 | 9 250 | 5.30 | 149 | 74 400 | 260 | 130 000 | | 2.45 | 14.7 | 7 350 | 19.8 | 9 910 | 5.40 | 157 | 78 700 | 276 | 138 000 | | 2.50 | 15.6 | 7 810 | 21.2 | 10 600 | 5.50 | 166 | 83 200 | 294 | 147 000 | | 2.55 | 16.6 | 8 290 | 22.7 | 11 300 | 5.60 | 176 | 87 800 | 312 | 156 000 | | 2.60 | 17.6 | 8 790 | 24.2 | 12 100 | 5.70 | 185 | 92 600 | 331 | 165 000 | | 2.65 | 18.6 | 9 300 | 25.8 | 12 900 | 5.80 | 195 | 97 600 | 351 | 175 000 | | 2.70 | 19.7 | 9 840 | 27.4 | 13 700 | 5.90 | 205 | 103 000 | 371 | 186 000 | | 2.75 | 20.8 | 10 400 | 29.1 | 14 600 | 6.00 | 216 | 108 000 | 392 | 196 000 | | 2.80 | 22.0 | 11 000 | 30.9 | 15 500 | 6.50 | 275 | 137 000 | 513 | 256 000 | | 2.85 | 23.1 | 11 600 | 32.8 | 16 400 | 7.00 | 343 | 172 000 | 656 | 328 000 | | 2.90 | 24.4 | 12 200 | 34.8 | 17 400 | 7.50 | 422 | 211 000 | 826 | 413 000 | | 2.95
3.00
3.05
3.10
3.15 | 25.7
27.0
28.4
29.8
31.3 | 12 800
13 500
14 200
14 900
15 600 | 36.8
38.9
41.1
43.4
45.8 | 18 400
19 500
20 600
21 700
22 900 | 8.00
8.50
9.00
9.50
10.0 | 512
614
729
857
1 000 | 256 000
307 000
365 000
429 000 | 1 020
1 250
1 520
1 820
2 150 | 512 000
627 000
758 000
908 000 | | 3.20
3.25
3.30
3.35
3.40 | 32.8
34.3
35.9
37.6
39.3 | 16 400
17 200
18 000
18 800
19 700 | 48.3
50.8
53.5
56.3
59.1 | 24 100
25 400
26 800
28 100
29 600 | 11.0
12.0
13.0
14.0
15.0 | 1 330
1 730
2 200
2 740
3 380 | _
_
_ | 2 960
3 960
5 170
6 610
8 320 | _
_
_
_ | Appendix Table14 Index of Inch Design Tapered Roller Bearings | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | |--------------------------|--|----------------|--------------------------|--|---------------------| | 332 | D 80.000 | C214,C218,C220 | 497 | d 85.725 | C236 | | 336 | d 41.275 | C220 | 498 | d 84.138 | C236 | | 342 | d 41.275 | C220 | 522 | D 101.600 | C222,C224 | | 342 S | d 42.875 | C220 | 528 | d 47.625 | C222 | | 344 | d 40.000 | C218 | 529 | d 50.800 | C224 | | 344 A | d 40.000 | C218 | 529 X | d 50.800 | C224 | | 346 | d 31.750 | C214 | 532 X | D 107.950 | C226 | | 354 A | D 85.000 | C222 | 539 | d 53.975 | C226 | | 359 S | d 46.038 | C222 | 552 A | D 123.825 | C226,C228,C230 | | 362 A | D 88.900 | C222,C224 | 553 X | D 122.238 | C228,C230 | | 366 | d 50.000 | C224 | 555 S | d 57.150 | C226 | | 368 | d 50.800 | C224 | 557 S | d 53.975 | C226 | | 368 A | d 50.800 | C224 | 558 | d 60.325 | C228 | | 369 A | d 47.625 | C222 | 559 | d 63.500 | C228 | | 372 | D 100.000 | C224 | 560 | d 66.675 | C230 | | 374 | D 93.264 | C222 | 560 S | d 68.262 | C230 | | 376 | d 45.000 | C222 | 563 | D 127.000 | C228,C230,C232 | | 377 | d 52.388 | C224 | 563 X | D 127.000 | C230 | | 382 | D 98.425 | C226 | 565 | $egin{array}{ccc} d & 63.500 \\ d & 69.850 \\ d & 73.025 \\ \end{array}$ | C228 | | 382 A | D 96.838 | C226 | 566 | | C230 | | 382 S | D 96.838 | C226 | 567 | | C232 | | 385 | d 55.000 | C226 | 567 A | d 71.438 | C232 | | 387 | d 57.150 | C226 | 567 S | d 71.438 | C232 | | 387 A | d 57.150 | C226 | 568 | d 73.817 | C232 | | 388 A | d 57.531 | C226 | 569 | d 64.963 | C228 | | 390 A | d 63.500 | C228 | 570 | d 68.262 | C230 | | 394 A | D 110.000 | C228,C230 | 572 | D 139.992 | C232,C234 | | 395 | d 63.500 | C228 | 572 X | D 139.700 | C234 | | 395 A | d 66.675 | C230 | 575 | d 76.200 | C232 | | 395 S | d 66.675 | C230 | 580 | d 82.550 | C234 | | 397 | d 60.000 | C228 | 581 | d 80.962 | C234 | | 399 A | d 68.262 | C230 | 582 | d 82.550 | C234 | | 414 | D 88.501 | C218 | 590 A | d 76.200 | C232 | | 418 | d 38.100 | C218 | 592 | D 152.400 | C238 | | 432 | D 95.250 | C220 | 592 A | D 152.400 | C232,C236,C238 | | 432 A | D 95.250 | C222 | 593 | d 88.900 | C236 | | 436 | d 46.038 | C222 | 594 | d 95.250 | C238 | | 438 | d 44.450 | C220 | 596 | d 85.725 | C236 | | 453 A | D 107.950 | C222 | 597 | d 93.662 | C238 | | 453 X | D 104.775 | C226 | 598 | d 92.075 | C238 | | 460 | d 44.450 | C222 | 598 A | d 92.075 | C238 | | 462 | d 57.150 | C226 | 614 X | D 115.000 | C226 | | 469 | d 57.150 | C226 | 622 X | d 55.000 | C226 | | 472 | D 120.000 | C230,C232 | 632 | D 136.525 | C228,C232 | | 472 A | D 120.000 | C230 | 633 | D 130.175 | C228,C230,C232 | | 478 | d 65.000 | C230 | 637 | d 60.325 | C228 | | 480 | d 68.262 | C230 | 639 | d 63.500 | C228 | | 484 | d 70.000 | C232 | 643 | d 69.850 | C230 | | 492 A | D 133.350 | C234,C236 | 644 | d 71.438 | C232 | | 493 | D 136.525 | C232,C234,C236 | 645 | d 71.438 | C232 | | 495 | d 82.550 | C234 | 652 | D 152.400 | C232,C234 | | 495 A | d 76.200 | C232 | 653 | D 146.050 | C230,C232,C234,C236 | | 495 AX | d 76.200 | C232 | 653 X | D 150.000 | C232 | | 496 | d 80.962 | C234 | 655 | d 69.850 | C230 | | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:00 | al Dimension (mm)
NE (Bore Dia.)
P (Outside Dia.) | Pages | |--------------------------|---|--|--------------------------------|--------------------------|---|---|--------------------------------| | 657
658
659 | $egin{pmatrix} d \\ d \\ d \end{pmatrix}$ | 73.025
74.612
76.200 | C232
C232
C232 | 1328
1329
1380 | D
D
d | 52.388
53.975
22.225 | C210
C210
C210 | | 661
663
664 | $d \\ d \\ d$ | 79.375
82.550
84.138 | C234
C234
C236 | 1620
1680
1729 | D
d
D | 66.675
33.338
56.896 | C216
C216
C210,C212 | | 665
665 A
672 | $d \\ d \\ D$ | 85.725
85.725
168.275 | C236
C236
C236,C238,C240 | 1755
1779
1922 | $d \\ d \\ D$ | 22.225
23.812
57.150 | C210
C212
C212 | | 677
681
683 | $d \\ d \\ d$ | 85.725
92.075
95.250 | C236
C238
C238 | 1988
1997 X
A2047 | $egin{array}{c} d \\ d \\ d \end{array}$ | 28.575
26.988
12.000 | C212
C212
C210 | | 685
687
742 | $d \\ d \\ D$ | 98.425
101.600
150.089 | C238
C240
C230,C234,C236 | A2126
2523
2558 | $D \\ D \\ d$ | 31.991
69.850
30.162 | C210
C214,C216
C214 | | 743
745 A
749 | $egin{array}{c} D \\ d \\ d \end{array}$ | 150.000
69.850
85.026 | C234
C230
C236 | 2559
2580
2582 | d d d | 30.162
31.750
31.750 | C214
C214
C214 | | 749 A
749 S
750 | d d d | 82.550
85.026
79.375 | C234
C236
C234 | 2585
2631
2690 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 33.338
66.421
29.367 | C216
C214
C214 | | 752
753
757 | $D \\ D \\ d$ | 161.925
168.275
82.550 | C234,C236
C234,C236
C234 | 2720
2729
2735 X | $D \\ D \\ D$ | 76.200
76.200
73.025 | C218
C218
C218 | | 758
759
760 | $egin{pmatrix} d \\ d \\ d \end{pmatrix}$ | 85.725
88.900
90.488 | C236
C236
C236 | 2788
2789
2820 | $d \\ d \\ D$ | 38.100
39.688
73.025 | C218
C218
C216 | | 766
772
776 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 88.900
180.975
95.250 | C236
C238,C240
C238 | 2877
2924
2984 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 34.925
85.000
46.038 | C216
C222
C222 | | 779
780
782 | $egin{array}{c} d \\ d \\ d \end{array}$ | 98.425
101.600
104.775 | C238
C240
C240 | 3120
3188
3197 | $egin{array}{c} D \\ d \\ d \end{array}$ | 72.626
31.750
33.338 | C214,C216
C214
C216 | | 787
792
795 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 104.775
206.375
120.650 | C240
C242
C242 | 3320
3386
3420 | D
d
D | 80.167
39.688
79.375 | C218
C218
C216,C218 | | 797
799
799 A | $egin{array}{c} d \\ d \\ d \end{array}$ | 130.000
128.588
130.175 | C242
C242
C242 | 3478
3479
3490 | $d \\ d \\ d$ | 34.925
36.512
38.100 | C216
C218
C218 | | 832
837
842 | $egin{array}{c} D \\ d \\ d \end{array}$ | 168.275
76.200
82.550 | C234,C236
C234
C234 | 3525
3576
3578 | D
d
d | 87.312
41.275
44.450 | C220
C220
C220 | | 843
850
854 | $d \\ d \\ D$ | 76.200
88.900
190.500 | C234
C236
C236,C238,C240 | 3720
3730
3775 | $D \\ D \\ d$ | 93.264
93.264
50.800 | C220
C224
C224 | | 855
857
861 | $d \\ d \\ d$ | 88.900
92.075
101.600 | C236
C238
C240 | 3780
3782
3820 | d d D | 50.800
44.450
85.725 | C224
C220
C220 | |
864
866
932 | d
d
D | 95.250
98.425
212.725 | C238
C238
C240 | 3877
3920
3926 | $D \\ D \\ D$ | 41.275
112.712
112.712 | C220
C228,C230
C226,C228 | | 938
1220
1280 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 114.300
57.150
22.225 | C240
C210
C210 | 3981
3982
3984 | d d d | 58.738
63.500
66.675 | C226
C228
C230 | | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | |--------------------------|---|----------------|--------------------------|---|-----------| | 3994 | d 66.675 | C230 | 02820 | D 73.025 | C212,C216 | | A4050 | d 12.700 | C210 | 02872 | d 28.575 | C212 | | A4059 | d 15.000 | C210 | 02878 | d 34.925 | C216 | | A4138 | D 34.988 | C210 | 03062 | d 15.875 | C210 | | 4335 | D 90.488 | C220 | 03162 | D 41.275 | C210 | | 4388 | d 41.275 | C220 | 05062 | d 15.875 | C210 | | 4535 | D 104.775 | C226 | 05068 | d 17.462 | C210 | | 4595 | d 53.975 | C226 | 05075 | d 19.050 | C210 | | A5069 | d 17.455 | C210 | 05079 | d 19.990 | C210 | | A5144 | D 36.525 | C210 | 05175 | D 44.450 | C210 | | 5335 | D 103.188 | C222 | 05185 | D 47.000 | C210 | | 5356 | d 44.450 | C222 | 07079 | d 20.000 | C210 | | 5535 | D 122.238 | C226,C228 | 07087 | d 22.225 | C210 | | 5566 | d 55.562 | C226 | 07097 | d 25.000 | C212 | | 5582 | d 60.325 | C228 | 07098 | d 24.981 | C212 | | 5584 | $egin{array}{ccc} d & 63.500 \\ D & 135.733 \\ d & 76.200 \\ \end{array}$ | C228 | 07100 | d 25.400 | C212 | | 5735 | | C232,C234 | 07100SA | d 25.400 | C212 | | 5760 | | C232 | 07196 | D 50.005 | C210,C212 | | 5795 | d 77.788 | C234 | 07204 | D 51.994 | C210,C212 | | A6062 | d 15.875 | C210 | 07205 | D 52.001 | C212 | | A6067 | d 16.993 | C210 | 08118 | d 30.162 | C214 | | A6075 | d 19.050 | C210 | 08125 | $egin{array}{ccc} d & 31.750 \\ D & 58.738 \\ d & 15.875 \end{array}$ | C214 | | A6157 | D 39.992 | C210 | 08231 | | C214 | | 6220 | D 127.000 | C224,C226 | 09062 | | C210 | | 6279 | d 50.800 | C224 | 09067 | $egin{array}{ccc} d & 19.050 \\ d & 19.050 \\ d & 19.050 \\ \end{array}$ | C210 | | 6280 | d 53.975 | C226 | 09074 | | C210 | | 6320 | D 135.755 | C228,C230 | 09078 | | C210 | | 6376 | d 60.325 | C228 | 09081 | d 20.625 | C210 | | 6379 | d 65.088 | C230 | 09194 | D 49.225 | C210 | | 6420 | D 149.225 | C226,C230,C232 | 09195 | D 49.225 | C210 | | 6454 | d 69.850 | C230 | 09196 | $ \begin{array}{ccc} D & 49.225 \\ d & 41.275 \\ D & 76.200 \end{array} $ | C210 | | 6455 | d 57.150 | C226 | 11162 | | C220 | | 6460 | d 73.025 | C232 | 11300 | | C220 | | 6461 | d 76.200 | C232 | 11520 | D 42.862 | C210 | | 6535 | D 161.925 | C232,C234,C236 | 11590 | d 15.875 | C210 | | 6536 | D 161.925 | C232 | LM11710 | D 39.878 | C210 | | 6559 | d 82.550 | C234 | LM11749 | $egin{array}{cccc} d & 17.462 \\ D & 45.237 \\ d & 19.050 \\ \end{array}$ | C210 | | 6575 | d 76.200 | C232 | LM11910 | | C210 | | 6576 | d 76.200 | C232 | LM11949 | | C210 | | 6580 | d 88.900 | C236 | 12168 | d 42.862 | C220 | | 9121 | D 152.400 | C228,C230 | 12303 | D 76.992 | C220 | | 9180 | d 61.912 | C228 | 12520 | D 49.225 | C210 | | 9185 | d 68.262 | C230 | 12580 | d 20.638 | C210 | | 9220 | D 161.925 | C232 | M12610 | D 50.005 | C210 | | 9285 | d 76.200 | C232 | M12648 | d 22.225 | C210 | | 9320 | D 177.800 | C234 | M12649 | d 21.430 | C210 | | 9321 | D 171.450 | C234,C236 | LM12710 | D 45.237 | C210 | | 9378 | d 76.200 | C234 | LM12711 | D 45.975 | C210 | | 9380 | d 76.200 | C234 | LM12749 | d 22.000 | C210 | | 9385 | d 84.138 | C236 | 13175 | d 44.450 | C220 | | 02420 | D 68.262 | C212,C214 | 13181 | d 46.038 | C222 | | 02473 | d 25.400 | C212 | 13318 | D 80.962 | C220,C222 | | 02474 | d 28.575 | C212 | 13620 | D 69.012 | C218 | | 02475 | d 31.750 | C214 | 13621 | D 69.012 | C218 | | Bearing No.
CONE, CUP | d:C0 | al Dimension (mm)
NE (Bore Dia.)
P (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:C0 | al Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |-----------------------------|---|---|---------------------------|---------------------------|---|---|--------------------------------| | 13685
13687
13830 | $d \\ d \\ D$ | 38.100
38.100
63.500 | C218
C218
C218 | 19150
19268
21075 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 38.100
68.262
19.050 | C218
C216,C218
C210 | | 13889
14123 A
14125 A | $egin{array}{c} d \\ d \\ d \end{array}$ | 38.100
31.750
31.750 | C218
C214
C214 | 21212
L21511
L21549 | $D \\ D \\ d$ | 53.975
34.988
15.875 | C210
C210
C210 | | 14130
14131
14137 A | $egin{pmatrix} d \\ d \\ d \end{pmatrix}$ | 33.338
33.338
34.925 | C216
C216
C216 | 22168
22325
23100 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 42.862
82.550
25.400 | C220
C220
C212 | | 14138 A
14139
14274 | $d \\ d \\ D$ | 34.925
34.976
69.012 | C216
C216
C214,C216 | 23256
23621
23691 | $D \\ D \\ d$ | 65.088
73.025
35.000 | C212
C216
C216 | | 14276
14283
15100 | $D \\ D \\ d$ | 69.012
72.085
25.400 | C214,C216
C216
C212 | 24720
24721
24780 | $D \\ D \\ d$ | 76.200
76.200
41.275 | C220
C220
C220 | | 15101
15106
15112 | $egin{array}{c} d \\ d \\ d \end{array}$ | 25.400
26.988
28.575 | C212
C212
C212 | 25520
25521
25523 | $D \\ D \\ D$ | 82.931
83.058
82.931 | C220,C222
C220
C220,C222 | | 15113
15116
15117 | $egin{array}{c} d \\ d \\ d \end{array}$ | 28.575
30.112
30.000 | C212
C214
C214 | 25577
25578
25580 | $egin{pmatrix} d \\ d \\ d \end{pmatrix}$ | 42.875
42.862
44.450 | C220
C220
C220 | | 15118
15119
15120 | $egin{array}{c} d \\ d \\ d \end{array}$ | 30.213
30.213
30.213 | C214
C214
C214 | 25584
25590
25820 | d d D | 44.983
45.618
73.025 | C222
C222
C216 | | 15123
15125
15126 | $egin{array}{c} d \\ d \\ d \end{array}$ | 31.750
31.750
31.750 | C214
C214
C214 | 25821
25877
25878 | D
d
d | 73.025
34.925
34.925 | C216,C218
C216
C216 | | 15245
15250
15250 X | $D \\ D \\ D$ | 62.000
63.500
63.500 | C212,C214
C214
C212 | 25880
26118
26131 | $egin{pmatrix} d \\ d \\ d \end{pmatrix}$ | 36.487
30.000
33.338 | C218
C214
C216 | | 15520
15523
15578 | $D \\ D \\ d$ | 57.150
60.325
25.400 | C212
C212
C212 | 26283
26820
26822 | $D \\ D \\ D$ | 72.000
80.167
79.375 | C214,C216
C220
C220 | | 15580
16150
16284 | $d \\ d \\ D$ | 26.988
38.100
72.238 | C212
C218
C218 | 26823
26882
26884 | D
d
d | 76.200
41.275
42.875 | C220
C220
C220 | | 16929
16986
17098 | $egin{array}{c} D \\ d \\ d \end{array}$ | 74.988
43.000
24.981 | C220
C220
C212 | 27620
27687
27689 | $egin{array}{c} D \\ d \\ d \end{array}$ | 125.412
82.550
83.345 | C234
C234
C234 | | 17118
17244
17520 | $D \\ D \\ D$ | 30.000
62.000
42.862 | C214
C212,C214
C210 | 27690
27820
27880 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 83.345
80.035
38.100 | C234
C218
C218 | | 17580
17831
17887 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 15.875
79.985
45.230 | C210
C222
C222 | 28138
28315
28521 | $D \\ D \\ D$ | 34.976
80.000
92.075 | C216
C216
C224 | | 18200
18337
18520 | $D \\ D \\ D$ | 50.800
85.725
73.025 | C224
C224
C218 | 28580
28584
28622 | $d \\ d \\ D$ | 50.800
52.388
97.630 | C224
C224
C226 | | 18590
18620
18690 | $egin{pmatrix} d \\ D \\ d \end{pmatrix}$ | 41.275
79.375
46.038 | C218
C222
C222 | 28680
28920
28921 | $D \\ D \\ D$ | 55.562
101.600
100.000 | C226
C228
C228 | | 18720
18790
19138 | $egin{array}{c} D \\ d \\ d \end{array}$ | 85.000
50.800
34.976 | C224
C224
C216 | 28985
29520
29586 | $d \\ D \\ d$ | 60.325
107.950
63.500 | C228
C228
C228 | App. E 022 | Bearing No.
CONE, CUP | Nominal Dimension (mm)
d:CONE (Bore Dia.)
D:CUP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | Nominal Dimension (mm) d:CONE (Bore Dia.) D:CUP (Outside Dia.) | Pages | |--------------------------|--|-----------|--------------------------|--|-----------| | 29620 | D 112.712 | C230,C232 | 42690 | d 77.788 | C234 | | 29630 | D 120.650 | C230 | 43118 | d 30.162 | C214 | | 29675 | d 69.850 | C230 | 43131 | d 33.338 | C216 | | 29685 | d 73.025 | C232 | 43300 | D 76.200 | C214 | | LM29710 | D 65.088 | C218 | 43312 | D 79.375 | C216 | | LM29711 | D 65.088 | C218 | 44143 | d 36.512 | C218 | | LM29748 | d 38.100 | C218 | 44150 | d 38.100 | C218 | | LM29749 | d 38.100 | C218 | 44157 | d 40.000 | C218 | | 31520 | D 76.200 | C216 | 44162 | d 41.275 | C220 | | 31594 | d 34.925 | C216 | 44348 | D 88.501 | C218,C220 | | 33262 | d 66.675 | C230 | L44610 | D 50.292 | C212 | | 33275 | d 69.850 | C230 | L44640 | d 23.812 | C212 | | 33281 | d 71.438 | C232 | L44643 | d 25.400 | C212 | | 33287 | d 73.025 | C232 | L44649 | d 26.988 | C212 | | JHM33410 | D 55.000 | C212 | 45220 | D 104.775 | C226 | | JHM33449 | d 24.000 | C212 | 45221 | D 104.775 | C226 | | 33462 | D 117.475 | C230,C232 | 45289 | d 57.150 | C226 | | 33821 | D 95.250 | C224 | L45410 | D 50.292 | C214 | | 33889 | d 50.800 | C224 | L45449 | d 29.000
| C214 | | 34300 | d 76.200 | C232 | 46143 | d 36.512 | C218 | | 34306 | d 77.788 | C234 | 46162 | d 41.275 | C220 | | 34478 | D 121.442 | C232,C234 | 46176 | d 44.450 | C220 | | 36620 | D 193.675 | C242 | 46368 | D 93.662 | C218,C220 | | 36690 | d 146.050 | C242 | 46720 | D 225.425 | C242 | | 36920 | D 227.012 | C244 | 46780 | $\begin{array}{ccc} d & 158.750 \\ D & 120.000 \\ d & 69.850 \end{array}$ | C242 | | 36990 | d 177.800 | C244 | 47420 | | C230,C232 | | 37425 | d 107.950 | C240 | 47487 | | C230 | | 37625 | D 158.750 | C240 | 47490 | $egin{array}{cccc} d & 71.438 \\ D & 133.350 \\ d & 76.200 \\ \end{array}$ | C232 | | M38510 | D 66.675 | C216 | 47620 | | C232,C234 | | M38511 | D 65.987 | C216 | 47680 | | C232 | | M38547 | $egin{array}{ccc} d & 35.000 \\ d & 34.925 \\ d & 60.000 \\ \end{array}$ | C216 | 47685 | d 82.550 | C234 | | M38549 | | C216 | 47686 | d 82.550 | C234 | | 39236 | | C228 | 47687 | d 82.550 | C234 | | 39250 | d 63.500 | C228 | 47820 | D 146.050 | C238 | | 39412 | D 104.775 | C228 | 47890 | d 92.075 | C238 | | 39520 | D 112.712 | C228,C230 | 47896 | d 95.250 | C238 | | 39521 | D 112.712 | C230 | 48120 | D 161.925 | C240 | | 39585 | d 63.500 | C228 | 48190 | d 107.950 | C240 | | 39590 | d 66.675 | C230 | 48220 | D 182.562 | C242 | | 41100 | d 25.400 | C212 | 48282 | d 120.650 | C242 | | 41125 | d 28.575 | C212 | 48286 | d 123.825 | C242 | | 41126 | d 28.575 | C212 | 48290 | d 127.000 | C242 | | 41286 | D 72.626 | C212 | 48320 | D 190.500 | C242 | | 42350 | d 88.900 | C236 | 48385 | d 133.350 | C242 | | 42362 | d 92.075 | C238 | 48393 | d 136.525 | C242 | | 42368 | d 93.662 | C238 | LM48510 | D 65.088 | C216 | | 42375 | d 95.250 | C238 | LM48511 | D 65.088 | C216 | | 42376 | d 95.250 | C238 | LM48548 | d 34.925 | C216 | | 42381 | d 96.838 | C238 | 48620 | D 200.025 | C242 | | 42584 | D 148.430 | C238 | 48685 | d 142.875 | C242 | | 42587 | D 149.225 | C236,C238 | 49175 | d 44.450 | C220 | | 42620 | D 127.000 | C232,C234 | 49176 | d 44.450 | C220 | | 42687 | d 76.200 | C232 | 49368 | D 93.662 | C220 | | 42688 | d 76.200 | C232 | 49520 | D 101.600 | C224 | | Bearing No.
CONE, CUP | d:00 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |-----------------------------|--|--|--------------------------------|---------------------------------|--|--|--------------------------------| | 49585
52387
52393 | $egin{array}{c} d \\ d \\ d \end{array}$ | 50.800
98.425
100.012 | C224
C238
C238 | 67920
67983
67985 | D
d
d | 282.575
203.200
206.375 | C244
C244
C244 | | 52400
52618
52637 | $D \\ D \\ D$ | 101.600
157.162
161.925 | C240
C238,C240
C238,C240 | L68110
L68111
L68149 | $D \\ D \\ d$ | 59.131
59.975
35.000 | C216
C216
C216 | | 53150
53162
53176 | $egin{array}{c} d \\ d \\ d \end{array}$ | 38.100
41.275
44.450 | C218
C220
C222 | 68450
68462
68709 | $d \\ d \\ D$ | 114.300
117.475
180.000 | C240
C240
C240 | | 53177
53178
53375 | $d \\ d \\ D$ | 44.450
44.450
95.250 | C222
C222
C218,C222 | 68712
JL69310
JL69349 | $D \\ D \\ d$ | 180.975
63.000
38.000 | C240
C218
C218 | | 53387
55175
55187 | $egin{array}{c} D \\ d \\ d \end{array}$ | 98.425
44.450
47.625 | C220,C222
C222
C222 | 71412
71425
71437 | $egin{array}{c} d \\ d \\ d \end{array}$ | 104.775
107.950
111.125 | C240
C240
C240 | | 55200
55200 C
55206 | $egin{array}{c} d \\ d \\ d \end{array}$ | 50.800
50.800
52.388 | C224
C224
C224 | 71450
71453
71750 | $d \\ d \\ D$ | 114.300
115.087
190.500 | C240
C240
C240 | | 55437
55443
56418 | $D \\ D \\ d$ | 111.125
112.712
106.362 | C222,C224
C222
C240 | 72187
72200
72200 C | $egin{array}{c} d \\ d \\ d \end{array}$ | 47.625
50.800
50.800 | C222
C224
C224 | | 56425
56650
59200 | $egin{array}{c} d \\ D \\ d \end{array}$ | 107.950
165.100
50.800 | C240
C240
C224 | 72212
72212C
72218 | $egin{array}{c} d \\ d \\ d \end{array}$ | 53.975
53.975
55.562 | C226
C226
C226 | | 59429
64433
64450 | $egin{array}{c} D \\ d \\ d \end{array}$ | 108.966
109.992
114.300 | C224
C240
C240 | 72218C
72225C
72487 | $d \\ d \\ D$ | 55.562
57.150
123.825 | C226
C226
C222,C224,C226 | | 64700
65200
65212 | $egin{array}{c} D \\ d \\ d \end{array}$ | 177.800
50.800
53.975 | C240
C224
C226 | LM72810
LM72849
74500 | $egin{array}{c} D \\ d \\ d \end{array}$ | 47.000
22.606
127.000 | C212
C212
C242 | | 65237
65320
65385 | $egin{array}{c} d \\ D \\ d \end{array}$ | 60.325
114.300
44.450 | C228
C222
C222 | 74525
74537
74550 | $egin{array}{c} d \\ d \\ d \end{array}$ | 133.350
136.525
139.700 | C242
C242
C242 | | 65500
66187
66462 | D
d
D | 127.000
47.625
117.475 | C224,C226,C228
C222
C222 | 74850
74856
77375 | $D \\ D \\ d$ | 215.900
217.488
95.250 | C242
C242
C238 | | 66520
66584
66585 | $egin{array}{c} D \\ d \\ d \end{array}$ | 122.238
53.975
60.000 | C226,C228
C226
C228 | 77675
78225
78250 | $egin{array}{c} D \\ d \\ d \end{array}$ | 171.450
57.150
63.500 | C238
C226
C228 | | 66587
LM67010
LM67043 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 57.150
59.131
28.575 | C226
C212,C214
C212 | LM78310
LM78310 A
LM78349 | $D \\ D \\ d$ | 62.000
62.000
35.000 | C216
C216
C216 | | LM67048
67320
67322 | $D \atop D$ | 31.750
203.200
196.850 | C214
C242
C242 | 78537
78551
78571 | $D \\ D \\ D$ | 136.525
140.030
144.983 | C228
C226,C228
C226 | | 67388
67389
67390 | $egin{array}{c} d \\ d \\ d \end{array}$ | 127.000
130.175
133.350 | C242
C242
C242 | HM81610
HM81649
M84210 | D
d
D | 47.000
16.000
59.530 | C210
C210
C212 | | 67720
67780
67787 | $egin{array}{c} D \\ d \\ d \end{array}$ | 247.650
165.100
174.625 | C242,C244
C242
C244 | M84249
M84510
M84548 | $d \\ D \\ d$ | 25.400
57.150
25.400 | C212
C212
C212 | | 67790
67820
67885 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 177.800
266.700
190.500 | C244
C244
C244 | M86610
M86643
M86647 | $egin{array}{c} D \\ d \\ d \end{array}$ | 64.292
25.400
28.575 | C212,C214
C212
C212 | App. | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
ONE (Bore Dia.)
JP (Outside Dia.) | Pages | Bearing No.
CONE, CUP | d:CON | Dimension (mm) NE (Bore Dia.) O (Outside Dia.) | Pages | |--------------------------------------|--|--|-------------------------------------|-------------------------------------|--|--|---------------------------| | M86648 A
M86649
M88010 | d d D | 30.955
30.162
68.262 | C214
C214
C214,C216 | HH221432
HH221434
HH221440 | d
d
d | 87.312
88.900
95.250 | C236
C236
C238 | | M88043
M88046
M88048 | $d \\ d \\ d$ | 30.162
31.750
33.338 | C214
C214
C216 | HH221442
HH221447
HH221449 | $egin{array}{c} d \\ d \\ d \end{array}$ | 98.425
99.982
101.600 | C238
C238
C240 | | HM88510
HM88542
HM88547 | $egin{array}{c} D \\ d \\ d \end{array}$ | 73.025
31.750
33.338 | C214,C216
C214
C216 | HH224310
HH224335
HH224340 | d | 212.725
101.600
107.950 | C240
C240
C240 | | HM88610
HM88630
HM88638 | $egin{array}{c} D \\ d \\ d \end{array}$ | 72.233
25.400
32.000 | C212,C214,C216,C218
C212
C214 | HH224346
M224710
M224748 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 114.300
174.625
120.000 | C240
C242
C242 | | HM88648
HM88649
HM89410 | $d \\ d \\ D$ | 35.717
34.925
76.200 | C218
C216
C216,C218 | LL225710
LL225749
HM231110 | d | 165.895
127.000
236.538 | C242
C242
C242 | | HM89411
HM89443
HM89444 | $egin{array}{c} D \\ d \\ d \end{array}$ | 76.200
33.338
33.338 | C216
C216
C216 | HM231140
M236810
M236849 | $egin{array}{c} d \\ D \\ d \end{array}$ | 146.050
260.350
177.800 | C242
C244
C244 | | HM89446
HM89446 A
HM89449 | $egin{array}{c} d \\ d \\ d \end{array}$ | 34.925
34.925
36.512 | C216
C216
C218 | LM300811
LM300849
L305610 | D
d
D | 68.000
41.000
80.962 | C218
C218
C224 | | 99100
99550
99575 | $egin{array}{c} D \\ d \\ d \end{array}$ | 254.000
139.700
146.050 | C242
C242
C242 | L305649
JH307710
JH307749 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 50.800
110.000
55.000 | C224
C226
C226 | | 99587
99600
LM102910 | $d \\ d \\ D$ | 149.225
152.400
73.431 | C242
C242
C222 | JHM318410
JHM318448
L327210 | $egin{matrix} D \\ d \\ D \end{matrix}$ | 155.000
90.000
177.008 | C236
C236
C242 | | LM102949
JLM104910
LM104911 | $D \\ D \\ D$ | 45.242
82.000
82.550 | C222
C224
C224 | L327249
LM328410
LM328448 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 133.350
187.325
139.700 | C242
C242
C242 | | LM104911 A
LM104912
LM104947 A | $D \\ D \\ d$ | 82.550
82.931
50.000 | C224
C224
C224 | H414210
H414245
H414249 | $egin{array}{c} D \\ d \\ d \end{array}$ | 136.525
68.262
71.438 | C230,C232
C230
C232 | | JLM104948
LM104949
M201011 | $d \\ d \\ D$ | 50.000
50.800
73.025 |
C224
C224
C218 | JH415610
JH415647
LM501310 | $egin{matrix} D \\ d \\ D \end{matrix}$ | 145.000
75.000
73.431 | C232
C232
C218 | | M201047
JM205110
JM205149 | $d \\ D \\ d$ | 39.688
90.000
50.000 | C218
C224
C224 | LM501314
LM501349
LM503310 | D
d
D | 73.431
41.275
75.000 | C218
C218
C222 | | JM207010
JM207049
JH211710 | D
d
D | 95.000
55.000
120.000 | C226
C226
C230 | LM503349
HH506310
HH506348 | $egin{array}{c} d \\ D \\ d \end{array}$ | 46.000
114.300
49.212 | C222
C224
C224 | | JH211749
HM212010
HM212011 | $D \\ D \\ D$ | 65.000
122.238
122.238 | C230
C228,C230
C228,C230 | JLM506810
JLM506849
JLM508710 | D
d
D | 90.000
55.000
95.000 | C226
C226
C228 | | HM212044
HM212046
HM212047 | $d \\ d \\ d$ | 60.325
63.500
63.500 | C228
C228
C228 | JLM508748
JM511910
JM511946 | $egin{array}{c} d \\ D \\ d \end{array}$ | 60.000
110.000
65.000 | C228
C230
C230 | | HM212049
JH217210
JH217249 | $d \\ D \\ d$ | 66.675
150.000
85.000 | C230
C236
C236 | JM515610
JM515649
HM516410 | d | 130.000
80.000
133.350 | C234
C234
C234 | | HM218210
HM218248
HH221410 | $D \atop d \atop D$ | 147.000
90.000
190.500 | C236
C236
C236,C238,C240 | HM516448
JHM516810
JHM516849 | $egin{array}{c} d \\ D \\ d \end{array}$ | 82.550
140.000
85.000 | C234
C236
C236 | | Bearing No.
CONE, CUP | d:C0 | nal Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------|--|--|----------------| | HM518410 | $D \atop d \atop D$ | 152.400 | C236 | | HM518445 | | 88.900 | C236 | | LM522510 | | 159.987 | C240 | | LM522546 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 107.950 | C240 | | LM522548 | | 109.987 | C240 | | LM522549 | | 109.987 | C240 | | JHM522610 | $D \atop d \atop D$ | 180.000 | C240 | | JHM522649 | | 110.000 | C240 | | JHM534110 | | 230.000 | C244 | | JHM534149 | $_{D}^{d}$ | 170.000 | C244 | | LM603011 | | 77.788 | C222 | | LM603012 | | 77.788 | C222 | | LM603049 | $d \\ D \\ d$ | 45.242 | C222 | | L610510 | | 94.458 | C228 | | L610549 | | 63.500 | C228 | | JM612910 | $egin{matrix} D \\ d \\ D \end{matrix}$ | 115.000 | C232 | | JM612949 | | 70.000 | C232 | | LM613410 | | 112.712 | C230 | | LM613449 | $egin{matrix} d \\ D \\ d \end{bmatrix}$ | 69.850 | C230 | | HM617010 | | 142.138 | C236 | | HM617049 | | 85.725 | C236 | | L623110 | $D \atop d \atop D$ | 152.400 | C240 | | L623149 | | 114.300 | C240 | | JLM710910 | | 105.000 | C230 | | JLM710949 | ${\scriptsize \begin{array}{c} d \\ D \\ d \end{array}}$ | 65.000 | C230 | | JLM714110 | | 115.000 | C232 | | JLM714149 | | 75.000 | C232 | | JM714210 | $egin{matrix} D \\ d \\ D \end{matrix}$ | 120.000 | C232 | | JM714249 | | 75.000 | C232 | | H715311 | | 136.525 | C228,C230,C232 | | H715334 | $egin{matrix} d \\ d \\ d \end{bmatrix}$ | 61.912 | C228 | | H715340 | | 65.088 | C230 | | H715341 | | 66.675 | C230 | | H715343 | $d \\ d \\ D$ | 68.262 | C230 | | H715345 | | 71.438 | C232 | | JM716610 | | 130.000 | C236 | | JM716648 | $d \\ d \\ D$ | 85.000 | C236 | | JM716649 | | 85.000 | C236 | | JM718110 | | 145.000 | C236 | | JM718149 | ${\scriptsize \begin{array}{c} d \\ D \\ d \end{array}}$ | 90.000 | C236 | | JM719113 | | 150.000 | C238 | | JM719149 | | 95.000 | C238 | | JM720210 | $D \\ D \\ d$ | 155.000 | C238 | | JHM720210 | | 160.000 | C238 | | JM720249 | | 100.000 | C238 | | JHM720249 | ${\scriptsize \begin{array}{c} d \\ D \\ d \end{array}}$ | 100.000 | C238 | | JL724314 | | 170.000 | C242 | | JL724348 | | 120.000 | C242 | | JL725316 | $D \atop d \atop D$ | 175.000 | C242 | | JL725346 | | 125.000 | C242 | | JM734410 | | 240.000 | C244 | | JM734449 | $d \\ D \\ d$ | 170.000 | C244 | | JM738210 | | 260.000 | C244 | | JM738249 | | 190.000 | C244 | | Bearing No.
CONE, CUP | d:00 | al Dimension (mm)
DNE (Bore Dia.)
JP (Outside Dia.) | Pages | |--------------------------|--|---|----------------| | HM801310 | $D \atop d \atop D$ | 82.550 | C218 | | HM801346 | | 38.100 | C218 | | M802011 | | 82.550 | C220 | | M802048 | $d \\ D \\ d$ | 41.275 | C220 | | HM803110 | | 88.900 | C220 | | HM803145 | | 41.275 | C220 | | HM803146 | $d \\ d \\ D$ | 41.275 | C220 | | HM803149 | | 44.450 | C220 | | M804010 | | 88.900 | C222 | | M804049 | $d \\ D \\ d$ | 47.625 | C222 | | HM804810 | | 95.250 | C220,C222,C224 | | HM804840 | | 41.275 | C220 | | HM804843 | $egin{array}{c} d \\ d \\ d \end{array}$ | 44.450 | C222 | | HM804846 | | 47.625 | C222 | | HM804848 | | 48.412 | C224 | | HM804849 | $_{D}^{d}$ | 48.412 | C224 | | HM807010 | | 104.775 | C222,C224 | | HM807011 | | 104.775 | C224 | | JHM807012 | $egin{matrix} D \\ d \\ d \end{smallmatrix}$ | 105.000 | C224 | | HM807040 | | 44.450 | C222 | | HM807044 | | 49.212 | C224 | | JHM807045 | $\stackrel{d}{\stackrel{d}{\stackrel{D}}}$ | 50.000 | C224 | | HM807046 | | 50.800 | C224 | | JLM813010 | | 110.000 | C232 | | JLM813049 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 70.000 | C232 | | JLM820012 | | 150.000 | C238 | | JLM820048 | | 100.000 | C238 | | JM822010 | $D \atop d \atop D$ | 165.000 | C240 | | JM822049 | | 110.000 | C240 | | JHM840410 | | 300.000 | C244 | | JHM840449 | $\stackrel{d}{\stackrel{D}{D}}_{d}$ | 200.000 | C244 | | HM903210 | | 95.250 | C222 | | HM903247 | | 44.450 | C222 | | HM903249 | $\stackrel{d}{\stackrel{D}{\atop D}}$ | 44.450 | C222 | | HM911210 | | 130.175 | C226 | | HM911242 | | 53.975 | C226 | | H913810 | $egin{array}{c} D \\ d \\ d \end{array}$ | 146.050 | C228,C230 | | H913842 | | 61.912 | C228 | | H913849 | | 69.850 | C230 | App. **Worldwide Sales Offices** P: Phone F: Fax &: Head Office NSK HONG KONG LTD. **NSK LTD.-HEADQUARTERS, TOKYO, JAPAN** HONG KONG A Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T. Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japar Kowloon, Hong Kong, China INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS P: +852-2739-9933 F: +852-2739-9323 P: ±81-3-3779-7227 F: ±81-3-3779-7644 Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China SHENZHEN AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS P: +86-755-25904886 F: +86-755-25904883 P: +81-3-3779-7189 F: +81-3-3779-7917 Taiwan Africa TAIWAN NSK PRECISION CO., LTD. South Africa: 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan NSK SOUTH AFRICA (PTY) LTD. P: +886-2-2509-3305 F: +886-2-2509-1393 25 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa SANDTON 3F. -2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan P: +27-11-458-3600 F: +27-11-458-3608 P: +886-4-2708-3393 F: +886-4-2708-3395 Asia and Oceania TAINAN 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, Australia Taiwan P: +886-6-505-5861 F: +886-6-505-5061 NSK AUSTRALIA PTY. LTD. TAIWAN NSK TECHNOLOGY CO., LTD. MELBOURNE 🏚 100 Logis Boulevard, Dandenong South, Victoria, 3175, Australia P: +61-3-9765-4400 F: +61-3-9765-4466 TAIPEI : 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan SYDNE Suite A315, 20 Lexington Drive, Bella Vista, New South Wales, 2153, Australia P: +886-2-2509-3305 F: +886-2-2509-1393 P: +61-2-9839-2300 F: +61-2-8824-5794 TAICHLING 10F-3, No.925, Sec.4, Taiwan Blyd., Xitun Dist., Taichung City 407, BRISBANE 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia Taiwan P: +61-7-3347-2600 F: +61-7-3345-5376 P: ±886-4-2358-2945 F: ±886-4-2358-7682 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia TAINAN P: +61-8-9256-5000 F: +61-8-9256-1044 P: +886-6-505-5861 F: +886-6-505-5061 New Zealand NSK NEW ZEALAND LTD. India: 3 Te Apunga Place, Mt. Wellington, Auckland 1060, New Zealand NSK INDIA SALES CO.PVT.LTD. AUCKLAND TVH Beliciaa Towers, 2nd Floor, Block I No.71/1, MRC Nagar Main Road, MRC P: +64-9-276-4992 F: +64-9-276-4082 CHENNAI \$ Nagar, Chennai-600 028, Tamil Nabu, India China P: +91-44-2847-9600 F: +91-44-2847-9601 NSK (SHANGHAI) TRADING CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) GURGAON Unit No-202 2nd Floor Block-A Iris Tech Park Sector-48 Sohna Boad JIANGSU P: +86-512-5796-3000 F: +86-512-5796-3300 Gurgaon-122018 Harvana India P: +91-124-4104-530 F: +91-124-4104-532 NSK (CHINA) INVESTMENT CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) MUMBAI 321, 'A' Wing, Ahura Centre, 82, Mahakali Caves Road, Andheri (East), Mumba P: +86-512-5796-3000 F: +86-512-5796-3300 -400 093. India BEIJING Room 1906, Beijing Fortune Bldg., No.5 Dong San Huan Bei Lu, Chao Yang District, P: +91-22-2838-7787 F: +91-22-2838-5191 Beijing, China (100004) Indonesia P: +86-10-6590-8161 F: +86-10-6590-8166 PT. NSK INDONESIA Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District, Summitmas II, 6th Floor, JI. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia JAKARTA TIAN JIN Tianiin, China (300050) P: +62-21-252-3458 F: +62-21-252-3223 P: +86-22-8319-5030 F: +86-22-8319-5033 Korea: Room 902-03, Changchun Hongwell International Plaza, No.3299 Renmin Street, NSK KOREA CO., LTD. CHANGCHUN Posco Center (West Wing) 9F, Western-wing, 440, Teheran-ro, Gangnam-gu, Changebun Jilin China (130061) SEOUL Seoul, 135-777, Korea P: +86-431-8898-8682 F: +86-431-8898-8670 P: +82-2-3287-0300 F: +82-2-3287-0345 SHENYANG Room 1101, China Resources Building, No. 286 Qingnian Street. Heping District, Shenyang Liaoning, China (110004) Malaysia P: +86-24-2334-2868 F: +86-24-2334-2058 NSK BEARINGS (MALAYSIA) SDN. BHD. DALIAN Room 1805 Xiwang Tower, No.136 Zhongshan Road, No. 2, Jalan
Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park, 40150 Shah Alam, Selangor, Malaysia Zhongshan District, Dalian, Liaoning, China (116001) P: +60-3-7803-8859 F: +60-3-7806-5982 P: +86-411-8800-8168 F: +86-411-8800-8160 Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing, No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia NANJING Jiangsu, China (210029) P: +60-4-3902275 F: +60-4-3991830 JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia P: +86-25-8472-6671 F: +86-25-8472-6687 Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road, P: +60-7-3546290 F: +60-7-3546291 FUZHOU Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia Fuzhou China (350009) IPOH P: +86-591-8380-1030 F: +86-591-8380-1225 P: +60-5-2555000 F: +60-5-2553373 WUHAN Room 1110. New World International Trade Tower I. No.568 Jianshe Road, Wuhan. Philippines Hubei, China (430000) NSK REPRESENTATIVE OFFICE P: +86-27-8556-9630 F: +86-27-8556-9615 MANII A 8th Floor The Salcedo Towers 169 H.V. dela Costa St., Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District, Salcedo Village Makati City, Philippines 1227 QINGDAC Qingdao, Shandong, China (266071) P: +63-2-893-9543 F: +63-2-893-9173 P: +86-532-5568-3877 F: +86-532-5568-3876 Singapore Room 1011-16, Yuexiu Financial Tower, No.28 Zhujiang Road East, Zhujiang NSK INTERNATIONAL (SINGAPORE) PTE LTD. GUANGZHOU New Town, Guangzhou, Guangdong, China (510627) 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: +65-6496-8000 F: +65-6250-5845 P: +86-20-3817-7800 F: +86-20-3786-4501 NSK SINGAPORE (PRIVATE) LTD. Room 1048. 10/F. Zhongtian Plaza, No, 766 WuyiRoad, Changsha, Hunan, China (410005) CHANGSHA 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 P: +86-731-8571-3100 F: +86-731-8571-3255 SINGAPORE P: +65-6496-8000 F: +65-6250-5845 LUOYANG Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003) P: ±86-379-6069-6188 F: ±86-379-6069-6180 Thailand: XPAN Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi, NSK BEARINGS (THAILAND) CO.,LTD. China (710068) BANGKOK 26 Soi Onnuch 55/1 Pravet Subdistrict, Pravet District, Bangkok 10250, Thailand P: +86-29-8765-1896 F: +86-29-8765-1895 P: +66-2320-2555 F: +66-2320-2826 Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing, P: +86-23-6806-5310 F: +86-23-6806-5292 China (400039) JIANGSU Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041) CHENGDU P: +86-28-8528-3680 F: +86-28-8528-3690 NSK CHINA SALES CO. LTD. No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +86-512-5796-3000 F: +86-512-5796-3300 Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District, Hanoi, Vietnam P: +84-4-3955-0159 F: +84-4-3955-0158 NSK REPRESENTATIVE OFFICE HO CHI MINH CITY Suite 307, Metropolitan Building, 235 Dong Khoi Street, District 1, HCMC, Vietnam P: +84-8-3822-7907 F: +84-8-3822-7910 **Worldwide Sales Offices** P: Phone F: Fax : Head Office Europe United Kingdom NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) MAIDENHEAD Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K. P: +44-1628-509-800 F: +44-1628-509-808 NSK UK LTD. NEWARK Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. P: +44-1636-605-123 F: +44-1636-605-000 France NSK FRANCE S.A.S. PARIS Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guyancourt, France P: +33-1-30-57-39-39 F: +33-1-30-57-00-01 NSK DEUTSCHLAND GMBH DUSSELDORF & Harkortstrasse 15, D-40880 Ratingen, Germany P: +49-2102-4810 F: +49-2102-4812-290 STUTTGART Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany P: +49-711-79082-0 F: +49-711-79082-289 Tischlerstrasse 3. D-38440 Wolfsburg, Germany WOLFSBURG P: +49-5361-27647-10 F: +49-5361-27647-70 Italy: NSK ITALIA S.P.A. Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy MILANO P: +39-299-5191 F: +39-299-025778 Netherlands NSK EUROPEAN DISTRIBUTION CENTRE B.V. TILBURG De Kroonstraat 38, 5048 AP Tilburg, Netherlands P: +31-13-4647647 F: +31-13-4647648 Poland NSK REPRESENTATIVE OFFICE Ul. Migdalowa 4/73, 02-796, Warsaw, Poland WARSAW P: +48-22-645-1525 F: +48-22-645-1529 Russia NSK POLSKA SP. Z O.O. SAINT-PETERSBURG Office I 703, Bldg 29, 18th Line of Vasilievskiy Ostrov, Saint-Petersburg, Russia, 199178 P: +7-812-332-5071 F: +7-812-332-5072 Spain NSK SPAIN S.A. BARCELONA C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain P: +34-93-289-2763 F: +34-93-433-5776 Turkey NSK RULMANLARI ORTA DOGU TIC. LTD. STI. 19 Mayis Mah. Ataturk Cad., Ulya Engin Is Merkezi No: 68 Kat. 6, P.K. : 34736, Kozyatagi-Istanbul, Turkey P: +90-216-477-7111 F: +90-216-477-7174 United Arab Emirates: NSK BEARINGS GULF TRADING CO. JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, DownTown Jebel Ali, Dubai, UAE P: +971-4-804-8207 F: +971-4-884-7227 North and South America United States of America: NSK AMERICAS, INC. (AMERICAN HEADQUARTERS) 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. ANN ARROR P: +1-734-913-7500 F: +1-734-913-7511 NSK CORPORATION ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511 NSK PRECISION AMERICA, INC. FRANKI IN & 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. P: +1-317-738-5000 F: +1-317-738-5050 780 Montague Expressway, Suite 505, San Jose, California, 95131, U.S.A. P: +1-408-944-9400 F: +1-408-944-9405 NSK LATIN AMERICA, INC. 3470 NW 82nd Avenue Suite 625, Miami FL 33122, U.S.A. P: +1-305-477-0605 F: +1-305-477-0377 Canada: NSK CANADA INC. 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4 P: +1-905-890-0740 F: +1-800-800-2788 MONTREAL 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 P: +1-514-633-1220 F: +1-800-800-2788 VANCOUVER 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4 P: +1-877-994-6675 F: +1-800-800-2788 Argentina NSK ARGENTINA SRL BUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina P: +54-11-4704-5100 F: +54-11-4704-0033 Brazil: NSK BRASIL LTDA. SAO PAULO A Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil P: +55-11-3269-4700 F: +55-11-3269-4720 BELO HORIZONTE Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Braz 30150-311 P: +55-31-3274-2591 F: +55-31-3273-4408 Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250 JOINVILLE P: +55-47-3422-2239 F: +55-47-3422-2817 PORTO ALEGRE Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001 P: +55-51-3346-7851 F: +55-51-3222-2599 Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020 P: +55-81-3326-3781 F: +55-81-3326-5047 Peru: NSK PERU S.A.C. Av. Enrique Palacios, N 360 Oficina 311, Miraflores, Lima, Perú LIMA P: +51-1-652-3372 F: +51-1-638-0555 NSK RODAMIENTOS MEXICANA, S.A. DE C.V. MEXICO CITY & Av. Presidente Juarez No.2007 Lote 5, Col. San Jeronimo Tepetlacalco, Tlalnepantla, Estado de Mexico, Mexico, C.P.54090 P: +52-55-3682-2900 F: +52-55-3682-2937 Av. Ricardo Margain 575, IOS Torre C. Suite 516, Parque Corporativo Santa Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267 P: ±52_81_8000_7300 F: ±52_81_8000_7095 < As of February 2017> For the latest information, please refer to the NSK website. NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer, Every care has been taken to ensure the accuracy of the data contained in this brochure, but no lability each observed any additions or corrections. ## Sealed & Shielded Type Contact Ball Bearings Double Row Angular In addition to the quality and compactness customers already enjoy, NSK now offers sealed and shielded types for greater convenience and protection. High-carbon chromium bearing steel Low-carbon steel and others # Features of the Sealed & Shielded Type Double Row Angular Contact Ball Bearings: - Availability of sealed or shielded types in addition to our conventional open-type products - No need to replace or refill grease since the lubricant is sealed into - the bearings Compact and narrower than back-to-back duplex - (DB) products Capable of accommodating heavy radial loads, axial loads in either direction - High capacity for momentary loads - Bearing Nomenclature 5202□DDU NS7S Internal configuration Grease type 5202□ZZ NS7S Contact sealed type (DDU) | | $F_{\rm a}/F_{\rm r}$ >e | > | 1.41 | | | |--|------------------------------------|---|------|-------------------------|-----------------------| | | Fa/ | × | 0.67 | | | | nt Load: | F _a ∕ F _{r≦} e | 7 | 0.92 | -oad: | | | Jynamic Equivalent Load:
P=XF _r +YF _a | $F_{\rm a}/$ | × | - | uivalent l | $6F_{\rm a}$ | | Dynamic E
P=XF _r +YF _a | | Ð | 0.68 | Static Equivalent Load: | $P_0 = F_r + 0.76F_a$ | | | | | | | | | Boundary Dimensions (mm) | |--| | Sealed d D B (Minimum) $C_{\rm r}$ | | 10 30 14.3 0.6 7 150 3 900 | | 12 32 15.9 0.6 8 500 5 300 | | | | 19.0 1 14.700 9.100 | | | | <u></u> | | | | OZ | | | | 67 | | | | 20 | | | | င္ပ | | | | 40 90 36.5 1.5 49 500 38 000 | | 45 85 30.2 1.1 41500 33500 | | 45 100 39.7 1.5 61 500 48 500 | | 50 90 30.2 1.1 40.500 36.000 4.100 | | 50 110 44.4 | | 55 100 33.3 1.5 49 500 43 500 | | 55 120 49.2 | Note: (1) These bearing numbers are for the double-shielded and double-sealed types. Single-shielded and single-sealed types are also available # Worldwide Sales Offices | NSK LTDHEADQUARTERS, TOKYO, JAPAN INUSTRIAL MACHINERY BUSINESS DINSON-HEADQUARTERS TEI: GI ORAI A FIFERMARKET DIPPARTMENT TEI: | PAN www.nsk.com
tel: 03-3779-7227
tel:
03-3779-7253 | Indonesia:
PT. NSK INDONESIA w
Jakarta | |--|--|--| | | tel: 03-3779-7163
tel: 0466-21-3027
tel: 03-3779-7189 | IEA CO., LTD. | | | | Changwon te
Malaysia:
NSK BEARINGS (MALAYSIA) SDN.BHD. w | | Johannesburg
Asia and Oceania | tel: 011-458-3600 | New Zealand: NSW Zealand: NSK DEW ZEALAND LTD. | | Australia: NSK AUSTRALIA PTY. LTD. Melbourne | www.au.nsk.com
tel: 03-9764-8302 | Auckland Philippines: NAMEPRESENTATIVE OFFICE Mackin | | China: NSK HONG KONG LTD. Hong Kong Shenzhen | tel: 02739-9933
tel: 0755-25904886 | re:
ERNATIONAL (SINGAPO
OOFE DEMATELITE MARKERS | | KUNSHAN NSK CO., LTD. Kunshan CHANGSHU NSK NEEDLE BEARING CO., LTD. | tel: 0512-5771-5654
ING CO., LTD. | Singapore talwan: | | Jiangsu NSK STERING SYSTEMS DONGGUAN CO., LTD. | tel: 0512-5230-1111
IGUAN CO., LTD.
tal: 0769-2262-0960 | Taipei ta | | NSK (CHINA) RESEARCH & DEVELOPMENT CO., LTD. Jiangsu tel: 0512-5796-3000 | DPMENT CO., LTD.
tel: 0512-5796-3000 | Thailand: NSK BEARINGS (THAILAND) CO., I | | NSK (SHANGHAI) TRADING CO., LTD. Jiangsu tel: 08 | tel: 0512-5796-3000 | Bangkok SIAM NSK STEERING SYSTEMS C | | | tel: 0512-5796-3000
tel: 010-6590-8161 | NSK ASIA PACIFIC TECHNOLOGY CENTER (T | | Guangzhou
Chengdu | tel: 020-3786-4833
tel: 028-8661-4200 | :
ETNAM CO., LTD. | | NSK CHINA SALES CO., LTD.
Jiangsu
Changchin | tel: 0512-5796-3000
tel: 0431-8898-8682 | NSK REPRESENTATIVE OFFICE Ho Chi Minh City tt | | Tianjin
Nanjing
Chongging | tel: 022-8319-5030
tel: 025-8472-6671
tel: 023-6806-5310 | Europe
NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) w
Maidenhead | | India: RAME NSK STEERING SYSTEMS LTD. | LTD. | France: NSK FRANCE S.A.S. Paris | | NSK INDIA SALES CO. PVT. LTD.
Chennai
Gurrann | tel: 044-474-00017
tel: 044-2433-1161
tel: 0124-4104-530 | Germany: NSK DEUTSCHLAND GMBH Düsseldorf Düsseldorf | | Kolkata
Mumbai | tel: 033-4001-2062
tel: 022-2838-7787 | NSA PRECISION EUROPE GMBH
Düsseldorf
Italy: | | NSK-ABC BEARINGS LTD.
Chennai | tel: 044-2714-3000 | NSK ITALIA S.P.A.
Milano te | | | | | | | NSK EUROPEAN
Kielce
NSK STEERING
Walbrzych | ŽŽ | Spain:
NSK SPAIN S.A. | Turkey: NSK RULMANLARI ORTA DOGU TIC, LTD, STI. 10 TIC, LTD, STI. 11 TIC, LTD, STI. 12 TIC, LTD, STI. 13 TIC, LTD, STI. 14 TIC, LTD, STI. 15 TIC, LTD, STI. 16 TIC, LTD, STI. 17 TIC, LTD, STI. 17 TIC, LTD, STI. 18 1 | | | NSK PRECISION OF LID. 10 Neward Neward SYSTEMS EUROPE LTD. 11 Maidenhead tel: 01628-509-800 | ZŻ | Argentina: 3 | | | | United States of America: United States of America: NSK CORPORATION 39 Ann Arbor Technol Ocy Center NSK American Technol Ocy Center | Now Precision America, INC. w
Franklin
NSK STEERING SYSTEMS AMERICA, INC. v | Behnington NSK LATIN AMERICA, INC. Www.la.nsk.com Miami tel: 305-477-0605 | |---|--|---|---------------------------------------|--|---|----------------|---|--------------------------------------|---|-------------------|-------------------|--------------------------------------|---|---|---| | www.id.nsk.com
tel: 021 - 252-3458 | www.kr.nsk.com
tel: 02-3287-0300
tel: 055-287-6001 | ilA) SDN.BHD. www.my.nsk.com
tel: 03-7803-8859 | www.nsk-rhp.co.nz
tel: 09-276-4992 | tel: 02-893-9543 | L (SINGAPORE) PTE LTD.
tel: 6496-8000
LTD. www.nsk-singapore.com.sg | (el. 0430-0000 | SION CO., LID.
IOLOGY CO., LEI
tel: 02-2509-3305
tel: 02-2509-3305 | AILAND) CO., LTD.
tel: 02320-2555 | SYSTEMS CO., LID. LOGY CENTER (THAILAND) CO., LTD. tel: 038-454-631 | tel: 04-3955-0159 | tel: 08-3822-7907 | www.eu.nsk.com
tel: 01628-509-800 | tel: 01-30-57-39-39 | tel: 02102-4810
tel: 02102-4810 | tel: 0299-5191 | | | ó | AIA) SDN.BHD. | LTD. wv | VE OFFICE | L (SINGAPO | | SION CO., LI | AILAND) CO. | SYSTEMS | TD. | VE OFFICE | HEADQUARTERS) | | GMBH
ROPE GMBH | | <As of February 2010> For the latest information, please refer to the NSK website. NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections. For more information about NSK products, please contact: ## New 40° Angular Contact Ball Bearings In addition to the quality and performance customers already enjoy, NSK now offers a new, higher capacity universal mounting series for greater convenience and longer bearing life. ### **New 40° Angular Contact Ball Bearings** #### **Features** - Higher capacity and longer life compared to our conventional types - Universal mounting, single row, angular contact ball bearings with various
clearances and preload classes available - Cage molded from a redesigned glass fiber reinforced polyamide 46 resin #### Face control for 40° angular contact bearings | | Diameter
mm) | | Axial Clearance (+) / Axial Interference (-) (Total for two bearings face to face or back to back) (µm) | | | | | | | | | | | | | |------|------------------------|----------------|---|----|----------------------|-----|-------------------------|-----|----------------------|-----|-------------------------|--|--|--|--| | over | d
include | Suffix
min. | Suffix SUN
min. max. | | Suffix SUX min. max. | | Suffix SUL
min. max. | | Suffix SUM min. max. | | Suffix SUH
min. max. | | | | | | 10 | 30 | 16 | 36 | -2 | 18 | -12 | 8 | -16 | 4 | -20 | 0 | | | | | | 30 | 50 | 16 | 40 | -2 | 18 | -12 | 8 | -18 | 2 | -22 | -2 | | | | | | 50 | 80 | 22 | 46 | -2 | 22 | -14 | 6 | -22 | -2 | -28 | -8 | | | | | Remark: These values are under measuring load. 1.14 1 0 0.35 0.57 1 0.55 0.57 0.93 *For i, use 2 for DB or DF, and 1 for DT. | | | Bounda | ary Dime | ensions | | Basic Loa | nd Ratings | | Abutme | nt and F | illet Dim | ensions | | |---------|----|--------|----------|------------------|------------|---------------------------|---------------|------------------------|------------------|------------------------|----------------------|-------------------------------|---------------------| | Bearing | -1 | _ | (mm) | | | | V) | -d | | | m) | | | | Numbers | d | D | В | <i>r</i>
min. | r_1 min. | C _r
dynamic | C₀r
static | d _a
min. | $D_{\rm a}$ max. | r _a
max. | $d_{ extsf{b}}$ min. | <i>D</i> _b
max. | r_{b} max. | | 7201BEA | 12 | 32 | 10 | 0.6 | 0.3 | 7 750 | 3 750 | 17 | 27 | 0.6 | 14.5 | 29.5 | 0.3 | | 7301BEA | 12 | 37 | 12 | 1 | 0.6 | 10 500 | 4 950 | 18 | 31 | 1 | 17 | 32 | 0.6 | | 7202BEA | 15 | 35 | 11 | 0.6 | 0.3 | 9 300 | 4 800 | 20 | 30 | 0.6 | 17.5 | 32.5 | 0.3 | | 7302BEA | 15 | 42 | 13 | 1 | 0.6 | 13 600 | 6 900 | 21 | 36 | 1 | 20 | 37 | 0.6 | | 7203BEA | 17 | 40 | 12 | 0.6 | 0.3 | 11 000 | 6 100 | 22 | 35 | 0.6 | 19.5 | 37.5 | 0.3 | | 7303BEA | 17 | 47 | 14 | 1 | 0.6 | 16 000 | 8 300 | 23 | 41 | 1 | 22 | 42 | 0.6 | | 7204BEA | 20 | 47 | 14 | 1 | 0.6 | 14 800 | 8 150 | 26 | 41 | 1 | 25 | 42 | 0.6 | | 7304BEA | 20 | 52 | 15 | 1.1 | 0.6 | 18 900 | 10 500 | 27 | 45 | 1 | 25 | 47 | 0.6 | | 7205BEA | 25 | 52 | 15 | 1 | 0.6 | 16 700 | 10 200 | 31 | 46 | 1 | 30 | 47 | 0.6 | | 7305BEA | 25 | 62 | 17 | 1.1 | 0.6 | 25 900 | 14 900 | 32 | 55 | 1 | 30 | 57 | 0.6 | | 7206BEA | 30 | 62 | 16 | 1 | 0.6 | 22 600 | 14 300 | 36 | 56 | 1 | 35 | 57 | 0.6 | | 7306BEA | 30 | 72 | 19 | 1.1 | 0.6 | 34 500 | 20 600 | 37 | 65 | 1 | 35 | 67 | 0.6 | | 7207BEA | 35 | 72 | 17 | 1.1 | 0.6 | 31 000 | 19 600 | 42 | 65 | 1 | 40 | 67 | 0.6 | | 7307BEA | 35 | 80 | 21 | 1.5 | 1 | 38 500 | 24 400 | 44 | 71 | 1.5 | 41 | 74 | 1 | | 7208BEA | 40 | 80 | 18 | 1.1 | 0.6 | 36 500 | 24 500 | 47 | 73 | 1 | 45 | 75 | 0.6 | | 7308BEA | 40 | 90 | 23 | 1.5 | 1 | 50 500 | 33 000 | 49 | 81 | 1.5 | 46 | 84 | 1 | | 7209BEA | 45 | 85 | 19 | 1.1 | 0.6 | 38 500 | 27 100 | 52 | 78 | 1 | 50 | 80 | 0.6 | | 7309BEA | 45 | 100 | 25 | 1.5 | 1 | 59 500 | 39 500 | 54 | 91 | 1.5 | 51 | 94 | 1 | | 7210BEA | 50 | 90 | 20 | 1.1 | 0.6 | 40 000 | 29 700 | 57 | 83 | 1 | 55 | 85 | 0.6 | | 7310BEA | 50 | 110 | 27 | 2 | 1 | 74 500 | 50 500 | 60 | 100 | 2 | 56 | 104 | 1 | | 7211BEA | 55 | 100 | 21 | 1.5 | 1 | 49 000 | 37 000 | 64 | 91 | 1.5 | 61 | 94 | 1 | | 7311BEA | 55 | 120 | 29 | 2 | 1 | 85 000 | 58 500 | 65 | 110 | 2 | 61 | 114 | 1 | | 7212BEA | 60 | 110 | 22 | 1.5 | 1 | 59 000 | 45 000 | 69 | 101 | 1.5 | 66 | 104 | 1 | | 7312BEA | 60 | 130 | 31 | 2.1 | 1.1 | 97 500 | 68 500 | 72 | 118 | 2 | 67 | 123 | 1 | | 7213BEA | 65 | 120 | 23 | 1.5 | 1 | 66 500 | 53 500 | 74 | 111 | 1.5 | 71 | 114 | 1 | | 7313BEA | 65 | 140 | 33 | 2.1 | 1.1 | 108 000 | 77 000 | 77 | 128 | 2 | 72 | 133 | 1 | | 7214BEA | 70 | 125 | 24 | 1.5 | 1 | 72 000 | 58 500 | 79 | 116 | 1.5 | 76 | 119 | 1 | | 7314BEA | 70 | 150 | 35 | 2.1 | 1.1 | 118 000 | 87 500 | 82 | 138 | 2 | 77 | 143 | 1 | | 7215BEA | 75 | 130 | 25 | 1.5 | 1 | 75 000 | 63 500 | 84 | 121 | 1.5 | 81 | 124 | 1 | | 7315BEA | 75 | 160 | 37 | 2.1 | 1.1 | 127 000 | 98 500 | 87 | 148 | 2 | 82 | 153 | 1 | | 7216BEA | 80 | 140 | 26 | 2 | 1 | 83 500 | 70 000 | 90 | 130 | 2 | 86 | 134 | 1 | | 7316BEA | 80 | 170 | 39 | 2.1 | 1.1 | 138 000 | 110 000 | 92 | 158 | 2 | 87 | 163 | 1 | 1 NSK NSK 2 #### **Worldwide Sales Offices** | Worldwide Gales Offic | .03 | |---|---------------------| | NSK LTDHEADQUARTERS, TOKYO, JA | PAN www.nsk.com | | INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS | tel: 03-3779-7227 | | GLOBAL AFTERMARKET DEPARTMENT | tel: 03-3779-7253 | | PRECISION MACHINERY DEPARTMENT | tel: 03-3779-7163 | | MECHATRONICS BUSINESS DEPARTMENT | tel: 0466-21-3027 | | AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS | tel: 03-3779-7189 | | Africa | | | South Africa: | | | NSK SOUTH AFRICA (PTY) LTD. | | | Johannesburg | tel: 011-458-3600 | | Asia and Oceania | | | Australia: | | | NSK AUSTRALIA PTY. LTD. | www.au.nsk.com | | Melbourne | tel: 03-9764-8302 | | China: | | | NSK HONG KONG LTD. | | | Hong Kong | tel: 02739-9933 | | Shenzhen | tel: 0755-25904886 | | KUNSHAN NSK CO., LTD. | | | Kunshan | tel: 0512-5771-5654 | | CHANGSHU NSK NEEDLE BEAR | ING CO., LTD. | | Jiangsu | tel: 0512-5230-1111 | | NSK STEERING SYSTEMS DONG | GUAN CO., LTD. | | Dongguan | tel: 0769-2262-0960 | | NSK (CHINA) RESEARCH & DEVEL | OPMENT CO., LTD. | | Jiangsu | tel: 0512-5796-3000 | | NSK (ŠHANGHAI) TRADING CO., | LTD. | | Jiangsu | tel: 0512-5796-3000 | | NSK (ČHINA) INVESTMENT CO., | LTD. | | Jiangsu | tel: 0512-5796-3000 | | Beijing | tel: 010-6590-8161 | | Guangzhou | tel: 020-3786-4833 | | Chengdu | tel: 028-8661-4200 | | Shenyang | tel: 024-2334-2868 | | Dalian | tel: 0411-8800-8168 | | NSK CHINA SALES CO., LTD. | | | Jiangsu | tel: 0512-5796-3000 | | Changchun | tel: 0431-8898-8682 | | Tianjin | tel: 022-8319-5030 | | Nanjing | tel: 025-8472-6671 | | Chongqing | tel: 023-6806-5310 | | India: | | | RANE NSK STEERING SYSTEMS | | | Chennai | tel: 044-474-06017 | | NSK INDIA SALES CO. PVT. LTD. | | | Chennai | tel: 044-2433-1161 | | Gurgaon | tel: 0124-4104-530 | | Kolkata | tel: 033-4001-2062 | | Mumbai | tel: 022-2838-7787 | | NSK-ABC BEARINGS LTD. | | | Chennai | tel: 044-2714-3000 | | | | | | | | | | | Indonesia: | | |--|---| | PT. NSK INDONESIA | www.id.nsk.com | | Jakarta | tel: 021-252-3458 | | Korea: | | | NSK KOREA CO., LTD. | www.kr.nsk.com | | Seoul | tel: 02-3287-0300 | | Changwon | tel: 055-287-6001 | | | tel. 055-267-0001 | | Malaysia: | | | NSK BEARINGS (MALAYSIA) SDN BHD. | | | Shah Alam | tel: 03-7803-8859 | | New Zealand: | | | NSK NEW ZEALAND LTD. w | ww.nsk-rhp.co.nz | | Auckland | tel: 09-276-4992 | | Philippines: | | | NSK REPRESENTATIVE OFFICE | | | Manila | tel: 02-893-9543 | | | tel. 02-093-9343 | | Singapore: | DE DE LED | | NSK INTERNATIONAL (SINGAPO | | | Singapore | tel: 6496-8000 | | NSK SINGAPORE (PRIVATE) LTD. www.nsk | | | Singapore | tel: 6496-8000 | | Taiwan: | | | TAIWAN NSK PRECISION CO., LT | ΓD. | | Taipei | tel: 02-2509-3305 | | TAIWAN NSK TECHNOLOGY CO | ITD. | | Taipei | tel: 02-2509-3305 | | | | | | 101.02 2000 0000 | | Thailand: | | | Thailand:
NSK BEARINGS (THAILAND) CO. | ., LTD. | | Thailand:
NSK BEARINGS (THAILAND) CO.
Bangkok | ., LTD.
tel: 02320-2555 | | Thailand:
NSK BEARINGS (THAILAND) CO.
Bangkok
SIAM NSK STEERING SYSTEMS | ., LTD.
tel: 02320-2555
CO., LTD. | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao | ., LTD.
tel: 02320-2555
CO., LTD.
tel: 038-522-343 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER | ., LTD.
tel: 02320-2555
CO., LTD.
tel: 038-522-343
(THAILAND) CO., LTD. | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi | ., LTD.
tel: 02320-2555
CO., LTD.
tel: 038-522-343 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER | ., LTD.
tel: 02320-2555
CO., LTD.
tel: 038-522-343
(THAILAND) CO., LTD. | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi | tel: 02320-2555
CO., LTD.
tel: 038-522-343
(THAILAND) CO., LTD.
tel: 038-454-631 | | Thailand: NSK BEARINGS (THAILAND) CO. BANGKOK SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: | ., LTD.
tel: 02320-2555
CO., LTD.
tel: 038-522-343
(THAILAND) CO., LTD. | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. | tel: 02320-2555
CO., LTD.
tel: 038-522-343
(THAILAND) CO., LTD.
tel: 038-454-631 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE | ,
LTD.
tel: 02320-2555
CO, LTD.
tel: 038-522-343
(THAILAND) CO., LTD.
tel: 038-454-631
tel: 04-3955-0159 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City | tel: 02320-2555
CO., LTD.
tel: 038-522-343
(THAILAND) CO., LTD.
tel: 038-454-631 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LID. (EUROPEAN HEADQUARTERS) | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) Maidenhead | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Nietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) Maidenhead France: | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPEIND. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Nietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) Maidenhead France: | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPEIND. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LID. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THALLAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPELID. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: | tel: 02320-2555 CO., LTD. tel: 038-522-343 (THAILAND) CO., LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LTD. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: NSK DEUTSCHLAND GMBH Düsseldorf | tel: 02320-2555 CO, LTD. tel: 02320-2555 CO, LTD. tel: 038-522-343 (THAILAND) CO, LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 tel: 02102-4810 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPELID. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: NSK DEUTSCHLAND GMBH DÜSSEIGOF | tel: 02320-2555 CO, LTD. tel: 038-522-343 (THAILAND) CO, LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 tel: 02102-4810 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPELTD. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: NSK DEUTSCHLAND GMBH Düsseldorf NSK PRECISION EUROPE GMBH DÜSSEIDORF | tel: 02320-2555 CO, LTD. tel: 02320-2555 CO, LTD. tel: 038-522-343 (THAILAND) CO, LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 tel: 02102-4810 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Nietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LID. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: NSK DEUTSCHLAND GMBH DÜSSEIGORF NSK PRECISION EUROPE GMBH DÜSSEIGORF Italy: | tel: 02320-2555 CO, LTD. tel: 038-522-343 (THAILAND) CO, LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 tel: 02102-4810 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Vietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPEIND. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: NSK DEUTSCHLAND GMBH Düsseldorf NSK PRECISION EUROPE GMBH Düsseldorf Italy: NSK ITALIA S.P.A. | tel: 02320-2555 CO, LTD. tel: 038-522-343 (THAILAND) CO, LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 tel: 02102-4810 tel: 02102-4810 | | Thailand: NSK BEARINGS (THAILAND) CO. Bangkok SIAM NSK STEERING SYSTEMS Chachoengsao NSK ASIA PACIFIC TECHNOLOGY CENTER Chonburi Nietnam: NSK VIETNAM CO., LTD. Hanoi NSK REPRESENTATIVE OFFICE Ho Chi Minh City Europe NSK EUROPE LID. (EUROPEAN HEADQUARTERS) Maidenhead France: NSK FRANCE S.A.S. Paris Germany: NSK DEUTSCHLAND GMBH DÜSSEIGORF NSK PRECISION EUROPE GMBH DÜSSEIGORF Italy: | tel: 02320-2555 CO, LTD. tel: 038-522-343 (THAILAND) CO, LTD. tel: 038-454-631 tel: 04-3955-0159 tel: 08-3822-7907 www.eu.nsk.com tel: 01628-509-800 tel: 01-30-57-39-39 tel: 02102-4810 | Indonesia: PT. NSK INDONESIA ``` Poland: NSK EUROPE LTD. WARSAW LIAISON OFFICE Warsaw Warsaw NSK EUROPEAN TECHNOLOGY CENTER, POLAND OFFICE tel: 041-367-0940 Kielce tel: 041-367-0940 Kielce tel: 041-367-0940 NSK STEERING SYSTEMS EUROPE (POLSKA) SP.ZO.O. Walbrzych tel: 074-664-4101 NSK NEEDLE BEARING POLAND SP.ZO.O. Kielce tel: 041-367-0940 Kielce NSK POLSKA SP.ZO.O. Kielce tel: 041-347-5110 Spain: NSK SPAIN S.A. NSK SPAIN S.G. Barcelona tel: 093-455-6776 Turkey: NSK RULMANLARI ORTA DOGU TIC, LTD, STI, tel: 0216-355-0398 United Kingdom: NSK EUROPEAN TECHNOLOGY CENTRE Newark Newark NSK UK Ltd. tel: 01636-605-123 NSK PRECISION UK LTD. Newark tel: 01636-605-123 NSK STEERING SYSTEMS EUROPE LTD. Maidenhead tel: 01628-509-800 rvaidennead tel: 01628-509-800 North and South America NSK AMERICAS, INC. (AMERICAN HEADQUARTERS) Ann Arbor Argentina: NSK ARGENTINA SRL Buenos Aires Brazil: tel: 11-4704-5100 Rargina tel: 11-4704-5100 Brazil: NSK BRASIL LTDA. Sãn Paulo www.br.nsk.com tel: 011-3269-4786 Canada: NSK CANADA INC. www.ca.nsk.com tel: 905-890-0740 NSK CANADA INC. www.ca.nsk.com Toronto tel: 905-890-0740 Mexico: NSK RODAMIENTOS MEXICANA, S.A. DE C.V. www.mx.nsk.com Mexico City United States of America: NSK CORPORATION Ann Arbor NSK AMERICAN TECHNOLOGY CENTER App. Arbor tel: 734-913-7500 www.us.nsk.com tel: 734-913-7500 CENTER tel: 734-913-7500 NSK PRECISION AMERICA, INC. N Franklin NSK STEERING SYSTEMS AMERICA, INC. www.npa.nsk.com tel: 317-738-5000 www.nssa.nsk.com tel: 802-442-5448 Bennington NSK LATIN AMERICA, INC. Miami www.la.nsk.com tel: 305-477-0605 ``` <As of July 2010> For the latest information, please refer to the NSK website. NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections. For more information about NSK products, please contact: ## Bearings for Papermaking Machines NSK bearings achieved the
longer life and higher limiting speed under high-temperature conditions including moisture and dust environment such as papermaking machines and the productivity was enhanced dramatically. ## The NSK brand, recognized around the world From home electric appliances, automobiles, and large-scale equipment to the aerospace industry—NSK bearings are used in an extensive range of fields. NSK established its global-scale enterprise on technology that has met the exacting requirements of Japanese industry. We have also established R&D systems and support services to meet the diverse needs of our customers throughout the world. As a brand recognized around the world, NSK continues to lead the industry with its technical prowess. THE AMERICAS (Locations of bases) Headquarters 1 U.S.A. Production site 8 Canada Sales site 20 Mexico R&D center 2 Brazil Representative 1 Peru office Argentina | EUROPE/AFRICA | | | | | | | | | | | |-----------------------|----|--|--|--|--|--|--|--|--|--| | Headquarters | 1 | | | | | | | | | | | Production site | 9 | | | | | | | | | | | Sales site | 15 | | | | | | | | | | | R&D center | 3 | | | | | | | | | | | Representative office | 3 | U.K. Germany France Italy Spain Poland Russia Norway Turkey United Arab Emirates South Africa (Locations of bases) ASIA / OCEANIA Headquarters 3 Production site 25 Sales site 50 R&D center 3 Representative 3 office As of March 2013 (Locations of bases) Singapore Malaysia Vietnam India Australia New Zealand China South Korea Taiwan Philippines ③ Inch series (or 223XX) Mormal or C3 / P0 ⑤ Grease ### The Papermaking Process and **Spherical Roller Bearing Specifications** ①SR **260-70** 3 223XX Mormal / P0 **Soft Calender** ⑤ Grease 2 400-600 3 232, 241XX @ C3 or C4/ P0 or P55 Reel Drum Roll ⑤ Oil circulation ①SR @ Heat treatment: TL or S11 2 190 or carburized steel + S11 3 222, 223XX - Reel Spreader Roll Reel Spool Re ①TR 2 130-180 Mormal / P0 Rider Roll 3 222, 223XX **260-80** 4 C3 / P6 ⑤ Oil bath ③322XX ⑤ Grease Calender Top Roll ① SR 220-280 4 Normal / P0 ⑤ Oil circulation ③ 230XX #### TL Series Spherical Roller Bearings Ideal for high temperature equipment, with resistance to Tough, long-life TL bearings boost productivity and lower costs. Major applications: dryer rolls, canvas rolls, PV rolls, and calender rolls #### NSKHPS Spherical Roller Bearings Next-generation standard bearings utilizing innovative materials and technologies benefit from NSK's experience and expertise o deliver longer life and higher limiting speed. ajor applications: small diameter rolls such as canvas rolls, paper rolls, felt rolls, and rider rolls #### Molded-Oil[™] Bearings Excellent performance in environments exposed to moisture or paper dust, without oil leakage. Molded oil using an optimized molding method with optimal omposition provides higher speed operation, is easy to handle, and safe for the environment. ajor applications: raw material conveyors, carrier rope sheaves, suction rolls A Product Line Specific #### **EM Series Cylindrical Roller Bearings** Bearings with integrated machined cages offer enhanced performance by combining the advantages of the conventional M series bearings and the high-load EMA1 series. #### **Triple Ring Bearings** Uniquely structured bearing for ease of use and no creep while offering high precision and long life. Major applications: press rolls, breaker stack rolls #### **CA Series Spherical Roller Bearings** Superior radial load capacity and alignment, featuring high load capacity and excellent strength; equipped with a machined cage. his product lineup includes high running accuracy to ISO or applications: large diameter rolls such as suction rolls, press rolls, **Deep Groove Ball Bearings for High-Speed Expander Rolls** Special bearings that suppress friction torque and surface damage ch as smearing and others. NSK offers other advantageous products for various rolls and conveyors, including the HR series of high load capacity tapered roller bearings and easy-to-handle ball bearing units. 3 230, 231XX ⑤ Oil circulation 4 C3 / P55 3 239, 230, 231XX ⑤ Oil circulation ③ 232XX 4 C3 / P0 4 C3 or C4 / P0 **6** Heat treatment: TL ⑤ Oil circulation Yankee Dryer DSR 2 400–600 3 230, 231XX 4 C3 or C4 / P0 5 Oil circulation © Heat treatment: TL or S11 or carburized steel + S11 PV Roll ① SR 2 90-380 3 239, 231, 222, 223XX ⑤ Oil circulation 6 Heat treatment: TL or S11 Calender Queen Roll ①SR **2**160-320 3231XX **4** C3 / P0 ⑤ Oil circulation ① SR 2 240-530 4 C3 / P0 ⑤ Oil circulation ③ 232XX Calender Bottom Roll - CCR: Triple Ring Bearing ① SR **Unwinding Stand** 280-130 3 222XX 4 C3 / P6 or P0 ⑤ Oil bath Winder Drum Roll Paper Roll - ① SR **260–95** ③ 223XX 4 C3 / P6 ⑤ Oil bath or grease ①SR 2 130-160 3 223XX @C3/P6 ⑤ Oil bath NSK 8 #### **TL Series Spherical Roller Bearings** Dryer rolls are generally used under high-temperature conditions, which can lead to fracturing of the bearing inner ring, and in the worst case, result in work stoppage. NSK's solution is the TL (Tough and Long-life) bearing, which features sufficient strength to resist inner ring fractures, superior dimensional stability under high-temperature conditions, and long life due to superior hardness. All these characteristics mean improved productivity. #### **Features** ### Enhanced inner ring strength Adoption of a special steel and surface hardening heat treatment, developed by NSK, dramatically enhance inner ring strength against increasing hoop stress caused by rising shaft temperature. #### **Longer life** Increased hardness of raceway surface provides longer life when foreign debris is present than that of other bearings. ## Dimensional stability under high temperatures High-temperature dimensional stabilization of up to 200°C has been achieved through the application of NSK's proprietary material heat treatment technology. #### **High Performance Standard Bearings for Industrial Machinery** NSKHPS, redefining the standard. Continually developing products with greater strength and higher accuracy, NSK's new NSKHPS fully incorporate the advantages of NSK's world-class design, materials, and manufacturing technologies, setting a new standard for bearings. #### **Features** Compared with conventional bearings · · · Bearing life 2 times longer (maximum) Limiting speed 20% higher (maximum) Working temperature up to 200°c #### 1. Improved reliability Bearing life has increased by a maximum of 2 times compared with that of conventional bearings by optimization of the bearing's internal design and improved processing technology. As a result, the NSKHPS bearings contribute to reducing maintenance costs and facilitate the downscaling of related equipment. #### 2. Improved limiting speed (EA type only). Limiting speed has been increased by a maximum of 20 % compared with that of conventional bearings by improving cage wear resistance. #### 3. High temperature dimensional stabilizing treatment comes standard High-temperature dimensional stabilization of up to 200° C has been achieved through the application of NSK's proprietary material heat treatment technology. As a result, this series of bearing can be used in a wide range of applications. #### **CA Series Spherical Roller Bearings** CA series bearings have high load capacity, superior durability, and wear resistance featuring a brass cage for various types of large rolls such as suction rolls, press rolls, calender rolls, and reel drum rolls, etc. The CA series is available in a wide selection of sizes and other specifications, such as bearings with a lubricant hole and groove provided in the outer ring (E4), high heat-resistant bearings capable of withstanding up to 200°C (S11), and high-precision bearings (class 5). #### **Deep Groove Ball Bearings for High-speed Expander Rolls** Special bearings offer low frictional torque and minimize surface damage, such as smearing and others, through optimal design of the bearing interior and the adoption of coating treatment on the inner and outer rings. The bearings are characterized by high performance and quality of the No. 1 brand including low-noise bearings suitable for motors and pumps. #### Molded-Oil™ Bearings Molded-Oil™ bearings are lubricated with NSK's own oil-impregnated material, Molded-Oil™ consists of lubricating oil and polyolefin resin that has an affinity for oil. Oil slowly seeping from this material provides ample lubrication to the bearing for extended periods. #### **Features** Excellent performance in water- and dustcontaminated environments The bearings are designed to prevent liquids such as water, which can wash out the lubricating oil, and dust from getting inside the bearings. Sealed types can be used in environments exposed to water and dust. *Water and dust dramatically accelerate bearing damage. In order to realize stable operation, w recommend using seals to prevent water and dust from getting in the bearing. **Optimal** composition and molding methods enable high-speed operation Optimization of composition and molding method of Molded-Oil™ improves strength and enables high-speed operation. Low torque Packing with Molded-Oil™ after providing the bearing surface with special treatment realizes smooth rotation of rolling elements. **Environmentally** friendly The bearings are lubricated by minute quantities of oil exuded by Molded-Oil™, which consequently minimizes oil leakage. #### **Applications** Material processing equipment (conveyers, agitators), paper mill line equipment (support for wire part rolls), maintenance facilities (carrier rope sheave pulley), and carrier line equipment Close-up of Molded-Oil™ Portion containing mostly lubricating oil The lubricating oil is mineral oil-based. Portion containing mostly polyolefin Polyolefin is an environmentally sound material used for packaging food in supermarkets, replacing dioxin-generating vinyl chloride. Be aware that this bearing has certain
restrictions in regards to ambient operating temperatures and limiting speeds $(d_m n)$. Refer to the NSK Molded-Oil™ Bearings catalog (Cat. No. E1216) for details. Furthermore, handling precautions for maintainig the excellent, long-term lubricating capacity of the Molded-Oil™ bearings are listed on page 3 of the same catalog. #### **EM Series Cylindrical Roller Bearings** The high-load capacity standard cylindrical roller bearing delivers outstanding performance across a wide range of applications. High-load capacity is achieved by using more rollers than conventional bearings based on an innovative NSK concept. We also offer standard cylindrical roller bearings for today's needs that provide longer service life and low-noise and lowvibration performance through an optimally designed one-piece cage with high rigidity and low wear. #### Features Series are available in bearing inner bore dimensions ranging from 25 mm to 200 mm #### Compared to the conventional M Series: **Bearing life** approximately 2 times Low vibration and noise 50% to 60% less Cage strength dramatically enhanced (generated stress cut in half) Catalog No. E1237 #### **Triple Ring Bearings** Combination tapered roller bearings have typically been used for the outside of controlled crown rolls (CCR) and spherical roller bearings for the inside. Switching to high-precision, high load capacity triple ring bearings prevents creep, facilitates easier mounting, and extends operating life. #### Features #### High-load capacity design Long life (uses vacuum melted, carburized steel) **High precision** (dimensional and rotational precision) Optimal inner ring design for lubrication Lubrication hole and groove provided on inner and outer rings #### Finite element analysis of housing design for triple ring bearings. Bearing load distribution is minimized by finite element method (FEM) analysis, thereby contributing to optimal structural design of the housing for paper machine manufacturers. Maximum principle stress distribution #### **TL Series Spherical Roller Bearings** Dynamic equivalent load $P=XF_r+YF_a$ | F _a / | F _r ≤e | F _a / F _r >e | | | | | | |------------------|-------------------|------------------------------------|----------------|--|--|--|--| | Χ | Y | Χ | Y | | | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | | | Static equivalent load $P_0=F_r+Y_0F_a$ The values for e, Y_2 , Y_3 and Y_0 are given in the table below. # Bearing Nomenclature Example: TL 23152 CA g3 M K E4 C3 S11 Max.operating tempecature:less than 200°C (Special specification symbol) Width series 3 (Bearing series symbols); Diameter series 1 (Bearing series symbols); Bearing bore 260 mm (Bore number) Machined brass cage (Cage type symbol) TL spec.Inner ring. (Special spec, material symbol) g5: Inner and outer ring | | Bound | dary dim | ensions (mr | m) | Basic load | ratings (N) | Limiting spe | eeds (min-1) | Bearing | numbers | | Abutment | and fillet dimens | sions (mm) | | Constant | | Axial load factor | 's | Mass | |------------|-------|------------|-------------|-----------------------------|------------------------|------------------------|--------------|----------------|----------------------------|------------------------------|--------|-----------------------|-------------------|-----------------------|--------------------------|--------------|----------------|-------------------|-----------------------|-----------------| | d | | D | В | <i>r</i>
(min .) | Cr | C _{or} | Grease | Oil | Cylindrical bore | Tapered bore (1) | (min.) | d _a (max.) | (max.) |) _a (min.) | r _a
(max.) | е | Y ₂ | Y ₃ | <i>Y</i> ₀ | (kg)
approx. | | 65 | 5 | 140 | 48 | 2.1 | 375 000 | 380 000 | 3 200 | 4 000 | TL22313EAE4 | TL22313EAKE4 | 77 | 84 | 128 | 119 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 3.52 | | 70 |) | 150 | 51 | 2.1 | 425 000 | 435 000 | 3 000 | 3 800 | TL22314EAE4 | TL22314EAKE4 | 82 | 91 | 138 | 129 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | 4.28 | | 90 | | 190 | 64 | 3 | 665 000 | 705 000 | 2 400 | 3 000 | TL22318EAE4 | TL22318EAKE4 | 104 | 115 | 176 | 163 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | 8.56 | | 100 | | 215 | 73 | 3 | 860 000 | 930 000 | 2 000 | 2 600 | TL22320EAE4 | TL22320EAKE4 | 114 | 130 | 201 | 184 | 2.5 | 0.33 | 3.0 | 2.0 | 2.0 | 12.7 | | 110 |) | 170 | 45 | 2 | 293 000 | 465 000 | 2 000 | 2 400 | TL23022CDE4 | TL23022CDKE4 | 120 | 124 | 160 | 153 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 3.76 | | 110 |) | 200 | 69.8 | 2.1 | 515 000 | 760 000 | 1 500 | 1 900 | TL23222CE4 | TL23222CKE4 | 122 | 130 | 188 | 170 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | 9.54 | | 110 |) | 240 | 80 | 3 | 825 000 | 1 120 000 | 1 700 | 2 200 | TL22322EAE4 | TL22322EAKE4 | 124 | 145 | 226 | 206 | 2.5 | 0.30 | 3.1 | 2.1 | 2.0 | 17.6 | | 120 | | 260 | 86 | 3 | 955 000 | 1 320 000 | 1 600 | 2 000 | TL22324EAE4 | TL22324EAKE4 | 134 | 157 | 246 | 222 | 2.5 | 0.32 | 3.1 | 2.1 | 2.0 | 22.2 | | 130 | | 280 | 93 | 4 | 995 000 | 1 350 000 | 1 300 | 1 600 | TL22326CAE4 | TL22326CAKE4 | 148 | _ | 262 | 236 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | 27.8 | | 140 | | 210 | 53 | 2 | 420 000 | 715 000 | 1 600 | 1 900 | TL23028CDE4 | TL23028CDKE4 | 150 | 157 | 200 | 190 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 6.49 | | 140 | | 250 | 68 | 3 | 645 000 | 930 000 | 1 400 | 1 700 | TL22228CDE4 | TL22228CDKE4 | 154 | 167 | 236 | 219 | 2.5 | 0.25 | 4.0 | 2.7 | 2.6 | 14.5 | | 140 | | 250 | 88 | 3 | 835 000 | 1 300 000 | 1 100 | 1 500 | TL23228CE4 | TL23228CKE4 | 154 | 163 | 236 | 213 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | 18.8 | | 150 | | 225 | 56 | 2.1 | 470 000 | 815 000 | 1 400 | 1 800 | TL23030CDE4 | TL23030CDKE4 | 162 | 168 | 213 | 203 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | 7.90 | | 150 | | 250 | 80 | 2.1 | 725 000 | 1 180 000 | 1 100 | 1 400 | TL23130CAE4 | TL23130CAKE4 | 162 | _ | 238 | 218 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | 15.8 | | 150 | | 270 | 73 | 3 | 765 000 | 1 120 000 | 1 300 | 1 600 | TL22230CDE4 | TL22230CDKE4 | 164 | 179 | 256 | 236 | 2.5 | 0.26 | 3.9 | 2.6 | 2.5 | 18.4 | | 150 | | 320 | 108 | 4 | 1 220 000 | 1 690 000 | 1 100 | 1 400 | TL22330CAE4 | TL22330CAKE4 | 168 | _ | 302 | 270 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 41.5 | | 160 | | 240 | 60 | 2.1 | 540 000 | 955 000 | 1 300 | 1 700 | TL23032CDE4 | TL23032CDKE4 | 172 | 179 | 228 | 216 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | 9.66 | | 160 | | 290 | 80 | 3 | 910 000 | 1 320 000 | 1 200 | 1 500 | TL22232CDE4 | TL22232CDKE4 | 174 | 190 | 276 | 255 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | 23.1 | | 160 | | 290 | 104 | 3 | 1 100 000 | 1 770 000 | 1 000 | 1 300 | TL23232CE4 | TL23232CKE4 | 174 | 189 | 276 | 245 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | 30.5 | | 170 | | 230 | 45 | 2 | 350 000 | 660 000 | 1 400 | 1 800 | TL23934BCAE4 | TL23934BCAKE4 | 180 | _ | 220 | 213 | 2 | 0.17 | 5.8 | 3.9 | 3.8 | 5.38 | | 170 | | 260 | 67 | 2.1 | 640 000 | 1 090 000 | 1 200 | 1 600 | TL23034CDE4 | TL23034CDKE4 | 182 | 191 | 248 | 233 | 2 | 0.23 | 4.3 | 2.9 | 2.8 | 13.0 | | 170 | | 280 | 88 | 2.1 | 940 000 | 1 570 000 | 1 000 | 1 300 | TL23134CAE4 | TL23134CAKE4 | 182 | _ | 268 | 245 | 2 | 0.29 | 3.5 | 2.3 | 2.3 | 21.0 | | 170 | | 360 | 120 | 4 | 1 580 000 | 2 110 000 | 1 000 | 1 200 | TL22334CAE4 | TL22334CAKE4 | 188 | _ | 342 | 304 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 57.9 | | 180 | | 280 | 74 | 2.1 | 750 000 | 1 270 000 | 1 200 | 1 400 | TL23036CDE4 | TL23036CDKE4 | 192 | 202 | 268 | 249 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 17.1 | | 180 | | 320 | 112 | 4 | 1 300 000 | 2 110 000 | 850 | 1 100 | TL23236CAE4 | TL23236CAKE4 | 198 | _ | 302 | 274 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 38.5 | | 190 | | 290 | 75 | 2.1 | 775 000 | 1 350 000 | 1 100 | 1 400 | TL23038CAE4 | TL23038CAKE4 | 202 | _ | 278 | 261 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | 17.6 | | 190 | | 320 | 104 | 3 | 1 190 000 | 2 020 000 | 850 | 1 100 | TL23138CAE4 | TL23138CAKE4 | 204 | _ | 306 | 276 | 3.5 | 0.31 | 3.2 | 2.2 | 2.1 | 34.0 | | 190 | | 340 | 92 | 4 | 1 140 000 | 1 730 000 | 1 000 | 1 200 | TL22238CAE4 | TL22238CAKE4 | 208 | _ | 322 | 296 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | 35.5 | | 190 | | 340 | 120 | 4 | 1 440 000 | 2 350 000 | 800 | 1 100 | TL23238CAE4
TL22338CAE4 | TL23238CAKE4
TL22338CAKE4 | 208 | - | 322 | 288 | 3 4 | 0.35 | 2.9 | 1.9 | 1.9 | 46.5 | | 190 | | 400 | 132 | 5 | 1 890 000 | 2 590 000 | 900 | 1 100 | TL2338CAE4
TL23040CAE4 | TL2336CAKE4
TL23040CAKE4 | 212 | _ | 378 | 338 | 2 | 0.34
0.25 | 2.9 | 2.0 | 1.9 | 77.6
22.6 | | 200
200 | | 310
340 | 82 | 2.1
3 | 940 000 | 1 700 000 | 1 000 | 1 300
1 000 | TL23040CAE4 | TL23140CAKE4 | 212 | _ | 298
326 | 279 | 2.5 | 0.25 | 4.0 | 2.7 | 2.6
2.1 | 41.5 | | 200 | | 360 | 112
98 | 4 | 1 360 000
1 300 000 | 2 330 000
2 010 000 | 800
950 | 1 200 | TL23140CAE4 | TL22140CAKE4 | 214 | _ | 342 | 293
315 | 3 | 0.32 | 3.2 | 2.1
2.6 | 2.5 | 42.6 | | 200 | | 360 | 128 | 4 | 1 660 000 | 2 750 000 | 750 | 1 000 | TL23240CAE4 | TL23240CAKE4 | 218 | _ | 342 | 307 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | 57.0 | | 220 | | 340 | 90 | 3 | 1 090 000 | 1 980 000 | 950 | 1 200 | TL23044CAE4 | TL23044CAKE4 | 234 | _ | 326 | 302 | 2.5 | 0.24 | 4.1 | 2.8 | 2.7 | 29.7 | | 220 | | 370 | 120 | 4 | 1 570 000 | 2 710 000 | 710 | 950 | TL23144CAE4 | TL23144CAKE4 | 238 | _ | 352 | 320 | 3 | 0.31 | 3.2 | 2.2 | 2.1 | 52.0 | | 220 | | 400 | 108 | 4 | 1 570 000 | 2 430 000 | 850 | 1 000 | TL22244CAE4 | TL22244CAKE4 | 238 | _ | 382 | 348 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | 59.0 | | 220 | | 400 | 144 | 4 | 2 010 000 | 3 400 000 | 670 | 900 | TL23244CAE4 | TL23244CAKE4 | 238 | _ | 382 | 337 | 3 | 0.36 | 2.8 | 1.9 | 1.8 | 79.5 | | 220 | | 460 | 145 | 5 | 2 350 000 | 3 400 000 | 750 | 950 | TL22344CAE4 | TL22344CAKE4 | 242 | _ | 438 | 391 | 4 | 0.33 | 3.0 | 2.0 | 2.0 | 116 | | 240 | | 320 | 60 | 2.1 | 635 000 | 1 300 000 | 950 | 1 200 | TL23948CAE4 | TL23948CAKE4 | 252 | _ | 308 | 298 | 2 | 0.17 | 6.0 | 4.0 | 3.9 | 13.3 | | 240 | | 360 | 92 | 3 | 1 160 000 | 2 140 000 | 850 | 1 100 | TL23048CAE4 | TL23048CAKE4 | 254 | _ | 346 | 324 | 2.5 | 0.24 | 4.2 | 2.8 | 2.7 | 32.6 | | 240 | | 400 | 128 | 4 | 1 790 000 | 3 100 000 | 670 | 850 | TL23148CAE4 | TL23148CAKE4 |
258 | _ | 382 | 347 | 3 | 0.31 | 3.3 | 2.2 | 2.2 | 64.5 | | 240 | | 500 | 155 | 5 | 2 600 000 | 3 800 000 | 670 | 850 | TL22348CAE4 | TL22348CAKE4 | 262 | _ | 478 | 423 | 4 | 0.32 | 3.2 | 2.1 | 2.1 | 147 | | 260 | | 360 | 75 | 2.1 | 930 000 | 1 870 000 | 850 | 1 000 | TL23952CAE4 | TL23952CAKE4 | 272 | _ | 348 | 333 | 2 | 0.19 | 5.4 | 3.6 | 3.5 | 23.0 | | 260 | | 400 | 104 | 4 | 1 430 000 | 2 580 000 | 800 | 950 | TL23052CAE4 | TL23052CAKE4 | 278 | _ | 382 | 356 | 3 | 0.25 | 4.1 | 2.7 | 2.7 | 46.6 | | 260 | | 440 | 144 | 4 | 2 160 000 | 3 750 000 | 600 | 800 | TL23152CAE4 | TL23152CAKE4 | 278 | _ | 422 | 380 | 3 | 0.32 | 3.2 | 2.1 | 2.1 | 88.2 | | 280 | | 380 | 75 | 2.1 | 925 000 | 1 950 000 | 800 | 950 | TL23956CAE4 | TL23956CAKE4 | 292 | - | 368 | 351 | 2 | 0.18 | 5.7 | 3.9 | 3.8 | 24.5 | | 280 | | 420 | 106 | 4 | 1 540 000 | 2 950 000 | 710 | 900 | TL23056CAE4 | TL23056CAKE4 | 298 | _ | 402 | 377 | 3 | 0.24 | 4.2 | 2.8 | 2.7 | 50.5 | | 280 | | 460 | 146 | 5 | 2 230 000 | 4 000 000 | 560 | 750 | TL23156CAE4 | TL23156CAKE4 | 302 | _ | 438 | 400 | 4 | 0.30 | 3.3 | 2.2 | 2.2 | 94.3 | | 280 | | 500 | 176 | 5 | 2 880 000 | 4 900 000 | 530 | 670 | TL23256CAE4 | TL23256CAKE4 | 302 | _ | 478 | 425 | 4 | 0.35 | 2.9 | 1.9 | 1.9 | 147 | | 300 | | 420 | 90 | 3 | 1 230 000 | 2 490 000 | 710 | 900 | TL23960CAE4 | TL23960CAKE4 | 314 | _ | 406 | 386 | 2.5 | 0.19 | 5.2 | 3.5 | 3.4 | 38.2 | | 300 | | 460 | 118 | 4 | 1 920 000 | 3 700 000 | 670 | 850 | TL23060CAE4 | TL23060CAKE4 | 318 | _ | 442 | 413 | 3 | 0.24 | 4.2 | 2.8 | 2.7 | 70.5 | | 300 | | 500 | 160 | 5 | 2 670 000 | 4 800 000 | 500 | 670 | TL23160CAE4 | TL23160CAKE4 | 322 | _ | 478 | 433 | 4 | 0.31 | 3.3 | 2.2 | 2.2 | 125 | | 300 | | 540 | 192 | 5 | 3 400 000 | 5 900 000 | 480 | 630 | TL23260CAE4 | TL23260CAKE4 | 322 | _ | 518 | 458 | 4 | 0.35 | 2.9 | 1.9 | 1.9 | 189 | | 320 | | 540 | 176 | 5 | 3 050 000 | 5 500 000 | 480 | 600 | TL23164CAE4 | TL23164CAKE4 | 342 | _ | 518 | 466 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 162 | | 340 |) | 520 | 133 | 5 | 2 280 000 | 4 400 000 | 560 | 710 | TL23068CAE4 | TL23068CAKE4 | 362 | - | 498 | 465 | 4 | 0.24 | 4.2 | 2.8 | 2.8 | 101 | | 340 | | 580 | 190 | 5 | 3 600 000 | 6 600 000 | 430 | 560 | TL23168CAE4 | TL23168CAKE4 | 362 | _ | 558 | 499 | 4 | 0.31 | 3.2 | 2.1 | 2.1 | 206 | | 360 | | 540 | 134 | 5 | 2 390 000 | 4 700 000 | 530 | 670 | TL23072CAE4 | TL23072CAKE4 | 382 | _ | 518 | 485 | 4 | 0.24 | 4.2 | 2.8 | 2.8 | 106 | | 380 |) | 520 | 106 | 4 | 1 870 000 | 4 100 000 | 530 | 670 | TL23976CAE4 | TL23976CAKE4 | 398 | _ | 502 | 482 | 3 | 0.18 | 5.5 | 3.7 | 3.6 | 65.4 | Note (1) The suffix K indicates that the bearing has a tapered bore (taper 1:12). Remarks The suffix E4 indicates that the bering has an oil groove and holes. #### **NSKHPS Spherical Roller Bearings** ### Dynamic equivalent load $P=XF_r+YF_a$ | Fa/ | F _r ≤e | F _a / F _r >e | | | | | | | | |-----|-------------------|------------------------------------|----------------|--|--|--|--|--|--| | X | Y | X | Y | | | | | | | | 1 | Y ₃ | 0.67 | Y ₂ | | | | | | | Static equivalent load $P_0=F_r+Y_0F_a$ The values for e, Y_2 , Y_3 and Y_0 are given in the table below. | Boun | dary dim | nensions | s (mm) | Basic load | I ratings (N) | Limiting sp | eeds (min-1) | Bearing | ı numbers | Abutm | ent and | fillet din | nension | s (mm) | Constant | Axial load factors | | | | |------|------------|----------|-------------|--------------------|----------------------|----------------|----------------|--------------------------|----------------------------|-------------|-------------|------------|------------|--------------|--------------|--------------------|------------|-----|--| | d | D | В | r
(min.) | Cr | C _{0r} | Grease | Oil | Cylindrical bore | Tapered bore (1) | d
(min.) | a
(max.) | (max.) | | ra
(max.) | е | Y2 | Y3 | Yo | | | 40 | 80 | 23 | 1.1 | 113 000 | 99 500 | 6 700 | 8 500 | 22208EAE4 | 22208EAKE4 | 47 | 49 | 73 | 70 | 1 | 0.28 | 3.6 | 2.4 | 2.4 | | | 40 | 90 | 23 | 1.5 | 118 000 | 111 000 | 6 000 | 7 500 | 21308EAE4 | 21308EAKE4 | 49 | 54 | 81 | 75 | 1.5 | 0.25 | 3.9 | 2.7 | 2.6 | | | | 90 | 33 | 1.5 | 170 000 | 153 000 | 5 300 | 6 700 | 22308EAE4 | 22308EAKE4 | 49 | 52 | 81 | 77 | 1.5 | 0.35 | 2.8 | 1.9 | 1.9 | | | 45 | 85 | 23 | 1.1 | 118 000 | 111 000 | 6 000 | 7 500 | 22209EAE4 | 22209EAKE4 | 52 | 54 | 78 | 75 | 1 | 0.25 | 3.9 | 2.7 | 2.6 | | | 40 | 100 | 25 | 1.5 | 149 000 | 144 000 | 5 000 | 6 300 | 21309EAE4 | 21309EAKE4 | 54 | 65 | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | | | | 100 | 36 | 1.5 | 207 000 | 195 000 | 4 500 | 5 600 | 22309EAE4 | 22309EAKE4 | 54 | 59 | 91 | 86 | 1.5 | 0.34 | 2.9 | 2.0 | 1.9 | | | 50 | 90 | 23 | 1.1 | 124 000 | 119 000 | 5 600 | 7 100 | 22210EAE4 | 22210EAKE4 | 57 | 60 | 83 | 81 | 1 | 0.24 | 4.3 | 2.9 | 2.8 | | | - 00 | 110 | 27 | 2 | 178 000 | 175 000 | 4 500 | 5 600 | 21310EAE4 | 21310EAKE4 | 60 | 72 | 100 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | | | | 110 | 40 | 2 | 246 000 | 234 000 | 4 300 | 5 300 | 22310EAE4 | 22310EAKE4 | 60 | 64 | 100 | 93 | 2 | 0.35 | 2.8 | 1.9 | 1.9 | | | 55 | 100 | 25 | 1.5 | 149 000 | 144 000 | 5 300 | 6 700 | 22211EAE4 | 22211EAKE4 | 64 | 65 | 91 | 89 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | | | | 120 | 29 | 2 | 178 000 | 174 000 | 4 500 | 5 600 | 21311EAE4 | 21311EAKE4 | 65 | 72 | 110 | 98 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | | | | 120 | 43 | 2 | 292 000 | 292 000 | 3 800 | 4 800 | 22311EAE4 | 22311EAKE4 | 65 | 73 | 110 | 103 | 2 | 0.34 | 2.9 | 2.0 | 1.9 | | | 60 | 110 | 28 | 1.5 | 178 000 | 174 000 | 4 800 | 6 000 | 22212EAE4 | 22212EAKE4 | 69 | 72 | 101 | 98 | 1.5 | 0.23 | 4.4 | 3.0 | 2.9 | | | | 130 | 31 | 2.1 | 238 000 | 244 000 | 3 800 | 4 800 | 21312EAE4 | 21312EAKE4 | 72 | 87 | 118 | 117 | 2 | 0.22 | 4.5 | 3.0 | 3.0 | | | | 130 | 46 | 2.1 | 340 000 | 340 000 | 3 600 | 4 500 | 22312EAE4 | 22312EAKE4 | 72 | 79 | 118 | 111 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | | | 65 | 120 | 31 | 1.5 | 221 000 | 230 000 | 4 300 | 5 300 | 22213EAE4 | 22213EAKE4 | 74 | 80 | 111 | 107 | 1.5 | 0.24 | 4.2 | 2.8 | 2.7 | | | | 140 | 33 | 2.1 | 264 000 | 275 000 | 3 600 | 4 500 | 21313EAE4 | 21313EAKE4 | 77 | 94 | 128 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | | | | 140 | 48 | 2.1 | 375 000 | 380 000 | 3 200 | 4 000 | 22313EAE4 | 22313EAKE4 | 77 | 84 | 128 | 119 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | | | 70 | 125 | 31 | 1.5 | 225 000 | 232 000 | 4 000 | 5 300 | 22214EAE4 | 22214EAKE4 | 79 | 84 | 116 | 111 | 1.5 | 0.23 | 4.3 | 2.9 | 2.8 | | | | 150 | 35 | 2.1 | 310 000 | 325 000 | 3 200 | 4 000 | 21314EAE4 | 21314EAKE4 | 82 | 101 | 138 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | | | | 150 | 51 | 2.1 | 425 000 | 435 000 | 3 000 | 3 800 | 22314EAE4 | 22314EAKE4 | 82 | 91 | 138 | 129 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | | | 75 | 130 | 31 | 1.5 | 238 000 | 244 000 | 4 000 | 5 000 | 22215EAE4 | 22215EAKE4 | 84 | 87 | 121 | 117 | 1.5 | 0.22 | 4.5 | 3.0 | 3.0 | | | | 160 | 37 | 2.1 | 310 000 | 325 000 | 3 200 | 4 000 | 21315EAE4 | 21315EAKE4 | 87 | 101 | 148 | 134 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | | | | 160 | 55 | 2.1 | 485 000 | 505 000 | 2 800 | 3 600 | 22315EAE4 | 22315EAKE4 | 87 | 97 | 148 | 137 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | | | 80 | 140 | 33 | 2 | 264 000 | 275 000 | 3 600 | 4 500 | 22216EAE4 | 22216EAKE4 | 90 | 94 | 130 | 126 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | | | | 170 | 39 | 2.1 | 355 000 | 375 000 | 3 000 | 3 800 | 21316EAE4 | 21316EAKE4 | 92 | 109 | 158 | 146 | 2 | 0.23 | 4.4 | 3.0 | 2.9 | | | | 170 | 58 | 2.1 | 540 000 | 565 000 | 2 600 | 3 400 | 22316EAE4 | 22316EAKE4 | 92 | 103 | 158 | 145 | 2 | 0.33 | 3.0 | 2.0 | 2.0 | | | 85 | 150 | 36 | 2 | 310 000 | 325 000 | 3 400 | 4 300 | 22217EAE4 | 22217EAKE4 | 95 | 101 | 140 | 135 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | | | | 180 | 41 | 3 | 360 000 | 395 000 | 3 000 | 4 000 | 21317EAE4 | 21317EAKE4 | 99 | 108 | 166 | 142 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | | | | 180 | 60 | 3 | 600 000 | 630 000 | 2 400 | 3 200 | 22317EAE4 | 22317EAKE4 | 99 | 110 | 166 | 155 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | | | 90 | 160 | 40 | 2 | 360 000 | 395 000 | 3 200 | 4 000 | 22218EAE4 | 22218EAKE4 | 100 | 108 | 150 | 142 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | | | | 190 | 43 | 3 | 415 000 | 450 000 | 2 800 | 3 600 | 21318EAE4 | 21318EAKE4 | 104 | 115 | 176 | 152 | 2.5 | 0.24 | 4.3 | 2.9 | 2.8 | | | | 190 | 64 | 3 | 665 000 | 705 000 | 2 400 | 3 000 | 22318EAE4 | 22318EAKE4 | 104 | 115 | 176 | 163 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | | | 95 | 170 | 43 | 2.1 | 415 000 | 450 000 | 3 000 | 3 800 | 22219EAE4 | 22219EAKE4 | 107 | 115 | 158 | 152 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | | | | 200 | 45 | 3 | 430 000 | 435 000 | 1 500 | 2 000 | 21319CAME4 | 21319CAMKE4 | 109 | 127 | 186 | 172 | 2.5 | 0.22 | 4.6 | 3.1 | 3.0 | | | | 200 | 67 | 3 | 735 000 | 780 000 | 2 200 | 2 800 | 22319EAE4 | 22319EAKE4 | 109 | 121 | 186 | 172 | 2.5 | 0.33 | 3.1 | 2.1 | 2.0 | | | 100 | 180 | 46 | 2.1 | 455 000 | 490 000 | 2 800 | 3 600 | 22220EAE4 | 22220EAKE4 | 112 | 119 | 168 | 160 | 2 | 0.24 | 4.3 | 2.9 | 2.8 | | | | 180 | 60.3 | 2.1 | 525 000 | 605 000 | 1 600 | 2 200 | 23220CAME4 | 23220CAMKE4 | 112 | 118 | 168 | 155 | 2 | 0.32 | 3.2 | 2.1 | 2.1 | | | | 215 | 47 | 3 | 495 000 | 485 000 | 1 400 | 1 900 | 21320CAME4 | 21320CAMKE4 | 114 | 133 | 201 | 184 | 2.5 | 0.23 | 4.4 | 3.0 | 2.9 | | | | 215 | 73 | 3 | 860 000 | 930 000 | 2 000 | 2 600 | 22320EAE4 | 22320EAKE4 | 114 | 130 | 201 | 184 | 2.5 | 0.33 | 3.0 | 2.0 | 2.0 | | | 110 | 180 | 56 | 2 | 480 000 | 630 000 | 1 600 | 2 000 | 23122CAME4 | 23122CAMKE4 | 120 | 127 | 170 | 158 | 2 | 0.28 | 3.5 | 2.4 | 2.3 | | | | 180 | 69 | 2 | 575 000 | 750 000 | 1 600 | 2 000 | 24122CAME4 | 24122CAMKE4 | 120 | 123 | 170 | 154 | 2 | 0.36 | 2.8 | 1.9 | 1.8 | | | | 200 | 53 | 2.1 | 605 000 | 645 000 | 2 600 | 3 200 | 22222EAE4 | 22222EAKE4 | 122 | 129 | 188 | 178 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | | | | 200 | 69.8 | 2.1 | 645 000 | 760 000 | 1 500 | 1 900 | 23222CAME4 | 23222CAMKE4 | 122 | 130 | 188 | 170 | 2 | 0.34 | 3.0 | 2.0 | 1.9 | | | | 240 | 50 | 3 | 565 000 | 545 000 | 1 300 | 1 700 | 21322CAME4 | 21322CAMKE4 | 124 | 145 | 226 | 206 | 2.5 | 0.22 | 4.6 | 3.1 |
3.0 | | | 120 | 240
180 | 80
46 | 3 | 1 030 000 | 1 120 000
525 000 | 1 900
1 800 | 2 400
2 200 | 22322EAE4
23024CAME4 | 22322EAKE4
23024CAMKE4 | 124
130 | 145
134 | 226
170 | 206
163 | 2.5 | 0.33 | 3.1
4.5 | 2.1 | 2.0 | | | 120 | | 60 | 2 | 480 000 | 680 000 | | | 24024CAME4 | | 130 | | | | 2 | | 3.2 | 2.1 | 2.9 | | | | 180 | | | | | 1 500 | 2 000 | | 24024CAMKE4 | | 131 | 170 | 158 | | 0.32 | | | | | | | 200 | 62
80 | 2 | 580 000
695000 | 720 000
905000 | 1 400
1 400 | 1 800 | 23124CAME4
24124CAME4 | 23124CAMKE4
24124CAMKE4 | 130 | 138
136 | 190
190 | 175
171 | 2 | 0.29 | 3.5
2.7 | 2.4 | 2.3 | | | | | | | | | | 1 800 | | | | | | | | | | 1.8 | | | | | 215 | 58
76 | 2.1 | 685 000
790 000 | 765 000
970 000 | 2 400
1 300 | 3 000
1 700 | 22224EAE4
23224CAME4 | 22224EAKE4 | 132
132 | 142 | 203 | 190 | 2 | 0.25
0.34 | 3.9 | 2.7 | 2.6 | | | | 215 | 76
86 | 2.1 | 1 190 000 | | | 2 200 | 23224CAME4
22324EAE4 | 23224CAMKE4
22324EAKE4 | 134 | 140 | 246 | 182 | 2 2 5 | 0.34 | 2.9
3.1 | 2.0 | 1.9 | | | 130 | 260 | 86
52 | 3 | 500 000 | 1 320 000 | 1 700 | | | | | 157 | 190 | 222 | 2.5 | 0.32 | | 2.1 | 2.0 | | | 130 | 200
200 | 69 | 2 | 620 000 | 655 000
865 000 | 1 700
1 400 | 2 000 | 23026CAME4
24026CAME4 | 23026CAMKE4
24026CAMKE4 | 140 | 147 | 190 | 180
175 | 2 | 0.23 | 4.3
3.2 | 2.9 | 2.8 | | | | 210 | | 2 | 630 000 | 825 000 | 1 300 | 1 800
1 700 | 23126CAME4 | 23126CAMKE4 | 140 | 143
149 | 200 | 184 | 2 | 0.31 | 3.2 | | 2.1 | | | | 210 | 64
80 | 2 | 735 000 | 1 010 000 | 1 300 | 1 700 | 24126CAME4 | 24126CAMKE4 | 140 | 149 | 200 | 180 | 2 | 0.26 | 2.7 | 2.4
1.8 | 1.8 | | | | 230 | 64 | 3 | 820 000 | 940 000 | 2 200 | 2 600 | 22226EAE4 | 22226EAKE4 | 144 | 152 | 216 | 204 | 2.5 | 0.37 | 3.8 | 2.6 | 2.5 | | | | 230 | 80 | 3 | 875 000 | 1 080 000 | 1 200 | 1 600 | 23226CAME4 | 23226CAMKE4 | 144 | 150 | 216 | 196 | 2.5 | 0.26 | 2.9 | 2.0 | 1.9 | | | | 280 | 93 | 4 | 1 240 000 | 1 350 000 | 1 300 | 1 600 | 22326CAME4 | 22326CAMKE4 | 148 | 166 | 262 | 236 | 3 | 0.34 | 2.9 | 2.0 | 1.9 | | | | 200 | 55 | 7 | 1 240 000 | 1 000 000 | 1 000 | 1 000 | LZ0Z00/NVIL4 | LLUZUU/NVI/L4 | 170 | 100 | 202 | 200 | U | 0.07 | 2.0 | 2.0 | 1.0 | | Note (1) The suffix K indicates that the bearing has a tapered bore (taper 1:12). Remarks 1. The maximum operating temperature of standard NSKHPS spherical roller bearings is 200°C. 2. The suffix E4 indicates that the bearing has an oil groove and holes | Bound | undary dimensions (mm) Basic load ratings (N) | | ratings (N) | Limiting speeds (min-1) | | Bearing | Abutment and fillet dimensions (mm) | | | | | Constant | Axial load factors | | | | | | |-------|---|------------|-------------|-------------------------|------------------------|----------------|-------------------------------------|--------------------------|----------------------------|------------|--------------|------------|--------------------|--------------|--------------|------------|------------|------------| | d | D | В | r
(min.) | Cr | C _{0r} | Grease | Oil | Cylindrical bore | Tapered bore (1) | (min.) | la
(max.) | (max.) | a
(min.) | ra
(max.) | е | Y2 | Y3 | Yo | | 140 | 210 | 53 | 2 | 525 000 | 715 000 | 1 600 | 1 900 | 23028CAME4 | 23028CAMKE4 | 150 | 157 | 200 | 190 | 2 | 0.22 | 4.5 | 3.0 | 2.9 | | | 210 | 69 | 2 | 655 000 | 945 000 | 1 300 | 1 700 | 24028CAME4 | 24028CAMKE4 | 150 | 154 | 200 | 186 | 2 | 0.31 | 3.2 | 2.1 | 2.1 | | | 225
225 | 68
85 | 2.1 | 725 000
835 000 | 945 000 | 1 200 | 1 600
1 600 | 23128CAME4 | 23128CAMKE4
24128CAMKE4 | 152
152 | 158
156 | 213
213 | 198
192 | 2 | 0.28
0.37 | 3.6
2.7 | 2.4
1.8 | 2.3 | | | 250 | 68 | 3 | 835 000 | 1 160 000
945 000 | 1 200
1 400 | 1 700 | 24128CAME4
22228CAME4 | 22228CAMKE4 | 154 | 167 | 236 | 221 | 2.5 | 0.37 | 3.9 | 2.6 | 1.8 | | | 250 | 88 | 3 | 1 040 000 | 1 300 000 | 1 100 | 1 500 | 23228CAME4 | 23228CAMKE4 | 154 | 163 | 236 | 213 | 2.5 | 0.25 | 2.9 | 1.9 | 1.9 | | | 300 | 102 | 4 | 1 450 000 | 1 590 000 | 1 200 | 1 500 | 22328CAME4 | 22328CAMKE4 | 158 | 177 | 282 | 253 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | | 150 | 225 | 56 | 2.1 | 590 000 | 815 000 | 1 400 | 1 800 | 23030CAME4 | 23030CAMKE4 | 162 | 168 | 213 | 203 | 2 | 0.22 | 4.6 | 3.1 | 3.0 | | | 225 | 75 | 2.1 | 740 000 | 1 090 000 | 1 200 | 1 500 | 24030CAME4 | 24030CAMKE4 | 162 | 165 | 213 | 198 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | | | 250 | 80 | 2.1 | 905 000 | 1 180 000 | 1 100 | 1 400 | 23130CAME4 | 23130CAMKE4 | 162 | 174 | 238 | 218 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | | | 250 | 100 | 2.1 | 1 070 000 | 1 450 000 | 1 100 | 1 400 | 24130CAME4 | 24130CAMKE4 | 162 | 169 | 238 | 212 | 2 | 0.38 | 2.6 | 1.8 | 1.7 | | | 270 | 73 | 3 | 955 000 | 1 120 000 | 1 300 | 1 600 | 22230CAME4 | 22230CAMKE4 | 164 | 179 | 256 | 236 | 2.5 | 0.26 | 3.9 | 2.6 | 2.5 | | | 270 | 96 | 3 | 1 220 000 | 1 560 000 | 1 100 | 1 400 | 23230CAME4 | 23230CAMKE4 | 164 | 176 | 256 | 230 | 2.5 | 0.35 | 2.9 | 1.9 | 1.9 | | 160 | 320
220 | 108
45 | 4 | 1 530 000
450 000 | 1 690 000
675 000 | 1 100
1 400 | 1 400
1 800 | 22330CAME4
23932CAME4 | 22330CAMKE4
23932CAMKE4 | 168
170 | - | 302
210 | 270
203 | 3 | 0.35
0.18 | 2.9
5.6 | 1.9
3.8 | 1.9 | | 100 | 240 | 60 | 2.1 | 675 000 | 955 000 | 1 300 | 1 700 | 23032CAME4 | 23032CAMKE4 | 170 | 179 | 228 | 216 | 2 | 0.18 | 4.5 | 3.0 | 2.9 | | | 240 | 80 | 2.1 | 845 000 | 1 260 000 | 1 100 | 1 400 | 24032CAME4 | 24032CAMKE4 | 172 | 177 | 228 | 212 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | | | 270 | 86 | 2.1 | 1 070 000 | 1 400 000 | 1 000 | 1 300 | 23132CAME4 | 23132CAMKE4 | 172 | 185 | 258 | 234 | 2 | 0.30 | 3.4 | 2.3 | 2.2 | | | 270 | 109 | 2.1 | 1 240 000 | 1 670 000 | 1 000 | 1 300 | 24132CAME4 | 24132CAMKE4 | 172 | 179 | 258 | 229 | 2 | 0.39 | 2.6 | 1.7 | 1.7 | | | 290 | 80 | 3 | 1 140 000 | 1 320 000 | 1 200 | 1 500 | 22232CAME4 | 22232CAMKE4 | 174 | 190 | 276 | 255 | 2.5 | 0.26 | 3.8 | 2.6 | 2.5 | | | 290 | 104 | 3 | 1 370 000 | 1 770 000 | 1 000 | 1 300 | 23232CAME4 | 23232CAMKE4 | 174 | 189 | 276 | 245 | 2.5 | 0.34 | 2.9 | 2.0 | 1.9 | | | 340 | 114 | 4 | 1 700 000 | 1 900 000 | 1 100 | 1 300 | 22332CAME4 | 22332CAMKE4 | 178 | - | 322 | 287 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | | 170 | 230 | 45 | 2 | 440 000 | 660 000 | 1 400 | 1 800 | 23934BCAME4 | 23934BCAMKE4 | 180 | - | 220 | 213 | 2 | 0.17 | 5.8 | 3.9 | 3.8 | | | 260 | 67 | 2.1 | 795 000 | 1 090 000 | 1 200 | 1 600 | 23034CAME4 | 23034CAMKE4 | 182 | 191 | 248 | 233 | 2 | 0.23 | 4.3 | 2.9 | 2.8 | | | 260 | 90 | 2.1 | 1 030 000 | 1 520 000 | 1 000 | 1 300 | 24034CAME4 | 24034CAMKE4 | 182 | 188 | 248 | 228 | 2 | 0.31 | 3.2 | 2.2 | 2.1 | | | 280 | 88 | 2.1 | 1 180 000 | 1 570 000 | 1 000 | 1 300 | 23134CAME4 | 23134CAMKE4 | 182 | 194 | 268 | 245 | 2 | 0.29 | 3.5 | 2.3 | 2.3 | | | 280
310 | 109
86 | 2.1 | 1 280 000
1 240 000 | 1 770 000
1 500 000 | 1 000
1 100 | 1 300
1 400 | 24134CAME4
22234CAME4 | 24134CAMKE4
22234CAMKE4 | 182
188 | 190
206 | 268
292 | 239
270 | 2 | 0.38
0.26 | 2.7
3.8 | 1.8
2.6 | 1.7
2.5 | | | 310 | 110 | 4 | 1 500 000 | 1 910 000 | 900 | 1 200 | 23234CAME4 | 23234CAMKE4 | 188 | 201 | 292 | 261 | 3 | 0.25 | 2.9 | 1.9 | 1.9 | | | 360 | 120 | 4 | 1 970 000 | 2 110 000 | 1 000 | 1 200 | 22334CAME4 | 22334CAMKE4 | 188 | - | 342 | 304 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | | 180 | 250 | 52 | 2 | 590 000 | 890 000 | 1 200 | 1 600 | 23936CAME4 | 23936CAMKE4 | 190 | - | 240 | 230 | 2 | 0.18 | 5.5 | 3.7 | 3.6 | | | 280 | 74 | 2.1 | 935 000 | 1 270 000 | 1 200 | 1 400 | 23036CAME4 | 23036CAMKE4 | 192 | 202 | 268 | 249 | 2 | 0.24 | 4.2 | 2.8 | 2.8 | | | 280 | 100 | 2.1 | 1 210 000 | 1 750 000 | 950 | 1 200 | 24036CAME4 | 24036CAMKE4 | 192 | 200 | 268 | 245 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | | | 300 | 96 | 3 | 1 320 000 | 1 760 000 | 900 | 1 200 | 23136CAME4 | 23136CAMKE4 | 194 | 206 | 286 | 260 | 2.5 | 0.31 | 3.3 | 2.2 | 2.2 | | | 300 | 118 | 3 | 1 490 000 | 2 040 000 | 900 | 1 200 | 24136CAME4 | 24136CAMKE4 | 194 | 202 | 286 | 255 | 2.5 | 0.37 | 2.7 | 1.8 | 1.8 | | | 320 | 86 | 4 | 1 280 000 | 1 540 000 | 1 100 | 1 300 | 22236CAME4 | 22236CAMKE4 | 198 | 212 | 302 | 278 | 3 | 0.26 | 3.9 | 2.6 | 2.6 | | | 320 | 112 | 4 | 1 620 000 | 2 110 000 | 850 | 1 100 | 23236CAME4 | 23236CAMKE4 | 198 | 211 | 302 | 274 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | | 190 | 380
260 | 126
52 | 4 | 2 170 000
575 000 | 2 340 000 | 950
1 200 | 1 200
1 500 | 22336CAME4
23938CAME4 | 22336CAMKE4
23938CAMKE4 | 198
200 | - | 362
250 | 322
240 | 3 | 0.34
0.18 | 2.9
5.7 | 2.0
3.8 | 1.9
3.7 | | 190 | 290 | 75 | 2.1 | 970 000 | 875 000
1 350 000 | 1 100 | 1 400 | 23038CAME4 | 23038CAMKE4 | 202 | - | 278 | 261 | 2 | 0.18 | 4.2 | 2.8 | 2.8 | | | 290 | 100 | 2.1 | 1 220 000 | 1 840 000 | 900 | 1 200 | 24038CAME4 | 24038CAMKE4 | 202 | 210 | 278 | 253 | 2 | 0.32 | 3.1 | 2.1 | 2.0 | | | 320 | 104 | 3 | 1 480 000 | 2 020 000 | 850 | 1 100 | 23138CAME4 | 23138CAMKE4 | 204 | 219 | 306 | 276 | 2.5 | 0.31 | 3.2 | 2.2 | 2.1 | | | 320 | 128 | 3 | 1 630 000 | 2 240 000 | 850 | 1 100 | 24138CAME4 | 24138CAMKE4 | 204 | 211 | 306 | 269 | 2.5 | 0.38 | 2.6 | 1.8 | 1.7 | | | 340 | 92 | 4 | 1 420 000 | 1 730 000 | 1 000 | 1 200 | 22238CAME4 | 22238CAMKE4 | 208 | - | 322 | 296 | 3 | 0.26 | 3.8 | 2.6 | 2.5 | | | 340 | 120 | 4 | 1 800 000 | 2 350 000 | 800 | 1 100 | 23238CAME4 | 23238CAMKE4 | 208 | 222 | 322 | 288 | 3 | 0.35 | 2.8 | 1.9 | 1.9 | | | 400 | 132 | 5 | 2 370 000 | 2 590 000 | 900 | 1 100 | 22338CAME4 | 22338CAMKE4 | 212 | - | 378 | 338 | 4 | 0.34 | 2.9 | 2.0 | 1.9 | | 200 | 280 | 60 | 2.1 | 710 000 | 1 060 000 | 1 100 | 1 400 | 23940CAME4 | 23940CAMKE4 | 212 | - | 268 | 258 | 2 | 0.20 | 5.1 | 3.4 | 3.3 | | | 310 | 82 | 2.1 | 1 180 000 | 1 700 000 | 1 000 | 1 300 | 23040CAME4 | 23040CAMKE4 | 212 | - | 298 | 279 | 2 | 0.25 | 4.0 | 2.7 | 2.6 | | | 310 | 109
 2.1 | 1 420 000 | 2 120 000 | 850 | 1 100 | 24040CAME4 | 24040CAMKE4 | 212 | 223 | 298 | 271 | 2 2 5 | 0.33 | 3.0 | 2.0 | 2.0 | | | 340
340 | 112
140 | 3 | 1 700 000 | 2 330 000
2 660 000 | 800
800 | 1 000 | 23140CAME4
24140CAME4 | 23140CAMKE4
24140CAMKE4 | 214
214 | 232
226 | 326
326 | 293
290 | 2.5
2.5 | 0.32 | 3.2
2.5 | 2.1
1.7 | 2.1 | | | 360 | 98 | 4 | 1 620 000 | 2 010 000 | 950 | 1 200 | 22240CAME4 | 22240CAMKE4 | 214 | - | 342 | 315 | 3 | 0.39 | 3.8 | 2.6 | 2.5 | | | 360 | 128 | 4 | 2 070 000 | 2 750 000 | 750 | 1 000 | 23240CAME4 | 23240CAMKE4 | 218 | 237 | 342 | 307 | 3 | 0.35 | 2.9 | 1.9 | 1.9 | | 220 | 300 | 60 | 2.1 | 785 000 | 1 240 000 | 1 000 | 1 300 | 23944CAME4 | 23944CAMKE4 | 232 | - | 288 | 278 | 2 | 0.18 | 5.7 | 3.8 | 3.7 | | | 340 | 90 | 3 | 1 360 000 | 1 980 000 | 950 | 1 200 | 23044CAME4 | 23044CAMKE4 | 234 | - | 326 | 302 | 2.5 | 0.24 | 4.1 | 2.8 | 2.7 | | | 340 | 118 | 3 | 1 640 000 | 2 490 000 | 750 | 1 000 | 24044CAME4 | 24044CAMKE4 | 234 | 244 | 326 | 296 | 2.5 | 0.32 | 3.2 | 2.1 | 2.1 | | | 370 | 120 | 4 | 1 960 000 | 2 710 000 | 710 | 950 | 23144CAME4 | 23144CAMKE4 | 238 | 254 | 352 | 320 | 3 | 0.31 | 3.2 | 2.1 | 2.1 | | | 370 | 150 | 4 | 2 250 000 | 3 200 000 | 710 | 950 | 24144CAME4 | 24144CAMKE4 | 238 | 248 | 352 | 313 | 3 | 0.39 | 2.6 | 1.7 | 1.7 | | | 400 | 108 | 4 | 1 960 000 | 2 430 000 | 850 | 1 000 | 22244CAME4 | 22244CAMKE4 | 238 | 260 | 382 | 348 | 3 | 0.27 | 3.7 | 2.5 | 2.4 | | 0.40 | 400 | 144 | 4 | 2 520 000 | 3 400 000 | 670 | 900 | 23244CAME4 | 23244CAMKE4 | 238 | - | 382 | 337 | 3 | 0.36 | 2.8 | 1.9 | 1.8 | | 240 | 320 | 60 | 2.1 | 795 000 | 1 300 000 | 950
850 | 1 200 | 23948CAME4 | 23948CAMKE4 | 252 | - | 308 | 298 | 2 2 5 | 0.17 | 6.0 | 4.0 | 3.9 | | | 360
360 | 92
118 | 3 | 1 450 000
1 730 000 | 2 140 000
2 730 000 | 850
710 | 1 100
950 | 23048CAME4
24048CAME4 | 23048CAMKE4
24048CAMKE4 | 254
254 | 265 | 346
346 | 324
317 | 2.5
2.5 | 0.24 | 4.2
3.3 | 2.8 | 2.7 | | | 400 | 128 | 4 | 2 230 000 | 3 100 000 | 670 | 850 | 23148CAME4 | 23148CAMKE4 | 258 | 275 | 382 | 347 | 3 | 0.30 | 3.3 | 2.2 | 2.2 | | | 400 | 160 | 4 | 2 660 000 | 3 800 000 | 670 | 850 | 24148CAME4 | 24148CAMKE4 | 258 | 268 | 382 | 341 | 3 | 0.38 | 2.7 | 1.8 | 1.8 | | 260 | 360 | 75 | 2.1 | 1 170 000 | 1 870 000 | 850 | 1 000 | 23952CAME4 | 23952CAMKE4 | 272 | - | 348 | 333 | 2 | 0.19 | 5.4 | 3.6 | 3.5 | # **Triple Ring Bearings** # **Bearing Nomenclature** Example: 2SL 180-2 UPA Triple ring bearings (Spherical roller bearings) Special accuracy (Tolerance class symbol) Bearing bore 180 mm | Pooring numbers | | | Mass | | | | |-----------------|-----|-----|------|----------------|-------|-------| | Bearing numbers | d | D | Bi | B _e | В | (kg) | | 2SL180-2 UPA | 180 | 480 | 140 | 160 | 215.9 | 175 | | 2SL200-2 UPA | 200 | 520 | 160 | 180 | 241.3 | 230 | | 2SL220-2 UPA | 220 | 600 | 180 | 200 | 279.4 | 330 | | 2SL240-2 UPA | 240 | 620 | 200 | 200 | 279.4 | 410 | | 2SL260-2 UPA | 260 | 680 | 218 | 218 | 317.5 | 490 | | 2SL280-2 UPA | 280 | 720 | 218 | 218 | 317.5 | 525 | | 2SL300-2 UPA | 300 | 780 | 243 | 250 | 342.9 | 735 | | 2SL320-2 UPA | 320 | 820 | 258 | 258 | 368.3 | 840 | | 2SL340-2 UPA | 340 | 870 | 280 | 272 | 393.7 | 1 050 | | 2SL380-3 UPA | 380 | 980 | 240 | 308 | 431.8 | 1 370 | | 2PSL180-1 UPA | 180 | 460 | 153 | 118 | 160 | 127 | | 2PSL240-1 UPA | 240 | 600 | 205 | 160 | 225 | 285 | # **Spherical Roller Bearings for Papermaking Machines** # Radial Clearance in Spherical Roller Bearings with Tapered Bores Bearings with tapered bores are directly mounted onto tapered shafts or onto cylindrical shafts with adapters or withdrawal sleeves (Fig. 1). Large bearings are often mounted using hydraulic pressure. Fig. 2 shows a bearing mounting utilizing a sleeve and hydraulic nut. Another mounting method is to drill holes in the sleeve which are used to feed oil under pressure to seat the bearing. As the bearing expands radially, the sleeve is inserted axially with adjusting bolts. The bearing should be mounted with a suitable interference fit by checking residual clearance while measuring their radialclearance reduction and referring to the amount of axial movement listed in Table 1. Radial clearance must be measured using clearance 900 1 000 1 000 1 120 Fig. 1 Mounting with adapter Fig. 2 Mounting with hydraulic nut Fig. 3 Clearance measurement of spherical roller bearing gauges. As shown in Fig 3, radial clearance for both rows of rollers must be measured simultaneously, and those two values should be kept roughly the same. When a large bearing is mounted on a shaft, the outer ring may be deformed into an oval shape by its own weight. If radial clearance is measured at the lowest part of the deformed bearing, the measured value may be greater than the true value. If an incorrect radial internal clearance is obtained in this manner and the value in Table 1 are used, then the interference fit may become too tight and the true residual clearance may become too small. In this case, as shown in Fig. 4, one half of the total clearance at points a and b (which are on a horizontal line passing through the bearing center) and c (which is the lowest position of the bearing) may be used as the residual clearance. Fig. 4 Measuring clearance in large spherical roller Unit: mm #### Table 1 Radial Clearance in Spherical Roller Bearings with Tapered Bores 0.930 0.930 1.190 1.190 1.520 0.340 0.460 5.5 7.4 8.0 14.0 18.5 15.0 20.0 0.310 0.470 0.730 0.360 0.530 0.800 | Bearing bore diameter | | | Cle | arance ir | n bearing | gs with ta | pered bo | ores | Reduc | | | Axial mo | ovement | | | um perm
ual clear | | |-----------------------|------|------|-------|-----------|-----------|------------|----------|-------|-------|-------|-------|----------|--------------|--------------|-------|----------------------|-------| | | d | | | N | | 3 | C | | | | Taper | | Taper | | CN | C3 | C4 | | | over | incl | min | max | min
— | max
— | 0.040 | 0.005 | 0.005 | | | 30 | 40 | 0.035 | 0.050 | 0.050 | 0.065 | 0.065 | 0.085 | 0.025 | 0.030 | 0.40 | 0.45 | | | 0.010 | 0.025 | 0.035 | | | 40 | 50 | 0.045 | 0.060 | 0.060 | 0.080 | 0.080 | 0.100 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.015 | 0.030 | 0.045 | | | 50 | 65 | 0.055 | 0.075 | 0.075 | 0.095 | 0.095 | 0.120 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.025 | 0.035 | 0.060 | | | 65 | 80 | 0.070 | 0.095 | 0.095 | 0.120 | 0.120 | 0.150 | 0.040 | 0.045 | 0.60 | 0.70 | _ | _ | 0.030 | 0.040 | 0.075 | | | 80 | 100 | 0.080 | 0.110 | 0.110 | 0.140 | 0.140 | 0.180 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | 0.085 | | | 100 | 120 | 0.100 | 0.135 | 0.135 | 0.170 | 0.170 | 0.220 | 0.050 | 0.060 | 0.75 | 0.90 | 1.9 | 2.25 | 0.045 | 0.065 | 0.110 | | | 120 | 140 | 0.120 | 0.160 | 0.160 | 0.200 | 0.200 | 0.260 | 0.060 | 0.070 | 0.90 | 1.1 | 2.25 | 2.75 | 0.055 | 0.080 | 0.130 | | | 140 | 160 | 0.130 | 0.180 | 0.180 | 0.230 | 0.230 | 0.300 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | 0.150 | | | 160 | 180 | 0.140 | 0.200 | 0.200 | 0.260 | 0.260 | 0.340 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | 0.170 | | | 180 | 200 | 0.160 | 0.220 | 0.220 | 0.290 | 0.290 | 0.370 | 0.080 | 0.100 | 1.3 | 1.6 | 3,25 | 4.0 | 0.070 | 0.110 | 0.190 | | | 200 | 225 | 0.180 | 0.250 | 0.250 | 0.320 | 0.320 | 0.410 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | 0.210 | | | 225 | 250 | 0.200 | 0.270 | 0.270 | 0.350 | 0.350 | 0.450 | 0.100 | 0.120 | 1.6 | 1.9 | 4.0 | 4.75 | 0.090 | 0.140 | 0.230 | | | 250 | 280 | 0.220 | 0.300 | 0.300 | 0.390 | 0.390 | 0.490 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | 0.250 | | | 280 | 315 | 0.240 | 0.330 | 0.330 | 0.430 | 0.430 | 0.540 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | 0.280 | | | 315 | 355 | 0.270 | 0.360 | 0.360 | 0.470 | 0.470 | 0.590 | 0.140 | 0.170 | 2.2 | 2.7 | 5.5 | 6.75 | 0.120 | 0.180 | 0.300 | | | 355 | 400 | 0.300 | 0.400 | 0.400 | 0.520 | 0.520 | 0.650 | 0.150 | 0.190 | 2.4 | 3.0 | 6.0 | 7 . 5 | 0.130 | 0.200 | 0.330 | | | 400 | 450 | 0.330 | 0.440 | 0.440 | 0.570 | 0.570 | 0.720 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | 0.360 | | | 450 | 500 | 0.370 | 0.490 | 0.490 | 0.630 | 0.630 | 0.790 | 0.190 | 0,240 | 3.0 | 3,7 | 7 . 5 | 9,25 | 0.160 | 0.240 | 0.390 | | | 500 | 560 | 0.410 | 0.540 | 0.540 | 0.680 | 0.680 | 0.870 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | 0.410 | | | 560 | 630 | 0.460 | 0.600 | 0.600 | 0.760 | 0.760 | 0,980 | 0.230 | 0.300 | 3.7 | 4.8 | 9,25 | 12.0 | 0,200 | 0,310 | 0.460 | | | 630 | 710 | 0.510 | 0.670 | 0.670 | 0.850 | 0.850 | 1.090 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0,220 | 0.330 | 0.520 | | | 710 | 800 | 0.570 | 0.750 | 0.750 | 0.960 | 0.960 | 1,220 | 0.280 | 0,370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | 0.590 | | | 800 | 900 | 0.640 | 0.730 | 0.730 | 1.070 | 1.070 | 1.370 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.240 | 0.430 | 0.660 | | | 000 | 900 | 0.040 | 0.040 | 0.040 | 1.070 | 1.070 | 1.370 | 0.510 | 0.410 | 5.0 | 0.0 | 12.5 | 10.5 | 0.200 | 0.430 | 0.000 | # **Bearing Maintenance and Inspection** #### Maintenance Bearings and operating conditions must be periodically inspected and maintained to maximize bearing life to prevent mechanical failure, ensure reliable operation, raise productivity, and enhance cost performance. Maintenance should be performed regularly according to work standards that may vary according to machine operating conditions. Operating conditions should be monitored, lubricant replenished or changed, and the machine periodically disassembled and overhauled. #### 1. Inspection under operating conditions Review lubricant properties, check operating temperatures, and inspect for any vibrations and bearing noise to determine bearing replacement periods and replenishment intervals of the lubricant. #### 2. Inspection of the bearing Be sure to thoroughly examine the
bearings during periodic machine inspections and part replacement. Check the raceway for any damage and confirm if the bearing can be reused or should be replaced. #### Inspection points Items to be checked while the machine is running should include bearing noise, vibrations, temperature, and lubricant condition. #### 1. Bearing noise Sound detection instruments can be used during operation to ascertain the volume and characteristics of bearing rotation noise through sound patterns that are readily distinguishable, which can reveal the presence of bearing damage such as slight flaking. Three typical noise conditions are described in Table 1. #### 2. Bearing vibration Bearing irregularities can be analyzed by performing a quantitative analysis of vibration amplitude and frequency using a frequency spectrum analyzer. Measured data varies depending on the operating conditions of the bearing and the location of the vibration pick-up. Therefore, this method requires the determination of evaluation standards for each measured machine. Table 1 Bearing irregularity causes and measures | | Irregularities | Possible causes | Measures | | | | |---------------------------------------|----------------------|--|---|--|--|--| | | | Abnormal load | Improve the fit, internal clearance, preload, or position of housing shoulder. | | | | | | Loud metallic sound | Incorrect mounting | Improve machining accuracy, alignment accuracy or mounting accuracy of shaft and housing, or use the correct mounting method. | | | | | | | Insufficient or improper lubricant | Replenish the lubricant or select another lubricant. | | | | | | | Contact of rotating parts | Modify the labyrinth seal. | | | | | Noise | Loud regular sound | Flaws, corrosion, or scratches on raceways caused by foreign particles | Replace or clean the bearing, improve sealing conditions, or usclean lubricant. | | | | | | | Brinelling | Replace the bearing and use care when handling. | | | | | | | Flaking on raceway | Replace the bearing. | | | | | | Irregular sound | Excessive clearance | Improve the fit, clearance, or preload. | | | | | | | Contamination by foreign particles | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | | Flaws or flaking on balls | Replace the bearing. | | | | | | | Excessively small clearance | Improve the fit, clearance, or preload. | | | | | | | Excessive amount of lubricant | Reduce amount of lubricant and select stiffer grease. | | | | | | | Insufficient or improper lubricant | Replenish lubricant or select a proper one. | | | | | Abnorn | mal temperature rise | Abnormal load | Improve the fit, internal clearance, preload, or position of housing shoulder. | | | | | | | Incorrect mounting | Improve machining accuracy, alignment accuracy or mounting accuracy of shaft and housing, or use the correct mounting method. | | | | | | | Creep on fitted surface, or excessive seal friction | Correct the seals, replace the bearing, and correct the fitting or mounting. | | | | | | | Brinelling | Replace the bearing, and use care when handling bearings. | | | | | Vibration | | Flaking | Replace the bearing. | | | | | (| (Axial runout) | Incorrect mounting | Correct the squareness between the shaft and housing shoulder or side of spacer. | | | | | | | Penetration of foreign particles | Replace or clean the bearing components and improve sealing. | | | | | Leakage or discoloration of lubricant | | Too much lubricant, or contamination by foreign particles or wear debris | | | | | # Examples of Bearing damage and countermeasures for papermaking machines Creer | Bearing type | Application | Cause of damage | Measures | |-----------------------------|-------------------|---|--| | Tapered Roller
Bearing | Press CC roll | Insufficient interference fit | Tighten interference fit | | Spherical Roller
Bearing | Dryer canvas roll | Dimensional variation at high
temperatures | Use TL steel Use NSKHPS bearing Apply high-temperature dimensional
stabilizing treatment (S11) | Inner ring fracture | Bearing type | Application | Cause of damage | Measures | |-----------------------------|---------------------|--|---| | Spherical Roller
Bearing | Dryer cylinder roll | Excessive force applied during mounting Defective bore face contact High hoop stress | Control residual clearanceAdjust with taper gaugeUse TL steel | Rust and corrosion | | Bearing type | Application | Cause of damage | Measures | |--|-----------------------------|--------------------|--|---| | | Spherical Roller
Bearing | Wire suction roll | Insufficient oil film formation due to water entry | Reinforce lubricating oil control Improve bearing housing | | | | Press suction roll | Rust formed while stationary or
being stored | Anti-rust treatment for idle periods | Flaking | Bearing type | Application | Cause of damage | Measures | |-----------------------------|---------------------|--|---| | | Wire suction roll | Insufficient oil film formation due to water entry | Reinforce lubricating oil control Improve bearing housing | | Spherical Roller
Bearing | Dryer cylinder roll | Insufficient oil film formation at high temperatures | Use TL steel Increase oil viscosity Increase volume and reinforce control of
lubricating oil temperature Use thermal insulation sleeve | | | Dryer canvas roll | Excessive axial loading due to
expansion of outer ring on the
free-end bearing | Use TL steel Use NSKHPS bearing Apply high temperature dimensional
stabilizing treatment (S11) | Smearing | Bearing type Application | | Cause of damage | Measures | | | |--------------------------|------------------|---------------------------------|---|--|--| | Spherical Roller | Calender CC roll | Insufficient oil film formation | Increase oil viscosity Increase oil volume and reinforce control of | | | | Bearing | (triple ring) | | lubricating oil temperature Add additives to lubricating oil | | | Electrical corrosion | Bearing type | Application | Cause of damage | Measures | |--|-------------|---|---| | Deep Groove Ball
Bearing
Cylindrical Roller
Bearing | Motor | Sparks produced by flow of
current where rolling elements
contact the raceway | Design electric circuit which prevents current flow through the bearings Insulate the bearing | #### **Worldwide Sales Offices** P: Phone ☆: Head Office | NSK LTD. HEADQUARTERS, TOKYO | | Malaysia: | | Russia: | | |--|-----------------------|---------------------------------|----------------------|-------------------------------------|--| | INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUART | | NSK BEARINGS (MALAYSIA) SDN.BI | | NSK POLSKA SP. Z O.O. | | | AUTOMOTIVE BUSINESS DIVISION-HEADQUARTE | RS P: +81-3-3779-7189 | SHAH ALAM ☆ | P: +60-3-7803-8859 | SAINT-PETERSBURG | P: +7-812-332-507 | | Africa | | PRAI | P: +60-4-3902275 | Spain: | | | South Africa: | | JOHOR BAHRU | P: +60-7-3546290 | NSK SPAIN S.A. | | | NSK SOUTH AFRICA (PTY) LTD. | | IPOH | P: +60-5-2555000 | BARCELONA | P: +34-93-433-5775 | | JOHANNESBURG | P: +27-11-458-3600 | Philippines: | | Turkey: | | | | 1.127 11 100 0000 | NSK REPRESENTATIVE OFFICE | | NSK RULMANLARI ORTA DOGU | TIC. LTD. STI. | | Aisia and Oceania | | MANILA | P: +63-2-893-9543 | ISTANBUL | P: +90-216-477-711 | | Australia: | | Singapore: | | UAE: | | | NSK AUSTRALIA PTY. LTD. | | NSK INTERNATIONAL (SINGAPORE | PTE LTD. | NSK BEARINGS GULF TRADING | co. | | MELBOURNE ☆ | P: +61-3-9765-4400 | SINGAPORE | P: +65-6496-8000 | DUBAI | P: +971-4-804-8200 | | SYDNEY | P: +61-2-8843-8100 | NSK SINGAPORE (PRIVATE) LTD. | | | | | BRISBANE | P: +61-7-3347-2600 | SINGAPORE | P: +65-6496-8000 | North and South America | | | PERTH | P: +61-8-9256-5000 | Taiwan: | 1.400 0400 0000 | United Sates of America: | | | New Zealand: | | | | NSK AMERICAS, INC. (AMERICA | | | NSK NEW ZEALAND LTD. | | TAIWAN NSK PRECISION CO., LTD. | | ANN ARBOR | P: +1-734-913-750 | | AUCKLAND | P: +64-9-276-4992 | TAIPEI ☆ | P: +886-2-2509-3305 | NSK CORPORATION | | | China: | 1.104 3 270 4332 | TAICHUNG | P: +886-4-2311-7978 | ANN ARBOR | P: +1-734-913-7500 | | NSK HONG KONG LTD. | | TAINAN | P: +886-6-505-5861 | NSK PRECISION AMERICA, INC. | | | | B: 050 0300 0000 | TAIWAN NSK TECHNOLOGY CO., LT | ΓD. | FRANKLIN ☆ | P: +1-317-738-500 | | HONG KONG ☆ | P: +852-2739-9933 | TAIPEI ☆ | P: +886-2-2509-3305 | SAN JOSE | P: +1-408-944-9400 | | SHENZHEN | P: +86-755-25904886 | TAICHUNG | P:
+886-4-2358-2945 | NSK LATIN AMERICA, INC. | 1.41 400 544 540 | | NSK (SHANGHAI) TRADING CO., LT | | TAINAN | P: +886-6-505-5861 | MIAMI | P: +1-305-477-060 | | JIANGSU | P: +86-512-5796-3000 | Thailand: | | | P. +1-305-477-000 | | NSK (CHINA) INVESTMENT CO., LTI | D. | NSK BEARINGS (THAILAND) CO., LT | rn | Canada: | | | JIANGSU ☆ | P: +86-512-5796-3000 | BANGKOK | P: +66-2320-2555 | NSK CANADA INC. | | | BEIJING | P: +86-10-6590-8161 | Vietnam: | F. +00-2320-2333 | TORONTO ☆ | P: +1-905-890-0740 | | TIAN JIN | P: +86-22-8319-5030 | | | MONTREAL | P: +1-514-633-1220 | | CHANGCHUN | P: +86-431-8898-8682 | NSK VIETNAM CO., LTD. | B 04 4 0055 0450 | VANCOUVER | P: +1-877-994-6675 | | SHENYANG | P: +86-24-2334-2868 | HANOI | P: +84-4-3955-0159 | Argentina: | | | DALIAN | P: +86-411-8800-8168 | NSK REPRESENTATIVE OFFICE | | NSK ARGENTINA SRL | | | NANJING | P: +86-25-8472-6671 | HO CHI MINH CITY | P: +84-8-3822-7907 | BUENOS AIRES | P: +54-11-4704-510 | | FUZHOU | | Europe | | Brazil: | | | | P: +86-591-8380-1030 | United Kingdom: | | NSK BRASIL LTDA. | | | WUHAN | P: +86-27-8556-9630 | NSK EUROPE LTD. (EUROPEAN HEA | ADOLIADTEDS) | SAO PAULO ☆ | P: +55-11-3269-478 | | QINGDAO | P: +86-532-5568-3877 | MAIDENHEAD | P: +44-1628-509-800 | BELO HORIZONTE | P: +55-31-3274-259 | | GUANGZHOU | P: +86-20-3817-7800 | NSK UK LTD. | F. +44-1028-309-800 | JOINVILLE | | | CHANGSHA | P: +86-731-8571-3100 | | D 44 4000 005 400 | | P: +55-47-3422-544 | | LUOYANG | P: +86-379-6069-6188 | _NEWARK | P: +44-1636-605-123 | PORTO ALEGRE | P: +55-51-3222-132 | | XI'AN | P: +86-29-8765-1896 | France: | | RECIFE | P: +55-81-3326-378 | | CHONGQING | P: +86-23-6806-5310 | NSK FRANCE S.A.S. | | Peru: | | | CHENGDU | P: +86-28-8528-3680 | PARIS | P: +33-1-30-57-39-39 | NSK PERU S.A.C. | | | NSK CHINA SALES CO., LTD. | | Germany: | | LIMA | P: +51-1-652-3372 | | JIANGSU | P: +86-512-5796-3000 | NSK DEUTSCHLAND GMBH | | Mexico: | | | India: | 1 . +00-012-0700-0000 | DUSSELDORF ☆ | P: +49-2102-4810 | NSK RODAMIENTOS MEXICANA | . S.A. DE C.V. | | NSK INDIA SALES CO.PVT.LTD. | | STUTTGART | P: +49-711-79082-0 | MEXICO CITY ☆ | P: +52-55-3682-290 | | | D 01 11 0017 0000 | WOLFSBURG | P: +49-5361-27647-10 | MONTERREY | P: +52-81-8000-730 | | CHENNAI ☆ | P: +91-44-2847-9600 | Italv: | 1.110 0001 27017 10 | MONTENNET | 1.102 01 0000 700 | | GURGAON | P: +91-124-4104-530 | NSK ITALIA S.P.A. | | | | | MUMBAI | P: +91-22-2838-7787 | MILANO | P: +39-299-5191 | | | | Indonesia: | | | r. +39-299-0191 | | | | PT. NSK INDONESIA | | Netherlands: | | | | | JAKARTA | P: +62-21-252-3458 | NSK EUROPEAN DISTRIBUTION CE | | | | | Korea: | | TILBURG | P: +31-13-4647647 | | | | NSK KOREA CO., LTD. | | Poland: | | | | | SEOUL | P: +82-2-3287-0300 | NSK REPRESENTATIVE OFFICE | | | <as 2013<="" june="" of="" td=""></as> | | | 102 2 0207 0000 | WARSAW | P: +48-22-645-1525 | For the latest information, please | refer to the NSK websit. | | | | | | i or the latest information, please | reier to the NOIX Website | | | | | | | www.nsk.com | NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections. For more information about NSK products, please contact: - # **Industrial Motor Bearings** # INDUSTRIAL MOTOR BEARINGS All industries are powered by motors. NSK's proven bearings take loads and support smooth and quiet rotation in rotating motor components. Our top priority is to deliver solutions that protect the environment. To this end, we focus on Tribology to create technologies that reduce energy loss and improve life. We address trends towards electric power by offering high-performance bearings with low energy loss, high reliability, and long product life. This catalog details NSK's industrial motor bearings, including products with low torque, long life, and low heat generation. # **CONTENTS** - 4 NSK Solutions for Industrial Motor Needs - 6 Servomotor Bearings - 10 High-Efficiency Motor Bearings - 12 Inverter Motor Bearings - 14 EV Motor Bearings #### **Options** - 16 Bearings With Plastic Cages - 8 Bearings With Ceramic Balls - 20 Creep-Free Bearings - 22 NSKHPS High-Performance Standard Series Deep Groove Ball Bearings - 25 NSKHPS High-Performance Standard Series Cylindrical Roller Bearings #### Technical Data - 28 Bearing Sound and Vibration - 30 Grease for Motors and Life Equations - 31 Radial Internal Clearance - 32 Example Bearing Damage in Motors # NSK Solutions for Industrial Motor Needs | | | | | | | | Bearing Co | omponents | | | | | |------------------------------|---|------------------------------------|---|------------------------|------------------|--|--------------------------------|---------------|---------|------|--------|----------| | | | | Outer Ring | /Inner Ring | В | all | Ca | ige | Seal | | Grease | | | | Issues/Needs | NSK's Response | Ceramic-
Coated
Insulated
Bearings | Creep-Free
Bearings | Ceramic
Balls | Seizure-
Resistant
Heat-Treated
Steel Balls | Plastic Cages
for EV Motors | Plastic Cages | DW Seal | EA7 | LGU | EA9 | | | | | P. 12–13 | P. 20-21 | P. 18–19 | P. 14-15 | P. 14-15 | P. 16–17 | P. 8-9 | P. 6 | P. 7 | P. 10-11 | | | Encoder error and brake slip | Low-particle-
emission bearings | | | | | | | | | • | | | Servomotors P. 6-9 | Longer maintenance intervals | Longer seizure life | | | 0 | | | | | | | | | | Improved reliability under harsh operating conditions | Improved fretting resistance | | | \circ | | | | | | | | | High- | Reduced motor loss | Reduced rotating resistance | | | | | | 0 | | | | | | Efficency
Motors | Longer maintenance intervals | Longer seizure life | | | 0 | | | 0 | | | | | | P. 10–11 | Vibrating and unbalanced loads | Improved creep resistance | | | | | | | | | | | | Inverter Motors P. 12–13 | Electical erosion Maintenance-free operation | Bearings as insulator | • | | 0 | | | | | | | | | EV Motors
P. 14–15 | High-speed rotation | Longer seizure life | | | 0 | • | • | | | | | | | | Longer maintenance intervals | Longer seizure life | | | 0 | • | • | | | | | | | | High-speed rotation and unbalanced loads | Improved creep resistance | | 0 | | | | | | | | | # High-Reliability EA7 Grease for Servomotors Machine tools, robots, and carrier equipment require servomotors to endure repeated start/stop/reverse operations under harsh conditions with microvibrations caused by slight positioning errors during servo-lock. These conditions may lead to an insufficient oil film on the bearing raceway surface, resulting in fretting damage. In response, NSK developed EA7 grease with excellent fretting resistance, long life, and improved reliability. #### **Features** # Better Reliability Under Harsh Operating Conditions EA7 grease improves fretting resistance in environments with micro-vibrations, reducing vibration and achieving longer bearing life. Fretting: Wear due to repeated sliding between two surfaces. When bearings face vibrations or oscillations while stopped, an insufficient oil film may result, leading to this damage. Tested bearings: $\phi 8 \times \phi 22 \times 7$ Preload: 49 N Oscillation angle: 1° (±0.5°) Oscillation frequency: 30 Hz Oscillations: 5 000 000 # Longer Maintenance Intervals Bearings filled with EA7 Grease have a much longer life than those with conventional lithium-soap grease. Tested bearings: φ25×φ62×17 Rotational speed: 10 000 min⁻¹ Temperature: 140 °C # DATA # Low-Particle-Emission LGU Grease for Servomotors LGU grease features an optimized grease composition free of sulfur and metal elements. This greatly reduces particle emissions, helping to prevent encoder contamination and brake slip. ## **Features** LGU grease has nearly 90% less particle emissions than conventional lithium-soap grease. Tested bearings: $\phi 8 \times \phi 22 \times 7$ Grease Fill: Light (L) Rotational Speed: 1 800 min⁻¹ Particle Size: Over 0.1 µm ## Longer Maintenance Intervals Bearings with LGU grease realize a grease life 1.5 times longer than that with conventional lithium-soap grease. > Tested bearings: ϕ 25× ϕ 62×17 Rotational speed: 10 000 min⁻¹ Temperature: 140 °C # DATA $6 \,$ # Low-Particle-Emission DW Seal for Servomotors Light-contact DW seals have an optimized seal lip structure that prevents grease from leaking from the bearing and realizes low torque. These features help prevent encoder contamination and brake slip in servomotors. ## **Features** # Light-Contact Seal Lip A special seal lip structure lowers lip pressure, resulting in low torque. The main lip has outward contact with the beveled portion of the inner ring seal groove. This prevents the seal from opening due to internal pressure and prevents grease leakage. # Less Encoder Contamination and Brake Slip DW seals minimize grease leakage. Tested Bearings: $\phi 17 \times \phi 26 \times 5$ Rotational Speed: 10 000 min⁻¹ Temperature: 50 °C Time: 50 h # **Lower Energy Consumption** DW seals greatly reduce starting torque compared to DU seals. > Tested bearings: $\phi 17 \times \phi 40 \times 12$ Temperature: 25 °C Boundary Dimensions (mm) | Designation | Boundar | y Dimensio | ons (mm) | |-------------|-----------|--------------|----------| | Designation | Bore Dia. | Outside Dia. | Width | | 6000 | | 26 | 8 | | 6200 | 10 | 30 | 9 | | 6300 | | 35 | 11 | | 6001 | | 28 | 8 | | 6201 | 12 | 32 | 10 | | 6301 | | 37 | 12 | | 6002 | | 32 | 9 | | 6202
 15 | 35 | 11 | | 6302 | | 42 | 13 | | 6003 | | 35 | 10 | | 6203 | 17 | 40 | 12 | | 6303 | | 47 | 14 | | 6004 | | 42 | 12 | | 6204 | 20 | 47 | 14 | | 6304 | 25 | 52 | 15 | | 6005 | | 47 | 12 | | 6205 | | 52 | 15 | | 6305 | | 62 | 17 | | Designation | | y Difficiliate | 7113 (111111) | |-------------|-----------|----------------|---------------| | Designation | Bore Dia. | Outside Dia. | Width | | 6006 | | 55 | 13 | | 6206 | 30 | 62 | 16 | | 6306 | | 72 | 19 | | 6007 | | 62 | 14 | | 6207 | 35 | 72 | 17 | | 6307 | | 80 | 21 | | 6008 | | 68 | 15 | | 6208 | 40 | 80 | 18 | | 6308 | | 90 | 23 | | 6209 | 45 | 85 | 19 | | 6309 | 45 | 100 | 25 | | 6010 | | 80 | 16 | | 6210 | 50 | 90 | 20 | | 6310 | | 110 | 27 | | 6311 | 55 | 120 | 29 | | | | | | # Low Torque & Long-Life Bearings for High-Efficiency Motors 1.2 NSK optimized the type of grease and fill amount, grease shear, and agitation resistance during bearing rotation to not only realize low torque and long life, but also save energy. Using a plastic cage allows for even lower torque and longer life. ## **Features** # **Increases Motor Efficiency** Our new specification steel cages achieve 60% less mechanical loss than conventional products. For even less mechanical loss, new plastic cages achieve a huge 80% reduction. Ratio 0.8 0.6 0.4 0.2 Std. Spec. New Spec. New Spec. (Steel Cage) (Plastic Cage) # Longer Motor Maintenance Intervals Using new EA9 grease makes seizure life over 2 times longer, improving durability. > Tested bearings: ϕ 25× ϕ 62×17 Rotational speed: 10 000 min⁻¹ Temperature: 140 °C Motor: 7.5 kW 2P 200 V 50 Hz Temperature: 25 °C # Effective for Various Motor Sizes Std. Spec. New Spec. (Steel Cage) 10 15 20 25 30 35 Motor Output (kW) | Designation | Boundar | Boundary Dimensions (mm) | | | | | |-------------|-----------|--------------------------|-------|--------------|--|--| | Designation | Bore Dia. | Outside Dia. | Width | Fill
Code | | | | 6200 | 10 | 26 | 8 | K | | | | 6300 | 10 | 35 | 11 | K | | | | 6201 | 12 | 32 | 10 | K | | | | 6301 | 12 | 37 | 12 | K | | | | 6202 | 15 | 35 | 11 | K | | | | 6302 | 15 | 42 | 13 | K | | | | 6203 | 17 | 40 | 12 | K | | | | 6303 | | 47 | 14 | K | | | | 6204 | | 47 | 14 | K | | | | 6304 | | 52 | 15 | K | | | | 6205 | 25 | 52 | 15 | K | | | | 6305 | 23 | 62 | 17 | K | | | | 6206 | 30 | 62 | 16 | K | | | | 6306 | 30 | 72 | 19 | K | | | | 6207 | 35 | 72 | 17 | K | | | | 6307 | 33 | 80 | 21 | K | | | | 6208 | 40 | 80 | 18 | K | | | | 6308 | 40 | 90 | 23 | K | | | | Designation | Boundar | Grease
Fill | | | |-------------|-----------|----------------|-------|------| | Designation | Bore Dia. | Outside Dia. | Width | Code | | 6209 | 45 | 85 | 19 | L | | 6309 | 45 | 100 | 25 | L | | 6210 | 50 | 90 | 20 | L | | 6310 | 50 | 110 | 27 | L | | 6211 | 55 | 100 | 21 | L | | 6311 | 33 | 120 | 29 | L | | 6212 | 60 | 110 | 22 | L | | 6312 | 00 | 130 | 31 | L | | 6213 | 65 | 120 | 23 | L | | 6313 | 0.5 | 140 | 33 | L | | 6214 | 70 | 125 | 24 | L | | 6314 | 70 | 150 | 35 | L | | 6215 | 75 | 130 | 25 | L | | 6315 | 7.5 | 160 | 37 | L | | 6216 | 80 | 140 | 26 | L | | 6316 | 00 | 170 | 39 | L | # Ceramic-Coated Insulated Bearings for Inverter Motors By coating the outer ring with insulating ceramic material, electric current cannot pass through the bearing and cause electrical erosion. ## **Features** # Easy to Handle and Mount Optimized specifications make the impact resistance of our new ceramic-coated bearings over 3 times higher than conventional products. *Refers to force on the surface coating Reduced Premature Motor Failure From Bearing Heat Generation Our optimized ceramic coating more effectively dissipates heat. Description of the properties | Docionation | Boundary Dimensions (mm) | | | | | | |-------------|--|-------|----|--|--|--| | Designation | Bore Dia. Outside Dia. 60 130 65 140 75 130 160 80 140 | Width | | | | | | 6312 | 60 | 130 | 31 | | | | | 6313 | 65 | 140 | 33 | | | | | 6215 | 75 | 130 | 25 | | | | | 6315 | 75 | 160 | 37 | | | | | 6216 | 90 | 140 | 26 | | | | | 6316 | 00 | 170 | 39 | | | | | 6217 | 05 | 150 | 28 | | | | | 6317 | 85 | 180 | 41 | | | | | | | | | | | | | Listed bearings are offer | ered as standard open bearings | | |---|--------------------------------|--| | with C3 clearance. | | | | Docionation | Boundary Dimensions (mm) | | | | | |-------------|--------------------------|--------------|-------|--|--| | Designation | Bore Dia. | Outside Dia. | Width | | | | 6218 | 90 | 160 | 30 | | | | 6318 | 90 | 190 | 43 | | | | 6219 | 95 | 170 | 32 | | | | 6319 | 90 | 200 | 45 | | | | 6220 | 100 | 180 | 41 | | | | 6320 | 100 | 215 | 47 | | | | 6322 | 110 | 240 | 50 | | | | 6224 | 120 | 215 | 40 | | | | 6226 | 130 | 230 | 40 | | | | | | | | | | • Please handle ceramic bearings with the same care as standard bearings. • Be sure to avoid strong impacts to the outer ring when mounting the bearing using methods involving a hammer or similar. Excessive impacts may cause breaking or cracking of the ceramic coating and/or scratches on the bearing raceway. Bearings cannot be used if damaged. 12 # Electric Vehicle (EV) Motor Bearings NSK bearings improve the high-speed rotation performance of EV motors by utilizing a plastic cage, specialized grease, and steel balls heat-treated to resist seizure. ### **Features** # Plastic Cage for High-Speed Rotation Today's applications cause bearings to face high temperature and speeds. In response, our plastic cages feature excellent heat resistance. We also examined cage strength through our proven analysis technologies to optimize the shape of the cage. > Tested bearings: $\phi 20 \times \phi 47 \times 14$ Rotational speed: 3 000 min # Grease for **High-Speed Rotation** By matching the thickener to the grease, we reduced bearing heat generation across a wide temperature range. > Tested bearings: $\phi 35 \times \phi 62 \times 14$ Rotational speed: 3 000 min⁻¹ # Seizure-Resistant Heat-Treated Steel Balls for High-Speed Rotation Steel balls with a hard nitride formed on the surface improve seizure resistance. Difference in Ball Surface Structure | | Boundar | y Dimensio | ons (mm) | Limiting Sp | eeds (min ⁻¹) | | |-------------|-----------|--------------|----------|-------------|--|-----------------------------------| | Designation | Bore Dia. | Outside Dia. | Width | n | n'
(Seizure-Resistant
HT Ball Spec.) | Seizure-Resistant
HT Ball Spec | | 6005 | 25 | 47 | 12 | 19000 | 20000 | QTF14 | | 6205 | 25 | 52 | 15 | 16000 | 18000 | QTF14 | | 6006 | 30 | 55 | 13 | 16000 | 18000 | QTF14 | | 6206 | 30 | 62 | 16 | 14000 | 15000 | QTF14 | | 6007 | 35 | 62 | 14 | 14000 | 15000 | QTF14 | | 6207 | 33 | 72 | 17 | 12000 | 13000 | QTF14 | | 6008 | 40 | 68 | 15 | 13000 | 14000 | QTF14 | | 6208 | 40 | 80 | 18 | 11000 | _ | _ | | 6009 | 45 | 75 | 16 | 12000 | 13000 | QTF14 | | 6209 | 45 | 85 | 19 | 10000 | 11000 | QTF14 | | 6010 | 50 | 80 | 16 | 11000 | 12000 | QTF14 | | 6210 | 50 | 90 | 20 | 9000 | 10000 | QTF14 | | 6011 | 55 | 90 | 18 | 9500 | 10000 | QTF14 | [•] Plastic cages for EV motors use T85 (Nylon 4,6). # **Bearings With Plastic Cages** Plastic cages are lighter than steel cages, have excellent self-lubricating properties, and have a low coefficient of friction. For this reason, they generate little heat and are excellent under high speed rotation. In addition, since they don't need as much grease, they effectively reduce bearing torque and contamination. ## **Features** ## 1.2 Motor Energy Savings 1.0 1.0 Plastic cages reduce mechanical loss in motors by up to 50% compared to steel cages. 0.8 0.6 0.2 Motor: 5 kW 2P 200 V 50 Hz Temperature: 25 °C Steel Cage Plastic Cage # Usable in Magnetic Environments Steel cages are affected by magnetic forces, resulting in abnormal friction that shortens the seizure life. Plastic cages don't face this issue and can be used easily and with longer life in magnetic environments, such as with servomotors. > Tested bearings: $\phi 12 \times \phi 21 \times 5$ Inclination: 0.3 deg Rotational speed: 1 800 min Preload: 20 N Environment temperature: 40 °C Test period: 2 weeks Magnetic strength: 3 500 Gs | Designation | Plastic | Boundary Dimensions (mm) | | | | |-------------|---------|--------------------------|--------------|-------|--| | Designation | Cage | Bore Dia. | Outside Dia. | Width | | | 6000 | T1X | | 26 | 8 | | | 6200 | T1XL | 10 | 30 | 9 | | | 6300* | T1X | | 35 | 11 | | | 6001 | T1XL | | 28 | 8 | | | 6201 | T1XL | 12 | 32 | 10 | | | 6301 | T1X | | 37 | 12 | | | 6002 | T1XL | | 32 | 9 | | | 6202 | T1XL | 15 | 35 | 11 | | | 6302 | T1X | 15 | 42 | 13 | | | 6003 | T1XL | | 35 | 10 | | | 6203 | T1XL | 17 | 40 | 12 | | | 6303 | T1X | | 47 | 14 | | | 6004 | T1X | | 42 | 12 | | | 6204 | T1XL | 20 | 47 | 14 | | | 6304 | T1XL | | 52 | 15 | | | Designation | Plastic | Boundar | y Dimensio | ons (mm) | |-------------|---------|-----------|--------------|----------| | Designation | Cage | Bore Dia. | Outside Dia. | Width | | 6005 | T1XL | | 47 | 12 | | 6205 | T1XL | 25 | 52 | 15 | | 6305 | T1X | | 62 | 17 | | 6006 | T1X | | 55 | 13 | | 6206 | T1X | 30 | 62 | 16 | | 6306 | T1X | | 72 | 19 | | 6007 | T1X | | 62 | 14 | | 6207 | T1X | 35 | 72 | 17 | | 6307 | T1X | | 80 | 21 | | 6008 | T1X | | 68 | 15 | | 6208 | T1XA | 40 | 80 | 18 | | 6308 | T1XA | | 90 | 23 | | | | | | | *Indicates a plastic cage that is not mass produced. Please contact NSK for details. - Plastic cages for industrial motors use T1X, T1XL, and T1XA (Nylon 6,6). - The maximum operating temperature of polyamide cages is normally 120 °C or less. # Ceramic Ball Bearings Lightweight ceramic materials have excellent insulation, heat resistance, durability, and low thermal expansion. Using ceramic balls extends seizure life dramatically and prevents electric current from passes through the bearing, stopping
electric erosion. ## **Features** ## "Maintenance-Free" Motors Compared to steel ball bearings, ceramic ball bearings have a significantly longer seizure life. > Tested bearings: $\phi 8 \times \phi 22 \times 7$ Lubrication: Light oil 10 mg Rotational speed: 1 800 min Temperature: 100 °C #### No Electric Erosion By insulating the rolling elements, electric currents can not pass through the bearing, preventing electric erosion. #### Race Surface After Test Steel Ball Ceramic Ball | Designation | Boundary Dimensions (mm) | | | | | |-------------|--------------------------|--------------|-------|--|--| | Designation | Bore Dia. | Outside Dia. | Width | | | | 608 | 8 | 22 | 7 | | | | 6000 | 10 | 26 | 8 | | | | 6200 | 10 | 30 | 9 | | | | 6001 | 12 | 28 | 8 | | | | 6201 | 12 | 32 | 10 | | | | 6002 | | 32 | 9 | | | | 6202 | 15 | 35 | 11 | | | | 6302 | | 42 | 13 | | | | 6003 | 17 | 35 | 10 | | | | 6203 | 17 | 40 | 12 | | | | 6004 | 20 | 42 | 12 | | | | 6204 | 20 | 47 | 14 | | | | 6205 | 25 | 52 | 15 | | | | 6305 | 20 | 62 | 17 | | | | Bore Dia. Outside Dia. Width 6206 30 62 16 6306 72 19 6207 35 72 17 6307 80 21 6208 40 80 18 6308 40 90 23 6209 45 19 100 25 6010 50 80 16 10 27 6211 50 100 21 27 100 21 29 6012 60 95 18 18 18 18 12 24 24 | Designation | Boundary Dimensions (mm) | | | | |--|-------------|--------------------------|--------------|-------|--| | 6306 30 6207 35 6307 80 6208 80 6308 80 6309 85 6309 85 6310 80 6311 100 25 6311 100 21 6312 100 21 6311 100 21 6312 60 95 18 | Designation | Bore Dia. | Outside Dia. | Width | | | 6306 72 19 6207 35 72 17 6307 80 21 6208 40 80 18 6308 90 23 6209 45 19 6309 85 19 6309 80 16 6310 50 80 16 6310 100 21 6311 55 120 29 6012 60 95 18 | 6206 | 30 | 62 | 16 | | | 6307 80 21 6208 40 80 18 6308 90 23 6209 45 85 19 6309 100 25 6010 80 16 6310 110 27 6211 55 120 29 6012 60 95 18 | 6306 | 30 | 72 | 19 | | | 6307 80 21 6208 40 80 18 6308 90 23 6209 85 19 6309 100 25 6010 80 16 6310 110 27 6211 55 120 29 6012 60 95 18 | 6207 | 25 | 72 | 17 | | | 6308 40 6308 90 6209 85 6309 100 6010 80 6310 16 6310 10 27 6211 55 6311 100 21 6312 60 95 18 | 6307 | 30 | 80 | 21 | | | 6308 90 23 6209 45 85 19 6309 100 25 6010 80 16 6310 110 27 6211 55 100 21 6311 120 29 6012 60 95 18 | 6208 | 40 | 80 | 18 | | | 6309 45 6010 80 6310 16 6310 110 6211 55 6311 120 6012 60 95 18 | 6308 | 40 | 90 | 23 | | | 6309 100 25 6010 80 16 6310 110 27 6211 55 100 21 6311 55 120 29 6012 60 95 18 | 6209 | 45 | 85 | 19 | | | 6310 50 6211 100 55 120 6311 29 6012 60 95 18 | 6309 | 45 | 100 | 25 | | | 6310 110 27 6211 100 21 6311 120 29 6012 60 95 18 | 6010 | 50 | 80 | 16 | | | 6311 120 29 6012 60 95 18 | 6310 | 50 | 110 | 27 | | | 6311 120 29 6012 60 95 18 | 6211 | 55 | 100 | 21 | | | | 6311 | 55 | 120 | 29 | | | 6214 70 125 24 | 6012 | 60 | 95 | 18 | | | | 6214 | 70 | 125 | 24 | | # Creep-Free Bearings Creep may occur in EV motors used under high speed or in large motors with large unbalanced loads. NSK's Creep-Free Bearings dramatically reduce the occurrence of creep by restricting the amount of clearance between the outer ring and housing. Since boundary dimensions are identical to standard bearings, the housing does not need to be reworked when replacing the bearings, and assembly is easy. ### **Features** # Special Structure to Prevent Creep Creep-Free Bearings come with two O-rings mounted in the outer ring and help prevent creep by restricting the amount of clearance between the outer ring and housing. No special machining is required; bearings can be used with the same housing as standard bearings. Structure of a Creep-Free Bearing ## Usable Under High Speeds and Unbalanced Loads In creep limit load tests, the more the housing clearance is reduced, the more creep can be prevented. Creep-Free Bearings are up to four times more resistant to creep than conventional bearings. | Designation | Boundar | y Dimensio | ns (mm) | Designation | Boundar | y Dimensio | ns (mm) | |-------------|-----------|--------------|---------|-------------|-----------|--------------|---------| | Designation | Bore Dia. | Outside Dia. | Width | Designation | Bore Dia. | Outside Dia. | Width | | 6000 | | 26 | 8 | 6009 | | 75 | 16 | | 6200 | 10 | 30 | 9 | 6209 | 45 | 85 | 19 | | 6300 | | 35 | 11 | 6309 | | 100 | 25 | | 6001 | | 28 | 8 | 6010 | | 80 | 16 | | 6201 | 12 | 32 | 10 | 6210 | 50 | 90 | 20 | | 6301 | | 37 | 12 | 6310 | | 110 | 27 | | 6002 | | 32 | 9 | 6011 | | 90 | 18 | | 6202 | 15 | 35 | 11 | 6211 | 55 | 100 | 21 | | 6302 | | 42 | 13 | 6311 | | 120 | 29 | | 6003 | | 35 | 10 | 6012 | | 95 | 18 | | 6203 | 17 | 40 | 12 | 6212 | 60 | 110 | 22 | | 6303 | | 47 | 14 | 6312 | | 130 | 31 | | 6004 | | 42 | 12 | 6013 | | 100 | 18 | | 6204 | 20 | 47 | 14 | 6213 | 65 | 120 | 23 | | 6304 | | 52 | 15 | 6313 | | 140 | 33 | | 6005 | | 47 | 12 | 6014 | | 110 | 20 | | 6205 | 25 | 52 | 15 | 6214 | 70 | 125 | 24 | | 6305 | | 62 | 17 | 6314 | | 150 | 35 | | 6006 | | 55 | 13 | 6015 | 75 | 115 | 20 | | 6206 | 30 | 62 | 16 | 6215 | 7.5 | 130 | 25 | | 6306 | | 72 | 19 | 6016 | 80 | 125 | 22 | | 6007 | | 62 | 14 | 6216 | 00 | 140 | 26 | | 6207 | 35 | 72 | 17 | 6017 | 85 | 130 | 22 | | 6307 | | 80 | 21 | 6217 | 00 | 150 | 28 | | 6008 | | 68 | 15 | 6018 | 90 | 140 | 24 | | 6208 | 40 | 80 | 18 | 6019 | 95 | 145 | 24 | | 6308 | | 90 | 23 | 6020 | 100 | 150 | 24 | [•] If oil or grease is applied to the outside surface of the bearing, use a mineral oil or a synthetic hydrocarbon oil (such as NSK EA2). [•] The O-rings are made of nitrile rubber (operating temperature range: -30 to 120 °C) as standard. Please contact NSK for use under special environments, such as at high temperatures. 22 # NSKHPS High-Performance Standard Series Deep Groove Ball Bearings -For High Efficiency Motors & General Motors As motors become smaller and lighter, bearings must also become more compact, reliable, and capable of carrying Our current NSKHPS Series has an extensive lineup based on the most commonly used bearing series. heavy loads. NSK responds to these trends with NSKHPS: our new standard line of high-performance bearings. Compared to conventional bearings, NSKHPS Series deep groove ball bearings have 15% longer life and 15% higher limiting speed. 23 | Dynamic Equivalent Load $P = XF_r + YF_a$ | | | | | | | | | | | | |---|------|-------------------|-----|-----------------------|------|--|--|--|--|--|--| | $\frac{f_0F_a}{C_{0r}}$ | е | $\frac{F_a}{F_r}$ | ≦ e | $\frac{F_a}{F_r}$ > e | | | | | | | | | Our | | Χ | Y | Χ | Y | | | | | | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | | | | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | | | | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | | | | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | | | | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | | | | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | | | | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | | | | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | | | | | | 6 90 | 0.44 | - 1 | Λ | 0.56 | 1 00 | | | | | | | Static Equivalent Load $P_0 = 0.6 F_r + 0.5 F_a$ When $F_r > 0.6 F_r + 0.5 F_a$, use $P_0 = F_r$. | | | | _ | | · · | | Б | 1 D 1' | | Limiting | Speeds | s (min ⁻¹) | | | |------|----------|--------|-----|--------|------|---------|------|-----------------|----------------|----------|--------|------------------------|--------|--------| | | Des | gnatio | on | | Bour | ndary [| | sions | Basic Loa | | Factor | Gre | | Oil | | | | | | | | (m | 111) | | (k | IN) | | Open | | | | Open | Shielded | Seal | led | NSKHPS | d | D | В | <i>r</i> (min.) | C _r | C_{0r} | f_0 | ZZ
VV | DDU | Open | | 6200 | ZZ | VV | DDU | & | 10 | 30 | 9 | 0.6 | 5 350 | 2 390 | 13.2 | 28 000 | 18 000 | 34 000 | | 6300 | ZZ | VV | DDU | & | 10 | 35 | 11 | 0.6 | 8 500 | 3 450 | 11.2 | 26 000 | 17 000 | 30 000 | | 6001 | ZZ | VV | DDU | & | | 28 | 8 | 0.3 | 5 350 | 2 370 | 13.0 | 32 000 | 18 000 | 38 000 | | 6201 | ZZ | VV [| DDU | & | 12 | 32 | 10 | 0.6 | 7 150 | 3 050 | 12.3 | 26 000 | 17 000 | 32 000 | | 6301 | ZZ | VV | DDU | & | | 37 | 12 | 1.0 | 10 200 | 4 200 | 11.1 | 24 000 | 16 000 | 28 000 | | 6002 | ZZ | VV | DDU | & | | 32 | 9 | 0.3 | 5 850 | 2 830 | 13.9 | 26 000 | 15 000 | 32 000 | | 6202 | ZZ | VV | DDU | & | 15 | 35 | 11 | 0.6 | 8 000 | 3 750 | 13.2 | 22 000 | 14 000 | 28 000 | | 6302 | ZZ | VV | DDU | & | | 42 | 13 | 1.0 | 12 000 | 5 450 | 12.3 | 19 000 | 13 000 | 24 000 | | 6003 | ZZ | VV | DDU | & | | 35 | 10 | 0.3 | 6 300 | 3 250 | 14.4 | 24 000 | 13 000 | 28 000 | | 6203 | ZZ | VV | DDU | & | 17 | 40 | 12 | 0.6 | 10 100 | 4 800 | 13.2 | 20 000 | 12 000 | 24 000 | | 6303 | ZZ | VV | DDU | & | | 47 | 14 | 1.0 | 14 300 | 6 650 | 12.4 | 17 000 | 11 000 | 20 000 | | 6004 | ZZ | VV | DDU | & | | 42 | 12 | 0.6 | 9 850 | 5 000 | 13.8 | 20 000 | 11 000 | 24 000 | | 6204 | ZZ | VV | DDU | & | 20 | 47 | 14 | 1.0 | 13 400 | 6 600 | 13.1 | 17 000 | 11 000 | 20 000 | | 6304 | ZZ | VV | DDU | & | | 52 | 15 | 1.1 | 16 700 | 7 900 | 12.4 | 16 000 | 10 000 | 19 000 | | 6005 | ZZ | VV | DDU | & | | 47 | 12 | 0.6 | 10 600 | 5 850 | 14.5 | 18 000 | 9 500 | 22 000 | | 6205 | ZZ | VV | DDU | & | 25 | 52 | 15 | 1.0 | 14 700 | 7 850 | 13.9 | 15 000 | 9 000 | 18 000 | | 6305 | ZZ | VV | DDU | & | | 62 | 17 | 1.1 | 21 600 | 11 200 | 13.2 | 13 000 | 8 000 | 16 000 | | 6006 | ZZ | VV | DDU | & | | 55 | 13 | 1.0 | 13 900 | 8 300 | 14.7 | 15 000 | 8 000
 18 000 | | 6206 | ZZ | VV | DDU | & | 30 | 62 | 16 | 1.0 | 20 400 | 11 300 | 13.8 | 12 000 | 7 500 | 15 000 | | 6306 | ZZ | VV | DDU | & | | 72 | 19 | 1.1 | 28 000 | 15 000 | 13.3 | 11 000 | 6 700 | 13 000 | | 6007 | ZZ | VV | DDU | & | | 62 | 14 | 1.0 | 16 800 | 10 300 | 14.8 | 13 000 | 6 700 | 15 000 | | 6207 | ZZ | VV | DDU | & | 35 | 72 | 17 | 1.1 | 27 000 | 15 300 | 13.8 | 11 000 | 6 300 | 13 000 | | 6307 | ZZ | VV | DDU | & | | 80 | 21 | 1.5 | 35 000 | 19 200 | 13.2 | 10 000 | 6 000 | 12 000 | | 6008 | ZZ | VV | DDU | & | | 68 | 15 | 1.0 | 17 600 | 11 500 | 15.3 | 12 000 | 6 000 | 14 000 | | 6208 | ZZ | VV | DDU | & | 40 | 80 | 18 | 1.1 | 30 500 | 17 900 | 14.0 | 9 500 | 5 600 | 12 000 | | 6308 | ZZ | VV | DDU | & | | 90 | 23 | 1.5 | 43 000 | 24 000 | 13.2 | 9 000 | 5 300 | 11 000 | | 6009 | ZZ | VV | DDU | & | | 75 | 16 | 1.0 | 22 000 | 15 200 | 15.3 | 10 000 | 5 300 | 12 000 | | 6209 | ZZ | VV | DDU | & | 45 | 85 | 19 | 1.1 | 33 000 | 20 400 | 14.4 | 9 000 | 5 300 | 11 000 | | 6309 | ZZ | VV | DDU | & | | 100 | 25 | 1.5 | 55 500 | 32 000 | 13.1 | 7 500 | 4 800 | 9 500 | | 6010 | ZZ | VV | DDU | & | | 80 | 16 | 1.0 | 22 900 | 16 600 | 15.6 | 9 500 | 4 800 | 11 000 | | 6210 | ZZ | VV | DDU | & | 50 | 90 | 20 | 1.1 | 37 000 | 23 200 | 14.4 | 8 000 | 4 800 | 10 000 | | 6310 | ZZ | VV | DDU | & | | 110 | 27 | 2.0 | 65 000 | 38 500 | 13.2 | 7 100 | 4 300 | 8 500 | *CM clearance can be used instead of CN clearance (the opposite is not possible). #### Dynamic Equivalent Load $P = XF_r + YF_a$ | $\frac{f_0F_a}{C_{0r}}$ | е | $\frac{F_a}{F_r}$ | ≦ e | $\frac{F_a}{F_r}$ > e | | | | |-------------------------|------|-------------------|-----|-----------------------|------|--|--| | Cor | | Χ | Y | Χ | Y | | | | 0.172 | 0.19 | 1 | 0 | 0.56 | 2.30 | | | | 0.345 | 0.22 | 1 | 0 | 0.56 | 1.99 | | | | 0.689 | 0.26 | 1 | 0 | 0.56 | 1.71 | | | | 1.03 | 0.28 | 1 | 0 | 0.56 | 1.55 | | | | 1.38 | 0.30 | 1 | 0 | 0.56 | 1.45 | | | | 2.07 | 0.34 | 1 | 0 | 0.56 | 1.31 | | | | 3.45 | 0.38 | 1 | 0 | 0.56 | 1.15 | | | | 5.17 | 0.42 | 1 | 0 | 0.56 | 1.04 | | | | 6.89 | 0.44 | 1 | 0 | 0.56 | 1.00 | | | Static Equivalent Load $P_0 = 0.6 F_r + 0.5 F_a$ When $F_r > 0.6 F_r + 0.5 F_a$, use $P_0 = F_r$. | | | | | | Boundary Dimensions | | | | s Basic Load Ratings | | | Limiting Speeds (min ⁻¹) | | | |------|----------|-----|------|--------|---------------------|------|----|-----------------|----------------------|-----------------|--------|--------------------------------------|-------|--------| | | Des | gna | tion | | Doui | | m) | SIUIIS | | N) | Factor | Gre | ase | Oil | | | | | | | | (111 | , | | (1) | 1 1) | | Open | | | | Open | Shielded | Se | aled | NSKHPS | d | D | В | <i>r</i> (min.) | C_{r} | C _{0r} | f_0 | ZZ
VV | DDU | Open | | 6011 | ZZ | VV | DDU | & | | 90 | 18 | 1.1 | 29 700 | 21 200 | 15.3 | 8 500 | 4 500 | 10 000 | | 6211 | ZZ | VV | DDU | & | 55 | 100 | 21 | 1.5 | 45 500 | 29 300 | 14.3 | 7 500 | 4 300 | 9 000 | | 6311 | ZZ | VV | DDU | & | | 120 | 29 | 2.0 | 75 000 | 44 500 | 13.1 | 6 700 | 4 000 | 8 000 | | 6012 | ZZ | VV | DDU | & | | 95 | 18 | 1.1 | 31 000 | 23 200 | 15.6 | 8 000 | 4 000 | 9 500 | | 6212 | ZZ | VV | DDU | & | 60 | 110 | 22 | 1.5 | 55 000 | 36 000 | 14.3 | 6 700 | 3 800 | 8 000 | | 6312 | ZZ | VV | DDU | & | | 130 | 31 | 2.1 | 86 000 | 52 000 | 13.1 | 6 000 | 3 600 | 7 100 | | 6013 | ZZ | VV | DDU | & | | 100 | 18 | 1.1 | 32 000 | 25 200 | 15.8 | 7 500 | 4 000 | 9 000 | | 6213 | ZZ | VV | DDU | & | 65 | 120 | 23 | 1.5 | 60 000 | 40 000 | 14.4 | 6 300 | 3 600 | 7 500 | | 6313 | ZZ | VV | DDU | & | | 140 | 33 | 2.1 | 97 500 | 60 000 | 13.2 | 5 600 | 3 400 | 6 700 | | 6014 | ZZ | VV | DDU | & | | 110 | 20 | 1.1 | 40 000 | 31 000 | 15.6 | 7 100 | 3 600 | 8 500 | | 6214 | ZZ | VV | DDU | & | 70 | 125 | 24 | 1.5 | 65 500 | 44 000 | 14.5 | 6 000 | 3 400 | 7 100 | | 6314 | ZZ | VV | DDU | & | | 150 | 35 | 2.1 | 109 000 | 68 000 | 13.2 | 5 300 | 3 200 | 6 300 | | 6015 | ZZ | VV | DDU | & | | 115 | 20 | 1.1 | 41 500 | 33 500 | 15.8 | 6 700 | 3 400 | 8 000 | | 6215 | ZZ | VV | DDU | & | 75 | 130 | 25 | 1.5 | 69 500 | 49 500 | 14.7 | 5 600 | 3 200 | 6 700 | | 6315 | ZZ | VV | DDU | & | | 160 | 37 | 2.1 | 119 000 | 77 000 | 13.2 | 4 800 | 2 800 | 6 000 | | 6016 | ZZ | VV | DDU | & | | 125 | 22 | 1.1 | 50 000 | 40 000 | 15.6 | 6 300 | 3 200 | 7 100 | | 6216 | ZZ | VV | DDU | & | 80 | 140 | 26 | 2.0 | 76 500 | 53 000 | 14.6 | 5 300 | 3 000 | 6 300 | | 6316 | ZZ | VV | DDU | & | | 170 | 39 | 2.1 | 129 000 | 86 500 | 13.3 | 4 500 | 2 800 | 5 600 | | 6017 | ZZ | VV | DDU | & | | 130 | 22 | 1.1 | 52 000 | 43 000 | 15.8 | 6 000 | 3 000 | 7 100 | | 6217 | ZZ | VV | DDU | & | 85 | 150 | 28 | 2.0 | 88 000 | 62 000 | 14.5 | 4 800 | 2 800 | 6 000 | | 6317 | ZZ | VV | DDU | & | | 180 | 41 | 3.0 | 139 000 | 97 000 | 13.3 | 4 300 | 2 600 | 5 000 | | 6018 | ZZ | VV | DDU | & | | 140 | 24 | 1.5 | 61 000 | 50 000 | 15.6 | 5 600 | 2 800 | 6 300 | | 6218 | ZZ | VV | DDU | & | 90 | 160 | 30 | 2.0 | 101 000 | 71 500 | 14.5 | 4 500 | 2 600 | 5 600 | | 6318 | ZZ | VV | DDU | & | | 190 | 43 | 3.0 | 150 000 | 107 000 | 13.3 | 4 000 | 2 400 | 4 800 | | 6019 | ZZ | VV | DDU | & | | 145 | 24 | 1.5 | 63 500 | 54 000 | 15.8 | 5 300 | 2 600 | 6 000 | | 6219 | ZZ | VV | DDU | & | 95 | 170 | 32 | 2.1 | 114 000 | 82 000 | 14.4 | 4 300 | 2 600 | 5 000 | | 6319 | ZZ | VV | DDU | & | | 200 | 45 | 3.0 | 160 000 | 119 000 | 13.3 | 3 400 | 2 400 | 4 300 | | 6020 | ZZ | VV | DDU | & | 100 | 150 | 24 | 1.5 | 63 000 | 54 000 | 15.9 | 5 000 | 2 600 | 6 000 | | 6220 | ZZ | VV | DDU | & | 100 | 180 | 34 | 2.1 | 128 000 | 93 000 | 14.4 | 4 000 | 2 400 | 4 800 | | 6021 | ZZ | VV | DDU | & | 105 | 160 | 26 | 2.0 | 76 000 | 66 000 | 15.8 | 4 500 | 2 400 | 5 600 | | 6221 | ZZ | VV | DDU | & | 103 | 190 | 36 | 2.1 | 140 000 | 105 000 | 14.4 | 3 800 | 2 200 | 4 500 | | 6022 | ZZ | VV | DDU | & | 110 | 170 | 28 | 2.0 | 89 000 | 73 000 | 15.5 | 4 500 | 2 200 | 5 300 | | 6024 | ZZ | VV | DDU | & | 120 | 180 | 28 | 2.0 | 92 500 | 80 000 | 15.7 | 4 000 | 2 200 | 4 800 | # NSKHPS High-Performance Standard Series Cylindrical Roller Bearings -For General Motors As motors become smaller and lighter, bearings must also become more compact, reliable, and capable of carrying heavy loads. NSK responds to these trends with NSKHPS: our new standard line of high-performance bearings. Compared to conventional bearings, the NSKHPS Series of cylindrical roller bearings has up to 60% longer life and 15% higher limiting speed. Our current NSKHPS Series has an extensive lineup based on the most commonly used bearing series. # DATA | | Designation* asic Number Cage | | | | | | Bour | • | / Dime
mm) | ensior | ns | Basic Loa | d Ratings
N) | s Limiting Speed
(min ⁻¹) | | Axial | |---------------------------|-------------------------------|---|---|---|------------|-----|------|----|---------------|-----------------------|------|-----------|-----------------|--|--------|-----------------------| | & Internal
Design Code | W | | | | NSK
HPS | d | D | В | r
(min.) | r ₁ (min.) | Fw | Cr | C _{0r} | Grease | Oil | Movement
S
(mm) | | NU205E | * | * | * | * | & | | 52 | 15 | 1 | 0.6 | 31.5 | 33 500 | 27 700 | 12 000 | 14 000 | 1.2 | | NU2205E | | * | * | * | & | 25 | 52 | 18 | 1 | 0.6 | 31.5 | 40 000 | 34 500 | 12 000 | 14 000 | 1.2 | | NU305E | * | * | * | * | & | 23 | 62 | 17 | 1.1 | 1.1 | 34 | 48 000 | 37 500 | 10 000 | 12 000 | 1.2 | | NU2305E | | * | * | * | & | | 62 | 24 | 1.1 | 1.1 | 34 | 65 500 | 56 000 | 9 000 | 11 000 | 1.2 | | NU206E | * | * | * | * | & | | 62 | 16 | 1 | 0.6 | 37.5 | 45 000 | 37 500 | 9 500 | 12 000 | 1.2 | | NU2206E | | * | * | * | & | 20 | 62 | 20 | 1 | 0.6 | 37.5 | 56 500 | 50 000 | 9 500 | 12 000 | 1.2 | | NU306E | * | * | * | * | & | 30 | 72 | 19 | 1.1 | 1.1 | 40.5 | 61 000 | 50 000 | 8 500 | 10 000 | 1.2 | | NU2306E | | * | * | * | & | | 72 | 27 | 1.1 | 1.1 | 40.5 | 86 000 | 77 500 | 8 000 | 9 500 | 1.2 | | NU207E | * | * | * | * | & | | 72 | 17 | 1.1 | 0.6 | 44 | 58 000 | 50 000 | 8 500 | 10 000 | 1.2 | | NU2207E | | * | * | * | & | 0.5 | 72 | 23 | 1.1 | 0.6 | 44 | 71 000 | 65 500 | 8 500 | 10 000 | 2.2 | | NU307E | * | * | * | * | & | 35 | 80 | 21 | 1.5 | 1.1 | 46.2 | 76 500 | 65 500 | 7 500 | 9 500 | 1.2 | | NU2307E | | * | * | * | & | | 80 | 31 | 1.5 | 1.1 | 46.2 | 107 000 | 101 000 | 6 700 | 8 500 | 1.2 | | NU208E | * | * | * | * | & | | 80 | 18 | 1.1 | 1.1 | 49.5 | 64 000 | 55 500 | 7 500 | 9 000 | 1.2 | | NU2208E | | * | * | * | & | 40 | 80 | 23 | 1.1 | 1.1 | 49.5 | 83 000 | 77 500 | 7 500 | 9 000 | 1.2 | | NU308E | * | * | * | * | & | 40 | 90 | 23 | 1.5 | 1.5 | 52 | 95 500 | 81 500 | 6 700 | 8 000 | 1.2 | | NU2308E | | * | * | * | & | | 90 | 33 | 1.5 | 1.5 | 52 | 131 000 | 122 000 | 6 000 | 7 500 | 1.2 | | NU209E | * | * | * | * | & | | 85 | 19 | 1.1 | 1.1 | 54.5 | 72 500 | 66 500 | 6 700 | 8 000 | 1.2 | | NU2209E | | * | * | * | & | 45 | 85 | 23 | 1.1 | 1.1 | 54.5 | 87 500 | 84 500 | 6 700 | 8 500 | 1.2 | | NU309E | * | * | * | * | & | 45 | 100 | 25 | 1.5 | 1.5 | 58.5 | 112 000 | 98 500 | 6 000 | 7 500 | 1.4 | | NU2309E | | * | * | * | & | | 100 | 36 | 1.5 | 1.5 | 58.5 | 158 000 | 153 000 | 5 300 | 6 700 | 1.4 | | NU210E | * | * | * | * | & | | 90 | 20 | 1.1 | 1.1 | 59.5 | 79 500 | 76 500 | 6 300 | 7 500 | 1.7 | | NU2210E | | * | * | * | & | 50 | 90 | 23 | 1.1 | 1.1 | 59.5 | 96 000 | 97 000 | 6 300 | 8 000 | 1.2 | | NU310E | * | * | * | * | & | 50 | 110 | 27 | 2 | 2 | 65 | 127 000 | 113 000 | 5 000 | 6 000 | 1.4 | | NU2310E | | * | * | * | & | | 110 | 40 | 2 | 2 | 65 | 187 000 | 187 000 | 5 000 | 6 300 | 1.9 | | NU211E | * | * | * | * | & | | 100 | 21 | 1.5 | 1.1 | 66 | 99 000 | 98 500 | 5 600 | 7 100 | 1.2 | | NU2211E | | * | * | * | & | EE | 100 | 25 | 1.5 | 1.1 | 66 | 117 000 | 122 000 | 5 600 | 7 100 | 1.2 | | NU311E | * | * | * | * | & | 55 | 120 | 29 | 2 | 2 | 70.5 | 158 000 | 143 000 | 4 500 | 5 600 | 1.4 | | NU2311E | | * | * | * | & | | 120 | 43 | 2 | 2 | 70.5 | 231
000 | 233 000 | 4 500 | 5 600 | 1.4 | | Desi | gn | | on*
ige | | | | Bour | • | / Dime
mm) | ensio | ns | Basic Loa | d Ratings
N) | Limiting
(mi | | Permissible
Axial | |---|-----|---|------------|----|------------|-----|------|----|-----------------|-----------------------|-------|----------------|-----------------|-----------------|-------|----------------------| | Basic Number
& Internal
Design Code | W | | | Т7 | NSK
HPS | d | D | В | <i>r</i> (min.) | r ₁ (min.) | Fw | C _r | Cor | Grease | Oil | Movemen
S
(mm) | | NU212E | * | * | * | * | & | | 110 | 22 | 1.5 | 1.5 | 72 | 112 000 | 107 000 | 5 300 | 6 300 | 1.2 | | NU2212E | · | * | * | * | & | | 110 | 28 | 1.5 | 1.5 | 72 | 151 000 | 157 000 | 5 300 | 6 300 | 1.2 | | NU312E | | * | * | * | & | 60 | 130 | 31 | 2.1 | 2.1 | 77 | 169 000 | 157 000 | 4 800 | 5 600 | 1.5 | | NU2312E | | * | * | * | & | | 130 | 46 | 2.1 | 2.1 | 77 | 251 000 | 262 000 | 4 300 | 5 300 | 1.5 | | NU213E | * | * | * | * | & | | 120 | 23 | 1.5 | 1.5 | 78.5 | 124 000 | 119 000 | 4 800 | 5 600 | 1.4 | | NU2213E | -4- | * | * | * | & | | 120 | 31 | 1.5 | 1.5 | 78.5 | 171 000 | 181 000 | 4 800 | 6 000 | 1.4 | | NU313E | | * | * | * | & | 65 | 140 | 33 | 2.1 | 2.1 | 82.5 | 204 000 | 191 000 | 4 300 | 5 300 | 1.5 | | NU2313E | | * | * | * | & | | 140 | 48 | 2.1 | 2.1 | 82.5 | 263 000 | 265 000 | 3 800 | 4 800 | 1.5 | | NU214E | | * | * | * | & | | 125 | 24 | 1.5 | 1.5 | 83.5 | 136 000 | 137 000 | 5 000 | 6 300 | 1.4 | | NU2214E | | * | * | * | & | | 125 | 31 | 1.5 | 1.5 | 83.5 | 179 000 | 194 000 | 4 500 | 5 600 | 1.4 | | NU314E | | * | * | * | & | 70 | 150 | 35 | 2.1 | 2.1 | 89 | 231 000 | 222 000 | 4 000 | 5 000 | 1.5 | | NU2314E | | * | * | * | & | | 150 | 51 | 2.1 | 2.1 | 89 | 310 000 | 325 000 | 3 600 | 4 500 | 1.5 | | NU2314E
NU215E | | * | * | * | & | | 130 | 25 | 1.5 | 1.5 | 88.5 | 150 000 | 156 000 | 4 800 | 6 000 | 1.4 | | NU2215E | | * | * | * | & | | 130 | 31 | 1.5 | 1.5 | 88.5 | 186 000 | 207 000 | 4 300 | 5 300 | 1.4 | | NU315E | | * | * | * | & | 75 | 160 | 37 | 2.1 | 2.1 | 95 | 271 000 | 263 000 | 3 800 | 4 800 | 1.4 | | NU2315E | | * | * | * | & | | 160 | 55 | 2.1 | 2.1 | 95 | 370 000 | 395 000 | 3 400 | 4 300 | 4.4 | | NU2313L
NU216E | | * | * | * | & | | 140 | 26 | 2.1 | 2.1 | 95.3 | 160 000 | 167 000 | 4 500 | 5 300 | 1.4 | | NU2216E | | * | * | * | & | | 140 | 33 | 2 | 2 | 95.3 | 214 000 | 243 000 | 4 000 | 5 000 | 1.4 | | NU316E | | * | * | * | & | 80 | 170 | 39 | 2.1 | 2.1 | 101 | 289 000 | 282 000 | 3 600 | 4 300 | 1.5 | | NU2316E | | | | * | & | | 170 | 58 | 2.1 | 2.1 | 101 | 400 000 | 430 000 | 3 200 | 4 000 | 1.5 | | | | * | * | | | | | | | | | | | | | | | NU217E | | * | * | * | & | | 150 | 28 | 2 | 2 | 100.5 | 192 000 | 199 000 | 4 300 | 5 000 | 1.3 | | NU2217E | | * | * | * | & | 85 | 150 | 36 | 2 | 2 | 100.5 | 250 000 | 279 000 | 3 800 | 4 500 | 1.3 | | NU317E | | * | | | & | | 180 | 41 | 3 | 3 | 108 | 360 000 | 330 000 | 3 400 | 4 000 | 2.0 | | NU2317E | | * | | | & | | 180 | 60 | 3 | 3 | 108 | 485 000 | 485 000 | 3 000 | 3 800 | 1.6 | | NU218E | | * | * | * | & | | 160 | 30 | 2 | 2 | 107 | 205 000 | 217 000 | 4 000 | 4 800 | 1.4 | | NU2218E | | * | * | * | & | 90 | 160 | 40 | 2 | 2 | 107 | 274 000 | 315 000 | 3 600 | 4 300 | 1.9 | | NU318E | | * | H | | & | | 190 | 43 | 3 | 3 | 113.5 | 390 000 | 355 000 | 3 200 | 3 800 | 1.5 | | NU2318E | | * | | | & | | 190 | | 3 | 3 | | 535 000 | | 2 800 | 3 400 | 3.1 | | NU219E | | * | | | & | | 170 | 32 | 2.1 | 2.1 | | 249 000 | | 3 800 | 4 500 | 1.4 | | NU2219E | | | * | | & | 95 | 170 | 43 | 2.1 | 2.1 | | 325 000 | | 3 400 | 4 000 | 1.4 | | NU319E | | * | | | & | | 200 | 45 | 3 | 3 | | 410 000 | 385 000 | 3 000 | 3 600 | 1.5 | | NU2319E | | * | | | & | | 200 | 67 | 3 | 3 | | | 585 000 | 2 600 | 3 400 | 1.6 | | NU220E | | * | | | & | | 180 | 34 | 2.1 | 2.1 | 119 | 305 000 | 305 000 | 3 600 | 4 300 | 1.4 | | NU2220E | | * | | | & | 100 | 180 | 46 | 2.1 | 2.1 | 119 | 410 000 | 445 000 | 3 200 | 3 800 | 1.4 | | NU320E | | * | | | & | | 215 | 47 | 3 | 3 | 127.5 | 465 000 | 425 000 | 2 800 | 3 400 | 1.8 | | NU2320E | | * | | | & | | 215 | 73 | 3 | 3 | 127.5 | | 715 000 | 2 400 | 3 000 | 1.8 | | NU221E | | * | | | & | 105 | 190 | 36 | 2.1 | 2.1 | 125 | 320 000 | | 3 400 | 4 000 | 1.4 | | NU321E | | * | | | & | | 225 | 49 | 3 | 3 | 133 | 525 000 | 480 000 | 2 600 | 3 200 | 1.8 | | NU222E | | * | | | & | | 200 | 38 | 2.1 | 2.1 | | 360 000 | | 3 200 | 3 800 | 1.4 | | NU2222E | | * | | | & | 110 | 200 | 53 | 2.1 | 2.1 | 132.5 | 470 000 | 515 000 | 2 800 | 3 400 | 1.4 | | NU322E | | * | | | & | | 240 | 50 | 3 | 3 | 143 | | 525 000 | 2 600 | 3 000 | 3.8 | | NU2322E | | * | | | & | | 240 | 80 | 3 | 3 | 143 | 830 000 | 880 000 | 2 200 | 2 800 | 3.3 | # **Technical Data** # 1. Bearing Sound and Vibration #### Diagnosis with Sound and Vibration #### Classification of sounds and vibrations Sounds and vibrations accompany the rotation of rolling bearings. The tone and amplitude of such sounds and vibrations vary depending on the type of bearing, mounting conditions, operational conditions, etc. The sounds and vibrations of a rolling bearing can be classified under the following four chief categories and each category can be further classified into several subcategories, as described in Table 1 below. However, boundaries between groups are not definite. Even if some types of sounds or vibrations are inherent in the bearings, the volume might be related to the manufacturing #### process. Conversely, some types of sounds or vibrations, even if caused by manufacturing, cannot be eliminated under normal conditions. By recording the sounds and vibrations of a rotating machine and analyzing them, the cause may be inferred. As shown by the figures on the next page, a mechanically normal bearing shows a stable waveform. However, a bearing with damage such as a scratch shows a waveform with wide swings indicating large-amplitude sounds at regular intervals (refer to Figs.1 and 2). Fig. 1 Sound waveform of a normal bearing Fig. 2 Sound waveform of a scratched bearing f_{AIN} , f_{AM} f_{AIN} , f_{AM} FFT After Envelope (Basic No.) Zf_c ? auide surface grease resistance Rolling element waviness rolling elements and raceways Irregular inner ring cross-section Displacement of inner ring due to rolling element Inner ring raceway waviness, irregularity of shaft Outer ring raceway waviness, irregular housing Nicks, dents, rust, flaking on inner ring raceway Nicks, dents, rust, flaking on inner ring raceway Lubricant or lubricant bubbles crushed between Nicks, dents, rust, flaking on rolling elements Generated Frequency (Frequency Analysis) FFT of Original Wave Radial (Angular) Direction | Axial Direction Natural frequency of cage Natural frequency of cage Natural frequency of cage Natural frequency of cage $nZf_i\pm f_r(nZ\pm 1 \text{ peaks})$ $nZf_i(nZ \text{ peaks})$ $nZf_c(nZ\pm 1 \text{ peaks})$ $nZf_c(nZ \text{ peaks})$ $2nf_b \pm f_c (2n \text{ peaks})$ $2nf_b (2n \text{ peaks})$ Natural frequency of seal f_{AiN}, f_{AM} fain,fam frin. fmi f_{RIN} , f_{MI} $(=f_{R2N},f_{R3N})$ Zf_c frin .fmi f_{RIN}, f_{MI} f_r -2 f_c Recording and analysis method: Envelope analysis sounds recorded by | Examp | le of | analy | /sis | re | |-------|-------|-------|------|----| When the inner ring raceway surface is damaged Bore diameter: 100 mm microphone for a test machine | Table 1 | Classification of | of Sounds and | Vibrations in | a Rolling | Rearing | |---------|-------------------|---------------|---------------|------------|---------| | Iable I | Olassilleation (| n odunus and | vibiations ii | ιαινοιιιια | Deamin | | | Sou | und Type | V | ibration | Features | | | | |---------------|-------------------------|----------------|----------------------------|------------------------|--|--|--|--| | | Race n | oise | Free vibration | on of raceway ring | Continuous noise: basic unavoidable noise that all bearings generate | | | | | | Roller/ball click noise | | | tion of raceway | Regular noise at a certain interval: found in large bearings and horizontal shafts, radial loads and low rpm | | | | | | Squeal | noise | Free vibration | on of raceway ring | Intermittent or continuous: generally found in large cylindrical roller bearing and under radial load, grease lubrication, and particular speeds | | | | | Structural | | "CK" sound | Free vibrat | tion of cage | Regular noise at a set interval: generated by all bearing types | | | | | 1 | Cage
noise | "CG" sound | Vibration of | of cage | Intermittent or continuous: lubrication with certain greases | | | | | | | Tapping sound | Free vibrat | tion of cage | Set interval: slightly irregular under radial load and during initial stage | | | | | | Rumbling | | Vibration for rolling eler | rom passage of
ment | Continuous: found in all bearing types under radial load | | | | | | | | Vibration | Inner ring | Continuous noise | | | | | Manufacturing | Chatte | r noise | due to waviness | Outer ring | Continuous noise | | | | | | | | | Rolling element | Continuous with rollers, occasional with balls | | | | | | | | Vibration | Inner ring | | | | | | l londline | Flaw no | oise | due to | Outer ring | Regular noise at a set interval | | | | | Handling | | | flaw | Rolling element | | | | | | | Contan | nination noise | Vibration du | e to contamination | Irregular | | | | | | Seal no | oise | Free vibrat | tion of a seal | Contact seal | | | | | 011 | Lubrica | ant noise | | _ | Irregular | | | | | Other | | | | f_{r} | Continuous | | | | | | Rumbli | ng | Runout | $f_{m{c}}$ | Continuous | | | | | | | | | f_r -2 f_c | Continuous | | | | f_c: Orbital revolution frequency of rolling elements (Hz) : Rotation frequency of inner ring (Hz) |) | Source | Countermeasures |
|---|--|--| | | Selective resonance from waviness (rolling friction) | Improve rigidity around bearings, provide appropriate radial clearance, use high-viscosity lubricant and high-quality bearings | | | Collision of rolling elements with inner ring or cage | Reduce radial clearance, apply preload, use high-viscosity oil | | | Self-induced vibration caused by sliding friction at rolling surface | Reduce radial clearance, apply preload, change grease, replace with bearings with countermeasures | | | Collision of cage with rolling elements or rings | Apply preload, use high-viscosity lubricant, reduce mounting error | Self-induced vibration due to friction at seal contact area Change the seal, change the grease Self-induced vibration caused by friction at cage Change grease brand, replace with cage with countermeasures Collision of cage and rolling element caused by Reduce radial clearance, apply preload, use low-viscosity lubricant Reduce radial clearance, apply preload Use high-quality bearings, improve shaft accuracy Use high-quality bearings, improve housing bore accuracy Use high-quality bearings Replace bearing and take care when handling Replace bearing and take care when handling Replace bearing and take care when handling Wash the bearing, improve sealing Change the grease reduce mounting error Use high-quality bearings Ball variation in bearing, rolling elements non-equidistant Use high-quality bearings Non-linear vibration due to rigid variation by ball variation Use high-quality bearings f_{AiN} : Ring natural frequency in axial bending mode (Hz) f_{AM} : Natural frequency in the mode of axial vibration in mass of an outer ring spring system (Hz) f_b: Rotation frequency of rolling element around its center (Hz) Irregular Entry of dirt or debris f_{RiN}: Natural frequency of ring in radial bending mode (Hz) Natural frequency in the mode of angular vibration in inertia of outer ring-spring system (Hz) # 2. Grease for Motors # **Grease Properties Table** | Name | Thickener | Base Oil | Dropping
Point (°C) | Worked
Penetration | Operating
Temperature (°C) | Base Oil Viscosity (mm²/s) (40°C) | |------|-----------------|-------------------------|------------------------|-----------------------|-------------------------------|-----------------------------------| | NS7 | Lithium
soap | Ester + Diester | 192 | 250 | -40 to +130 | 24.1 | | ENS | Urea | Polyolester | >260 | 264 | -40 to +160 | 30.5 | | EA7 | Urea | Poly- $lpha$ -olefin | >260 | 243 | -40 to +160 | 46 | | EA9 | Urea | Poly- $lpha$ -olefin | >260 | 314 | -40 to +140 | 47 | | LGU | Urea | Poly- $lpha$ -olefin | >260 | 201 | -40 to +120 | 95.8 | | KPM | PTFE | Perfluoro-
polyether | None | 290 | -20 to +200 | 420 | # 3. Grease Life Equations # Grease Life of Sealed Ball Bearings When grease is packed into single-row deep groove ball bearings, the grease life may be estimated using Equation (1), Equation (2), or Fig. 3: (General-purpose grease (1)) $$log t = 6.54 - 2.6 \frac{n}{N_{\text{max}}} - \left(0.025 - 0.012 \frac{n}{N_{\text{max}}}\right)T$$ (Wide-range grease (2)) $$log t = 6.12 - 1.4 \frac{n}{N_{\text{max}}} - \left(0.018 - 0.006 \frac{n}{N_{\text{max}}}\right)T$$ where t: Average grease life (h) n: Speed (min-1) N_{max}: Limiting speed with grease lubrication (min⁻¹) (values for ZZ and VV types are listed in the bearing tables) T : Operating temperature °C Equation (1), Equation (2), and Fig. 3 apply under the following conditions: (a) Speed n $$0.25 \leq \frac{n}{N_{\text{max}}} \leq \frac{1}{N_{\text{max}}}$$ when $$\frac{n}{N_{\text{max}}}$$ < 0.25, assume $\frac{n}{N_{\text{max}}}$ = 0.25 (b) Operating Temperature T For general-purpose grease (1) $70 \, ^{\circ}\text{C} \le T \le 110 \, ^{\circ}\text{C}$ For wide-range grease (2) 70 °C ≤ *T* ≤ 130 °C When T < 70 °C, assume T = 70 °C (c) Bearing Loads The bearing loads should be about 1/10 or less the basic load rating C_r. Notes (1) Mineral-oil based greases (e.g. lithium-soap based grease) often used around -10 to 110 °C. Notes (2) Synthetic-oil based greases used over a wide temperature range around -40 to 130 °C. Fig. 3 Grease Life of Sealed Ball Bearings ## 4. Radial Internal Clearance # Radial Internal Clearances in Deep Groove Ball Bearings Units: µm | Nominal Bo | re Diameter | | | | | Clear | rance | | | | | |---------------|----------------|------------|-------------|-------------|-------------|-------------|-------------|------------|-----------|-----------|-------------| | d (m | nm) | C | 2 | С | N | C | 3 | C | 4 | C | 5 | | over | incl. | min. | max. | | 10 only | | 0 | 7 | 2 | 13 | 8 | 23 | 14 | 29 | 20 | 37 | | 10 | 18 | 0 | 9 | 3 | 18 | 11 | 25 | 18 | 33 | 25 | 45 | | 18 | 24 | 0 | 10 | 5 | 20 | 13 | 28 | 20 | 36 | 28 | 48 | | 24 | 30 | 1 | 11 | 5 | 20 | 13 | 28 | 23 | 41 | 30 | 53 | | 30 | 40 | 1 | 11 | 6 | 20 | 15 | 33 | 28 | 46 | 40 | 64 | | 40 | 50 | 1 | 11 | 6 | 23 | 18 | 36 | 30 | 51 | 45 | 73 | | 50 | 65 | 1 | 15 | 8 | 28 | 23 | 43 | 38 | 61 | 55 | 90 | | 65 | 80 | 1 | 15 | 10 | 30 | 25 | 51 | 46 | 71 | 65 | 105 | | 80 | 100 | 1 | 18 | 12 | 36 | 30 | 58 | 53 | 84 | 75 | 120 | | 100 | 120 | 2 | 20 | 15 | 41 | 36 | 66 | 61 | 97 | 90 | 140 | | 120 | 140 | 2 | 23 | 18 | 48 | 41 | 81 | 71 | 114 | 105 | 160 | | 140 | 160 | 2 | 23 | 18 | 53 | 46 | 91 | 81 | 130 | 120 | 180 | | 160 | 180 | 2 | 25 | 20 | 61 | 53 | 102 | 91 | 147 | 135 | 200 | | 180 | 200 | 2 | 30 | 25 | 71 | 63 | 117 | 107 | 163 | 150 | 230 | | 200 | 225 | 2 | 35 | 25 | 85 | 75 | 140 | 125 | 195 | 175 | 265 | | 225 | 250 | 2 | 40 | 30 | 95 | 85 | 160 | 145 | 225 | 205 | 300 | | 250 | 280 | 2 | 45 | 35 | 105 | 90 | 170 | 155 | 245 | 225 | 340 | | 280 | 315 | 2 | 55 | 40 | 115 | 100 | 190 | 175 | 270 | 245 | 370 | | 315 | 355 | 3 | 60 | 45 | 125 | 110 | 210 | 195 | 300 | 275 | 410 | | 355 | 400 | 3 | 70 | 55 | 145 | 130 | 240 | 225 | 340 | 315 | 460 | | 400 | 450 | 3 | 80 | 60 | 170 | 150 | 270 | 250 | 380 | 350 | 510 | | 450 | 500 | 3 | 90 | 70 | 190 | 170 | 300 | 280 | 420 | 390 | 570 | | 500 | 560 | 10 | 100 | 80 | 210 | 190 | 330 | 310 | 470 | 440 | 630 | | 560 | 630 | 10 | 110 | 90 | 230 | 210 | 360 | 340 | 520 | 490 | 690 | | 630 | 710 | 20 | 130 | 110 | 260 | 240 | 400 | 380 | 570 | 540 | 760 | | 710 | 800 | 20 | 140 | 120 | 290 | 270 | 450 | 430 | 630 | 600 | 840 | | Pamarke To of | htain the mose | urad valua | n uso the c | olograpao o | orrootion v | aluga in th | o table bel | ow For the | C2 cloars | noo olooo | the smaller | Remarks To obtain the measured values, use the clearance correction values in the table below. For the C2 clearance class, the smaller value should be used for bearings with minimum clearance and the larger value for bearings near the maximum clearance range. Radial Clearance Correction Amount Nominal Bore Dia. d (mm) Measuring Load C2 10 (incl) 18 3 to 4 50 5 4 to 5 6 6 6 147 15 6 to 8 Remark For values exceeding 280 mm, please contact NSK. # Radial Internal Clearances in Bearings for Electric Motors Deep Groove Ball Bearings for Electric Motors Units: um | | | _ | • | | | | |----------------|------|------|--------------|-------------|--|--| | Remarks | | | Nominal Bore | | | | | Recommended Fi | | | (mm) | Dia. d (mm) | | | | aft | max. | min. | incl. | over | | | | (j5) | 11 | 4 | 18 | 10 (incl) | | | | | 12 | 5 | 30 | 18 | | | | 5 | 17 | 9 | 50 | 30 | | | | .o | 22 | 12 | 80 | 50 | | | | | 30 | 18 | 100 | 80 | | | | | 30 | 18 | 120 | 100 | | | | 15 | 38 | 24 | 160 | 120 | | | Notes (1) Applicable to outer rings that require movement - in the axial direction. (2) Applicable to outer rings that do not require - movement in the axial direction. Remark The radial internal clearance increase caused by the measuring load is equal to the correction amount for CN clearance listed in the table above. Cylindrical Roller Bearings for Electric Motors Units: um | 1 | Nominal Bore | | Clearance | | | | | emarks | |---|--------------|-------|-----------|-----------|--------------|-------------|-------|--------------| | | Dia. d | (mm) | Interchan | geable CT | Non-intercha | angeable CM | Reco | mmended Fit | | (| over | incl. | min. | max. | min. | max. | Shaft | Housing Bore | | | 24 | 40 | 15 | 35 | 15 | 30 | k5 | | | | 40 | 50 | 20 | 40 | 20 | 35 | | | | | 50 | 65 | 25 | 45 | 25 | 40 | | | | | 65 | 80 | 30 | 50 | 30 | 45 | | JS6, JS7 | | | 80 | 100 | 35 | 60 | 35 | 55 | m5 | (J6, J7) (1) | | | 100 | 120 | 35 | 65 | 35 | 60 | | or | | | 120 | 140 | 40 | 70 | 40 | 65 | | K6, K7 (2) | | | 140 | 160 | 50 | 85 | 50 | 80 | | | | | 160 | 180 | 60 | 95 | 60 | 90 | 26 | | | | 180 | 200 | 65 | 105 | 65 | 100 | n6 | | - Notes (1) Applicable to outer rings that require movement in the axial direction. - (2) Applicable to outer rings that do not require movement in the axial direction. # 5. Example Bearing Damage in Motors ## Seizure | Damage | Possible Causes | Countermeasures | |--|--|---| | When sudden overheating occurs during rotation, the bearing becomes discolored. If operation continues, the raceway rings, rolling elements, and cage will soften, melt, and deform as damage accumulates. | -Poor lubrication -Excessive
load (excessive preload) -Excessive rotational speed -Excessively small internal clearance -Entry of water and debris -Poor precision of shaft and housing, excessive shaft bending | Review the lubricant and lubrication method Re-investigate the suitability of the bearing type selected Review the preload, bearing clearance, and fitting Improve the sealing mechanism Check the precision of the shaft and housing Improve the mounting method | Photo 1 Part: Inner ring of an angular contact ball bearing Symptom: Raceway discoloration, melting at ball pitch intervals Cause: Excessive preload Photo 3 Part: Balls and cage of Photo 1 Symptom: Cage damaged by melting, balls discolored and melted Cause: Excessive preload Photo 5 Part: Inside a deep groove ball bearing Symptom: Cage damage, grease nearly depleted, carbonization Cause: Poor lubrication Photo 2 Part: Outer ring in Photo 1 Symptom: Raceway discoloration, melting at ball pitch intervals Cause: Excessive preload Photo 4 Part: Inside a deep groove ball bearing Symptom: Grease nearly depleted, carbonization Cause: Poor lubrication Photo 6 Part: Cylindrical roller bearing Symptom: Seizure of roller at ring raceway surface Cause: Excessively small internal clearance generated heat from motion of the inner ring and rollers under high speed and light load # Creep | Damage | Possible Causes | Countermeasures | |---|--|---| | A phenomenon in bearings where relative slippage occurs at the fitting surfaces. Creep causes a shiny appearance, occasionally with scoring or wear. | -Insufficient interference or loose fit
-Insufficient sleeve tightening | Check interference and prevent rotation Correct the sleeve tightening Review precision of the shaft and housing Apply axial preload Tighten the raceway ring side face Apply adhesive to the fitting surface Apply a film of lubricant to the fitting surface | Photo 7 Part: Inner ring of a spherical roller bearing Symptom: Creep accompanied by scoring of bore surface Cause: Insufficient interference Photo 8 Part: Outer ring of a spherical roller bearing Symptom: Creep over entire circumference of outside surface Cause: Loose fit between outer ring and housing # Electrical Erosion | Damage | Possible Causes | Countermeasures | |---|--|---| | When electric current passes through a bearing, arcing and burning occur throughout the thin oil film at points of contact between the race and rolling elements. The points of contact are melted locally to form "fluting" or groove-like corrugations which can be seen by the naked eye. Magnification of these grooves reveals crater-like depressions that indicate melting by arcing. | -Electric potential difference between inner and outer rings -High-frequency electric potential difference generated by instruments or substrates used near a bearing. | Design electric circuits that prevent current
flow through the bearings Insulate the bearing | Part: Inner ring of a cylindrical roller bearing Symptom: Belt pattern of electrical erosion accompanied by pits on the raceway surface Part: Balls of a deep groove ball bearing Symptom: A dark color covering the entire ball surface Part: Inner ring of a deep groove ball bearing Symptom: Fluting on the raceway surface (high frequency) Photo 12 Enlargement Part: Outer ring of a deep groove ball bearing Symptom: Fluting on the raceway surface (high frequency) # Motor Bearings Specification Request Please contact your nearest NSK branch with the following: | ▶B | asic Para | ameters | | | | | | | | |--------------------|-----------------|------------|--|--------------------|-------------|------------------|------------|--------|--| | | Applica | ntion | | | | | | | | | ters | Rotation | nal Speed | | | | | | | | | Motor Parameters | Output | | Max.:kw; Normal | : | kw | | | | | | or Pa | Position | n | ☐ Horizontal ☐ Vertical ☐ Inclined (inclination angle):° | | | | | | | | Mot | Ambier | nt Temp. | Rangeto | °C ; I | Normal: | °C | | | | | | Cooling | Method | ☐ Water ☐ Oil ☐ Air ; ☐ Oth | er | | | | | | | Drive Side Bearing | | | | | 1 | Non Drive Side B | earing | | | | | Design | ation | | | | | | | | | | Dimens | sions | Bore dia. φ× Outside dia. φ× Wic | lthmm | Bore dia. φ | × Outside dia. φ | × Width | mm | | | eters | Lubrica | tion Type | Grease (Brand: | |); | Brand: | |) | | | Parameters | Seal/Sh | ield Type | ☐ Open ☐ Shielded (ZZ) ☐ Sea | aled (VV/D[| DU/DDW) | | | | | | | Load | | Axial Fa:N; Radial | Fr: | N | | | | | | Bearing | | | Rotor weight:kg; | Side magne | etic force: | N | | | | | | Bearing Temp. | | Min. :°C ; Max. : _ | | _°C ; Norm | nal : | _°C | | | | | Required Life | | Hours (or) | Yea | ars | | | | | | | E'u' | Housing | tomn | 1 | | to | mm | | | | ပ | Fitting | Shaft | tomn | 1 | | to | mm | | | | Parameters | Shaft Ho | ollow Dia. | φmm (0 for non-hollo | ow shafts) | φ | mm (0 for no | n-hollow s | hafts) | | | Para | Shaft M | 1aterial | | | | | | | | | tting | Housing | Material | | | | | | | | | İΞ | Bearing Preload | | □ None; □ With preload: Type (□ Spring / □ Shim / □ Other) : Location (□ Drive side / □ Non drive side) | | | | | | | | ►Ta | help an | alvze the | bearing load, please provide a layo | ut and dime | ensions. | | | | | | | otor Layo | | a care, product provide a layo | Related Dimensions | | | | | | | | | | | | | | mm | | | | | | | | | | | mm | | | | Motor Layout | Related Dimensions | | |--------------|--|----| | | Distance From Bearing Center: | mm | | | Distance From Load Center to Front Bearing Center: | mm | | | Distance From Load Center to Rear Bearing Center: | mm | #### Worldwide Sales Offices P: Phone 対: Head Office | NSK LTD. HEADQUARTERS, TOKYO | | Indonesia: | | Spain: | | |--|------------------------|--------------------------------|----------------------|--|-----------------------| | INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUART | | PT. NSK INDONESIA | D 00 04 050 0450 | NSK SPAIN S.A. | D 04 00 000 0700 | | AUTOMOTIVE BUSINESS DIVISION-HEADQUARTE | ERS P: +81-3-3/79-7189 | JAKARTA | P: +62-21-252-3458 | BARCELONA | P: +34-93-289-2763 | | Africa | | Korea: | | Turkey: | 1 TD 0T1 | | South Africa: | | NSK KOREA CO., LTD. | D 00 0 0007 0000 | NSK RULMANLARI ORTA DOGU TIC | | | NSK SOUTH AFRICA (PTY) LTD. | | SEOUL | P: +82-2-3287-0300 | ISTANBUL | P: +90-216-5000-675 | | SANDTON | P: +27-011-458-3600 | Malaysia: | | United Arab Emirates: | | | Aisia and Oceania | | NSK BEARINGS (MALAYSIA) SDN. | | NSK BEARINGS GULF TRADING CO. | | | Australia: | | SHAH ALAM ☆ | P: +60-3-7803-8859 | DUBAI | P: +971-(0)4-804-8200 | | NSK AUSTRALIA PTY. LTD. | | PRAI | P: +60-4-3902275 | North and South America | | | MELBOURNE ☆ | P: +61-3-9765-4400 | JOHOR BAHRU | P: +60-7-3546290 | United Sates of America: | | | SYDNEY | P: +61-2-9839-2300 | IPOH | P: +60-5-2555000 | NSK AMERICAS, INC. (AMERICAN H | | | BRISBANE | P: +61-7-3347-2600 | Philippines: | | ANN ARBOR | P: +1-734-913-7500 | | PERTH | P: +61-8-9256-5000 | NSK REPRESENTATIVE OFFICE | D 00 0 000 05 10 | NSK CORPORATION | | | New Zealand: | | MANILA | P: +63-2-893-9543 | ANN ARBOR | P: +1-734-913-7500 | | NSK NEW ZEALAND LTD. | | Singapore: | | NSK PRECISION AMERICA, INC. | | | AUCKLAND | P: +64-9-276-4992 | NSK INTERNATIONAL (SINGAPOR | | FRANKLIN ☆ | P: +1-317-738-5000 | | China: | | SINGAPORE | P: +65-6496-8000 | SAN JOSE | P: +1-408-944-9400 | | NSK (SHANGHAI) TRADING CO., LT | D. | NSK SINGAPORE (PRIVATE) LTD. | B 05 0400 0000 | NSK LATIN AMERICA, INC. | | | JIANGSU ☆ | P: +86-512-5796-3000 | SINGAPORE | P: +65-6496-8000 | MIAMI | P: +1-305-477-0605 | | NSK (CHINA) INVESTMENT CO., LTI | | Thailand: | | Canada: | | | JIANGSU ☆ | P: +86-512-5796-3000 | NSK BEARINGS (THAILAND) CO., I | | NSK CANADA INC. | | | BEIJING | P: +86-10-6590-8161 | BANGKOK | P: +66-2320-2555 | TORONTO ☆ | P: +1-905-890-0740 | | TIAN JIN | P: +86-22-8319-5030 | Vietnam: | | MONTREAL | P: +1-514-633-1220 | | CHANGCHUN | P: +86-431-8898-8682 | NSK VIETNAM CO., LTD. | | Argentina: | | | SHENYANG | P: +86-24-2334-2868 | HANOI | P: +84-24-3955-0159 | NSK ARGENTINA SRL | | | DALIAN | P: +86-411-8800-8168 | NSK REPRESENTATIVE OFFICE | | BUENOS AIRES | P: +54-11-4704-5100 | | NANJING | P: +86-25-8472-6671 | HO CHI MINH CITY | P: +84-28-3822-7907 | Brazil: | | | FUZHOU | P: +86-591-8380-1030 | Europe | | NSK BRASIL LTDA. | | | WUHAN | P: +86-27-8556-9630 | United Kingdom: | | SUZANO ☆ | P:
+55-11-4744-2500 | | QINGDAO | P: +86-532-5568-3877 | NSK EUROPE LTD. (EUROPEAN H | EADQUARTERS) | JOINVILLE | P: +55-47-3422-2239 | | GUANGZHOU | P: +86-20-3817-7800 | MAIDENHEAD | P: +44-1628-509-800 | Peru: | | | CHANGSHA | P: +86-731-8571-3100 | NSK UK LTD. | | NSK PERU S.A.C. | | | LUOYANG | P: +86-379-6069-6188 | NEWARK | P: +44-1636-605-123 | LIMA | P: +51-493-4385 | | XI'AN | P: +86-29-8765-1896 | France: | | Mexico: | | | CHONGQING | P: +86-23-6806-5310 | NSK FRANCE S.A.S. | | NSK RODAMIENTOS MEXICANA, S.A | A. DE C.V. | | CHENGDU | P: +86-28-8528-3680 | PARIS | P: +33-1-30-57-39-39 | SILAO, GUANAJUATO | P: +52-472-103-940 | | NSK CHINA SALES CO., LTD. | F. +60-26-6526-5060 | Germany: | | , | | | JIANGSU ☆ | P: +86-512-5796-3000 | NSK DEUTSCHLAND GMBH | | | | | NSK HONG KONG LTD. | P. +66-512-5796-3000 | DUSSELDORF ☆ | P: +49-2102-4810 | | | | HONG KONG ☆ | P: +852-2739-9933 | STUTTGART | P: +49-711-79082-0 | | | | SHENZHEN | | WOLFSBURG | P: +49-5361-27647-10 | | | | | P: +86-755-25904886 | Italy: | | | | | Taiwan: | | NSK ITALIA S.P.A. | | | | | TAIWAN NSK PRECISION CO., LTD. | | MILANO | P: +39-299-5191 | | | | TAIPEI ☆
TAICHUNG | P: +886-2-2772-3355 | Netherlands: | | | | | | P: +886-4-2708-3393 | NSK EUROPEAN DISTRIBUTION C | ENTRE B V | | | | TAINAN | P: +886-6-215-6058 | TILBURG | P: +31-13-4647647 | | | | India: | _ | Poland: | 101 10 1017047 | | | | NSK BEARINGS INDIA PRIVATE LTD | | NSK REPRESENTATIVE OFFICE | | | | | CHENNAI ☆ | P: +91-44-2847-9600 | WARSAW | P: +48-22-645-1525 | | | | MUMBAI | P: +91-22-2838-7787 | Russia: | 1.140 22 040 1020 | <a< td=""><td>s of December 2019</td></a<> | s of December 2019 | | JAMSHEDPUR | P: +91-657-2421144 | NSK POLSKA SP. Z O.O. | | For the latest information, places ref | or to the NCK websit | | GURGAON | P: +91-124-4838000 | SAINT-PETERSBURG | P: +7-812-332-5071 | For the latest information, please ref | er to the Nov website | | | | S/ III VI - I ETETIODOTIO | 1. +7 012 002 0071 | | www.nsk.com | NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections. For more information about NSK products, please contact: - # Handling Instructions for Spherical Roller Bearings # Handling Instructions for Spherical Roller Bearings Thank you for your purchase of NSK Spherical Roller Bearings. We are confident that NSK Spherical Roller Bearings will provide reliable service. Spherical Roller Bearings have been adopted in many mechanical devices because they offer self-aligning and heavy load-carrying capacity. Therefore, in handling of spherical roller bearings, it is necessary to consider both individually and collectively the various factors including bearing structure, shape of shaft, bearing mounting method, and housing. To give you a more complete understanding of how to handle Spherical Roller Bearings, we have published this manual. We hope that you find it useful. # Table of Contents | 1. | Su | mma | ry of Spherical Roller Bearings | 1 | |----|------------|--|---|------------------| | | 1.2
1.3 | Shap
Beari
1.4.1
1.4.2
1.4.3 | e and Shape of Components of Spherical Roller Bearings | 1
2
2
2 | | 2. | Bea | aring | Handling Precautions | 4 | | | | 2.1.1
2.1.2 | Tools, and Measuring Instruments Jigs and Tools Measuring Instruments Site | 4
5 | | | | Preca
2.3.1 | autions When Mounting Bearings Packing of New Bearing Confirmation of Bearing Number | 6
6
6 | | | | 2.3.4 | Measurement of Bearing Clearance Preparation of Jigs to Mount Bearing Parts to Be Used for Adapter, Removable Sleeve a) Adapter b) Removable sleeve c) Lock-washer, lock plate, and nut (1) How to mount lock-washer and lock plate | 7
7
7
8 | | | | | (2) Method to use lock-washer when mounting bearing | 10 | | | | Beari
2.5.1 | autions When Removing Bearings ing Storage Bearing Storage Location How to Store Bearings | 11
11
11 | | 3. | Ме | asure | ement of Bearing Clearance | 12 | | | 3.1 | 3.1.1 | surement of Bearing Clearance Bearing Outside Diameter Is Smaller Than 200 mm Bearing Outside Diameter Is Larger Than 200 mm | 12 | | | 3.2 | Measuring Bearing Clearance When Mounted on Shaft or Sleeve 12 | | |----|-----|--|----------| | | | 3.2.1 Bearing Outside Diameter Is Smaller Than 200 mm | | | | | 3.2.2 Bearing Outside Diameter Is Larger Than 200 mm | | | | 3.3 | Temperature Equilibrium When Taking Measurements14 | F | | 4. | Cle | arance Adjustment When Mounting Bearing on a | | | | | ered Shaft or Sleeve14 | ļ | | | | | | | 5. | Qui | ck Reference for Bearing Mounting and Dismounting 17 | , | | 6. | Bea | ring Mounting17 | , | | | 6.1 | Required Preparation for Mounting the Bearing17 | , | | | 6.2 | Bearing Mounting Work17 | , | | | | 6.2.1 Hammer Method | , | | | | 6.2.2 Press Method | } | | | | 6.2.3 Heat Method |) | | | | a) Oil heating tank method |) | | | | b) Bearing heater method |) | | | | 6.2.4 When an Adapter Is Used22 |) | | | | a) Lock nut method |) | | | | b) Hydraulic nut method | } | | | | c) Oil injection method | ; | | | | 6.2.5 When Using Removable Sleeve |) | | | | a) Lock nut method | 7 | | | | b) Hydraulic nut method | 7 | | | | c) Oil injection method |) | | | | 6.2.6 When Mounting a Bearing Directly on Tapered Shaft |) | | | | a) Lock nut method |) | | | | b) Hydraulic nut method | 2 | | 7. | Dis | nounting the Bearing34 | ı | | | | | | | | | Procedure for Bearing Dismounting | | | | 7.2 | How to Disassemble the Bearing | | | | | 7.2.1 How to Use the Special Puller | | | | | | | | | | 7.2.3 Nut Method | | | | | 7.2.4 Press Method | | | | | 7.2.5 Hydraulic Nut Method | | | | | 7.2.0 On injection Method | , | | 8. | Ch | cking of Shaft and Housing42 | | | | 8.1 | Checking of Shafts42 | <u>.</u> | | | | 8.1.1 Cylindrical Shaft | | | | | 8.1.2 Tapered Shaft | <u> </u> | | | 8.2 | Checking of Housing43 | } | | | | 8.2.1 Integrated Type Housing43 | \$ | | | | 8.2.2 Split Housing | ļ | | | | | | | 9. Check of Adapter, Removable Sleeve, Nut, Lock-washer and Lock plate | 45 | |--|----| | 9.1 Check of Adapter and Removable Sleeve | | | 9.3 Check of Lock-washer and Lock plate | | | 10. Check of Damaged Bearing | 46 | | 10.1 Investigation of Damaged Bearings | | | 11. Precautions When Assembling the Machine | 46 | | 11.1 Confirmation of Sustaining by Bearing | 46 | | 11.2 Lubrication and Piping for Lubrication | | | 11.3 Mount of Seal | 46 | | 12. Operation Check | 46 | | 13. Maintenance Check | 47 | | 13.1 Maintenance Check and Remedies for Abnormalities | 47 | | 13.2 NSK Bearing Monitor (Bearing failure detecting device) | 47 | | 13.3 Damage of Bearing and Measures | 47 | | 14. Presentation of Products | 50 | | Bearing Heater | 50 | | Bearing Monitor | 51 | | Hydraulic Nut | 52 | # 1. Summary of Spherical Roller Bearings #### 1.1 Name and Shape of Components of Spherical Roller Bearings #### 1.2 Shape of Bearing Bore #### 1.3 Bearings with Self-Aligning Capability As shown in Fig. 1.5, the spherical roller bearing has an outer ring whose raceway is spherical and the center of curvature matches that of the bearing. Thus, inner ring, rollers and cage can be inclined (self-aligning property) relative to the outer ring. The permissible self-aligning angle of a Spherical Roller Bearing varies depending on the dimensional series, loading conditions, but with a usual load, it is approximately 1° to 2.5°. NSK #### 1.4 Bearing Mounting Conditions # 1.4.1 When shaft is cylindrical and bearing bore is cylindrical Example using lock-washer Fig. 1.6 Example using lock plate Fig. 1.7 # 1.4.2 When shaft is tapered and bearing bore is tapered | Example using lock-washer | Fig. 1.8 | |--|-----------| | Example using lock-washer with spacer ring | Fig. 1.9 | | Example using lock plate | Fig. 1.10 | | Example using lock plate with spacer ring | Fig. 1.11 | Fig. 1.6 Cylindrical shaft, lock-washer Fig. 1.8 Tapered shaft, lock-washer Fig. 1.10 Tapered shaft, lock plate Fig. 1.7 Cylindrical shaft, lock plate Fig. 1.9 Tapered shaft, lock-washer (with spacer ring) Fig. 1.11 Tapered shaft, lock plate (with spacer ring) # 1.4.3 When the shaft is cylindrical and sleeve (adapter or removable sleeve) is used Example using lock-washer and adapter sleeve Example using lock-washer and adapter sleeve with spacer ring Fig. 1.12 Fig. 1.13 Example using lock-washer and removable sleeve Example using lock plate and removable sleeve Fig. 1.14 Fig. 1.15 #### 1.4.4 Bearing outer ring and housing Fixed side Fig. 1.16 Free side Fig. 1.17 # 2. Bearing Handling Precautions #### 2.1 Jigs, Tools, and Measuring Instruments Jigs, tools and measuring instruments are necessary to handle bearings. Jigs are required to hoist and carry bearings, mounting/dismounting of lock nut, etc. Measuring instruments are required to measure the bearing clearance, temperature, etc. Let's give some examples of major jigs, tools and measuring instruments. #### 2.1.1 Jigs and Tools Wire, belt for hoisting, hammer, chisel, screw driver, special wrench, special puller, 3-claw puller, hydraulic nut (see Section 14), oil injection
pump, hydraulic press, bearing heater, immersion heater, etc. (**Fig. 2.1**) #### 2.1.2 Measuring Instruments Surface plate, thickness gauge, vernier calipers, outside and inside measurement micrometers, thermometer, taper gauge, sine-bar type taper gauge, etc. (Fig. 2.2) 4 | NSK | 5 #### 2.2 Work Site Select a work place that is as clean as possible. There must be enough space so that bearing parts can be moved about freely. Bearing, bearing accessory, shaft, and handling jig needed to freely movable. Also, working table, surface plate, cleaning tank, bearing heater, oil heating tank, etc. shall be provided. Since jigs, tools and measuring instruments are frequently used, be sure to keep them clean and in order. #### 2.3 Precautions When Mounting Bearings #### 2.3.1 Packing of New Bearing New bearings are packed with an anticorrosive agent. Because if a bearing were to rust, it would prevent proper bearing rotation. As for their dimensional accuracy, bearings are manufactured precisely in units of 0.001 mm (micrometer). As a result, even powdery dust becomes a great obstacle to bearing running. Therefore, do not unpack bearings unless it is necessary. #### 2.3.2 Confirmation of Bearing Number Before using a new bearing, confirm that its bearing number (Brg. No.), which consists of the basic number, appearance symbol and clearance symbol, matches or is equivalent to that of the bearing being removed from the equipment. Confirmation example using 23136KE4C3 #### a) Basic Number (Bearing Series Number + Bearing Bore Number) The bearing series number is the first three digits, which are 231. The bore number is the fourth and fifth numbers, which are 36. #### b) Appearance symbol The symbol consists of the following characters: KE4. where, - K: Indicates that the shape of bore face of bearing inner ring has a tapered bore of 1/12 (K30: this indicates that the shape of bearing bore has a tapered bore of 1/30.) - E4: Indicates that oil groove and oil holes are provided on the outer ring outside. #### c) Clearance symbol The clearance symbol consists of two characters C3. The symbol C3 represents the bearing clearance alone and indicates the "geometrical or real clearance". The geometrical clearance may change depending on the shaft and housing fitting, temperature difference, or its operational condition, after mounting. Confirm that the basic number, appearance symbol, and clearance symbol of the new bearing are identical or equivalent to that of the removed bearing. #### 2.3.3 Measurement of Bearing Clearance After mounting a bearing with tapered bore, the measurement of clearance is important. Bearing clearance and measurement method are described in Section 3, please refer to it. #### 2.3.4 Preparation of Jigs to Mount Bearing Prior to the start of bearing mounting work, examine the steps involved in the mounting method by referring to the drawing and checking the jigs and tools necessary for mounting. Depending on the work, preparation of a special jig may be necessary, thus, preliminary examination must be done. - Prepare jigs, tools, measuring instruments, working table, surface plate, cleaning tank, and bearing heater or oil heating tank. Also, prepare bearings sleeve, shaft, and parts. - Select a clean work site where working table, sur- face plate, cleaning tank, and bearing heater or oil heating tank are provided and heavy material such as bearing, sleeve, shaft, etc. can be safely moved. Jigs, tools, measuring instruments and environment of work site shall be always kept clean to prevent entry of dust. # 2.3.5 Parts to Be Used for Adapter, Removable Sleeve #### a) Adapter The adapter is used to mount the bearing and consists of adapter sleeve, lock nut, lock-washer, lock plate to prevent turning of adapter sleeve and lock nut. (Fig. 2.3 and Fig. 2.4) To mount and dismount the adapter sleeve, it becomes easier when slit is widened slightly with a chisel. (**Fig. 2.5**) To tighten the lock nut, use a special wrench. (**Fig. 2.6**) 6 NSK NSK 7 #### b) Removable sleeve (Fig. 2.4) The removable sleeve is used to mount the bearing. To fix the removable sleeve, the lock nut, end plate or end cap of shaft is used. To remove the bearing, the nut is mounted on the thread of the removable sleeve. #### c) Lock-washer, lock plate, and nut (1) How to mount lock-washer and lock plate As a turning stopper of the lock nut, a lockwasher or lock plate is used. #### Lock-washer #### Procedure 1. Mounting method: With inclined teeth of lock-washer facing away from the bearing side, mate the lock-washer tongue to the key groove or to the slit of the shaft sleeve, then, insert. - 2. Mount the lock nut with its chamfered side facing the bearing's outer circumference side face. - 3. To stop turning of the lock nut, mate one lock-washer tooth to the slit on outside of lock nut, then, bend that tooth with chisel. (Fig. 2.7) Use a lock-washer as a standard for a nominal thread diameter that is smaller than 200 mm. #### Lock plate #### Procedure - Mounting method: for a lock nut which fixes the bearing directly by mounting on the shaft, mate the cutout on outside diameter of lock nut to the key groove of shaft, then, insert the stopper for nut and fix with washer and bolt. - 2. For the lock nut of an adapter sleeve, mate its For the lock nut fixing removable sleeve, mate its cutout on outside to the key groove of sleeve, then, insert the lock plate and fix with washer and bolt. To mount a Spherical Roller Bearing having a tapered bore inner ring, after adjusting the bearing clearance (Fig. 2.9), remove the lock nut temporarily, then, insert lock-washer, when a washer is used. (Fig. 2.10) Then, remount the lock nut. (Fig. 2.8) However, when a lock plate is used, after adjustment of bearing clearance, mate the key groove of shaft or slit of sleeve with the cutout on outside diameter of lock nut, then, insert the stopper for nut. Stopper for nut method is simpler than the lock-washer method. Therefore, the stopper for nut method is used for a large sized sleeves. (Fig. 2.11 and Fig. 2.12) A lock plate is a standard part for applications with a nominal thread diameter larger than 220 mm. #### Nut On the outside of a lock nut with a nominal thread diameter smaller than 200 mm, there are 4 equidistant cutouts. These are used to stop the turning of the lock nut with lock-washer. On the outside of a lock nut with a nominal thread diameter larger than 220 mm, there are 8 equidistant cutouts. And on the seat face of the lock nut corresponding to the cutouts, tapped holes to mount stopper for nut fixing bolts to prevent turning of lock nut are provided. The nut to be used to dismount bearing, being mounted on thread of removable sleeve has 4 equidistant cutouts on outside of nut. The claws of the special wrench fit into the cutouts on outside of each nut when mounting or dismounting the nut. (Fig. 2.6) # (2) Method to use lock-washer when mounting bearing 8 NSK NSK 9 To mount Spherical Roller Bearings having inner ring of tapered bore either on the tapered shaft or the cylindrical shaft using the adapter and when using the lock-washer as the turning stopper of lock nut, the lock-washer shall be inserted between the lock nut and bearing. While working to mount bearing, when the inner ring is pushed in by the lock nut, do it without insertion of lock-washer and mount the lock-washer finally as turning stopper of lock nut. The reason is to avoid breakage of the lock-washer tongue which is subject to big force by the transmission of large torque from nut to seat face of lock-washer if lock nut is turned while lock-washer remains inserted by push-in of inner ring to realize a middle value between minimum and maximum radial internal clearance reduction (specified clearance). By this reason, after adjustment of the specified clearance using directly the lock nut, remove once the lock nut, then, insert the lock-washer and remount the lock nut. At that time, mount position of lock nut displaces by the portion of plate thickness of lock-washer, as the confirming method of correct push-in of inner ring, even under lock-washer inserted state, the method to affix matching marks on lock nut and sleeve or method to measure distance between sleeve end face and nut seat face with vernier calipers is adopted. With those methods, by the portion of plate thickness of lock-washer, matching mark position or measured value varies, it is necessary to devise to correct such variation amount. #### (a) Method to mark matching marks Matching mark may be affixed on any place of lock nut and adapter sleeve. Adopt themethod to anticipate variation amount of matching mark position by mounting of the lock-washer while referring to the center angle of the shaft. The variation amount is calculated by the fol- lowing equation: $$\theta = (t/p) \times 360^{\circ}$$(**Fig. 2.13**) where, p: Thread pitch of lock nut, (mm) - t: Plate thickness of lock-washer, (mm) - θ : Varied amount of matching mark dependingon plate thickness of lock-washer, it is center angle on the mounting shaft, (°) #### (b) Method to measure distance between sleeve end face and nut seating face with vernier calipers Measure the distance between the sleeve end face and nut seating face with vernier calipers. The target value is the measured value less the plate thickness of the lock-washer. $$L = L_0 - t$$(**Fig. 2.14**) where, $L_{\rm 0}$: Measured value of distance between the sleeve end face and lock nut seating face, (mm) t: Plate thickness of lock-washer, (mm) L: Target value, (mm) When the above method is used, you must confirm that the clearance is the specified one by measuring the bearing clearance and using the calculation equation. #### 2.4 Precautions When Removing Bearings Removal of a bearing is done as part of the regular maintenance schedule or when replacement becomes necessary due to an abnormality. When the bearing is replaced based on the maintenance schedule, there is
no special caution but when replacement becomes necessary due to occurrence of an abnormality during operation, it is recommended that you record and collect the following data items as a minimum. [This information is necessary for a thorough investigation into the causes of the problem and to develop effective countermeasures to prevent reoccurrence of the failure.] 1. Collect a sample of the used lubricant (about 200 cm³) and keep it. - 2. Keep the damaged bearing. - Describe any unusual phenomena during the operation. - 4. Describe any symptoms when the abnormality occurred during operation (photos and sketch). #### Preparation of removing jigs and tools Prior to starting the bearing removal operation, check the drawing of the machine to examine dismounting method and its steps and prepare the jigs and tools necessary to do the removal procedure. In some case, the preparation of special tools may become necessary, therefore, a preliminary examination should always be done. #### 2.5 Bearing Storage To prevent rusting, each bearing is treated and packed with an anticorrosive agent, but depending on the environment of the storing place, the effectiveness of the corrosion countermeasures varies greatly. Careful attention is necessary to select a suitable place to keep and stock replacement bearings. #### 2.5.1 Bearing Storage Location Bearings shall be stocked indoors in a place that is not exposed to wind or rain. Also, an indoor environment where temperature and/or humidity is high would be unsuitable for storage, because such a place would deteriorate the anticorrosion effect. Be sure to stock the bearings in a place where environmental temperature variation is small. #### 2.5.2 How to Store Bearings After considering the size and weight of bearing to be stocked, secure enough space and proper carrying equipment to transport the bearing safely. It is recommended to provide proper storing shelves to stock bearings. The lowest tray of the storing shelves shall be at least 30 cm above the floor. Please avoid putting bearings directly on the floor. The anticorrosive effectiveness of the package varies depending on the storing environment, but it is generally effective for about one to three years. Due to some special reason, if storing of the bearing for a longer time, or even up to nearly ten years is necessary, then a special storage method must be used. One such method is to immerse the bearing in a turbine oil which prevents corrosion. ## 3. Measurement of Bearing Clearance For the bearing mounting, the measurement of internal bearing clearance is a most important task. Before handling the bearing and measuring the internal bearing clearance, be sure to wear thin rubber gloves. (If a bearing is touched by a bare hand, the touched part may rust.) When measuring the internal bearing clearance, pay careful attention so that the rollers are positioned correctly. #### 3.1 Measurement of Bearing Clearance To measure only internal bearing clearance, set the bearing standing upright (vertically) on a flat surface, while holding its outer ring with one hand. While paying attention not to incline the inner and outer rings, stabilize the rollers by turning the inner ring to the right and left by about one half to one full rotation. Adjust rollers until one randomly chosen roller of the double rows is positioned to be exactly at the top. Now, the internal clearance is measured with a thickness gauge. The measurement position and measured point vary slightly depending on the size of the outer ring outside diameter. # 3.1.1 Bearing Outside Diameter Is Smaller Than 200 mm Insert the thickness gauge between rollers of 2 rows which have a roller positioned exactly at the top of the bearing and outer ring. Now, measure the internal clearance (Δ_r) . (**Fig. 3.1**) # 3.1.2 Bearing Outside Diameter Is Larger Than 200 mm Insert the thickness gauge between the rollers of the 2 rows, which each have been positioned to be exactly at the top, and outer ring and between 2 rows of bearing at symmetrical position relative to the bearing center, then measure the respective internal clearance of the bearing. (**Fig. 3.2**) For the internal bearing clearance (Δ_r), take that value measured between 2 rows of just top of bearing and outer ring as respectively Δ_{rT1} and Δ_{rT2} and that value measured just at top of the bearing as Δ_{rT} . $$\Delta_{rT} = 1/2 \left(\Delta_{rT1} + \Delta_{rT2} \right)$$ Among internal clearances between 2 rows of rollers that are symmetrical relative to the bearing center and outer ring, take that measurement between 2 rows of rollers of left side respectively as Δ_{rL1} and Δ_{rL2} . The internal clearance on the left side of the bearing is Δ_{rL} : $$\Delta_{rL} = 1/2 (\Delta_{rL1} + \Delta_{rL2})$$ Take that measurement between 2 rows of rollers of right side respectively as Δ_{rR1} and Δ_{rR2} . The internal clearance of the right side of the bearing is Δ_{rR} : $$\Delta_{rR} = 1/2 (\Delta_{rR1} + \Delta_{rR2})$$ The internal bearing clearance (Δ_r) is given by the following equation: $$\Delta_r = 1/2 \left(\Delta_{rT} + \Delta_{rL} + \Delta_{rR} \right)$$ # 3.2 Measuring Bearing Clearance When Mounted on Shaft or Sleeve Basically, the measurement of the clearance is taken when the outer ring of bearing hangs down from rollers. At first, while holding the bearing up- right, rotate the outer ring in the clockwise and counter-clockwise directions by one half to one full rotation until both rows have a randomly chosen roller positioned exactly at the bottom. The clearance is measured with a thickness gauge but the measurement point varies slightly depending on the size of the outer ring outside diameter. # 3.2.1 Bearing Outside Diameter Is Smaller Than 200 mm Insert the thickness gauge between rollers of 2 rows of just at the bottom of the bearing and outer ring and measure the internal clearance (Δ_{rS}). (**Fig. 3.3**) # 3.2.2 Bearing Outside Diameter Is Larger Than Insert the thickness gauge between rollers of 2 rows that are positioned just at the bottom of bearing and outer ring and between 2 rows of bearing rollers symmetrical relative to the bearing center, then, measure the respective internal clearance of the bearing. (**Fig. 3.3**) For the internal bearing clearance (Δ_r), take the measurement when the roller is positioned exactly at the bottom, since the bearing has 2 rows, two values must be measured. The bearing internal clearance is Δ_{rS1} and Δ_{rS2} while that value measured at the exact bottom of the bearing is Δ_{rS} . $$\Delta_{rS} = 1/2 \left(\Delta_{rS1} + \Delta_{rS2} \right)$$ Among internal clearances between 2 rows of rollers symmetrical relative to the bearing center and outer ring, take that value measured between 2 rows of rollers of left side respectively as Δ_{rL1} and Δ_{rL2} and the internal clearance of left side of bearing as Δ_{rL} . $$\Delta_{rL} = 1/2 (\Delta_{rL1} + \Delta_{rL2})$$ The internal clearances measured between 2 rows of rollers on the right side respectively as Δ_{rR1} and Δ_{rR2} . The internal clearance of right side of bearing is Δ_{rR} . $$\Delta_{rR} = 1/2 \left(\Delta_{rR1} + \Delta_{rR2} \right)$$ The internal bearing clearance (Δ_r) is given by the following equation: $$\Delta_r = 1/2 \left(\Delta_{rS} + \Delta_{rL} + \Delta_{rR} \right)$$ 12 | **NSK** # 3.3 Temperature Equilibrium When Taking Measurements To ensure accurate bearing measurement of the internal clearance or dimensions, the temperature of the measurement instrument and that of the components to be measured must be brought to the same temperature. Especially, if the bearing is mounted by using an oil heating tank or induction heater, then measure the internal clearance only after a complete cool down. For example, if a bearing is brought from the warehouse to the measurement place, the temperature of the stored bearing may still be high, thus, if the clearance or dimension were measured without confirming the bearing temperature, the measured value may be wrong. For a large bearing with an outer ring outside diameter that is larger than 400 mm, if a clearance or dimension measurement is necessary, it is recommended to leave the unpacked bearing for about 24 hours on the surface plate, before making a clearance or dimension measurement. Put the end face of the bearing on a surface plate prior to measurement to ensure a measurement with both objects at the same temperature. # 4. Clearance Adjustment When Mounting Bearing on a Tapered Shaft or Sleeve Mount the bearing with its inner ring having a tapered bore to the tapered shaft or sleeve (adapter, removable sleeve). When pushing in the bearing to the tapered shaft or sleeve, the inner ring of bearing is widened resulting in increase of "interference" and reduction of internal clearance. It is important to give proper interference and internal clearance when mounting the bearing. Next, we show the reduction amount of the clearance to achieve the proper mounting. Radial internal clearance of spherical roller bearings Table 4.1 Mounting of spherical roller bearings having tapered bore Table 4.2 When mounting a bearing, each time the bearing is pushed further onto the tapered shaft or sleeve, measure the variation of internal clearance and repeat the above procedure until the clearance reduc- Table 4.1 Radial internal clearances in spherical roller bearings Units: µm | | Nominal E | Bore Dia. | Clearance in Bearings with Cylindrical Bores | | | | | | | | | Clearance in Bearings with Tapered Bores | | | | | | | | | | | |--------|------------|------------|--|------------|------------|------------|------------|------------|------------|------------|------------|--|------------
------------|------|------------|------------|------------|------------|------------|------|--------------| | d (mm) | | C2 | | CN | | С3 | | C4 | | C5 | | C2 | | CN | | С3 | | C4 | | C5 | | | | ı | over | incl. | min. | max. | | 24 | 30 | 15 | 25 | 25 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | 20 | 30 | 30 | 40 | 40 | 55 | 55 | 75 | 75 | 95 | | | 30 | 40 | 15 | 30 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 25 | 35 | 35 | 50 | 50 | 65 | 65 | 85 | 85 | 105 | | | 40 | 50 | 20 | 35 | 35 | 55 | 55 | 75 | 75 | 100 | 100 | 125 | 30 | 45 | 45 | 60 | 60 | 80 | 80 | 100 | 100 | 130 | | | 50 | 65 | 20 | 40 | 40 | 65 | 65 | 90 | 90 | 120 | 120 | 150 | 40 | 55 | 55 | 75 | 75 | 95 | 95 | 120 | 120 | 160 | | | 65 | 80 | 30 | 50 | 50 | 80 | 80 | 110 | 110 | 145 | 145 | 180 | 50 | 70 | 70 | 95 | 95 | 120 | 120 | 150 | 150 | 200 | | | 80 | 100 | 35 | 60 | 60 | 100 | 100 | 135 | 135 | 180 | 180 | 225 | 55 | 80 | 80 | 110 | 110 | 140 | 140 | 180 | 180 | 230 | 100
120 | 120
140 | 40
50 | 75
95 | 75
95 | 120
145 | 120
145 | 160
190 | 160
190 | 210
240 | 210
240 | 260
300 | 65
80 | 100
120 | 100 | 135
160 | 135
160 | 170
200 | 170
200 | 220
260 | 220 | 280
330 | | | 140 | 160 | 60 | 110 | 110 | 170 | 170 | 220 | 220 | 280 | 280 | 350 | 90 | 130 | 130 | 180 | 180 | 230 | 230 | 300 | 300 | 380 | | | | | 00 | | | | | | | 200 | | 000 | | .00 | | .00 | | 200 | | 000 | | 000 | | | 160 | 180 | 65 | 120 | 120 | 180 | 180 | 240 | 240 | 310 | 310 | 390 | 100 | 140 | 140 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | | | 180 | 200 | 70 | 130 | 130 | 200 | 200 | 260 | 260 | 340 | 340 | 430 | 110 | 160 | 160 | 220 | 220 | 290 | 290 | 370 | 370 | 470 | | | 200 | 225 | 80 | 140 | 140 | 220 | 220 | 290 | 290 | 380 | 380 | 470 | 120 | 180 | 180 | 250 | 250 | 320 | 320 | 410 | 410 | 520 | | | 225 | 250 | 90 | 150 | 150 | 240 | 240 | 320 | 320 | 420 | 420 | 520 | 140 | 200 | 200 | 270 | 270 | 350 | 350 | 450 | 450 | 570 | | | 250 | 280 | 100 | 170 | 170 | 260 | 260 | 350 | 350 | 460 | 460 | 570 | 150 | 220 | 220 | 300 | 300 | 390 | 390 | 490 | 490 | 620 | | | 280 | 315 | 110 | 190 | 190 | 280 | 280 | 370 | 370 | 500 | 500 | 630 | 170 | 240 | 240 | 330 | 330 | 430 | 430 | 540 | 540 | 680 | | | 315 | 355 | 120 | 200 | 200 | 310 | 310 | 410 | 410 | 550 | 550 | 690 | 190 | 270 | 270 | 360 | 360 | 470 | 470 | 590 | 590 | 740 | | | 355 | 400 | 130 | 220 | 220 | 340 | 340 | 450 | 450 | 600 | 600 | 750 | 210 | 300 | 300 | 400 | 400 | 520 | 520 | 650 | 650 | 820 | | | 400 | 450 | 140 | 240 | 240 | 370 | 370 | 500 | 500 | 660 | 660 | 820 | 230 | 330 | 330 | 440 | 440 | 570 | 570 | 720 | 720 | 910 | 450 | 500 | 140 | 260 | 260 | 410 | 410 | 550 | 550 | 720 | 720 | 900 | 260 | 370 | 370 | 490 | 490 | 630 | 630 | 790 | | 1000 | | | 500
560 | 560
630 | 150
170 | 280
310 | 280
310 | 440
480 | 440
480 | 600
650 | 600
650 | 780
850 | | 1000
1100 | 290
320 | 410
460 | 410 | 540
600 | 540
600 | 680
760 | 680
760 | 870
980 | | 1100
1230 | | | 300 | 000 | 170 | 010 | 010 | 400 | 400 | 000 | 000 | 000 | 000 | 1100 | 020 | 400 | 400 | 000 | 000 | 100 | 100 | 300 | 300 | 1200 | | | 630 | 710 | 190 | 350 | 350 | 530 | 530 | 700 | 700 | 920 | | 1190 | 350 | 510 | 510 | 670 | 670 | 850 | | 1090 | | | | | 710 | 800 | 210 | 390 | 390 | 580 | 580 | 770 | | 1010 | | | 390 | 570 | 570 | 750 | 750 | 960 | | 1220 | | 1500 | | | 800 | 900 | 230 | 430 | 430 | 650 | 650 | 860 | 860 | 1120 | 1120 | 1440 | 440 | 640 | 640 | 840 | 840 | 1070 | 1070 | 1370 | 1370 | 1690 | | | 900 | 1000 | 260 | 480 | 480 | 710 | 710 | 930 | 930 | 1220 | 1220 | 1570 | 490 | 710 | 710 | 930 | 930 | 1190 | 1190 | 1520 | 1520 | 1860 | | | 1000 | 1120 | 290 | 530 | 530 | 780 | 780 | 1020 | 1020 | 1330 | _ | _ | 530 | 770 | 770 | 1030 | 1030 | 1300 | 1300 | 1670 | _ | _ | | | 1120 | 1250 | 320 | 580 | 580 | 860 | 860 | | 1120 | | _ | _ | 570 | 830 | 830 | 1120 | | 1420 | | | — | _ | | 1 | 1250 | 1400 | 350 | 640 | 640 | 860 | 860 | 1240 | 1240 | 1620 | _ | _ | 620 | 910 | 910 | 1230 | 1230 | 1560 | 1560 | 2000 | — | | tion amount to the specified value listed in the **Table 4.2** is attained. This procedure is called "Clearance adjustment" and when the clearance reduction amount is attained, the clearance necessary for bearing running is secured. The confirmation of the clearance reduction amount by measurement with a thickness gauge is very important. Depending on the method of clearance adjustment, the measured value obtained with the thickness gauge may not be correct. Therefore, the following corrective procedure must be executed. - In case to heat When the temperatures of bearing and shaft are both at the same room temperature, measure again the clearance with the thickness gauge to - In case that a lock-washer is used as a turning stopper of the lock nut.Prior to bending the tooth of the lock-washer confirm that the specified value is secured. Prior to bending the tooth of the lock-washer into cutout of lock nut, measure again the clearance with the thickness gauge to confirm that the specified value is secured. - In case a hydraulic nut is used After removal of the hydraulic nut, mount the lock nut and measure the clearance again to confirm that the specified value remains constant prior to stopping the turning. - 4. In case an oil injection pump is used Drop to zero the pressure of high pressure oil fed from the oil injection pump so that there is no pressure on bearing or sleeve fitted part. Next, measure the clearance with the thickness gauge to confirm that the specified value remains secured. # Radial internal clearance and clearance reduction amount of the bearing to be mounted - When radial internal clearance is CN clearance (normal clearance) - Perform the clearance adjustment while aiming at a middle value between minimum and maximum clearance reduction amount. - When radial internal clearance is C3 or C4 clearance **Table 4.2** Mounting of spherical roller bearings with tapered bores Units: mm | Ŭ | ore Diameter | | n in Radial | | Axial Mo | ovement | Minimum Permissible
Residual Clearance | | | | | |------|--------------|-----------|-------------|-------|----------|---------|---|-------|-------|-------|--| | a (| (mm) | Clea | rance | Taper | 1 : 12 | Taper | 1 : 30 | CNI | 00 | 0.4 | | | over | incl. | min. max. | | min. | max. | min. | max. | CN | C3 | C4 | | | 30 | 40 | 0.025 | 0.030 | 0.40 | 0.45 | _ | _ | 0.010 | 0.025 | 0.035 | | | 40 | 50 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.015 | 0.030 | 0.045 | | | 50 | 65 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.025 | 0.035 | 0.060 | | | 65 | 80 | 0.040 | 0.045 | 0.60 | 0.70 | _ | _ | 0.030 | 0.040 | 0.075 | | | 80 | 100 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | 0.085 | | | 100 | 120 | 0.050 | 0.060 | 0.75 | 0.90 | 1.9 | 2.25 | 0.045 | 0.065 | 0.110 | | | 120 | 140 | 0.060 | 0.070 | 0.90 | 1.1 | 2.25 | 2.75 | 0.055 | 0.080 | 0.130 | | | 140 | 160 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | 0.150 | | | 160 | 180 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | 0.170 | | | 180 | 200 | 0.080 | 0.100 | 1.3 | 1.6 | 3.25 | 4.0 | 0.070 | 0.110 | 0.190 | | | 200 | 225 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | 0.210 | | | 225 | 250 | 0.100 | 0.120 | 1.6 | 1.9 | 4.0 | 4.75 | 0.090 | 0.140 | 0.230 | | | 250 | 280 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | 0.250 | | | 280 | 315 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | 0.280 | | | 315 | 355 | 0.140 | 0.170 | 2.2 | 2.7 | 5.5 | 6.75 | 0.120 | 0.180 | 0.300 | | | 355 | 400 | 0.150 | 0.190 | 2.4 | 3.0 | 6.0 | 7.5 | 0.130 | 0.200 | 0.330 | | | 400 | 450 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | 0.360 | | | 450 | 500 | 0.190 | 0.240 | 3.0 | 3.7 | 7.5 | 9.25 | 0.160 | 0.240 | 0.390 | | | 500 | 560 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | 0.410 | | | 560 | 630 | 0.230 | 0.300 | 3.7 | 4.8 | 9.25 | 12.0 | 0.200 | 0.310 | 0.460 | | | 630 | 710 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0.220 | 0.330 | 0.520 | | | 710 | 800 | 0.280 | 0.370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | 0.590 | | | 800 | 900 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.280 | 0.430 | 0.660 | | | 900 | 1000 | 0.340 | 0.460 | 5.5 | 7.4 | 14.0 | 18.5 | 0.310 | 0.470 | 0.730 | | | 1000 | 1120 | 0.370 | 0.500 | 5.9 | 8.0 | 15.0 | 20.0 | 0.360 | 0.530 | 0.800 | | Remarks The values for reduction in radial internal clearance are for bearings with ${ m CN}$ clearance. For bearings with C3 or C4 Clearance, the maximum values listed should be used for the reduction in radial internal clearance. Perform the clearance adjustment aiming at the maximum clearance reduction amount. # Internal clearance adjustment of tapered-bore bearings Perform the adjustment by measuring the clearance reduction amount with the thickness gauge. - 1. For measurement position and measured point, refer to Section 3.2 of this manual. - 2. To mount a bearing on a tapered shaft, perform each time when the bearing is pushed in by the lock nut, end plate, end cap or hydraulic nut. - 3. When using an adapter sleeve, perform each time when the bearing is pushed in by the lock nut or hydraulic nut. 4. When using a removable sleeve, perform each time when the removable sleeve is pushed in by the lock nut or hydraulic nut. When measuring the clearance during those operations, as the outer ring of bearing is hanging down from of rollers, turn the outer ring to right and left by one half to one full rotation while keeping the bearing in its correct posture. Position one randomly chosen roller from each row of rollers to the exact bottom position. Then, insert the thickness gauge to an appropriate place depending on size of the outer ring outside diameter to measure the internal clearance. For the
clearance adjustment, the measured value of each clearance measurement shall be recorded. Table 5.1 Bearing mounting method | Work | | inner ring
ape | Shaft shape | | Bearing mounting parts | | Major jig tools | Working method | Describing | | |------------------|--------------------------|-------------------|----------------------|---|-----------------------------------|-------------------------------------|--|--|---|-------------------------------------| | VVOIK | Cylindrical Tapered bore | | Cylindrical
shaft | Tapered
shaft | Added content | Part Added content | | for handling | vvorking metriod | Section | | Bearing mounting | 0 | 0 - | | Shaft with shoulder With or without spacer ring With oil duct | | _ | Hammer Press Oil heating tank Bearing heater | Method to use a hammer Method to use press Method to use oil heating tank Method to use bearing heater | 6.2.1
6.2.2
6.2.3 (1)
6.2.3 (2) | | | | _ | 0 | | 0 | Shaft with shoulder With oil duct | With or without spacer ringt | _ | Lock nut Hydraulic nut | Method to use lock nut Method to use hydraulic nut | 6.2.6 (1)
6.2.6 (2) | | | _ | 0 | 0 | _ | Shaft with shoulder | Adapter With or without spacer ring | With or without oil duct | · Lock nut · Hydraulic nut · O.I.P.* | Method to use lock nut Method to use hydraulic nut Oil injection method | 6.2.4 (1)
6.2.4 (2)
6.2.4 (3) | | | _ | 0 | 0 | _ | Shaft with shoulder | Removable sleeve | With or without oil duct | • Lock nut • Hydraulic nut • O.I.P.* | Method to use lock nut Method to use hydraulic nut Oil injection method | 6.2.5 (1)
6.2.5 (2)
6.2.5 (3) | *O.I.P.: oil injection pump Table 5.2 Bearing dismounting method | Work | Bearing i | nner ring
ape | | Shaft sha | ape | Bearing dismo | unting parts | Major jig tools | Mouling mothed | Describing | |-----------------------------|---------------------|------------------|-------------------|---------------|-----------------------------------|-------------------------------------|--------------------------|--|---|----------------------------------| | VVOIK | Cylindrical
bore | Tapered
bore | Cylindrical shaft | Tapered shaft | Added content | Part | Added content | for handling | Working method | Section | | | 0 | _ | 0 | _ | Shaft with shoulder With oil duct | With or without spacer ring | _ | • Special puller • Press • O.I.P.* + special puller | Method to use special puller Method to use press Oil injection method | 7.2.1
7.2.4 | | | - | 0 | _ | 0 | Shaft with shoulder With oil duct | With or without spacer ring | _ | | | 7.2.6 | | Bearing
dismount-
ing | _ | 0 | 0 | _ | Shaft with shoulder | Adapter With or without spacer ring | With or without oil duct | Hammer Special puller Press O.I.P.* + special puller | Method to use hammer Method to use special puller Method to use press Oil injection method | 7.2.2
7.2.1
7.2.4
7.2.6 | | | | | | | Shaft with shoulder | Removable sleeve | With or without oil duct | • Nut • Hydraulic nut • O.I.P.** + removing nut | Method to use nut Method to use hydraulic nut Oil injection method | 7.2.3
7.2.5
7.2.6 | *O.I.P.: oil injection pump ### 5. Quick Reference for Bearing Mounting and Dismounting Before mounting a bearing confirm that the bearing is still usable. When dismounting a bearing, confirm whether the bearing is still usable or is damabed. The bearing mounting operation is basically the method to fit bearing inner ring and shaft shape, but also there are numerous methods depending on size of bearing and shaft, and kind of mounting parts. For dismounting of a damaged bearing, there are even more methods available. Major mounting and dismounting operation methods are listed in **Tables 5.1** and **5.2**. #### 6. Bearing Mounting Spherical roller bearings are mounted by combining the shaft and bearing inner ring. For example, a cylindrical shaft or tapered shaft is combined with a cylindrical bore or tapered bore bearing. Mounting is made using a suitable method. We will explain major mounting methods (**Table 5.1**). # 6.1 Required Preparation for Mounting the Bearing To mount the bearing there are diverse methods listed in **Table 5.1**. Prior to the start of the bearing mounting operation, confirm the bearing mounted condition while referring to the machine structure drawing. Select a suitable method corresponding to your particular situation. Next, prepare the work site, jigs, tools, measurement instruments necessary to do the operation. If there are no suitable jigs or tools, prepare some beforehand. #### **6.2 Bearing Mounting Work** There are different methods to mount the bearing, but the post-mounting treatment is the same. After the bearing mounting is completed, always apply lubricant to the inclined outer ring as a post-mounting treatment. - 1) Application of lubricant - In case of grease - Apply grease to all the rollers no that their surface is covered by grease, then, reset the outer ring tots original position. - In case of lubrication oil Apply lubrication oil to the surface of all the rollers, then, reset the outer ring to its original position. - 2) After completion of lubricant application Cover the bearing with a vinyl sheet etc. to prevent adhesion of powdery dust, etc. #### 6.2.1 Hammer Method (Fig. 6.1) This method is used to mount small bearings when the interference of bearing with shaft is small. Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore #### Procedure - 1. Clean the surface of the shaft on which the bearing will be mounted, then, apply machine oil. - 2. Insert the bearing onto the shaft. - 3. After inserting the bearing, make the contact as even as possible between the chamfered part of inner ring end face of bearing and the bearing mounting place of shaft. The aim is even contact between the flat face of the dolly plate and the end face of the inner ring on the shaft. (**Fig. 6.1** (a)) 16 NSK NSK 17 - 4. When the flat face of the dolly plate is perpendicular to the shaft center, use a hammer to tap the top of the dolly plate on the hammering side. (Fig. 6.1 (b)) - 5. Tap with a hammer until the end face of the inner ring of the advancing direction approaches closely and touches the shoulder of the shaft. - 6. When a lock-washer is used, insert it and mount the lock nut, then, fix it as a turning stopper. - 7. After mounting the bearing, apply lubricant to the bearing and cover it with vinyl sheet to prevent entry of dust. #### 6.2.2 Press Method (Fig. 6.2 and Fig. 6.3) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore #### Procedure - Set upright the shaft and place its lower end on the table of a hydraulic press so that the shaft center mates with that of the ram of hydraulic press. Adjust the height of the guide of hydraulic press and fix the shaft at the lower part of its shoulder. (Fig. 6.2) - 2. Confirm that the moving stroke of hydraulic press ram is sufficient to push-in the bearing. - 3. After making clean the shaft surface on which the bearing will be mounted, apply some machine oil. - 4. Insert the bearing onto the shaft. - 5. Insert the bearing so that the inner ring's chamfered part touches the dolly plate (Fig. 6.3 (a)) as evenly as possible in the advancing direction. The aim is to create even contact between the flat face of the dolly plate and the inner ring end face on the shaft. (Fig. 6.3 (b)) - The top part of dolly plate on the hammering should be in contact with the flat face of the hydraulic ram. At that time, confirm again that the - center of shaft mates with the hydraulic ram. - 6. Activate the hydraulic ram to push-in the bearing. Continue until the inner ring end face touches closely the shoulder of shaft. (**Fig. 6.3** (**c**)) - 7. When a lock-washer is used, insert it and mount the lock nut and fix it as a turning stopper. When a lock plate is used, insert it adjusting its position to the key groove of shaft with cutout on lock nut outside and fix the lock plate with washer and bolt. - 8. After mounting the bearing, apply lubricant to the bearing and cover it with vinyl sheet to prevent entry of dust. #### 6.2.3 Heat Method # a) Oil heating tank method (Fig. 6.4 and Fig. 6.5 (a) (b)) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore #### Procedure - Heat the oil in the tank till 100°C to 110°C. The oil temperature shall be confirmed after sufficient agitation. (When heating the oil, do not raise the oil temperature over 120°C) - 2. Immerse completely the bearing in the heated oil. - 3. Keep the oil temperature in the tank to 100°C to 110°C and leave the bearing immersed till its temperature becomes the same as that of the oil. - The time necessary for temperature of bearing to rise to 100°C to 110°C varies depending on the size of bearing but usually it takes about 30 minutes. - Clean the surface of shaft with cleaning oil to remove dirt. - 6. Take out the bearing from the oil tank and confirm that the bearing temperature is 100°C to 110°C. (To measure the bearing temperature, use a surface contact thermometer.) If the bearing temperature is not yet 100°C to 110°C, immerse again the bearing in the tank until it rises to 100°C to 110°C. - 7. When the bearing temperature attains 100°C to 110°C, take the bearing out from the oil tank, while wearing heat insulating gloves. Next, insert and adjust the bearing to the center of the shaft. When inserting a bearing, if a caught feeling is
felt, remove the bearing immediately and confirm the bearing temperature. If the bearing temperature is not yet 100°C to 110°C, immerse the bearing again in the oil tank until it rises to 100°C to 110°C. Then, insert and adjust the - bearing to the center of the shaft. If insertion is forced beyond when the bearing is felt to be caught, then the bearing may get stuck on the shaft. Not only regular mounting becomes impossible but also removal becomes difficult. - 8. After having inserted the bearing, turn the lock nut with the special wrench to mount the bearing. If the bearing temperatures lowers, increase tightening with lock nut. - 9. If the lock plate is used as turning stopper of lock nut, adjust the key groove of shaft to the cutout of outside of lock nut, then, insert the lock-washer and fix it with the washer and bolt. If the lock-washer is used as turning stopper of lock nut: - 1) When the bearing temperature lowers to room temperature, remove the lock nut. - 2) Put the lock-washer's tongue into the shaft key groove and mount the lock nut. - After adjusting the cutout on the outside of the lock nut to one tooth of the lock-washer, bend the tooth into the cutout by tapping it with chisel and hammer. - After mounting the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of dust. #### b) Bearing heater method (Fig. 6.6) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore #### Procedure - 1. For the heating method using a bearing heater, follow the instructions described in its Operation Manual for heating method and time. - 2. For heating with a bearing heater too, the bearing temperature shall be within the range of 100°C to 110°C. However, the temperature to heat the bearing shall not exceed 120°C. Fig. 6.6 NSK Bearing Heater - Clean the surface of shaft with cleaning oil to remove any dirt. - 4. When the bearing temperature attains 100°C to 110°C, while wearing heat insulating gloves, take the bearing out from the bearing heater, then, insert and adjust the bearing to the center of the shaft. When inserting the bearing, if a caught feeling is felt, remove the bearing immediately and confirm the bearing temperature. If the bearing temperature is not yet 100°C to 110°C, heat it again with the bearing heater until it rises to 100°C to 110°C and then insert and - adjust the bearing to the center of the shaft. (If insertion is forced beyond when a caught feeling is felt, the bearing may become stuck on the shaft. Thus, not only regular mounting becomes impossible but also removal becomes difficult.) NSK - 5. After having inserted the bearing, turn the lock nut with the special wrench to tighten the bearing. If the bearing temperature is lower, increase the tightening of lock nut. - 6. When the bearing temperature lowers till the room temperature, stop turning of the lock nut. If the lock plate is used as a turning stoppers of - lock nut, adjust the key groove of shaft to the cutout on outside of lock nut, then, insert the washer and fix it with the washer and bolt. If the lock-washer is used as a turning stopper of lock nut: - 1) After removal of the lock nut, insert the lockwasher's tongue into the key groove of shaft and mount the lock nut. - After adjusting the cutout on the outside of lock nut to one tooth of the lock-washer, bend the tooth into the cutout by tapping it with chisel and hammer - After mounting the bearing, apply lubricant to it and cover with vinyl sheet to prevent entry of dust #### 6.2.4 When an Adapter Is Used As for shaft types, there are straight shafts without shoulder, shafts with shoulder on which a spacer ring is mounted or not mounted. As for adapter sleeves, there are sleeves with and without oil holes (oil duct). #### a) Lock nut method (Fig. 6.7 to Fig. 6.10) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Tapered bore #### Procedure - Unpack the adapter while wearing clean thin rubber gloves. Put it upright on the surface plate and remove the lock nut mounted on the adapter. - 2. Clean the surface of shaft with clean cleaning oil to remove dirt. - 3. For the shaft with shoulder (**Fig. 6.7** and **Fig. 6.8**), if a spacer ring is needed, mount it. - 4. Mount the adapter sleeve so that its thread comes to the shaft end side. When a spacer ring is needed, insert the adapter sleeve into a bore of shoulder of spacer ring, then, mount. For straight shaft without shoulder (**Fig. 6.9** and **Fig. 6.10**), mount the adapter ring into the bearing mount span position so that its center is on top near the center of the bearing. To mount the adapter sleeve on the shaft, it is made easier by widening a little the slit of adapter sleeve by putting screw driver or chisel into the slit. - 5. After mounting the adapter sleeve, adjust the direction of tapered bore of bearing inner ring to the taper of adapter sleeve and mount the bearing into the adapter sleeve. For a shaft with shoulder and equipped with a spacer ring, mount by letting the inner ring bore end face contact the spacer ring end face. - 6. Mount the lock nut on the adapter sleeve. Advance the lock nut with the special wrench until it touches the bearing inner ring end face. - 7. From the position where the lock nut touches the bearing inner ring end face, with the special wrench, turn further the lock nut and stop at once when the turning torque of special wrench increases For a straight shaft without shoulder, back off the lock nut a little, adjust the position by moving the adapter sleeve to the bearing mounting span position so that the bearing's center comes to it. After position adjustment, turn again the lock nut, and stop at once when the special wrench's turning torque increases. (From this point in time, the clearance adjustment to secure "clearance" necessary to run the bearing starts. Follow the instructions given in Section 4 "Clearance Adjustment When Mounting Bearing on Tapered Shaft or Sleeve".) - 8. Measure the bearing internal clearance and record the measured clearance value. (The clearance measured at that time is called "Measured initial clearance"). - Find the nominal bore and clearance symbol of the bearing being mounted, then confirm the radial internal clearance reduction amount (specified value) listed in **Table 4.2**. - When the bearing radial internal clearance is CN clearance (normal clearance) as the specified value, then aim for the middle value between the minimum and maximum clearance reduction amount. - When the bearing radial internal clearance is C3 or C4 as the specified value, then the maximum clearance reduction amount shall be aimed at. - 10. Turn the lock nut, repeat the operation until the radial internal clearance varies. When the radial internal clearance value starts to vary, record the bearing internal clearance measured at that time. Here, calculate the difference between the measured initial value and this measured value. If the obtained difference is less than the speci- - fied value, repeat this operation until the specified value is obtained. - 11. When the specified value is obtained, prevent turn of lock nut by using either a lock-washer or lock plate. When a lock-washer is used, follow the instructions given in Section 2.3.5 3) (2) "Method to use lock-washer when mounting bearing". When a stopper for nut is used, adjust the stopper for nut so that the cutout on outside of lock nut mates with the slit of adapter sleeve and insert, then, fix the stopper for nut with the washer and bolt. - 12. Upon accomplishment of turning prevention, measure again the bearing internal clearance to confirm that the specified value remains secured. - 13. After mounting the bearing, apply lubricant to it and cover with vinyl sheet to prevent entry of dust. #### b) Hydraulic nut method (Fig. 6.11 and Fig. 6.12) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Tapered bore After execution of Step 1 to 5 of the Procedure in Section 6.2.4 1) Lock nut method, follow the instruction given below. #### Procedure - Mount the hydraulic nut to thread of adapter after adjusting the side face of piston side to the bearing inner ring end face. At that time, confirm that the piston is at position just prior to act. - 7. Connect the hose of oil injection pump to the hydraulic nut. - 8. Press down gently the oil injection pump lever to apply hydraulic oil pressure gradually. When change in the force to press the lever is felt (when an oil gauge is equipped, observe the value indicated by oil pressure gauge), stop at once the pressing and measure the bearing internal clearance ("Measured initial clearance") and record it. (From this point in time, the clearance adjustment to secure the necessary "clearance" to run the bearing starts. Follow the instructions given in Section 4 "Clearance Adjustment When Mounting Bearing on Tapered Shaft or Sleeve".) 9. Find the nominal bore and clearance symbol of the bearing being mounted, then confirm the radial internal clearance reduction amount (specified value) listed in **Table 4.2**. When the bearing radial internal clearance is CN clearance (normal clearance) as the specified value, then aim for the middle value between the minimum and maximum clearance reduction amount. When the bearing radial internal clearance is C3 or C4 as the specified value, then aim for the - maximum clearance reduction amount. - 10. Press again gently the lever of oil injection pump, repeat the operation until the radial internal clearance varies. When the radial internal clearance value starts to vary, record the bearing internal clearance measured at that time, then, calculate the difference between the measured initial value and this measured value. If the obtained difference is less than the specified value, push the bearing into the sleeve with a hydraulic nut, stop at once the pump and measure the bearing internal clearance to confirm the clearance reduction amount, and repeat this operation until the
specified value is obtained. When the clearance reduction amount becomes close to its minimum or maximum value, feed the hydraulic nut a little to obtain the specified value. Pay attention not to exceed the specified value by excessive feed of the hydraulic nut. (If the clearance reduction amount exceeds the specified value, it may cause too big an interference or too small a clearance which results in breakage of bearing inner ring and finally abnormal temperature rises or seizure may happen during bearing running.) To measure the clearance for the confirmation of the specified value, at first drop the hydraulic oil pressure to zero, then, measure. - 11. When the specified value is obtained, disconnect the oil injection pump hose and remove the hydraulic nut. - 12. Mount the lock nut and fix its turning stopper. When a lock plate is used, adjust the lock plate so that the cutout on outside of lock nut mates with the slit of adapter ring and insert, then, fix the lock plate with the washer and bolt. When a washer is used, follow the instructions given in Section 2.3.5 3) (2) Method to use washer when mounting bearing". - 13. Upon accomplishment of turning prevention, measure again the bearing internal clearance to confirm that the specified value remains secured. - 14. After mounting the bearing, apply lubricant to it and cover with vinyl sheet to prevent entry of dust. #### c) Oil injection method (Fig. 6.13 and Fig. 6.14) When oil hole (oil duct) is provided on adapter sleeve > Shaft shape : Cylindrical shaft Bearing inner ring bore shape : Tapered bore Among the adapter sleeves, there are some that have oil holes (oil duct). (**Fig. 2.3**) Their purpose is to make easier the bearing mounting/dismounting operation. The method is to inject high pressure oil to the oil hole (oil duct) of adapter sleeve when mounting or dismounting the bearing. To execute large bearing mounting by the above said Section 6.2.4 1) "Lock nut method", insert the bearing into the adapter sleeve mounted on the shaft and push the bearing in with the lock nut. To adjust the clearance, when turning the lock nut, it is necessary to apply a big force by a special wrench. To reduce the required turning torque, high pressure oil is fed between fitted face of adapter sleeve and bearing by connection of the oil injection pump hose to the oil hole (oil duct) of the adapter sleeve in order to reduce the torque necessary to turn the lock nut by reduction of friction at the fitted face and expansion of bearing inner ring. As cautions for the bearing mounting operation, it is necessary to work with a closely fitted face between adapter sleeve and bearing. The reason is to prevent reduction in the effect of the high pressure oil due to leak from the fitted face. #### Procedure After execution of Step 1 to 10 of the Procedure in Section 6.2.4 1) Lock nut method, then execute the following steps. 11. Connect the oil injection pump hose to the oil hole (oil duct) of adapter sleeve. Start the pump, at the same time turn the lock nut with the special wrench and push the bearing into the adapter sleeve. - 12. After insertion, measure the bearing internal clearance. When the radial internal clearance value varies, record that measured value and calculate the difference between the measured initial value and this value measured. - If the obtained difference is less than the specified value, push the bearing into the sleeve by turning the lock nut with the special wrench while running the oil injection pump until the specified value is obtained. Then stop the pump and measure the bearing internal clearance to confirm the clearance reduction amount, and repeat this operation. - As a caution for this operation, to measure the clearance for the confirmation of the specified value, at first drop the hydraulic oil pressure to zero, then, measure. - 13. When the specified value is obtained, disconnect the oil injection pump hose from the hydraulic nut and stop turning of the lock nut. - When a lock plate is used. Adjust the lock plate so that the cutout on - outside of the lock nut mates with the slit of adapter sleeve and insert the stopper for nut, then, fix the lock plate with the washer and bolt. - When a lock-washer is used (For more detail, follow the instructions given in Section 2.3.5 3) (2) "Method to use lockwasher when mounting bearing".) - Remove at once the lock nut and place the lock-washer's tongue into the slit of the shaft key way to push in, then, place the lock nut and adjust the washer's tooth into the slit on outside of lock nut and bend he tooth of washer into it to stop turning. - 14. Upon accomplishment of turning prevention, measure again the bearing internal clearance to confirm that the specified value remains secured. - 15. After mounting the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of dust. #### 6.2.5 When Using Removable Sleeve #### a) Lock nut method (Fig. 6.15 and Fig. 6.16) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Tapered bore #### Procedure - Unpack the removable sleeve, and while wearing clean thin rubber gloves, remove the anticorrosion oil applied onto the removable sleeve with clean cleaning oil. - 2. Clean the surface of shaft with clean cleaning oil to remove dirt. - 3. For the shaft with shoulder, if a spacer ring is needed, mount it. - 4. Insert the bearing putting the larger diameter side of inner ring tapered bore to the shaft end side and push in until the inner ring end face touches the shaft shoulder or spacer ring end face. - 5. Put the removable sleeve so that its thread comes to the shaft end side then insert it as close as possible to the bearing after adjusting it to the bearing inner ring tapered bore. When inserting the removable sleeve into the bearing, adjust the bearing side so that the top end of the removable sleeve does not hit too strongly against the bearing inner ring end face. - 6. Mount the lock nut on the shaft and fix it to the place where the lock nut end face touches the removable sleeve end face. - 7. Turn slowly the lock nut with a special wrench to insert the removable sleeve into the bearing. Immediately, stop the feeding of the lock nut when the special wrench's turning torque changes, and measure the bearing internal clearance ("Measured initial clearance") and record it. (From this point in time, follow the instructions in Section 4 "Clearance Adjustment When Mounting Bearing on Tapered Shaft or Sleeve".) - 8. Find the nominal bore and clearance symbol of the bearing being mounted, then confirm the radial internal clearance reduction amount listed in **Table 4.2**. - When the bearing radial internal clearance is CN clearance (normal clearance), aim the radial internal clearance reduction amount (specified value) for the middle value between minimum and maximum clearance reduction amount. When the bearing radial internal clearance is C3, C4, then aim the specified value for the maximum clearance reduction amount. - 9. Turn again slowly the lock nut to push the removable sleeve into the bearing and measure the bearing clearance. Repeat this operation until the bearing clearance starts to vary. When the bearing clearance value starts to vary, record the bearing internal clearance measured at that time and calculate the difference between the measured initial value and this measured value. - 10. If the obtained difference is less than the specified value, continue to perform clearance adjustment until the specified value is obtained. - 11. When the specified value is obtained, prevent turning of the lock nut using either a washer or stopper for nut. - When a lock plate is used Adjust the lock plate so that the cutout on outside of lock nut mates with the key groove of shaft and insert, then, fix the lock plate with the washer and bolt. - When a washer is used (Follow the instructions given in Section 2.3.5 3) (2) "Method to use washer when mounting bearing".) - Remove the lock nut, insert the washer's tongue into the shaft key groove, remount the lock nut, then, bend one tooth of the washer into the cutout on the outside of lock nut to stop turning. - 12. Upon accomplishment of turning prevention, measure again the bearing internal clearance to confirm that the specified value remains secured. - After mounting the bearing, apply lubricant to it and cover with vinyl sheet to prevent entry of dust. #### b) Hydraulic nut method (Fig. 6.17 and Fig. 6.18) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Tapered bore After execution of Steps 1 to 5 of the Procedure of the above Section 6.2.5 1) "Lock nut method" perform the following steps. #### Procedure - 6. Mount the hydraulic nut on the thread of shaft in placing the nut piston side end face to the sleeve end face. At that time, confirm that the piston is in the right position. (before operated) - 7. Connect the oil injection pump hose to the hydraulic nut. - 8. Press down gently the lever of oil injection pump to apply hydraulic oil pressure gradually. When there is a change in the force necessary to press the lever (when the oil gauge is equipped, observe the indicated oil pressure value), stop at once pressing and measure the bearing internal clearance ("Measured initial clearance") and record it. - After recognizing the nominal bore and clearance symbol of the bearing being mounted, confirm the radial internal clearance reduction amount (specified value) listed in **Table 4.2**. - When the bearing radial internal clearance is CN clearance (normal clearance), aim the radial internal clearance reduction amount (specified value) for the range between the minimum and maximum clearance reduction amount. When the bearing radial internal clearance is C3 or C4, aim the specified value for the maximum clearance reduction amount. - 9. Press again gently the oil injection pump lever, repeat this operation until the radial internal clearance starts to vary. When the radial internal
clearance value starts to vary, record the bearing internal clearance measured at that time. (From this point in time, follow the instructions of Section 4 "Clearance Adjustment When Mounting Bearing on Tapered Shaft or Sleeve".) - Calculate the difference between the measured initial value and this measured value. - 10. If the obtained difference is less than the specified value, repeat the clearance adjustment. When the clearance reduction amount becomes close to the specified value, feed the hydraulic nut a little to obtain the specified value. Pay attention not to exceed the specified value by excessive feed of the hydraulic nut. (If the clearance reduction amount exceeds the specified value, it may cause excess interference or too little clearance which results in breakage of the bearing inner ring and finally abnormal temperature rise or seizure may happen during bearing running.) - 11. When the specified value is obtained, drop the hydraulic oil pressure to zero, then, after confirming again that the specified value remains constant, disconnect the hose of oil injection pump from the hydraulic nut and remove the lock nut. - 12. Mount the lock nut on the thread of shaft and fix the removable sleeve, then, stop its turning. - When a lock plate is used After mounting the leak put After mounting the lock nut, insert the lock plate in the cutout on outside of lock nut and into the key groove of the shaft and fix the lock plate with the washer and bolt. - When a lock-washer is used - Follow the instructions given in Section 2.3.5 3) (2) "Method to use washer when mounting bearing". Insert the washer's tongue into the shaft key groove, mount the lock nut, adjust the cutout on outside of lock nut to the tooth of washer, then, bend the tooth of washer to prevent turning. - 13. Upon accomplishment of turning prevention, measure again the bearing internal clearance to confirm that the specified value remains constant 14. After mounting the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of dust. #### c) Oil injection method (Fig. 6.19 and Fig. 6.20) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Tapered bore On the end face of the removable sleeve, an oil hole (oil duct) is provided. The purpose is to make easier bearing mounting/dismounting by injecting high pressure oil to the oil hole (oil duct) of the removable sleeve when mounting or dismounting the bearing in reducing the friction on the fitted face of the bearing and shaft and expanding the bearing inner ring by high pressure oil. As for the method, high pressure oil is fed to the oil hole of the sleeve when mounting or dismounting the bearing. As the method to fix the removable sleeve, use either an end plate or end cap. To fix this end plate or end cap, screw bolts into the screw holes that are provided on the shaft end. Therefore, mounting of washer or stopper for nut is not necessary. (When shaft nuts are mounted, direct mounting becomes impossible, since a lock nut covers the sleeve end face. For this reason, the use of an end plate or end cap is adopted to fix the sleeve.) Clearance adjustment is performed by tightening mounting bolts to fix the end plate or end cap. When turning the mounting bolts, application of a big torque by the wrench is necessary. To reduce the required turning torque, high pressure oil is fed between fitted faces of sleeve, bearing and shaft by connection of the oil injection pump hose to the oil hole (oil duct) of the removable sleeve (by reduction of friction on fitted faces and expansion of bearing inner ring with high pressure oil.) Here we explain, as a representative example, about the removable sleeve. The side end face of the thread has an oil hole. #### Procedure Follow Steps 1 to 5 of the Procedure of the above Section 6.2.5 1) Lock nut method. Next, do the following steps. 6. To allow connection of the oil injection pump hose, adjust the cutout on external circumference of end plate or end cap to the oil hole on removable sleeve end face and mount the end plate or end cap on the shaft with fixing bolts. (If spring washers are used for fixing bolts, insert the spring washers.) To screw fixing bolts, it is important to tighten each bolt as equally as possible. At first, tighten provisionally and evenly all the fixing bolts. And choose a bolt at random and tighten it until turning torque of wrench becomes a little heavier, then, tighten another bolt opposite to it to the - same degree of tightness. Upon tightening accomplishment of the opposite bolt, tighten other bolts at a nearly perpendicular position or nearly opposite to the same degree of tightness. - 7. Upon accomplishment of even tightening of all the bolts, measure the bearing internal clearance and record the "Measured initial clearance". - Tighten again evenly all the bolts and push the removable sleeve into the bearing. Then, measure the bearing internal clearance. Repeat this operation until the bearing internal clearance starts to vary. - When the bearing internal clearance starts to vary, record the clearance value measured at that time. - 10. Connect the oil injection pump hose to the oil hole (oil duct) on the sleeve. - 11. Find the "nominal bore and clearance symbol" of the bearing, then confirm the radial internal clearance reduction amount (specified value) listed in **Table 4.2**. When the bearing radial internal clearance is CN clearance (normal clearance) as the specified value, then aim for the middle value between the minimum and maximum clearance reduction amount. When the bearing radial internal clearance is C3 of C4 as the specified value, then aim for the maximum clearance reduction amount. Calculate the difference between the measured initial clearance and the clearance measured in Step 9. If the obtained difference is less than the specified value, while running the oil injection pump and at the same time, turn the fixing bolts, push the bearing and into the removable sleeve and measure the bearing internal clearance until the specified value is attained. - 12. When the specified value is obtained, reduce the oil pressure of the oil injection pump to zero and measure again the clearance to confirm that the specified value is obtained, then, disconnect the oil injection pump hose. - 13. If fixing bolt has a hole in its head to stop turning, pass the wire through this hole to stop bolt turning. - 14. After mounting the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of dust. # 6.2.6 When Mounting a Bearing Directly on Tapered Shaft #### a) Lock nut method (Fig. 6.21 and Fig. 6.22) Shaft shape: Tapered shaft (including the case where the oil hole (oil duct) is provided on the shaft) Bearing inner ring bore shape: Tapered bore #### Procedure - 1. Clean the surface of shaft with clean cleaning oil to remove dirt. - 2. Insert the bearing while adjusting its inner ring bore taper to the shaft and mount it so that the bearing is placed as close as possible against the shaft (For shaft having shoulder and when it requires a spacer, at first mount the bearing without inserting the spacer.) - 3. Mount the lock nut to the position where it touches the bearing inner ring end face. - 4. Turn the lock nut with the special wrench, when increase in turning torque is felt, measure the bearing internal clearance and record the measured initial clearance. Turn again the special wrench then measure the bearing internal clearance. Repeat this operation until the measured initial clearance value starts to vary. When a change in clearance appears, measure that value and calculate the difference between the measured initial clearance value and that value measured. Read the corresponding bearing clearance reduction amount (specified value) from **Table 4** 2 If the corresponding bearing clearance reduction amount is not yet attained, turn further the lock nut and repeat the clearance adjustment until the specified value is obtained. - 5. When the specified value is obtained - (a) In case of no spacer ring (Fig. 6.21 and Fig. 6.22) - To use stopper for nut as a turning stopper Adjust the cutout on outside of lock nut to the key groove of shaft. Insert the stopper for nut to this position and fix it with the washer and bolt. To use the washer as turning stopper of lock nut (For more detail, follow the instructions given in Section 2.3.5 3) (2) "Method to use washer when mounting bearing".) Remove the lock nut temporarily, and place the washer's tongue into the slit of the shaft key way to push in, then place the lock nut and adjust the washer's tooth into the slit on outside of lock nut and bend the tooth of washer into it to stop turning. Measure the bearing internal clearance and confirm the specified value. After mounting of the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of dust (b) When a spacer ring is used (Fig. 6.23 and Fig. 6.24) Measure the distance (L_0) between the end face of shaft shoulder and bearing inner ring end face at each position on the circumference which is equally divided into 8 pitches. Next, calculate the mathematical mean value of the measured dimensions. Now, measure the width of the spacer ring at each of the same eight equalpitch positions. Next, calculate the mathematical mean value of the spacer ring width. And compare the mathematical mean value of the above distance and that of spacer ring width. If the mathematical mean value of the measured spacer ring width is the same as that of the distance between the end face of shaft shoulder and bearing inner ring end face, use them as they are. If the mathematical mean value of Fig. 6.21 Assembly view (without spacer ring) Rearing Lock-washer Lock nut Key way Fig. 6.22 Method to use lock nut measured spacer ring width is larger than that of distance between the end face of shaft shoulder and the bearing inner ring end face, at first machine the spacer ring to reduce its width
till attaining the mean value, then, use the machined spacer ring. If the mathematical mean value of the measured spacer ring width is smaller than that of distance between the end face of shaft shoulder and bearing inner ring end face, such a spacer ring cannot be used. Prepare a new spacer ring with a size that is equal to the mean value of the distance. - After confirming the status of the spacer ring, perform the following steps. - 6. Remove the lock nut. - 7. After removal of the bearing, mount the spacer ring. - 8. Here, perform the following operation regarding the method to stop turning of the lock nut. - When using a lock plate Mount the bearing, lock nut. Fix securely the bearing with the lock nut. At that time, adjust the cutout on lock nut outside to the key groove of shaft. Insert the lock plate to that position and fix it with the washer and bolt. When using a lock-washer Mount the bearing, washer and lock nut. Insert the washer tongue into the key groove of shaft and mount the lock nut. At that time adjust the cutout on lock nut outside to any one of teeth of washer. Bend the tooth of washer into the cutout on lock nut outside to stop turning of lock nut. After mounting of the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of dust. #### b) Hydraulic nut method (Fig. 6.25 and Fig. 6.26) Shaft shape: Tapered shaft (including the case where oil hole (oil duct) is provided on the shaft) Bearing inner ring bore shape: Tapered bore #### Procedure - Clean the surface of shaft with clean cleaning oil to remove dirt. - 2. Insert the bearing while adjusting its inner ring bore taper to the shaft and mount it so that the bearing is placed as close as possible against the shaft. - 3. Mount the hydraulic nut to the thread of shaft so that its piston side contacts the bearing inner ring end face. - 4. Connect the hose of the oil injection pump to the hydraulic nut. - 5. Start the oil injection pump, and when a change in the force necessary to press the pump lever is felt (when the hydraulic oil pressure rises), stop it at once, and measure the bearing internal clearance ("Measured initial clearance") then, record it. - 6. Repeat this operation until the measured initial clearance value starts to vary. When change - 7. Calculate this difference between the measured initial clearance value and this measured value. Then, confirm the corresponding reduction in clearance (specified value) referring to **Table 4.2**. - 8. Repeat this operation until the specified value is obtained. - 9. When the specified value is obtained, stop the oil injection pump to reduce hydraulic oil pressure to zero and confirm again that the clearance is at the specified value. - 10. Disconnect oil injection pump hose, then, remove the hydraulic nut. - 11. Mount the lock nut and stop its turning. - When using a lock plate as a turning stopper of a lock nut - Mount the lock nut and tighten the bearing with a lock nut. At that time adjust the cutout on outside of lock nut to the key groove of shaft. Insert the stopper for nut to this position and fix it with the washer and bolt. - When using a lock-washer as a turning stopper of lock nut Insert the washer's tongue into the shaft key groove and mount the bearing with the lock nut. At that time, adjust the cutout on outside of lock nut to any one of teeth of washer. Bend the tooth of washer into the cutout on outside of lock nut in order to stop its turning. - 12. After mounting of the bearing, apply lubricant to it and cover with a vinyl sheet to prevent entry of #### 7. Dismounting the Bearing #### 7.1 Procedure for Bearing Dismounting The bearing dismounting operation is basically the reversed sequence of the mounting operation. But compared to the mounting operation, due to changes that occur in the used bearing as a fitted part, a much bigger force is required to dismount it. For this reason, it is very important to examine beforehand the procedure and to prepare the necessary jigs and tools. It is also important to ask the machine manufacturer for advice on how to dis- mount the bearing from the machine. As for the bearing dismounting operation, the dismount starts from the respective state listed in **Table 5.2** "Bearing mounting operation" of Section 5 "Quick Reference for Bearing Mounting/Dismounting Operation Method". (a) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore (b) Shaft shape: Cylindrical shaft using sleeve (adapter, removable) Bearing inner ring bore shape: Tapered bore (c) Shaft shape: Tapered shaft Bearing inner ring bore shape: Tapered bore Comfirm the state of the bearing to be dismounted. Prepare the necessary jigs and tools. When ready, start the dismounting operation. #### 7.2 How to Disassemble the Bearing For the method using the commonly used special puller (**Fig. 7.1**) among the dismounting jigs and tools, refer to **Fig. 7.2**. The structure of the special puller consists of * main face plate with push-in bolt, split face plates, mounting frame and 4 bolts and nuts as shown in the said Figure. (* Sometimes the hydraulic jack driving force is used after mounting the hydraulic jack between the shaft and main face plate instead of using a push-in bolt.) The basic procedure is as follows: - Insert the mounting frame after fixing 4 bolts to the back side of bearing (opposite side of shaft end). - (To do so, the diameter of the part on which split face plates are mounted shall be larger than the - outside diameter of the bearing to be dismounted.) (Fig. 7.2 (a)) - 2. Mount each split face plate between mounting frame and bearing. At first apply the end face of protruded part on bore of split face plates to the bearing inner ring end face, connect the shaft with 2 split face plates. (Fig. 7.2 (b), (c)) For the bearing mounted with spacer ring, place the protruded part's end face on the split face plate's bore against the spacer ring end face that is opposite to the shaft end side, and connect the shaft with the 2-split face plates. - 3. Mount the split face plates on the mounting frame. (Fig. 7.2 (d)) - 4. Pass 4 bolts through the main face plate and mount nuts. (**Fig. 7.2** (e)) - 5. Set the push-in bolt of main face plate to the center of shaft, and turn gently the 4 nuts so that the main face plate becomes parallel with the mounting frame. (**Fig. 7.2** (e)) - 6. Turn the push-in bolt. When a big change in the turning torque is felt, the bearing starts to move, continue the operation to remove the bearing. (When the bearing is removed from the shaft, split face plates may fall, so pay attention to - avoid this problem.) - Remove the special puller and remove the bearing. - Clean the surface of shaft from which the bearing is removed to remove dirt and apply anticorrosion oil to it. #### 7.2.1 How to Use the Special Puller (Fig. 7.3) When the bearing mounted condition is as follows, a method using a special puller is adopted. - (a) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore - (b) Shaft shape: Cylindrical shaft using an adapter sleeve Bearing inner ring bore shape: Tapered bore - (c) Shaft shape: Tapered shaft Bearing inner ring bore shape: Tapered bore In the above cases, start the operation after having removed the turning stopper for the shaft lock nut and adapter sleeve lock nut to allow loosening of the lock nut. In case of (a) After removal of the lock nut, mount the special puller, then, turn the push-in bolt to dismount the bearing. (Remarks: For big bearings, the main plate without a push-in bolt is used. Instead, mount a hydraulic jack between the main face plate and bearing, operate it to dismount the bearing.) In case of (b) or (c) After loosening the lock nut of shaft or that of adapter sleeve, return till 1/2 long of thread of shaft or adapter sleeve. (This step is to prevent the bearing falling off from the shaft when it is pulled out by the special puller) Then, mount the special puller, turn the pushin bolt to separate the bearing inner ring from the adapter sleeve or from the shaft. After complete separation is confirmed, remove the special puller. Remove the lock nut of shaft or that of adapter sleeve, then remove the bearing. The remaining adapter sleeve shall be removed after widening the slit with a screw driver, etc. Also, after cleaning the lock nut, adapter sleeve and shaft, be sure to apply an anticorrosive agent. #### 7.2.2 Hammer Method (Fig. 7.4) When the bearing mounted condition is as follows, a method that uses a hammer is adopted. Shaft shape: Cylindrical shaft using adapter sleeve Bearing inner ring bore shape: Tapered bore This method applies a guide jig called a "dolly plate" to the end face of the larger bore diameter side of the bearing inner ring. Next, you hammer this dolly plate with a hammer to remove the bearing. This method is used for small bearings which have an inner ring bore that is smaller than 80 mm. It is recommended to use a dolly plate having an appropriate shape and size in the hammering operation. When a dolly plate is used, put it on the side face of the larger bore diameter side of the bearing inner ring, then, hammer it. It is most important that the dolly plate have a shape that ensures a close contact with the bearing side face even when it is hammered. # Procedure (Case 1: In case of straight shaft **Fig. 7.4** (a)) - 1. Remove the turning stopper of adapter sleeve lock nut and loosen once the lock nut till about one half of thread length of adapter sleeve, then, return a little. - 2. Put the dolly plate on the end face of the bearing inner ring of the larger bore diameter side so that it is on the outside diameter of the adapter sleeve. - 3. Hold the dolly plate by hand and contact it closely to the larger diameter side end face of bearing inner ring, then, hammer the dolly plate. - 4. Even when no movement is observed on the bearing, at first hammer the dolly plate along the circumference of bearing
inner ring while chang- - ing position of the dolly plate. - 5. When hammering the circumference of bearing inner ring by one turn, increase hammering force and continue it in the same way. - 6. After the displacement of bearing is confirmed, remove the lock nut and remove the bearing completely. - 7. Remove the retaining adapter sleeve after widening its slit slightly by inserting a flat-head screw driver or the like. - 8. After cleaning the lock nut, adapter sleeve and shaft, apply an anticorrosive agent. # Procedure (Case 2: When spacer ring is used **Fig. 7.4** (b)) - 1. Remove the turning stopper of the adapter sleeve lock nut and loosen the lock nut till about 1/2 of thread length of adapter sleeve, then, back it off a little. - 2. Put the dolly plate on the seat face of the lock nut. - 3. Hammer the center of the dolly plate to move the lock nut together with the adapter sleeve. - When the adapter sleeve starts to move together with the lock nut, hammer the dolly plate until the adapter ring touches the spacer ring. - 5. Remove the lock nut and washer, then, remove the bearing. - 6. Remove the retaining adapter sleeve after widening the slit slightly by inserting a flat-head screw driver. Finally remove the spacer ring. - 7. After cleaning the lock nut, adapter sleeve and shaft, apply an anticorrosive agent. #### 7.2.3 Nut Method (Fig. 7.5) The nut method is adopted when the bearing to be mounted is as follows: Shaft shape: Cylindrical shaft using a removable sleeve Bearing inner ring bore shape: Tapered bore #### Procedure - 1. Remove the turning stopper from the lock nut and remove the lock nut. - 2. Mount the nut on the thread of the removable sleeve and advance it until it touches the bearing inner ring end face. - 3. Turn the nut with a special wrench. When the turning torque of the wrench increases, then the movement of the removable sleeve starts. After a while, the turning torque of the wrench decreases. - Confirm the separation of the bearing from the removable sleeve. - 4. Remove the removable sleeve and remove the bearing. - 5. Remove the lock nut, removable sleeve, shaft and nut. Clean them and apply an anticorrosive agent. #### 7.2.4 Press Method (Fig. 7.6) This method uses a press (hydraulic press, mechanical press, etc) instead of a special puller. As an example of a press (hydraulic press), see the photo in Subsection 2.1.1. of Section 2 "Bearing Handling Precautions". The basis of this method is to put a sustainer underneath the lower part of the bearing to sustain it on the table and then press the shaft side with the hydraulic ram in order to remove the bearing. Therefore, the shaft side is in a hung state when the bearing is held by the sustaining jig on the press table. At that time, secure space for the press pushing stroke between the lower side of hung shaft end and the press base. #### Cautions when using a press At first, check the shaft length on which bearing is to be mounted, because the distance between the table and the base of the press determines whether this method is a possible option. To mount an integrated assembly of shaft with bearing, perform following operations: - (a) Mount correctly the bearing mounted part on the press table. To accomplish it, use an appropriate sustaining jig. - (b) Mount the integrated unit so that the shaft center mates exactly with the ram center. - (c) Make necessary arrangement beforehand to prevent shaft damage by dropping. For example, it could fall off when the bearing is separated from the shaft. When the bearing mounted condition is as follows, the press method can be adopted. - (a) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore - (b) Shaft shape: Cylindrical shaft using adapter sleeve Bearing inner ring bore shape: Tapered bore (c) Shaft shape: Tapered shaft Bearing inner ring bore shape: Tapered bore #### For case (a) Procedure - Remove the turning stopper from the lock nut and loosen the lock nut, then, set the integrated assembly of shaft and bearing on the hydraulic press table. At that time, arrange so that the upper face of hydraulic press table comes underneath the bearing to be dismounted. - 2. Insert the sustaining jig under the bearing. - 3. After the integrated assembly of shaft and bearing are set up and hang down from the hydraulic press table onto the sustaining jig, adjust so that the shaft center mates with the ram center of hydraulic press by moving the sustaining jig. Also, secure the space for the press pushing stroke between the hung shaft end and the press base. - 4. After confirming that the bearing sustaining jig touches the bearing inner ring end face closely, fix the bearing sustaining jig. - 5. After removal of the lock nut, activate the hydraulic ram to push the shaft. After a while, when the shaft starts to move slowly, the shaft separates from the bearing. After removal of the bearing from the shaft, remove the shaft from the press. - After cleaning the lock nut and shaft, apply anticorrosion treatment. #### Case (b) or (c) Procedure - Remove the turning stopper from the lock nut of shaft or that of adapter sleeve and return it till about one half of thread length of shaft or adapter sleeve. - 2. Mount the integrated assembly of shaft and bearing on the hydraulic press table. At that time, arrange so that the upper face of the hydraulic press table comes underneath the bearing to be removed. - Insert the sustaining jig under the bearing, when the spacer ring is used, insert the sustaining jig under it. - 4. After the integrated assembly of shaft and bearing are set up and hang from the hydraulic press table on the sustaining jig, adjust so that the shaft center mates with the ram center of hydraulic press by moving the sustaining jig. And secure space for the press pushing stroke betwenn the hung shaft end and the press base. - 5. After confirming that the bearing sustaining jig touches the bearing inner ring end face closely, fix the bearing sustaining jig. - 6. Activate the hydraulic ram to push the shaft. After a while, the shaft starts to move slowly, the shaft separates from the bearing. At that time when the shaft falls down as the lock nut is loosened, never touch the shaft or bearing while the press is working. - 7. Remove the lock nut of shaft or that of adapter sleeve, then, remove the bearing from the shaft. - 8. Remove the shaft from the press. - 9. Remove the retaining sleeve after widening its slit slightly with a flat-head screw driver. If a spacer ring is used, remove it. 10. After cleaning the lock nut, adapter sleeve, spacer ring and shaft, apply an anticorrosive agent. #### 7.2.5 Hydraulic Nut Method (Fig. 7.7) When the bearing mounted condition is as follows, the method to use hydraulic nut is adopted Shaft shape: Cylindrical shaft using removable Bearing inner ring bore shape: Tapered bore #### Procedure - 1. Remove the turning stopper from the lock nut and remove the lock nut. - 2. Mount a hydraulic nut having a matching size with the thread of removable sleeve. At that time, confirm that the piston of hydraulic nut is at the position just prior to action. Mount it in with the piston side facing the bearing side, then, adjust the position so that the hydraulic nut piston end face touches the bearing inner ring end face. - 3. Connect the hose of the oil injection pump to the hydraulic nut. NSK - 4. Start the oil injection pump. The piston end face of hydraulic nut starts to protrude to push the bearing inner ring end face. Then, a pop sound is produced when the bearing is separated from the removable sleeve. - 5. After confirming that the bearing is separated from the removable sleeve, remove the injection oil pump hose and remove the hydraulic nut. - 6. Remove the removable sleeve and remove the bearing. - 7. After cleaning the lock nut, removable sleeve and shaft, apply an anticorrosive agent. #### 7.2.6 Oil Injection Method (Fig. 7.8) When the bearing mounted condition is as follows, the method that uses an oil injection pump can be adopted. - (1) When the oil hole (oil duct) is provided on the shaft - (a) Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Cylindrical bore - (b) Shaft shape: Tapered shaft Bearing inner ring bore shape: Tapered bore #### Procedure - Remove the turning stopper from the lock nut and remove the lock nut in case of the cylindrical shaft. (Fig. 7.8 (a)) In case of the tapered shaft (Fig. 7.8 (b)), return the nut until about 1/2 of thread length of lock nut mounting thread. - 2. Mount the special puller. At that time, secure space around the shaft end to allow connection of oil injection pump hose to the oil hole of shaft. - 3. Turn the push-in bolt, continue to turn until its turning torque increases. - 4. Connect the hose of oil injection pump to the oil hole of shaft and make ready the pump for action - 5. Turn the push-in bolt until reaching a state where the turning torque constantly increases, then start the oil injection pump. After a while, either a sound is heard or hydraulic oil of pump starts to ooze out from the fitted part of shaft and bearing. When the state becomes such, turn the push-in bolt of the special puller and separate the bearing from the shaft. During this operation, let the pump continue to work. Prepare for the possibility of hydraulic oil oozing out from the fitted part of shaft and bearing, by placing an oil pan underneath to catch any dripping oil. (If hydraulic oil drops directly on the floor, it may create a safety hazard.) - 6. In case of the cylindrical shaft, after removal of the hose of oil injection pump and special puller, remove the bearing. In case of the tapered shaft, after removal of the oil injection pump hose and special puller, remove the lock nut, then, remove the bearing. - 7. After cleaning the lock nut and shaft, apply an anticorrosion treatment. (2) When the oil hole (oil duct) is provided on the adapter sleeve Shaft shape: Cylindrical shaft Bearing inner
ring bore shape: Tapered bore In the case of an adapter sleeve (**Fig. 7.8** (**c**)), a special puller can be used jointly. Basically, perform the procedure of Section 7.2.1. "Special puller method" but with the only differences being the connection and action of the oil injection pump. The operation shall be performed by turning the push-in bolt of the special puller while letting the pump run. #### Procedure - After removal of the turning stopper from lock nut, back it off about 1/2 of the lock nut thread length. (This is to prevent dropping of the bearing when it is pulled out by a special puller from the shaft.) - 2. Then, mount the special puller and turn the push-in bolt until an increase in the turning torque is felt. - 3. Connect the oil injection pump hose to the oil hole of the adapter sleeve, and prepare the pump for action. - 4. Turn the push-in bolt until reaching a state where the turning torque constantly increases, then start the oil injection pump. After a while, either a sound is heard or the hydraulic oil of the pump starts to ooze out from the fitted part of shaft and bearing. When the state becomes such, turn the push-in bolt of the special puller and separate the bearing from the shaft. During this operation, let the pump continue to run. - Since hydraulic oil might ooze out from the fitted part of shaft and bearing, place an oil pan to catch any dripping oil. (If hydraulic oil drops directly on the floor, it creates a safety hazard.) - 5. When the bearing becomes movable, confirm that the bearing inner ring is completely separated from he adapter sleeve. - 6. Remove the hose of the oil injection pump and remove the special puller. - 7. After removal of the lock nut and bearing, remove the adapter sleeve. - 8. After cleaning the lock nut, adapter sleeve and shaft, apply anticorrosive agent. - (3) When the oil hole (oil duct) is provided on the removable sleeve. Shaft shape: Cylindrical shaft Bearing inner ring bore shape: Tapered bore Mount a nut on the removable sleeve to remove the bearing. Basically, perform the procedure of Section 7.2.3. "Nut method", with the only difference being the connection of the oil injection pump hose to the sleeve. When performing this operation, turn the nut mounted on the removable sleeve while letting the pump run. #### Procedure - After removal of the mounting bolts, remove the end cap or end plate. - 2. Mount the nut to the removable sleeve and turn the nut until its turning torque increases. - 3. Connect the oil injection pump hose to the oil hole of the adapter sleeve, and make ready the pump for action. - 4. Turn the nut and when the turning torque increases, start the oil injection pump. After a while, either a sound is heard or hydraulic oil of the pump starts to ooze out from the fitted section between the shaft and bearing. When such a state is achieved, turn the nut and separate the bearing from the shaft. - During this operation, let the pump continue to work. When the hydraulic oil oozes out from the fitted section between the shaft and bearing, place an oil pan to catch any dripping oil. (If hydraulic oil drips directly on the floor, it creates a safety hazard.) - 5. When the bearing becomes movable, confirm that the bearing inner ring is completely separated from the removable sleeve. - 6. Remove the oil injection pump hose, then, remove the nut and removable sleeve. - 7. Remove the bearing. When the spacer ring is used, remove it. - Clean the nut, removable sleeve, spacer ring, shaft and end cap or end plate and its mounting holts Next, apply an anticorrosive agent. #### 8. Checking of Shaft and Housing #### 8.1 Checking of Shaft #### 8.1.1 Cylindrical Shaft - (1) Dimensional check of shaft - Measure the shaft size at the place where the bearing will be mounted to confirm that the bearing size is correct. The measurement positions are shown in **Fig. 8.1**. Use an outside micrometer. - (2) Observation of the shaft outside surface Observe the surface of shaft where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. - When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. - When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. - When there is stepped wearing After the dimensional measurement of the shaft, decide whether correction is possible. - (3) Anticorrosive agent After completion of check, apply an anticorrosive #### 8.1.2 Tapered Shaft - (1) Check of shaft shape - Measure the shape of shaft where the bearing will be mounted to confirm that its shape is correct. The measurement positions are shown in **Fig. 8.2**. As for the measurement instrument, use a taper gauge (sine bar system). (**Fig. 2.2** and **Fig. 8.2**) - (2) Observation of the shaft outside surface Observe the shaft surface where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. - When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. - When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. (In this case if the zone to be corrected is wide, it is necessary to inspect the shape of the tapered part by using a taper gauge. The inspection method is: apply a thin coat of bluing over the entire surface of taper gauge bore face, insert it slowly after adjusting the taper gauge to the shaft center tapered shaft, then, do a run-in by moving back-and-forth. Then, pull the taper gauge out slowly when adjusting - to the shaft center. Observe where blue dye is attached to the surface of tapered shaft. If the blue ares is bigger than 80%, the shaft may be reused. When using a taper gauge (sine-bar type), follow the instructions given in the Operation Manual issued by the manufacturer). - When there is stepped wearing After the dimensional measurement of the shaft, decide whether correction is possible. - (3) Anticorrosive agent After completion of check, apply an anticorrosive agent. #### 8.2 Checking of Housing #### 8.2.1 Integrated Type Housing - (1) Check of bore size of housing - Measure the housing bore size where the bearing will be mounted to confirm that the size is correct. The measurement position is shown in **Fig. 8.3**. As for the measurement instrument, use an inside micrometer. (2) Observation of housing bore face Observe the surface of the housing bore where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. - When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. - When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. - When there is stepped wearing (Fig. 8.5) After the dimensional measurement of the housing bore, decide whether correction and reuse is possible. In this case, if the measured value of the housing bore is within its tolerance, remove the stepped worn part with oil stone and/or sand paper, etc. and smoothen the surface, then, reuse. If the stepped wearing is severe, either plate or apply thermal spraying to reconstitute to the correct housing size before reusing. - (3) Anticorrosive agent After completion of check, apply an anticorrosive agent. #### 8.2.2 Split Housing (1) Check of the housing bore size In case of a split housing, assemble correctly the housing without bearing, and measure its bore dimension at the place where the bearing will be mounted to confirm that the dimension is correct. The measurement position is shown in **Fig. 8.4** (a). As for the measurement instrument, an inside micro-meter shall be used. (2) Observation of housing bore face Observe the surface of the housing bore where the bearing was mounted to check whether there are scratches, dents, rust or stepped wearing. - When there are scratches, dents Round edge with oil stone and/or sand paper to smoothen the surface. - When there is rust Remove rust with oil stone and/or sand paper to smoothen the surface. - When there is stepped wearing (Fig. 8.5) After the dimensional measurement of the housing bore, decide whether correction is possible. In this case, if the measured value of housing bore is within its tolerance, remove the stepped worn portion with oil stone and/or sand paper, etc. and smoothen the surface, then, reuse. - When the stepped wearing is severe If the stepped wearing is severe, either plate or apply thermal spraying to reconstitute to the correct housing size and reuse. - When there is a step As step may occur at the joining part of the split halves housing, confirm whether there is a step. - If a step is found, correct it in the way as shown in Fig. 8.4 (c). - (3) Anticorrosive agent After completion of check, apply an anticorrosive agent. # 9. Check of Adapter, Removable Sleeve, Nut, Lock-washer and Lock plate #### 9.1 Check of Adapter and Removable Sleeve After removal of adapter or removable sleeve, check the appearance as follows: - Check whether there are crushed thread ridges or rust in thread vallies. - Check whether there are scratches, dents, rust or uneven wearing on bore and outside surface. - Check whether there are deformation or chips in the slit. - (1) Thread If crushed thread ridges or rust in thread vallies are found, do not reuse. - (2) Bore and outside surface - When there are scratches If scratches are found, round the edge with oil stone and/or sand paper etc. and smoothen the surface, then, reuse. - When there are dents If the dents are severe, do not reuse. If dents are slight, round edge with oil stone and/or sand paper etc. and make it smooth, then, reuse. - When rust is found Remove rust with oil stone and/or sand paper etc. and smoothen the surface, then, reuse. - When uneven wearing is found If uneven wearing is found, do not reuse. - (3) Slit agent. If deformation or chips are found in slit, do not reuse. (4) Anticorrosive agent After completion of check, apply an
anticorrosive #### 9.2 Check of Nut After removal of lock nut and nut, check the appearance as follows. - Check whether there are crushed thread ridges or rust in thread vallies. - Check whether there are scratches, dents, rust or uneven wearing on end face. - Check whether there is deformation at the cutout of the outside. - (1) Nut threads If crushed thread ridges or rust in thread vallies are found, do not reuse. - (2) Nut end face - When scratches are found If scratches are found, round edge with oil stone and/or sand paper etc. in order to smoothen the surface, then, reuse. When dents are found If dents are severe, do not reuse. If dents are slight, round edge with oil stone and/or sand paper etc. to smoothen the surface, then, reuse. When rust is found When rusting is severe, do not reuse. But if rust is slight, remove rust with oil stone and/or sand paper etc. and smoothen the surface, then, reuse. - When uneven wearing is found If uneven wearing is found, do not reuse. - (3) Cutout of nut outside If deformation is found on cutout, do not reuse. (4) Anticorrosive agent After completion of check, apply an anticorrosive agent. #### 9.3 Check of Lock-washer and lock plate Check lock-washer or lock plate, when chips or severe deformation is found, discard them and use new ones. 44 NSK NSK 45 #### 10. Check of Damaged Bearing #### 10.1 Investigation of Damaged Bearings If a damaged bearing is found, investigate its cause by examination of records and phenomena observed during operation, condition of residual lubricant when bearing was dismounted, appearance photo or sketch, check results of shaft and housing, that of sleeve (adapter, removable sleeve) to find out the cause of damage and record it, and take countermeasures to prevent reoccurrence. When investigating the cause of damage, refer to the "New Bearing Doctor" (CAT. No. E7005) issued by NSK. #### 10.2 Results of Damage Investigation If the results of damage investigation reveal that the shaft, housing, sleeve and nut mounted on the bearing are normal, mount a new spare bearing. Repair the faulty part as determined by the damage investigation to prevent any reoccurrence. # 11. Precautions When Assembling the Machine As precautions when mounting bearings into a machine, the following items shall be followed. #### 11.1 Confirmation of Sustaining by Bearing In general, a shaft is sustained by two bearings which are mounted in the housing. When the bearing rotates, temperature difference is caused between the shaft and housing and the shaft expands. By this reason, it is designed that among two bearings one is fixed to the housing (fix side) and another is movable (free side) as the shaft elongates. (**Fig. 1.16** and **Fig. 1.17**) When mounting the bearing in the housing on the free side, confirm that there is a mounting clearance in the axial direction relative to the bearing width dimension. #### 11.2 Lubrication and Piping for Lubrication Follow the instructions given by the machine manufacturer regarding the kind and amount of lubricant. When the lubricant is oil Apply lubricant to surface of all the rollers of the bearing. For oil bath lubrication or drip oil lubrication, secure the required oil level. The oil level shall be set so that half of the bearing's lowest roller is immersed in the oil. • When the lubricant is grease Pack the bearing with enough grease. Then, apply grease evenly to housing walls. Pack grease in the free space surrounding the rollers as follows according to operating speed of application as follows: For bearings in applications operating at less than 50% of the bearing limiting speed, pack grease from one half to two-thirds of the free space. For bearings in applications operating at more than 50% of the bearing limiting speed, pack grease from one-third to one half of the free space. The housing space volume excludes the shaft and bearing. (Note: For the limiting speed, refer to the NSK General Catalog: "Rolling Bearings".) Oil Lubrication Piping (Tubing): Confirm that there are no metallic wear particles or debris (dust, contaminants, etc.) within the piping. Inspect the piping to ensure that portions or sections of the pipe have not become clogged, crushed, or damaged. #### 11.3 Mount of Seal When handling the seal to be mounted in the housing, pay attention not to damage the seal lip. And when mounting it to the housing, pay attention to the seal direction and avoid deforming it. #### 12. Operation Check After mounting the bearing, in order to confirm that its mounting is correct, check it by running the machine. As the machine running method, for a small machine, turn shaft by hand and confirm that the shaft turns smoothly and that there is no abnormality. Check if the bearing gets caught during turning, has uneven roration torque or produces an abnormal running noise. - Caught during turn occurs often when there are scratches or dents on bearing or foreign matter. This problem may also be caused by faulty mounting. - Faulty mounting may cause uneven torque. The cause may be too small of a bearing clearance, mounting error, friction of seal, etc. - If abnormal noise is heard while running, its cause may be contact between an object and a rotational part. Other possible causes include caught foreign matter or improper lubricant or not enough lubricant. If any of the above listed states are observed, determine the cause and remedy it. If the operation of the machine continues without confirming the cause of abnormality, a serious accident related to the bearing may happen. Therefore, when any abnormality is found, be sure to investigate the cause even if it requires dismounting the machine again to remove the cause. If no abnormality is found by a running test by manual turning then, perform an operation test by turning with its motive force. The power operation may be done for the unit alone or after mounting in the machine. In both cases, start the operation with no load at a low speed, and if no abnormality is observed, then increase the speed gradually and confirm at each step that there is no abnormality. Power operation test check items: - (1) Whether there is abnormal noise or vibration while running. - (2) Measurement of bearing temperature to detect abnormal temperature rise while running. The abnormal noise while running shall be checked using a stethoscope or an electronic bearing monitor. The bearing temperature is generally measured on the outside face of the housing. For oil lubrication, the bearing outer ring temperature may be directly measured through the oil hole of the oil supplying system. The bearing temperature starts to rise gradually from the start of operation and usually reaches a stabilized state after 1 to 3 hours of operation. If the bearing clearance is too small, then mounting is wrong or sealing device has excessive friction. If there is too much or too little lubricant, the bearing temperature suddenly rises and results in an abnormal high temperature. If an abnormal temperature rise is found during operation, stop the operation immediately and inspect the machine. If required, dismount and check the bearing. As long as abnormal temperature rise or abnormal noise or vibration are not observed, increase the speed gradually till the rated speed is reached. If abnormal noise, vibration of rotating part and abnormal temperature rise of bearing are not observed, then the operation test is OK. For large machines, a running test by manual turning is not possible, so the test is done by power operation. In this case, perform on a stand-alone unit or with the unit mounted in a machine. It is recommended to test the unit alone, since it is easy to make an emergency stop if any abnormality occurs. As for the operation, start with no load at low speed. After starting, turn the power OFF immediately and let it coast by inertia. During running by inertia, check for abnormal noise using a stethoscope or an electronic bearing monitor. For the power operation test, similarly to that of small machine, check for abnormal noise or vibration of rotating part, or abnormal temperature rise of the bearing. The bearing temperature is generally measured on the outer face of the housing. As the power operation method, at first start with no load at low speed. At that time when running by inertia, as long as no abnormal sound or vibration is observed, increase gradually till reaching the specified speed. As for the bearing temperature, in case of oil lubrication, check for leaks or foul smells. discoloration of lubricant. If there is no abnormal noise or vibration of rotating part, and the bearing temperature measurement does not show abnormal temperature rise, the operation test is OK. In case of high speed, if the rotating sound of the bearing is heard through the stethoscope, then an abnormality such as high metallic tone, specific sound or irregular sound may be heard. The cause may be poor accuracy of shaft or housing, entry of foreign matter, damage of bearing, etc. and improper selection of lubrication method, thus, review of lubrication method may become necessary especially when the machine specification is modified to enable high speed operation. #### 13. Maintenance Check # 13.1 Maintenance Check and Remedies for Abnormalities In order to keep the performance of bearing in a good state, periodic maintenance and checks are indispensable. Regular maintenance and inspection of bearings allow trouble prevention, more reliable operation, increased productivity and better economical performance. The maintenance shall be systematically executed in accordance with a maintenance schedule appropriate to the actual machine operating conditions. Proper maintenance shall be executed after establishing the maintenance schedule or procedure for monitoring the operating conditions, check and change of lubricant, periodic inspection of the machine after dismounting, necessary working days, method, etc. As for
inspection items during operation, be sure to check running sound, vibration, temperature of bearing while operating and state of lubricant. If any abnormality is found during operating, determine its cause by referring to **Table 13.1** and take measure. If needed, dismount the bearing to investigate. For the dismounting procedure, refer to the previous Section 7 "Bearing dismounting method". # 13.2 NSK Bearing Monitor (Bearing failure detecting device) It is very important to predict abnormality of bearing. The NSK Bearing Monitor features an indicator of the running bearing condition. It generates an alarm and/or stops the machine automatically when any abnormality is detected. This function serves to prevent accidents and streamline the maintenance. # (See Section 14 "Presentation of Products".) **13.3 Damage of Bearing and Measures** In general, when the bearing is correctly handled, it can be used until its fatigue life but occasionally it may break prematurely. Such premature damage is called failure or accident to distinguish it from the fatigue life. Premature damage is often caused by insufficient consideration given to fundamentals such as mounting, handling, lubrication, entry of foreign matter from outside, insufficient examination of thermal influence of shaft, housing. Examples of damaged bearings include scoring on race ring of spherical roller bearing, shortage, improper lubricant, defective oil supply/discharge system, entry of foreign matter, error in bearing mounting or excessive bend of shaft, etc. And several of these factors may jointly contribute to the bearing trouble. Therefore, it may be difficult to determine the real cause of the trouble merely by investigating the damaged bearing. It is often possible to prevent a reoccurrence of similar trouble by gaining a complete knowledge of the machine on which the bearing was used, operating conditions, the structure surrounding the bearing, the situation before and after the trouble occurred. (See **Table 13.2**). For more details, see "New Bearing Doctor" (CAT. No. E7005) issued by NSK. Bearing damages and measures are described in "New Bearing Doctor". Table 13.1 Causes of and measures for operating irregularities | Ir | rregularities | Possible Causes | Measures | | | |---|-------------------------|---|--|--|--| | | | Abnormal load | Improve the fit, internal clearance, preload, position of housing shoulder, etc. | | | | | Loud Metallic
Sound | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method. | | | | | | Insufficient or improper lubricant | Replenish the lubricant or select another lubricant. | | | | | | Contact of rotating parts | Modify the labyrinth seal, etc. | | | | Noise | Loud Regular | Flaws, corrosion, or scratches on raceways | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | Sound | Brinelling | Replace the bearing and use care when handling bearings. | | | | | | Flaking on raceway | Replace the bearings. | | | | | | Excessive clearance | Improve the fit, clearance and preload. | | | | | Irregular
Sound | Penetration of foreign particles | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | | | Flaws or flaking on roller | Replace the bearing. | | | | | | Excessive amount of lubricant | Reduce amount of lubricant, select stiffer grease. | | | | | | Insufficient or improper lubricant | Replenish lubricant or select a better one. | | | | Abnor | mal Temperature | Abnormal load | Improve the fit, internal clearance, preload, position of housing shoulder. | | | | | Rise Incorrect mounting | | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting, or mounting method. | | | | | | Creep on fitted surface, excessive seal friction | Correct the seals, replace the bearing, correct the fitting or mounting. | | | | | | Brinelling | Replace the bearing and use care when handling bearings. | | | | | Vibration | Flaking | Replace the bearing. | | | | (A | Axial runout) | Incorrect mounting | Correct the squareness between the shaft and housing shoulder or side of spacer. | | | | | | Penetration of foreign particles | Replace or clean the bearing, improve the seals. | | | | Leakage or
Discoloration of
Lubricant | | Too much lubricant. Penetration by foreign matter or abrasion chips | Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts. | | | Table 13.2 Causes and measures for bearing failures | Type of Failure | Probable Causes | Measures | | |--|---|---|--| | Flaking Flaking of one-side of the raceway of radial bearings. | Abnormal axial load. | A loose fit should be used when mounting the outer ring of free-end bearings to allow axial expansion of the shaft. | | | Flaking of the raceway in symmetrical pattern. | Out-of-roundness of the housing bore. | Correct the faulty housing. | | | Flaking near the edge of the raceway and rolling surfaces. | Improper mounting, deflection of shaft, inadequate tolerances for shaft and housing. | Use care in mounting and centering, select a bearing with a large clearance, and correct the shaft andhousing housing shoulder. | | | Flaking of raceway with same spacing as rolling elements. | Large shock load during mounting, rusting while bearing is out of operation for prolonged period. | Use care in mounting and apply a rust preventive when machine operation is suspended for a long time. | | | Premature flaking of raceway and rolling elements. | Insufficient clearance, excessive load, improper lubrication, rust, etc. | Select proper fit, bearing clearance, and lubricant. | | | Premature flaking of duplex bearings. | Excessive preload. | Adjust the preload. | | | Type of Failure | Probable Causes | Measures | |--|---|--| | Scoring Scoring or smearing between raceway and rolling surfaces. | Inadequate initial lubrication, excessively hard grease and high acceleration when starting. | Use a softer grease and avoid rapid acceleration. | | Scoring or smearing between the end face of the rollers and guide rib. | Inadequate lubrication, incorrect mounting and large axial load. | Select proper lubricant and modify the mounting. | | Cracks Crack in outer or inner ring. | Excessive shock load, excessive interference in fitting, poor surface cylindricality, improper sleeve taper, large fillet radius, development of thermal cracks and advancement of flaking. | Examine the loading conditions, modify the fit of bearing and sleeve. The fillet radius must be smaller than the bearing chamfer. | | Crack in rolling element.
Broken rib. | Advancement of flaking, shock applied to the rib during mounting or dropped during handling. | Be careful in handling and mounting. | | Fractured cage. | Abnormal loading of cage due to incorrect mounting and improper lubrication. | Reduce the mounting error and review the lubricating method and lubricant. | | Indentations Indentations in raceway in same pattern as rolling elements. | Shock load during mounting or excessive load when not rotating. | Use care in handling. | | Indentations in raceway and rolling elements. | Foreign matter such as metallic chips or sand. | Clean the housing, improve the seals, and use a clean lubricant. | | Abnormal Wear False brinelling (phenomenon similar to brinelling) | Vibration of the bearing without rotation during shipment or rocking motion of small amplitude. | Secure the shaft and housing, use oil as a lubricant and reduce vibration by applying a preload. | | Fretting | Slight wear of the fitting surface. | Increase interference and apply oil. | | Wearing of raceway, rolling elements, rib, and clearance. | Penetration by foreign matter, incorrect lubrication, and rust. | Improve the seals, clean the housing, and use a clean lubricant. | | Creep | Insufficient interference or insufficient tightening of sleeve. | Modify the fit or tighten the sleeve. | | Seizure Discoloration and melting of raceway, rolling elements, and ribs. | Insufficient clearance, incorrect lubrication, or improper mounting. | Review the internal clearance and bearing fit, supply an adequate amount of the proper lubricant and improve the mounting method and related parts. | | Electric Burns Fluting or corrugations | Melting due to electric arcing. | Install a ground wire to stop the flow of electricity or insulate the bearing. | | Corrosion & Rust Rust and corrosion of fitting surfaces and bearing interior | Condensation of water from the air, or fretting. Penetration by corrosive substance (especially varnish-gas, etc). | Use care in storing and avoid high temperature and high humidity, treatme for rust prevention is necessary when operation is stopped for long time. Selection of varnish and grease. | #### 14. Presentation of Products Here we introduce some NSK products to be used when handling bearings. #### ☆ Bearing Heater A bearing heater is used in the shrink fitting and mounting
operations. #### Feature • Fast, uniform heating Induction heating reduces bearing mounting time and cost. No oil tanks required Since no oil is necessary, it is free from spills and other messes, and environmentally-friendly. Bearings prelubricated with grease can be heated cleanly and simply. Safety It is in conformity with CE Standard and UL Standards. Safe operation Since there are no flames, there is no fire hazard, and an internal circuit breaker guards against electrical short. Compact and light Most NSK Bearing Heaters are light enough to be carried easily and used any where. Automatic temperature control A thermostat control can be set at any temperature up to $250^{\circ}\mathrm{C}$. When the desired level is reached, a buzzer sounds and constant temperature is maintained. Automatic demagnetizing When the heating is finished, the bearing is quickly and automatically demagnetized. Horizontal guide After heating, the bearing can be taken out easily by sliding along the guide. Versatility Besides bearings, other metallic rings such as inner ring spacers can also be heated for shrink fitting or for other purposes. #### **Composition of Bearing Heater Model Numbers** | | а | | | b | | | |-----|------|-----|---------|-------|-------|--| | С | apac | ity | Voltage | | | | | 01: | 1.0 | kVA | 10: | 100 V | class | | | 03: | 3.3 | kVA | 20: | 200 V | class | | | 06: | 6.6 | kVA | 40: | 400 V | class | | | 11: | 11.8 | kVA | | | | | | 23: | 23 | kVA | | | | | #### **Specifications** | Model No. | | IHE0110 | IHE0120 | IHE0320 | IHE0340 | IHE0620 | IHE0640 | IHE1120 | IHE1140 | IHE2320 | IHE2340 | | |------------------------|-----------------------------------|--------------|---------|---------|---------|---------|---------|---------|---------|--------------------------------|---------|--| | Heating Capacity (kVA) | | | 1 | | 3.3 | | 6.6 | | 11.8 | | 23 | | | | Minimum bore diameter (mm) | 20 | | 3 | 35 | | 35 | 50 | | | 50 | | | Applicable Bearing | Maximum outside diameter (mm) | 20 | 00 | 30 | 00 | 40 | 00 | 60 | 00 | 8 | 800 | | | Size | Thickness (mm) | 7 | 70 | 1. | 110 | | 200 | | 00 | 4 | 100 | | | | Weight (kg) | 1 | 12 | 4 | 40 | 8 | 30 | 30 | 00 | 6 | 600 | | | Heating Bearing | Seal type bearing | | | | | Ye | es | | | | | | | type | Open type bearing | Yes | | | | | | | | | | | | | No. of phases | Single Three | | | | | | | | | | | | Power Supply | Voltage (V) | 100-120 | 200-240 | 200-240 | 380-440 | 200-230 | 380-440 | 200-230 | 380-440 | 200-220/50 Hz
200-230/60 Hz | 380-440 | | | Characteristics | Frequency (Hz) | 50/60 | | | | | | | | | | | | | Input rated (Maximum) Current (A) | 7.2 | 4.0 | 5.3 | 2.7 | 8.1 | 4.0 | 13.2 | 6.6 | 27 | 13.5 | | | | Height (mm) | 34 | 17 | 56 | 35 | 74 | 15 | 1 20 | 00 | 1 4 | 40 | | | Dimensions of body | Width (mm) | 17 | 75 | 295 | | 380 | | 600 | | 850 | | | | Dimensions of body | Length (mm) | 47 | 70 | 75 | 55 | 975 | | 1 250 | | 1 600 | | | | | Body weight (kg) | 1 | 14 | 4 | 43 | 8 | 31 | 241 | | 3 | 35 | | #### Precautions - 1. Do not heat bearings to 120°C or above. - Do not heat bearings to 120°C or above. Handle heated bearings or works with care. Do not touch then directly, or get your fingers burned. Special catalog "Inverter Motor Drive NSK Bearing Heater™" CAT. No. 1275 is available. #### ☆ Hydraulic Nut This is used to mount and dismount bearings. This is used with high pressure oil after connection of the oil injection pump hose to mount the bearing having a tapered bore to the tapered shaft or adapter sleeve or to dismount the bearing mounted to a removable sleeve. #### **Features** Since the ring type piston is driven by the high pressure hydraulic oil, a big piston force can be generated. A wide variety of hydraulic nut bore threads are available. They can be mated with the shaft threads. Both adapter sleeve and removable sleeve types are available. **Worldwide Sales Offices** P: Phone F: Fax ☆: Head Office #### NSK HONG KONG LTD. **NSK LTD.-HEADQUARTERS, TOKYO, JAPAN** HONG KONG A Suite 705, 7th Floor, South Tower, World Finance Centre, Harbour City, T.S.T, Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan Kowloon, Hong Kong, China INDUSTRIAL MACHINERY BUSINESS DIVISION-HEADQUARTERS P: +852-2739-9933 F: +852-2739-9323 P: +81-3-3779-7227 F: +81-3-3779-7644 SHENZHEN Room 624-626, 6/F, Kerry Center, Renminnan Road, Shenzhen, Guangdong, China AUTOMOTIVE BUSINESS DIVISION-HEADQUARTERS P: +86-755-25904886 F: +86-755-25904883 P: +81-3-3779-7189 F: +81-3-3779-7917 Taiwan: Africa TAIWAN NSK PRECISION CO., LTD. South Africa: 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan R.O.C. TAIPFI ☆ NSK SOUTH AFRICA (PTY) LTD. P: +886-2-2509-3305 F: +886-2-2509-1393 27 Galaxy Avenue, Linbro Business Park, Sandton 2146, South Africa TAICHLING 3F. -2, No. 540, Sec. 3, Taiwan Blvd., Xitun Dist., Taichung City 407, Taiwan R.O.C. P: +27-11-458-3600 F: +27-11-458-3608 Asia and Oceania 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, TAINAN Taiwan R.O.C. Australia: P: +886-6-505-5861 F: +886-6-505-5061 NSK AUSTRALIA PTY. LTD. MELBOURNE 11 Dalmore Drive, Scoresby, Victoria 3179, Australia TAIWAN NSK TECHNOLOGY CO., LTD. P: +61-3-9765-4400 F: +61-3-9764-8304 TAIPFI 🕁 11F., No.87, Song Jiang Rd., Jhongshan District, Taipei City 104, Taiwan R.O.C. P: +886-2-2509-3305 F: +886-2-2509-1393 Unit 10, 24-28 River Road West, Parramatta, New South Wales, 2150, Australia SYDNEY TAICHUNG 10F-3, No.925, Sec.4, Taiwan Blvd., Xitun Dist., Taichung City 407, P: +61-2-8843-8100 F: +61-2-9893-8406 Taiwan R.O.C. BRISBANE 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia P: +886-4-2358-2945 F: +886-4-2358-7682 P: +61-7-3347-2600 F: +61-7-3345-5376 PERTH Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia TAINAN 5F. No.8, Daye 1st Rd., Southern Taiwan Science Park, Tainan City 741, P: +61-8-9256-5000 F: +61-8-9256-1044 Taiwan R O C P: +886-6-505-5861 F: +886-6-505-5061 New Zealand NSK NEW ZEALAND LTD. AUCKLAND 3 Te Apunga Place, Mt. Wellington, Auckland 1060, New Zealand NSK INDIA SALES CO.PVT.LTD. P: +64-9-276-4992 F: +64-9-276-4082 6th Floor, Bannari Amman Towers, No.29 Dr. Radhakrishnan Salai, Mylapore, Chennai-600 004 Tamil Nadu, India China: NSK (SHANGHAI) TRADING CO., LTD. P: +91-44-2847-9600 F: +91-44-2847-9601 GURGAON Unit No-202, 2nd Floor, Block-A, Iris Tech Park, Sector-48, Sohna Road, No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) JIANGSU Gurgaon-122018, Haryana, India P: +86-512-5796-3000 F: +86-512-5796-3300 P: +91-124-4104-530 F: +91-124-4104-532 NSK (CHINA) INVESTMENT CO., LTD. No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) MUMBAI 321, 'A' Wing, Ahura Centre, 82, Mahakali Cayes Road, Andheri (East), Mumbai JIANGSU ☆ P: +86-512-5796-3000 F: +86-512-5796-3300 -400 093. India BEIJING Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District, P: +91-22-2838-7787 F: +91-22-2838-5191 Beijing, China (100004) Indonesia P: +86-10-6590-8161 F: +86-10-6590-8166 PT. NSK INDONESIA Summitmas II, 6th Floor, Jl. Jend Sudirman Kav. 61-62, Jakarta 12190, Indonesia TIAN JIN Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District, JAKARTA P: +62-21-252-3458 F: +62-21-252-3223 Tianiin, China (300050) P: +86-22-8319-5030 F: +86-22-8319-5033 Korea: NSK KOREA CO., LTD. CHANGCHUN Room 2311, Building A. Zhongvin Building, 727 Xi'an Road, Changchun, Jilin, Posco Center (West Wing) 9F, 440, Teheran-ro, Gangnam-gu, Seoul, 135-777, Korea China (130061) **SEOUL** P: +86-431-8898-8682 F: +86-431-8898-8670 P: +82-2-3287-0300 F: +82-2-3287-0345 SHENYANG Room 1101 China Resources Building No. 286 Qingnian Street Malaysia: NSK BEARINGS (MALAYSIA) SDN. BHD. Heping District, Shenyang Liaoning, China (110004) SHAH ALAM 🜣 No. 2, Jalan Pemaju, U1/15, Seksyen U1, Hicom Glenmarie Industrial Park. P: +86-24-2334-2868 F: +86-24-2334-2058 DALJAN Room 1805 Xiwang Tower, No.136 Zhongshan Road, 40150 Shah Alam, Selangor, Malaysia Zhongshan District, Dalian, Liaoning, China (116001) P: +60-3-7803-8859 F: +60-3-7806-5982 P: +86-411-8800-8168 F: +86-411-8800-8160 PRAI No.24, Jalan kikik, Taman Inderawasih, 13600 Prai, Penang, Malaysia P: +60-4-3902275 F: +60-4-3991830 NANJING Room A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing, JOHOR BAHRU 88 Jalan Ros Merah 2/17, Taman Johor Jaya, 81100 Johor Bahru, Johor, Malaysia Jiangsu, China (210029) P: +60-7-3546290 F: +60-7-3546291 P: +86-25-8472-6671 F: +86-25-8472-6687 Room 1801-1811, B1#1A Class Office Building, Wanda Plaza, No.8 Aojiang Road, Gr. Floor, 89 Jalan Bendahara, 31650 Ipoh, Perak, Malaysia FUZHOU P: +60-5-2555000 F: +60-5-2553373 Fuzhou, China (350009) P: +86-591-8380-1030 F: +86-591-8380-1225 Philippines: NSK REPRESENTATIVE OFFICE WUHAN Room 1110. New World International Trade Tower I, No.568 Jianshe Road, Wuhan, 8th Floor The Salcedo Towers 169 H.V. dela Costa St.. Hubei, China (430000) MANILA Salcedo Village Makati City, Philippines 1227 P: +86-27-8556-9630 F: +86-27-8556-9615 OINGDAO Room 802, Farglory International Plaza, No.26 Xianggang Zhong Road, Shinan District, P: +63-2-893-9543 F: +63-2-893-9173 Qingdao, Shandong, China (266071) Singapore P: +86-532-5568-3877 F: +86-532-5568-3876 NSK INTERNATIONAL (SINGAPORE) PTE LTD. Room 2302, TaiKoo Hui Tower 1, No.385 Tianhe Road, 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 GUANGZHOU P: +65-6496-8000 F: +65-6250-5845 Tianhe District, Guangzhou, China (510620) P: +86-20-3817-7800 F: +86-20-3786-4501 NSK SINGAPORE (PRIVATE) LTD. 238A, Thomson Road, #24-01/05, Novena Square Tower A, Singapore 307684 Room 1048, 10/F, Zhongtian Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005) SINGAPORE CHANGSHA P: +65-6496-8000 F: +65-6250-5845 P: +86-731-8571-3100 F: +86-731-8571-3255 Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003) LUOYANG Thailand: NSK
BEARINGS (THAILAND) CO..LTD. P: +86-379-6069-6188 F: +86-379-6069-6180 26 Soi Onnuch 55/1 Prayet Subdistrict, Prayet District, Bangkok 10250, Thailand XI'AN Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi, BANGKOK P: +66-2320-2555 F: +66-2320-2826 China (710068) P: +86-29-8765-1896 F: +86-29-8765-1895 Vietnam: CHONGOING Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing, NSK VIETNAM CO., LTD. Techno Center, Room 204-205, Thang Long Industrial Park, Dong Anh District, China (400039) HANO P: +86-23-6806-5310 F: +86-23-6806-5292 Hanoi, Vietnam P: +84-4-3955-0159 F: +84-4-3955-0158 P: +84-8-3822-7907 F: +84-8-3822-7910 HO CHI MINH CITY Suite 307, Metropolitan Building, 235 Dong Khoi Street, District 1,HCMC, Vietnam NSK REPRESENTATIVE OFFICE Room1117, Lippo Tower, No.62 North Kehua Road, Chengdu, Sichuan, China (610041) No.8 NSK Rd., Huagiao Economic Development Zone, Kunshan, Jiangsu, China (215332) P: +86-28-8528-3680 F: +86-28-8528-3690 P: +86-512-5796-3000 F: +86-512-5796-3300 CHENGDU JIANGSU NSK CHINA SALES CO., LTD. Worldwide Sales Offices P: Phone F: Fax ☆: Head Office Brazil: NSK BRASIL LTDA. 30150-311 NSK RODAMIENTOS MEXICANA, S.A. DE C.V. SAO PAULO ☆ JOINVILLE RECIFE LIMA Mexico: MONTERREY NSK PERU S.A.C. Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil Av. Conselheiro Aquiar, 2738-6th andar-coni, 604-Boa Viagem Recife-PE, Brazil 51020-020 P: +55-11-3269-4786 F: +55-11-3269-4720 P: +55-31-3274-2591 F: +55-31-3273-4408 P: +55-47-3422-5445 F: +55-47-3422-2817 P: +55-51-3222-1324 F: +55-51-3222-2599 P: +51-1-652-3372 F: +51-1-638-0555 MEXICO CITY & Av. Presidente Juarez No.2007 Lote 5. Col. San Jeronimo Tepetlacalco. Tlalnepantla, Estado de Mexico, Mexico, C.P.54090 Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267 P: +52-55-3682-2900 F: +52-55-3682-2937 P: +52-81-8000-7300 F: +52-81-8000-7095 BELO HORIZONTE Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil PORTO ALEGRE Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001 Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250 Av. Caminos del Inca 670, Ofic : # 402, Santiago del Surco, Lima, Perú Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa #### Europe United Kingdom: **NSK EUROPE LTD. (EUROPEAN HEADQUARTERS)** MAIDENHEAD Belmont Place, Belmont Road, Maidenhead, Berkshire SL6 6TB, U.K. P: +44-1628-509-800 F: +44-1628-509-808 NSK UK LTD. NEWARK France Northern Road, Newark, Nottinghamshire NG24 2.IF, U.K. P: +44-1636-605-123 F: +44-1636-605-000 NSK FRANCES AS Quartier de l'Europe, 2 Rue Georges Guynemer, 78283 Guyancourt, France PARIS P: +33-1-30-57-39-39 F: +33-1-30-57-00-01 Germany NSK DEUTSCHLAND GMBH Harkortstrasse 15, D-40880 Ratingen, Germany DUSSELDORF 7 P: +49-2102-4810 F: +49-2102-4812-290 STUTTGART Liebknechtstrasse 33, D-70565 Stuttgart-Vaihingen, Germany P: +49-711-79082-0 F: +49-711-79082-289 WOLFSBURG Tischlerstrasse 3, D-38440 Wolfsburg, Germany P: +49-5361-27647-10 F: +49-5361-27647-70 Italy: NSK ITALIA S.P.A. MILANO Via Garibaldi 215, Garbagnate Milanese (Milano) 20024, Italy P: +39-299-5191 F: +39-299-025778 Netherlands: NSK EUROPEAN DISTRIBUTION CENTRE B.V. De Kroonstraat 38, 5048 AP Tilburg, Netherlands **TILBURG** P: +31-13-4647647 F: +31-13-4647648 Poland^a **NSK REPRESENTATIVE OFFICE** WARSAW Ul. Migdalowa 4/73, 02-796, Warsaw, Poland P: +48-22-645-1525 F: +48-22-645-1529 Russia: NSK POLSKA SP. Z O.O. SAINT-PETERSBURG Office I 703, Bldg 29, 18th Line of Vasilievskiy Ostrov, Saint-Petersburg, Russia, 199178 P: +7-812-332-5071 F: +7-812-332-5072 Spain: NSK SPAIN S.A. C/Tarragona, 161 Cuerpo Bajo, 2a Planta, 08014, Barcelona, Spain BARCELONA P: +34-93-289-2763 F: +34-93-433-5776 Turkev: NSK RULMANLARI ORTA DOGU TIC. LTD. STI. 19 Mayis Mah. Ataturk Cad., Ulya Engin Is Merkezi No: 68 Kat. 6, P.K.: 34734, ISTANBUL Kozyatagi-Istanbul, Turkey P: +90-216-477-7111 F: +90-216-477-7174 **United Arab Emirates:** NSK BEARINGS GULF TRADING CO. JAFZA View 19, Floor 24 Office LB192402/3, PO Box 262163, DownTown Jebel Ali, Duhai LIAF P: +971-4-804-8207 F: +971-4-884-7227 #### North and South America United States of America: NSK AMERICAS, INC. (AMERICAN HEADQUARTERS) ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511 NSK CORPORATION ANN ARBOR 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. P: +1-734-913-7500 F: +1-734-913-7511 NSK PRECISION AMERICA, INC. FRANKLIN ☆ 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. P: +1-317-738-5000 F: +1-317-738-5050 780 Montague Expressway, Suite 504, San Jose, California, 95131, U.S.A. P: +1-408-944-9400 F: +1-408-944-9405 NSK LATIN AMERICA. INC. 3470 NW 82 Avenue Suite 625, Miami FL 33122, U.S.A. P: +1-305-477-0605 F: +1-305-477-0377 NSK CANADA INC. 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4 P: +1-905-890-0740 F: +1-800-800-2788 2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 P: +1-514-633-1220 F: +1-800-800-2788 VANCOUVER 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4 Argentina: MONTRFAI **NSK ARGENTINA SRL** BUENOS AIRES Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina P: +54-11-4704-5100 F: +54-11-4704-0033 <As of January 2015> For the latest information, please refer to the NSK website. NSK Ltd, has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and # Handling Instructions for Bearings # For Proper Handling of Rolling Bearings | | | Contents | |----------|-----|---| | 1 | Pre | Pages cautions for Proper Handling of Rolling Bearings · · 1 | | 2 | Moi | unting ······ | | | 2.1 | Fits with Shafts · · · · · · 1 | | | | 2.1.1 Fits and Clearances | | | | 2.1.2 Press Fitting Force and Heating Temperature for Tight Fitting · · · · · · · · 4 | | | | 2.1.3 Fitting Work 5 | | | | 2.1.4 Mounting Bearings with Tapered Bores · · · · · · · 7 | | | 2.2 | Mounting in a Housing · · · · · · 7 | | | 2.3 | Mounting with Preload Applications 9 | | | | 2.3.1 Preload for Radial Bearings · · · · · 9 | | | | 2.3.2 Preload for Thrust Bearings · · · · · · 11 | | | 2.4 | General Mounting Precautions · · · · · 12 | | | 2.5 | Lubrication · · · · · 13 | | | 2.6 | Test Operation 14 | | 3 | Mai | ntenance and Inspection | | | 3.1 | Procedures of Maintenance and Inspection · · · · · · · · · 16 | | | 3.2 | Lubrication Method· · · · · · 16 | | | | 3.2.1 Grease Lubrication | | | | 3.2.2 Oil Lubrication · · · · · · 17 | | | 3.3 | Bearing Failure | | 4 | Dis | nounting22 | | | 4.1 | Dismounting Outer Rings · · · · · 22 | | | 4.2 | Dismounting Inner Rings 22 | | | 4.3 | Bearing Cleaning · · · · · · 23 | | | 4.4 | Bearing Inspection · · · · · · 24 | | <u>5</u> | Bea | ring Storage24 | | 6 | App | endices 25 | # **Precautions for Proper Handling** of Rolling Bearings Rolling bearings are used under various operating conditions with a wide variety of light to heavy loads. Since they are manufactured to a high level of accuracy, they must be handled carefully and properly; the purpose for which they are used is just as important as careful Incorrect mounting and improper handling are the most common causes of premature failure. Consequently, it is clear that proper handling, as well as appropriate selection and usage, are essential. Instructions for the proper handling of rolling bearings are summarized as - (1) Keep bearings and related components clean. - (2) Confirm that the dimensions and finish of related components are correct for the desired use. - (3) Keep bearings free from harmful substances, including foreign particles and moisture. - (4) Be sure to mount bearings in compliance with their designed purpose and specified operating conditions. - (5) Use the proper tools for mounting and dismounting. - (6) Exercise care to not damage or distort bearings in the course of mounting and dismounting. - (7) Use the correct quantities of the appropriate - (8) Keep hands as clean as possible when handling bearings to prevent corrosion. Wearing gloves, if possible, is recommended. Although sophisticated devices are not necessarily required for handling bearings, proper tools should be used depending on specific circumstances to facilitate work operations and ensure flawless performance. Obviously, engineers who engage in design and inspection must also be well versed in the proper handling and mounting methods in conformity with the intended use of the bearings. The goals of proper handling are to protect the bearings from any potential damage and ensure they serve their intended uses as effectively as possible. # **Mounting** #### **Fits with Shafts** #### 2.1.1 Fits and Clearances Standard bearings with cylindrical bores are often mounted by providing interference fit to the corresponding shafts. At the same time, significant force is required to press-fit the inner ring on the shaft. A certain degree of interference fit has been provided for mounting, as the inner ring may expand somewhat, generally reducing the amount of clearance in proportion to the expansion of the inner ring. Although clearance for tapered roller bearings is adjustable after they are mounted, clearance adjustments cannot be made for ball bearings and cylindrical roller bearings. Therefore, bearings with sufficient clearance must be selected according to the level of interference. Bearings are generally manufactured based on a CN clearance suited for normal load conditions. To the extent that an interference fit is larger than the CN clearance, bearings with a larger clearance (C3, C4, etc.) must be selected. In general, the decrease in clearance resulting from the fitting between the inner ring and the shaft may be
expressed by the following equations (1) and (2): $$\delta_f = k \cdot \Delta d = k \frac{d}{d+3} \Delta d_a \cdot \dots (1)$$ $$\delta_f = k \cdot \Delta d = k \frac{d}{d+2} \Delta d_a \cdot \dots (2)$$ δ_f : Decrease in clearance due to fitting (mm) Δd : Effective interference (mm) $\Delta d_{\rm a}$: Apparent interference for measurement (mm) $k: d/D_i = 0.70 \text{ to } 0.90$ d: Bearing nominal bore diameter (mm) D_i : Raceway diameter of inner ring (mm) #### Table 1 Fits of Radial Bearings with Shafts #### Fits of Radial Bearings with Shafts | | | | 5 | Shaft Diameter (mi | n) | | | | | | | |------------------------|--|---|---------------------|--|------------|--|---|--|--|--|--| | Load Conditions | | Examples | Ball Bearings | Cylindrical Roller Bearings Tapered Roller Bearings Bearings | | Tolerance of
Shaft | Remarks | | | | | | | Radial Bearings with Cylindrical Bores | | | | | | | | | | | | Rotating
Outer Ring | Easy axial displacement of inner ring on shaft desirable | Wheels on stationary axles All shaft diameters | | | | g6 | Use g5 and h5 where accuracy is required. In case of large | | | | | | Load | Easy axial displacement of inner ring on shaft unnecessary | Tension pulleys, rope sheaves | , | All Shart diameters | h6 | bearings, f6 can be
used to allow easy
axial movement. | | | | | | | | | Electrical home | ≤ 18 | _ | _ | js5 | Use class 5 and high precision bearings | | | | | | | Light loads or variable loads | appliances, pumps, blowers, | 18 to 100 | ≤ 40 | _ | js6 (j6) | where accuracy is required. For high | | | | | | | (≤ 0.06 C _r (¹)) | transport vehicles,
precision
machinery, | 100 to 200 | 40 to 140 | _ | k6 | precision ball
bearings with bore
diameter shorter
than 18 mm, use h5. | | | | | | | | machine tools | _ | 140 to 200 | _ | m6 | | | | | | | | Normal loads
(0.06 to 0.13 <i>C</i> _r (¹)) | | ≤ 18 | _ | _ | js5 to 6 (j5 to 6) | | | | | | | Rotating
Inner Ring | | General bearing
applications,
medium and large
motors, turbines, | 18 to 100 | ≤ 40 | ≤ 40 | k5 to 6 | k6 and m6 can be
used for single-row
tapered roller
bearings and single-
row angular contact
ball bearings instead
of k5 and m5 | | | | | | Load
or | | | 100 to 140 | 40 to 100 | 40 to 65 | m5 to 6 | | | | | | | Direction of
Load | | | 140 to 200 | 100 to 140 | 65 to 100 | m6 | | | | | | | Indeteminate | | pumps, engine
main bearings,
gears, | 200 to 280 | 140 to 200 | 100 to 140 | n6 | | | | | | | | | woodworking
machines | _ | 200 to 400 | 140 to 280 | p6 | | | | | | | | | | _ | _ | 280 to 500 | r6 | | | | | | | | | | _ | _ | > 500 | r7 | | | | | | | | | Railway axleboxes, | _ | 50 to 140 | 50 to 100 | n6 | | | | | | | | Heavy loads or
shock loads | industrial vehicles,
traction motors, | _ | 140 to 200 | 100 to 140 | p6 | More than CN bearing | | | | | | | (> 0.13 C _r (¹)) | construction equipment, | | > 200 | 140 to 200 | r6 | internal clearance is necessary. | | | | | | | | crushers | | | 200 to 500 | r7 | | | | | | | Cen | tral axial load only | Used part of each type of bearings | All shaft diameters | | | js6 (j6) | _ | | | | | | | | Radial E | Bearings with Ta | pered Bores an | d Sleeves | | | | | | | | | | General bearing | | | | h9/IT5 (²) | IT5 and IT7 mean that
the deviation of the shaft | | | | | | All type of loading | General bearing applications | All shaft diameters | h9/IT5 (²) | IT5 and IT7 mean that
the deviation of the shaft
from its true geometric
form, e.g. roundness | | |---------------------|--|---------------------|-------------|--|--| | All type of loading | Transmission
shafts,
woodworking
spindles | All Shalt diameters | h10/IT7 (²) | and cylindricity should
be within the tolerances
of IT5 and IT7,
respectively. | | Note (1) Cr represents the basic load rating of the bearing. (2) Refer to Appendix Table 3 (page 29) for values of IT. Remarks This table is applicable only to solid steel shafts. #### Fits of Thrust Bearings with Shafts | Lo | oad Conditions | Examples | Shaft Diameter (mm) | Tolerance of
Shaft | Remarks | | |--------------------------|----------------------------|--|---------------------|-----------------------|---------|--| | Central axial load only | | Main shafts of lathes | All shaft diameters | h6 or
js6 (j6) | | | | Combined | Stationary inner ring load | Cone crushers | All shaft diameters | js6 (j6) | | | | radial and axial loads | Rotating inner ring load | | ≤ 200 | k6 | | | | (Spherical thrust roller | or
direction of load | Paper pulp refiners, plastic extruders | | | | | | bearings) | indeterminate | | > 400 | n6 | | | 1 NSK NSK 2 #### ■ Fits of Radial Bearings with Housings | | Load Co | nditions | Examples | Tolerances for
Housing bores | Axial Displacement of
Outer Ring | Remarks | | |-------------------|---------------------------------|--|---|---------------------------------|-------------------------------------|--|--| | | | Heavy loads on bearing in thin-walled housing or heavy shock loads | Automotive wheel hubs (roller bearings) Crane travelling wheels | P7 | | | | | Solid
Housings | Rotating
outer ring
load | Normal or heavy loads | Automotive wheel hubs (ball bearings) Vibrating screens | N7 | | | | | | load | Light or variable loads | Conveyor rollers
Rope sheaves
Tension pulleys | M7 | Impossible | _ | | | | | Heavy shock loads | Traction motors | | | | | | | Direction of load indeterminate | Normal or heavy loads | Pumps | K7 | Generally impossible | If axial displacement of the outer ring is not required. | | | Solid or
Split | indeterminate | Normal or light loads | Crankshaft main bearings Medium and large mortors | JS7 (J7) | Possible | Axial displacement of outer ring is necessary. | | | Housings | Rotating
inner ring
load | Loads of all kinds | General bearing
applications
Railway axleboxes | H7 | | | | | | | Normal or light loads | Plummer blocks | Н8 | Possible | _ | | | | | High temperature rise of inner ring through shaft | Paper dryers | G7 | | | | | | | Accurate running | Grinding spindle real ball
bearings
Grinding centrifugal
compressor free
bearings | JS6 (J6) | Possible | _ | | | Solid
Housings | Direction of load indeterminate | desirable under normal
or light loads | Grinding spindle front
ball bearings
Grinding centrifugal
compressor fixed
bearings | K6 | Generally fixed | For heavy loads,
interference fit tighter
than K is used.
When high accuracy
is required, very | | | | Rotating | Accurate running and high rigidity desirable under variable loads | Cylindrical roller bearings
for machine tool main
spindle | M6 or N6 | Fixed | strict tolerances
should be used for
fitting. | | | | inner ring
load | Minimum noise is required | Electrical home appliances | H6 | Easily possible | - | | Remarks 1. This table is applicable to cast iron and steel housings. For housings made of light alloys, the interference should be tighter than those in this table 2. Refer to NSK catalogs for special fittings such as drawn cup needle. #### ■ Fits of Thrust Bearings with Housings | | Load Conditions | Bearing Types | Tolerances for
Housing Bores | Remarks | |-------------|--|---|---------------------------------|---| | | | Thrust Ball Bearings | Clearance
≥ 0.25 mm | For general applications | | | | must ball bearings | H8 | When precision is required | | | Axial loads only | Spherical Thrust Roller
Bearings
Steep Angle Tapered
Roller Bearings | Outer ring has radial clearance | When radial loads are sustained by other bearings | | Combined | Stationary outer ring loads | | H7 or JS7 (J7) | _ | | radial and | | Spherical Thrust Roller
Bearings | K7 | Normal loads | | axiai loads | Rotating outer ring loads or direction of load indeterminate | J. | M7 | Relatively heavy radial loads | Therefore, 70 % to 90 % of the interference appears as reduction in clearance. (Smaller reduction in clearance is adopted for bearings of diameter series 4.) Moreover, the difference in operating temperature between inner and outer rings ranges from 5 °C to 10 °C. However, this temperature difference will exceed that range if the inner ring's temperature rises or the outer ring is cooled. Reduction in clearance due to temperature difference between inner and outer rings: $$\delta_{t} \doteq \alpha \cdot \Delta_{t} \cdot D_{e} \cdot \cdots \cdot (3)$$ #### Where - δ_t : Reduction in radial clearance due to temperature difference between inner and outer rings (mm) - α : Coefficient of linear expansion of bearing steel **≒** 12.5 × 10⁻⁶ (1/°C) - $\Delta_t :$ Temperature difference between inner and outer rings (°C) - $D_{\rm e}$: Outer ring raceway diameter (mm) - d: Nominal bearing bore diameter (mm) - D: Nominal bearing outside diameter (mm) Tables 1 and 2 provide examples of how the degree
of these fits is determined based on load and temperature conditions, etc. Bearings with C3 or C4 clearance (larger than CN clearance) must be used depending on the degree of fit and temperature conditions. #### 2.1.2 Press Fitting Force and Heating Temperature for Tight Fitting When attaching the inner ring firmly to the shaft, the force to press-fit an inner ring in the axial direction varies depending on interference and shaft diameter. However, the required force rises as surface pressure on the fitted surface and friction coefficient increase. When a stronger press fitting force is required, the inner ring is usually expanded by heating in oil before mounting, but in some cases, the ring is press-fitted using a press or similar tool while measuring the degree of interference as measured in the press fitting force. The surface pressure $p_{\rm m}$, and press fitting force or withdrawal force of the fitted surface, which are applied to a solid shaft, can be expressed by the following equations (4) $$p_{\rm m} = \frac{1 - k^2}{2} \cdot \frac{\Delta d}{d} \cdot E \cdot \cdots \cdot (4)$$ $$K = \mu p_{m} \pi d B$$ $$= \frac{1}{2} \mu E \pi B (1 - k^2) \Delta d \cdots (5)$$ Table 3 Values of μ | Example of application | μ value (average) | |---|-----------------------| | Press-fitting inner ring to cylindrical shaft | 0.12 | | Withdrawing inner ring from cylindrical shaft | 0.18 | | Press-fitting inner ring to tapered shaft or sleeve | 0.165 | | Withdrawing inner ring from tapered shaft | 0.135 | | Press-fitting sleeve onto the area between shaft and bearing's tapered hole | 0.30 | | Withdrawing sleeve from the area between shaft and bearing's tapered hole | 0.33 | #### Where $k:d/D_i$ d: Nominal bearing bore diameter (mm) D_i : Raceway diameter of inner ring (mm) *B* : Nominal inner ring width (mm) Δd : Effective interference (mm) E: Modulus of longitudinal elasticity = 208 000 MPa μ : Friction coefficient of the fitted surface Friction on the fitted surface differs substantially depending on the fitted-surface conditions. In general, the values listed in the **Table 3** can apply to the values of μ . Also, the value of $(1-k^2)$ with respect to each ratio D/d of outside diameter to bore diameter of a bearing can be approximately expressed as shown in Table 4. This is how to calculate the press fitting force to press an inner ring onto the shaft. In many cases, however, it is easier to mount the inner ring in place after heating it in oil to expand it. Although the applicable temperatures vary according to interference and shaft diameter, it is recommended to heat the bearing at 120 °C or lower whenever possible since the hardness of the bearing will decrease when heated to 150 °C or higher. Fig. 1 shows the heating temperature and bearing bore diameter expansion with respect to shaft diameter, in which the required heating temperature differences can be found, since it also shows the maximum interference of various fits. The bearing cannot be easily mounted to the shaft during the shrink fitting process since the inner ring will cool a little during mounting. Therefore, heat the bearing Table 4 Values of $(1-k^2)$ | D/d | $(1-k^2)$ | |-----|-----------| | 1.5 | 0.25 | | 2.0 | 0.41 | | 2.5 | 0.52 | | 3.0 | 0.61 | | 3.5 | 0.67 | D: Nominal outside diameter, d: Nominal bore diameter Fig. 1 Temperature and Thermal Expansion of Inner Ring to a temperature of 20 °C to 30 °C higher than the lowest temperature required for mounting without interference. The recommended amount of time for immersing the bearing in heated oil is approximately 20 minutes. For example, if a bearing with a bore diameter of 120 mm is mounted with an interference fit of n6, the maximum interference fit is 65 um. In this case, the required temperature for heating the bearing would be 50 °C above ambient temperature as shown in Fig. 1. From that point on the heat scale, the temperature would then need to be raised an additional 20 °C to 30 °C in order to easily press fit the bearing onto the shaft. Consequently, the overall required heating temperature would be an additional 70 °C to 80 °C above ambient temperatures. Press fitting force and shrink fit for tight fitting have already been briefly discussed. However, excessive interference can sometimes produce abnormally large stress in the inner ring, which may cause the inner ring to crack or be otherwise damaged. Of the stress produced in the inner ring, the circumferential stress on the fitted surface in its inner diameter is the largest, and its magnitude can be expressed by equation (6) as $$\sigma_{\rm \,tmax} = p_{_{\rm m}} \, \frac{1 + k^{_2}}{1 - k^{_2}} \quad \cdots \qquad (6)$$ where, *p*_: Surface pressure (MPa) $k: d/D_i$ As a general rule, it is desirable to choose a fit for which the maximum stress value may be set to 98 MPa or less for bearing steel or, in the worst case, to 127 MPa or less. #### 2.1.3 Fitting Work The inner ring is usually mounted on a shaft by means of press fitting or shrink fitting. Press fitting, however, requires a large force. The required force for press fitting can be determined by the aforementioned equation (5). During press fitting work, brinelling indentations may be caused on the raceway surfaces by rolling elements (balls or rollers) if force is applied to the outer ring. Furthermore, direct shock applied to the small ribs of the inner ring may cause the ring to crack. At the same time, no force should be applied to the cage. Therefore, exercise considerable care when performing press fitting work. Since only a small press fitting force is required for medium- or small-sized bearings with a smaller interference, the inner ring can be pressed onto the shaft corresponding to the bearings at room temperature. As shown in Fig. 2, tap the brass bar on the lateral face of the inner ring, then hammer it to press-fit the ring onto the shaft. At this point, the tip of the brass bar, which has been cut crosswise in advance, comes into contact with the inner ring's lateral face, so that the outside face of the ring's lateral face will not be struck and the ring will be brought into firm, proper contact with the shaft shoulder. Take care not to allow brass chips to enter the bearings. A more effective method involves using a tubular fitting tool (Fig. 3) made of mild steel that contacts the entire side face of inner ring. Using this tool, press fitting can be done while exerting a heavy but non-damaging impact on the ring. Using a press, compressed air, or hydraulic pressure, facilitates parallel push-in and enables grasping press-fit pressure for proper mounting. Consequently, these tools are useful since the interference can be checked to see if it is too tight or too loose. Before conducting press fitting work, a high-viscosity oil, preferably an extreme-pressure lubricant, must be applied to the inner surface of the inner ring and the outer surface of the shaft. Also note that applying a lubricant made of molybdenum disulfide (MoS₂), in a paste form, to the areas for press fitting work prevents scoring and facilitates easier dismounting because it Fig. 2 Mounting of Bearing prevents the bearing from adhering to the fitted surface during dismounting. Shrink fitting is recommended as an easy mounting method for bearings with tighter interference. Heating temperature can be determined from Fig. 1 according to the specific bearing dimension and the intended interference. A high-quality mineral oil should be used for the heating oil. The oil bath should be large enough to accommodate two to five bearings, with a sufficient amount of oil to completely cover the bearings. Precautions for use of the oil bath are shown in Fig. 4. Be sure to use a wire net or equivalent device in the bath to support the bearings in the oil without allowing them to directly contact either the heater or the bottom of the bath. For easy handling, place a long bar across the top of the oil bath with an attached hook from which to suspend the bearings. When tight-fitting inner rings are used for cylindrical roller bearings for rolling mills, as well as for axle bearings for railway rolling stock, a stronger press fitting force and withdrawal force are required for mounting and dismounting. For this reason, the bearings or shafts may be damaged due to operating difficulties under normal working conditions. For cylindrical roller bearings whose inner rings are not provided with ribs, it is recommended to use induction current to heat and expand the inner rings for mounting and dismounting to speed up the operation. Using this mechanism, NSK has devised a heating-type mounting/dismounting device that can be powered by an AC factory power supply with commercial frequency, and markets it for various industrial fields. Moreover, NSK has also made commercially available a bearing heater, as shown in Fig. 5, for heating a single unit, such as a small bearing. Fig. 4 Oil heating bath Fig. 3 Mounting of Bearing A bearing attached to a shaft cools rapidly, and after heating, an expanded bearing shrinks in a crosswise direction. In some cases, therefore, in order to avoid a clearance between the inner ring and shoulder, press the bearings firmly against the shoulder by means of a shaft nut or other appropriate tool. After mounting a bearing in place, cool it and apply lubricant to its inner and outer surfaces. At that point, make sure the bearing is free of any dirt. Except when preload is applied to a bearing, a clearance is usually needed for the bearing after mounting; therefore, confirm that the bearing rotates smoothly. For roller bearings, clearance can be measured using a clearance gauge. Since the inner ring can be separated from the outer ring in cylindrical roller bearings, the outer ring must be removed when mounting the inner ring. Avoid applying undue force in the later stage at which
the outer ring is fit to the inner ring, which is attached to the shaft, since the rollers and raceway may be easily damaged. This kind of damage should be avoided because it may result in noise and premature failure. Also, roller bearings must be compatible. Consequently, confirm compatability in advance, and take special care to avoid mistakenly collating incompatible types in combinations. Although there is no problem with a mounting in which there is a loose fit with the shaft, clearance between the shaft and the inner ring must be minimal. Usually, the fit between the inner ring and shaft of a thrust bearing should be about is6 (i6). Some clearance is usually provided, except for machine tools, which require a higher degree of accuracy. Fig. 5 Heating by bearing heater #### 2.1.4 Mounting Bearings with **Tapered Bores** Bearings with tapered bores are mounted in place using adapter sleeves or withdrawal sleeves, or directly on tapered shafts. The degree of fit is determined by reduction in clearance and push-in amount of the sleeves (or bearings). For spherical roller bearings, a decrease in clearance during mounting is usually measured by a clearance gauge. The reduction in the clearance and residual clearance after mounting are shown in Table 5. Spherical roller bearings with tapered bores have generally been manufactured taking into account the reduction in clearance as shown in Table 5. When a very large load will be applied, increase the reduction in clearance by about 20 % more than the corresponding listing in Table 5. In some cases, the push-in amount (axial movement) of the inner ring or withdrawal sleeve is measured instead of directly measuring the reduction in clearance. However, since it is difficult to determine the initial measurement position, it is safer to directly measure the reduction in clearance. When a clearance gauge cannot be used for small roller bearings because of the small clearance after mounting them in position, the amount of axial movement must be measured instead of the reduction in clearance. Also, in cases where a large bearing is mounted in such a way that the bearing is heated in oil to expand it to ease mounting, axial movement must also be measured. In this case, the bearing should be initially mounted on the shaft before it is heated and this initial position measured, then the final mounting position can be determined by the amount of axial movement from the initial mounting position after the bearing has been heated. At this stage, the intended reduction in clearance must be confirmed by measuring the initial clearance prior to heating and the final clearance after cooling. #### 2.2 Mounting in a Housing Bearings are usually mounted in housings after they have been attached to a shaft. Mounting methods and precautions vary depending on such factors as housing design, fit, and the configuration of horizontal and vertical shafts. The general information discussed in this section should apply to all applications. The fit between the housing and the outer ring is determined based on load conditions, surface roughness, material hardness, etc. However, if the actual fit is tighter than specified, modifications must be manually performed through operations such as grinding. When the only method for enlarging a housing is to use a scraper, exercise care to avoid deforming the bearing seat into an oval shape or slope. For a split housing, avoid inserting a thin shim between the upper and lower parts to loosen the fit. In fact, when the fit is too loose, the insertion of a sheet of paper or metal foil into the area between the housing and the outer ring must be avoided by all means. Only when absolutely necessary, the housing may be modified by plating its inner planes or inserting a bushing so that the housing dimensions can be corrected to meet the specified requirements. When mounting a housing, do not allow labyrinth seals and other components to rub against each other. Take measures to avoid applying excessive load or eccentric load to the bearing, which may result from improper mounting on the base or defective joints. Select only one of the bearings to be laid to serve as the fixed-end bearing for fixing and maintaining the mounted bearings in the exact position in an axial direction. For the fixed-end bearing, choose a type of bearing that can bear both radial and axial loads. Bearings other than the fixed-end bearing should function as free-end bearings on which only radial load can be applied, to relieve expansion and contraction of the shaft due to temperature change. They should also be used to adjust the mounting position in the axial direction. Unless adequate measures are taken to prevent shaft shrinkage due to temperature changes, abnormal axial load will be applied on the bearings, resulting in premature failure. Cylindrical roller bearings (NU or N type), in which the inner ring can be separated from the outer ring and which can also move in the axial direction, are suitable for free-end bearings. The use of these types of bearings often increases the ease of mounting and dismounting procedures. If non-separable bearings are used as free-end bearings, the outer ring and housing should have a loose fit to allow for shaft expansion during operation and to allow for the expansion of the bearings. This can sometimes be accommodated away from the fitted surface between the inner ring and the shaft. If the distance between bearings is short and shaft shrinkage has less effect on the bearings, use angular contact ball bearings and tapered roller bearings or other types of bearings which can handle the application of axial load in only one direction, and mount them face-toface or back-to-back to form a duplex set. The axial clearance (movement in axial direction) after mounting should be adjusted with a nut or a shim. When mounting an outer ring with a tighter fit, use a tubular attachment tool made of mild steel as shown in Fig. 7. Should either the outer or inner rings be mounted with a tight fit and either the inner ring is already mounted on the shaft or the outer ring is already attached to a bearing housing, use tools such as shown in Figs. 8 and 9 to avoid the possible impact of press fitting on a bearing ring through the rolling elements. Furthermore, be sure to use an appropriate method to avoid applying impact load on a bearing when mounting a joint, for example, after having mounted the bearing on a shaft with its housing. Table 5 Mounting Spherical Roller Bearings with Tapered Bores Units: mm | Bearing Bo | ore Diameter | Reduc
Radial C | tion in
learance | | Axial Mo | ovement | | | Permissible
Clearance | |------------|--------------|-------------------|---------------------|---------------|--------------|----------------------------|--------------|-------|--------------------------| | over | d incl. | min. | max. | Taper
min. | 1:12
max. | Taper ⁻
min. | 1:30
max. | CN | C3 | | 30 | 40 | 0.025 | 0.030 | 0.40 | 0.45 | _ | _ | 0.010 | 0.025 | | 40 | 50 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.015 | 0.030 | | 50 | 65 | 0.030 | 0.035 | 0.45 | 0.55 | _ | _ | 0.025 | 0.035 | | 65 | 80 | 0.040 | 0.045 | 0.60 | 0.70 | _ | _ | 0.030 | 0.040 | | 80 | 100 | 0.045 | 0.055 | 0.70 | 0.85 | 1.75 | 2.15 | 0.035 | 0.050 | | 100 | 120 | 0.050 | 0.060 | 0.75 | 0.90 | 1.9 | 2.25 | 0.045 | 0.065 | | 120 | 140 | 0.060 | 0.070 | 0.90 | 1.1 | 2.25 | 2.75 | 0.055 | 0.080 | | 140 | 160 | 0.065 | 0.080 | 1.0 | 1.3 | 2.5 | 3.25 | 0.060 | 0.100 | | 160 | 180 | 0.070 | 0.090 | 1.1 | 1.4 | 2.75 | 3.5 | 0.070 | 0.110 | | 180 | 200 | 0.080 | 0.100 | 1.3 | 1.6 | 3.25 | 4.0 | 0.070 | 0.110 | | 200 | 225 | 0.090 | 0.110 | 1.4 | 1.7 | 3.5 | 4.25 | 0.080 | 0.130 | | 225 | 250 | 0.100 | 0.120 | 1.6 | 1.9 | 4.0 | 4.75 | 0.090 | 0.140 | | 250 | 280 | 0.110 | 0.140 | 1.7 | 2.2 | 4.25 | 5.5 | 0.100 | 0.150 | | 280 | 315 | 0.120 | 0.150 | 1.9 | 2.4 | 4.75 | 6.0 | 0.110 | 0.160 | | 315 | 355 | 0.140 | 0.170 | 2.2 | 2.7 | 5.5 | 6.75 | 0.120 | 0.180 | | 355 | 400 | 0.150 | 0.190 | 2.4 | 3.0 | 6.0 | 7.5 | 0.130 | 0.200 | | 400 | 450 | 0.170 | 0.210 | 2.7 | 3.3 | 6.75 | 8.25 | 0.140 | 0.220 | | 450 | 500 | 0.190 | 0.240 | 3.0 | 3.7 | 7.5 | 9.25 | 0.160 | 0.240 | | 500 | 560 | 0.210 | 0.270 | 3.4 | 4.3 | 8.5 | 11.0 | 0.170 | 0.270 | | 560 | 630 | 0.230 | 0.300 | 3.7 | 4.8 | 9.25 | 12.0 | 0.200 | 0.310 | | 630 | 710 | 0.260 | 0.330 | 4.2 | 5.3 | 10.5 | 13.0 | 0.220 | 0.330 | | 710 | 800 | 0.280 | 0.370 | 4.5 | 5.9 | 11.5 | 15.0 | 0.240 | 0.390 | | 800 | 900 | 0.310 | 0.410 | 5.0 | 6.6 | 12.5 | 16.5 | 0.280 | 0.430 | | 900 | 1 000 | 0.340 | 0.460 | 5.5 | 7.4 | 14.0 | 18.5 | 0.310 | 0.470 | | 1 000 | 1 120 | 0.370 | 0.500 | 5.9 | 8.0 | 15.0 | 20.0 | 0.360 | 0.530 | Remarks Values for reduction in radial internal clearance are for bearings with CN clearance. For bearings with C3 Clearance, the maximum values listed should be used for the reduction in radial internal clearance. Fig. 6 Fixed-end (left) and free-end (right) Fig. 7 Preload fitting of outer ring Fig. 8 Preload fitting of outer ring Fig. 9 Preload fitting of inner ring #### 2.3 Mounting with Preload **Applications** #### 2.3.1 Preload for Radial Bearings When mounting angular contact ball bearings and tapered roller bearings, preload must be applied depending on specific usage conditions. Preload refers to the assembly adjustment in which the required load is applied in advance to the balls or rollers of a bearing while no load is applied externally (or under the conditions where rolling elements maintain their position during mounting). The purpose of preload is to minimize shaft deflection in radial or axial directions during operation within the requisite minimum allowances. Mounting with preload application is a very effective way to lessen deflection. However, under no circumstances should you ever apply a larger preload to a bearing than necessary. The amount and application method, therefore, should always be
carefully observed to avoid mistakes, with due consideration for the purpose of preload. Fig. 10 shows a situation in which two radial ball bearings' outer rings are mounted after a preload is applied to them by means of end cover screws. Although this mounting method is simple, sufficient results are not possible without careful adjustment by a skilled worker. Moreover, it is difficult to accurately measure the amount of preload using this method. Therefore, the starting frictional moment and the amount of preload of a bearing must be known in advance. The lighter the load a bearing is required to handle during operation, the weaker the preload that would be necessary for mounting. In this connection, there is another way in which preload may be applied to a bearing: using a spring as shown in Fig. 11. In this preloading method, the size and compression of the spring can be determined from the amount of preload. Several springs of proper size are placed at the circumference. In many cases, preloading by means of springs is conducted to lessen radial deflection. As shown in Fig. 12, applying preload to a bearing with spacers inserted into both inner and outer rings is an excellent method. This method facilitates mounting and ensures the proper application of preload. One spacer is slightly longer than another, and the dimensions of individual bearings differ slightly. For this reason, since we cannot say that similar length spacers can be applied to all bearings, the specific length must be measured and determined individually when combining bearings. Single-row angular contact ball bearings are not used independently, but always in pairs. They can be combined as front-to-front duplex bearings (DF) as shown in Fig. 13, or back-to-back duplex bearings (DB) as shown in Fig. 14. Fig. 15 shows a situation in which no axial preload is applied, where the required deflections of inner and outer rings in the axial direction for the preload are 'a' and 'b', respectively, and preload T_1 will be obtained only after 'a' and 'b' move in an axial direction when tightened by a nut. Typically, 'a' equals 'b' for bearings of the same type. In any case, as long as 'a' and 'b' are properly designed and fabricated for the specific conditions of use, mounting can be easily carried out by simply tightening the nut firmly. Fig. 10 Preload application by screw Fig. 11 Preload application by spring Fig. 12 Preload application by spacer (on free-end) (Front-to-front duplex bearings) Fig. 13 Front-to-front duplex bearings Fig. 14 Back-to-back duplex bearings Fig. 15 Amount of preload The relation between axial load and displacement in the axial direction of single-row angular contact ball bearings can be approximately expressed by equation (7) below. $$\delta_{\rm a} = \frac{4.4 \times 10^{-4}}{\sin \alpha} \left(\frac{Q^2}{D_{\rm a}}\right)^{\frac{1}{3}} \cdot \dots (7)$$ δ_a : Displacement in axial direction (mm) Q: Load applied to a single ball (N) α : Contact angle Da: Diameter of ball (mm) If the axial load to be applied to the entire bearing is T, then load Q, which is applied to a single ball when the number of balls of the bearings is Z, can be expressed by the following equation (8): $$Q = \frac{T}{Z \sin \alpha} \cdot \dots \cdot (8)$$ Therefore, deflection in axial direction, δ_a , can be generally expressed by the following equation: C_{a} is a constant determined by the individual type and dimension of the bearing. In Fig. 16, clearances, a and b, between the bearings can be expressed by axial deflection (δ_a). And, as preload increases, clearances a and b will decrease, and the preload will become T_1 after the clearances reach zero. If the axial load, T, is applied externally to bearing A, A will further deflect by δ_i in the axial direction. Deflection of bearing B will also decrease by the same amount. Then the deflections of bearings A and B will become as follows: $$\delta_{aA} = \delta_a + \delta_i$$, $\delta_{aB} = \delta_a - \delta_i$ To be more specific, the force, including preload, applied to bearing A is $(T_1 + T - G)$, and $(T_1 - G)$ is applied to bearing B. If only δ_T deflects under axial load T when no preload is applied to a bearing, the resulting decrease in deflection of the bearing from the preload can be expressed as $(\delta_T - \delta_i)$. Also, in the case of $G = T_1$ or $\delta_i = \delta_a$, bearing B is under no-load conditions, and the deflection of bearing A, δ_{aA} , becomes as follows: $$\delta_{aA} = 2\delta_a = 2C_a \cdot T_1^{\frac{2}{3}} = C_a (2^{\frac{3}{2}} T_1)^{\frac{2}{3}} \cdot \cdot \cdot (10)$$ Moreover, the force applied to bearing A is equal to $G=T_1$, the following equation holds: $$T_1 + (T - G) = G + (T - G) = T \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (11)$$ Then, from the equations, (9), (10) and (11), the following equation holds: $$\delta_{aA} = C_a \cdot T^{\frac{2}{3}} = C_a (2^{\frac{3}{2}} T_1)^{\frac{2}{3}} \cdot \cdots (12)$$ $$T = 2\sqrt{2} \cdot T_1$$ Fig. 16 Axial displacement with preload When preload is provided, bearing A needs a load capacity that withstands axial load $(T_1 + T - G)$ relative to the required life and speed conditions. #### 2.3.2 Preload for Thrust Bearings Care should be taken not to allow balls or bearing rings of bearings to get out of position when the thrust ball bearings are mounted on horizontal shafts. This is especially important for double-direction thrust ball bearings or two single-direction thrust ball bearings on horizontal shafts. In other words, if the balls on the side where no load is applied, and cages and/or bearing rings are displaced downward or off center, and load is applied to the row of bearings, damage or failure caused by heat generation will inevitably occur. For this reason, preload in the axial direction is required as a preventive measure. This misalignment of the balls and cages or bearing rings causes an uneven application of load on the balls, which leads to slippage in their motion to return to the home position, which in turn results in heat generation and As in the case of radial bearings, the preloading method can be applied by a screw or adjustment plate by which axial adjustment is made, or by a spring. Figs. 17 and 18 show some examples of these applications. However, as the former method requires difficult adjustment and requires experience, the latter method, using a spring, is Fig. 17 Preload of thrust ball bearings (by screw) Fig. 18 Preload of thrust ball bearings (by spring) easier and may provide better results. This preloading method can apply not only to thrust ball bearings, but also to thrust roller bearings, as shown in Fig. 19. When the balls in thrust ball bearings rotate at relatively high speeds, sliding due to gyroscopic moments on the balls may occur. The larger of the two values obtained from equations (13) and (14) below should be adopted as the minimum axial load in order to prevent such sliding. $$F_{\text{a min}} = \frac{C_{\text{oa}}}{100} \left(\frac{n}{N_{\text{max}}}\right)^2 \cdot \dots \cdot (13)$$ $$F_{\rm a \ min} = \frac{C_{\rm 0a}}{1000} \dots (14)$$ $F_{\rm a\ min}$: Minimum axial load (N) C_{0a} : Basic static load rating (N) n: Speed (min⁻¹) $N_{ m max}$: Limiting speed (oil lubrication) (min⁻¹) When spherical thrust roller bearings are used, damage such as scoring may occur due to sliding between the rollers and outer ring raceway while in use. The minimum axial load $F_{\rm a\,min}$ necessary to prevent such sliding is obtained from the following equation: $$F_{\text{a min}} = \frac{C_{0\text{a}}}{1000} \quad \dots \tag{15}$$ Fig. 19 Preload of thrust roller bearings (by spring) #### **General Mounting Precautions** To fix a radial bearing to a shaft, generally bring the bearing into close contact with the shaft shoulders and spacer and fix it in position by tightening the shaft nut. The ends of the shaft shoulders and the spacer must be perpendicular to the shaft center line. If the components are not perpendicular, bearing rotation accuracy and roller contact performance will be adversely affected, resulting in heat generation and premature fatigue. The same care must be taken to ensure the proper contact between the housing shoulders and the lateral face of the outer rings. Since shaft shoulder height and the outer diameters of spacers or the housing shoulder height are closely related to the dismounting of bearings, their standard dimensions are described in the JIS as well as in our catalogues for reference purposes. Along with these shoulder heights, the fillet radius in the corners of shafts and housings is also important. Table 6 shows the values of these shoulder heights and fillet radii in the corners. The spherical washers of thrust ball bearings are usually mounted in place, with a clearance between the washers and the housing, except for the highly accurate main shafts of machine tools. For thrust ball bearings with flat seats, in particular, perpendicularity between shafts and housing shoulders must be achieved with a high degree of accuracy, in the same way as described previously. Mounting should be done with utmost attention to eccentricity as well. Although bearings with greater accuracy may be required for ensuring the overall accuracy of a machine, the accuracy of shafts, housings, and other related components should also be improved in conformity with bearing accuracy; inaccuracy of related components is a leading cause of bearing damage. Furthermore, as a general precaution to ensure proper mounting, it is important to keep bearings and related components as clean as possible. This means they should be handled in an environment free from debris or high humidity, using clean rinsing oil, with due consideration for guarding against corrosion or rust. Be sure to check each part before mounting. Inspect the sealed areas as well as dimensions, shape,
appearance and accuracy of shafts and housings. While checking, use care to prevent perspiration from the hands, or debris present at the site, from coming into contact with the bearings. Fitting work for bearings and clearance measurement methods have already been discussed. Ideally, plan carefully before proceeding to mounting procedures, and always maintain a well-documented record of each operation. Tapered roller bearings are mounted by setting the outer ring and inner ring subunit (inner ring, cage, and rollers) independently of each other. The outer ring is pressed into the housing and the inner ring subunit is pressed onto the shaft. The shaft is then set into the housing to seat the tapered roller bearing assembly. During the mounting/assembly process, rotate the bearing to ensure that the large inner ring rib is in close contact with end faces of each roller (initial run-in process). Fig. 20 Chamfer dimensions, fillet radius of shaft and housing, and shoulder height Table 6 Recommended minimum shoulder heights and fillet radius of shaft and housing for use with metric radial bearings | Nominal | | Shaft or Housin | g | |--------------------------|--------------------------------|--|--| | Chamfer
Dimensions | | Minimum Should | ler Heights h (min) | | r (min) or r_1 (min) | Fillet Radius $r_{ m a}$ (max) | Deep Groove Ball
Bearings (¹),
Self-Aligning Ball
Bearings,
Cylindrical Roller
Bearings (¹),
Solid Needle
Roller Bearings | Angular Contact
Ball Bearings,
Tapered Roller
Bearings (²),
Spherical Roller
Bearings | | 0.05 | 0.05 | 0.2 | _ | | 0.08 | 0.08 | 0.3 | _ | | 0.1 | 0.1 | 0.4 | _ | | 0.15 | 0.15 | 0.6 | _ | | 0.2 | 0.2 | 0.8 | _ | | 0.3 | 0.3 | 1 | 1.25 | | 0.6 | 0.6 | 2 | 2.5 | | 1 | 1 | 2.5 | 3 | | 1.1 | 1 | 3.25 | 3.5 | | 1.5 | 1.5 | 4 | 4.5 | | 2 | 2 | 4.5 | 5 | | 2.1 | 2 | 5.5 | 6 | | 2.5 | 2 | _ | 6 | | 3 | 2.5 | 6.5 | 7 | | 4 | 3 | 8 | 9 | | 5 | 4 | 10 | 11 | | 6 | 5 | 13 | 14 | | 7.5 | 6 | 16 | 18 | | 9.5 | 8 | 20 | 22 | | 12 | 10 | 24 | 27 | | 15 | 12 | 29 | 32 | | 19 | 15 | 38 | 42 | (1) When heavy axial loads are applied, the shoulder greater must be sufficiently higher than the values listed. (2) For bearings with axial loads, the shoulder height must be sufficiently greater than the values listed. Remarks 1. The fillet radius of the corner is also applicable to thrust bearings. 2. The shoulder diameter is listed instead of shoulder height in the bearing tables. #### 2.5 Lubrication The lubricating methods for rolling bearings are roughly classified into oil and grease applications. Grease lubrication is the preferred method for rolling bearings, since it allows a simpler structure for bearing seals and is convenient. This method has recently become more widely used because of improvements and development in the grease itself. Nevertheless, special attention must be paid to rotating speed, operating temperature, grease quantity, grease life, etc. Grease lubrication becomes more difficult as the rotating speed of bearings increases. The upper limit of revolution speed varies according to bearing type, dimensions, Table 7 Brands of Lubricating Greases and Comparison of Properties | | ne / Branus on | Lubricating Greases and C | Jonipa | 115011 01 | Properties | 5 | | |-----------------------------|------------------------|---|---------------------------|-------------|---|------------------------|--| | Brands | Thickeners | Base Oils | Dropping
Point
(°C) | Consistency | Working
Temperature
Range (¹)
(°C) | Pressure
Resistance | Usable Limit
Compared to
Listed Limiting
Speed (²)
(%) | | ADLEX | Lithium | Mineral oil | 198 | 300 | 0 to +110 | Good | 70 | | APPOLOIL AUTOLEX A | Lithium | Mineral oil | 198 | 280 | -10 to +110 | Fair | 60 | | ARAPEN RB 300 | Lithium/Calcium | Mineral oil | 177 | 294 | -10 to + 80 | Fair | 70 | | EA2 GREASE | Urea | Poly- α -olefin oil | ≥ 260 | 243 | -40 to +150 | Fair | 100 | | EA3 GREASE | Urea | Poly-α-olefin oil | ≥ 260 | 230 | -40 to +150 | Fair | 100 | | EA5 GREASE | Urea | Poly-α-olefin oil | ≥ 260 | 251 | -40 to +160 | Good | 60 | | EA7 GREASE | Urea | Poly-α-olefin oil | ≥ 260 | 243 | -40 to +160 | Fair | 100 | | ENC GREASE | Urea | Polyol ester oil + Mineral oil | ≥ 260 | 262 | -40 to +160 | Fair | 70 | | ENS GREASE | Urea | Polyol ester oil | ≥ 260 | 264 | -40 to +160 | Fair | 100 | | ECZ GREASE | Lithium + Carbon black | Poly-α-olefin oil | ≥ 260 | 243 | -10 to +120 | Fair | 100 | | ISOFLEX NBU 15 | Barium Complex | Diester oil + Mineral oil | ≥ 260 | 280 | -30 to +120 | Poor | 100 | | ISOFLEX SUPER LDS 18 | Lithium | Diester oil | 195 | 280 | -50 to +110 | Poor | 100 | | ISOFLEX TOPAS NB 52 | Barium Complex | Poly-α-olefin oil | ≥ 260 | 280 | -40 to +130 | Poor | 90 | | AEROSHELL GREASE 7 | Micro Gel | Diester oil | ≥ 260 | 288 | -55 to +100 | Poor | 100 | | GREASE SH 33 L | Lithium | Silicone oil | 210 | 310 | -60 to +120 | Poor | 60 | | GREASE SH 44 M | Lithium | Silicone oil | 210 | 260 | -30 to +130 | Poor | 60 | | NS HI-LUBE | Lithium | Polyol ester oil + Diester oil | 192 | 250 | -40 to +130 | Fair | 100 | | NSA GREASE | Lithium | Poly-α-olefin oil + Ester oil | 201 | 311 | -40 to +130 | Fair | 70 | | NSC GREASE | Lithium | Alkyldiphenyl ether oil + Polyol ester oil | 192 | 235 | -30 to +140 | Fair | 70 | | NSK CLEAN GREASE LG2 | Lithium | Poly-α-olefin oil + Mineral oil | 201 | 199 | -40 to +130 | Poor | 100 | | EMALUBE 8030 | Urea | Mineral oil | ≥ 260 | 280 | 0 to +130 | Good | 60 | | MA8 GREASE | Urea | Alkyldiphenyl ether oil + Poly-α-olefin oil | ≥ 260 | 283 | -30 to +160 | Fair | 70 | | KRYTOX GPL-524 | PTFE | Perfluoropolyether oil | ≥ 260 | 265 | 0 to +200 | Fair | 70 | | KP1 GREASE | PTFE | Perfluoropolyether oil | ≥ 260 | 280 | -30 to +200 | Fair | 60 | | COSMO WIDE GREASE WR No.3 N | Sodium Terephtalamate | Polyol ester oil + Mineral oil | ≥ 230 | 227 | -40 to +130 | Poor | 100 | | G-40M | Lithium | Silicone oil | 223 | 252 | -30 to +130 | Poor | 60 | | SHELL GADUS S2 V220 2 | Lithium | Mineral oil | 187 | 276 | 0 to + 80 | Good | 60 | | SHELL ALVANIA GREASE S1 | Lithium | Mineral oil | 182 | 323 | -10 to +110 | Fair | 70 | | SHELL ALVANIA GREASE S2 | Lithium | Mineral oil | 185 | 275 | -10 to +110 | Fair | 70 | | SHELL ALVANIA GREASE S3 | Lithium | Mineral oil | 185 | 242 | -10 to +110 | Fair | 70 | | SHELL CASSIDA GREASE RLS 2 | Aluminum Complex | Poly-α-olefin oil | ≥ 260 | 280 | 0 to +120 | Fair | 70 | | SHELL SUNLIGHT GREASE 2 | Lithium | Mineral oil | 200 | 274 | -10 to +110 | Fair | 70 | | WPH GREASE | Urea | Poly-α-olefin oil | 259 | 240 | -40 to +150 | Fair | 70 | | DEMNUM GREASE L-200 | PTFE | Perfluoropolyether oil | ≥ 260 | 280 | -30 to +200 | Fair | 60 | | NIGACE WR-S | Urea | Mixed oil | ≥ 260 | 230 | -30 to +150 | Poor | 70 | | NIGLUB RSH | Sodium Complex | Polyalkylene Glycol oil | ≥ 260 | 270 | -20 to +120 | Fair | 60 | | PYRONOC UNIVERSAL N6B | Urea | Mineral oil | 238 | 290 | 0 to +130 | Fair | 70 | | PALMAX RBG | Lithium Complex | Mineral oil | 216 | 300 | -10 to +130 | Good | 70 | | BEACON 325 | Lithium | Diester oil | 190 | 274 | -50 to +100 | Poor | 100 | | MULTEMP PS No.2 | Lithium | Poly-α-olefin oil + Diester oil | 190 | 275 | -50 to +110 | Poor | 100 | | MOLYKOTE FS-3451 GREASE | PTFE | Fluorosilicone oil | ≥ 260 | 285 | 0 to +180 | Fair | 70 | | UME GREASE | Urea | Mineral oil | ≥ 260 | 268 | -10 to +130 | Fair | 70 | | UMM GREASE 2 | Urea | Mineral oil | ≥ 260 | 267 | -10 to +130 | Fair | 70 | | RAREMAX AF-1 | Urea | Mineral oil | ≥ 260 | 300 | -10 to +130 | Fair | 70 | Notes (1) If grease will be used at the upper or lower limit of the temperature range or in a special environment such as vacuum, please lubricating methods and service conditions. In the dimension table of NSK's rolling bearing catalogue, the limiting speeds are listed by bearing, assuming normal operation conditions. The operating temperature range of grease varies depends on the type of grease used. Table 7 shows the generally recommended temperature range. When grease is used outside this temperature range, care should be used for replenishing the lubricant. Sufficient grease must be packed inside the bearing, including the cage guide face. The available space inside the housing to be packed with grease, excluding the bearing and shaft, depends on the speed, as follows: - 1/2 to 2/3 of the space (Less than 50 % of the limiting speed) - 1/3 to 1/2 of the space (More than 50 % of the limiting speed) Since the quality and property of greases change as they are used, they must be replaced after a given period has elapsed. Serviceability limits cannot be readily determined for all applications, since changes in quality and properties are affected by operating and external conditions. Operators may also find it difficult to determine the timing of replacement based on appearance. Assuming that the greases are used under normal operating conditions, refer to Figs. 23 and 24 on page 16 concerning replacement time intervals. Oil lubrication is widely used. Oil features excellent flowability and heat dissipation capacity and is suitable for circulating and forced lubrication, from which debris and abrasive particles are easily removed. It also has a positive effect on vibration and acoustic properties, and therefore is the optimum choice as a lubricant. However, oil lubrication clearly adds complexity to the lubrication system and requires careful maintenance. Furthermore, bearing seals must be carefully tended to prevent oil leakage. Selecting the proper lubrication oil
involves considering its viscosity at the operating temperature of the applicable bearing. It is generally better to choose an oil having the following viscosity or higher at the respective operating temperature for the applicable bearing types: Fig. 22 shows the general relationship between oil viscosity and temperature, although some variations from these numbers can be found. Lubricating methods include oil bath lubrication, splash lubrication, forced circulating lubrication, and oil mist lubrication. The selection of the proper lubricating methods depends on the structures in the vicinity of the bearings and operating conditions. The most typical limiting speeds for bearings adopting oil bath lubrication are also listed in our catalog's dimension table. #### 2.6 Test Operation A test operation should be performed after mounting has been completed. Items to be checked during the test include the existence of abnormal noise and excessive rise in bearing temperature. Needless to say, bearing rotation must be smooth during test operation. If any abnormality is found during the test operation, immediately discontinue the test, dismount the bearing and conduct an inspection depending on the specific Especially for high-speed machines, start the operation Fig. 22 Temperature-Viscosity chart ⁽²⁾ For short-term operation or when cool, grease may be used at speeds exceeding the above limits provided the supply of grease is appropriate at lower speeds, then gradually increase speed. Although bearing temperature can generally be estimated by the temperature of the outside surface of the housing, it is better to directly measure the temperature of the outer ring using oil holes for access. Changes in temperature can also be estimated by the temperature of the lubricant. Since, in general, bearing temperature gradually rises and reaches saturation temperature over time, it is possible to confirm that mounting has been done correctly by monitoring the rise in temperature. In the event of problems with the bearing, its mounting, or both, bearing temperature may not level off but will increase to an abnormal level. The saturation temperature of a bearing varies depending on heat capacity, heat release, number of revolutions and load of the host machine. Usually the rise in temperature will range from 20 °C to 30 °C. The probable causes of unrestrained temperature rise to abnormal levels are: - Excessive supply of grease or oil - Excessive friction of the bearing seals - Insufficient bearing clearance - Excessive speed with respect to bearing type and lubricating method - Abnormal load on bearing - Improper contact of bearing due to inaccurate shaft, housing, or shoulders - Defective bearings, etc. Moreover, there may be cases involving improper mounting, inaccurate fabrication, or the incorrect selection of a bearing. The sound of a bearing may be checked with a noise locator or other listening instrument placed in contact with the housing. Abnormal conditions, such as a loud metallic sounds, strange noises or other irregular sounds, may be caused by insufficient lubricant, inaccurate shaft or housing, the entry of foreign particles or debris into the bearing, or defective bearings. For reference purposes, probable causes of various types of bearing failure and related measures are shown in **Table 8**. The results of the test operation must always be recorded for reference after mounting has been completed, as a future reference for troubleshooting. #### Table 8 Causes of and Measures for Operating Irregularities | Ir | regularties | Possible Causes | Measures | |---------|-----------------------------------|---|--| | | | Abnormal Load | Improve the fit, internal clearance, preload, position of housing shoulder, etc. | | | Loud
Metalic Sound (1) | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting method. | | | Wetalic Sound (1) | Insufficient or improper lubricant | Replenish the lubricant or select another lubricant. | | | | Contact of rotating parts | Modify the labyrinth seal, etc. | | Noise | | Flaws, corrosion, or scratches on raceways | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | Loud
Regular Sound | Brinelling | Replace the bearing and use care when handling bearings. | | | | Flaking on raceway | Replace the bearing. | | | | Excessive clearance | Improve the fit, clearance and preload. | | | Irregular
Sound | Penetration of foreign particles | Replace or clean the bearing, improve the seals, and use clean lubricant. | | | | Flaws or flaking on balls | Replace the bearing. | | | | Excessive amount of lubricant | Reduce amount of lubricant, select stiffer grease. | | | | Insufficient or improper lubricant | Replenish lubricant or select a better one. | | Abnorma | I Temperature Rise | Abnormal load | Improve the fit, internal clearance, preload, position of housing shoulder. | | | | Incorrect mounting | Improve the machining accuracy and alignment of shaft and housing, accuracy of mounting, or mounting method. | | | | Creep on fitted surface, excessive seal friction | Correct the seals, replace the bearing, correct the fitting or mounting. | | | | Brinelling | Replace the bearing and use care when handling bearings. | | | Vibration | Flaking | Replace the bearing. | | (A | xial runout) | Incorrect mounting | Correct the squareness between the shaft and housing shoulder or side of spacer. | | | | Penetration of foreign particles | Replace or clean the bearing, improve the seals. | | | Leakage or
ration of Lubricant | Too much lubricant. Penetration by foreign matter or abrasion chips | Reduce the amount of lubricant, select a stiffer grease. Replace the bearing or lubricant. Clean the housing and adjacent parts. | Note (') Squeaking may be heard in medium- to large-sized cylindrical roller bearings or ball bearings that are operating under grease lubrication in low-temperature environments. Under such conditions, even when squeaking occurs, the bearing temperature will not rise and fatigue or grease life will not be affected. Consequently, such a bearing can continue to be used. # 3 # **Maintenance and Inspection** # 3.1 Procedures of Maintenance and Inspection Consistent maintenance and regular inspections are required to ensure continued use of the bearing throughout its operating life so that problems are identified and resolved early to avert future (and potentially escalating) problems or accidents. Inspection of bearings during operation is integrated into such activities as occasionally listening to the sound of the bearings, monitoring bearing temperature, or investigating bearing vibration. Even a slight flaking of the bearing will create abnormal or irregular noise that can be readily distinguished from normal sound by a skilled worker using a noise locator. Although bearing temperature can be roughly determined by simply touching the housing surface, please insert a thermometer into a lubrication hole or similar point of entry to directly measure bearing temperature. Bearings for moving units that cannot be monitored for noise or temperature during operation, such as roller bearings for vehicles, should be periodically inspected, and fresh grease should applied. Examining the condition of the grease during operation is also a useful method for determining the operational condition of the bearing. The operational condition can be determined by the amount of dirt and fine iron powder contained in the grease as well as any sign of leakage or deterioration of the grease. Whenever such inspections reveal abnormality or failure of the bearing, the bearing should be disassembled for further detailed inspection to identify the cause. Fig. 23 Grease Replenishment Intervals for Radial Ball Bearings, Cylindrical Roller Bearings #### 3.2 Lubrication Method #### 3.2.1 Grease Lubrication Lubricant is indispensable for bearings; however, only a small amount of lubricant is required and typically does not need to be replenished often. The interval varies depending on bearing type, dimension, number of revolutions and other operational conditions. These factors can often be determined empirically. Figs. 23 and 24 are the guidelines of replenishment time interval for the condition of high-quality lithium soapmineral oil grease, bearing temperature of 70 °C, and normal load (*P*/*C*=0.1). If the bearing temperature exceeds 70 °C, the replenishment time interval must be reduced by half for every 15 °C temperature rise of the bearings. Also, the replenishment time interval depends on the magnitude of the bearing load, and it should be used by multiplying Load factor shown in table 9. In the case of ball bearings especially, the replenishment time interval can be extended depending on the grease type used. (For example, high-quality lithium soap-synthetic oil grease may extend about two times of replenishing time interval shown in Figs. 23 and 24.) The lubrication performance of grease declines by the emulsification or the deterioration due to intrusion of foreign matter or water. Therefore, if the bearing is used in such harsh conditions, it is necessary to shorten the replenishment time interval in Figs. 23 and 24 by a half to a tenth. A housing should be designed in consideration of the need to replenish or replace the grease. For example, a Fig. 24 Grease Replenishment Intervals for Tapered Roller Bearings, Spherical Roller Bearings Table 9 Load factor | P/C | ≦0.06 | 0.1 | 0.13 | 0.16 | |-------------|-------|-----|------|------| | Load factor | 1.5 | 1 | 0.65 | 0.45 | housing used for machines requiring occasional replacement of grease should be easy to disassemble, and, since grease will be frequently replenished in
situations in which the entry of water through a sealing device cannot be avoided, the housing must be designed so that the old grease can be readily discharged. Although the housing may be filled with grease when the bearing is used for extremely low-speed operation, avoid complete filling with grease in high-speed applications. When a housing can be regularly disassembled, it is better not to drill a grease supply hole. In practical terms, grease will only reach the periphery of the supply hole without reaching the bearing, and thus may actually impair performance. However, larger bearings or bearings used for higher-speed operations require frequent, proper greasing. In this case, a grease supply hole should be drilled since it is difficult to disassemble the housing at every greasing. It is recommended to partition the housing space on the side of the supply hole into several grease sectors (Fig. 25) in order to infuse new grease into the bearing without filling up the housing. A wide housing space should be provided at the opposite side of the supply hole in order to collect old grease, which should be occasionally discharged by opening the cover. Bearings used for high-speed operation can be greased more easily using a grease valve. This is appropriate for bearings used for long-term continuous operations, such as electric motors or turbine pumps. The grease valve is intended to obviate grease repletion. Fig. 26 illustrates the location of grease sectors and the provision of a grease valve with a housing. Fig. 27 shows a plummer block provided with a grease valve, where a thin iron plate b partitions grease sectors. #### 3.2.2 Oil Lubrication An oil gauge, provided with a bath lubrication housing, should be read when the bearing is not in use in order to determine the oil level and lessen the chance of error occurring. In principle, if the quantity of oil is less than the proper oil level, oil should be supplied; however, if the sealing device is functioning properly with no hydraulic leakage, there is less need for lubrication replenishment. The need for oil replacement depends on operating conditions. If a bearing is used at a temperature of 50 °C or lower in a favorable environment with little dust or dirt, an oil change intervals up to one year should be sufficient. If the bearing is used at an operating temperature exceeding 100 °C with an external heat source, the oil should be replaced every two or three months or more frequently, even if the used oil is thermally stable. In case of drop lubrication, the number of drops should be appropriately adjusted according to the specific conditions; however, several drops per minute should be sufficient under normal conditions. In case of high-speed operation, where the bearing is lubricated by oil-jet lubrication, the lubricant quantity will be adjusted by the oil pressure and the nozzle bore diameter. It is important to ensure that the supplied oil will not accumulate at the bearing section. Fig. 25 Grease sectors Fig. 26 Grease valve Fig. 27 Grease valve (plummer block) #### 3.3 Bearing Failure Carefully observing a bearing that failed prematurely and inspecting the lubrication conditions and the mounting conditions to investigate the process leading to failure of the bearing is important to prevent recurrence. Likely causes include improper mounting, handling or lubrication; incomplete sealing structure; and insufficient consideration for thermal effect. For instance, rib scoring, one example of premature failure, may be the result of shortage of oil, faulty lubrication system, use of improper lubricant, entry of water or foreign matter, excessive relative tilt angle between the inner ring and the outer ring due to excessive mounting error or excessive deflection of the shaft, or any combination of these. Thus, it is too difficult to find the real cause by only inspecting the failed bearing itself. However, by tracing down the conditions before and after the occurrence of failure, and after checking the machine and the area which the bearing was applied, and also the operating conditions and handling/operating histories, it becomes possible to determine several probable causes. This will help prevent recurrence of bearing failure. The quickest way to identify the cause is to painstakingly note all aspects of the failed bearing, including contact corrosion or flaws on the inner diameter surface and the outer diameter surface, as well as the condition of the bearing interior, such as the running track on the raceway and the sliding area, including the rib. At the same time, studying undamaged bearings used under similar operating conditions is often useful. To sum up, comprehensive examination of the machinery using the bearing is important. Representative cases of bearing failure are provided below for your reference. #### **Running Traces and Applied Loads** As the bearing rotates, the raceways of the inner ring and the outer ring make contact with the rolling elements. This results in a wear path on both the rolling elements and raceways. It is normal for the running trace to be marked on the raceway, and the extent and shape of this running trace provides a useful indication of loading conditions. It is possible to determine from careful observation of the running traces whether the bearing is carrying a radial load, a large axial load, or a moment load, or if there is extreme rigidity variations of the housing. Unexpected load applied on the bearing or excessive mounting error or the like can also be determined, providing a clue to the investigation of causes for bearing failure. Representative running traces of deep groove ball bearings are shown in Fig. 28. Fig. 28 (a) to (d), show general running traces under radial load or axial load. The running traces vary according to whether the load is fixed to the inner ring or the outer ring, and according to load conditions. Fig. 28 (e) shows running traces with a shaft inclined due to misalignment; (f) is a running trace under a moment load; (g) is a running trace in a housing which is elliptically shaped and has poor inner diameter accuracy; and (h) is a running trace in a bearing with insufficient internal clearance. Running traces (e) to (h) often cause bearing failure, and must be carefully observed. Fig. 28 Typical Running Traces of Deep Groove Ball Bearings #### Flaking Although flaking on a bearing appears to an extremely small extent at first, it will extend significantly in a relatively short time (Fig. 29). It cannot be easily determined whether the flaking can be attributed to bearing life, where flaking appears in the course of normal operation, or as a result of abnormal load. In addition, unlike other failures, flaking is often caused by the complicated interplay of lubrication, load and vibration factors, and thus, it is difficult to narrow down to a single cause. However, since the probability of premature cracks is extremely low where the bearing is used under proper lubrication and load, lubrication and the scale of load should be investigated as possible sources of trouble. Fig. 30 shows early-stage flaking that occurred only on one side of a spherical roller bearing as a result of an excessive axial load. In addition to such abnormal load, causes of early-stage flaking include mounting in a tilted position, improper selection of bearing clearance, and poor accuracy of housing. Fig. 29 Flaking Fig. 30 Flaking #### Fracture and Cracks Fig. 31 shows fracture on the large rib of the inner ring of a tapered roller bearing. This occurs when an abnormal axial load or a shock load is applied to a bearing or when an abnormal force is applied to the rib when mounting or dismounting the bearing. Causes of cracks include application of a heavy shock load (Fig. 32) and excessive interference. Where the bearing is supported only by the two edges of the outer ring, it may break along the axial plane and where there is slippage between the inner outer ring and the shaft or housing, a crack will occur at right angles to the direction of slippage. This phenomenon is seen in cases where the outer ring is loosely fit with the shaft and creeping occurs. Fig. 31 Fracture Fig. 32 Crack #### Denting Raceway dents (Brinell dents) can occur as a result of careless handling of the bearing, catching particles, or a heavy shock load applied to the bearing at rest. In addition, a dent similar to a Brinell dent may be caused by advanced abrasion in the contact area between the rolling element and the raceway resulting from vibration or oscillatory motion. This phenomenon, known as false brinelling, is often seen, especially in cases where a bearing is transported while mounted in a machine (Fig. 33). Fig. 33 Denting #### Scoring Scoring occurs in a roller bearing where the roller end face (or faces) comes in contact with the rib surface of either the inner ring or outer ring (or both) as a result of small seizures, which are caused by insufficient lubrication or the entry of debris. This damage occurs on the rib surface or roller end face before any damage occurs on the rolling contact surface (Figs. 34 and 35). Fig. 34 Scoring on the Rib of Spherical Roller Bearing Fig. 35 Scoring on the Roller End Face #### Wear Factors influencing wear include entry of debris, insufficient lubricant and improper lubricant (Fig. 36), or where entry of water causes corrosive wear on the sliding surface or on the rolling surface. In addition, abrasion may be caused on the fitted shaft surface by creep resulting from inappropriate fitting. Fig. 36 Wear #### Rust Rust in the bearing interior is caused by the entry of moisture or improper lubricant. Fig. 37 shows an example of rust caused by poor lubrication due to the entry of moisture. Reddish brown or black abrasive powder may appear on the fitted shaft surface between the shaft/housing and inner ring/outer ring. The oxide is generated by oxidation of the fitted shaft surface
resulting from the slight sliding between the shaft/housing and inner ring/outer ring that occurs when contact between them is poor and is often seen in areas where vibration or heavy loads have been applied. This phenomenon, known as fretting (also called fretting corrosion), is similar to rust at first glance. Fig. 37 Rust #### Electrical Corrosion When electric current passes through a bearing in operation, the contact area between the inner/outer ring and the ball/roller will locally melt due to electric arcing through the extremely thin oil film to form groove-like corrugations. In a conspicuous case, these grooves may appear as a pitted surface or a striped uneven surface. (Fig. 38). When the extent of the electric corrosion is significant, flaking will be induced or the hardness of the raceway surface will be impaired resulting in advanced abrasion. Fig. 38 Electric Corrosion #### Smearing Smearing is surface damage which occurs between the raceway surface and the rolling surface caused during operation by a collection of small seizures resulting from sliding and oil film rupture. The failure surface becomes rough as a result of the accumulation of minute adhesions as shown in Fig. 39. Improved lubricant and lubrication method are required. Fig. 39 Smearing #### Creep Creep is a phenomenon in bearings where relative slipping occurs at the fitting surfaces (between the bore surface of inner ring and the shaft; and between the outside surface of outer ring and the housing), and thereby creates a clearance at the fitting. A creeping fitting surface causes a shiny or smoky surface, with the occasional appearance of scoring or wear. Fig. 40 shows an example of this failure. Checking the interference of fitting surfaces and lateral tightening of the outer ring are effective in preventing creep. Lubrication between the bearing and the shaft/housing is effective for preventing scoring or wear. Fig. 40 Creep # **Dismounting** Bearings are dismounted for periodic inspection or replacement. If the removed bearing is to be reused or it is removed only for inspection, dismounting needs to be conducted as carefully as mounting, taking care not to damage the bearing or individual components. Since it is particularly difficult to dismount bearings that are tightly fitted, sufficient consideration should be given at the design stage to the structure surrounding the bearing so that the bearing can be easily dismounted. It is also important to design and manufacture dismounting tools as required. All possible preparations must be made for dismounting bearings by studying the dismounting method, the sequence of procedures, and the fitting conditions of the bearing as displayed in drawings. When investigating the cause of bearing failure, the bearing also needs to be treated carefully, as described above, to preserve the condition of the bearing prior to dismounting. In the course of dismounting a bearing, take care not to scratch the bearing, wipe off any grease, or remove dust, dirt or iron powder, since these actions may prevent identifying the cause of the failure. Although a loosely fitted bearing can be easily dismounted, exercise extreme care when the bearing is tightly fixed. #### **Dismounting Outer Rings** Fig. 41 shows an easy, effective method for dismounting a bearing with a tightly fitted outer ring. In this method, dismounting bolts are first placed into push-out holes at three points in the housing that are plugged except when dismounting the bearing. The method shown in Fig. 42 is recommended for housings with back and front covers fitted by through bolts. The inner ring/outer ring grooves must be protected from dents or scratches as the bearing is pulled out using a special nut that simultaneously supports both the inner and outer rings of the bearing. Depending on circumstances, the bearing may be dismounted by heating the housing; however, the circumference must be uniformly heated or the housing may be contorted or cracked. Also note that if the housing is heated for too long, the bearing may expand and become difficult to pull out. #### 4.2 Dismounting Inner Rings Dismounting an inner ring is more difficult than mounting the ring when it is tightly fitted. Although a claw tool is often used to hook and then dismount an inner ring, using the same tool to pull out an outer ring may dent the raceway or spoil the bearing. An easy method, which is often used when the inserted interference is relatively small (Fig. 43-a), involves making two or three notches on the shaft shoulder and then tapping with a hammer and patch to pull out the inner ring. However, the blow can be more safely applied using a doubled ring as shown in Fig. 43-b, since there is a risk of tapping so hard that the patch may slip and allow the small rib of the inner ring to be damaged. Other safer methods include using a tube as an Fig. 41 Dismounting the Outer Ring Fig. 42 Dismounting the Outer Ring intermediary as shown in Fig. 43-c. Using a screw or a press is also recommended. The tool shown in Fig. 44 is also effective for withdrawing an inner ring. Back plate A, consisting of an upper board and a lower board, is fastened with bolts. Inserting a steel ball (thrust ball bearing for a large-size bearing) between front plate B and bolt C increases reliability. Appropriate bolt holes should be drilled in A and B according to the size of the individual bearing. The force required for pulling out the inner ring can be obtained using the aforementioned equation (5) and Tables 3 and 4. The back cover of the housing may be used instead of back plate A, depending on specific conditions. Large-size roller bearings with large interference can be dismounted more easily without damaging the inner ring, in accordance with the previously described mounting/dismounting method by induction heating. When this device is not available, the inner ring may be expanded by heating the circumference with a burner or similar equipment. This method is intended to prevent damage to the shaft without regard for the possible reuse of the bearing. The dismounting of bearings must be sufficiently considered well in advance, at the design stage, and the appropriate method must be selected and prepared for prior to implementation. In other words, no aspect of bearing design is complete unless the processes of mounting and dismounting have been taken into account. #### 4.3 Bearing Cleaning When bearings used for a given period of time are dismounted for inspection, they should be cleaned. First inspect the old grease coating the bearing, then clean (a) Fig. 43 Dismounting the Inner Ring the bearing and examine its condition. Dismounted bearings should first be given a preliminary cleaning followed by a finishing rinse. During preliminary cleaning, it is better to use a brush to gently remove any grease containing dust, dirt, or abrasive powder, without rotating the bearing. New bearings are always coated with an anti-corrosion agent prior to packaging. Generally, these bearings do not need to be cleaned only to remove the anti-corrosion agent. Since only a thin coating of anti-corrosion agent covers the surface of the bearing, there should not be any harmful effect from leaving the agent on the bearing, even when mixed with a lubricant or lubrication grease. Greater damage can be caused by cleaning the bearing in an environment exposed to contaminated oil, dust, or dirt. Nevertheless, removing the anti-corrosion agent is recommended for small bearings used in high-speed operations or for bearings that will use low-viscosity or mist lubrication. Therefore, in principle, bearings should be cleaned when they are being examined; when dust and dirt have adhered to the bearing; or when the machine using the bearing operates at a level of speed or accuracy that would be impaired by even the slightest resistance to bearing rotation. Kerosene is generally used as a cleaning agent. Lowviscosity spindle oil may be jet-sprayed. Compressed air is also used to remove dust and dirt from the bearing, unless the applied air contains moisture or dust/dirt; air usually contains moisture that often condenses into water droplets at the tip of the nozzle. Therefore due care must be exercised when using compressed air. In addition, since cleaning a bearing while rotating the bearing by blowing it with compressed air can damage the raceway, the inner ring/outer ring Fig. 44 Tool for Withdrawing an Inner Ring must be fixed to prevent the bearing from rotating. When storing a cleaned bearing, it should be thoroughly dried and coated with an anti-corrosion agent. When applying grease, be sure to rotate the bearing to ensure uniform distribution to every part of the bearing. #### 4.4 Bearing Inspection The term "inspection" here does not refer to the quantitative measurement of dimensional or rotational accuracy of the bearing, but simply refers to visual examination. Specifically, in order to investigate the condition of a bearing used for a given period, carefully note the presence of any abnormality and determine whether the bearing can easily be reused, completely clean the bearing as described above, and then look for visible abnormalities such as rust, dents, or flaking in the raceway or the rolling element. Carefully inspect ball bearings for rotational smoothness. In addition, also check for creep in the fitting surface of the inner ring or the outer ring as well as any signs of serious abrasion. Also inspect the cage for wear, loose rivets or head defects. Defects most frequently occur when the rotational speed of the bearing is too high for the cage or when the lubricant is poor or insufficiently applied. Although a relatively large roller bearing can be measured for clearance with a clearance gauge, small bearings such as ball bearings cannot be measured by simply moving them by hand. An appropriate method must be applied to reliably determine the correct clearance. Refer to
International Standards ISO 1132-2. # **Bearing Storage** Since bearings are not intended for permanent use but must be replaced at given intervals, spare bearings must be stored in warehouse environments that are similar to operational conditions so they can be replaced immediately. When storing bearings, pay special attention to preventing rust. Although bearings are usually coated with an anti-corrosion agent and then packaged, the wrapping paper cannot completely provide protection from the circulation of ambient air. Therefore, bearings should be stored in a moisture-free location. In addition, bearings should be stored in clean, well-ventilated spaces with little humidity and no direct exposure to sunlight, in a locker or on a shelf, at least 30 cm above the floor. The bearings must be kept wrapped unless otherwise required, since unwrapping them can allow rust to occur. When bearings are unwrapped for inspection prior to acceptance, they must be stored with due attention to the subsequent application of anti-corrosion agent and then re-packaged. #### Reference Catalog New Bearing Doctor (CAT. No. 7002) Instruction Manual for Spherical Roller Bearing (CAT. No. 9003) Technical Report (CAT. No. 728) Instruction Manual for Roll Neck Bearing (CAT. No. 9001) # 6 Appendices ### Appendix Table 1 Tolerances for Shaft Diameters Units: µm | Class | meter
ification
nm) | Single Plane
Mean B.D.
Deviation | d6 | e6 | f6 | g5 | g6 | h5 | h6 | h7 | h8 | h9 | h10 | js5 | js6 | j5 | j6 | j7 | k5 | k6 | k7 | m5 | m6 | n6 | р6 | r6 | r7 | Diam
Classificat | | |-------|---------------------------|--|--------------|--------------|--------------|--------------|--------------|-----------|-----------|-----------|-----------|------------------|-----------|--------|--------|------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------|-------| | over | incl. | (Normal) $\Delta_{d\mathrm{mp}}$ | | | | | | | | | | | | | | | - | - | | | | | | | | | | over | incl. | | 3 | 6 | - 8 | - 30
- 38 | - 20
- 28 | - 10
- 18 | - 4
- 9 | - 4
- 12 | 0
- 5 | 0
- 8 | 0
- 12 | 0
- 18 | 0
- 30 | 0
- 48 | ± 2.5 | ± 4 | + 3 - 2 | + 6
- 2 | + 8
- 4 | + 6
+ 1 | + 9
+ 1 | + 13
+ 1 | + 9
+ 4 | + 12
+ 4 | + 16
+ 8 | + 20
+ 12 | + 23
+ 15 | + 27
+ 15 | 3 | 6 | | 6 | 10 | - 8 | - 40
- 49 | - 25
- 34 | - 13
- 22 | - 5
- 11 | - 5
- 14 | 0
- 6 | 0
- 9 | 0
- 15 | 0
- 22 | 0
- 36 | 0
- 58 | ± 3 | ± 4.5 | + 4 - 2 | + 7
- 2 | + 10
- 5 | + 7 + 1 | + 10
+ 1 | + 16
+ 1 | + 12
+ 6 | + 15
+ 6 | + 19
+ 10 | + 24
+ 15 | + 28
+ 19 | + 34
+ 19 | 6 | 10 | | 10 | 18 | - 8 | - 50
- 61 | - 32
- 43 | - 16
- 27 | - 6
- 14 | - 6
- 17 | 0
- 8 | 0
- 11 | 0
- 18 | 0
- 27 | 0
- 43 | 0
- 70 | ± 4 | ± 5.5 | + 5 - 3 | + 8
- 3 | + 12
- 6 | + 9 + 1 | + 12
+ 1 | + 19
+ 1 | + 15
+ 7 | + 18
+ 7 | + 23
+ 12 | + 29
+ 18 | + 34
+ 23 | + 41
+ 23 | 10 | 18 | | 18 | 30 | 0
- 10 | - 65
- 78 | - 40
- 53 | - 20
- 33 | - 7
- 16 | - 7
- 20 | 0
- 9 | 0
- 13 | 0
- 21 | 0
- 33 | 0
- 52 | 0
- 84 | ± 4.5 | ± 6.5 | + 5 | + 9
- 4 | + 13
- 8 | + 11 + 2 | + 15
+ 2 | + 23
+ 2 | + 17
+ 8 | + 21
+ 8 | + 28
+ 15 | + 35
+ 22 | + 41
+ 28 | + 49
+ 28 | 18 | 30 | | 30 | 50 | 0
- 12 | - 80
- 96 | - 50
- 66 | - 25
- 41 | - 9
- 20 | - 9
- 25 | 0 - 11 | 0
- 16 | 0
- 25 | 0
- 39 | 0
- 62 | 0
–100 | ± 5.5 | ± 8 | + 6
- 5 | + 11
- 5 | + 15
- 10 | + 13 + 2 | + 18
+ 2 | + 27
+ 2 | + 20
+ 9 | + 25
+ 9 | + 33
+ 17 | + 42
+ 26 | + 50
+ 34 | + 59
+ 34 | 30 | 50 | | 50 | 80 | 0 | -100 | - 60 | - 30 | - 10 | - 10 | 0 | 0 | 0 | 0 | 0 | 0 | . 65 | . 0.5 | + 6 | + 12 | + 18 | + 15 | + 21 | + 32 | + 24 | + 30 | + 39 | + 51 | + 60
+ 41 | + 71
+ 41 | 50 | 65 | | 30 | 00 | - 15 | -119 | - 79 | - 49 | - 23 | - 29 | - 13 | - 19 | - 30 | - 46 | - 74 | -120 | ± 6.5 | ± 9.5 | - 7 | - 7 | - 12 | + 2 | + 2 | + 2 | + 11 | + 11 | + 20 | + 32 | + 62
+ 43 | + 73
+ 43 | 65 | 80 | | 80 | 120 | 0 | -120 | - 72 | - 36 | - 12 | - 12 | 0 | 0 | 0 | 0 | 0 | 0 | ± 7.5 | ± 11 | + 6 | + 13 | + 20 | + 18 | + 25 | + 38 | + 28 | + 35 | + 45 | + 59 | + 73
+ 51 | + 86
+ 51 | 80 | 100 | | 80 | 120 | - 20 | -142 | - 94 | - 58 | - 27 | - 34 | - 15 | - 22 | - 35 | - 54 | - 87 | -140 | ± 7.5 | ± 11 | - 9 | - 9 | - 15 | + 3 | + 3 | + 3 | + 13 | + 13 | + 23 | + 37 | + 76
+ 54 | + 89
+ 54 | 100 | 120 | + 88
+ 63 | +103
+ 63 | 120 | 140 | | 120 | 180 | 0
- 25 | -145
-170 | - 85
-110 | - 43
- 68 | - 14
- 32 | - 14
- 39 | 0
- 18 | 0
- 25 | 0
- 40 | 0
- 63 | 0
–100 | 0
–160 | ± 9 | ± 12.5 | + 7 | + 14
- 11 | + 22
- 18 | + 21 + 3 | + 28
+ 3 | + 43
+ 3 | + 33
+ 15 | + 40
+ 15 | + 52
+ 27 | + 68
+ 43 | + 90
+ 65 | +105
+ 65 | 140 | 160 | + 93
+ 68 | +108
+ 68 | 160 | 180 | +106
+ 77 | +123
+ 77 | 180 | 200 | | 180 | 250 | - 30 | -170
-199 | -100
-129 | - 50
- 79 | - 15
- 35 | - 15
- 44 | 0
- 20 | 0
- 29 | 0
- 46 | 0
- 72 | 0
–115 | 0
–185 | ± 10 | ± 14.5 | + 7 - 13 | + 16
- 13 | + 25
- 21 | + 24
+ 4 | + 33
+ 4 | + 50
+ 4 | + 37
+ 17 | + 46
+ 17 | + 60
+ 31 | + 79
+ 50 | +109
+ 80 | +126
+ 80 | 200 | 225 | +113
+ 84 | +130
+ 84 | 225 | 250 | | 250 | 315 | 0 | -190 | -110 | - 56 | - 17 | - 17 | 0 | 0 | 0 | 0 | 0 | 0 | ± 11.5 | ± 16 | + 7 | ± 16 | ± 26 | + 27 | + 36 | + 56 | + 43 | + 52 | + 66 | + 88 | +126
+ 94 | +146
+ 94 | 250 | 280 | | 230 | 313 | - 35 | -222 | -142 | - 88 | - 40 | - 49 | - 23 | - 32 | - 52 | - 81 | -130 | -210 | ± 11.5 | ± 10 | - 16 | 1 10 | 1 20 | + 4 | + 4 | + 4 | + 20 | + 20 | + 34 | + 56 | +130
+ 98 | +150
+ 98 | 280 | 315 | | 315 | 400 | 0 | -210 | -125 | - 62 | - 18 | - 18 | 0 | 0 | 0 | 0 | 0 | 0 | ± 12.5 | ± 18 | + 7 | ± 18 | + 29 | + 29 | + 40 | + 61 | + 46 | + 57 | + 73 | + 98 | +144
+108 | +165
+108 | 315 | 355 | | 313 | 400 | - 40 | -246 | -161 | - 98 | - 43 | - 54 | - 25 | - 36 | - 57 | - 89 | -140 | -230 | ± 12.5 | ± 10 | - 18 | 1 10 | - 28 | + 4 | + 4 | + 4 | + 21 | + 21 | + 37 | + 62 | +150
+114 | +171
+114 | 355 | 400 | | 400 | 500 | 0 | -230 | -135 | - 68 | - 20 | - 20 | 0 | 0 | 0 | 0 | 0 | 0 | ± 13.5 | ± 20 | + 7 | ± 20 | + 31 | + 32 | + 45 | + 68 | + 50 | + 63 | + 80 | +108 | +166
+126 | +189
+126 | 400 | 450 | | 400 | 500 | - 45 | -270 | -175 | -108 | - 47 | - 60 | - 27 | - 40 | - 63 | - 97 | -155 | -250 | ± 13.5 | ± 20 | - 20 | ± 20 | - 32 | + 5 | + 5 | + 5 | + 23 | + 23 | + 40 | + 68 | +172
+132 | +195
+132 | 450 | 500 | | 500 | 630 | 0 | -260 | -145 | - 76 | | - 22 | | 0 | | | 0 | | | . 22 | | | | _ | + 44 | + 70 | _ | + 70 | + 88 | +122 | +194
+150 | +220
+150 | 500 | 560 | | 300 | 030 | - 50 | -304 | -189 | -120 | _ | - 66 | _ | - 44 | - 70 | -110 | –175 | -280 | _ | ± 22 | _ | _ | _ | _ | 0 | 0 | _ | + 26 | + 44 | + 78 | +199
+155 | +225
+155 | 560 | 630 | | 620 | 900 | 0 | -290 | -160 | - 80 | | - 24 | | 0 | 0 | 0 | 0 | 0 | | ± 25 | | | | | + 50 | + 80 | | + 80 | +100 | +138 | +225
+175 | +255
+175 | 630 | 710 | | 630 | 800 | - 75 | -340 | -210 | -130 | _ | - 74 | _ | - 50 | - 80 | -125 | -200 | -320 | _ | ± 23 | _ | _ | _ | _ | 0 | 0 | _ | + 30 | + 50 | + 88 | +235
+185 | +265
+185 | 710 | 800 | | 000 | 1 000 | 0 | -320 | -170 | - 86 | | - 26 | | 0 | 0 | 0 | 0 | 0 | | . 00 | | | | | + 56 | + 90 | | + 90 | +112 | +156 | +266
+210 | +300
+210 | 800 | 900 | | 800 | 1 000 | -100 | -376 | -226 | -142 | _ | - 82 | _ | - 56 | - 90 | -140 | -230 | -360 | _ | ± 28 | _ | _ | _ | _ | 0 | 0 | _ | + 34 | + 56 | +100 | +276
+220 | +310
+220 | 900 | 1 000 | | 4 000 | 4.050 | 0 | -350 | -195 | - 98 | | - 28 | | 0 | 0 | 0 | 0 | 0 | | . 00 | | | | | + 66 | +105 | | +106 | +132 | +186 | +316
+250 | +355
+250 | 1 000 | 1 120 | | 1 000 | 1 250 | -125 | -416 | -261 | -164 | _ | - 94 | _ | - 66 | -105 | -165 | -260 | -420 | _ | ± 33 | _ | _ | _ | _ | + 66
0 | 0 | _ | + 40 | + 66 | +120 | +326
+260 | +365
+260 | 1 120 | 1 250 | | 1.050 | 1.000 | 0 | -390 | -220 | -110 | | - 30 | | 0 | 0 | 0 | 0 | 0 | | . 20 | | | | | + 78 | +125 | | +126 | +156 | +218 | +378
+300 | +425
+300 | 1 250 | 1 400 | | 1 250 | 1 600 | -160 | -468 | -298 | -188 | _ | -108 | _ | - 78 | -125 | -195 | -310 | -500 | _ | ± 39 | _ | _ | _ | _ | 0 | 0 | _ | + 48 | + 78 | +140 | +408
+330 | +455
+330 | 1 400 | 1 600 | | 1 600 | 2.000 | 0 | -430 | -240 | -120 | | - 32 | | 0 | 0 | 0 | 0 | 0 | | . 46 | | | | | + 92 | +150 | | +150 | +184 | +262 | +462
+370 | +520
+370 | 1 600 | 1 800 | | 1 600 | 2 000 | -200 | -522 | -332 | -212 | | -124 | | - 92 | -150 | -230 | - 370 | -600 | | ± 46 | | _ | _ | | 0 | 0 | | + 58 | + 92 | +170 | +492
+400 | +550
+400 | 1 800 | 2 000 | # Appendix Table 2 Tolerances for Housing Bore Diameters Units: µm | Diam
Classifi | eter
cation | Single Plane
Mean B.D. | Dian | | |------------------|----------------|--|--------------|--------------|--------------|--------------|--------------|-----------|-----------|-----------|-------------|--------------|--------|--------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------|-------| |
over | | Deviation (Normal) $\Delta D_{\rm mp}$ | E6 | F6 | F7 | G6 | G7 | Н6 | Н7 | Н8 | Ј6 | Ј7 | JS6 | JS7 | K5 | K6 | K7 | M5 | M6 | M7 | N5 | N6 | N7 | P6 | P7 | Classifica
over | incl. | | 10 | 18 | 0 - 8 | + 43
+ 32 | + 27
+ 16 | + 34
+ 16 | + 17
+ 6 | + 24
+ 6 | + 11 | + 18 | + 27
0 | + 6
- 5 | + 10
- 8 | ± 5.5 | ± 9 | + 2
- 6 | + 2
- 9 | + 6
- 12 | - 4
- 12 | - 4
- 15 | 0
- 18 | - 9
- 17 | - 9
- 20 | - 5
- 23 | - 15
- 26 | - 11
- 29 | 10 | 18 | | 18 | 30 | - 9 | + 53
+ 40 | + 33
+ 20 | + 41
+ 20 | + 20 + 7 | + 28
+ 7 | + 13
0 | + 21 | + 33 | + 8 - 5 | + 12
- 9 | ± 6.5 | ± 10.5 | + 1 | + 2
- 11 | + 6
- 15 | - 5
- 14 | - 4
- 17 | 0
- 21 | - 12
- 21 | - 11
- 24 | - 7
- 28 | - 18
- 31 | - 14
- 35 | 18 | 30 | | 30 | 50 | 0
- 11 | + 66
+ 50 | + 41
+ 25 | + 50
+ 25 | + 25
+ 9 | + 34
+ 9 | + 16
0 | + 25 | + 39 | + 10
- 6 | + 14
- 11 | ± 8 | ± 12.5 | + 2 - 9 | + 3
- 13 | + 7
- 18 | - 5
- 16 | - 4
- 20 | 0
- 25 | - 13
- 24 | - 12
- 28 | - 8
- 33 | - 21
- 37 | - 17
- 42 | 30 | 50 | | 50 | 80 | 0
- 13 | + 79
+ 60 | + 49
+ 30 | + 60
+ 30 | + 29
+ 10 | + 40
+ 10 | + 19
0 | + 30 | + 46 | + 13
- 6 | + 18
- 12 | ± 9.5 | ± 15 | + 3
- 10 | + 4
- 15 | + 9
- 21 | - 6
- 19 | - 5
- 24 | 0
- 30 | - 15
- 28 | - 14
- 33 | - 9
- 39 | - 26
- 45 | - 21
- 51 | 50 | 80 | | 80 | 120 | 0
- 15 | + 94
+ 72 | + 58
+ 36 | + 71
+ 36 | + 34
+ 12 | + 47
+ 12 | + 22
0 | + 35 | + 54 | + 16
- 6 | + 22
- 13 | ± 11 | ± 17.5 | + 2
- 13 | + 4
- 18 | + 10
- 25 | - 8
- 23 | - 6
- 28 | 0
- 35 | - 18
- 33 | - 16
- 38 | - 10
- 45 | - 30
- 52 | - 24
- 59 | 80 | 120 | | 120
150 | 150
180 | 0
- 18
0
- 25 | +110
+ 85 | + 68
+ 43 | + 83
+ 43 | + 39
+ 14 | + 54
+ 14 | + 25
0 | + 40 | + 63 | + 18 - 7 | + 26
- 14 | ± 12.5 | ± 20 | + 3
- 15 | + 4
- 21 | + 12
- 28 | - 9
- 27 | - 8
- 33 | 0
- 40 | - 21
- 39 | - 20
- 45 | - 12
- 52 | - 36
- 61 | - 28
- 68 | 120 | 180 | | 180 | 250 | 0
- 30 | +129
+100 | + 79
+ 50 | + 96
+ 50 | + 44
+ 15 | + 61
+ 15 | + 29 | + 46 | + 72 | + 22 - 7 | + 30
- 16 | ± 14.5 | ± 23 | + 2 - 18 | + 5
- 24 | + 13
- 33 | - 11
- 31 | - 8
- 37 | 0
- 46 | - 25
- 45 | - 22
- 51 | - 14
- 60 | - 41
- 70 | - 33
- 79 | 180 | 250 | | 250 | 315 | 0
- 35 | +142
+110 | + 88
+ 56 | +108
+ 56 | + 49
+ 17 | + 69
+ 17 | + 32 | + 52
0 | + 81 | + 25
- 7 | + 36
- 16 | ± 16 | ± 26 | + 3 - 20 | + 5
- 27 | + 16
- 36 | - 13
- 36 | - 9
- 41 | 0
- 52 | - 27
- 50 | - 25
- 57 | - 14
- 66 | - 47
- 79 | - 36
- 88 | 250 | 316 | | 315 | 400 | 0
- 40 | +161
+125 | + 98
+ 62 | +119
+ 62 | + 54
+ 18 | + 75
+ 18 | + 36 | + 57
0 | + 89 | + 29
- 7 | + 39
- 18 | ± 18 | ± 28.5 | + 3 - 22 | + 7
- 29 | + 17
- 40 | - 14
- 39 | - 10
- 46 | 0
- 57 | - 30
- 55 | - 26
- 62 | - 16
- 73 | - 51
- 87 | - 41
- 98 | 315 | 400 | | 400 | 500 | 0
- 45 | +175
+135 | +108
+ 68 | +131
+ 68 | + 60
+ 20 | + 83
+ 20 | + 40
0 | + 63 | + 97 | + 33 - 7 | + 43
- 20 | ± 20 | ± 31.5 | + 2
- 25 | + 8
- 32 | + 18
- 45 | - 16
- 43 | - 10
- 50 | 0
- 63 | - 33
- 60 | - 27
- 67 | - 17
- 80 | - 55
- 95 | - 45
-108 | 400 | 500 | | 500 | 630 | 0
- 50 | +189
+145 | +120
+ 76 | +146
+ 76 | + 66
+ 22 | + 92
+ 22 | + 44
0 | + 70 | +110 | _ | _ | ± 22 | ± 35 | _ | 0
- 44 | 0
- 70 | _ | - 26
- 70 | - 26
- 96 | _ | - 44
- 88 | - 44
-114 | - 78
-122 | - 78
-148 | 500 | 630 | | 630 | 800 | 0
- 75 | +210
+160 | +130
+ 80 | +160
+ 80 | + 74
+ 24 | +104
+ 24 | + 50
0 | + 80 | +125
0 | _ | - | ± 25 | ± 40 | _ | 0
- 50 | 0
- 80 | _ | - 30
- 80 | - 30
-110 | _ | - 50
-100 | - 50
-130 | - 88
-138 | - 88
-168 | 630 | 800 | | 800 | 1 000 | 0
–100 | +226
+170 | +142
+ 86 | +176
+ 86 | + 82
+ 26 | +116
+ 26 | + 56
0 | + 90 | +140 | _ | _ | ± 28 | ± 45 | _ | 0
- 56 | 0
- 90 | _ | - 34
- 90 | - 34
-124 | _ | - 56
-112 | - 56
-146 | -100
-156 | -100
-190 | 800 | 1 000 | | 1 000 | 1 250 | 0
–125 | +261
+195 | +164
+ 98 | +203
+ 98 | + 94
+ 28 | +133
+ 28 | + 66
0 | +105
0 | +165
0 | _ | - | ± 33 | ± 52.5 | _ | 0
- 66 | 0
–105 | _ | - 40
-106 | - 40
-145 | _ | - 66
-132 | - 66
-171 | -120
-186 | -120
-225 | 1 000 | 1 250 | | 1 250 | 1 600 | 0
–160 | +298
+220 | +188
+110 | +235
+110 | +108
+ 30 | +155
+ 30 | + 78 | +125
0 | +195
0 | _ | - | ± 39 | ± 62.5 | _ | 0
- 78 | 0
-125 | _ | - 48
-126 | - 48
-173 | _ | - 78
-156 | - 78
-203 | –140
–218 | -140
-265 | 1 250 | 1 600 | | 1 600 | 2 000 | 0
–200 | +332
+240 | +212
+120 | +270
+120 | +124
+ 32 | +182
+ 32 | + 92
0 | +150
0 | +230
0 | _ | - | ± 46 | ± 75 | _ | 0
- 92 | 0
-150 | _ | - 58
-150 | - 58
-208 | _ | - 92
-184 | - 92
-242 | –170
–262 | –170
–320 | 1 600 | 2 000 | | 2 000 | 2 500 | 0
–250 | +370
+260 | +240
+130 | +305
+130 | +144
+ 34 | +209
+ 34 | +110
0 | +175
0 | +280
0 | _ | - | ± 55 | ± 87.5 | _ | 0
–110 | 0
-175 | _ | - 68
-178 | - 68
-243 | _ | –110
–220 | –110
–285 | –195
–305 | -195
-370 | 2 000 | 2 500 | ## Appendix Table 3 Values of Standard Tolerance Grades IT | Bas | ic Size | | | | | | | | | Standard | Grades | | | | | | | | | Basi | c Size | |-------|---------|-----|-----|-----|-----|-----|---------------|-----|-----|----------|--------|-------|------|------|------|---------------|-------|-------|-------|-------|--------| | (r | mm) | IT1 | IT2 | IT3 | IT4 | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | IT12 | IT13 | IT14 | IT15 | IT16 | IT17 | IT18 | (n | nm) | | over | incl. | | | | | То | lerances (µm) | | | | | | | | Т | olerances (µn | m) | | | over | incl. | | - | 3 | 0.8 | 1.2 | 2 | 3 | 4 | 6 | 10 | 14 | 25 | 40 | 60 | 0.10 | 0.14 | 0.25 | 0.40 | 0.60 | 1.00 | 1.40 | - | 3 | | 3 | 6 | 1 | 1.5 | 2.5 | 4 | 5 | 8 | 12 | 18 | 30 | 48 | 75 | 0.12 | 0.18 | 0.30 | 0.48 | 0.75 | 1.20 | 1.80 | 3 | 6 | | 6 | 10 | 1 | 1.5 | 2.5 | 4 | 6 | 9 | 15 | 22 | 36 | 58 | 90 | 0.15 | 0.22 | 0.36 | 0.58 | 0.90 | 1.50 | 2.20 | 6 | 10 | | 10 | 18 | 1.2 | 2 | 3 | 5 | 8 | 11 | 18 | 27 | 43 | 70 | 110 | 0.18 | 0.27 | 0.43 | 0.70 | 1.10 | 1.80 | 2.70 | 10 | 18 | | 18 | 30 | 1.5 | 2.5 | 4 | 6 | 9 | 13 | 21 | 33 | 52 | 84 | 130 | 0.21 | 0.33 | 0.52 | 0.84 | 1.30 | 2.10 | 3.30 | 18 | 30 | | 30 | 50 | 1.5 | 2.5 | 4 | 7 | 11 | 16 | 25 | 39 | 62 | 100 | 160 | 0.25 | 0.39 | 0.62 | 1.00 | 1.60 | 2.50 | 3.90 | 30 | 50 | | 50 | 80 | 2 | 3 | 5 | 8 | 13 | 19 | 30 | 46 | 74 | 120 | 190 | 0.30 | 0.46 | 0.74 | 1.20 | 1.90 | 3.00 | 4.60 | 50 | 80 | | 80 | 120 | 2.5 | 4 | 6 | 10 | 15 | 22 | 35 | 54 | 87 | 140 | 220 | 0.35 | 0.54 | 0.87 | 1.40 | 2.20 | 3.50 | 5.40 | 80 | 120 | | 120 | 180 | 3.5 | 5 | 8 | 12 | 18 | 25 | 40 | 63 | 100 | 160 | 250 | 0.40 | 0.63 | 1.00 | 1.60 | 2.50 | 4.00 | 6.30 | 120 | 180 | | 180 | 250 | 4.5 | 7 | 10 | 14 | 20 | 29 | 46 | 72 | 115 | 185 | 290 | 0.46 | 0.72 | 1.15 | 1.85 | 2.90 | 4.60 | 7.20 | 180 | 250 | | 250 | 315 | 6 | 8 | 12 | 16 | 23 | 32 | 52 | 81 | 130 | 210 | 320 | 0.52 | 0.81 | 1.30 | 2.10 | 3.20 | 5.20 | 8.10 | 250 | 315 | | 315 | 400 | 7 | 9 | 13 | 18 | 25 | 36 | 57 | 89 | 140 | 230 | 360 | 0.57 | 0.89 | 1.40 | 2.30 | 3.60 | 5.70 | 8.90 | 315 | 400 | | 400 | 500 | 8 | 10 | 15 | 20 | 27 | 40 | 63 | 97 | 155 | 250 | 400 | 0.63 | 0.97 | 1.55 | 2.50 | 4.00 | 6.30 | 9.70 | 400 | 500 | | 500 | 630 | 9 | 11 | 16 | 22 | 32 | 44 | 70 | 110 | 175 | 280 | 440 | 0.70 | 1.10 | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 500 | 630 | | 630 | 800 | 10 | 13 | 18 | 25 | 36 | 50 | 80 | 125 | 200 | 320 | 500 | 0.80 | 1.25 | 2.00 | 3.20 | 5.00 | 8.00 | 12.50 | 630 | 800 | | 800 | 1 000 | 11 | 15 | 21 | 28 | 40 | 56 | 90 | 140 | 230 | 360 | 560 | 0.90 | 1.40 | 2.30 | 3.60 | 5.60 | 9.00 | 14.00 | 800 | 1 000 | | 1 000 | 1 250 | 13 | 18 | 24 | 33 | 47 | 66 | 105 | 165 | 260 | 420 | 660 | 1.05 | 1.65 | 2.60 | 4.20 | 6.60 | 10.50 | 16.50 | 1 000 | 1 250 | | 1 250 | 1 600 | 15 | 21 | 29 | 39 | 55 | 78 | 125 | 195 | 310 | 500 | 780 | 1.25 | 1.95 | 3.10 | 5.00 | 7.80 | 12.50 | 19.50 | 1 250 | 1 600 | | 1 600 | 2 000 | 18 | 25 | 35 | 46 | 65 | 92 | 150 | 230 | 370 | 600 | 920 | 1.50 | 2.30 | 3.70 | 6.00 | 9.20 | 15.00 | 23.00 | 1 600 | 2 000 | | 2 000 | 2 500 | 22 | 30 | 41 | 55 | 78 | 110 | 175 | 280 | 440 | 700 | 1 100 | 1.75 | 2.80 | 4.40 | 7.00 | 11.00 | 17.50 | 28.00 | 2 000 | 2 500 | | 2 500 | 3 150 | 26 | 36 | 50 | 68 | 96 | 135 | 210 | 330 | 540 | 860 | 1 350 | 2.10 | 3.30 | 5.40 | 8.60 | 13.50 | 21.00 | 33.00 | 2 500 | 3 150 | **NSK** | 30 29 **NSK** Remarks 1. Standard tolerance grades IT 14 to IT 18 must not be used for basic sizes less than or equal to 1 mm. 2. Values for standard tolerance grades IT 1 to IT 5 for basic sizes over 500 mm are included for experimental use. ### **Worldwide Sales Offices and Manufacturing Plants** P: Phone F: Fax C: Country Code Printed in Japan | NSK LTD. | -HEADQUARTERS, TOKYO, JAPAN | NSI
HEA | |------------------------------------|---|-------------------| | | Nissei Bldg., 1-6-3 Ohsaki, Shinagawa-ku, Tokyo 141-8560, Japan
HINERY BUSINESS DIVISION-HEADQUARTERS | NS
OFF | | GLOBAL AFTERMA | P: 03-3779-7227 F: 03-3779-7644 C: 81
ARKET DEPARTMENT | AKS | | PRECISION MACH | P: 03-3779-7253 F: 03-3779-7644 C: 81
INERY DEPARTMENT | PLA | | MECHATRONICS E | P: 03-3779-7163 F: 03-3779-7644 C:
81 3USINESS DEPARTMENT | NSI | | AUTOMOTIVE BUS | P: 0466-21-3027 F: 0466-21-3206 C: 81
SINESS DIVISION-HEADQUARTERS
P: 03-3779-7189 F: 03-3779-7917 C: 81 | PLA | | • Africa
South Africa: | | NS I | | | FRICA (PTY) LTD. 3 25 Galaxy Avenue, Linbro Business Park, Sandton, Gauteng, P.O. Box 1157, Kelvin, 2054, South Africa P: 011-458-3600 F: 011-458-3608 C: 27 | SHI
OFF | | | d Oceania | SHI | | Australia:
NSK AUSTRALI | | OFF | | MELBOURNE | 11 Dalmore Drive, Scoresby, Victoria 3179, Australia P: 03-9765-4400 F: 03-9764-8304 C: 61 | Indi | | SYDNEY | 24-28 River Road West, Parramatta, New South Wales 2150, Australia P: 02-8843-8100 F: 02-9893-8406 C: 61 | RAI
CHE | | BRISBANE | 1/69 Selhurst Street, Coopers Plains, Queensland 4108, Australia
P: 07-3347-2600 F: 07-3345-5376 C: 61 | BAV | | PERTH | Unit 1, 71 Tacoma Circuit, Canning Vale, Western Australia 6155, Australia P: 08-9256-5000 F: 08-9256-1044 C: 61 | DAV | | China:
NSK HONG KO | NG LTD. | NSI | | HONG KONG | Suite 814, World Commerce Centre, Harbour City, T.S.T, KLN, Hong Kong, China
P: 02739-9933 F: 02739-9323 C: 852 | CHE | | SHENZHEN | Room 624-626, 6/F, Kerry Center, Remminnan Road, Shenzhen, Guangdong, China
P: 0755-25904886 F: 0755-25904883 C: 86 | GUF | | KUNSHAN NSK
DFFICE/PLANT | CO., LTD. 258 South Huang Pu Jiang Rd., Kunshan Economic & Technical Development | KOL | | | Zone, Jiangsu, China (215335)
P: 0512-5771-5654 F: 0512-5771-5689 C: 86 | MU | | CHANGSHU NS
DFFICE/PLANT | SK NEEDLE BEARING CO., LTD. No. 66 Dongnan Road, Changshu Southeast Economic Development Zone, | IVIUI | | | Changshu City, Jiangsu, China (215500) P: 0512-5230-1111 F: 0512-5230-6011 C: 86 | NS
Off | | NSK STEERING
DFFICE/PLANT | SYSTEMS DONGGUAN CO., LTD. High-tech Park, Shilong Road, Guanlong Section, Dongguan, Guangdong, China (523119) | | | | P: 0769-2262-0960 F: 0769-2316-2867 C: 86 IG NSK PRECISION MACHINERY CO., LTD. | Ind
PT | | OFFICE/PLANT | No. 34 Zhenxing Road, Zhangjiagang Economic Development Zone, Zhangjiagang City, Jiangsu, China (215600) | JAK | | | P: 0512-5867-6496 F: 0512-5818-0970 C: 86 BEARINGS CO., LTD. | PT. | | OFFICE/PLANT | No. 22 Taishan Road, Suzhou New District, Jiangsu, China (215129)
P: 0512-6665-5666 F: 0512-6665-9138 C: 86 | JAK | | NSK (CHINA) R
JIANGSU | RESEARCH & DEVELOPMENT CO., LTD. No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332) | PT.
BEK | | NSK (SHANGH | P: 0512-5796-3000 F: 0512-5796-3300 C: 86 AI) TRADING CO., LTD. | Koı | | HEAD OFFICE | No.8 NSK Rd., Huaqiao Economic Development Zone, Kunshan, Jiangsu, China (215332)
P: 0512-5796-3000 F: 0512-5796-3300 C: 86 | NSI
SEC | | NSK (CHINA) IN
HEAD OFFICE | NVESTMENT CO., LTD. www.cn.nsk.com No.8 NSK Rd., Huaqjao Economic Development Zone, Kunshan, Jiangsu, China (215332) | CHA | | BEIJING | P: 0512-5796-3000 F: 0512-5796-3300 C: 86
Room 2116, Beijing Fortune Bldg., 5 Dong San Huan Bei Lu, Chao Yang District, | PLA | | | Beijing, China (100004)
P: 010-6590-8161 F: 010-6590-8166 C: 86 | Ma
NS | | TIAN JIN | Room 06, 09F The Exchange Tower 2, No. 189 NanJing Road, Heping District, Tianjin, China (300050) | HEA | | CHANGCHUN | P: 022-8319-5030 F: 022-8319-5033 C: 86 | PRA | | PHANGCHUN | Room 1001, Building A, Zhongyin Building, 727 Xi'an Road, Changchun, Jilin, China (130061) P: 0431-8898-8682 F: 0431-8898-8670 C: 86 | JOH | | SHENYANG | Room 1101, China Resources Building, No. 286 Qingnian Street, | IPO | | | Heping District, Shenyang Liaoning, China (110004) P: 024-2334-2868 F: 024-2334-2058 C: 86 | NS | | DALIAN | Room 1805 Xiwang Tower, No.136 Zhongshan Road,
Zhongshan District, Dalian, Liaoning, China (116001) | MAI | | NANJING | P: 0411-8800-8168 F: 0411-8800-8160 C: 86
A1 22F, Golden Eagle International Plaza, No.89 Hanzhong Road, Nanjing, | Nev | | | Jiangsu, China (210029) P:025-8472-6671 F:025-8472-6687 C:86 | NS
AUG | | GUANGZHOU | Room 2302, TaiKoo Hui Tower 1, No.385 Tianhe Road,
Tianhe District, Guangzhou, China (510620) | Phi | | CHANGSHA | P: 020-3817-7800 F: 020-3786-4501 C: 86
Room 1048, 10/F, Zhongtian Plaza, No.766 WuyiRoad, Changsha, Hunan, China (410005) | NS | | LUOYANG | P: 0731-8571-3100 F: 0731-8571-3255 C: 86 Room 1108, Fangda Hotel, 6 XiYuan Road, LuoYang HeNan, China (471003) | IAM | | KI'AN | P: 0379-6069-6188 F: 0379-6069-6180 C: 86 Room 1007, B Changan Metropolls Center88 Nanguanzheng Steet, Xi'an, Shanxi, | Sin | | | China (710068) | NSI
SIN | | | P: 029-8765-1896 F: 029-8765-1895 C: 96 | | | CHONGQING | P: 029-8765-1896 F: 029-8765-1895 C: 86 Room 2306, Unit B, No.137, Keyuan 2nd Road, Jiulongpo District, Chonqing, | | | CHONGQING | | NSI
SING | | NSK CHINA SAI
HEAD OFFICE | No.8 NSK Rd., Huaqiao Ed | | Kunshan, Jiangsu, China (215332) | |-------------------------------------|---|--|--| | | P: 0512-5796-3000
[SHANGHAI) CO., L
No. 2518 Huancheng Ro | | C: 86
et, Shanghai,China (201401) | | | P: 021-3365-5757 | F: 021-3365-5262 | C: 86 | | PLANT | Hangzhou, Zhejiang, China | aoshan Area of Economic & ⁻
a (311231) | Fechnological Development Zone, | | | P: 0571-2280-1288 | F: 0571-2280-1268 | C: 86 | | | No. 34 Zhenxing Road, Zh
Jiangsu, China (215600) | ZHANGJIAGANG) CO
angjiagang Economic Devel | D., LTD. ppment Zone, Zhangjiagang City, | | | P:0512-5867-6496 | F:0512-5818-0970 | C:86 | | NSK-WANDA EI
OFFICE/PLANT | | | i SYSTEMS CO.,LTD.
hou, Zhejiang, China (311258)
C:86 | | | K PRECISION CO., | | | | | No. 7 of 15 Street, Shenyang, Liaoning, Chi
P: 024-2550-5017 | | ogical Development Area, C: 86 | | SHENYANG NSI | | | | | | No. 5, 15 Street, Shenya
Shenyang, Liaoning, Chi
P: 024-2532-6080 | ng Economic & Technolog
na (110141)
F: 024-2532-6081 | gical Development Area, C: 86 | | India: | | | | | | ERING SYSTEMS L | | T : : 1 1 000 000 1 1: | | CHENNAI | 14, Rajagopalan Salai, V
P:044-474-06017 | allancherry, Guduvancher
F:044-274-66001 | ry, Tamil Nadu-603 202, India
C:91 | | BAWAL | | | val, District Rewari, Haryana | | | -123 501, India
P:01284-264281
ES CO.PVT.LTD. | F:01284 - 264280 | C:91 | | | | an Towers, No.29 Dr. Badi | nakrishnan Road, Mylapore, | | 0112111111 | Chennai- 600 004 Tamil | | ,, | | | P:044-2847-9600 | F:044-2847-9601 | C:91 | | GURGAON | 107, Park Centra, Sector
Haryana-122 001, India | r-30, Opposite 32nd Miles | tone, NH-8, Gurgaon, | | | P:0124-4104-530 | F:0124-4104-532 | C:91 | | KOLKATA | | Topsia Road, Kolkata-700 | | | | P:033-4001-2062 | F:033-4001-2064 | C:91 | | MUMBAI | 321, A Wing, Ahura Cent
-400 093, India
P:022-2838-7787 | tre, 82, Mahakali Caves Ro
F:022-2838-5191 | oad, Andheri East, Mumbai
C:91 | | NSK-ABC BEAF | | | | | | | | ur Village, Sriperumbudur Taluk,
C:91 | | Indonesia: | | | | | PT. NSK BEARII | NGS MANUFACTUF
Blok M4, Kawasan Berik
17520, Indonesia | RING INDONESIA
at MM2100 Industrial Tow | n Cikarang Barat, Bekasi | | | P: 021-898-0155 | F: 021-898-0156 | C: 62 | | PT. NSK INDON
JAKARTA | | | 1-62, Jakarta 12190, Indonesia
C: 62 | | PT. NSK-WARN | | | | | BEKASI | | n, Cikarang Barat, Bekasi
F: 021-8998-3218 | 17520, Indonesia
C: 62 | | NSK KOREA CO | ., LTD. www.kr.r | isk com | | | SEOUL | Posco Center (West Wing)
P: 02-3287-0300 | 9F, 892, Daechi-4Dong, Ka
F: 02-3287-0345 | | | CHANGWON
PLANT | 60, Seongsan-Dong, Ch.
P: 055-287-6001 | angwon, Kyungsangnam-
F: 055-285-9982 | Do, 642-315, Korea
C: 82 | | Malaysia: | | | | | | 6 (MALAYSIA) SDN.
No. 2, Jalan Pemaju, U1.
40150 Shah Alam, Selan | /15, Seksyen U1, Hicom G | | | | P: 03-7803-8859 | F: 03-7806-5982 | C: 60 | | | No.36, Jalan kikik, Tama
P: 04-3902275 | ın Inderawasih, 13600 Pra
F: 04-3991830 | i, Penang, Malaysia
C: 60 | | JOHOR BAHRU | | | 00 Johor Bahru, Johor, Ma l aysia | | | Gr. Floor, 89 Jalan Bend | ahara, 31650 Ipoh, Perak, | | | NSK MICDO DD | P: 05-2555000
ECISION (M) SDN. I | F: 05-2553373
BHD. www.my.ns l | C: 60 | | MALAYSIA PLANT | No.43 Jalan Taming Dua,
Malaysia | Taman Taming Jaya 43300 | Balakong, Selangor Darul Ehsan, | | New Zealand: | P: 03-8961-3960 | F: 03-8961-3968 | C: 60 | | NSK NEW ZEAL
AUCKLAND | 3 Te Apunga Place, Mt. 1 | nz.nsk.com
Wellington, Auckland, Nev | | | | P: 09-276-4992 | F: 09-276-4082 | C: 64 | | Philippines:
NSK REPRESEN | NTATIVE OFFICE | | | | | 8th Floor The Salcedo To | owers 169 H.V. dela Costa | s St., | | | Salcedo Village Makati C
P: 02-893-9543 | City, Philippines 1227
F: 02-893-9173 | C: 63 | | Singapore: | | | | | SINGAPORE | | 24-01/05, Novena Square | Tower A, Singapore 307684 | | | P: 6496-8000 | F: 6250-5845 | C: 65 | | | RE (PRIVATE) LTD.
238A, Thomson Road, #
P: 6496-8000 | | re.com.sg
Tower A, Singapore 307684
C: 65 | | | | | | | | | | | | | | | | ### **Worldwide Sales Offices and Manufacturing Plants** | T | | | | Helle de la contra | | |------------------------------|--|---|--|--------------------------------|---| | Taiwan:
TAIWAN NSK P | RECISION CO., LTD |). | | United Kingdor
NSK BEARINGS | n:
S EUROPE LTD. | | TAIPEI | 11F., No.87, Song Jiang
P: 02-2509-3305 | | Taipei City 104, Taiwan R.O.C. | PETERLEE
PLANT | 3 Brindley Road, South West Industrial Estate, Peterlee, Co. Durham SR8 2JD, U.K. P: 0191-586-6111 F: 0191-586-3482 C: 44 | | TAICHUNG | | F:
02-2509-1393
Rd., Taichung City 407, 7 | C: 886
Faiwan R.O.C. | NEWARK | P: 0191-586-6111 F: 0191-586-3482 C: 44 Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. | | | P: 04-2311-7978 | F: 04-2311-2627 | C: 886 | PLANT | P: 01636-605-123 F: 01636-605-000 C: 44 | | TAINAN | No.8 Daye 1st Rd., South
P: 06-505-5861 | ern Taiwan Science Park, 1
F: 06-505-5061 | Fainan County 741, Taiwan R.O.C.
C: 886 | NSK EUROPEA
NEWARK | N TECHNOLOGY CENTRE Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. | | TAIWAN NSK T | ECHNOLOGY CO., | | 0.000 | | P: 01636-605-123 F: 01636-643-241 C: 44 | | TAIPEI | | | Γaipei City 104, Taiwan R.O.C. | NSK UK LTD.
NEWARK | Northern Road, Newark, Nottinghamshire NG24 2JF, U.K. | | TAICHUNG | P: 02-2509-3305
10F-3, No.123, Sec.3, Ji | F: 02-2509-1393
unggang Rd., Taichung 40 | C: 886
07. Taiwan R.O.C. | NEWARK | P: 01636-605-123 F: 01636-605-000 C: 44 | | | P: 04-2358-2945 | F: 04-2358-7682 | C: 886 | •North ar | nd South America | | TAINAN | 5F. No.8, Daye 1st Rd.,
Taiwan R.O.C. | Southern Taiwan Science | Park, Tainan County 741, | | S, INC. (AMERICAN HEADQUARTERS) | | | P: 06-505-5861 | F: 06-505-5061 | C: 886 | ANN ARBOR | 4200 Goss Road, Ann Arbor, Michigan 48105, Ú.S.A. | | Thailand: | 0 (TILAU AND) 00 I | | | Argentina: | P: 734-913-7500 F: 734-913-7511 C: 1 | | BANGKOK | S (THAILAND) CO.,L
26 Soi On - Nuch 55/1 Pr | TD.
avet District, Bangkok 102 | 250, Thailand | NŠK ARGENTIN | | | | P: 02320-2555 | F: 02320-2826 | C: 66 | BUENOS AIRES | Garcia del Rio 2477 Piso 7 Oficina "A" (1429) Buenos Aires-Argentina P: 11-4704-5100 F: 11-4704-0033 C: 54 | | | S MANUFACTURINO
700/430 Moo 7, Amata I | | .TD.
r.Donhualor, A.Muangchonburi, | Brazil: | 1.11 4/04 5100 | | | Chonburi 20000, Thailar | d | | NSK BRASIL LT
HEAD OFFICE | TDA. www.br.nsk.com Rua 13 de Maio, 1633-14th Andar-Bela Vista-CEP 01327-905 São Paulo, SP, Brazil | | SIVM NOK STE | P: 038-454-010
ERING SYSTEMS C | F: 038-454-017 | C: 66 | HEAD OFFICE | P: 011-3269-4786 F: 011-3269-4720 C: 55 | | | 90 Moo 9, Wellgrow Ind | | gna-Trad Rd., Bangwao, | SUZANO PLANT | Av. Vereador Joao Batista Fitipaldi, 66, CEP 08685-000, Vila Maluf, Suzano, SP, Brazil | | | Bangpakong, Chachoen P: 038-522-343 | gsao 24180, Thailand
F: 038-522-351 | C: 66 | BELO HORIZONTE | P: 011-4744-2527 F: 011-4744-2529 C: 55 Rua Ceara 1431-4th andar-sala 405-Funcionarios Belo Horizonte-MG, Brazil | | NSK ASIA PAC | IFIC TECHNOLOGY | | | | 30150-311 | | CHONBURI | 700/430 Moo 7, Amata I | Nakorn Industrial Estate, 1 | CDonhualor, A.Muangchonburi, | JOINVILLE | P: 031-3274-2591 F: 031-3273-4408 C: 55 Rua Blumenau, 178-sala 910-Centro Joinville-SC, Brazil 89204-250 | | | Chonburi 20000, Thailar
P: 038-454-631 | id
F: 038-454-634 | C: 66 | | P: 047-3422-5445 F: 047-3422-2817 C: 55 | | Vietnam: | | | | PORTO ALEGRE | Av. Cristovão Colombo, 1694-sala 202-Floresta Porto Alegre-RS, Brazil 90560 001
P: 051-3222-1324 F: 051-3222-2599 C: 55 | | NSK VIETNAM
HEAD OFFICE | | 04-205 Thana Long India | strial Park, Dong Anh District, | RECIFE | Av. Conselheiro Aguiar, 2738-6th andar-conj. 604-Boa Viagem Recife-PE, Brazil 51020-020 | | LILAD OF FIDE | Hanoi, Vietnam | o- 200, many Long indu | outain airi, Dong Ann District, | Damii | P: 081-3326-3781 F: 081-3326-5047 C: 55 | | NOV DEDDESS | P: 04-3955-0159 | F: 04-3955-0158 | C: 84 | Peru:
NSK PERU S.A. | .C. | | | NTATIVE OFFICE
Suite 307. Metropolitan | Buildina, 235 Dona Khoi S | Street, District 1,HCMC, Vietnam | LIMA | Av. Caminos del Inca 670, Ofic : # 402, Santiago del Surco, Lima, Perú | | | P: 08-3822-7907 | F: 08-3822-7910 | C: 84 | Canada: | P: 01-652-3372 F: 01-638-0555 C: 51 | | ●Europe | | | | NSK CANADA I | INC. www.ca.nsk.com | | NSK EUROPE L | LTD. (EUROPEAN H | | www.eu.nsk.com | HEAD OFFICE | 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4 P: 905-890-0740 F: 800-800-2788 C: 1 | | MAIDENHEAD | Belmont Place, Belmont
P: 01628-509-800 | Road, Maidenhead, Berk F: 01628-509-808 | shire SL6 6TB, U.K.
C: 44 | TORONTO | 5585 McAdam Road, Mississauga, Ontario, Canada L4Z 1N4 | | France: | 1.01020 000 000 | 1.01020 000 000 | 0. 44 | MONTREAL | P: 877-994-6675 F: 800-800-2788 C: 1
2150-32E Avenue Lachine, Quebec, Canada H8T 3H7 | | NSK FRANCE S
PARIS | | Puo Goorgos Guynomor T | 78283 Guyancourt, France | WONTHEAL | P: 514-633-1220 F: 800-800-2788 C: 1 | | FANIS | P: 01-30-57-39-39 | F: 01-30-57-00-01 | C: 33 | VANCOUVER | 3353 Wayburne Drive, Burnaby, British Columbia, Canada V5G 4L4
P: 877-994-6675 F: 800-800-2788 C: 1 | | Germany:
NSK DEUTSCH | II AND CMBU | | | Mexico: | | | HEAD OFFICE | Harkortstrasse 15, D-40 | 880 Ratingen, Germany | | NSK RODAMIE
MEXICO CITY | NTOS MEXICANA, S.A. DE C.V. www.mx.nsk.com Av. Presidente Juarez No.2007 Lote 5, Col. San Jeronimo Tepetlacalco, | | OTLITTO A DT | P: 02102-4810 | F: 02102-4812-290 | C: 49 | MEXICO CITY | Tilalnepantia, Estado de Mexico, Mexico, C.P.54090 | | STUTTGART | P: 0711-79082-0 | -70565 Stuttgart-Vaihinge
F: 0711-79082-289 | C: 49 | MONTERREY | P: 55-3682-2900 F: 55-3682-2937 C: 52 | | WOLFSBURG | | se 101, D-38440 Wolfsbu | | MONTERRET | Av. Ricardo Margain 575, IOS Torre C, Suite 516, Parque Corporativo Santa
Engracia, San Pedro Garza Garcia, N.L. Mexico, C.P.66267 | | NEUWEG FERT | P: 05361-27647-10 | F: 05361-27647-70 | C: 49 | | P: 81-8000-7300 F: 81-8000-7095 C: 52 | | OFFICE/PLANT | Ehinger Strasse 5, D-89 | 597 Munderkingen, Germ | | United States of NSK CORPORA | | | Italy: | P: 07393-540 | F: 07393-5414 | C: 49 | HEAD OFFICE | 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. | | NSK ITALIA S.F | | | | NSK AMFRICAN | P: 734-913-7500 F: 734-913-7511 C: 1
4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A. | | MILANO | Via Garibaldi 215, Garba
P: 0299-5191 | gnate Milanese (Milano) 2
F: 0299-025778 | 20024, Italy
C: 39 | TECHNOLOGY CENTER | P: 734-913-7500 F: 734-913-7511 C: 1 | | Netherlands: | | | -: | CLARINDA PLANT | 1100 N. First Street, Clarinda, Iowa 51632, U.S.A.
P: 712-542-5121 F: 712-542-4905 C: 1 | | NSK EUROPEA | N DISTRIBUTION C | ENTRE B.V.
AP Tilburg, Netherlands | | FRANKLIN PLANT | 3400 Bearing Drive, Franklin, Indiana 46131, U.S.A. | | | P: 013-4647647 | F: 013-4647648 | C: 31 | I IREDTV DI ANT | P: 317-738-5000 F: 317-738-5064 C: 1 1112 East Kitchel Road, Liberty, Indiana 47353, U.S.A. | | Poland: | TO DEDDECENTA | IVE OFFICE | | LIDENT FLAINT | P: 765-458-5000 F: 765-458-7832 C: 1 | | WARSAW | LTD. REPRESENTAT
Ul. Migdalowa 4/73, 02- | | | | N AMERICA, INC. www.npa.nsk.com | | | P: 022-645-1525 | F: 022-645-1529 | C: 48 | OFFICE/PLANT | 3450 Bearing Drive, Franklin, Indiana 46131, U.S.A. P: 317-738-5000 F: 317-738-5050 C: 1 | | NSK BEARINGS
OFFICE/PLANT | S POLSKA S.A.
Ul. Jagiellonska 109, 25 | -734 Kielce, Poland | | SAN JOSE | 780 Montague Expressway, Suite 508, San Jose, California 95131, U.S.A. | | | P: 041-366-5001 | F: 041-367-0500 | C: 48 | NSK STEERING | P: 408-944-9400 F: 408-944-9405 C: 1 S SYSTEMS AMERICA, INC. www.nssa.nsk.com | | NSK STEERING
CORPORATE | S SYSTEMS EUROP Ul. Mariana Jachimowic | E (POLSKA) SP.ZO.(
za 17, 58-306 Walbrzych, | | | 110 Shields Drive, Bennington, Vermont 05201, U.S.A. | | OFFICE/PLANT | P: 074-664-4101 | F: 074-664-4104 | C: 48 | DYERSBURG PLANT | P: 802-442-5448 F: 802-442-2253 C: 1
2962 Fort Hudson Road, Dyersburg, TN 38024, U.S.A. | | | BEARING POLAND S
UL. Jagiellonska 109, 25 | | | | P: 731-288-3000 F: 731-288-3001 C: 1 | | | P: 041-345-2469 | F: 041-345-0361 | C: 48 | ANN ARBOR | 4200 Goss Road, Ann Arbor, Michigan 48105, U.S.A.
P: 734-913-7500 F: 734-913-7102 C: 1 | | NSK POLSKA S
KIELCE | SP.ZO.O.
UI. Karczowkowska 41, | 25-711 Kielce Poland | | NSK-WARNER | U.S.A., INC. | | MELGE | P: 041-347-5110 | F: 041-347-5101 | C: 48 | TROY | 3001 West Big Beaver Road, Suite 701, Troy, Michigan 48084, U.S.A.
P: 248-822-8888 F: 248-822-1111 C: 1 | | Spain: | | | | NSK LATIN AM | P: 248-822-8888 | | NSK SPAIN S.A
BARCELONA | | nta, 08014, Barcelona, Sp | oain | MIAMI | 2500 NW 107th Avenue, Suite 300, Miami, Florida 33172, U.S.A. | | | P: 093-433-5775 | F: 093-433-5776 | C: 34 | | P: 305-477-0605 F: 305-477-0377 C: 1 | | Turkey:
NSK RULMANL | ARI ORTA DOGU T | C. LTD. STI. | | | | | ISTANBUL | 19 Mayis Mah. Ataturk C | | i No. 68 Kat. 6, Kozyatagi | | | | | 34734, Istanbul, Turkey
P: 0216-355-0398 | F: 0216-355-0399 | C: 90 | | | | | | | | | | <As of January 2012> For the latest information, please refer to the NSK website. P: Phone F: Fax C: Country Code Printed in Japan NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gratefully acknowledge any additions or corrections.